WO2016080589A1 - Electrode active material containing zeolite ion-exchanged with lithium ions, and electrochemical device using same - Google Patents

Electrode active material containing zeolite ion-exchanged with lithium ions, and electrochemical device using same Download PDF

Info

Publication number
WO2016080589A1
WO2016080589A1 PCT/KR2015/000062 KR2015000062W WO2016080589A1 WO 2016080589 A1 WO2016080589 A1 WO 2016080589A1 KR 2015000062 W KR2015000062 W KR 2015000062W WO 2016080589 A1 WO2016080589 A1 WO 2016080589A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
electrode active
zeolite
exchanged
Prior art date
Application number
PCT/KR2015/000062
Other languages
French (fr)
Korean (ko)
Inventor
정연욱
권병국
이동훈
박동규
구정아
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2016080589A1 publication Critical patent/WO2016080589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a zeolite-containing electrode active material ion-exchanged with lithium ions and an electrochemical device using the same.
  • the lithium secondary battery commercially available is lithium-cobalt-based metal oxide as a positive electrode active material, carbon is used as a negative electrode active material.
  • the lithium-cobalt-based metal oxides are relatively easy to synthesize, and have excellent stability and cycle characteristics, but are limited in application to high capacity technology of batteries.
  • lithium-manganese-based metal oxides Due to these problems, recently, lithium-manganese-based metal oxides, lithium-nickel-based metal oxides, and the like have attracted attention as positive electrode active materials.
  • lithium-manganese-based metal oxides having a layered structure have advantages over lithium-cobalt-based metal oxides in terms of capacity but are known to have poor cycle characteristics due to unstable structure.
  • spinel lithium-manganese-based metal oxides have excellent thermal stability, but have a disadvantage in that they are lower than lithium-cobalt-based metal oxides in terms of capacity.
  • lithium-nickel-based metal oxides may exhibit high capacity, cycle characteristics are not good, and manufacturing methods have complicated problems.
  • the present inventors earnestly endeavored to improve the performance of the positive electrode active material, and when the coating of the zeolite ion-exchanged with lithium ions on the positive electrode active material confirmed that the cycle characteristics of the positive electrode active material and the life is improved to complete the present invention.
  • An object of the present invention is to provide a method for reforming an electrode active material that can improve the life cycle by improving the cycle characteristics of the electrode active material of an electrochemical device such as a lithium secondary battery.
  • a first aspect of the invention provides an electrode active material containing a lithium composite oxide capable of lithium insertion or release, and a zeolite ion exchanged with lithium ions.
  • the second aspect of the present invention provides an electrode containing the electrode active material, the conductive agent and the binder according to the first aspect of the present invention.
  • a third aspect of the invention provides an electrochemical device comprising an anode, a cathode and an electrolyte, wherein the cathode contains an electrode active material according to the first aspect of the invention.
  • a lithium secondary battery is a battery that generates electricity while lithium ions, which exist in an ionic state, move from an anode to a cathode during discharge, and move from an anode to a cathode during charging.
  • the performance of a lithium secondary battery depends on the lithium ion activation ability of the positive electrode material and the presence of sufficient space to insert lithium ions in the negative electrode material. In particular, since lithium is included in the positive electrode active material, the positive electrode active material substantially influences the performance of the lithium secondary battery.
  • the positive electrode active material is generally composed of a transition metal oxide, since a change in the number of oxides to satisfy the charge neutral state is essential when lithium is de-inserted. Characteristics required for the positive electrode active material, high operating voltage, small polarization during charging and discharging, high capacity and efficiency, life characteristics, stability with the electrolyte should be considered.
  • Zeolite is a generic term for minerals in which alkali metals and alkaline earth metals are bonded to anions formed by the combination of aluminum oxides and silicate oxides. That is, it means crystalline aluminum silicate mineral, also called zeolite.
  • the internal cations of zeolites are sodium cations (Na + ) which are commonly present in the earth's crust.
  • the surface properties can be controlled by changing the electrochemical atmosphere in the pore of the zeolite by cation-exchanging the internal cation of the zeolite from Na + to Li + .
  • the zeolite ion-exchanged with lithium ions may be in the form of coating lithium composite oxide particles capable of inserting and releasing lithium, but may be in the form of a homogeneous mixture with the lithium composite oxide capable of inserting and releasing lithium.
  • Zeolites ion-exchanged with lithium ions may be obtained by ion-exchanging internal cations of zeolites with lithium ions as in Scheme 1 below.
  • the zeolite is immersed in a lithium ion-containing solution and dried to prepare a zeolite ion-exchanged with lithium ions.
  • the lithium ion-containing solution can be obtained by dissolving a lithium salt in water, C 1-4 lower alcohol or a mixed solvent thereof. At this time, lithium acetate, lithium nitrate or a mixture thereof may be used, but is not limited thereto.
  • the particle size of the zeolite may be preferably 1 ⁇ m or less, and the particle size of the zeolite ion-exchanged with lithium ions may also be 1 ⁇ m or less. More preferably, the particle size of the zeolite may be 0.01 ⁇ m to 1 ⁇ m, and the particle size of the zeolite ion-exchanged with lithium ions may be 0.01 ⁇ m to 1 ⁇ m.
  • the zeolite can preferably be milled before being immersed in a lithium ion containing solution.
  • the particle size of the zeolite may be adjusted to 1 ⁇ m or less, and the particle size of the zeolite ion-exchanged with lithium ions obtained after the ion exchange process may also be adjusted to 1 ⁇ m or less.
  • the electrode active material according to the present invention may be prepared by mixing lithium composite oxide capable of inserting and releasing lithium and zeolite ion-exchanged with lithium ions in a solvent, followed by drying and heat treatment.
  • the solvent may be water, C 1-4 alcohol or a mixed solvent thereof, but is not limited thereto.
  • the heat treatment temperature may be preferably 100 °C to 500 °C.
  • the lithium composite oxide is LiCoO 2 , LiNiO 2 , Li 1 + x Mn 2-x O 4 (0 ⁇ x ⁇ 0.33), Li 2 CuO 2, LiV 3 O 8 , LiFe 3 O 4 , LiNi 1-x M x O 2 (M is Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ⁇ x ⁇ 0.3), LiMn 2-x M x O 2 (M is Co, Ni, Fe, Cr, Zn or Ta; 0.01 ⁇ x ⁇ 0.1), Li 2 Mn 3 MO 8 (M is Fe, Co, Ni, Cu, or Zn), Li (Ni 1-xy Co x M y ) O 2 (0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.33, M may be Mn, Al, Mg or Fe) or mixtures thereof.
  • the zeolite ion-exchanged with lithium ions may be contained in an amount of preferably 1 to 20 parts by weight based on 100 parts by weight of the electrode active material. In the above range, the cycle characteristic improvement and life improvement effect may be excellent.
  • the electrode active material may be a cathode active material for a lithium secondary battery.
  • the electrode according to the invention contains the electrode active material, the conductive agent and the binder according to the invention.
  • Non-limiting examples of the conductive agent include acetylene black or carbon blacks.
  • the content of the conductive agent used in the electrode is preferably 0.5 to 10% by weight for the positive electrode, 10% by weight or less for the negative electrode.
  • Non-limiting examples of binders used in the present invention include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyacrylonitrile, nitrile rubber, polybutadiene, polystyrene, styrene butadiene rubber, polysulfide rubber, butyl rubber, It is preferable to select at least 1 type from the group which consists of hydrogenated styrene butadiene rubber, nitro cellulose, and carboxymethyl cellulose.
  • the content of the binder is preferably 0.1 to 15% by weight.
  • the electrochemical device according to the present invention includes a positive electrode, a negative electrode and an electrolyte containing the electrode active material according to the present invention.
  • the electrode active material according to the present invention exhibits its effects well in a lithium secondary battery among electrochemical devices.
  • a lithium secondary battery includes a positive electrode capable of absorbing and releasing lithium ions, a negative electrode capable of absorbing and releasing lithium ions, a nonaqueous electrolyte, and a separator.
  • the positive electrode may be configured in a form in which the positive electrode active material according to the present invention is bound to a positive electrode current collector, that is, a foil manufactured by aluminum, nickel, or a combination thereof.
  • the content of the cathode active material is preferably 80 to 99% by weight.
  • the negative electrode active material for constituting the negative electrode is lithium metal or lithium adsorption such as lithium alloy and carbon, petroleum coke, activated carbon, graphite, or various other carbons.
  • the substance can be used as the main component.
  • the negative electrode is configured in a form in which the negative electrode active material is bound to a negative electrode current collector, that is, a foil manufactured by copper, gold, nickel, or a copper alloy or a combination thereof.
  • the content of the negative electrode active material is preferably 80 to 99% by weight.
  • the separator is a polyethylene (polyethylene), a polypropylene (polypropylene) having a microporous structure, or a multilayer film produced by a combination of these films, or polyvinylidene fluoride (polyvinylidene fluoride), polyethylene oxide (polyethylene oxide) And polymer films for solid polymer electrolytes or gel polymer electrolytes such as polyacrylonitrile or polyvinylidene fluoride hexafluoropropylene copolymers.
  • the electrolyte is A + B - and may be a salt of such a structure,
  • a + is Li +, Na +,, and comprising an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 - , BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 - and means a salt containing the same anion, ion consisting of a combination thereof.
  • lithium salt examples include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) and dipropyl carbonate (dipropyl).
  • carbonate, DPC dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (ethyl methyl carbonate, EMC), gamma butyrolactone ( ⁇ -butyrolactone) or dissolved in an organic solvent consisting of a mixture thereof is dissociated.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • dipropyl carbonate dipropyl
  • carbonate, DPC dimethyl sulfoxide
  • acetonitrile dimethoxye
  • Non-limiting examples of the method for producing an electrochemical device according to the present invention include a) i) electrode active material particles; ii) conductive particles; And iii) preparing a slurry in which the binder is dispersed in a solvent; b) coating the slurry on a current collector, drying and pressing to prepare an electrode; And c) assembling an electrochemical device having the electrode and injecting a nonaqueous electrolyte.
  • the solvent used in the slurry is not particularly limited, and in general, N-methyl-2-pyrrolidone (NMP) may be used for both the positive electrode and the negative electrode, and distilled water may be used for the aqueous negative electrode.
  • NMP N-methyl-2-pyrrolidone
  • the conductive particles are arranged to connect the spaced apart electrode active material particles after electrode coating if the electrode is well dispersed by mixing during electrode production.
  • the electrode may be heat treated to evaporate the solvent.
  • the electrode active material according to the present invention is used as a positive electrode active material of a lithium secondary battery, it is possible to impart excellent cycle characteristics to the lithium secondary battery and to reduce battery capacity and improve battery life.
  • 1 is a schematic diagram of a process of lithium ion exchange of zeolite.
  • Figure 2 shows a scanning electron micrograph before and after milling of the zeolite.
  • Figure 3 shows a scanning electron micrograph of each positive electrode active material prepared in Example 1.
  • 3A is 0.5 wt%
  • FIG. 3B is 1.0 wt%
  • FIG. 3C is 3.0 wt%
  • FIG. 3D is 9.0 wt% of a coated, coated lithium ion exchanged zeolite.
  • FIG. 4 shows a scanning electron micrograph of each positive electrode active material prepared in Example 2.
  • FIG. 4A is 0.5 wt%
  • FIG. 4B is 1.0 wt%
  • FIG. 4C is 3.0 wt%
  • FIG. 4D is 9.0 wt% of uncoated lithium ion exchanged zeolite.
  • Figure 5 shows a scanning electron micrograph of each positive electrode active material prepared in Comparative Example 1.
  • Figure 5a is 0.5 wt%
  • Figure 5b is the case of coating the zeolite that did not perform both the milling and lithium ion exchange of 1.0 wt%.
  • FIG. 6 shows the results of XRD analysis before and after ion exchange of zeolites.
  • 6A is a result of XRD analysis before and after ion exchange of the milled zeolite of Example 1
  • FIG. 6B is a result of XRD analysis before and after ion exchange of the unmilled zeolite of Example 2.
  • Figure 7 shows the XRD analysis results for each of the positive electrode active material prepared in Example 1 (a) and Example 2 (b).
  • a 1 M lithium acetate solution was prepared. Milled zeolite (average particle diameter, 0.1 ⁇ m, zeolite Y (Na)) was added to the prepared solution, and ion exchange was performed under stirring at 50 ° C. for 12 hours. The ion exchange was repeated three times and the lithium ion containing ion exchange solution was replaced at each ion exchange. The zeolites subjected to the three ion exchanges were dried in an oven at 100 ° C.
  • the amount of lithium ion exchanged zeolite was 0.5 wt%, 1.0 wt%, 3.0 wt% and 9.0 wt% with respect to the total electrode active material, respectively, and the electrode active material was coated as follows.
  • lithium ion exchanged zeolites were added to ethanol and dispersed under sonication for 1 hour.
  • LiNi 0.6 Mn 0.2 Co 0.2 O 2 was added as an active material to the dispersion solution of the lithium ion exchanged zeolite and stirred at 120 ° C. After 3 hours of stirring, only powder remained. The powder was kept in a 100 ° C. oven for 12 hours. The powder was then placed in a tube furnace and heat treated at 300 ° C. for 5 hours.
  • An electrode active material coated with a lithium ion exchanged zeolite was prepared in the same manner as in Example 1 except that the unmilled zeolite (average particle diameter, 5 ⁇ m) was used.
  • Example 2 Same as Example 1, except that zeolite (average particle diameter, 5 ⁇ m) that was not subjected to both ion exchange and milling was used, and the amount of zeolite was 0.5 wt% and 1.0 wt% based on the total electrode active material, respectively. It was carried out to prepare an electrode active material coated with zeolite.
  • zeolite average particle diameter, 5 ⁇ m
  • a coin cell containing the positive electrode active material prepared in Example 1 was prepared.
  • the positive electrode active material prepared in Example 1 polyvinylidene fluoride (PVDF) as a binder, and carbon black (manufacturer: Timcal) as a conductive agent are mixed at a weight ratio of 95: 2: 3, and coated on an aluminum current collector. After that, it was dried and roll pressed to prepare a positive electrode.
  • a coin cell including a lithium metal and an electrolyte (1M LiPF 6 EC / DMC) was prepared as the positive electrode and the negative electrode prepared as described above.
  • XRD analysis (manufacturer: PANalytical, model name: X'Pert pro MPD) was performed before and after ion exchange of the milled zeolite of Example 1 and before and after ion exchange of the unmilled zeolite of Example 2.
  • 6 a milled zeolite
  • 6 b unmilled zeolite.
  • the X-ray diffraction analysis test was carried out using Cu-K ⁇ rays under the condition that the sampling width is 0.01 °, scan rate 4 ° / min in the 2 ⁇ value range from 10 ° to 80 °.
  • the zeolites of the milled zeolites were not observed both before and after ion exchange, but the zeolites of the milled zeolites were observed both before and after ion exchange. Therefore, it can be seen that the crystal structure of the zeolite is changed by milling.
  • XRD analysis (manufacturer: PANalytical, model name: X'Pert pro MPD) of each cathode active material prepared in Examples 1 and 2 was performed, and the results are shown in FIGS. 7A (Example 1) and FIG. 7b (Example 2).
  • the X-ray diffraction analysis test was carried out using Cu-K ⁇ rays under the condition that the sampling width is 0.01 °, scan rate 4 ° / min in the 2 ⁇ value range from 10 ° to 80 °.
  • XRD analysis was also performed on the uncoated composite oxide particles (bare) of LiNi 0.6 Mn 0.2 Co 0.2 O 2 composition and zeolites used for each coating for comparison.
  • the coin cells prepared in Preparation Examples 1 to 3 were charged and discharged at a rate of 0.1 C in a range of 3.0 V to 4.5 V, respectively, and then charged and discharged at a rate of 0.1 C to improve cycle characteristics. Evaluated. The changes in capacity indicated as progressing up to 50 cycles are shown in FIGS. 9A (Production Example 1), 9B (Production Example 2) and 9C (Production Example 3), respectively.
  • the coin cell of Preparation Example 1 was improved in cycle characteristics except that the coating was 0.5 wt%, but the coin cells of Preparation Examples 2 and 3 were better in coating cycles than bare. You can check it.
  • FIGS. 10A, 10B and 10C the charge and discharge graphs at the 1st, 30th and 50th cycles are shown in FIGS. 10A, 10B and 10C, respectively.
  • the capacity is less than bare because of the coated material in the 1st and 30th cycle, but shows more capacity than bare except for 0.5wt% coated in the 50th cycle. In other words, it showed excellent cycle characteristics and improved life characteristics due to the decrease in capacity reduction rate.
  • FIG. 10B and FIG. 10C it can be seen that the capacity greatly decreases according to the number of cycles, so that the cycle characteristics are not good and the life characteristics are not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides an electrode active material containing a lithium composite oxide capable of lithium insertion and discharge, and zeolite ion-exchanged with lithium ions. If the electrode active material is used as a cathode active material of a lithium secondary battery, an excellent cycle characteristic can be provided to a lithium secondary battery and a lifetime characteristic can be improved.

Description

리튬 이온으로 이온교환된 제올라이트 함유 전극 활물질 및 이를 이용한 전기화학소자Zeolite-containing electrode active materials ion-exchanged with lithium ions and electrochemical devices using the same
본 발명은 리튬 이온으로 이온교환된 제올라이트 함유 전극 활물질 및 이를 이용한 전기화학소자에 관한 것이다.The present invention relates to a zeolite-containing electrode active material ion-exchanged with lithium ions and an electrochemical device using the same.
최근 휴대 전화, 노트북 등 휴대기기의 소형화 및 박형화 추세에 따라, 이들 휴대기기의 에너지원으로 사용되고 있는 리튬 이차 전지의 고용량화가 요구되고 있다.Recently, with the trend toward miniaturization and thinning of portable devices such as mobile phones and laptops, high capacity of lithium secondary batteries used as energy sources of these portable devices is required.
현재 상용화되고 있는 일반적인 리튬 이차 전지는 양극 활물질로 리튬-코발트계 금속 산화물이 사용되고, 음극 활물질로 탄소가 사용되고 있다. 상기 리튬-코발트계 금속 산화물은 합성이 비교적 용이하고, 안정성 및 사이클 특성이 우수하지만, 전지의 고용량화 기술에 적용되기에는 한계가 있다.In general, the lithium secondary battery commercially available is lithium-cobalt-based metal oxide as a positive electrode active material, carbon is used as a negative electrode active material. The lithium-cobalt-based metal oxides are relatively easy to synthesize, and have excellent stability and cycle characteristics, but are limited in application to high capacity technology of batteries.
이러한 문제점으로 인해, 최근에는 양극 활물질로서 리튬-망간계 금속 산화물이나 리튬-니켈계 금속 산화물 등이 주목을 받고 있다. 이중, 층상 구조를 갖는 리튬-망간계 금속 산화물은 용량 면에서는 리튬-코발트계 금속 산화물보다 우수한 장점이 있으나 구조가 불안정하여 사이클 특성이 좋지 않은 것으로 알려져 있다. 그리고, 스피넬 리튬-망간계 금속 산화물은 열안정성이 우수하지만, 용량 면에서 리튬-코발트계 금속 산화물보다 낮다는 단점이 있다. 또한, 리튬-니켈계 금속 산화물은 고용량을 나타낼 수 있지만 사이클 특성이 좋지 않고, 제조 방법이 복잡한 문제점이 있다.Due to these problems, recently, lithium-manganese-based metal oxides, lithium-nickel-based metal oxides, and the like have attracted attention as positive electrode active materials. Of these, lithium-manganese-based metal oxides having a layered structure have advantages over lithium-cobalt-based metal oxides in terms of capacity but are known to have poor cycle characteristics due to unstable structure. In addition, spinel lithium-manganese-based metal oxides have excellent thermal stability, but have a disadvantage in that they are lower than lithium-cobalt-based metal oxides in terms of capacity. In addition, although lithium-nickel-based metal oxides may exhibit high capacity, cycle characteristics are not good, and manufacturing methods have complicated problems.
이에, 양극 활물질에 이종 금속을 일부 치환하거나, 양극 활물질의 표면에 이종 금속 산화물 등을 코팅함으로써 열 안정성, 용량, 사이클 특성들을 개선하려는 많은 시도들이 이루어지고 있으나, 아직 그 개선의 정도가 미흡한 실정이다.Accordingly, many attempts have been made to improve thermal stability, capacity, and cycle characteristics by partially displacing dissimilar metals in the cathode active material or coating dissimilar metal oxides on the surface of the cathode active material, but the degree of improvement is still insufficient. .
본 발명자들은 양극 활물질의 성능을 개선하기 위하여 예의 노력한 결과, 양극 활물질에 리튬 이온으로 이온교환된 제올라이트를 코팅할 경우 양극 활물질의 사이클 특성이 우수하고 수명이 향상됨을 확인하여 본 발명을 완성하였다.The present inventors earnestly endeavored to improve the performance of the positive electrode active material, and when the coating of the zeolite ion-exchanged with lithium ions on the positive electrode active material confirmed that the cycle characteristics of the positive electrode active material and the life is improved to complete the present invention.
본 발명의 목적은 리튬 이차 전지와 같은 전기화학소자의 전극활물질의 사이클 특성을 향상시켜 수명을 향상시킬 수 있는 전극활물질의 개질 방법을 제공하고자 한다.An object of the present invention is to provide a method for reforming an electrode active material that can improve the life cycle by improving the cycle characteristics of the electrode active material of an electrochemical device such as a lithium secondary battery.
본 발명의 제1양태는 리튬 삽입 또는 방출이 가능한 리튬 복합 산화물, 및 리튬 이온으로 이온교환된 제올라이트를 함유하는 전극 활물질을 제공한다.A first aspect of the invention provides an electrode active material containing a lithium composite oxide capable of lithium insertion or release, and a zeolite ion exchanged with lithium ions.
본 발명의 제2양태는 본 발명의 제1양태에 따른 전극 활물질, 도전제 및 결합제를 함유하는 전극을 제공한다.The second aspect of the present invention provides an electrode containing the electrode active material, the conductive agent and the binder according to the first aspect of the present invention.
본 발명의 제3양태는 양극, 음극 및 전해질을 포함하는 전기화학소자에 있어서, 상기 양극은 본 발명의 제1양태에 따른 전극 활물질을 함유하는 것인 전기화학소자를 제공한다.A third aspect of the invention provides an electrochemical device comprising an anode, a cathode and an electrolyte, wherein the cathode contains an electrode active material according to the first aspect of the invention.
이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
리튬 이차 전지는, 이온 상태로 존재하는 리튬 이온이 방전 시에는 음극(anode)에서 양극(cathode)으로 이동하고, 충전 시에는 양극에서 음극으로 이동하면서 전기를 생성하는 전지이다. 리튬 이차 전지의 성능은 양극 재료의 리튬 이온 활성화 능력 및 음극 재료에서 리튬 이온을 삽입할 수 있는 충분한 공간의 존재에 의해 좌우된다. 특히, 리튬은 양극 활물질에 포함되어 있기 때문에, 양극 활물질이 리튬 이차 전지의 성능을 실질적으로 좌우한다.A lithium secondary battery is a battery that generates electricity while lithium ions, which exist in an ionic state, move from an anode to a cathode during discharge, and move from an anode to a cathode during charging. The performance of a lithium secondary battery depends on the lithium ion activation ability of the positive electrode material and the presence of sufficient space to insert lithium ions in the negative electrode material. In particular, since lithium is included in the positive electrode active material, the positive electrode active material substantially influences the performance of the lithium secondary battery.
양극 활물질은 일반적으로 전이금속산화물로 구성되는데, 이는 리튬 탈삽입시 전하 중성상태를 만족하기 위한 산화수의 변화가 필수적이기 때문이다. 양극 활물질로 요구되는 특성은 높은 작동전압, 충전 및 방전 중 작은 분극, 높은 용량 및 효율, 수명 특성, 전해액과의 안정성이 고려되어야 한다.The positive electrode active material is generally composed of a transition metal oxide, since a change in the number of oxides to satisfy the charge neutral state is essential when lithium is de-inserted. Characteristics required for the positive electrode active material, high operating voltage, small polarization during charging and discharging, high capacity and efficiency, life characteristics, stability with the electrolyte should be considered.
제올라이트(Zeolite)는 알루미늄 산화물과 규산 산화물의 결합으로 생겨난 음이온에 알칼리 금속 및 알카리 토금속이 결합되어 있는 광물을 총칭한다. 즉, 결정질 알루미늄 규산염광물을 의미하며, 비석으로도 불린다.Zeolite is a generic term for minerals in which alkali metals and alkaline earth metals are bonded to anions formed by the combination of aluminum oxides and silicate oxides. That is, it means crystalline aluminum silicate mineral, also called zeolite.
제올라이트의 골격 구조는 [SiO4]4-와 [AlO4]5-으로 구성된 정사면체 단위가 산소가교를 통해 연결되어 있다. 이 때 [SiO4]4-의 경우 Si은 +4의 형식전하를 갖는데 반하여 [AlO4]5-의 경우 Al은 +3의 형식전하 밖에 갖지 못하므로 Al이 있는 곳마다 음전하를 한 개씩 수용하고 있다. 따라서 전하 상쇄를 위해서 양이온들이 존재하게 되며 양이온들은 골격 내부가 아니라 세공 내부에 존재하며 나머지 공간들은 보통 물분자들로 채워져 있다.In the skeleton structure of zeolite, tetrahedral units composed of [SiO 4 ] 4 − and [AlO 4 ] 5 − are connected by oxygen crosslinking. In the case of [SiO 4 ] 4- , Si has +4 type charge, whereas in [AlO 4 ] 5- , Al has only +3 type charge, so it accepts one negative charge wherever Al exists. have. Thus, for the purpose of charge cancellation, cations exist and cations exist inside the pores, not inside the skeleton, and the remaining spaces are usually filled with water molecules.
통상, 제올라이트의 내부 양이온은 지각에 흔하게 존재하는 나트륨 양이온(Na+)이다. 본 발명에서는 제올라이트의 내부 양이온을 Na+로부터 Li+로 양이온 교환시킴으로써 제올라이트의 세공 내 전기화학적 분위기를 변화시켜 표면 성질을 조절할 수 있다는 점을 이용하여, 리튬 삽입·방출 가능한 리튬 복합 산화물에 리튬 이온으로 이온교환된 제올라이트를 첨가하고 열처리한 전극 활물질을 리튬 이차전지의 양극에 사용한 결과, 사이클 특성이 개선될 뿐만아니라, 용량 감소율이 적어 수명이 향상된다는 것을 발견하였다. 본 발명은 이에 기초한 것이다.Typically, the internal cations of zeolites are sodium cations (Na + ) which are commonly present in the earth's crust. In the present invention, the surface properties can be controlled by changing the electrochemical atmosphere in the pore of the zeolite by cation-exchanging the internal cation of the zeolite from Na + to Li + . As a result of using the electrode active material which was ion-exchanged zeolite and heat-treated for the positive electrode of the lithium secondary battery, not only the cycle characteristics were improved, but also the capacity reduction rate was small and the life was improved. The present invention is based on this.
상기 리튬 이온으로 이온교환된 제올라이트는 바람직하기로 리튬 삽입·방출 가능한 리튬 복합 산화물 입자를 코팅한 형태일 수 있으나, 리튬 삽입·방출 가능한 리튬 복합 산화물과 균질하게 혼합된 형태일 수도 있다.The zeolite ion-exchanged with lithium ions may be in the form of coating lithium composite oxide particles capable of inserting and releasing lithium, but may be in the form of a homogeneous mixture with the lithium composite oxide capable of inserting and releasing lithium.
상기 리튬 이온으로 이온교환된 제올라이트는, 제올라이트의 내부 양이온을 하기 반응식 1과 같이 리튬 이온으로 이온 교환시켜 얻을 수 있다.Zeolites ion-exchanged with lithium ions may be obtained by ion-exchanging internal cations of zeolites with lithium ions as in Scheme 1 below.
[반응식 1]Scheme 1
Figure PCTKR2015000062-appb-I000001
Figure PCTKR2015000062-appb-I000001
바람직하기로, 도 1과 같이 제올라이트를 리튬 이온 함유 용액 중에 침지한 후 건조시켜 리튬 이온으로 이온교환된 제올라이트를 제조할 수 있다.Preferably, as shown in FIG. 1, the zeolite is immersed in a lithium ion-containing solution and dried to prepare a zeolite ion-exchanged with lithium ions.
상기 리튬 이온 함유 용액은 리튬염을 물, C1-4 저급 알코올 또는 이의 혼합용매 중에 용해시켜 얻을 수 있다. 이때, 리튬염으로는 아세트산 리튬, 질산 리튬 또는 이의 혼합물을 사용할 수 있으며, 이에 제한되는 것은 아니다.The lithium ion-containing solution can be obtained by dissolving a lithium salt in water, C 1-4 lower alcohol or a mixed solvent thereof. At this time, lithium acetate, lithium nitrate or a mixture thereof may be used, but is not limited thereto.
또한, 상기 제올라이트의 입자 크기는 바람직하기로 1㎛ 이하일 수 있으며, 리튬 이온으로 이온교환된 제올라이트의 입자 크기도 1㎛ 이하일 수 있다. 더욱 바람직하기로, 상기 제올라이트의 입자 크기는 0.01 ㎛ 내지 1 ㎛일 수 있으며, 리튬 이온으로 이온교환된 제올라이트의 입자 크기는 0.01 ㎛ 내지 1 ㎛일 수 있다.In addition, the particle size of the zeolite may be preferably 1 μm or less, and the particle size of the zeolite ion-exchanged with lithium ions may also be 1 μm or less. More preferably, the particle size of the zeolite may be 0.01 μm to 1 μm, and the particle size of the zeolite ion-exchanged with lithium ions may be 0.01 μm to 1 μm.
본 발명에서, 상기 제올라이트는 바람직하기로 리튬 이온 함유 용액 중에 침지되기 전에 밀링될 수 있다. 상기 밀링 과정을 통해, 제올라이트의 입자 크기를 1㎛ 이하로 조절할 수 있고, 이온 교환 과정 이후 얻어지는, 리튬 이온으로 이온교환된 제올라이트의 입자 크기도 1㎛ 이하로 조절할 수 있다.In the present invention, the zeolite can preferably be milled before being immersed in a lithium ion containing solution. Through the milling process, the particle size of the zeolite may be adjusted to 1 μm or less, and the particle size of the zeolite ion-exchanged with lithium ions obtained after the ion exchange process may also be adjusted to 1 μm or less.
본 발명에서는 상기 밀링 과정을 거친 리튬 이온으로 이온교환된 제올라이트를 사용할 경우, 밀링 과정을 거치지 않은 리튬 이온으로 이온교환된 제올라이트에 비해 사이클 특성 개선 효과가 더욱 우수함을 확인하였다(도 9 및 도 10).In the present invention, when using the zeolite ion-exchanged with the lithium ion after the milling process, it was confirmed that the cycle characteristics improvement effect is more excellent than the zeolite ion-exchanged with lithium ion without the milling process (Fig. 9 and Fig. 10) .
본 발명에 따른 전극 활물질은, 리튬 삽입·방출 가능한 리튬 복합 산화물, 및 리튬 이온으로 이온교환된 제올라이트를 용매 중에서 혼합한 후 건조 및 열처리하여 제조될 수 있다.The electrode active material according to the present invention may be prepared by mixing lithium composite oxide capable of inserting and releasing lithium and zeolite ion-exchanged with lithium ions in a solvent, followed by drying and heat treatment.
본 발명에서, 상기 용매는 물, C1-4 알코올 또는 이의 혼합용매일 수 있으며, 이에 제한되는 것은 아니다.In the present invention, the solvent may be water, C 1-4 alcohol or a mixed solvent thereof, but is not limited thereto.
본 발명에서, 상기 열처리 온도는 바람직하기로 100℃ 내지 500℃일 수 있다.In the present invention, the heat treatment temperature may be preferably 100 ℃ to 500 ℃.
이후 열처리의 효율을 위하여 수분을 미리 제거하기 위해, 혼합 후 건조하는 것이 바람직하다.In order to remove moisture in advance for the efficiency of heat treatment, it is preferable to dry after mixing.
상기 리튬 복합 산화물은 LiCoO2, LiNiO2, Li1+xMn2-xO4 (0≤x≤0.33), Li2CuO2, LiV3O8, LiFe3O4, LiNi1-xMxO2 (M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고; 0.01≤x≤0.3), LiMn2-xMxO2 (M은 Co, Ni, Fe, Cr, Zn 또는 Ta이고; 0.01≤x≤0.1), Li2Mn3MO8 (M은 Fe, Co, Ni, Cu 또는 Zn), Li(Ni1-x-yCoxMy)O2 (0≤x≤0.33, 0≤y≤0.33, M은 Mn, Al, Mg 또는 Fe) 또는 이의 혼합물일 수 있다.The lithium composite oxide is LiCoO 2 , LiNiO 2 , Li 1 + x Mn 2-x O 4 (0≤x≤0.33), Li 2 CuO 2, LiV 3 O 8 , LiFe 3 O 4 , LiNi 1-x M x O 2 (M is Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ≦ x ≦ 0.3), LiMn 2-x M x O 2 (M is Co, Ni, Fe, Cr, Zn or Ta; 0.01 ≦ x ≦ 0.1), Li 2 Mn 3 MO 8 (M is Fe, Co, Ni, Cu, or Zn), Li (Ni 1-xy Co x M y ) O 2 (0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, M may be Mn, Al, Mg or Fe) or mixtures thereof.
본 발명에서, 상기 리튬 이온으로 이온교환된 제올라이트는 전극 활물질 100 중량부에 대해 바람직하기로 1 내지 20 중량부로 함유되어 있을 수 있다. 상기 범위에서 사이클 특성 개선 및 수명 향상 효과가 우수할 수 있다.In the present invention, the zeolite ion-exchanged with lithium ions may be contained in an amount of preferably 1 to 20 parts by weight based on 100 parts by weight of the electrode active material. In the above range, the cycle characteristic improvement and life improvement effect may be excellent.
바람직하기로, 전극 활물질은 리튬 이차전지용 양극 활물질일 수 있다.Preferably, the electrode active material may be a cathode active material for a lithium secondary battery.
본 발명에 따른 전극은 본 발명에 따른 전극 활물질, 도전제 및 결합제를 함유한다.The electrode according to the invention contains the electrode active material, the conductive agent and the binder according to the invention.
상기 도전제의 비제한적인 예로는 아세틸렌 블랙 또는 카본블랙류가 있다. 이때, 전극에서 사용하는 도전제의 함량은 양극의 경우 0.5 내지 10 중량%, 음극인 경우 10중량% 이하인 것이 바람직하다.Non-limiting examples of the conductive agent include acetylene black or carbon blacks. At this time, the content of the conductive agent used in the electrode is preferably 0.5 to 10% by weight for the positive electrode, 10% by weight or less for the negative electrode.
본 발명에 사용되는 결합제의 비제한적인 예로는 폴리테트라 플루오르 에틸렌, 폴리 불화 비닐리덴, 폴리불화비닐, 폴리 아크릴로니트릴, 니트릴고무, 폴리부타디엔, 폴리스틸렌, 스티렌 부타디엔 고무, 다황화 고무, 부틸고무, 수첨 스티렌 부타디엔 고무, 니트로 셀룰로오스, 및 카복시메틸셀룰로오스로 이루어진 군으로부터 1 종 이상 선택되는 것이 바람직하다. 상기 결합제의 함량은 0.1 내지 15 중량%인 것이 바람직하다.Non-limiting examples of binders used in the present invention include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyacrylonitrile, nitrile rubber, polybutadiene, polystyrene, styrene butadiene rubber, polysulfide rubber, butyl rubber, It is preferable to select at least 1 type from the group which consists of hydrogenated styrene butadiene rubber, nitro cellulose, and carboxymethyl cellulose. The content of the binder is preferably 0.1 to 15% by weight.
본 발명에 따른 전기화학소자는 본 발명에 따른 전극 활물질을 함유하는 양극, 음극 및 전해질을 포함한다.The electrochemical device according to the present invention includes a positive electrode, a negative electrode and an electrolyte containing the electrode active material according to the present invention.
상기 본 발명에 따른 전극 활물질은, 전기화학소자 중 리튬 이차 전지에서 그 효과를 잘 발휘한다.The electrode active material according to the present invention exhibits its effects well in a lithium secondary battery among electrochemical devices.
일반적으로 리튬 이차 전지는 리튬 이온을 흡착 및 방출 가능한 양극, 리튬 이온을 흡착 및 방출 가능한 음극, 비수전해질, 및 분리막을 포함한다.In general, a lithium secondary battery includes a positive electrode capable of absorbing and releasing lithium ions, a negative electrode capable of absorbing and releasing lithium ions, a nonaqueous electrolyte, and a separator.
본 발명에 따른 양극 활물질을 양극 집전체, 즉 알루미늄, 니켈, 또는 이들의 조합에 의해서 제조되는 호일(foil)에 결착시킨 형태로 양극을 구성할 수 있다. 상기 양극 활물질의 함량은 80 내지 99 중량%인 것이 바람직하다.The positive electrode may be configured in a form in which the positive electrode active material according to the present invention is bound to a positive electrode current collector, that is, a foil manufactured by aluminum, nickel, or a combination thereof. The content of the cathode active material is preferably 80 to 99% by weight.
상기 음극을 구성하기 위한 음극 활물질은 리튬금속, 또는 리튬합금과 카본(carbon), 석유코크(petroleum coke), 활성화 카본(activated carbon), 흑연(graphite), 또는 기타 여러 가지 카본류 등과 같은 리튬흡착물질을 주성분으로 사용할 수 있다. 그리고, 상기 음극 활물질을 음극 집전체, 즉 구리, 금, 니켈 혹은 구리 합금 혹은 이들의 조합에 의해서 제조되는 호일과 결착시킨 형태로 음극을 구성한다. 상기 음극활물질의 함량은 80 내지 99 중량%인 것이 바람직하다.The negative electrode active material for constituting the negative electrode is lithium metal or lithium adsorption such as lithium alloy and carbon, petroleum coke, activated carbon, graphite, or various other carbons. The substance can be used as the main component. In addition, the negative electrode is configured in a form in which the negative electrode active material is bound to a negative electrode current collector, that is, a foil manufactured by copper, gold, nickel, or a copper alloy or a combination thereof. The content of the negative electrode active material is preferably 80 to 99% by weight.
상기 분리막은 미세 다공 구조를 가지는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 또는 이들 필름의 조합에 의해서 제조되는 다층 필름 등이나, 또는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아크릴로나이트릴 (polyacrylonitrile) 또는 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌(polyvinylidene fluoride hexafluoropropylene) 공중합체와 같은 고체 고분자 전해질용 또는 겔형 고분자 전해질용 고분자 필름 등을 사용한다.The separator is a polyethylene (polyethylene), a polypropylene (polypropylene) having a microporous structure, or a multilayer film produced by a combination of these films, or polyvinylidene fluoride (polyvinylidene fluoride), polyethylene oxide (polyethylene oxide) And polymer films for solid polymer electrolytes or gel polymer electrolytes such as polyacrylonitrile or polyvinylidene fluoride hexafluoropropylene copolymers.
상기 전해질은 A+B-와 같은 구조의 염을 사용할 수 있으며, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온이나 이들의 조합으로 이루어진 이온을 포함하는 염을 의미한다. 구체적 예를 들면, 리튬염이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드(dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 혹은 이들의 혼합물로 이루어진 유기 용매에 용해, 해리되어 있는 것을 말한다.The electrolyte is A + B - and may be a salt of such a structure, A + is Li +, Na +,, and comprising an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 - , BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 - and means a salt containing the same anion, ion consisting of a combination thereof. Specific examples of the lithium salt include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) and dipropyl carbonate (dipropyl). carbonate, DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (ethyl methyl carbonate, EMC), gamma butyrolactone (γ-butyrolactone) or dissolved in an organic solvent consisting of a mixture thereof is dissociated.
본 발명에 따른 전기화학소자를 제조하는 방법의 비제한적인 예는 a) i) 전극 활물질 입자; ii) 도전제 입자; 및 iii) 결합제가 용매에 분산된 슬러리를 제조하는 단계; b) 상기 슬러리를 집전체에 코팅하고 건조 및 압착하여 전극을 제조하는 단계; 및 c) 상기 전극을 구비한 전기화학소자를 조립하고 비수전해질을 주입하는 단계를 포함한다.Non-limiting examples of the method for producing an electrochemical device according to the present invention include a) i) electrode active material particles; ii) conductive particles; And iii) preparing a slurry in which the binder is dispersed in a solvent; b) coating the slurry on a current collector, drying and pressing to prepare an electrode; And c) assembling an electrochemical device having the electrode and injecting a nonaqueous electrolyte.
상기 슬러리에 사용되는 용매는 특별히 제한되지 아니하며, 일반적으로 양극, 음극 모두 N-메틸-2-피롤리돈(NMP)가 사용될 수 있으며, 수계 음극의 경우는 증류수가 사용될 수 있다.The solvent used in the slurry is not particularly limited, and in general, N-methyl-2-pyrrolidone (NMP) may be used for both the positive electrode and the negative electrode, and distilled water may be used for the aqueous negative electrode.
전극 제조시 mixing에 의해 분산이 잘 되어 있으면 전극 코팅 후에 이격된 전극 활물질 입자들을 연결하도록 도전제 입자들이 배열된다.The conductive particles are arranged to connect the spaced apart electrode active material particles after electrode coating if the electrode is well dispersed by mixing during electrode production.
필요한 경우, 전극 제조 시 용매를 증발시키기 위해 열처리할 수 있다.If necessary, the electrode may be heat treated to evaporate the solvent.
본 발명에 따른 전극활물질을 리튬 이차 전지의 양극 활물질로 사용하면, 리튬 이차 전지에 우수한 사이클 특성을 부여할 수 있고 용량 감소율을 줄여 전지 수명을 향상시킬 수 있다.When the electrode active material according to the present invention is used as a positive electrode active material of a lithium secondary battery, it is possible to impart excellent cycle characteristics to the lithium secondary battery and to reduce battery capacity and improve battery life.
도 1은 제올라이트를 리튬 이온 교환시키는 과정의 모식도이다.1 is a schematic diagram of a process of lithium ion exchange of zeolite.
도 2는 제올라이트의 밀링 전후의 주사 전자 현미경 사진을 나타낸 것이다.Figure 2 shows a scanning electron micrograph before and after milling of the zeolite.
도 3은 실시예 1에서 제조된 각각의 양극 활물질의 주사 전자 현미경 사진을 나타낸 것이다. 이때 도 3a는 0.5 wt%, 도 3b는 1.0 wt%, 도 3c는 3.0 wt%, 도 3d는 9.0 wt%의 밀링되고 리튬 이온 교환된 제올라이트를 코팅한 경우이다.Figure 3 shows a scanning electron micrograph of each positive electrode active material prepared in Example 1. 3A is 0.5 wt%, FIG. 3B is 1.0 wt%, FIG. 3C is 3.0 wt%, and FIG. 3D is 9.0 wt% of a coated, coated lithium ion exchanged zeolite.
도 4는 실시예 2에서 제조된 각각의 양극 활물질의 주사 전자 현미경 사진을 나타낸 것이다. 이때 도 4a는 0.5 wt%, 도 4b는 1.0 wt%, 도 4c는 3.0 wt%, 도 4d는 9.0 wt%의 밀링되지 않고 리튬 이온 교환된 제올라이트를 코팅한 경우이다.4 shows a scanning electron micrograph of each positive electrode active material prepared in Example 2. FIG. 4A is 0.5 wt%, FIG. 4B is 1.0 wt%, FIG. 4C is 3.0 wt%, and FIG. 4D is 9.0 wt% of uncoated lithium ion exchanged zeolite.
도 5는 비교예 1에서 제조된 각각의 양극 활물질의 주사 전자 현미경 사진을 나타낸 것이다. 이때 도 5a는 0.5 wt%, 도 5b는 1.0 wt%의 밀링 및 리튬 이온 교환을 모두 수행하지 않은 제올라이트를 코팅한 경우이다.Figure 5 shows a scanning electron micrograph of each positive electrode active material prepared in Comparative Example 1. In this case, Figure 5a is 0.5 wt%, Figure 5b is the case of coating the zeolite that did not perform both the milling and lithium ion exchange of 1.0 wt%.
도 6은 제올라이트의 이온 교환 전후의 XRD 분석 결과를 나타낸 것이다. 이때 도 6a는 실시예 1의 밀링된 제올라이트의 이온 교환 전후의 XRD 분석 결과이고, 도 6b는 실시예 2의 밀링되지 않은 제올라이트의 이온 교환 전후의 XRD 분석 결과이다.6 shows the results of XRD analysis before and after ion exchange of zeolites. 6A is a result of XRD analysis before and after ion exchange of the milled zeolite of Example 1, and FIG. 6B is a result of XRD analysis before and after ion exchange of the unmilled zeolite of Example 2.
도 7은 실시예 1(a) 및 실시예 2(b)에서 제조된 각각의 양극 활물질에 대한 XRD 분석 결과를 나타낸 것이다.Figure 7 shows the XRD analysis results for each of the positive electrode active material prepared in Example 1 (a) and Example 2 (b).
도 8은 제조예 1(a), 제조예 2(b) 및 제조예 3(c)의 리튬 이차 전지의 1회 충전 및 방전 후의 출력 특성 평가 결과를 나타낸 것이다.8 shows the results of evaluation of the output characteristics after one time charge and discharge of the lithium secondary batteries of Preparation Example 1 (a), Preparation Example 2 (b) and Preparation Example 3 (c).
도 9는 제조예 1(a), 제조예 2(b) 및 제조예 3(c)의 리튬 이차 전지의 50 cycle까지 진행되면서 나타내는 용량 변화 측정 결과이다.9 is a capacity change measurement result shown as progressing up to 50 cycles of the lithium secondary battery of Preparation Example 1 (a), Preparation Example 2 (b) and Preparation Example 3 (c).
도 10은 제조예 1(a), 제조예 2(b) 및 제조예 3(c)의 리튬 이차 전지의 각각 1, 30, 50번째 cycle에서의 충방전 그래프이다.10 is a charge / discharge graph of cycles 1, 30 and 50 of the lithium secondary batteries of Preparation Example 1 (a), Preparation Example 2 (b) and Preparation Example 3 (c), respectively.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예 1: 리튬 이온 교환된 제올라이트를 코팅한 전극 활물질의 제조Example 1 Preparation of an Electrode Active Material Coated with Lithium Ion Exchanged Zeolite
제올라이트 리튬 이온 교환Zeolite Lithium Ion Exchange
먼저, 1M 아세트산 리튬 메탄올 용액을 제조하였다. 상기 제조된 용액에 밀링된 제올라이트(평균 입경, 0.1 ㎛, 제올라이트 Y(Na))를 투입하고 50℃에서 12시간 동안 교반 하에 이온 교환을 수행하였다. 상기 이온 교환을 3회 반복 수행하였으며 각 이온 교환시 리튬 이온 함유 이온 교환 용액을 교체하였다. 상기 3회 이온 교환을 수행한 제올라이트를 100℃ 오븐에서 건조시켰다.First, a 1 M lithium acetate solution was prepared. Milled zeolite (average particle diameter, 0.1 μm, zeolite Y (Na)) was added to the prepared solution, and ion exchange was performed under stirring at 50 ° C. for 12 hours. The ion exchange was repeated three times and the lithium ion containing ion exchange solution was replaced at each ion exchange. The zeolites subjected to the three ion exchanges were dried in an oven at 100 ° C.
전극 활물질 코팅Electrode Active Material Coating
리튬 이온 교환된 제올라이트의 양을 전체 전극 활물질에 대하여 각각 0.5 wt%, 1.0 wt%, 3.0 wt% 및 9.0 wt%로 하여 하기와 같이 전극 활물질을 코팅하였다.The amount of lithium ion exchanged zeolite was 0.5 wt%, 1.0 wt%, 3.0 wt% and 9.0 wt% with respect to the total electrode active material, respectively, and the electrode active material was coated as follows.
먼저, 리튬 이온 교환된 제올라이트를 에탄올에 투입하고 1시간 동안 초음파 처리 하에 분산시켰다. 상기 리튬 이온 교환된 제올라이트의 분산 용액에 활물질로서 LiNi0.6Mn0.2Co0.2O2를 투입하고 120℃에서 교반하였다. 상기 교반 3시간 후에 분말만이 남았다. 상기 분말을 100℃ 오븐에서 12시간 동안 유지시켰다. 이후 상기 분말을 튜브 퍼니스 내에 넣고 300℃에서 5시간 동안 열처리하였다.First, lithium ion exchanged zeolites were added to ethanol and dispersed under sonication for 1 hour. LiNi 0.6 Mn 0.2 Co 0.2 O 2 was added as an active material to the dispersion solution of the lithium ion exchanged zeolite and stirred at 120 ° C. After 3 hours of stirring, only powder remained. The powder was kept in a 100 ° C. oven for 12 hours. The powder was then placed in a tube furnace and heat treated at 300 ° C. for 5 hours.
실시예 2: 리튬 이온 교환된 제올라이트를 코팅한 전극 활물질의 제조Example 2: Preparation of an Electrode Active Material Coated with Lithium Ion Exchanged Zeolite
밀링되지 않은 제올라이트(평균 입경, 5 ㎛)를 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 리튬 이온 교환된 제올라이트로 코팅된 전극 활물질을 제조하였다.An electrode active material coated with a lithium ion exchanged zeolite was prepared in the same manner as in Example 1 except that the unmilled zeolite (average particle diameter, 5 μm) was used.
비교예 1Comparative Example 1
이온 교환 과정과 밀링 과정을 모두 거치지 않은 제올라이트(평균 입경, 5 ㎛)를 사용하고, 제올라이트의 양을 전체 전극 활물질에 대하여 각각 0.5 wt% 및 1.0 wt%로 한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 제올라이트로 코팅된 전극 활물질을 제조하였다.Same as Example 1, except that zeolite (average particle diameter, 5 μm) that was not subjected to both ion exchange and milling was used, and the amount of zeolite was 0.5 wt% and 1.0 wt% based on the total electrode active material, respectively. It was carried out to prepare an electrode active material coated with zeolite.
제조예 1Preparation Example 1
실시예 1에서 제조한 양극 활물질을 포함하는 코인 셀을 제조하였다.A coin cell containing the positive electrode active material prepared in Example 1 was prepared.
구체적으로, 실시예 1에 제조한 양극 활물질, 바인더인 폴리비닐리덴플로라이드(PVDF) 및 도전제인 카본블랙(제조사: Timcal)을 95:2:3의 중량비로 혼합하여, 이를 알루미늄 집전체에 코팅한 후, 이를 건조시키고 롤 프레스하여 양극을 제조하였다. 상기와 같이 제조된 양극과 음극으로 리튬금속과 전해질(1M LiPF6 EC/DMC)을 포함하는 코인 셀을 제조하였다. Specifically, the positive electrode active material prepared in Example 1, polyvinylidene fluoride (PVDF) as a binder, and carbon black (manufacturer: Timcal) as a conductive agent are mixed at a weight ratio of 95: 2: 3, and coated on an aluminum current collector. After that, it was dried and roll pressed to prepare a positive electrode. A coin cell including a lithium metal and an electrolyte (1M LiPF 6 EC / DMC) was prepared as the positive electrode and the negative electrode prepared as described above.
제조예 2 내지 제조예 3Preparation Example 2 to Preparation Example 3
실시예 1에 따른 양극 활물질 대신, 실시예 2(제조예 2), 비교예 1(제조예 3)에 따른 각각의 양극 활물질을 사용한 것을 제외하고, 제조예 1과 동일한 방법으로 제조예 2 내지 제조예 3의 코인 셀을 각각 제조하였다.Preparation Example 2 to Preparation by the same method as Preparation Example 1, except that each of the positive electrode active material according to Example 2 (Preparation Example 2), Comparative Example 1 (Preparation Example 3), instead of the positive electrode active material according to Example 1 Each coin cell of Example 3 was prepared.
실험예 1: 주사 전자 현미경을 이용한 입자 형태 관찰Experimental Example 1 Observation of Particle Shape Using a Scanning Electron Microscope
제올라이트의 밀링 전후의 입자 형태와, 실시예 1 내지 실시예 2 및 비교예 1에서 제조된 각각의 양극 활물질의 입자 표면 모습을 주사 전자 현미경(제조사: JEOL)을 이용하여 관찰하였고, 그 결과를 도 2 내지 도 5에 각각 나타내었다. 상기 도 2로부터 제올라이트를 밀링하기 전에 비해 밀링 후에 제올라이트의 크기가 크게 감소하였음을 알 수 있다. 구체적으로, 제올라이트를 밀링하기 전에는 평균 입경이 5 ㎛ 수준이었으나 밀링 후에 평균 입경이 0.1 ㎛ 이하로 감소함을 확인하였다. 또한, 상기 도 3 및 도 4로부터 리튬 이온 교환된 제올라이트 입자가 리튬 복합 산화물 입자 표면에 코팅된 것을 확인할 수 있다. 또한, 도 5로부터 비교예 1의 이온 교환 과정과 밀링 과정을 모두 거치지 않은 제올라이트 입자도 리튬 복합 산화물 입자 표면에 코팅된 것을 확인할 수 있다.The particle shape before and after milling of the zeolite and the surface of the particles of each of the positive electrode active materials prepared in Examples 1 to 2 and Comparative Example 1 were observed using a scanning electron microscope (manufacturer: JEOL), and the results are illustrated. 2 to 5, respectively. It can be seen from FIG. 2 that the size of the zeolite is significantly reduced after milling compared to before milling the zeolite. Specifically, it was confirmed that the average particle diameter was 5 μm before milling the zeolite, but the average particle diameter decreased to 0.1 μm or less after milling. In addition, it can be seen that the lithium ion exchanged zeolite particles are coated on the surface of the lithium composite oxide particles from FIGS. 3 and 4. In addition, it can be seen from FIG. 5 that the zeolite particles not subjected to both the ion exchange process and the milling process of Comparative Example 1 are also coated on the surface of the lithium composite oxide particle.
실험예 2: X-선 회절 분석Experimental Example 2: X-ray Diffraction Analysis
먼저, 실시예 1의 밀링된 제올라이트의 이온 교환 전후, 및 실시예 2의 밀링되지 않은 제올라이트의 이온 교환 전후에 XRD 분석(제조사: PANalytical, 모델명: X'Pert pro MPD)을 수행하였으며, 그 결과를 도 6a(밀링된 제올라이트) 및 도 6b(밀링되지 않은 제올라이트)에 나타내었다. 이때, X-선 회절 분석 시험은 2θ 값이 10° 내지 80° 범위에서 샘플링 폭이 0.01°, 스캔 속도 4°/분인 조건 하에서 Cu-Kα선을 이용하여 수행하였다.First, XRD analysis (manufacturer: PANalytical, model name: X'Pert pro MPD) was performed before and after ion exchange of the milled zeolite of Example 1 and before and after ion exchange of the unmilled zeolite of Example 2. 6 a (milled zeolite) and 6 b (unmilled zeolite). At this time, the X-ray diffraction analysis test was carried out using Cu-Kα rays under the condition that the sampling width is 0.01 °, scan rate 4 ° / min in the 2θ value range from 10 ° to 80 °.
도 6a 및 도 6b를 통해, 밀링된 제올라이트는 이온 교환 전후에 모두 제올라이트 피크가 관찰되지 않았으나, 밀링되지 않은 제올라이트는 이온 교환 전후에 모두 제올라이트 피크가 관찰되는 것을 확인할 수 있다. 따라서, 밀링에 의해 제올라이트의 결정 구조가 변화됨을 알 수 있다.6A and 6B, the zeolites of the milled zeolites were not observed both before and after ion exchange, but the zeolites of the milled zeolites were observed both before and after ion exchange. Therefore, it can be seen that the crystal structure of the zeolite is changed by milling.
또한, 실시예 1 및 실시예 2에서 제조된 각각의 양극 활물질에 대하여, XRD 분석(제조사: PANalytical, 모델명: X'Pert pro MPD)을 수행하였으며, 그 결과를 도 7a(실시예 1) 및 도 7b(실시예 2)에 나타내었다. 이때, X-선 회절 분석 시험은 2θ 값이 10° 내지 80° 범위에서 샘플링 폭이 0.01°, 스캔 속도 4°/분인 조건 하에서 Cu-Kα선을 이용하여 수행하였다. 또한, 비교를 위해 LiNi0.6Mn0.2Co0.2O2 조성의 코팅되지 않은 복합산화물 입자(bare)와 각각의 코팅에 사용된 제올라이트에 대하여도 XRD 분석을 수행하였다.In addition, XRD analysis (manufacturer: PANalytical, model name: X'Pert pro MPD) of each cathode active material prepared in Examples 1 and 2 was performed, and the results are shown in FIGS. 7A (Example 1) and FIG. 7b (Example 2). At this time, the X-ray diffraction analysis test was carried out using Cu-Kα rays under the condition that the sampling width is 0.01 °, scan rate 4 ° / min in the 2θ value range from 10 ° to 80 °. XRD analysis was also performed on the uncoated composite oxide particles (bare) of LiNi 0.6 Mn 0.2 Co 0.2 O 2 composition and zeolites used for each coating for comparison.
도 7a를 통해, 밀링 후에는 제올라이트의 피크가 관찰되지 않고, LiNi0.6Mn0.2Co0.2O2에 제올라이트를 각각의 일정한 함량만큼 코팅한 것에서도 제올라이트 피크가 관찰되지 않음을 알 수 있다. 또한, 도 7b를 통해, 밀링하지 않은 경우에는 제올라이트의 피크가 관찰되고, LiNi0.6Mn0.2Co0.2O2에 제올라이트를 각각의 일정한 함량만큼 코팅한 것에서도 약간의 제올라이트 피크가 관찰되는 것을 알 수 있다.7A, it can be seen that after the milling, no peak of the zeolite is observed and no zeolite peak is observed even when the zeolite is coated with LiNi 0.6 Mn 0.2 Co 0.2 O 2 by a predetermined amount. In addition, it can be seen from FIG. 7B that the zeolite peak is observed when not milled, and a slight zeolite peak is observed even when the zeolite is coated with LiNi 0.6 Mn 0.2 Co 0.2 O 2 by a predetermined amount. .
실험예 3: 전지의 출력 특성 평가Experimental Example 3: Evaluation of Output Characteristics of Battery
제조예 1(실시예 1의 양극 활물질 포함), 제조예 2(실시예 2의 양극 활물질 포함), 및 제조예 3(비교예 1의 양극 활물질 포함)의 코인 셀에 대하여 3.0 V 내지 4.5 V 범위에서 0.1C의 속도로 1회 충전 및 방전을 실시하였다. 상기 실험의 결과를 도 8a(제조예 1), 도 8b(제조예 2) 및 도 8c(제조예 3)에 나타내었다.3.0 V to 4.5 V for the coin cells of Preparation Example 1 (including the positive electrode active material of Example 1), Preparation Example 2 (including the positive electrode active material of Example 2), and Preparation Example 3 (including the positive electrode active material of Comparative Example 1) Charge and discharge were performed once at the rate of 0.1C. The results of the above experiments are shown in FIGS. 8A (Preparation Example 1), 8B (Preparation Example 2), and 8C (Preparation Example 3).
도 8에 나타난 바와 같이, 제조예 1 내지 3 모두에서 1회 사이클의 충·방전 특성이 유사하여 결과적으로 전지의 출력 특성이 유사함을 알 수 있다.As shown in FIG. 8, it can be seen that the charge and discharge characteristics of one cycle were similar in all of Production Examples 1 to 3, resulting in similar output characteristics of the battery.
실험예 4: 전지의 사이클 특성 평가Experimental Example 4: Evaluation of Cycle Characteristics of a Battery
제조예 1 내지 제조예 3에서 제조한 코인 셀에 대하여, 각각 3.0 V 내지 4.5 V 범위에서 0.1C의 속도로 1회 충전 및 방전을 실시한 후, 0.1C의 속도로 충전 및 방전을 하여 사이클 특성을 평가하였다. 50 cycle까지 진행되면서 나타내는 용량 변화를 도 9a(제조예 1), 도 9b(제조예 2) 및 도 9c(제조예 3)에 각각 나타내었다.The coin cells prepared in Preparation Examples 1 to 3 were charged and discharged at a rate of 0.1 C in a range of 3.0 V to 4.5 V, respectively, and then charged and discharged at a rate of 0.1 C to improve cycle characteristics. Evaluated. The changes in capacity indicated as progressing up to 50 cycles are shown in FIGS. 9A (Production Example 1), 9B (Production Example 2) and 9C (Production Example 3), respectively.
도 9를 통해, 제조예 1의 코인 셀은 0.5 wt% 코팅된 것을 제외하고 사이클 특성이 bare보다 향상되었으나, 제조예 2 및 제조예 3의 코인 셀은 코팅한 것들이 bare보다 사이클 특성이 좋지 않음을 확인할 수 있다.9, the coin cell of Preparation Example 1 was improved in cycle characteristics except that the coating was 0.5 wt%, but the coin cells of Preparation Examples 2 and 3 were better in coating cycles than bare. You can check it.
또한, 각각 1, 30, 50번째 cycle에서의 충방전 그래프를 도 10a, 도 10b 및 도 10c에 나타내었다.In addition, the charge and discharge graphs at the 1st, 30th and 50th cycles are shown in FIGS. 10A, 10B and 10C, respectively.
도 10a을 통해, 1번째 및 30번째 cycle에서는 코팅된 물질 때문에 용량이 bare보다는 적지만, 50번째 cycle에서 0.5wt% 코팅된 것을 제외하고 bare보다 많은 용량을 보여주고 있음을 알 수 있다. 즉, 우수한 cycle 특성을 보여주며 용량 감소율의 저하로 인해 수명 특성이 향상됨을 확인할 수 있었다.10a, it can be seen that the capacity is less than bare because of the coated material in the 1st and 30th cycle, but shows more capacity than bare except for 0.5wt% coated in the 50th cycle. In other words, it showed excellent cycle characteristics and improved life characteristics due to the decrease in capacity reduction rate.
이에 반해, 도 10b 및 도 10c에서는 사이클 횟수에 따라 용량이 크게 떨어짐을 알 수 있어 사이클 특성이 좋지 못하고 수명 특성도 좋지 못함을 확인할 수 있다.On the contrary, in FIG. 10B and FIG. 10C, it can be seen that the capacity greatly decreases according to the number of cycles, so that the cycle characteristics are not good and the life characteristics are not good.

Claims (16)

  1. 리튬 삽입·방출 가능한 리튬 복합 산화물, 및 리튬 이온으로 이온교환된 제올라이트를 함유하는 전극 활물질.An electrode active material containing a lithium composite oxide capable of inserting and releasing lithium and a zeolite ion-exchanged with lithium ions.
  2. 제1항에 있어서, 상기 리튬 이온으로 이온교환된 제올라이트는 리튬 삽입·방출 가능한 리튬 복합 산화물 입자를 코팅하는 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the zeolite ion-exchanged with lithium ions coats lithium composite oxide particles capable of inserting and releasing lithium.
  3. 제1항에 있어서, 상기 리튬 이온으로 이온교환된 제올라이트는, 제올라이트를 리튬 이온 함유 용액 중에 침지한 후 건조시켜 제조된 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the zeolite ion-exchanged with lithium ions is prepared by immersing the zeolite in a lithium ion-containing solution and then drying.
  4. 제3항에 있어서, 상기 리튬 이온 함유 용액은 리튬염을 물, C1-4 저급 알코올 또는 이의 혼합용매 중에 용해시켜 얻은 것이 특징인 전극 활물질.The electrode active material according to claim 3, wherein the lithium ion-containing solution is obtained by dissolving a lithium salt in water, a C 1-4 lower alcohol, or a mixed solvent thereof.
  5. 제4항에 있어서, 상기 리튬염은 아세트산 리튬, 질산 리튬 또는 이의 혼합물인 것이 특징인 전극 활물질.The electrode active material according to claim 4, wherein the lithium salt is lithium acetate, lithium nitrate or a mixture thereof.
  6. 제3항에 있어서, 상기 제올라이트는 리튬 이온 함유 용액 중에 침지되기 전에 밀링되는 것이 특징인 전극 활물질.4. The electrode active material according to claim 3, wherein the zeolite is milled before being immersed in a lithium ion containing solution.
  7. 제1항에 있어서, 상기 리튬 이온으로 이온교환된 제올라이트의 입자 크기가 1㎛ 이하인 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the particle size of the zeolite ion-exchanged with lithium ions is 1 µm or less.
  8. 제1항에 있어서, 리튬 삽입 또는 방출이 가능한 리튬 복합 산화물, 및 리튬 이온으로 이온교환된 제올라이트를 용매 중에서 혼합한 후 건조 및 열처리하여 제조된 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the lithium composite oxide capable of inserting or releasing lithium, and a zeolite ion-exchanged with lithium ions are mixed in a solvent, followed by drying and heat treatment.
  9. 제8항에 있어서, 상기 용매는 물, C1-4 알코올 또는 이의 혼합용매인 것이 특징인 전극 활물질.The electrode active material according to claim 8, wherein the solvent is water, C 1-4 alcohol or a mixed solvent thereof.
  10. 제8항에 있어서, 상기 열처리 온도는 100℃ 내지 500℃인 것이 특징인 전극 활물질.The electrode active material according to claim 8, wherein the heat treatment temperature is 100 ° C to 500 ° C.
  11. 제1항에 있어서, 상기 리튬 복합 산화물은 LiCoO2, LiNiO2, Li1+xMn2-xO4 (0≤x≤0.33), Li2CuO2, LiV3O8, LiFe3O4, LiNi1-xMxO2 (M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고; 0.01≤x≤0.3), LiMn2-xMxO2 (M은 Co, Ni, Fe, Cr, Zn 또는 Ta이고; 0.01≤x≤0.1), Li2Mn3MO8 (M은 Fe, Co, Ni, Cu 또는 Zn), Li(Ni1-x-yCoxMy)O2 (0≤x≤0.33, 0≤y≤0.33, M은 Mn, Al, Mg또는 Fe) 또는 이의 혼합물인 것이 특징인 전극 활물질.The method of claim 1, wherein the lithium composite oxide is LiCoO 2 , LiNiO 2 , Li 1 + x Mn 2-x O 4 (0 ≦ x ≦ 0.33), Li 2 CuO 2, LiV 3 O 8 , LiFe 3 O 4 , LiNi 1-x M x O 2 (M is Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ≦ x ≦ 0.3), LiMn 2-x M x O 2 (M is Co, Ni, Fe, Cr, Zn or Ta; 0.01 ≦ x ≦ 0.1), Li 2 Mn 3 MO 8 (M is Fe, Co, Ni, Cu or Zn), Li (Ni 1-xy Co x M y ) O 2 ( 0≤x≤0.33, 0≤y≤0.33, M is Mn, Al, Mg or Fe) or a mixture thereof.
  12. 제1항에 있어서, 상기 리튬 이온으로 이온교환된 제올라이트는 전극 활물질 100 중량부에 대해 1 내지 20 중량부로 함유되어 있는 것이 특징인 전극 활물질.The electrode active material according to claim 1, wherein the zeolite ion-exchanged with lithium ions is contained in an amount of 1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 전극 활물질은 리튬 이차전지용 양극 활물질인 것이 특징인 전극 활물질.The electrode active material according to any one of claims 1 to 12, wherein the electrode active material is a cathode active material for a lithium secondary battery.
  14. 제1항 내지 제12항 중 어느 한 항에 기재된 전극 활물질, 도전제 및 결합제를 함유하는 전극.An electrode containing the electrode active material, the conductive agent, and the binder according to any one of claims 1 to 12.
  15. 양극, 음극 및 전해질을 포함하는 전기화학소자에 있어서, In the electrochemical device comprising a positive electrode, a negative electrode and an electrolyte,
    상기 양극은 제1항 내지 제12항 중 어느 한 항에 기재된 전극 활물질을 함유하는 것인 전기화학소자.The said positive electrode contains the electrode active material in any one of Claims 1-12.
  16. 제15항에 있어서, 전기화학소자는 리튬 이차 전지인 것이 특징인 전기화학소자.The electrochemical device of claim 15, wherein the electrochemical device is a lithium secondary battery.
PCT/KR2015/000062 2014-11-21 2015-01-05 Electrode active material containing zeolite ion-exchanged with lithium ions, and electrochemical device using same WO2016080589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140163398A KR20160061498A (en) 2014-11-21 2014-11-21 electrode active material comprising lithium ion exchanged zeolite and electrochemical device using the same
KR10-2014-0163398 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016080589A1 true WO2016080589A1 (en) 2016-05-26

Family

ID=56014109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000062 WO2016080589A1 (en) 2014-11-21 2015-01-05 Electrode active material containing zeolite ion-exchanged with lithium ions, and electrochemical device using same

Country Status (2)

Country Link
KR (1) KR20160061498A (en)
WO (1) WO2016080589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262999A (en) * 1994-03-25 1995-10-13 Toppan Printing Co Ltd Lithium battery
JP2001229976A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method therefor
KR20070044838A (en) * 2005-10-26 2007-05-02 주식회사 엘지화학 Secondary battery of improved life characteristics by elimination of metal ions
JP2010129430A (en) * 2008-11-28 2010-06-10 Toyota Central R&D Labs Inc Nonaqueous lithium ion secondary battery
US20130224571A1 (en) * 2010-12-13 2013-08-29 Nec Corporation Lithium ion secondary battery and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262999A (en) * 1994-03-25 1995-10-13 Toppan Printing Co Ltd Lithium battery
JP2001229976A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method therefor
KR20070044838A (en) * 2005-10-26 2007-05-02 주식회사 엘지화학 Secondary battery of improved life characteristics by elimination of metal ions
JP2010129430A (en) * 2008-11-28 2010-06-10 Toyota Central R&D Labs Inc Nonaqueous lithium ion secondary battery
US20130224571A1 (en) * 2010-12-13 2013-08-29 Nec Corporation Lithium ion secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
KR20160061498A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2014189329A1 (en) Lithium secondary battery comprising multilayered active material layer
WO2019112390A1 (en) Anode active material for lithium secondary battery and method for manufacturing same
WO2010079962A2 (en) Positive electrode active material for lithium secondary battery
WO2010079949A2 (en) Positive electrode active material for lithium secondary battery
WO2014182036A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2012161476A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2010117219A2 (en) Lithium-sulfur battery
KR20130107092A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
WO2016161920A1 (en) Composite separator and preparation method therefor, and lithium-ion battery
WO2015199384A1 (en) Lithium secondary battery
WO2019240496A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
WO2014168327A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2014077661A1 (en) Cathode active material composition and lithium secondary battery comprising same
WO2015012640A1 (en) Electrode for secondary battery having improved energy density and lithium secondary battery comprising same
US20220231281A1 (en) Method for Preparing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material Prepared Thereby
WO2020013667A1 (en) Lithium secondary battery comprising inorganic electrolyte solution
WO2018155746A1 (en) Method for producing nickel-cobalt-manganese complex precursor with high specific surface area
CN113224263A (en) Negative electrode and preparation method and application thereof
CN113234403B (en) Adhesive, preparation method and application thereof
KR20150045784A (en) Cathode active material for lithium secondary battery and a method of making the same
WO2015137728A1 (en) Electrode active material containing reduced titanium oxide and electrochemical device using same
WO2019022358A1 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2015065126A1 (en) Anode for lithium secondary battery, and lithium secondary battery including same
WO2020055210A1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860770

Country of ref document: EP

Kind code of ref document: A1