WO2016080502A1 - 静電チャック装置 - Google Patents

静電チャック装置 Download PDF

Info

Publication number
WO2016080502A1
WO2016080502A1 PCT/JP2015/082609 JP2015082609W WO2016080502A1 WO 2016080502 A1 WO2016080502 A1 WO 2016080502A1 JP 2015082609 W JP2015082609 W JP 2015082609W WO 2016080502 A1 WO2016080502 A1 WO 2016080502A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
electrostatic chuck
temperature
sub
main
Prior art date
Application number
PCT/JP2015/082609
Other languages
English (en)
French (fr)
Inventor
小坂井 守
三浦 幸夫
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US15/528,026 priority Critical patent/US10475687B2/en
Priority to JP2015562234A priority patent/JP6202111B2/ja
Priority to KR1020177014260A priority patent/KR102233925B1/ko
Priority to CN201580063056.4A priority patent/CN107004626B/zh
Publication of WO2016080502A1 publication Critical patent/WO2016080502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck device provided with a heater element, an electrostatic chuck device, an electrostatic chuck control device, a program, and an electrostatic chuck control method.
  • the present application is Japanese Patent Application No. 2014-235737 filed on November 20, 2014, Japanese Patent Application No. 2014-235454 filed on November 20, 2014, March 18, 2015. Priority is claimed based on Japanese Patent Application No. 2015-054573 filed in Japan, and Japanese Patent Application No. 2015-054985 filed on March 18, 2015, the contents of which are incorporated herein by reference.
  • a wafer is simply attached and fixed to a sample table, and an electrostatic chuck apparatus as an apparatus for maintaining the wafer at a desired temperature Is used.
  • the surface temperature of the wafer rises.
  • a cooling medium such as water is circulated through the temperature control base portion of the electrostatic chuck device to cool the wafer from the lower side.
  • this cooling state generates a temperature distribution in the plane of the wafer.
  • the temperature is high at the center of the wafer and low at the peripheral side.
  • the generation state of plasma changes due to the difference in the structure or method of the plasma etching apparatus. With the change of the plasma generation state, a difference occurs in the in-plane temperature distribution of the wafer.
  • temperature distribution is generated in the wafer surface under the influence of film formation conditions and atmosphere control in the film formation chamber.
  • the electrostatic chuck apparatus with a heater function which attached the heater member between the electrostatic chuck part and the base part for temperature control is proposed (patent document 1).
  • This heater function-equipped electrostatic chuck device can locally create a temperature distribution in the wafer. Therefore, the in-plane temperature distribution of the wafer can be appropriately set in accordance with the film deposition rate and the plasma etching rate. By setting the in-plane temperature distribution of the wafer, local film formation such as pattern formation on the wafer and local plasma etching can be efficiently performed.
  • an electrostatic chuck apparatus using an electrostatic chuck In an etching apparatus using plasma, a chemical vapor deposition (CVD) apparatus, or the like, an electrostatic chuck apparatus using an electrostatic chuck (ESC) is used.
  • the electrostatic chuck apparatus includes an electrostatic chuck unit having a mounting surface on which a plate-like sample such as a silicon wafer is mounted and an electrostatic chucking electrode, and generates a charge in the electrostatic chucking electrode to perform electrostatic chucking.
  • the plate-like sample is fixed to the mounting surface by force.
  • the electrostatic chuck apparatus may be equipped with a heater (for example, refer patent document 2).
  • JP 2008-300491 A Japanese Patent Application Laid-Open No. 11-163109
  • the uniformity of the etching rate is more strictly required than in the past, along with the miniaturization of the wiring of the semiconductor device.
  • the etching rate by plasma etching is affected by plasma density, wafer surface temperature, concentration distribution of etching gas, and the like. Since the plasma density and the etching gas concentration have a distribution in the wafer surface, in addition to the uniformity of the wafer surface temperature, more accurate control of adjustment of the wafer in-plane temperature distribution is required. In addition, it is also required to form a sharp in-plane temperature distribution by changing the etching temperature in a short time in response to the etching of many types of films.
  • a plurality of heaters are arranged concentrically to control the temperature, and the number of heaters divided in the concentric radial direction is increased to improve the temperature controllability and uniformity of the wafer surface. be able to.
  • the number of heater divisions increases, there is a problem that the degree of difficulty of temperature control at the time of temperature increase and decrease and the state of temperature distribution on the wafer surface increase. Further, as the number of heater divisions increases, the configuration of the electrostatic chuck device becomes complicated accordingly.
  • the present invention has been made in view of the above-mentioned conventional problems, and the present invention has a simple structure of uniform temperature control of a zone heated by each heater even if it has a structure having a plurality of divided heaters. It is an object of the present invention to provide an electrostatic chuck device that can be configured, and to provide an electrostatic chuck device, an electrostatic chuck control device, a program, and an electrostatic chuck control method that can accurately perform temperature control using a heater. I assume.
  • an electrostatic chuck portion having a mounting surface on which a plate-shaped sample is mounted on one main surface and an electrostatic chucking electrode, and the electrostatic chuck portion
  • a temperature control base portion disposed on the opposite side to the mounting surface to cool the electrostatic chuck portion, and high frequency generation arranged in a layer between the electrostatic chuck portion and the temperature control base portion
  • a first heater element comprising a plurality of main heaters arranged in layers between the high frequency power supply connected to the high frequency generation electrode and the high frequency generation electrode and the temperature adjustment base portion; And a guard electrode arranged in a layer between the high frequency generating electrode and the first heater element.
  • the guard electrode blocks the high frequency generated from the high frequency generating electrode. Therefore, it is possible to suppress that the heater power supply constituting the first heater element is affected by the high frequency. Also, the high frequency cut filter for the first heater element can be removed. That is, the configuration of the electrostatic chuck device is avoided from being complicated, which contributes to the reduction of the manufacturing cost of the electrostatic chuck device.
  • a configuration further including a second heater element formed of a sub heater can be employed.
  • the first heater element or the second heater element disposed on the guard electrode side also blocks the high frequency generated from the high frequency generating electrode. Therefore, it is possible to further suppress the influence of high frequency on the first heater element or the second heater element arranged on the temperature adjustment base portion side. That is, it is possible to further reduce the possibility that the high frequency is leaked as noise to the heater power supply of the heater and the operation or performance of the heater power supply is impaired. Further, according to this configuration, the temperature distribution of each zone divided into the plurality of main heaters can be individually controlled, and the temperature adjustment in each zone can be finely adjusted by the sub heater.
  • the guard electrode can adopt a configuration having a first heat transfer barrier extending in the circumferential direction. According to this configuration, it is possible to suppress heat conduction in the in-plane direction through the guard electrode, and to further enhance the temperature controllability for each region.
  • heat conduction in the concentric direction (circumferential direction) of the in-plane directions can be allowed.
  • radial heat conduction can be an obstacle to thermal uniformity. Therefore, the temperature controllability of the electrostatic chuck can be further enhanced by thermally separating the radial direction of the guard electrode.
  • the plurality of main heaters constituting the first heater element are arranged concentrically in the circular area, and the first heat transfer barrier of the guard electrode It is possible to adopt a configuration in which an area between the plurality of main heaters adjacent in the radial direction of the circular area is overlapped in plan view. According to this configuration, heat transfer in the in-plane direction of the metal plate can be inhibited in accordance with the area controlled in temperature by each main heater and sub heater. That is, the temperature controllability of each region of the electrostatic chuck device 1 can be further enhanced.
  • the plurality of main heaters constituting the first heater element are arranged in a concentric ring in the circular area, and the high frequency generating electrode is in the circumferential direction
  • a second heat transfer barrier extending to the second heat transfer barrier, wherein the second heat transfer barrier is provided in a planar overlapping manner with a region between the plurality of main heaters adjacent in the radial direction of the annular region Can be adopted.
  • the formation material of the said high frequency generation electrode in the electrostatic chuck apparatus which concerns on 1 aspect of this invention can be set as the structure which uses a nonmagnetic metal material.
  • the high frequency generating electrode does not generate heat due to the high frequency even when the electrostatic chuck device is used in a high frequency atmosphere. Therefore, it is easy to maintain the in-plane temperature of the plate-like sample to a desired constant temperature or constant temperature pattern even in a high frequency atmosphere.
  • the formation material of the said high frequency generation electrode in the electrostatic chuck apparatus which concerns on 1 aspect of this invention can employ
  • the high frequency generating electrode in the electrostatic chuck device may have a thickness of 20 ⁇ m or more and 1000 ⁇ m or less. If the thickness of the high frequency generating electrode is within the above range, heat generation unevenness and electric field unevenness due to the thickness of the high frequency generating electrode do not affect the uniformity of plasma, and the heat capacity of the high frequency generating electrode The thermal responsiveness to the plate-like sample can be enhanced without becoming too large.
  • the electrostatic chuck device can adopt a configuration in which the calorific value per unit area of the sub heater is set smaller than the calorific value per unit area of the main heater.
  • an electrostatic chuck portion having a mounting surface on which a plate-shaped sample is mounted on one main surface and an electrostatic chucking electrode, and the electrostatic chuck portion A temperature control base portion disposed on the opposite side to the mounting surface to cool the electrostatic chuck portion, and arranged in a layer between the electrostatic chuck portion and the temperature control base portion, the temperature A plurality of high frequency power generation electrodes insulated with respect to the adjustment base section, a high frequency power supply connected to the high frequency power generation electrodes, and a plurality of layers arranged between the electrostatic chuck section and the high frequency power generation electrodes A first heater element comprising the main heater, a second heater element comprising a plurality of sub-heaters disposed between the high frequency generating electrode and the temperature control base, and the high frequency generating electrode Said second heat And a disposed metal plate between the elements.
  • the temperature distribution in each zone divided into a plurality of main heaters can be controlled individually, and the temperature control in each zone can be finely adjusted by the sub heater. For this reason, even if partial temperature distribution is caused in the plate-like sample due to fluctuations in plasma generation state and film forming conditions while holding the plate-like sample, the temperature distribution is suppressed by fine adjustment of the temperature by the sub heater can do. For this reason, when it applies to an etching apparatus or a film-forming apparatus, it contributes to the uniformity improvement of an etching rate, and contributes to control of a local etching rate, and the stability improvement of film-forming.
  • the etching temperature is changed in a short time, and in order to form a sharp in-plane temperature distribution, the control temperature of the temperature control base and the suction surface of the electrostatic chuck Even if the temperature difference between them is taken large, it contributes to the improvement of the uniformity of the in-plane temperature distribution of the plate-like sample and contributes to the improvement of the thermal uniformity.
  • the second heater element comprising a plurality of sub-heaters has a metal plate between it and the high frequency generating electrode. Therefore, it can suppress that the 2nd heater element receives to the influence of a high frequency. For this reason, it is possible to prevent the high frequency current from leaking to the power supply for the sub heater via the second heater element. That is, the electrostatic chuck device according to one aspect of the present invention can remove the high frequency cut filter for the sub heater.
  • the electrostatic chuck device can adopt a configuration in which the temperature control base portion is formed of a metal material, and the metal plate and the temperature control base portion are electrically connected. Since the metal plate and the temperature control base portion are electrically connected, there is no need to provide a wire or the like for grounding the metal plate, and a simpler electrostatic chuck device can be realized.
  • the electrostatic chuck device can adopt a configuration in which the calorific value per unit area of the sub heater is set smaller than the calorific value per unit area of the main heater. According to this configuration, the temperature adjustment in each zone can be performed by the sub heater in which the calorific value per unit area is smaller than that of the main heater. It is possible to control the temperature distribution more precisely by suppressing the sub-heater from being excessively heated to finely adjust the temperature.
  • the first heater element and the second heater element are both arranged in a circular area along the surface on which the first heater element and the second heater element are arranged.
  • the second heater element may be divided into a plurality of parts in the circumferential direction or radial direction, and the number of divisions of the second heater element may be larger than the number of divisions of the first heater element. .
  • the number of sub-heaters whose temperature can be finely adjusted is larger than that of the main heaters. Therefore, temperature fine adjustment for each area smaller than the area heated by the main heater is possible, and local temperature fine adjustment of the plate-like sample is possible.
  • the plurality of main heaters constituting the first heater element are arranged concentrically in the circular area, and the metal plate extends in the circumferential direction
  • a configuration having a plurality of existing first heat transfer barriers can be employed. According to this configuration, it is possible to suppress heat conduction in the in-plane direction through the metal plate, and to further enhance the temperature controllability for each region.
  • heat conduction in the concentric direction (circumferential direction) of the in-plane directions can be allowed.
  • radial heat conduction can be an obstacle to thermal uniformity. Therefore, temperature controllability of the electrostatic chuck can be further enhanced by thermally separating the radial direction of the metal plate.
  • the first heater element and the second heater element are disposed in a circular area along the surface on which the first heater element and the second heater element are disposed. It is possible to employ a configuration having a plurality of first heat transfer barriers provided in a planar overlapping manner with a region between the plurality of main heaters and a region between the plurality of adjacent sub-heaters. According to this configuration, heat transfer in the in-plane direction of the metal plate can be inhibited in accordance with the area controlled in temperature by each main heater and sub heater. That is, temperature controllability of each area of the electrostatic chuck can be further enhanced.
  • the first heater element and the second heater element are both arranged in a circular area along the surface on which the first heater element and the second heater element are arranged.
  • a configuration having a region between the matching plurality of main heaters and a region between the adjacent plurality of sub-heaters, and a plurality of second heat transfer barriers provided so as to overlap in plan view can be employed. According to this configuration, heat transfer in the in-plane direction of the high-frequency generating electrode can be inhibited according to the area temperature-controlled by each main heater and sub heater. That is, temperature controllability of each area of the electrostatic chuck can be further enhanced.
  • a temperature measuring unit in which a temperature sensor for measuring the temperature of the main heater is in contact with the main heater via an insulating material or disposed on the same surface as the main heater on the side of the temperature control base portion of the main heater.
  • the structure provided with the temperature sensor installed in can be adopted. Further, it is possible to adopt a configuration in which one surface of the temperature sensor is installed in a temperature measuring unit which is in contact with or on the same surface as the main heater via an insulating material and the other surface is not in contact with the temperature control base. .
  • the temperature control of the plate-like sample can be performed while measuring the temperature of the main heater with the temperature sensor in a state where the influence of the temperature of the temperature control base is small, the temperature of the plate-like sample can be controlled. Overshoot can be avoided, and the temperature of the plate-like sample can be accurately adjusted.
  • an electrostatic chuck portion having a mounting surface on which a plate-shaped sample is mounted on one main surface and an electrostatic chucking electrode, and the electrostatic chuck portion
  • a temperature control base portion disposed on the opposite side to the mounting surface and cooling the electrostatic chuck portion, and a plurality of layers disposed between the electrostatic chuck portion and the temperature control base portion.
  • a plurality of first heater elements comprising a main heater, and a plurality of layers disposed between the temperature control base portion and the first heater element or between the first heater elements and the electrostatic chuck portion
  • the heat generation amount per unit area of the sub heater is set smaller than the heat generation amount per unit area of the main heater.
  • the temperature distribution in each zone divided into a plurality of main heaters can be individually controlled, and the temperature control in each zone can be finely adjusted by a sub heater whose calorific value per unit area is smaller than that of the main heater. For this reason, even if partial temperature distribution is caused in the plate-like sample due to fluctuations in plasma generation state and film forming conditions while holding the plate-like sample, the temperature distribution is suppressed by fine adjustment of the temperature by the sub heater can do. For this reason, when it applies to an etching apparatus or a film-forming apparatus, it contributes to the uniformity improvement of an etching rate, and contributes to control of a local etching rate, and the stability improvement of film-forming.
  • the etching temperature is changed in a short time, and in order to form a sharp in-plane temperature distribution, the control temperature of the temperature control base portion and the suction surface of the electrostatic chuck device Even if a large temperature difference is taken, it contributes to the improvement of the uniformity of the in-plane temperature distribution of the plate-like sample, and contributes to the improvement of the thermal uniformity.
  • the first heater element and the second heater element are all arranged in a circle along the surface on which the first heater element and the second heater element are arranged, and the first heater element and the second heater element are circular It is possible to adopt a configuration in which the main heater or the sub heater is formed by being divided into a plurality in the circumferential direction or the radial direction, and the number of divisions of the second heater element is larger than the number of divisions of the first heater element. Since the number of sub-heaters capable of fine adjustment of temperature is larger than that of the main heater, it is possible to finely adjust the temperature of each area smaller than the area heated by the main heater, thereby enabling local fine adjustment of the plate-like sample. .
  • a temperature measuring unit in which a temperature sensor for measuring the temperature of the main heater is in contact with the main heater via an insulating material or disposed on the same surface as the main heater on the side of the temperature control base portion of the main heater.
  • the structure provided with the temperature sensor installed in can be adopted. Further, it is possible to adopt a configuration in which one surface of the temperature sensor is installed in a temperature measuring unit which is in contact with or on the same surface as the main heater via an insulating material and the other surface is not in contact with the temperature control base. .
  • the temperature control of the plate-like sample can be performed while measuring the temperature of the main heater with the temperature sensor in a state where the influence of the temperature of the temperature control base is small, the temperature of the plate-like sample can be controlled. Overshoot can be avoided, and the temperature of the plate-like sample can be accurately adjusted.
  • the first heater element and the second heater element are stacked via a plurality of heat resistant insulating plates on the side of the electrostatic chuck portion of the temperature control base portion, and the contacts provided on the insulating plate It is possible to adopt a configuration in which a feed terminal connected to the main heater or the sub heater is provided through the hole and the through hole provided in the temperature adjustment base portion.
  • a feed terminal connected to the main heater or the sub heater is provided through the hole and the through hole provided in the temperature adjustment base portion.
  • an insulating plate is provided between the second heater element and the temperature control base portion, and the second heater element is provided along the surface of the insulating plate on the temperature control base portion side.
  • the structure in which the wiring layer connected to each sub heater is formed is employable. Even in the structure in which the second heater element is divided into a plurality of sub-heaters, it is possible to configure a circuit capable of individually energizing each sub-heater using a wiring layer provided along the insulating plate. It is possible to realize temperature control for each small area corresponding to each of the plurality of sub-heaters.
  • the first heater element and the second heater element are sequentially stacked between the temperature control base portion and the electrostatic chuck portion from the electrostatic chuck portion side via an insulating plate. it can.
  • the effect of the temperature control base portion to suppress the temperature rise of the plate-like sample can be finely adjusted locally by the plurality of sub-heaters. Contributes to the improvement of the uniformity of the in-plane temperature distribution of the
  • the second heater element and the first heater element are sequentially stacked between the temperature control base portion and the electrostatic chuck portion from the electrostatic chuck portion side via an insulating plate. it can.
  • the sub-heater with fine adjustment effect is provided at a position close to the plate-like sample. , Enables local temperature fine adjustment of plate-like samples.
  • an electrostatic chuck unit having a mounting surface for mounting a plate-like sample on one main surface and having an electrostatic chucking electrode, and the mounting surface described above with respect to the electrostatic chuck unit And a temperature adjusting base portion for cooling the electrostatic chuck portion, and one or more main heaters for adjusting the temperature of the suction surface of the electrostatic chuck portion in one or more main heater adjusting regions
  • a second heater element comprising a plurality of first heater elements comprising a first heater element, a plurality of sub-heaters for adjusting the temperature of the sub-heater adjustment region more than the main heater adjustment region of the first heater element; It is an electrostatic chuck apparatus provided with the control part to control.
  • the control unit may use a configuration in which a pulse voltage is used as a voltage applied to the sub heater.
  • the control unit controls the second heater element within a period of the same length cyclically allocated to the plurality of sub-heaters of the second heater element.
  • a configuration may be used that controls the time width of the pulse voltage applied to each sub heater.
  • the control unit may use a configuration in which a DC voltage is used as a voltage applied to the sub heater.
  • a configuration may be used in which the control unit controls the magnitude of the voltage applied to the sub-heaters for the plurality of sub-heaters of the second heater element.
  • a configuration may be used in which the control unit controls a voltage applied to the main heater.
  • the control unit in a situation where there is a temperature difference between the electrostatic chuck unit and the temperature adjustment base unit, the control unit constantly applies a voltage to the main heater except for the cooling step.
  • the configuration in which a voltage can be intermittently applied to each of the sub-heaters may be used.
  • the control unit is configured to apply a magnitude of a voltage applied to each sub heater disposed to divide each main heater to a magnitude of voltage, current, or power applied to the main heater.
  • a configuration that controls based on the distance may be used.
  • the control unit determines the magnitude of the voltage applied to each sub heater disposed to divide each main heater, at least a temperature detection result corresponding to the main heater, and the temperature A configuration may be used in which control is performed based on a temperature difference from a temperature detection result corresponding to the chiller of the adjustment base portion.
  • the electrostatic chuck device includes a storage unit that stores information used to control a voltage applied to the sub heater, and the control unit is configured to, based on the information stored in the storage unit.
  • a configuration may be used that controls the voltage applied to the sub-heater.
  • the storage unit stores information corresponding to a part of a temperature range in which temperature adjustment is performed by the sub heater, and the control unit stores the information stored in the storage unit.
  • size of the voltage applied to the said main heater, an electric current, or electric power may be used.
  • the storage unit stores information corresponding to a part of a temperature range in which temperature adjustment is performed by the sub heater
  • the control unit stores the information stored in the storage unit. And at least the configuration to control the voltage applied to the sub-heater based on the temperature difference between the temperature detection result corresponding to the main heater and the temperature detection result corresponding to the chiller of the temperature adjustment base portion Good.
  • a configuration may be used in which the first heater element adjusts the temperatures of the plurality of main heater adjustment areas that can be independently controlled in temperature.
  • a configuration may be used in which the sub-heaters are arranged in layers so as to divide each main heater adjustment area of the first heater element.
  • a configuration may be used in which the calorific value per unit area of the sub heater is 1 ⁇ 5 or less of that of the main heater.
  • a configuration may be used in which the second heater element is formed of a single layer or a plurality of layers.
  • an electrostatic chuck portion having a mounting surface on which a plate-shaped sample is mounted on one main surface and provided with an electrostatic chucking electrode, and a side opposite to the mounting surface with respect to the electrostatic chuck portion
  • a first temperature control base portion for cooling the electrostatic chuck portion, and a single or a plurality of main heaters for adjusting the temperature of the suction surface of the electrostatic chuck portion in a single or a plurality of main heater adjustment regions;
  • Applied to the sub-heater in an electrostatic chuck device comprising: a heater element of the first heater element; and a second heater element comprising a plurality of sub-heaters for adjusting the temperature of the sub-heater adjustment region more than the main heater adjustment region of the first heater element.
  • An electrostatic chuck control device is provided with a control unit that controls the voltage.
  • an electrostatic chuck portion having a mounting surface on which a plate-shaped sample is mounted on one main surface and provided with an electrostatic chucking electrode, and a side opposite to the mounting surface with respect to the electrostatic chuck portion
  • a first temperature control base portion for cooling the electrostatic chuck portion, and a single or a plurality of main heaters for adjusting the temperature of the suction surface of the electrostatic chuck portion in a single or a plurality of main heater adjustment regions
  • a program for controlling an electrostatic chuck device comprising: a heater element of: and a second heater element comprising a plurality of sub-heaters for adjusting the temperature of the sub-heater adjustment region more than the main heater adjustment region of the first heater element. Controlling the voltage applied to the sub-heater using a pulse voltage as the voltage applied to the sub-heater. It is a program for.
  • one or more of the main heaters constituting the first heater element adjust the temperature of the suction surface of the electrostatic chuck portion in one or more of the main heater adjustment regions to constitute the second heater element
  • the plurality of sub-heaters adjust the temperature of the sub-heater adjustment area more than the main heater adjustment area of the first heater element
  • the control unit controls the voltage applied to the sub-heaters.
  • the magnitude of the voltage applied to the sub heater disposed to divide the main heater adjustment region of the main heater is controlled based on the magnitude of the voltage, current, or power applied to the main heater. , Electrostatic chuck control method.
  • the magnitude of the voltage applied to the sub heater arranged to divide the main heater adjustment region of the main heater, the temperature detection result corresponding to at least the main heater, and the temperature of the chiller of the temperature adjustment base portion It is an electrostatic chuck control method which controls based on a temperature difference with a detection result.
  • the power supplied to the sub heater is adjusted by the application time and voltage value of the pulse voltage, and the application time is The voltage value is controlled by the temperature applied by the main heater or at least the temperature difference between the temperature detection result corresponding to the main heater and the temperature detection result of the chiller at the temperature adjustment base portion.
  • the first heater element including one or more main heaters for adjusting the temperature of the suction surface of the electrostatic chuck portion in one or more main heater adjustment regions, and the main heater of the first heater element And a second heater element comprising a plurality of sub-heaters for adjusting the temperature of the sub-heater adjustment region more than the adjustment region, in applying the cyclic pulse voltage to the sub-heater, the DC power supply and the sub-heater
  • a switching element is disposed between one or both of the sub-heater and the ground, and a predetermined pulse voltage is applied to the sub-heater.
  • the guard electrode can block the high frequency generated from the high frequency generating electrode, and the influence on the main heater can be suppressed. Therefore, it is possible to suppress the influence of the high frequency on the heater power supply connected to the main heater, and remove the high frequency cut filter of the main heater. That is, the configuration of the electrostatic chuck device is avoided from being complicated, which contributes to the reduction of the manufacturing cost of the electrostatic chuck device.
  • the temperature distribution of each zone divided by the plurality of main heaters can be individually controlled, and the temperature adjustment in each zone is generated by heat generation per unit area from the main heater. Fine adjustment can be performed by the sub heater whose amount is small. For this reason, even if partial temperature distribution is caused in the plate-like sample due to fluctuations in plasma generation state and film forming conditions while holding the plate-like sample, the temperature distribution is suppressed by fine adjustment of the temperature by the sub heater can do. Therefore, if etching or film formation processing is performed while holding a plate-like sample by the electrostatic chuck device of the present invention, it contributes to the improvement of etching rate uniformity, local etching rate control, and film formation stability.
  • a metal plate is provided between the second heater element composed of a plurality of sub-heaters and the high frequency generating electrode. Therefore, the second heater element is not affected by high frequency. That is, the high frequency current can be prevented from leaking to the power supply for the sub heater via the second heater element, and the high frequency cut filter for the sub heater can be removed.
  • temperature control using a heater can be performed with high accuracy in the electrostatic chuck device.
  • Sectional drawing which shows the electrostatic chuck apparatus of 1st Embodiment which concerns on this invention.
  • the top view which shows an example of the pattern of the main heater element provided in the electrostatic chuck apparatus of 1st Embodiment which concerns on this invention.
  • the top view which shows an example of the pattern of the guard electrode provided in the electrostatic chuck apparatus of 1st Embodiment which concerns on this invention.
  • Sectional drawing which shows the electrostatic chuck apparatus of 2nd Embodiment which concerns on this invention.
  • Explanatory drawing which shows the state which is investigating the surface temperature distribution of the plate-shaped sample which the electrostatic chuck apparatus of 2nd Embodiment which concerns on this invention supported by the thermo camera.
  • the top view which shows an example of the pattern of the sub heater element provided in the electrostatic chuck apparatus of 2nd Embodiment which concerns on this invention.
  • Sectional drawing which shows the electrostatic chuck apparatus of 3rd Embodiment which concerns on this invention.
  • the top view which shows an example of the pattern of the main heater element provided in the electrostatic chuck apparatus.
  • the top view which shows an example of the pattern of the sub heater element provided in the electrostatic chuck apparatus.
  • the top view which shows an example of the pattern of the metal plate provided in the electrostatic chuck apparatus.
  • the top view which shows an example of the pattern of the metal plate provided in the electrostatic chuck apparatus.
  • Explanatory drawing which shows the state which is investigating the surface temperature distribution of the plate-shaped sample which the electrostatic chuck apparatus supported with the thermo camera.
  • Sectional drawing which shows the electrostatic chuck apparatus of 4th Embodiment which concerns on this invention.
  • the top view which shows an example of the pattern of the main heater element provided in the electrostatic chuck apparatus.
  • the top view which shows an example of the pattern of the sub heater element provided in the electrostatic chuck apparatus.
  • Explanatory drawing which shows the state which is investigating the surface temperature distribution of the plate-shaped sample which the electrostatic chuck apparatus supported with the thermo camera.
  • Sectional drawing which shows the electrostatic chuck apparatus of 5th Embodiment which concerns on this invention. It is a block diagram showing a schematic structure of an electrostatic chuck device concerning one embodiment (sixth embodiment) of the present invention. It is a figure showing roughly arrangement of a heater etc. in an electrostatic chuck device concerning one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an electrostatic chuck device according to a first embodiment of the present invention.
  • the electrostatic chuck device 1 of this embodiment is provided with a disc-like electrostatic chuck portion 2 whose one main surface (upper surface) side is a mounting surface, and is provided below the electrostatic chuck portion 2 and the electrostatic chuck portion
  • a disk-shaped temperature control base portion 3 having a thickness for adjusting 2 to a desired temperature, a high frequency generating electrode 4 interposed between the electrostatic chuck portion 2 and the temperature control base portion 3, and a high frequency A high frequency power supply (not shown) connected to the generation electrode, and a first heater element 5 comprising a plurality of main heaters arranged in layers between the high frequency generation electrode 4 and the temperature control base portion 3;
  • a guard electrode 70 disposed in a layer between the high frequency generating electrode 4 and the first heater element 5 is provided.
  • the electrostatic chuck device 1 further includes an adhesive layer 4A for attaching the high frequency generating electrode 4 to the bottom side of the electrostatic chuck 2, an adhesive layer 70A for attaching the guard electrode 70 to the high frequency generating electrode 4, and a first heater. It comprises an insulating plate 10 for electrically separating the elements 5 at the temperature control base portion 3 and an adhesive layer 11 formed covering the periphery of these. Furthermore, the electrostatic chuck device 1 is configured to include a high frequency power supply (not shown) connected to the high frequency generating electrode 4 via the power supply terminal 41.
  • the electrostatic chuck unit 2 has a mounting plate 21 whose upper surface is a mounting surface 21 a on which a plate-like sample W such as a semiconductor wafer is mounted, and the mounting plate 21 integrated with the mounting plate 21. And around the electrostatic adsorption electrode (internal electrode for electrostatic adsorption) 23 and the electrostatic adsorption electrode 23 provided between the mounting plate 21 and the support plate 22. An insulating material layer 24 and a lead-out electrode terminal 25A provided so as to penetrate the support plate 22 for applying a DC voltage to the electrostatic adsorption electrode 23 are constituted.
  • the mounting plate 21 and the support plate 22 are disc-like ones having the same shape of the superposed surfaces, and are aluminum oxide-silicon carbide (Al 2 O 3 -SiC) composite sintered body, aluminum oxide (Al 2) O 3 ) Insulation having mechanical strength such as sintered body, aluminum nitride (AlN) sintered body, yttrium oxide (Y 2 O 3 ) sintered body, etc. and having durability against corrosive gas and its plasma It consists of ceramic ceramics sintered compact.
  • a plurality of protrusions 21 b having a diameter smaller than the thickness of the plate-like sample are formed on the placement surface 21 a of the placement plate 21 at predetermined intervals, and the protrusions 21 b support the plate-like sample W.
  • the entire thickness including the mounting plate 21, the support plate 22, the electrostatic adsorption electrode 23 and the insulating material layer 24, that is, the thickness of the electrostatic chuck 2 is, for example, 0.7 mm or more and 5.0 mm or less It is done.
  • the thickness of the electrostatic chuck 2 is less than 0.7 mm, it becomes difficult to secure the mechanical strength of the electrostatic chuck 2.
  • the thickness of the electrostatic chuck portion 2 exceeds 5.0 mm, the heat capacity of the electrostatic chuck portion 2 becomes large, and the thermal responsiveness of the plate-like sample W to be mounted is deteriorated.
  • the heat transfer in the lateral direction of the electrostatic chuck portion increases, and it becomes difficult to maintain the in-plane temperature of the plate-like sample W in a desired temperature pattern.
  • the thickness of each part demonstrated here is an example, Comprising: It does not restrict to the said range.
  • the electrostatic adsorption electrode 23 is used as an electrode for an electrostatic chuck for generating charge and fixing the plate-like sample W by electrostatic adsorption force, and the shape and size thereof are appropriately determined depending on the application. Adjusted.
  • the electrostatic adsorption electrode 23 is made of aluminum oxide-tantalum carbide (Al 2 O 3 -Ta 4 C 5 ) conductive composite sintered body, aluminum oxide-tungsten (Al 2 O 3 -W) conductive composite sintered body, Aluminum oxide-silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, aluminum nitride-tungsten (AlN-W) conductive composite sintered body, aluminum nitride-tantalum (AlN-Ta) conductive composite sintering Body, conductive ceramics such as yttrium oxide-molybdenum (Y 2 O 3 -Mo) conductive composite sintered body, or high melting point metals such as tungsten (W), tantalum (
  • the thickness of the electrostatic adsorption electrode 23 is not particularly limited, but can be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less. When the thickness of the electrostatic adsorption electrode 23 is less than 0.1 ⁇ m, it is difficult to secure sufficient conductivity. When the thickness of the electrostatic adsorption electrode 23 exceeds 100 ⁇ m, due to the difference in thermal expansion coefficient between the electrostatic adsorption electrode 23 and the mounting plate 21 and the support plate 22, the electrostatic adsorption electrode 23 and the electrostatic adsorption electrode 23 are mounted Peeling or cracking is likely to occur at the bonding interface between the plate 21 and the support plate 22.
  • the electrostatic adsorption electrode 23 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.
  • the insulating material layer 24 surrounds the electrostatic adsorption electrode 23 to protect the electrostatic adsorption electrode 23 from the corrosive gas and its plasma, and at the boundary between the mounting plate 21 and the support plate 22, that is, electrostatics.
  • the outer peripheral region other than the adsorption electrode 23 is integrally joined, and the same composition or main component as the material constituting the mounting plate 21 and the support plate 22 is formed of the same insulating material.
  • the lead-out electrode terminal 25A is a rod-like one provided to apply a DC voltage to the electrostatic chucking electrode 23.
  • a material of the lead-out electrode terminal 25A particularly, it is a conductive material excellent in heat resistance.
  • the thermal expansion coefficient be close to the thermal expansion coefficient of the electrostatic adsorption electrode 23 and the support plate 22.
  • a conductive ceramic material such as Al 2 O 3 -Ta 4 C 5 It consists of
  • the lead-out electrode terminal 25A is connected to the conductive bonding portion 25B and a power supply terminal 25C described later.
  • the conductive bonding portion 25B is made of a silicon-based conductive adhesive having flexibility and electrical resistance
  • the feeding terminal 25C is made of tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), Kovar alloy, etc. It consists of a metal material.
  • An insulator 25a having an insulating property is provided on the outer peripheral side of the feed terminal 25C, and the feed terminal 25C is insulated from the metal temperature control base portion 3 by the insulator 25a.
  • the takeout electrode terminal 25A is bonded and integrated to the support plate 22, and the mounting plate 21 and the support plate 22 are bonded and integrated by the electrostatic attraction electrode 23 and the insulating material layer 24 to constitute the electrostatic chuck portion 2. It is done.
  • the power supply terminal 25C is provided so as to penetrate the through hole 3b of the temperature control base portion 3 which will be described in detail later.
  • the temperature control base portion 3 is for adjusting the electrostatic chuck portion 2 to a desired temperature, and is in the form of a thick disc.
  • this temperature control base portion 3 for example, a water-cooled base or the like in which a flow path 3A for circulating water is formed is preferable.
  • the material constituting the temperature control base portion 3 is not particularly limited as long as it is a metal excellent in thermal conductivity, conductivity and processability, or a composite material containing these metals, for example, aluminum (Al) Aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used.
  • at least the surface of the temperature control base portion 3 exposed to plasma is subjected to an alumite treatment or an insulating film such as alumina is formed.
  • the insulating plate 10, the first heater element 5, the guard electrode 70, the high frequency generating electrode 4 and the bottom surface side of the electrostatic chuck portion 2 are provided on the upper surface side of the temperature control base portion 3.
  • a recess 3a of a size capable of accommodating The adhesive layer 10A, the insulating plate 10, the first heater element 5, the guard electrode 70, the adhesive layer 70A, the high frequency generating electrode 4, the adhesive layer 4A, and the bottom side of the support plate 22 are housed in this recess 3a sequentially from the bottom side. These are integrated by the adhesive layer 11 formed so as to fill the recess 3a.
  • the insulating plate 10 is bonded to the upper surface of the recess 3a by the adhesive layer 10A.
  • the adhesive layer 10A is made of a sheet-like or film-like adhesive resin having heat resistance such as polyimide resin, silicon resin, epoxy resin and the like, and insulation.
  • the adhesive layer is formed, for example, to a thickness of about 5 to 100 ⁇ m.
  • the insulating plate 10 is made of a thin plate, sheet or film of heat resistant resin such as polyimide resin, epoxy resin, acrylic resin or the like.
  • the adhesive layers 4A and 70A are made of a sheet-type adhesive layer having heat resistance, and are made of the same material as the adhesive layer 10A.
  • the insulating plate 10 may be an insulating ceramic plate instead of the resin sheet, or may be a sprayed film having insulating properties such as alumina.
  • the high frequency generating electrode 4 is for generating a high frequency to generate plasma in the apparatus.
  • a high frequency power is applied to the high frequency generating electrode 4 from a high frequency generating power source to generate a discharge between itself and the opposing counter electrode to make the gas plasma. it can.
  • the high frequency generating electrode 4 is bonded to the bottom side of the support plate 22 via an adhesive layer 4A.
  • a high frequency power supply (not shown) connected via the power supply terminal 41 is connected to the high frequency generation electrode 4 so that high frequency power can be applied to the high frequency generation electrode 4.
  • the feeding terminal 41 is covered with a insulator 41 a in order to maintain insulation with the temperature control base 3.
  • a forming material of the high frequency generating electrode 4 be a nonmagnetic metal material.
  • the high frequency generating electrode 4 can be prevented from self-heating due to high frequency. . Therefore, it is easy to maintain the in-plane temperature of the plate-like sample to a desired constant temperature or constant temperature pattern even in a high frequency atmosphere.
  • the material for forming the high frequency generating electrode 4 preferably has a thermal expansion coefficient of 4 ⁇ 10 ⁇ 6 / K or more and 10 ⁇ 10 ⁇ 6 / K or less. If the coefficient of thermal expansion is in the above range, it is possible to further suppress the occurrence of peeling of the bonding interface between the electrostatic chuck portion and the high frequency generating electrode 4 due to the difference in coefficient of thermal expansion. A difference occurs in the heat conductivity between the electrostatic chuck portion and the high frequency generating electrode at the portion where peeling occurs at the bonding interface and the portion where it does not occur, making it difficult to maintain heat uniformity within the electrostatic chuck portion Become.
  • the thickness of the high frequency generating electrode 4 is preferably 20 ⁇ m or more and 1000 ⁇ m or less. If the thickness of the high frequency generating electrode 4 is too thick, the heat capacity becomes too large, and the thermal responsiveness of the plate-like sample W to be mounted is deteriorated. Further, if the thickness of the high frequency generating electrode 4 is too thin, uneven heating of the high frequency generating electrode and uneven electric field occur, which affects the uniformity of plasma.
  • the first heater element 5 is arranged in layers between the high frequency generating electrode 4 and the temperature control base 3.
  • the first heater element 5 is, as shown in FIG. 2, a first main heater 5A disposed in an annular area at the center and an annular area so as to sequentially surround the first main heater 5A. And a third main heater 5C and a fourth main heater 5D.
  • the area in which the first to fourth main heaters 5A to 5D are arranged preferably has a size similar to that of the disk-shaped electrostatic chuck 2.
  • the main heaters 5A, 5B, 5C, 5D are drawn in a simple annular shape in a plan view in FIG. It is arranged to occupy an annular area. For this reason, in the cross-sectional structure shown in FIG.
  • first heater element 5 is divided into four in the radial direction to have four main heaters 5A to 5D, the number of divisions of the first heater element 5 is not limited to four, and any number may be used. It is good.
  • main heaters 5A to 5D are nonmagnetic metal thin plates having a constant thickness of 0.2 mm or less, preferably about 0.1 mm, for example, titanium (Ti) thin plates, tungsten (W) thin plates, molybdenum (Mo A thin plate or the like can be obtained by processing the entire contour of a desired heater shape, for example, a shape in which a strip-like heater is meandered into a ring shape by photolithography.
  • These main heaters 5A to 5D are fixed on the temperature control base portion 3 via the insulating plate 10 having uniform heat resistance and insulation properties.
  • the first heater element 5 comprises main heaters 5A, 5B, 5C, 5D, and a plurality of power supply terminals 51 for supplying power to these respective main heaters 5A, 5B, 5C, 5D are provided, and the main heater It is connected to the heater power supply (positive electrode) for heating.
  • the main heater power supply positive electrode
  • FIG. 2 conductive portions for connecting to the power supply are provided at one end side and the other end side of each heater regardless of which heater is used. . Therefore, a total of eight power supply terminals 51 are provided, two each for the main heaters 5A, 5B, 5C, and 5D. In FIG.
  • one feed terminal 51 connected to the outermost main heater 5D is drawn.
  • the power supply terminal 51 is disposed so as to partially penetrate the temperature control base portion 3 and the insulating plate 10 in their thickness direction. Further, a cylindrical insulator 51a for insulation is mounted on the outer peripheral surface of the power supply terminal 51, and the temperature control base portion 3 and the power supply terminal 51 are insulated. Furthermore, the feeding terminal 51 is bonded to the first heater element 5 via the bonding portion 51b.
  • the material which comprises the terminal 51 for electric power feeding can use the material equivalent to the material which comprises the terminal 25C for electric power feeding.
  • the guard electrode 70 is provided between the first heater element 5 and the high frequency generating electrode 4. Therefore, the high frequency generated from the high frequency generating electrode 4 can be cut off. That is, the influence of the high frequency on the main heater constituting the first heater element 5 can be suppressed. Therefore, it is suppressed that high frequency is applied as noise to the heater power supply which supplies electric power to the main heater, and the possibility that the operation or performance of the heater power supply is impaired is reduced. Further, since the guard electrode 70 blocks high frequency, it is not necessary to provide a high frequency cut filter in the main heater constituting the first heater element 5. That is, it is possible to avoid the complication of the configuration of the electrostatic chuck device 1 and to reduce the manufacturing cost of the electrostatic chuck device 1.
  • the guard electrode 70 is bonded to the bottom surface side of the high frequency generating electrode 4 via an adhesive layer 70A.
  • the guard electrode 70 is grounded to the outside through the current application terminal 71.
  • the current-carrying terminal 71 is covered with a insulator 71 a in order to maintain insulation with the temperature control base 3.
  • the guard electrode 70 cuts off the high frequency generated from the high frequency generating electrode 4.
  • the guard electrode preferably has a heat transfer barrier that inhibits heat conduction in the in-plane direction.
  • the heat transfer barrier may be a notch, a groove or the like provided in the guard electrode, and the inside thereof may be filled with a resin or the like having poor thermal conductivity (heat conductivity is worse than that of the material constituting the guard electrode). The following description will be given based on the case of cutting as an example.
  • FIG. 3 is a plan view of the guard electrode 70 used in the electrostatic chuck device 1 according to the first embodiment of the present invention. As shown in FIG.
  • the guard electrode 70 is arranged in a circular area along the surface on which the first heater element 5 is arranged, and a plurality of notches extending in the circumferential direction of the circular area (first Heat transfer barrier).
  • the cut of the guard electrode 70 is formed of the plurality of main areas adjacent in the radial direction of the circular area. It is preferable to overlap the area between the heaters 5A to 5D in plan view.
  • the guard electrode 70 having a plurality of notches extending in the circumferential direction, it is possible to enhance the thermal uniformity in the circumferential direction in the guard electrode.
  • heat conduction in the concentric direction (circumferential direction) of the in-plane directions can be allowed.
  • radial heat conduction can be an obstacle to thermal uniformity. Therefore, by thermally separating the radial direction of the guard electrode 70, temperature control for each area of the plate-like sample can be performed with high accuracy.
  • the notch in the guard electrode 70 in accordance with the heating area of the main heater, it is possible to further suppress the heat applied by the main heaters 5A to 5D from spreading in the radial direction by the thermal conduction of the guard electrode 70. That is, temperature control for each area of the plate-like sample can be performed more accurately.
  • the guard electrode 70 is partially connected and preferably electrically integrated.
  • the electrical integration allows the potential of the guard electrode 70 to be kept constant. Therefore, the influence on the plasma density can also be reduced.
  • Such a heat transfer barrier may be provided on the high frequency generating electrode 4. Alternatively, they may be provided on both the high frequency generating electrode 4 and the guard electrode 70.
  • the high frequency generation electrode 4 has a plurality of heat transfer barriers (second heat transfer barriers) extending in the circumferential direction, thereby improving the heat uniformity in the circumferential direction in the high frequency generation electrode 4 it can.
  • second heat transfer barriers heat transfer barriers
  • radial heat conduction can be an obstacle to thermal uniformity. Therefore, temperature control for each area of the plate-like sample can be performed with high accuracy by thermally separating the radial direction of the high frequency generating electrode 4.
  • the heat applied by the main heaters 5A to 5D is spread in the radial direction by the heat conduction of the high frequency generating electrode 4. It can suppress more. That is, temperature control for each area of the plate-like sample can be performed more accurately.
  • the material for forming the guard electrode 70 may be any metal material capable of blocking high frequency, but is preferably a nonmagnetic metal material.
  • a nonmagnetic metal material By forming the material of the guard electrode 70 of nonmagnetic metal, it is possible to suppress the heat generation of the guard electrode 70 due to the high frequency generated from the high frequency generating electrode 4. Therefore, it is easy to maintain the in-plane temperature of the plate-like sample to a desired constant temperature or constant temperature pattern even in a high frequency atmosphere.
  • the material of the guard electrode 70 preferably has a coefficient of thermal expansion of 4 ⁇ 10 ⁇ 6 / K or more and 10 ⁇ 10 ⁇ 6 / K or less. If the thermal expansion coefficient is in the above range, it is possible to further suppress the occurrence of peeling or the like of the bonding interface with the high frequency generating electrode 4 due to the thermal expansion coefficient difference. When peeling occurs at the bonding interface, the heat transferability is different between the place where the peeling occurred and the place where the peeling does not occur, and it becomes difficult to maintain the in-plane uniform temperature.
  • the thickness of the guard electrode 70 is preferably 20 ⁇ m or more and 1000 ⁇ m or less. If the thickness of the guard electrode 70 is too thick, the heat capacity becomes too large, and the thermal responsiveness of the plate-like sample W to be mounted is deteriorated. Further, if the thickness of the guard electrode 70 is too thin, sufficient high frequency shielding properties can not be obtained, and problems such as heat generation occur.
  • a temperature sensor 30 is provided on the lower surface side of the main heaters 5A, 5B, 5C, 5D.
  • the installation holes 31 are formed so as to partially penetrate the temperature control base portion 3 of the temperature sensor 30 in the thickness direction thereof, and the uppermost portions of these installation holes 31 and the main heaters 5A and 5B.
  • the temperature sensor 30 is installed at a position close to one of 5C and 5D. It is desirable that the temperature sensor 30 be installed at a position as close as possible to the main heaters 5A, 5B, 5C, and 5D.
  • the temperature sensor 30 is not affected by the temperature of the temperature control base, one side of the temperature sensor is bonded to the heater side via the insulating layer, and the other side is not in contact with the cooling base, or It is desirable that the temperature sensor 30 be sufficiently small (1/5 or less, preferably 1/10) as compared to the heat transfer coefficient of the heater and the temperature sensor 30.
  • the temperature sensor 30 is a fluorescence type temperature sensor in which a phosphor layer is formed on the upper surface side of a rectangular parallelepiped light transmitting body made of quartz glass or the like as one example, and the temperature sensor 30 has translucency and heat resistance. It is adhered to the lower surface of the main heaters 5A, 5B, 5C, and 5D by a silicone resin adhesive or the like.
  • the phosphor layer is made of a material that generates fluorescence in response to heat generation from the main heater, and a wide variety of fluorescent materials can be selected as long as the material generates fluorescence in response to heat generation.
  • a fluorescent material to which a rare earth element having an energy rank is added a semiconductor material such as AlGaAs, a metal oxide such as magnesium oxide, or a mineral such as ruby or sapphire can be used appropriately.
  • the temperature sensors 30 corresponding to the main heaters 5A, 5B, 5C, 5D are respectively provided at positions not interfering with the power supply terminals and the like and at any positions on the lower surface circumferential direction of the main heaters 5A, 5B, 5C, 5D. There is.
  • the temperature measurement unit 32 that measures the temperatures of the main heaters 5A to 5D from the fluorescence of these temperature sensors 30 is, for example, on the outside (lower side) of the installation hole 31 of the temperature adjustment base 3 as shown in FIG.
  • An excitation unit 33 for irradiating excitation light to the phosphor layer, a fluorescence detector 34 for detecting fluorescence emitted from the phosphor layer, an excitation unit 33 and a fluorescence detector 34 are controlled and the main component is based on the fluorescence.
  • the control unit 35 calculates the temperature of the heater. By the way, what is shown by the code
  • a pin penetration hole provided so that the base part 3 for temperature control to the mounting board 23 might be penetrated partially in those thickness directions, This pin penetration hole
  • a lift pin for removing a plate-like sample is provided at 38.
  • a cylindrical forceps 38 a is provided on the outer peripheral portion of the pin insertion hole 38.
  • the heat transfer coefficient is less than 4000W / m 2 K 200W / m 2 K between the first heater element 5 and a temperature adjusting base portion 3. If the heat transfer coefficient is larger than 200 W / m 2 K, the thermal responsiveness between the first heater element 5 and the temperature control base portion 3 can be increased, and the temperature control of the electrostatic chuck device 1 can be performed. In the case of performing, it is possible to perform temperature control with good response. If the heat transfer coefficient is greater than 4000 W / m 2 K, the heat flow from the heater to the temperature control base becomes large, and excessive power is required to raise the load (plate-like sample) W to a predetermined temperature. Is not preferable because it is necessary to supply the heater.
  • the electrostatic chuck device 1 configured as described above is energized from the power supply terminal 25C to the electrostatic adsorption electrode 23 of the electrostatic chuck portion 2 to generate an electrostatic adsorption force, and the electrostatic chucking force of the mounting surface 21a is obtained.
  • the plate-like sample W can be adsorbed and used on the protrusion 21 b.
  • the refrigerant can be circulated to the temperature control base portion 3 to cool the plate-like sample W, and the main heaters 5A to 5D can be individually provided by supplying power to the main heaters 5A to 5D from the power supply via the power supply terminals 51. By heating the plate-shaped sample W, the temperature can be controlled.
  • the electrostatic chuck device 1 can realize uniform temperature control of zones heated by each heater with a simple configuration, even if it has a plurality of divided heaters.
  • the configuration eliminates the need for the high frequency cut filter for the first heater element 5, prevents the configuration of the electrostatic chuck device 1 from being complicated, and can reduce the manufacturing cost of the electrostatic chuck device 1.
  • FIG. 4 is a cross-sectional view showing an electrostatic chuck apparatus according to a second embodiment of the present invention.
  • the electrostatic chuck device 101 of this embodiment differs in that a second heater element is provided between the first heater element 5 and the temperature control base 3.
  • adhesive layer 7A which adheres insulating plate 7, 8, wiring layer 9 interposed between insulating plates 7, 8 and insulating plate 7 to temperature control base 3 Is provided.
  • the second heater element 6 is arranged in layers between the first heater element 5 and the temperature control base 3. On the other hand, it may be disposed between the first heater element 5 and the guard electrode 70.
  • the guard electrode 70 blocks the high frequency generated from the high frequency generating electrode 4. Therefore, the application of high frequency as noise to the main heater constituting the first heater element and the sub-heater constituting the second heater element is suppressed, and the possibility that the operation or performance of the heater power supply is impaired is reduced. Therefore, it is not necessary to provide a high frequency cut filter for the main heater and the sub heater. Therefore, it is possible to avoid the complexity of the configuration of the electrostatic chuck device 101 and to reduce the manufacturing cost of the electrostatic chuck device 101.
  • the second heater element 6 is formed in an annular area so as to sequentially surround the first sub heater 6A disposed in an annular area at the center as shown in FIG. 5 and the first sub heater 6A. It consists of the 2nd sub heater 6B, the 3rd sub heater 6C, and the 4th sub heater 6D.
  • the first sub-heater 6A is formed in an annular shape by combining a plurality (two in the case of the configuration of FIG. 5) of the heater divisions 6a arranged in the fan-shaped annular region, and the second sub-heater 6B has a fan-shaped annular shape A plurality of (four in the case of the configuration of FIG. 5) heater divisions 6b arranged in the body-shaped region are combined to form an annular shape.
  • the third sub-heater 6C is formed in an annular shape by combining a plurality (four in the case of the configuration of FIG. 5) of the heater divisions 6c arranged in the sector-shaped annular body-shaped region.
  • the fourth sub-heater 6D is formed in an annular shape by combining a plurality (eight in the case of the configuration of FIG. 5) of the heater divisions 6d disposed in the fan-shaped annular body region.
  • Heater divisions 6a to 6d are nonmagnetic metal thin plates thinner than main heaters 5A to 5D, for example, molybdenum (Mo) thin plate, tungsten (W) thin plate, niobium (Nb) thin plate, titanium (Ti) thin plate, copper (Cu)
  • Mo molybdenum
  • W tungsten
  • Nb niobium
  • Ti titanium
  • Cu copper
  • a thin plate or the like is obtained by processing the entire contour of a desired heater shape, for example, a shape in which a strip-like heater is meandered into a fan-shaped annular body shape by photolithography.
  • the heater divisions 6a to 6d have a heat generation amount lower than the heat generation amount per unit area of the main heaters 5A to 5D, and from the structure having a smaller heat generation or a material having a low heat generation amount than the main heaters 5A to 5D. It is preferable that it is comprised.
  • the main heater is made of a 100 ⁇ m thick Ti thin plate
  • the sub heater can be made of a 5 ⁇ m thick Mo thin plate.
  • the heater divisions 6a to 6d are bonded to the upper surface of the insulating plate 8 by an adhesive layer (not shown) made of sheet-like or film-like silicone resin or acrylic resin having uniform heat resistance and insulation properties. It is fixed.
  • the sub-heaters 6A, 6B, 6C, and 6D are divided into two, four, or eight in this embodiment, the number of divisions may be arbitrary, and the shape when divided may be arbitrary.
  • the first heat transfer barrier formed on the guard electrode 70 and the second heat transfer barrier formed on the high frequency generating electrode 4 are adjacent to each other. It is preferable that the region between the plurality of matching main heaters and the region between the adjacent plurality of sub-heaters be provided to overlap in plan view.
  • the sub-heaters 6A to 6D have a collective structure of a plurality of heater divisions 6a, 6b, 6c, 6d obtained by dividing the sub-heaters 6A to 6D individually in their circumferential direction as viewed in plan view in FIG.
  • a wiring layer 9 made of a low resistance material such as copper is provided on the upper surface side of the insulating plate 7.
  • the wiring layer 9 is composed of a plurality of wiring bodies 9a branched individually, and each wiring body 9a is connected to any one of the heater divisions 6a, 6b, 6c, 6d.
  • a plurality of wiring bodies 9a are arranged on the upper surface side of the insulating plate 7 so as to extend from the central portion side to the peripheral side, and one end of each wiring body 9a is formed in a part of the insulating plate 8 It is connected to one of the heater divisions via a conducting portion 8b such as a welding portion formed in a hole. Further, the other end side of each wiring body 9a is connected to the power supply terminal 61 through a conducting portion 7b such as a welding portion formed in a contact hole formed in a part of the insulating plate 7.
  • the feed terminal 61 is formed to penetrate the temperature control base 3 in the thickness direction along the through hole 3 b of the temperature control base 3 and to reach the insulating plate 7.
  • An insulating insulator 61 a is provided on the outer peripheral side of the electrode 61 and is insulated from the temperature control base 3.
  • a plurality of heater divisions 6a, 6b, 6c, 6d are formed in the circumferential direction of the sub-heaters 6A, 6B, 6C, 6D.
  • the heater divisions 6a, 6b, 6c, and 6d are individually connected using individual wiring bodies 9a.
  • two feed terminals 61 are connected to each of the heater divisions 6a, 6b, 6c and 6d respectively in order to feed power separately, only a part is shown in the cross-sectional structure of FIG.
  • the connection structure of the wiring body 9a is omitted as appropriate.
  • Two feed terminals 61 are connected to each of the heater divisions 6a, 6b, 6c and 6d, and switch elements are connected to the heater divisions 6a, 6b, 6c and 6d via the two feed terminals 61 And the power supply are connected.
  • the operations of the switching element and the power supply can be operated in the same configuration except that the numbers of the switching element, the positive electrode and the negative electrode are different depending on the number of the first heater element 5 and the resistor.
  • the number of power supply terminals 61 of the sub heaters 6A to 6D can be reduced to more than twice the number of heater divided bodies by the arrangement of the heater patterns and the switch elements.
  • a temperature difference occurs in the plate-like sample W depending on the generation state of plasma or the temperature distribution in the film forming chamber.
  • the temperature distribution of the surface of the plate-like sample W is photographed by a thermo camera 200 and analyzed by a thermograph.
  • the temperature can be locally raised to make the surface temperature of the plate-like sample W uniform.
  • the temperature control at the time of heating can be performed by applied voltage control, voltage application time control, current value control, etc. at the time of energizing the heater divided members 6a, 6b, 6c, 6d individually.
  • the second heater element 6 is divided into a plurality of heater divisions 6a, 6b, 6c, and 6d and can be individually controlled to be energized and heated, the temperature distribution on the adsorbed plate-shaped sample W is obtained.
  • the plate-like sample W in the low temperature zone by energizing one of the heater divided members 6a, 6b, 6c, 6d at the position corresponding to the low temperature zone even when To make the temperature distribution uniform. Therefore, when the plate-like sample W is held by the electrostatic chuck device 101 for plasma etching or film formation, the surface temperature of the plate-like sample W is made uniform by individual temperature control of the heater divisions 6a to 6d. Thus, uniform etching or uniform film formation can be performed.
  • the amount of heat generation per unit area of the heater divisions 6a, 6b, 6c, 6d is reduced with respect to the main heaters 5A to 5D, whereby the heater divisions 6a, 6b, 6c, 6d for temperature fine adjustment are energized.
  • the amount can be reduced.
  • the amount of energization of the heater divisions 6a, 6b, 6c, 6d can be reduced, for example, the amount of power supplied can be reduced by using the energization current to the heater divisions 6a, 6b, 6c, 6d as a pulse current.
  • the thickness of the main heaters 5A to 5D and the thickness of the heater divisions 6a, 6b, 6c and 6d can be freely selected at the time of manufacture. Therefore, the withstand voltage according to each heater and each wiring can be set individually. It is possible to set an individual desired withstand voltage value for each heater and each wiring. For example, by setting the thickness of the main heater made of Ti thin plate to 100 ⁇ m and the thickness of the heater divided body made of Mo thin plate to 5 ⁇ m as an example, the calorific value per unit area of the heater divided body is 1/5 or less of that of the main heater It can be adjusted. Of course, in addition to the constituent materials and the heater thickness, the amount of heat generation of the main heater and the heater divided body may be adjusted by adjusting the supply voltage.
  • the number of divisions of the first heater element 5 is The number is not limited to four and may be any number.
  • the second heater element 6 is divided into four in the radial direction and configured by four sub-heaters 6A to 6D, and the first sub-heater 6A is further divided into two, and the second sub-heater 6B is divided into four, third The sub heater 6C is divided into four, and the fourth sub heater 6D is divided into eight, but the number of divisions of the second heater element 6 in the radial direction may be any number, and the number of divisions of each sub heater may be any number. .
  • the second heater element 6 has a single-layer structure, but the second heater element 6 may have a multilayer structure of two or more layers.
  • the 1st heater element 5 and the 2nd heater element 6 were arrange
  • the plurality of sub-heaters of the second heater element may be filled with a slight gap formed between the plurality of main heater installation areas (annular installation areas) constituting the first heater element 5 in plan view. It is also possible to arrange such that the gap area between the plurality of main heaters is filled with a plurality of sub-heaters.
  • the gap between the main heaters may be filled by shifting the arrangement region of each layer in plan view.
  • the electrostatic chuck device 101 provides the electrostatic chuck device 101 capable of performing uniform temperature control of zones heated by each heater even if the heater is divided into a plurality of parts. can do. Further, the guard electrode 70 eliminates the need for the main heater and the high-frequency cut filter for the sub-heater constituting the first heater element 5 and the second heater element 6, thereby avoiding the complication of the configuration of the electrostatic chuck device 101. The manufacturing cost of the electrostatic chuck device 101 can be reduced.
  • FIG. 7 is a cross-sectional view showing an electrostatic chuck apparatus according to a third embodiment of the present invention.
  • the electrostatic chuck device 501 of this embodiment is provided with a disc-like electrostatic chuck portion 502 whose one main surface (upper surface) side is a mounting surface, and is provided below the electrostatic chuck portion 502 and is an electrostatic chuck portion.
  • a disk-shaped temperature control base portion 503 having a thickness for adjusting 502 to a desired temperature, and a high frequency generating electrode 550 having a layered structure interposed between the electrostatic chuck portion 502 and the temperature control base portion 503.
  • a first heater element 505 of a layered structure interposed between the electrostatic chuck portion 502 and the high frequency generation electrode 550, and between the high frequency generation electrode 550 and the temperature control base portion 503.
  • the second heater element 506 has a layered structure, and a metal plate 551 interposed between the high frequency generating electrode 550 and the second heater element.
  • the electrostatic chuck device 501 is configured to include an adhesive layer 509 B formed so as to cover the bottom surface side of the electrostatic chuck portion 502 and the periphery of the first heater element 505.
  • the electrostatic chuck unit 502 has a mounting plate 511 whose upper surface is a mounting surface 511 a on which a plate-shaped sample W such as a semiconductor wafer is mounted, and the mounting plate 511 integrally formed on the bottom side of the mounting plate 511. And around the electrostatic adsorption electrode (internal electrode for electrostatic adsorption) 513 and the electrostatic adsorption electrode 513 provided between the mounting plate 511 and the support plate 512. An insulating material layer 514 and a lead-out electrode terminal 515A provided to penetrate the support plate 512 and for applying a DC voltage to the electrostatic chucking electrode 513 are configured.
  • the mounting plate 511 and the support plate 512 are in the form of a disk having the same shape of the superimposed surface.
  • These are aluminum oxide-silicon carbide (Al 2 O 3 -SiC) composite sintered bodies, aluminum oxide (Al 2 O 3 ) sintered bodies, aluminum nitride (AlN) sintered bodies, yttrium oxide (Y 2 O 3 ) It is made of an insulating ceramic sintered body having mechanical strength such as a sintered body and having durability against a corrosive gas and its plasma.
  • a plurality of protrusions 511 b each having a diameter smaller than the thickness of the plate-like sample are formed on the placement surface 511 a of the placement plate 511 at predetermined intervals. The protrusions 511 b support the plate-like sample W.
  • the entire thickness including the mounting plate 511, the support plate 512, the electrostatic attraction electrode 513, and the insulating material layer 514, that is, the thickness of the electrostatic chuck portion 502 is, for example, 0.7 mm to 5.0 mm It is done.
  • the thickness of the electrostatic chuck 502 is less than 0.7 mm, it is difficult to secure the mechanical strength of the electrostatic chuck 502.
  • the thickness of the electrostatic chuck 502 exceeds 5.0 mm, the heat capacity of the electrostatic chuck 502 is increased. Therefore, the thermal responsiveness of the plate-like sample W to be mounted is deteriorated, and the heat transfer in the lateral direction of the electrostatic chuck portion 502 is increased. Therefore, it becomes difficult to maintain the in-plane temperature of the plate-like sample W in a desired temperature pattern.
  • the thickness of each part described here is an example, and is not limited to the above range.
  • the electrostatic chucking electrode 513 is used as an electrostatic chucking electrode for generating charge and fixing the plate-like sample W by electrostatic chucking force.
  • the shape and the size are appropriately adjusted depending on the application.
  • the electrode 513 for electrostatic adsorption is made of aluminum oxide-tantalum carbide (Al 2 O 3 -Ta 4 C 5 ) conductive composite sintered body, aluminum oxide-tungsten (Al 2 O 3 -W) conductive composite sintered body, Aluminum oxide-silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, aluminum nitride-tungsten (AlN-W) conductive composite sintered body, aluminum nitride-tantalum (AlN-Ta) conductive composite sintering Body, conductive ceramics such as yttrium oxide-molybdenum (Y 2 O 3 -Mo) conductive composite sintered body, or high melting point metals such as tungsten (W), tantalum (Ta),
  • the thickness of the electrostatic chucking electrode 513 is not particularly limited, but may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less. If the thickness of the electrostatic chucking electrode 513 is less than 0.1 ⁇ m, it will be difficult to ensure sufficient conductivity. When the thickness of the electrostatic chucking electrode 513 exceeds 100 ⁇ m, peeling and cracking of the bonding interface between the electrostatic chucking electrode 513 and the mounting plate 511 and the support plate 512 are likely to occur. This is considered to be due to the difference in thermal expansion coefficient between the electrostatic chucking electrode 513 and the mounting plate 511 and the support plate 512.
  • the electrostatic adsorption electrode 513 having such a thickness can be easily formed by a film forming method such as a sputtering method or an evaporation method, or a coating method such as a screen printing method.
  • the insulating material layer 514 surrounds the electrostatic chucking electrode 513 to protect the corrosive gas and the plasma for the electrostatic chucking electrode 513 from the plasma, and at the boundary between the mounting plate 511 and the support plate 512, that is, electrostatics
  • the outer peripheral region other than the adsorption electrode 513 is integrally joined, and the same composition or main component as the material constituting the mounting plate 511 and the support plate 512 is formed of the same insulating material.
  • the lead-out electrode terminal 515A is a rod-like terminal provided to apply a DC voltage to the electrostatic chucking electrode 513.
  • the material of the lead-out electrode terminal 515A is not particularly limited as long as it is a conductive material having excellent heat resistance, but the thermal expansion coefficient is similar to the thermal expansion coefficient of the electrostatic adsorption electrode 513 and the support plate 512 those are preferred, for example, made of a conductive ceramic material such as Al 2 O 3 -Ta 4 C 5 .
  • the lead-out electrode terminal 515A is connected to the conductive bonding portion 515B and a power supply terminal 515C described later.
  • the conductive bonding portion 515B is made of a silicon-based conductive adhesive having flexibility and electrical resistance.
  • the feeding terminal 515C is made of a metal material such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), Kovar alloy or the like.
  • An insulator 515a having an insulating property is provided on the outer peripheral side of the feeding terminal 515C, and the feeding terminal 515C is insulated from the metal temperature control base portion 503 by the insulator 515a.
  • the takeout electrode terminal 515A is bonded and integrated to the support plate 512, and the mounting plate 511 and the support plate 512 are bonded and integrated by the electrostatic attraction electrode 513 and the insulating material layer 514 to form an electrostatic chuck portion 502. It is done.
  • the power supply terminal 515C is provided to penetrate a through hole 503b of the temperature control base portion 503 described later in detail.
  • the temperature control base portion 503 is for adjusting the electrostatic chuck portion 502 to a desired temperature, and is in the shape of a thick disc.
  • the temperature control base portion 503 is formed with a flow path 503A for circulating water or the like inside thereof.
  • the temperature control base portion 503 uses a metal material as a forming material.
  • the metal material is preferably a metal excellent in thermal conductivity, conductivity, or processability, or a composite material containing these metals.
  • aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are suitably used.
  • at least the surface of the temperature control base portion 503 exposed to plasma is subjected to an alumite treatment or an insulating film such as alumina is formed.
  • An opening 503B is formed in a recess 503a formed on the side of the electrostatic chuck portion 502 with respect to the flow path 503A of the temperature adjustment base portion 503.
  • a second heater element 506 described later is disposed in the opening 503B.
  • the high frequency generating electrode 550 is for generating a high frequency to generate plasma in the apparatus. For example, in a reactive ion etching (RIE) apparatus, by applying high frequency power from a high frequency generation power source to the high frequency generation electrode 550, a discharge is generated between it and the opposing counter electrode to make the gas plasma. it can.
  • the high frequency generating electrode 550 is interposed between the electrostatic chuck portion 502 and the temperature control base portion 503.
  • a high frequency power supply (not shown) connected via the power supply terminal 552 is connected to the high frequency generation electrode 550 so that high frequency power can be applied to the high frequency generation electrode 550.
  • the feed terminal 552 is covered with a insulator 552 a to maintain insulation with the temperature control base 503.
  • the high frequency generating electrode 550 is made of a metal material, and the periphery thereof is covered with an insulating layer 553.
  • the insulating layer 553 insulates the temperature control base portion 503. That is, the voltage applied to the high frequency generation electrode 550 can be prevented from leaking to the outside.
  • the material for forming the high frequency generating electrode 550 is preferably formed of nonmagnetic metal.
  • the high frequency generating electrode 550 can suppress self-heating due to the high frequency. Therefore, it is easy to maintain the in-plane temperature of the plate-like sample to a desired constant temperature or constant temperature pattern even in a high frequency atmosphere.
  • the thickness of the high frequency generating electrode 550 is preferably 20 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the high frequency generating electrode 550 is too thick, the heat capacity becomes too large, and the thermal responsiveness of the plate-like sample W to be mounted is deteriorated. Further, if the thickness of the high frequency generating electrode 550 is too thin, heat generation unevenness of the high frequency generating electrode and unevenness of the electric field occur to affect the uniformity of plasma.
  • the first heater element 505 is bonded on the insulating layer 553 covering the high frequency generating electrode 550 via the adhesive layer 509A.
  • the adhesive layer 509A is made of an adhesive resin similar to the adhesive layer 509B, and may be in the form of a sheet or a film. In addition, it may be adhered to the bottom side of the support plate 512 via the adhesive layer 509A.
  • the first heater element 505 is, as shown in FIG. 8, a first main heater 505A disposed in an annular area at the center and an annular area so as to sequentially surround the first main heater 505A. And a third main heater 505C, and a fourth main heater 505D.
  • the area in which the first to fourth main heaters 505A to 505D are arranged preferably has the same size as the disk-shaped electrostatic chuck 502.
  • the main heaters 505A, 505B, 505C, and 505D are drawn in a simple annular shape in a plan view in FIG.
  • each of the main heaters 505A, 505B, 505C, and 505D causes a belt-like heater to meander and show a circle shown in FIG. It is arranged to occupy an annular area. For this reason, in the cross-sectional structure shown in FIG. 7, belt-shaped heaters constituting the main heaters 505A, 505B, 505C, and 505D are individually drawn.
  • the main heaters 505A to 505D are nonmagnetic metal thin plates having a constant thickness of 0.2 mm or less, preferably about 0.1 mm, for example, titanium (Ti) thin plates, tungsten (W) thin plates, molybdenum (Mo A thin plate or the like can be obtained by processing the entire contour of a desired heater shape, for example, a shape in which a strip-like heater is meandered into a ring shape by photolithography.
  • These main heaters 505A to 505D are adhered and fixed to the bottom surface of the support plate 512 by an adhesive layer 509A made of sheet-like or film-like silicone resin or acrylic resin having uniform heat resistance and insulation properties. .
  • the second heater element 506 is disposed in an opening 503 B formed in the recess 503 a of the temperature control base 503.
  • the opening 503B is formed by the concave portion 503a of the temperature control base portion 503 and the metal plate 551 provided on the upper portion of the concave portion 503a.
  • the insulating plate 507, the wiring layer 504, the insulating plate 508, and the second heater element 506 are sequentially stacked in this order from the flow path 503A side, and the insulating portion 510 is formed to cover the periphery thereof.
  • the metal plate 551 can be made of the same constituent material as the temperature control base portion 503.
  • the insulating plate 507 is bonded to the surface on the flow path 503A side of the opening 503B by the adhesive layer 507A.
  • the adhesive layer 507A can be the same as the adhesive layer 509A.
  • the adhesive layer 507A is formed, for example, to a thickness of about 5 to 100 ⁇ m.
  • the insulating plates 507 and 508 are made of a thin plate, sheet or film of heat resistant resin such as polyimide resin, epoxy resin or acrylic resin. Insulating plates 507 and 508 may be insulating ceramic plates instead of resin sheets, or may be insulating sprayed films such as alumina.
  • the wiring layer 504 is formed on the upper surface of the insulating plate 507
  • the second heater element 506 is formed on the upper surface of the insulating plate 508, and the periphery thereof is covered with the insulating portion 510 to realize the laminated structure shown in FIG. It is done.
  • the insulating portion 510 is provided to prevent the second heater element 506 and the temperature control base portion 503 from being electrically connected.
  • the second heater element 506 is formed in an annular area so as to sequentially surround the first sub heater 506A disposed in the center annular area as shown in FIG. 9 and the first sub heater 506A.
  • the first sub-heater 506A is formed in an annular shape by combining a plurality (two in the case of the configuration of FIG. 9) of the heater divisions 506a arranged in the fan-shaped annular region, and the second sub-heater 506B has a fan-shaped annular shape A plurality of (four in the case of the configuration of FIG. 9) heater divisions 506b arranged in the body-shaped region are combined to form an annular shape.
  • the third sub-heater 506C is formed in an annular shape by combining a plurality (four in the case of the configuration of FIG. 9) of the heater divisions 506c arranged in the sector-shaped annular body-shaped region.
  • the fourth sub-heater 506D is formed in an annular shape by combining a plurality (eight in the case of the configuration of FIG. 9) of the heater divisions 506d arranged in the sector-shaped annular body region.
  • the heater divisions 506a to 506d are nonmagnetic metal thin plates thinner than the main heaters 505A to 505D, such as molybdenum (Mo) thin plate, tungsten (W) thin plate, niobium (Nb) thin plate, titanium (Ti) thin plate, copper (Cu)
  • Mo molybdenum
  • W tungsten
  • Nb niobium
  • Ti titanium
  • Cu copper
  • a thin plate or the like is obtained by processing the entire contour of a desired heater shape, for example, a shape in which a strip-like heater is meandered into a fan-shaped annular body shape by photolithography.
  • the heater divisions 506a to 506d show a calorific value lower than the calorific value per unit area of the main heaters 505A to 505D, and a structure thinner than the main heaters 505A to 505D or a material having a low calorific value It is preferable that it is comprised.
  • the main heater is made of a 100 ⁇ m thick Ti thin plate
  • the sub heater can be made of a 5 ⁇ m thick Mo thin plate.
  • the heater divisions 506a to 506d are bonded to the upper surface of the insulating plate 508 by an adhesive layer (not shown) made of sheet-like or film-like silicone resin or acrylic resin having uniform heat resistance and insulation properties. It is fixed.
  • the sub-heaters 506A, 506B, 506C, and 506D are divided into two, four, or eight in this embodiment, the number of divisions may be arbitrary, and the shape in the case of division may also be arbitrary.
  • the metal plate 551 is provided between the second heater element 506 including a plurality of sub-heaters and the high frequency generating electrode 550.
  • the second heater element 506 can be prevented from being affected by high frequency. Therefore, the high frequency current can be prevented from leaking to the power supply for the sub heater via the second heater element 506, and the high frequency cut filter for the sub heater can be removed. That is, it is possible to avoid the complexity of the configuration of the electrostatic chuck device 501 and to reduce the manufacturing cost of the electrostatic chuck device 501. Also, there is no risk that the high frequency will leak as noise to the power supply to the heater and the operation or performance of the heater power will be impaired. Furthermore, the second heater element 506 disposed inside the temperature control base portion 503 can also suppress heat generation due to high frequency, and fine adjustment of the temperature distribution can be performed more precisely.
  • the metal plate 551 and the temperature control base portion 503 be electrically connected.
  • the metal plate 551 and the temperature control base portion 503 may be joined and integrated. If the metal plate 551 and the temperature control base portion 503 are electrically connected, the high frequency generated from the high frequency generating electrode 550 can be temperature controlled through the metal plate 551 simply by grounding the temperature control base portion 503. It can be removed from the base portion 503. Therefore, the configuration of the electrostatic chuck device 501 can be further avoided from being complicated.
  • the metal plate 551 has a heat transfer barrier (a first heat transfer barrier) by which the heat transfer in the in-plane direction is inhibited.
  • a heat transfer barrier a first heat transfer barrier
  • the plurality of circumferentially extending notches, grooves, and the inside thereof have poor thermal conductivity (the thermal conductivity is worse than the metal constituting the metal plate)
  • a resin or the like is embedded.
  • a polyimide resin or the like can be used as the resin having poor thermal conductivity.
  • heat conduction in the concentric direction (circumferential direction) of the in-plane directions can be allowed.
  • radial heat conduction can be an obstacle to thermal uniformity.
  • the metal plate can transfer heat in the in-plane direction, the controlled temperature distribution is relaxed. Therefore, heat transfer in the in-plane direction of the metal plate can be inhibited by providing the metal plate 551 with a plurality of heat transfer barriers extending in the circumferential direction. Further, this incision may be filled with a resin or the like having poor thermal conductivity. For example, a polyimide resin or the like can be used as the resin having poor thermal conductivity. Further, as shown in FIG. 10, it is preferable that the circumferentially extending heat transfer barrier is not provided over the entire circumference in the circumferential direction. That is, it is preferable that the metal plate 551 be formed of a single plate which is not electrically separated. If the metal plate 551 is formed of one plate, the entire metal plate 551 can be grounded if the metal plate 551 is grounded at any one point. Therefore, the configuration of the electrostatic chuck device 501 can be further avoided from being complicated.
  • the metal plate 551 is provided with a heat transfer barrier which is provided in a planar overlapping manner with the area between the adjacent main heaters and the area between the adjacent main heaters. It is more preferable to have.
  • a heat transfer barrier on the metal plate 551, heat transfer in the in-plane direction of the metal plate can be inhibited according to the area controlled by the respective main heaters and sub heaters. That is, the temperature controllability of each region of the electrostatic chuck device 501 can be further enhanced.
  • Such a heat transfer barrier may be provided on the high frequency generating electrode 550. Alternatively, they may be provided on both the high frequency generating electrode 550 and the metal plate 551.
  • the high frequency generation electrode 550 has a plurality of heat transfer barriers (second heat transfer barriers) extending in the circumferential direction thereof, so that the heat uniformity in the circumferential direction in the high frequency generation electrode 550 is enhanced. it can.
  • heat transfer barriers second heat transfer barriers
  • heat conduction in the concentric direction (circumferential direction) in the in-plane direction can be allowed.
  • radial heat conduction can be an obstacle to thermal uniformity.
  • the temperature control for each area of the plate-like sample can be performed with high accuracy. Further, by providing a heat transfer barrier to the high frequency generating electrode 550 according to the heating area of the main heater and the heating area of the sub heater, the heat applied by the main heater and sub heater causes the heat conduction of the high frequency generating electrode 550 It is possible to further suppress the spread. That is, temperature control for each area of the plate-like sample can be performed more accurately.
  • the high frequency generating electrode 550 is also preferably formed of a single plate which is not electrically separated.
  • the concave portion 503a having a size capable of accommodating the first heater element 505 and the bottom side of the electrostatic chuck portion 502 on the upper surface side of the metal plate 551 constituting the temperature adjustment base portion 503. It is formed.
  • the high-frequency generating electrode 550, the first heater element 505, and the electrostatic chuck portion 502 are integrated by an adhesive layer 509B formed so as to fill the recess.
  • an adhesive resin having heat resistance such as polyimide resin, silicon resin, epoxy resin, or the like and insulation can be used.
  • the first heater element 505 includes main heaters 505A, 505B, 505C, and 505D.
  • a plurality of power supply terminals 517 for supplying power to the respective main heaters 505A, 505B, 505C, and 505D are provided.
  • conduction portions for connecting to the power supply are provided at one end side and the other end side of each heater regardless of which heater is used Therefore, a total of eight power supply terminals 517 are provided, two for each of the main heaters 505A, 505B, 505C, and 505D.
  • the power supply terminal 517 includes the temperature adjustment base portion 503 and the insulation.
  • the plates 507 and 508, the sub heater 506D, the insulating portion 510, the metal plate 551, and the high frequency generating electrode 550 are disposed so as to partially penetrate in their thickness direction.
  • a cylindrical insulator 518 for insulation is mounted on the outer peripheral surface of the power supply terminal 517, and the temperature control base portion 503 and the power supply terminal 517 are insulated.
  • the feed terminal 517 is bonded to the first heater element 505 via the bonding portion 509 b.
  • the material constituting the power supply terminal 517 can be the same material as the material constituting the power supply terminal 515C.
  • feed terminals 517 Although not all the feed terminals 517 are shown in FIG. 7, two feed terminals 517 are connected to each of the main heaters 505A, 505B, 505C, 505D, and the main heaters 505A, 505B, 505C, 505D are not shown.
  • a power supply device is connected to each of the power supply terminals via two power supply terminals 517 so that current can be controlled.
  • the power supply terminals 517 are provided so as to penetrate through the through holes 503b formed in the temperature control base portion 503, respectively, and when the other party to be connected is any of the main heaters 505A, 505B, 505C, 505D,
  • the insulating plates 507 and 508 are also provided to penetrate. According to the configuration described above, it is possible to control energization and heating of each of the main heaters 505A, 505B, 505C, and 505D according to the operation of the switch element and the power supply.
  • a temperature sensor 520 is provided on the lower surface side of the main heaters 505A, 505B, 505C, and 505D.
  • the installation hole 521 is formed so as to partially penetrate the temperature control base portion 503, the insulating plates 507 and 508, the sub heater 506D and the high frequency generating electrode 550 in their thickness direction.
  • a temperature sensor 520 is installed at a position near the top of the installation holes 521 and any one of the main heaters 505A, 505B, 505C, and 505D. Since it is desirable to install the temperature sensor 520 as close to the main heaters 505A, 505B, 505C, and 505D as possible, in the structure of FIG. 7, the protrusion 520a is formed to protrude to the main heater side.
  • the temperature sensor 520 is provided inside the
  • the temperature sensor 520 is, for example, a fluorescent temperature sensor in which a phosphor layer is formed on the upper surface side of a rectangular parallelepiped light transmitting body made of quartz glass or the like, and the temperature sensor 520 has light transmissivity and heat resistance. It is adhered to the lower surface of the main heaters 505A, 505B, 505C, 505D by a silicone resin adhesive or the like.
  • the phosphor layer is made of a material that generates fluorescence in response to heat generation from the main heater, and a wide variety of fluorescent materials can be selected as long as the material generates fluorescence in response to heat generation.
  • suitable for light emission A fluorescent material to which a rare earth element having the above energy level is added, a semiconductor material such as AlGaAs, a metal oxide such as magnesium oxide, or a mineral such as ruby or sapphire can be used appropriately.
  • the temperature sensors 520 corresponding to the main heaters 505A, 505B, 505C, 505D are provided at positions not interfering with the feed terminals, etc., respectively, and at any positions on the lower surface circumferential direction of the main heaters 505A, 505B, 505C, 505D. There is.
  • the temperature measuring unit 522 that measures the temperatures of the main heaters 505A to 505D from the fluorescence of these temperature sensors 520 is, for example, on the outer side (lower side) of the installation hole 521 of the temperature control base 503 as shown in FIG.
  • An excitation unit 523 for irradiating the phosphor layer with excitation light, a fluorescence detector 524 for detecting fluorescence emitted from the phosphor layer, an excitation unit 523 and a fluorescence detector 524 are controlled, and the main component is based on the fluorescence.
  • the control unit 525 calculates the temperature of the heater. By the way, what is shown by the code
  • This pin penetration hole is the pin penetration hole provided so that the base part 503 for temperature control to the mounting board 511 might be penetrated partially in those thickness direction, This pin penetration hole At 528, lift pins for removing the plate-like sample are provided.
  • a cylindrical insulator 529 is provided on the outer peripheral portion of the pin insertion hole 528.
  • the sub-heaters 506A to 506D have a collective structure of a plurality of heater divisions 506a, 506b, 506c, and 506d obtained by dividing each of the sub-heaters 506A to 506D in the circumferential direction as shown in FIG.
  • a wiring layer 504 made of a low resistance material such as copper is provided on the upper surface side of the insulating plate 507 in order to supply power to the heater divided members 506a, 506b, 506c, and 506d.
  • the wiring layer 504 is composed of a plurality of wiring bodies 504 a branched individually, and each wiring body 504 a is connected to any one of the heater divisions 506 a, 506 b, 506 c, and 506 d.
  • a plurality of wiring bodies 504a are arranged on the upper surface side of the insulating plate 507 so as to extend from the central portion side to the peripheral side, and one end of each wiring body 504a is formed in a part of the insulating plate 508 It is connected to any of the heater divisions through a conducting portion 508 b such as a welding portion formed in a hole. Further, the other end side of each wiring body 504 a is connected to the power supply terminal 526 via a conductive portion 507 b such as a welded portion formed in a contact hole formed in a part of the insulating plate 507.
  • the feed terminal 526 is formed to penetrate the temperature control base 503 in the thickness direction along the through hole 503 b of the temperature control base 503 and to reach the insulating plate 507.
  • Insulating insulators 527 are provided on the outer peripheral side of 526 and insulated with respect to the temperature control base portion 503.
  • a plurality of heater divisions 506a, 506b, 506c, 506d are formed in the circumferential direction of the sub-heaters 506A, 506B, 506C, 506D, so that the feed terminals 526 for connecting to these do not interfere with each other, the feed terminals 526
  • the heater divisions 506a, 506b, 506c, and 506d are individually connected using individual wiring bodies 504a. Although two feed terminals 526 are respectively connected to the heater divisions 506a, 506b, 506c, and 506d to supply power separately, only a part is shown in the cross-sectional structure of FIG.
  • the connection structure of the wiring body 504 a is omitted as appropriate.
  • Two feed terminals 526 are connected to each of the heater divisions 506a, 506b, 506c, and 506d, and switch elements are connected to the heater divisions 506a, 506b, 506c, and 506d via the two feed terminals 526. And the power supply are connected. According to the configuration described above, energization / heating control can be performed on each of the heater divisions 506a, 506b, 506c, and 506d in accordance with the operation of the switch element and the power supply. The number of feed terminals 526 of the sub-heaters 506A to 506D can be reduced from twice the number of heater divisions by the arrangement of the heater patterns and the switch elements.
  • the heat transfer coefficient is less than 4000W / m 2 K 200W / m 2 K between the first heater element 505 and the temperature adjusting base portion 503. If the heat transfer coefficient is larger than 200 W / m 2 K, the thermal responsiveness between the first heater element 505 and the temperature control base portion 503 can be increased, and the temperature control of the electrostatic chuck device 502 can be performed. In the case of performing, it is possible to perform temperature control with good response. If the heat transfer coefficient is greater than 4000 W / m 2 K, the heat flow from the heater to the temperature control base becomes large, and excessive power is required to raise the load (plate-like sample) W to a predetermined temperature. Is not preferable because it is necessary to supply the heater.
  • the electrostatic chuck device 501 configured as described above causes the electrostatic attraction electrode 513 of the electrostatic chuck portion 502 to be energized from the power supply terminal 515C to generate an electrostatic attraction force, and the protrusion of the placement surface 511a
  • the plate-like sample W can be adsorbed and used on the portion 511b.
  • the refrigerant can be circulated to the temperature control base portion 503 to cool the plate-like sample W, and the main heaters 505A to 505D are individually provided by supplying power to the main heaters 505A to 505D from the power supply By heating the plate-shaped sample W, the temperature can be controlled. Further, by individually energizing the heater divisions 506a to 506d, the temperature of the region corresponding to the heater divisions 506a to 506d can be finely adjusted.
  • a temperature difference occurs in the plate-like sample W depending on the generation state of plasma or the temperature distribution in the film forming chamber.
  • the temperature distribution on the surface of the plate-like sample W is photographed by a thermo camera 530 and analyzed by a thermograph.
  • each zone of the plate-like sample W corresponding to the upper side of the respective regions of the heater divided members 506a, 506b, 506c, 506d by energizing and heating any of the heater divided members 506a, 506b, 506c, and 506d.
  • the temperature can be locally raised to make the surface temperature of the plate-like sample W uniform.
  • the temperature control at the time of heating can be performed by applied voltage control, voltage application time control, current value control, etc. at the time of energizing each of the heater divided members 506a, 506b, 506c, 506d.
  • the second heater element 506 is divided into a plurality of heater divisions 506a, 506b, 506c, and 506d and can be individually controlled to be energized and heated, the temperature distribution on the adsorbed plate-shaped sample W is obtained. Temperature of the plate-like sample W in the low temperature region by energizing one of the heater divisions 506a, 506b, 506c, 506d at the position corresponding to the low temperature zone even if To make the temperature distribution uniform.
  • the surface temperature of the plate-like sample W is made uniform by individual temperature control of the heater divisions 506a to 506d.
  • uniform etching or uniform film formation can be performed.
  • the heater divisions 506a, 506b, 506c, and 506d for temperature fine adjustment are energized.
  • the amount can be reduced.
  • the amount of energization of the heater divisions 506a, 506b, 506c, and 506d can be reduced, for example, the amount of power supplied can be reduced by using the energization current to the heater divisions 506a, 506b, 506c, and 506d as a pulse current.
  • the thickness of the main heaters 505A to 505D and the thickness of the heater divisions 506a, 506b, 506c, and 506d can be freely selected at the time of manufacture. Therefore, the withstand voltage according to each heater and each wiring can be set individually. It is possible to set an individual desired withstand voltage value for each heater and each wiring. For example, by setting the thickness of the main heater made of Ti thin plate to 100 ⁇ m and the thickness of the heater divided body made of Mo thin plate to 5 ⁇ m as an example, the calorific value per unit area of the heater divided body is 1/5 or less of that of the main heater It can be adjusted. Of course, in addition to the constituent materials and the heater thickness, the amount of heat generation of the main heater and the heater divided body may be adjusted by adjusting the supply voltage.
  • the first heater element 505 is divided into four in the radial direction to be composed of four main heaters 505A to 505D, the number of divisions of the first heater element 505 is The number is not limited to four and may be any number.
  • the second heater element 506 is divided into four in the radial direction and configured by four sub-heaters 506A to 506D, and further the first sub-heater 506A is divided into two, the second sub-heater 506B is divided into four, third The sub heater 506C is divided into four and the fourth sub heater 506D is divided into eight, but the number of divisions of the second heater element 506 in the radial direction may be any number, and the number of divisions of each sub heater may be any number. . However, it is preferable that the number of divisions of the second heater element 506 be larger than the number of divisions of the first heater element 505 from the viewpoint of performing the temperature fine adjustment locally by the sub heater.
  • the second heater element 506 has a single-layer structure, but the second heater element 506 may have a multilayer structure of two or more layers.
  • the 1st heater element 505 and the 2nd heater element 506 were arrange
  • the plurality of sub-heaters of the second heater element are filled with a slight gap formed between the plurality of main heater installation areas (annular installation areas) constituting the first heater element 505 in plan view.
  • the gap area between the plurality of main heaters is filled with a plurality of sub-heaters.
  • the gap between the main heaters may be filled by shifting the arrangement region of each layer in plan view.
  • FIG. 13 is a cross-sectional view showing an electrostatic chuck apparatus according to a fourth embodiment of the present invention, and an electrostatic chuck apparatus 601 of this form is a disc-like shape having one main surface (upper surface) side as a mounting surface
  • a first heater element 605 and a second heater element 606 of a layered structure interposed between the heater 602 and the temperature adjustment base portion 603 are provided.
  • the electrostatic chuck device 601 includes two insulating plates 607 and 608 interposed between the electrostatic chuck portion 602 and the temperature control base portion 603 so as to be stacked on the heater element 606, and an insulating plate 607. , 608, an adhesive layer 609 for attaching the heater element 605 to the bottom side of the electrostatic chuck portion 602, and an adhesive layer 610 formed covering the periphery of these. Configured
  • the electrostatic chuck portion 602 has a mounting plate 611 whose upper surface is a mounting surface 611 a on which a plate-shaped sample W such as a semiconductor wafer is mounted, and the mounting plate 611 is integrated with the bottom side of the mounting plate 611. And around the electrostatic adsorption electrode (internal electrode for electrostatic adsorption) 613 and the electrostatic adsorption electrode 613 provided between the mounting plate 611 and the support plate 612. An insulating material layer 614 and a lead-out electrode terminal 615A provided to penetrate the support plate 612 and for applying a DC voltage to the electrostatic chucking electrode 613 are constituted.
  • the placement plate 611 and the support plate 612 are disk-like ones having the same shape of the superposed surfaces, and are aluminum oxide-silicon carbide (Al2O3-SiC) composite sintered body, aluminum oxide (Al2O3) sintered body And an insulating ceramic sintered body having mechanical strength such as an aluminum nitride (AlN) sintered body, a yttrium oxide (Y2O3) sintered body, etc. and having durability against a corrosive gas and its plasma.
  • a plurality of protrusions 611 b having a diameter smaller than the thickness of the plate-like sample are formed on the placement surface 611 a of the placement plate 611 at predetermined intervals, and the protrusions 611 b support the plate-like sample W.
  • the entire thickness including the placement plate 611, the support plate 612, the electrostatic attraction electrode 613, and the insulating material layer 614, that is, the thickness of the electrostatic chuck portion 602 is, for example, 0.7 mm or more and 5.0 mm or less It is done. For example, when the thickness of the electrostatic chuck portion 602 is less than 0.7 mm, it is difficult to secure the mechanical strength of the electrostatic chuck portion 602.
  • the thickness of the electrostatic chuck portion 602 exceeds 5.0 mm, the heat capacity of the electrostatic chuck portion 602 is increased, the thermal responsiveness of the plate-like sample W to be mounted is deteriorated, and the lateral direction of the electrostatic chuck portion The increase in heat transfer makes it difficult to maintain the in-plane temperature of the plate-like sample W in a desired temperature pattern.
  • the thickness of each part demonstrated here is an example, Comprising: It does not restrict to the said range.
  • the electrostatic chucking electrode 613 is used as an electrostatic chucking electrode for generating charge and fixing the plate-like sample W by the electrostatic chucking force, and the shape and size thereof are appropriately determined depending on the application. Adjusted.
  • the electrostatic adsorption electrode 613 is made of aluminum oxide-tantalum carbide (Al 2 O 3 -Ta 4 C 5 ) conductive composite sintered body, aluminum oxide-tungsten (Al 2 O 3 -W) conductive composite sintered body, Aluminum oxide-silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, aluminum nitride-tungsten (AlN-W) conductive composite sintered body, aluminum nitride-tantalum (AlN-Ta) conductive composite sintering Body, conductive ceramics such as yttrium oxide-molybdenum (Y 2 O 3 -Mo) conductive composite sintered body, or high melting point metals such as tungsten (W), tantalum (
  • the thickness of the electrostatic chucking electrode 613 is not particularly limited. For example, a thickness of 0.1 ⁇ m to 100 ⁇ m can be selected, and a thickness of 5 ⁇ m to 20 ⁇ m is more preferable. When the thickness of the electrostatic chucking electrode 613 is less than 0.1 ⁇ m, it is difficult to secure sufficient conductivity. When the thickness of the electrostatic adsorption electrode 613 exceeds 100 ⁇ m, the electrostatic adsorption electrode 613 and the electrostatic adsorption electrode 613 are mounted due to the difference in thermal expansion coefficient between the electrostatic adsorption electrode 613 and the mounting plate 611 and the support plate 612. Cracks are apt to be formed in the bonding interface between the plate 611 and the support plate 612.
  • the electrostatic attraction electrode 613 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.
  • the insulating material layer 614 surrounds the electrostatic adsorption electrode 613 to protect the electrostatic adsorption electrode 613 from the corrosive gas and its plasma, and at the boundary between the mounting plate 611 and the support plate 612, that is, electrostatic
  • the outer peripheral region other than the adsorption electrode 613 is integrally joined, and the same composition or main component as the material constituting the mounting plate 611 and the support plate 612 is formed of the same insulating material.
  • the lead-out electrode terminal 615A is a rod-like one provided to apply a DC voltage to the electrostatic chucking electrode 613.
  • the material of the lead-out electrode terminal 615A is a conductive material having excellent heat resistance. Although not limited, it is preferable that the thermal expansion coefficient be close to the thermal expansion coefficient of the electrostatic adsorption electrode 613 and the support plate 612, for example, a conductive ceramic material such as Al 2 O 3 -Ta 4 C 5 It consists of
  • the lead-out electrode terminal 615A is connected to the conductive adhesive portion 615B and a power supply terminal 615C described later.
  • the conductive adhesive portion 615B is made of a silicon-based conductive adhesive having flexibility and electrical resistance
  • the feeding terminal 615C is made of tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), Kovar alloy, etc. It consists of a metal material.
  • An insulator 615a having an insulating property is provided on the outer peripheral side of the power supply terminal 615C, and the power supply terminal 615C is insulated from the metal temperature control base portion 603 by the insulator 615a.
  • the takeout electrode terminal 615A is integrally joined to the support plate 612, and the placement plate 611 and the support plate 612 are integrally joined by the electrostatic attraction electrode 613 and the insulating material layer 614 to form an electrostatic chuck portion 602. It is done.
  • the power supply terminal 615C is provided so as to pass through a heater element 606 and an insulating plate 607, 608 having a two-layer structure, which will be described in detail later, and to pass through a through hole 603b of the temperature control base portion 603.
  • the temperature control base portion 603 is for adjusting the electrostatic chuck portion 602 to a desired temperature, and is in the form of a thick disc.
  • a water-cooled base or the like in which a flow path 603A for circulating water is formed is preferable.
  • the material constituting the temperature control base portion 603 is not particularly limited as long as it is a metal excellent in thermal conductivity, conductivity, and processability, or a composite material containing these metals, for example, aluminum (Al) Aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used.
  • at least the surface of the temperature control base portion 603 exposed to plasma is subjected to an alumite treatment or an insulating film such as alumina is formed.
  • the heater elements 605 and 606 having a two-layer structure, the insulating plates 607 and 608 having a two-layer structure, and the bottom side of the electrostatic chuck 602 can be accommodated on the upper surface side of the temperature adjustment base portion 603.
  • a concave portion 603a of a size is formed.
  • the sheet-type adhesive layer 607 A, the insulating plate 607, the wiring layer 604, the insulating plate 608, the second heater element 606, the first heater element 605, the adhesive layer 609, and the support plate 612 are sequentially arranged in this recess 603a from the bottom side.
  • the bottom side is accommodated, and these are integrated by an adhesive layer 610 formed to fill the recess 603 a.
  • the insulating plate 607 is bonded to the upper surface of the recess 603a by the adhesive layer 607A.
  • the adhesive layer 607A is made of a sheet-like or film-like adhesive resin having heat resistance such as polyimide resin, silicon resin, epoxy resin and the like and insulation properties.
  • the adhesive layer is formed, for example, to a thickness of about 5 to 100 ⁇ m.
  • the insulating plates 607 and 608 are made of thin plates, sheets or films of heat resistant resin such as polyimide resin, epoxy resin, acrylic resin or the like.
  • the adhesive layer 609 is made of a sheet-type adhesive layer having heat resistance, and is made of the same material as the adhesive layer 607A.
  • the insulating plates 607 and 608 may be insulating ceramic plates instead of resin sheets, or may be thermal sprayed films having insulating properties such as alumina.
  • the wiring layer 604 is formed on the upper surface of the insulating plate 607
  • the second heater element 606 is formed on the upper surface of the insulating plate 608
  • the first heater element 605 is bonded to the bottom surface of the support plate 612
  • the insulating plate The laminated structure shown in FIG. 13 is realized by laminating the layers 607 and 608 and covering the periphery with an adhesive layer 610.
  • the first heater element 605 is, as shown in FIG. 14, a first main heater 605A disposed in an annular area at the center and an annular area so as to sequentially surround the first main heater 605A. And a third main heater 605C and a fourth main heater 605D. As shown in FIG. 14, it is preferable that the area where the first to fourth main heaters 605A to 605D are arranged has the same size as the disc-shaped electrostatic chuck portion 602.
  • the main heaters 605A, 605B, 605C, and 605D are drawn in a simple annular shape in a plan view in FIG.
  • each of the main heaters 605A, 605B, 605C, and 605D meanders a belt-like heater and a circle shown in FIG. It is arranged to occupy an annular area. For this reason, in the cross-sectional structure shown in FIG. 13, belt-shaped heaters constituting the main heaters 605A, 605B, 605C, and 605D are individually drawn.
  • main heaters 605A to 605D are nonmagnetic metal thin plates having a thickness of 0.2 mm or less, preferably about 0.1 mm, for example, titanium (Ti) thin plate, tungsten (W) thin plate, molybdenum (Mo A thin plate or the like can be obtained by processing the entire contour of a desired heater shape, for example, a shape in which a strip-like heater is meandered into a ring shape by photolithography.
  • These main heaters 605A to 605D are adhered and fixed to the bottom surface of the support plate 612 by an adhesive layer 609 made of sheet-like or film-like silicon resin or acrylic resin having uniform heat resistance and insulation properties. .
  • the second heater element 606 is formed in an annular area so as to sequentially surround the first sub heater 606A disposed in the center annular area as shown in FIG. 15 and the first sub heater 606A.
  • the first sub-heater 606A is formed in an annular shape by combining a plurality (two in the case of the configuration of FIG. 15) of the heater divisions 606a arranged in the fan-shaped annular region, and the second sub-heater 606B has a fan-shaped annular shape.
  • a plurality of (four in the case of the configuration of FIG. 15) heater divisions 606b disposed in the body-shaped region are combined to form an annular shape.
  • the third sub-heater 606C is formed in an annular shape by combining a plurality (four in the case of the configuration of FIG. 15) of the heater divisions 606c disposed in the sector-shaped annular body-shaped region.
  • the fourth sub-heater 606D is formed in an annular shape by combining a plurality (eight in the case of the configuration of FIG. 15) of the heater divisions 606d disposed in the fan-shaped annular body-shaped region.
  • the heater divisions 606a to 606d are nonmagnetic metal thin plates thinner than the main heaters 605A to 605D, such as molybdenum (Mo) thin plate, tungsten (W) thin plate, niobium (Nb) thin plate, titanium (Ti) thin plate, copper (Cu)
  • Mo molybdenum
  • W tungsten
  • Nb niobium
  • Ti titanium
  • Cu copper
  • a thin plate or the like is obtained by processing the entire contour of a desired heater shape, for example, a shape in which a strip-like heater is meandered into a fan-shaped annular body shape by photolithography.
  • the heater divisions 606a to 606d are required to have a heat generation amount lower than the heat generation amount per unit area of the main heaters 605A to 605D, and have a thinner structure or a lower heat generation amount than the main heaters 605A to 605D. It is made of materials. As an example, when the main heater is made of a 100 ⁇ m thick Ti thin plate, the sub heater can be made of a 5 ⁇ m thick Mo thin plate.
  • the heater divisions 606a to 606d are bonded to the upper surface of the insulating plate 608 by an adhesive layer (not shown) made of sheet-like or film-like silicon resin or acrylic resin having uniform heat resistance and insulation properties. It is fixed.
  • the sub-heaters 606A, 606B, 606C, and 606D are divided into two, four, or eight in this embodiment, the number of divisions may be arbitrary, and the shape in the case of division may also be arbitrary.
  • the first heater element 605 includes the main heaters 605A, 605B, 605C, and 605D.
  • the plurality of power supply terminals 617 for supplying power to the respective main heaters 605A, 605B, 605C, and 605D are provided. It is done. Although only the outlines of the main heaters 605A, 605B, 605C, and 605D are shown in FIG. 14, conductive parts for connecting to the power supply are provided at one end side and the other end side of each heater regardless of which heater is used. Therefore, a total of eight power supply terminals 617 are provided for each of the main heaters 605A, 605B, 605C, and 605D.
  • the power supply terminal 617 includes the temperature control base portion 603 and the insulating plate.
  • the sub-heaters 607 and 608 and the sub-heaters 606D are disposed so as to partially penetrate the adhesive layer 610 existing around them in the thickness direction.
  • a cylindrical insulator 618 for insulation is mounted on the outer peripheral surface of the power supply terminal 617, and the temperature control base portion 603 and the power supply terminal 617 are insulated.
  • the material constituting the power supply terminal 617 can be the same material as the material constituting the power supply terminal 615C.
  • feed terminals 617 are connected to each of the main heaters 605A, 605B, 605C, and 605D, and the main heaters 605A, 605B, 605C, and 605D are not illustrated.
  • a switch element (not shown) and a power supply device are connected to each other via two power supply terminals 617 so that energization control can be performed.
  • the power supply terminals 617 are provided to penetrate through the through holes 603b formed in the temperature control base portion 603, respectively, and when the other party to be connected is any of the main heaters 605A, 605B, 605C, 605D,
  • the insulating plates 607 and 608 are also provided to penetrate.
  • a temperature sensor 620 is provided on the lower surface side of the main heaters 605A, 605B, 605C, and 605D.
  • the installation holes 621 are formed so as to partially penetrate the temperature control base portion 603, the insulating plates 607, 608, the sub heater 606D and the adhesive layer 610 present around them in the thickness direction.
  • the temperature sensors 620 are respectively installed at the tops of the installation holes 621 and at positions close to any of the main heaters 605A, 605B, 605C, and 605D. Since it is desirable to install the temperature sensor 620 as close to the main heaters 605A, 605B, 605C, and 605D as possible, in the structure shown in FIG.
  • a temperature sensor 620 is provided inside the protrusion 607a.
  • the temperature sensor 620 is, for example, a fluorescent temperature sensor in which a phosphor layer is formed on the upper surface side of a rectangular parallelepiped light transmitting member made of quartz glass or the like, and the temperature sensor 620 has light transmitting properties and heat resistance. It is adhered to the lower surface of the main heaters 605A, 605B, 605C, 605D by a silicone resin adhesive or the like.
  • the phosphor layer is made of a material that generates fluorescence in response to heat generation from the main heater, and a wide variety of fluorescent materials can be selected as long as the material generates fluorescence in response to heat generation. For example, suitable for light emission
  • a fluorescent material to which a rare earth element having the above energy level is added, a semiconductor material such as AlGaAs, a metal oxide such as magnesium oxide, or a mineral such as ruby or sapphire can be used appropriately.
  • the temperature sensors 620 corresponding to the main heaters 605A, 605B, and 605D are provided at positions not interfering with the feed terminals and the like, respectively, and at arbitrary positions in the circumferential direction of the lower surface of the main heaters 605A, 605B, and 605D.
  • the temperature measurement unit 622 that measures the temperature of the main heaters 605A to 605D from the fluorescence of these temperature sensors 620 is, for example, on the outside (lower side) of the installation hole 621 of the temperature control base 603 as shown in FIG.
  • An excitation unit 623 for irradiating excitation light to the phosphor layer, a fluorescence detector 624 for detecting fluorescence emitted from the phosphor layer, an excitation unit 623 and a fluorescence detector 624 are controlled, and the main component is based on the fluorescence.
  • the control unit 625 calculates the temperature of the heater. By the way, what is shown by the code
  • 13 is a pin penetration hole provided so that the base part 603 for temperature control to the mounting board 611 might be penetrated partially in those thickness directions, This pin penetration hole At 628, lift pins for plate-like sample removal are provided.
  • a cylindrical forceps 629 is provided on the outer peripheral portion of the pin insertion hole 628.
  • the sub-heaters 606A to 606D have a set structure of a plurality of heater divisions 606a, 606b, 606c, and 606d obtained by dividing each of the sub-heaters 606A to 606D in their circumferential direction individually as viewed in plan view.
  • a wiring layer 604 made of a low-resistance material such as copper is provided on the upper surface side of the insulating plate 607 in order to supply power to the heater divided members 606a, 606b, 606c, and 606d.
  • the wiring layer 604 is composed of a plurality of wiring bodies 604a branched individually, and each wiring body 604a is connected to one of the heater divisions 606a, 606b, 606c, and 606d.
  • a plurality of wiring bodies 604a are arranged on the upper surface side of the insulating plate 607 so as to extend from the central portion side to the peripheral side, and one end of each wiring body 604a is formed on a part of the insulating plate 608 It is connected to any of the heater divisions via a conducting portion 608 b such as a welding portion formed in a hole.
  • the other end side of each wiring body 604 a is connected to the power supply terminal 626 through a conductive portion 607 b such as a welded portion formed in a contact hole formed in a part of the insulating plate 607.
  • the feed terminal 626 is formed so as to penetrate the temperature control base portion 603 in the thickness direction along the through hole 603 b of the temperature control base portion 603 and reach the insulating plate 607.
  • Insulating insulators 627 are provided on the outer peripheral side of 626 and are insulated from the temperature control base portion 603.
  • a plurality of heater divisions 606a, 606b, 606c and 606d are formed in the circumferential direction of the sub-heaters 606A, 606B, 606C and 606D, so that the feed terminals 626 for connection to these do not interfere with each other.
  • two feed terminals 626 are connected to each of the heater divisions 606a, 606b, 606c, and 606d in order to feed power separately, only a part is shown in the cross-sectional structure of FIG.
  • connection structure of the wiring body 604 a is omitted as appropriate.
  • Two feed terminals 626 are connected to each of the heater divisions 606a, 606b, 606c, and 606d, and the switch elements are connected to the heater divisions 606a, 606b, 606c, and 606d via the two feed terminals 626.
  • the power supply are connected.
  • energization and heat generation control can be performed on each of the heater divisions 606a, 606b, 606c, and 606d in accordance with the operation of the switch element and the power supply.
  • the number of feed terminals 626 of the sub-heaters 606A to 606D can be reduced from twice the number of heater divisions by the arrangement of the heater patterns and the switch elements.
  • the heat transfer coefficient between the first heater element 605 and the temperature control base portion 603 is preferably less than 4000 W / m 2 K and more than 200 W / m 2 K. If the heat transfer coefficient is larger than 200 W / m 2 K, the thermal responsiveness between the first heater element 605 and the temperature control base portion 603 can be increased, and the temperature control of the electrostatic chuck device 602 can be performed. In the case of performing, it is possible to perform temperature control with good response.
  • the electrostatic chuck device 601 configured as described above causes the electrostatic attraction electrode 613 of the electrostatic chuck portion 602 to be energized from the power supply terminal 615C to generate an electrostatic attraction force, and the protrusion of the mounting surface 611a
  • the plate-like sample W can be adsorbed and used on the portion 611 b.
  • the refrigerant can be circulated to the temperature control base portion 603 to cool the plate-like sample W, and the main heaters 605A to 605D can be individually provided by supplying power to the main heaters 605A to 605D from the power supply via the power supply terminal 617. By heating the plate-shaped sample W, the temperature can be controlled.
  • the heater divisions 606a to 606d the temperature of the region corresponding to the heater divisions 606a to 606d can be finely adjusted.
  • a temperature difference occurs in the plate-like sample W depending on the generation state of plasma or the temperature distribution in the film forming chamber.
  • the temperature distribution on the surface of the plate-like sample W is photographed by a thermo camera 630 and analyzed by a thermograph.
  • the surface of each zone of the plate-like sample W corresponding to the upper side of the respective regions of the heater divided members 606a, 606b, 606c, and 606d by energizing and heating any of the heater divided members 606a, 606b, 606c, and 606d.
  • the temperature can be locally raised to make the surface temperature of the plate-like sample W uniform.
  • the temperature control at the time of heating can be performed by applied voltage control, voltage application time control, current value control or the like at the time of energizing each of the heater divided members 606a, 606b, 606c, 606d.
  • the second heater element 606 is divided into a plurality of heater divisions 606a, 606b, 606c, and 606d and can be individually controlled to be energized and heated, temperature distribution on the adsorbed plate-shaped sample W is obtained. Temperature of the plate-like sample W in the low temperature region by energizing one of the heater divisions 606a, 606b, 606c, 606d at the position corresponding to the low temperature zone even if To make the temperature distribution uniform. Therefore, when the plate-like sample W is held by the electrostatic chuck device 1 for plasma etching or film formation, the surface temperature of the plate-like sample W is made uniform by individual temperature control of the heater divisions 606a to 606d. Thus, uniform etching or uniform film formation can be performed.
  • the heater divisions 606a, 606b, 606c, and 606d are used.
  • the amount of energization can be reduced.
  • the amount of power supplied can be reduced by using the energization current to the heater divisions 606a, 606b, 606c, and 606d as a pulse current.
  • the thickness of the main heaters 605A to 605D and the thickness of the heater divisions 606a, 606b, 606c, and 606d can be freely selected at the time of manufacture. Therefore, the withstand voltage according to each heater and each wiring can be set individually. It is possible to set an individual desired withstand voltage value for each heater and each wiring. For example, by setting the thickness of the main heater made of Ti thin plate to 100 ⁇ m and the thickness of the heater divided body made of Mo thin plate to 5 ⁇ m as an example, the calorific value per unit area of the heater divided body is 1/5 or less of that of the main heater It can be adjusted. Of course, in addition to the constituent materials and the heater thickness, the amount of heat generation of the main heater and the heater divided body may be adjusted by adjusting the supply voltage.
  • the first heater element 605 is divided into four in the radial direction to have four main heaters 605A to 605D
  • the number of divisions of the first heater element 605 is The number is not limited to four and may be any number.
  • the second heater element 606 is divided into four in the radial direction and configured of four sub-heaters 606A to 606D, and the first sub-heater 606A is further divided into two, and the second sub-heater 606B is divided into four, third The sub heater 606C is divided into four, and the fourth sub heater 606D is divided into eight.
  • the number of divisions of the second heater element 606 in the radial direction may be any number, and the number of divisions of each sub heater may be any number. . However, it is preferable that the number of divisions of the second heater element 606 be larger than the number of divisions of the first heater element 605 from the viewpoint of performing the temperature fine adjustment locally by the sub heater.
  • the second heater element 606 has a single layer structure, but the second heater element 606 may have a multilayer structure of two or more layers.
  • the 1st heater element 605 and the 2nd heater element 606 were arrange
  • the plurality of sub-heaters of the second heater element are filled with a slight gap formed between the plurality of main heater installation areas (annular installation areas) constituting the first heater element 605 in plan view.
  • the gap area between the plurality of main heaters is filled with a plurality of sub-heaters.
  • the gap between the main heaters may be filled by shifting the arrangement region of each layer in plan view.
  • FIG. 17 is a cross-sectional view showing the electrostatic chuck device of the fifth embodiment according to the present invention, and the electrostatic chuck device 631 of this embodiment is a main heater with respect to the electrostatic chuck device 601 of the fourth embodiment. It has a structure in which the vertical relationship of the sub-heaters is reversed.
  • the electrostatic chuck device 631 is interposed between the electrostatic chuck portion 602, the temperature control base portion 603 provided below the electrostatic chuck portion 602, and the electrostatic chuck portion 602 and the temperature control base portion 603.
  • the second embodiment is the same as the electrostatic chuck device 601 according to the fourth embodiment described above in that the second heater element 606 includes the first heater element 605 and the electrostatic chuck.
  • the electrostatic chuck device 631 has two insulating plates 637 and 638, an adhesive layer 639, and an adhesive, which are interposed between the electrostatic chuck portion 602 and the temperature control base portion 603 so as to be laminated with the heater elements 605 and 606.
  • the structure of the electrostatic chuck portion 602 is the same as that of the fourth embodiment.
  • the element 606, the adhesive layer 639, and the bottom side of the support plate 612 are accommodated, and they are integrated by an adhesive layer 610 formed so as to fill the recess 603a.
  • the first heater element 605 includes a first main heater 605A, a second main heater 605B, a third main heater 605C, and a fourth main heater 605D, as in the structure of the fourth embodiment.
  • the second heater element 606 includes the first sub heater 606A, the second sub heater 605B, the third sub heater 605C, and the fourth sub heater 606D, as in the structure of the fourth embodiment.
  • the first sub heater 606A comprises two heater segments 606a
  • the second sub heater 606B comprises four heater segments 606b
  • the third sub heater 606C comprises four heater segments 606c, and a fourth sub heater 606D. Is composed of eight heater divisions 606d.
  • a plurality of feed terminals 648 respectively connected to the first main heater 605A, the second main heater 560B, the third main heater 605C, and the fourth main heater 605D are coupled with a insulator 649 for temperature control base It is provided to penetrate the portion 603 in the thickness direction, and is connected to the main heaters 605A to 605D via a conductive portion 609b such as a weld portion formed in a contact hole formed in the adhesive layer 609.
  • the wiring layer 604 is formed on the upper surface side of the insulating plate 638, and is connected to any of the heater divisions 606a, 606b, 606c, and 606d through a conducting portion 638b such as a weld formed in a contact hole formed in the insulating plate 638. It is connected.
  • an installation hole 641 penetrating the temperature control base portion 603 in the thickness direction thereof is formed on the lower side of any position of the main heaters 605A to 605D.
  • a temperature sensor 620 is provided on the lower surface side of the adhesive layer 609 so as to be close to any of the main heaters 605A to 605D.
  • the vertical relationship between the first heater element 605 and the second heater element 606 described above is reversed from the structure of the fourth embodiment, and the structure of the power supply terminals 646 and 648 differs in relation to that, and the insulating plate 637
  • the structure of the fifth embodiment is the same as that of the fourth embodiment, except that the structure of 638 is different and the installation position of the temperature sensor 620 is different.
  • the second heater element 606 having a small amount of heat generation per unit area, for example, 1 ⁇ 5 or less, is disposed on the side close to the electrostatic chuck portion 602, and the electrostatic chuck portion 602.
  • the first heater element 605 is installed on the side close to the temperature control base portion 603 remote from the first heater element 605.
  • the plate-like sample W is uniformly heated by the heat generation of the main heaters 605A to 605D having a large heat generation amount, and if the temperature distribution is temporarily generated in the plate-like sample W, the heat generation amount is small
  • the temperature control of the plate-like sample W can be performed by supplying power to any of the heater divided members 606a, 606b, 606c, and 606d, and the uniformity of the surface temperature of the plate-like sample W can be maintained.
  • the heater divisions 606a, 606b, 606c, and 606d with small calorific value are arranged at positions close to the plate-like sample W, more local temperature control can be performed by using the heater divisions with small calorific value.
  • the other effects are the same as the effects obtained from the structure of the fourth embodiment described above.
  • FIG. 18 is a block diagram showing a schematic configuration of an electrostatic chuck apparatus 1001 according to an embodiment (sixth embodiment) of the present invention.
  • the electrostatic chuck device 1001 includes a temperature control base portion 1201 (shown in FIG. 19), an electrostatic chuck portion 1211 (shown in FIG. 19), a main heater 1011, a sub heater 1012, and a refrigerant temperature sensor.
  • a measurement data recording unit 1052, a pulse time calculation unit 1053 and a pulse time adjustment unit 1054 are provided.
  • FIG. 19 is a view schematically showing the arrangement of a heater and the like in the electrostatic chuck device 1001 according to an embodiment of the present invention.
  • the temperature adjustment base portion 1201, the sub heater 1012, the main heater 1011, and the electrostatic chuck portion 1211 are arranged in layers in order from the bottom to the top.
  • a wafer 1221 which is a plate-like sample is mounted on the upper surface of the electrostatic chuck 1211.
  • the sub heater 1012 may be disposed above the main heater 1011 and below the electrostatic chuck 1211.
  • the electrostatic chuck portion 1211 has a mounting surface on which the plate-like sample is mounted on one main surface, and also includes an electrostatic adsorption electrode.
  • the temperature adjustment base portion 1201 is disposed on the opposite side to the mounting surface with respect to the electrostatic chuck portion 1211 and cools the electrostatic chuck portion 1211.
  • FIG. 20 is a view showing an example of a region (temperature control region) in which the temperature is adjusted by the main heater 1011 and the sub heater 1012 according to an embodiment of the present invention.
  • the first heater element 1301 has a circular shape as a whole, and in the radial direction, three circular regions shown by (1) to (3) in FIG. (The temperature control area) is divided.
  • a main heater 1011 is provided for each of these three regions.
  • the second heater element 1311 has a circular shape as a whole, and is divided into an outer region and an inner region in the radial direction.
  • the outer region is divided circumferentially into six regions (temperature control regions) shown by (1) to (6) in FIG.
  • the inner region is divided into a central portion and a circular region surrounding it, and this circular region is circumferentially three regions indicated by (7) to (9) in FIG. (The temperature control area) is divided.
  • a sub heater 1012 is provided for each of these nine regions (temperature adjustment regions). In the present embodiment, the sub heater 1012 is not provided at the central portion.
  • the first heater element 1301 and the second heater element 1311 constitute two zones at the upper and lower sides.
  • the zone of the first heater element 1301 is divided into three, and the zone of the second heater element 1311 is divided into four inside (one without sub heater) and the outside into six. It is done.
  • the first heater element 1301 adjusts the temperatures (1) to (3) in the plurality of temperature control areas that can be independently controlled by the main heater 1011.
  • the sub heater 1012 is disposed to divide each temperature control region of the first heater element 1301 ((1) to (9) in the second heater element 1311 in the example of FIG. 20), It is arranged in layers.
  • the calorific value per unit area of each sub heater 1012 is 1 ⁇ 5 or less of that of the main heater 1011.
  • the first heater element 1301 may not be a single layer, and may be a plurality of layers.
  • the second heater element 1311 may not be a single layer, but may be a plurality of layers.
  • the temperature adjustment base portion 1201 is a refrigerant.
  • the temperature adjustment base portion 1201 cools using a flow path for circulating a heat medium such as water, He gas, N 2 gas, or the like.
  • the electrostatic chuck unit 1211 places the wafer 1221 and electrostatically attracts it.
  • the first heater element 1301 includes one or more main heaters 1011 divided into one or more regions.
  • the first heater element 1301 includes one or more main heaters 1011 that adjust the temperature of the suction surface of the electrostatic chuck 1211 in one or more regions (temperature adjustment regions).
  • the main heater 1011 is controlled by alternating current or direct current.
  • the main heater 1011 generates heat according to the voltage applied thereby.
  • the second heater element 1311 is composed of a plurality of sub-heaters 1012, and performs temperature control of a larger area than the area of only the main heater 1011 by power supply to each sub-heater 1012.
  • the sub heater 1012 is controlled by a direct current (DC) pulse current.
  • the sub heater 1012 generates heat according to the voltage (pulse voltage) applied thereby.
  • the main heater 1011 and the sub heater 1012 are separate heaters.
  • all of the areas (1) to (3) in the first heater element 1301 shown in FIG. 20 are areas where the temperature is adjusted by the first heater element 1301 (first heater element Corresponds to the adjustment area). Further, each of the regions (1) to (3) in the first heater element 1301 shown in FIG. 20 corresponds to each heater in the first heater element 1301 (in this example, each of the three main heaters 1011) Each time corresponds to a region for adjusting the temperature (main heater adjustment region). Further, in the present embodiment, all the areas (1) to (9) in the second heater element 1311 shown in FIG. 20 are areas where the temperature is adjusted by the second heater element 1311 (second heater element adjustment Region). Further, each of the regions (1) to (9) in the second heater element 1311 shown in FIG.
  • each heater in this example, each of the nine sub-heaters 1012 in the second heater element 1311
  • one area (1) in the first heater element 1301 is divided into six areas (1) to (6) in the second heater element 1311.
  • one area (2) in the first heater element 1301 is divided into three areas (7) to (9) in the second heater element 1311.
  • the temperature is adjusted by the main heater 1011 for one region (1) in the first heater element 1301, and each of the six regions (1) to (6) in the second heater element 1311 is adjusted.
  • the temperature can be adjusted by the sub heater 1012.
  • the temperature is adjusted by the main heater 1011 for one region (2) in the first heater element 1301, and the sub-heaters are provided for each of three regions (7) to (9) in the second heater element 1311.
  • the temperature can be adjusted by 1012.
  • the refrigerant temperature sensor 1021 is a sensor which is installed in the temperature control base portion 1201 itself or in the vicinity thereof and detects the temperature of the temperature control base portion 1201. As one example, the refrigerant temperature sensor 1021 is installed at or near the chiller of the temperature adjustment base portion 1201 and detects the temperature of the chiller.
  • the temperature calculation unit 1022 calculates the temperature based on the signal corresponding to the temperature detection result output from the refrigerant temperature sensor 1021.
  • a temperature sensor 1031 in the electrostatic chuck (ESC) is a sensor installed in the electrostatic chuck (ESC) to detect a temperature. This temperature can be influenced by the main heater 1011 and the sub heater 1012. This temperature is at least the temperature corresponding to the main heater 1011.
  • the temperature calculation unit 1032 calculates the temperature based on the signal corresponding to the temperature detection result output from the temperature sensor 1031.
  • the main heater temperature controller 1041 generates and outputs information for performing temperature adjustment by the main heater 1011 based on the temperatures calculated by the two temperature calculation units 1022 and 1032.
  • the current / voltage control unit 1042 of the main heater power supply controls the current / voltage (one or both) of the power supply of the main heater 1011 based on the information output by the main heater temperature controller 1041.
  • the sub heater temperature controller 1043 generates and outputs information for performing temperature control by the sub heater 1012, based on the information output by the main heater temperature controller 1041.
  • the relationship between the information output from the main heater temperature controller 1041 and the information output from the sub heater temperature controller 1043 is, for example, set and stored in advance.
  • the voltage control unit 1044 of the sub heater DC power supply controls the pulse time adjustment unit 1054 based on the information output from the sub heater temperature regulator 1043 to control the value of the voltage of the DC power supply of the sub heater 1012.
  • the external temperature measurement unit 1051 measures the temperature related to the temperature control area for each sub heater 1012.
  • this measurement data for example, data based on data (thermo data) detected from the upper side of the electrostatic chuck unit 1211 with a thermo camera can be used. Also, this measurement data is, for example, collected in advance and recorded. As the temperature, an average value in a predetermined time may be used. Further, the temperature is not limited to the temperature of the electrostatic chuck 1211, and the temperature of the wafer 1221 placed on the upper surface of the electrostatic chuck 1211 may be used.
  • the measurement data recording unit 1052 records (stores) measurement data obtained by the external temperature measurement unit 1051.
  • the pulse time calculation unit 1053 calculates pulse time (for example, pulse time for each sub heater 1012) based on measurement data recorded in the measurement data recording unit 1052, and outputs information of the calculated pulse time.
  • the method (for example, an equation etc.) of this calculation is, for example, set and stored in advance.
  • the pulse time adjustment unit 1054 is controlled by the voltage control unit 1044 of the sub heater DC power supply to adjust the voltage value of the pulse signal (for example, pulse current), and the pulse based on the information output from the pulse time calculation unit 1053 Adjust the pulse time (pulse width) of the signal.
  • the pulse time adjustment unit 1054 further acquires information (for example, information on temperature at the time of measurement) recorded in the measurement data recording unit 1052 via the pulse time calculation unit 1053 and uses the information to obtain The value of the voltage may be calculated.
  • the way of adjusting the voltage value of the pulse signal and the way of adjusting the pulse time are set and stored, for example, in advance.
  • the pulse signal whose voltage value and pulse time have been adjusted is applied to the sub heater 1012.
  • the function of the control unit that controls the voltage applied to the sub heater 1012 is the refrigerant temperature sensor 1021, the temperature calculation unit 1022, the temperature sensor 1031 in the electrostatic chuck (ESC), and the temperature calculation Functions of unit 1032, main heater temperature controller 1041, sub heater temperature controller 1043, voltage control unit 1044 of sub heater DC power supply, measurement data recording unit 1052, pulse time calculation unit 1053 and pulse time adjustment unit 1054 It is configured using The configuration of the control unit is not limited to that of the present embodiment, and is configured of, for example, one processing unit or two or more processing units that realize a required function.
  • the control unit uses a pulse voltage as a voltage applied to the sub heater 1012. In the present embodiment, the control unit uses a DC (direct current) voltage as a voltage applied to the sub heater 1012. In the present embodiment, the control unit controls the magnitude (voltage value) of the voltage applied to the sub heater 1012 in a plurality of regions (temperature adjustment regions) of the second heater element 1311. In the present embodiment, the control unit controls the voltage applied to the main heater 1011.
  • the control unit controls the magnitude of the voltage applied to the sub heater 1012 arranged to divide each main heater 1011 based on the magnitude of the voltage applied to the main heater 1011 . For example, based on the magnitude of the voltage applied to the main heater 1011, the control unit determines the magnitude of the voltage applied to the sub heater 1012 of the divided area (temperature adjustment area) included in the temperature adjustment area of the main heater 1011. Control to interlock. As interlocking, proportional etc. are used. Note that instead of the voltage applied to the main heater 1011, current or power may be used.
  • the control unit determines the magnitude of the voltage applied to the sub heater 1012 arranged to divide each main heater 1011 as a temperature detection result for the main heater 1011 (at least the main heater 1011 Control based on the temperature difference between the chiller temperature (corresponding to the temperature detection result corresponding to the chiller of the temperature adjustment base portion 1201). For example, the control unit applies a voltage to the sub heater 1012 of the divided area (temperature adjustment area) included in the temperature adjustment area of the main heater 1011 based on the temperature detection result of the main heater 1011 and the temperature difference between the chiller temperature. Control to interlock the size of As interlocking, proportional etc. are used.
  • the temperature detection result by the temperature sensor 1031 in the electrostatic chuck (ESC) is used as the temperature detection result regarding the main heater 1011. Further, as the chiller temperature, in the present embodiment, the temperature of the temperature detection result by the refrigerant temperature sensor 1021 is used.
  • the control portion in a situation where there is a temperature difference between the electrostatic chuck portion 1211 and the temperature adjustment base portion 1201, the control portion always applies a voltage to the main heater 1011 except for the cooling step, and the sub heater 1012 The voltage can be applied intermittently.
  • the difference between the temperature of the electrostatic chuck portion 1211 and the temperature of the temperature adjustment base portion 1201 is set to be constant (for example, 2 degrees or 5 degrees or the like) or a predetermined value or more.
  • the control unit is used to adjust the temperature and temperature of the electrostatic chuck 1211 based on the temperature detection result by two temperature sensors (the temperature sensor 1031 and the refrigerant temperature sensor 1021 in the electrostatic chuck (ESC)).
  • the difference with the temperature of the base portion 1201 is detected, and the voltage applied to the main heater 1011 is controlled so that the difference becomes a predetermined value.
  • the control unit may control the voltage applied to the main heater 1011 so as to be a predetermined ratio (for example, 2% or the like) with respect to the maximum output.
  • the temperature of the electrostatic chuck portion 1211 can be adjusted by the heat generation of the main heater 1011.
  • the temperature of the electrostatic chuck portion 1211 becomes higher than the temperature of the temperature adjustment base portion 1201.
  • An unevenness for example, unevenness in a layered surface
  • the temperature is adjusted to compensate for the unevenness by the heat generation of the sub heater 1012.
  • the adjustment of the temperature of the electrostatic chuck portion 1211 may be performed, for example, based on the temperature detection result by the temperature sensor 1031 in the electrostatic chuck (ESC).
  • the heat input by plasma may also affect the temperature of the electrostatic chuck portion 1211, so this influence may be taken into consideration.
  • a storage unit (measurement data recording unit 1052 in the present embodiment) that stores information (measurement data in the present embodiment) used to control the voltage applied to the sub heater 1012 is provided. Then, the control unit controls the voltage applied to the sub heater 1012 based on the information stored in the storage unit.
  • the control unit controls the voltage applied to the sub heater 1012 based on the information stored in the storage unit.
  • the amount of data usually increases. Therefore, as another example, measurement data is collected in advance for a part of all possible temperature conditions, and voltages (pulse width and voltage value) to be applied to sub heater 1012 are determined in advance.
  • the storage unit stores information corresponding to a part of a temperature range where the temperature adjustment is performed by the sub heater 1012, and the control unit stores the information stored in the storage unit. And based on the magnitude
  • the storage unit stores information corresponding to a part of a temperature range in which temperature adjustment is performed by the sub heater 1012
  • the control unit stores the information stored in the storage unit and the main heater.
  • the voltage applied to the sub heater 1012 based on the temperature difference between the temperature detection result for 1011 (at least the temperature detection result for the main heater 1011) and the chiller temperature (the temperature detection result for the chiller of the temperature adjustment base 1201). Control.
  • FIG. 21 is a diagram showing an example of a circuit that controls the sub heater 1012 according to an embodiment of the present invention.
  • the example of FIG. 21 shows the case where nine sub-heaters 1012 consisting of nine resistors R1 to R9 are provided.
  • the switching element 1411 (+ switching element) is connected between the first DC power source 1401 and the three resistors R1 to R3.
  • a control circuit is connected to the switching element 1411.
  • the three resistors R1 to R3 are in parallel.
  • the switching element 1431 (+ side switching element) is connected between the second DC power supply 1421 and the three resistors R4 to R6.
  • a control circuit is connected to the switching element 1431.
  • the three resistors R4 to R6 are in parallel.
  • the switching element 1451 (+ side switching element) is connected between the third DC power supply 1441 and the three resistors R7 to R9.
  • a control circuit is connected to the switching element 1451.
  • the three resistors R7 to R9 are in parallel.
  • the switching element 1412 (-switching element) is connected between the first ground 1402 (ground) and the three resistors R1, R4 and R7.
  • a control circuit is connected to the switching element 1412.
  • the three resistors R1, R4 and R7 are in parallel.
  • a switching element 1432 (-switching element) is connected between the second ground 1422 (ground) and the three resistors R2, R5 and R8.
  • a control circuit is connected to the switching element 432.
  • the three resistors R2, R5, R8 are in parallel.
  • the switching element 1452 (-switching element) is connected between the third ground 1442 (ground) and the three resistors R3, R6 and R9.
  • a control circuit is connected to the switching element 1452.
  • the three resistors R3, R6, R9 are in parallel.
  • the control circuit is connected to the base terminal, the DC power supplies 1401, 1421, and 1441 are connected to the collector terminal, and the emitter is The resistors R1 to R9 are connected to the terminals.
  • the control circuit is connected to the base terminal, the ground 1402, 1422 and 1442 are connected to the collector terminal, and the emitter terminal is Resistors R1 to R9 are connected.
  • a field effect transistor (FET) or the like may be used as the switching element.
  • a high frequency cut filter is provided between each of the switching elements 1411, 1431, 1451, 1412, 1432 and 1452 and the resistors R1 to R9, and DC power supplies 1401, 1402, 1421 and 1422, The 1441 and 1442 and the switching elements 1411, 1412, 1431, 1432, 1451 and 1452 may be protected.
  • FIGS. 22A, 22B, and 22C are diagrams showing examples of pulse voltages for controlling the sub heater 1012 according to the embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the value of control voltage (V) applied to the sub heater 1012.
  • FIG. 22A shows an example when the output of the main heater 1011 is 100%.
  • FIG. 22B shows an example when the output of the main heater 1011 is 50%.
  • FIG. 22C is an example when the output of the main heater 1011 is 2%.
  • pulse voltages are sequentially applied to three sub-heaters 1012 in one cycle corresponding to a predetermined period.
  • pulse voltages are sequentially applied to nine sub-heaters 1012 (first sub-heater, second sub-heater,..., Ninth sub-heater) in three cycles.
  • the pulse voltage is switched between a predetermined low voltage value (zero in this example) corresponding to the off state and a predetermined high voltage value (predetermined controllable voltage value in the present example) corresponding to the on state. It is a voltage of pulse.
  • the heater in the off state, the heater (heater in the corresponding temperature control area) is turned off, and in the on state, the heater (heater in the corresponding temperature control area) is turned on.
  • the on-state period is long, the calorific value of the heater (heater in the corresponding temperature control area) is large, and when the on-state period is short, the calorific value of the heater (heater in the corresponding temperature control area) is small.
  • the control similar to the control of the pulse voltage in units of cycles as shown in FIGS. 22A, 22B and 22C is continuously repeated, for example, Even if there is unevenness (non-uniformity) in the temperature adjustment by the main heater 1011 on the circular mounting surface (circular surface shown in FIG. 20) of the electrostatic chuck device 1001, each divided area (temperature adjustment) The nonuniformity can be reduced by the temperature control by the sub heater 1012, and the uniformity of the temperature control can be secured.
  • the pulse time calculation unit 1053 calculates the pulse width (the time width; the application time) of the pulse current (the pulse voltage corresponding thereto) for each sub heater 1012. It is possible to adjust The pulse widths of the pulse voltages of the plurality of sub-heaters 1012 may be, for example, each independently different or partially identical.
  • the voltage control unit 1044 of the sub-heater DC power supply controls the value of the voltage of the DC power supply of the sub-heater 1012 so that the level of pulse current (pulse voltage corresponding thereto) for each sub-heater 1012 , The value of the pulse voltage) can be adjusted.
  • the values of the pulse voltages of the plurality of sub-heaters 1012 may, for example, be independently different or partially identical.
  • the pulse width of the pulse voltage of each sub heater 1012 is made different for the combination of three sub heaters 1012, and The pulse voltage values are controlled to the same level collectively for all the sub-heaters 1012.
  • the control unit is configured to set the second of the plurality of regions (temperature control regions) of the second heater element 1311 among the periods of the same length cyclically allocated.
  • the time width (pulse width) of the pulse voltage applied to the sub heater 1012 of each temperature control area of the heater element 1311 is controlled.
  • any length may be used as the length of one cycle.
  • any number may be used as the number of sub-heaters 1012 controlled in one cycle.
  • one cycle is equally divided by the number of a plurality of sub-heaters 1012 controlled in one cycle, and a period of the same length is allocated to each sub-heater 1012, and the pulse width in that period Adjusted.
  • each sub-heater 1012 is assigned an arbitrary period (a period that may not be equally divided), and the pulse width is adjusted in that period. May be In this case, for example, by increasing the pulse width of the pulse voltage instead of increasing the value of the pulse voltage, it is possible to reduce the necessary amount of power while keeping the calorific value of the sub heater 1012 the same.
  • temperature control using the main heater 1011 and the sub heater 1012 by controlling the pulse width and voltage value of the pulse voltage applied to each sub heater 1012. can be done precisely.
  • the pulse width of the pulse voltage can be controlled based on the measurement data
  • the voltage value of the pulse voltage can be controlled based on the temperature condition.
  • the temperature condition may be further used and controlled with respect to the pulse width of the pulse voltage.
  • measurement data may be further used and controlled for the voltage value of the pulse voltage.
  • the temperature control area of a certain main heater 1011 is divided into a plurality of temperature control areas, and the sub heater 1012 is provided for each divided area.
  • the temperature control area of a certain main heater 1011 is divided into a plurality of temperature control areas, and a sub heater is not provided in one divided area, and a sub heater 1012 is provided in each other divided area.
  • Configurations may be used. That is, it is possible to adjust the temperature as a whole without adjusting the temperature by the sub heater for one divided area.
  • various configurations may be used as the number of main heaters 1011, the temperature control area of each main heater 1011, the number of sub heaters 1012, and the temperature control area of each sub heater 1012.
  • FIG. 23 is a block diagram showing a schematic configuration of an electrostatic chuck apparatus (referred to as an electrostatic chuck apparatus 1001A for convenience of description) according to one embodiment (seventh embodiment) of the present invention.
  • the same components as those shown in FIG. 18 according to the sixth embodiment are denoted by the same reference numerals.
  • the electrostatic chuck device 1001A has a temperature control base portion 1201 (similar to that shown in FIG. 19), an electrostatic chuck portion 1211 (similar to that shown in FIG. 19), and a main heater.
  • the current / voltage control unit 1042 of the main heater power supply is the same as that shown in FIG. 18 according to the sixth embodiment.
  • the sub heater temperature controller 1101 generates and outputs information for performing temperature control by the sub heater 1012, based on the information output by the main heater temperature controller 1041.
  • the relationship between the information output from the main heater temperature controller 1041 and the information output from the sub heater temperature controller 1101 is set and stored, for example, in advance.
  • the external temperature measurement unit 1111 measures the temperature related to the temperature adjustment area for each sub heater 1012, as in the case of the sixth embodiment.
  • the measurement data recording unit 1112 records (stores) measurement data obtained by the external temperature measurement unit 1111 as in the sixth embodiment.
  • the voltage calculator 1113 calculates a voltage value based on the information output from the sub heater temperature regulator 1101, and outputs information of the calculated voltage value to the voltage controller 1114 of the sub heater DC power supply.
  • the voltage calculation unit 1113 may further calculate the value of the voltage using information (for example, information on the temperature at the time of measurement) recorded in the measurement data recording unit 1112.
  • the method (for example, an equation etc.) of this calculation is, for example, set and stored in advance.
  • the voltage control unit 1114 of the sub heater DC power supply adjusts the voltage value of the pulse signal (for example, pulse current) based on the information output from the voltage calculation unit 1113 and determines the pulse time (pulse width) of the pulse signal.
  • the way of adjusting the voltage value of the pulse signal is set and stored, for example, in advance. Also, in the present embodiment, the same pulse time is set for all the sub-heaters 1012. This pulse signal is applied to the sub heater 1012.
  • the function of the control unit that controls the voltage applied to the sub heater 1012 is the refrigerant temperature sensor 1021, the temperature calculation unit 1022, the temperature sensor 1031 in the electrostatic chuck (ESC), and the temperature calculation A function of a unit 1032, a main heater temperature controller 1041, a sub heater temperature controller 1101, a measurement data recording unit 1112, a voltage calculator 1113, and a voltage controller 1114 of a sub heater DC power supply is used.
  • the configuration of the control unit is not limited to that of the present embodiment, and is configured of, for example, one processing unit or two or more processing units that realize a required function.
  • the voltage calculation unit 1113 calculates the value of the voltage of the DC power supply of the sub heater 1012 to obtain the level (for example, pulse voltage) of the pulse current (pulse voltage corresponding thereto) for each sub heater 1012. It is possible to adjust the value).
  • a constant pulse time pulse width
  • temperature control using the main heater 1011 and the sub heater 1012 is performed with high accuracy by controlling the voltage value of the pulse voltage applied to each sub heater 1012. It can be carried out.
  • the pulse width of the pulse voltage can be fixed, and the voltage value of the pulse voltage can be controlled based on the temperature condition.
  • measurement data may be further used and controlled for the voltage value of the pulse voltage.
  • FIG. 24 is a block diagram showing a schematic configuration of an electrostatic chuck apparatus (referred to as an electrostatic chuck apparatus 1001B for convenience of description) according to one embodiment (eighth embodiment) of the present invention.
  • the same components as those shown in FIG. 18 according to the sixth embodiment are denoted by the same reference numerals.
  • the electrostatic chuck device 1001B includes a temperature control base portion 1201 (similar to that shown in FIG. 19), an electrostatic chuck portion 1211 (similar to that shown in FIG. 19), and a main heater.
  • the current / voltage control unit 1042 of the main heater power supply is the same as that shown in FIG. 18 according to the sixth embodiment.
  • the sub heater temperature controller 1151 generates and outputs information for performing temperature control by the sub heater 1012, based on the information output by the main heater temperature controller 1041.
  • the relationship between the information output from the main heater temperature controller 1041 and the information output from the sub heater temperature controller 1151 is set and stored, for example, in advance.
  • the external temperature measurement unit 1161 measures the temperature related to the temperature adjustment area for each sub heater 1012, as in the sixth embodiment.
  • the measurement data recording unit 1162 records (stores) the measurement data obtained by the external temperature measurement unit 1161 as in the case of the sixth embodiment.
  • the pulse time calculation unit 1163 calculates a pulse time (for example, pulse time for each sub heater 1012) based on the measurement data recorded in the measurement data recording unit 1162 and the information output from the sub heater temperature regulator 1151; Output information of calculated pulse time.
  • the method (for example, an equation etc.) of this calculation is, for example, set and stored in advance.
  • the pulse time control unit 1164 of the sub heater DC power supply adjusts the pulse time (pulse width) of the pulse signal based on the information output from the pulse time calculation unit 1163. Further, in the present embodiment, the same voltage value (voltage value of pulse signal) is set for all the sub-heaters 1012. This pulse signal is applied to the sub heater 1012.
  • the function of the control unit that controls the voltage applied to the sub heater 1012 is the refrigerant temperature sensor 1021, the temperature calculation unit 1022, the temperature sensor 1031 in the electrostatic chuck (ESC), and the temperature calculation It is configured using the functions of unit 1032, main heater temperature controller 1041, sub heater temperature controller 1151, measurement data recording unit 1162, pulse time calculation unit 1163, and pulse time control unit 1164 of sub heater DC power supply.
  • the configuration of the control unit is not limited to that of the present embodiment, and is configured of, for example, one processing unit or two or more processing units that realize a required function.
  • the pulse time is adjusted by calculating the pulse width (temporal width) of the pulse current (pulse voltage corresponding thereto) for each sub heater 1012, in the pulse time calculation unit 1163. It is possible.
  • the pulse widths of the pulse voltages of the plurality of sub-heaters 1012 may be, for example, each independently different or partially identical. In the present embodiment, a constant voltage value is used for the pulse signal.
  • temperature control using the main heater 1011 and the sub heater 1012 is performed with high accuracy by controlling the pulse width of the pulse voltage applied to each sub heater 1012. It can be carried out.
  • the pulse width of the pulse voltage can be controlled based on the measurement data and the temperature condition, and the voltage value of the pulse voltage is constant.
  • the electrostatic chuck control device comprises electrostatic chuck devices 1001, 1001A, 1001B (a single or a plurality of main heaters 1011 for adjusting the temperature of the adsorption surface of electrostatic chuck portion 1211 in a single or a plurality of regions) Voltage applied to the sub heater 1012 in the electrostatic chuck device) including the heater element 1301 and the second heater element 1311 including the plurality of sub heaters 1012 for adjusting the temperature of the area more than the area of the first heater element 1301 Control unit to control the
  • electrostatic chuck control method the single or a plurality of main heaters 1011 constituting the first heater element 1301 adjust the temperature of the suction surface of the electrostatic chuck 1211 in one or more regions, and the second The plurality of sub-heaters 1012 constituting the heater element 1311 adjust the temperature of the area more than the area of the first heater element 1301, and the control unit controls the voltage applied to the sub-heater 1012.
  • the magnitude of the voltage applied to the sub heater 1012 arranged to divide the area of the main heater 1011 is controlled based on the magnitude of the voltage applied to the main heater 1011 .
  • the magnitude of the voltage applied to the sub heater 1012 arranged to divide the area of the main heater 1011, the temperature detection result corresponding to at least the main heater 1011, and the temperature adjustment base It controls based on the temperature difference with the temperature detection result of the chiller of the part 1201.
  • the power supplied to the sub heater 1012 has a pulse voltage application time (pulse width) and a voltage value
  • the application time (pulse width) is controlled by the temperature of the main heater 1011, and the voltage value is the applied power of the main heater 1011 or the detection temperature and temperature adjustment base portion 1201 corresponding to at least the main heater 1011. It controls by the temperature difference with the temperature detection result of the chiller.
  • DC power supplies DC power supplies 1401, 1421, and 1441 in the example of FIG.
  • the switching element switching element 1411 in the example of FIG. 21
  • the switching element switching element 1411 in the example of FIG. 21
  • the sub heater 1012 and between the sub heater 1012 and the earth (in the example of FIG. 21, the earths 1402, 1422, and 1442).
  • 1431, 1451, 1412, 1432 and 1452 and a predetermined pulse voltage is applied to each of the divided sub heaters 1012.
  • the function of the control unit or the function of the control unit and other functions
  • the function of the control unit is separate from the main body of the electrostatic chuck devices 1001, 1001A, and 1001B (for example, electrostatic chuck control device ) May be provided.
  • electrostatic chuck devices 1001, 1001A, 1001B (a first heater element 1301 consisting of a single or a plurality of main heaters 1011 for adjusting the temperature of the suction surface of electrostatic chuck portion 1211 alone or in a plurality of regions,
  • a program for controlling an electrostatic chuck device comprising: a second heater element 1311 consisting of a plurality of sub-heaters 1012 for adjusting the temperature of an area more than the area of one heater element 1301; It is possible to implement a program for causing a computer to execute a step of controlling a voltage applied to the sub heater 1012 using a pulse voltage as Moreover, it is possible to implement a program for causing a computer to execute various other steps. Note that such a program may be executed by a computer that constitutes an apparatus (for example, an electrostatic chuck control apparatus)
  • a program for realizing each function according to the embodiment described above is recorded in a computer readable recording medium, and the program recorded in the recording medium is read into a computer system, and the CPU (Central Processing may be performed by executing the processing unit or the like.
  • the “computer system” may include hardware such as an operating system (OS: Operating System) and peripheral devices.
  • the “computer readable recording medium” is a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a writable nonvolatile memory such as a flash memory, a portable medium such as a DVD (Digital Versatile Disk), A storage device such as a hard disk built into a computer system.
  • the “computer-readable recording medium” is a volatile memory (for example, DRAM (for example, DRAM (for example) in a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line). Dynamic Random Access Memory), etc., includes those that hold a program for a certain period of time.
  • the above program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing a part of the functions described above.
  • the above program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • W plate-like sample
  • 1, 101 electrostatic chuck device
  • 2 electrostatic chuck
  • 3 temperature adjustment base
  • 3a recess
  • 3b through hole
  • 4 high frequency generating electrode
  • 6A, 6B, 6C, 6D sub heater
  • 6a, 6b, 6c, 6d heater split body
  • 8b conductive portion
  • 9 wiring layer
  • 9a wiring body
  • 4A, 7A adhesive layer
  • 11 adhesive layer
  • 21 mounting plate
  • 21a mounting surface
  • 22 support plate
  • 23 ... electrode for electrostatic adsorption (internal electrode for electrostatic adsorption), 24 ...
  • Wiring body 505 First heater element 505A, 505B, 505C, 505D: Main heater 506: Second heater element 506A, 506B, 506C, 506D: Sub-heater 506a, 506b, 506c, 506d: Heater division body, 507, 508: Insulating plate, 509A: Adhesive layer, 507b, 508b, 509b: Conducting portion, 509B: Adhesive material layer, 510: Insulating portion, 511: Mounting plate, 511a: Mounting surface, 511b: Protrusion, 512: Support plate, 513: Electrode for electrostatic adsorption (internal electrode for electrostatic adsorption), 514: insulating material layer, 51 A: Extraction electrode terminal, 515 B: conductive bonding portion, 515 C: power feeding terminal, 515 a: ladder
  • insulating plate 609 ... adhesive layer , 607b, 608b, 609b ... conductive part, 610 adhesive layer, 611 ... mounting plate, 611a ... mounting surface, 613 ... electrostatic adsorption electrode (internal electrode for electrostatic adsorption), 615A ...
  • extraction electrode terminal 615B: conductive bonding portion
  • 615C terminal for feeding
  • 615a insulator
  • 617 terminal for feeding
  • 618 insulator
  • 620 temperature sensor
  • 621 installation hole
  • 622 temperature measurement unit
  • 626 power supply terminal
  • 627 forceps
  • 630 thermo camera
  • 637, 638 insulating plate
  • 637b, 638b conduction portion
  • 639 adhesive layer
  • 1001 electrostatic chuck device, 1011 ... main heater, 1012 ... sub heater, 1021 ... refrigerant temperature sensor, 1022, 1032 ... temperature operation unit, 1031 ... temperature sensor, 1041 ...
  • main heater temperature regulator 1042 ... current / voltage control unit
  • Sub-heater temperature controller 1044 1114 Voltage control unit 1051, 1111, 1161 External temperature measurement unit 1052, 1112, 1162 Measurement data recording unit 1053, 1163
  • Pulse time calculation unit 1054 pulse time adjustment unit, 1201: temperature adjustment base unit, 1211: electrostatic chuck unit, 1221: wafer, 1301: first heater element, 1311: second heater element, 1401, 1421, 1441: DC Power supply, 1402, 1422, 1442 ... ground 1411,1412,1431,1432,1451,1452 ... switching elements, R1 ⁇ R9 ... resistor (heater), 1113 ... voltage calculation unit, 1164 ... pulse time control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本発明のある態様では、複数に分割したヒータを備え、各ヒータで加熱するゾーンの均一な温度制御を簡便な構成で可能とする静電チャック装置の提供を目的とする。本発明の静電チャック装置のある態様では、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、前記静電チャック部と前記温度調節用ベース部との間に層状に配置された高周波発生用電極と、前記高周波発生用電極に接続された高周波電源と、前記高周波発生用電極と前記温度調節用ベース部との間に層状に配置された複数の主ヒータからなる第1のヒータエレメントと、前記高周波発生用電極と前記第1ヒータエレメントとの間に層状に配置されたガード電極と、を備える。

Description

静電チャック装置
 本発明は、ヒータエレメントを設けた静電チャック装置、また静電チャック装置、静電チャック制御装置、プログラムおよび静電チャック制御方法に関する。
 本願は、2014年11月20日に、日本に出願された特願2014-235737号、2014年11月20日に、日本に出願された特願2014-235454号、2015年3月18日に、日本に出願された特願2015-054573号、及び2015年3月18日に、日本に出願された特願2015-054985号に基づき優先権を主張し、その内容をここに援用する。
 プラズマエッチング装置、プラズマCVD装置等のプラズマを用いた半導体製造装置においては、従来から、試料台に簡単にウエハを取付け、固定するとともに、このウエハを所望の温度に維持する装置として静電チャック装置が使用されている。
 プラズマエッチング装置において、静電チャック装置に固定されたウエハにプラズマを照射すると、ウエハの表面温度が上昇する。この表面温度の上昇を抑えるために、静電チャック装置の温度調節用ベース部に水等の冷却媒体を循環させてウエハを下側から冷却する。しかしながら、この冷却状態によって、ウエハの面内で温度分布が発生する。例えば、ウエハの中心部では温度が高くなり、周縁側では温度が低くなる。更に、プラズマエッチング装置の構造や方式の違い等により、プラズマの生成状態が変化する。このプラズマ生成状態の変化に伴い、ウエハの面内温度分布に差が生じる。また、ウエハに各種の成膜を行う装置にしても、成膜条件や成膜室内の雰囲気制御に影響を受けてウエハ面内に温度分布が生じる。
 そこで、静電チャック部と温度調節用ベース部との間にヒータ部材を取り付けたヒータ機能付き静電チャック装置が提案されている(特許文献1)。
 このヒータ機能付き静電チャック装置は、ウエハ内に局所的に温度分布を作ることができる。そのため、ウエハの面内温度分布を膜堆積速度やプラズマエッチング速度に合わせて適宜設定できる。ウエハの面内温度分布を設定することにより、ウエハ上へのパターン形成などの局所的な膜形成や局所的なプラズマエッチングを効率良く行なうことができる。
 プラズマを利用したエッチング装置あるいはCVD(Chemical Vapor Deposition)装置などにおいて、静電チャック(ESC:Electrostatic chuck)を用いた静電チャック装置が用いられる。
 静電チャック装置は、シリコンウエハ等の板状試料を載置する載置面および静電吸着用電極を有する静電チャック部を備え、当該静電チャック用電極に電荷を発生させて静電吸着力で当該板状試料を当該載置面に固定する。また、静電チャック装置は、ヒータを備えることがある(例えば、特許文献2参照。)。
特開2008-300491号公報 特開平11-163109号公報
 近年プラズマエッチング装置では、半導体装置の配線の微細化などに伴い従来よりもエッチングレートの均一性がより厳しく求められてきている。プラズマエッチングによるエッチング速度は、プラズマの密度、ウエハ表面温度、エッチングガスの濃度分布などに影響を受ける。プラズマ密度やエッチングガス濃度はウエハ面内で分布を有するため、ウエハ表面温度の均一性に加え、ウエハ面内温度分布の調節のより精度の良い制御が必要とされる。
 また、多種類の膜のエッチングに対応し、エッチング温度の変更を短時間で行い、シャープな面内温度分布を形成することも求められている。これらを実現するためには、ヒータへの電力供給量を増やし、温度調節用ベース部の制御温度と静電チャック装置の吸着面との温度差を大きくする必要がある。しかしながら、温度調節用ベース部の制御温度と吸着面との温度差の増加に伴い、ウエハ上の同一円周上の温度均一性は劣化する傾向にある。
 この対策として、従来、同心円状に複数のヒータを配置して温度制御すること、同心円状の径方向へのヒータの分割数を増やすことでウエハ面内の温度制御性、均熱性の改善を図ることができる。
 ところが、ヒータの分割数が増加すると、ウエハ面内温度分布を付与した状態および昇降温時の温度調節の難易度は増加する問題がある。またヒータの分割数が増加すると、それに伴い静電チャック装置の構成が複雑化する。
 本発明は、前記従来の問題点に鑑みなされたものであって、本発明は、複数に分割したヒータを備えた構造であっても、各ヒータで加熱するゾーンの均一な温度制御を簡便な構成で可能とする静電チャック装置の提供、およびヒータを用いた温度制御を精度良く行うことができる静電チャック装置、静電チャック制御装置、プログラムおよび静電チャック制御方法を提供することを課題とする。
 本発明は、前記課題を解決する手段として、以下の構成を有する。
 本発明の一態様に係る静電チャック装置は、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、前記静電チャック部と前記温度調節用ベース部との間に層状に配置された高周波発生用電極と、前記高周波発生用電極に接続された高周波電源と、前記高周波発生用電極と前記温度調節用ベース部との間に層状に配置された複数の主ヒータからなる第1のヒータエレメントと、前記高周波発生用電極と前記第1ヒータエレメントとの間に層状に配置されたガード電極と、を備える。
 この構成によれば、高周波発生用電極から発生する高周波をガード電極が遮断する。そのため、第1ヒータエレメントを構成するヒータ電源が高周波により影響を受けることを抑制することができる。また、第1ヒータエレメント用の高周波カットフィルタを除去することができる。すなわち、静電チャック装置の構成が複雑になることを避け、静電チャック装置の作製コストの低減に寄与する。
 本発明の一態様に係る静電チャック装置において、前記第1ヒータエレメントと前記ガード電極との間、または前記第1ヒータエレメントと前記温度調節用ベース部の間に、層状に配置された複数のサブヒータからなる第2のヒータエレメントをさらに備える構成を採用できる。
 この構成によれば、ガード電極に加えて、ガード電極側に配置される第1のヒータエレメントまたは第2のヒータエレメントも、高周波発生用電極から生じた高周波を遮断する。したがって、温度調整用ベース部側に配置される第1のヒータエレメントまたは第2のヒータエレメントが高周波の影響を受けることをより抑制できる。すなわち、このヒータのヒータ電源に高周波がノイズとして漏洩し、ヒータ電源の動作ないし性能が害される恐れをさらに低減することができる。
 また、この構成によれば、複数の主ヒータに分割された各ゾーンの温度分布を個別に制御できるとともに、各ゾーン内の温度調節をサブヒータにより微調整できる。このため、板状試料を保持している際、プラズマの生成状態や成膜条件の変動により板状試料に部分的な温度分布が生じようとしても、サブヒータによる温度の微調整により温度分布を抑制することができる。このため、エッチング装置や成膜装置に適用した場合、エッチングレートの均一性向上に寄与し、局所的なエッチングレートの制御、成膜の安定性向上に寄与する。
 本発明の一態様に係る静電チャック装置において、前記ガード電極が、その円周方向に延在する第1の伝熱障壁を有する構成を採用できる。
 この構成によれば、ガード電極を介して面内方向に熱が伝導することを抑制し、領域毎の温度制御性をより高めることができる。静電チャック装置では、面内方向のうち、同心円方向(周方向)への熱伝導は許容されうる。一方で、径方向の熱伝導は均熱性の阻害要因となり得る。そのため、ガード電極の径方向を熱的に分離することでより静電チャック装置の温度制御性を高めることができる。
 本発明の一態様に係る静電チャック装置において、前記第1のヒータエレメントを構成する前記複数の主ヒータは、前記円形領域において同心状に配置され、前記ガード電極の前記第1の伝熱障壁は前記円形領域の径方向で隣り合う前記複数の主ヒータの間の領域と平面的に重なって設けられている構成を採用できる。
 この構成によれば、各主ヒータ及びサブヒータにより温度制御される領域に合せて、金属板の面内方向の伝熱を阻害することができる。すなわち静電チャック装置1の領域毎の温度制御性をより高めることができる。
 本発明の一態様に係る静電チャック装置において、前記第1のヒータエレメントを構成する前記複数の主ヒータは、前記円形領域において同心円環状に配置され、前記高周波発生用電極は、その円周方向に延在する第2の伝熱障壁を有し、前記第2の伝熱障壁は、円環領域の径方向で隣り合う前記複数の主ヒータの間の領域と平面的に重なって設けられている構成を採用できる。
 この構成によれば、高周波発生用電極を介して面内方向に熱が伝導することを抑制し、領域毎の温度制御性をより高めることができる。高周波発生用電極の径方向を熱的に分離することでより静電チャック装置の温度制御性を高めることができる。また、電気的には電極内の電位を均一に保つことができるため、プラズマ密度への影響も少なくすることができる。
 本発明の一態様に係る静電チャック装置における前記高周波発生用電極の形成材料を、非磁性の金属材料とする構成を採用できる。
 高周波発生用電極の形成材料を非磁性金属で形成することで、静電チャック装置を高周波雰囲気中で用いても高周波発生用電極が高周波により自己発熱しない。したがって、高周波雰囲気中であっても、板状試料の面内温度を所望の一定温度または一定の温度パターンに維持することが容易となる。
 本発明の一態様に係る静電チャック装置における前記高周波発生用電極の形成材料を、熱膨張率が4×10-6/K以上、10×10-6/K以下とする構成を採用できる。
 熱膨張率が当該範囲であれば、熱膨張率差により静電チャック部との接合界面の剥離および静電チャック部のクラック等が生じることをより抑制することができる。
 本発明の一態様に係る静電チャック装置における前記高周波発生用電極は、厚みが20μm以上、1000μm以下である構成を採用できる。
 高周波発生用電極の厚みが当該範囲であれば、高周波発生用電極の厚みに起因する発熱ムラ、電界のムラを生じ、プラズマの均一性に影響を及ぼすことはなく、高周波発生用電極の熱容量が大きくなりすぎることがなく、板状試料への熱応答性を高めることができる。
 本発明の一態様に係る静電チャック装置は、前記主ヒータの単位面積あたりの発熱量よりも前記サブヒータの単位面積あたりの発熱量が小さく設定されている構成を採用できる。
各ゾーン内の温度調節を主ヒータより単位面積あたりの発熱量を小さくしたサブヒータにより行うことで、サブヒータが温度を微調整するために過剰に加熱してしまうことを抑制し、温度分布をより精密に制御することができる。
 本発明の一態様に係る静電チャック装置は、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、前記静電チャック部と前記温度調節用ベース部との間に層状に配置され、前記温度調節用ベース部に対し絶縁された高周波発生用電極と、前記高周波発生用電極に接続された高周波電源と、前記静電チャック部と前記高周波発生用電極との間に、層状に配置された複数の主ヒータからなる第1のヒータエレメントと、前記高周波発生用電極と前記温度調節用ベース部との間に、配置された複数のサブヒータからなる第2のヒータエレメントと、前記高周波発生用電極と前記第2ヒータエレメントとの間に配置された金属板とを備える。
 複数の主ヒータに分割された各ゾーンの温度分布を個別に制御できるとともに、各ゾーン内の温度調節をサブヒータにより微調整できる。このため、板状試料を保持している際、プラズマの生成状態や成膜条件の変動により板状試料に部分的な温度分布が生じようとしても、サブヒータによる温度の微調整により温度分布を抑制することができる。このため、エッチング装置や成膜装置に適用した場合、エッチングレートの均一性向上に寄与し、局所的なエッチングレートの制御、成膜の安定性向上に寄与する。
 また、多種類の膜のエッチングに対応し、エッチング温度の変更を短時間で行い、シャープな面内温度分布を形成するために、温度調節用ベース部の制御温度と静電チャック装置の吸着面との温度差を大きくとっていたとしても、板状試料の面内温度分布の均一性向上に寄与し、均熱性の改善に寄与する。
 さらに、複数のサブヒータからなる第2のヒータエレメントは、高周波発生用電極との間に金属板を有する。そのため、第2のヒータエレメントが、高周波の影響を受けることを抑制できる。このため、第2のヒータエレメントを介して高周波電流がサブヒータ用の電源へ漏洩することを防止することができる。すなわち、本発明の一態様に係る静電チャック装置は、サブヒータのための高周波カットフィルタを除去することができる。
 本発明の一態様に係る静電チャック装置は、前記温度調節用ベース部が、金属材料を形成材料とし、前記金属板と前記温度調節用ベース部が電気的に接続された構成を採用できる。
 金属板と温度調節用ベース部が電気的に接続されているため、金属板を接地するための配線等を設ける必要が無くより簡便な静電チャック装置を実現することができる。
 本発明の一態様に係る静電チャック装置は、前記主ヒータの単位面積あたりの発熱量よりも前記サブヒータの単位面積あたりの発熱量が小さく設定された構成を採用できる。
 この構成によれば、各ゾーン内の温度調節を主ヒータより単位面積あたりの発熱量を小さくしたサブヒータにより行うことができる。サブヒータが温度を微調整するために過剰に加熱してしまうことを抑制し、温度分布をより精密に制御することができる。
 本発明の一態様に係る静電チャック装置は、前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、前記第1のヒータエレメントと前記第2のヒータエレメントが、それらの円周方向もしくは径方向に複数に分割され、前記第1のヒータエレメントの分割数よりも前記第2のヒータエレメントの分割数が多くされている構成を採用できる。
 この構成によれば、温度の微調節が可能なサブヒータの数が主ヒータよりも多い。そのため、主ヒータが加熱する領域よりも小さい領域毎の温度微調節が可能となり、板状試料の局所的温度微調整が可能となる。
 本発明の一態様に係る静電チャック装置は、前記第1のヒータエレメントを構成する前記複数の主ヒータは、前記円形領域において同心状に配置され、前記金属板が、その円周方向に延在する複数の第1の伝熱障壁を有する構成を採用できる。
 この構成によれば、金属板を介して面内方向に熱が伝導することを抑制し、領域毎の温度制御性をより高めることができる。静電チャック装置では、面内方向のうち、同心円方向(周方向)への熱伝導は許容されうる。一方で、径方向の熱伝導は均熱性の阻害要因となり得る。そのため、金属板の径方向を熱的に分離することでより静電チャック装置の温度制御性を高めることができる。
 本発明の一態様に係る静電チャック装置は、前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、前記金属板が、隣り合う前記複数の主ヒータの間の領域及び隣り合う前記複数のサブヒータの間の領域と、平面的に重なって設けられた複数の第1の伝熱障壁を有する構成を採用できる。
 この構成によれば、各主ヒータ及びサブヒータにより温度制御される領域に合せて、金属板の面内方向の伝熱を阻害することができる。すなわち静電チャック装置の領域毎の温度制御性をより高めることができる。
 本発明の一態様に係る静電チャック装置は、前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、前記高周波発生用電極が、隣り合う前記複数の主ヒータの間の領域及び隣り合う前記複数のサブヒータの間の領域と、平面的に重なって設けられた複数の第2の伝熱障壁を有する構成を採用できる。
 この構成によれば、各主ヒータ及びサブヒータにより温度制御される領域に合せて、高周波発生用電極の面内方向の伝熱を阻害することができる。すなわち静電チャック装置の領域毎の温度制御性をより高めることができる。
 本発明において、前記主ヒータの前記温度調節用ベース部側に、前記主ヒータの温度を測定する温度センサーが主ヒータに絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置されている温度センサーが設けられた構成を採用できる。
また、前記温度センサーの一面が絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置され、他の面が前記温度調節用ベース部に接触していない構成を採用できる。
 この構成によれば、主ヒータの温度を前記温度調節用ベースの温度の影響が少ない状態で温度センサーで計測しながら板状試料の温度制御ができるので、板状試料の温度を制御する際のオーバーシュートを回避でき、板状試料の温度を正確に調整できる。
 本発明の一態様に係る静電チャック装置は、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、前記静電チャック部と前記温度調節用ベース部との間に層状に配置された複数の主ヒータからなる第1のヒータエレメントと、前記温度調節用ベース部と前記第1のヒータエレメントとの間あるいは前記第1のヒータエレメントと前記静電チャック部との間に層状に配置された複数のサブヒータからなる第2のヒータエレメントを備え、前記主ヒータの単位面積あたりの発熱量よりも前記サブヒータの単位面積あたりの発熱量が小さく設定されたことを特徴とする。
 複数の主ヒータに分割された各ゾーンの温度分布を個別に制御できるとともに、各ゾーン内の温度調節を主ヒータより単位面積当たりの発熱量を小さくしたサブヒータにより微調整できる。このため、板状試料を保持している際、プラズマの生成状態や成膜条件の変動により板状試料に部分的な温度分布が生じようとしても、サブヒータによる温度の微調整により温度分布を抑制することができる。このため、エッチング装置や成膜装置に適用した場合、エッチングレートの均一性向上に寄与し、局所的なエッチングレートの制御、成膜の安定性向上に寄与する。
 また、多種類の膜のエッチングに対応し、エッチング温度の変更を短時間で行い、シャープな面内温度分布を形成するために温度調節用ベース部の制御温度と静電チャック装置の吸着面との温度差を大きくとっていたとしても、板状試料の面内温度分布の均一性向上に寄与し、均熱性の改善に寄与する。
 本発明において、前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形に配置され、前記第1のヒータエレメントと前記第2のヒータエレメントが、それらの円周方向もしくは径方向に複数に分割されて前記主ヒータまたは前記サブヒータが形成され、前記第1のヒータエレメントの分割数よりも前記第2のヒータエレメントの分割数が多くされた構成を採用できる。
 温度の微調節が可能なサブヒータの数が主ヒータよりも多いので、主ヒータが加熱する領域よりも小さい領域毎の温度微調節が可能となり、板状試料の局所的温度微調整が可能となる。
 本発明において、前記主ヒータの前記温度調節用ベース部側に、前記主ヒータの温度を測定する温度センサーが主ヒータに絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置されている温度センサーが設けられた構成を採用できる。
また、前記温度センサーの一面が絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置され、他の面が前記温度調節用ベース部に接触していない構成を採用できる。
この構成によれば、主ヒータの温度を前記温度調節用ベースの温度の影響が少ない状態で温度センサーで計測しながら板状試料の温度制御ができるので、板状試料の温度を制御する際のオーバーシュートを回避でき、板状試料の温度を正確に調整できる。
 本発明において、前記温度調節用ベース部の前記静電チャック部側に前記第1ヒータエレメントと前記第2のヒータエレメントが複数の耐熱性絶縁板を介し積層され、前記絶縁板に設けられたコンタクトホールと前記温度調節用ベース部に設けられた貫通孔を介し前記主ヒータあるいは前記サブヒータに接続する給電用端子が設けられた構成を採用できる。
 第1のヒータエレメントと第2のヒータエレメントを耐熱性絶縁板を介し積層することで静電チャック部と温度調節用ベース部との間にこれらヒータエレメントの積層構造を実現することができる。第1のヒータエレメントと第2のヒータエレメントに対する給電は、温度調節用ベース部と絶縁板を貫通した給電用端子により行うことができる。
 本発明において、前記第2のヒータエレメントと前記温度調節用ベース部との間に絶縁板が設けられ、該絶縁板の前記温度調節用ベース部側の面に沿って前記第2のヒータエレメントの各サブヒータに接続される配線層が形成された構成を採用できる。
 第2のヒータエレメントを複数のサブヒータに分割した構造であっても絶縁板に沿って設けた配線層を利用して個々のサブヒータに個別通電できる回路を構成できるので、個々のサブヒータに対する通電制御を行うことができ、複数のサブヒータのそれぞれに対応した細かい領域毎の温度制御を実現できる。
 本発明において、前記温度調節用ベース部と前記静電チャック部との間に前記静電チャック部側から順に第1のヒータエレメントと第2のヒータエレメントが絶縁板を介し積層された構成を採用できる。
 複数のサブヒータを主ヒータと温度調節用ベース部の間に設けた場合、温度調節用ベース部が板状試料の温度上昇を抑えようとする効果を複数のサブヒータにより局所的に微調整でき、板状試料の面内温度分布の均一性向上に寄与する。
 本発明において、前記温度調節用ベース部と前記静電チャック部との間に前記静電チャック部側から順に第2のヒータエレメントと第1のヒータエレメントが絶縁板を介し積層された構成を採用できる。
 複数のサブヒータを主ヒータと静電チャック部の間に設けた場合、微調整の効くサブヒータを板状試料に近い位置に設けることとなるので、複数のサブヒータによる局所的な微細温度調節が可能となり、板状試料の局所的温度微調整を可能とする。
 また本発明の一態様として、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調整用ベース部と、前記静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、前記サブヒータに印加する電圧を制御する制御部と、を備える静電チャック装置である。
 一態様として、静電チャック装置において、前記制御部は、前記サブヒータに印加する電圧としてパルス電圧を用いる、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記制御部は、前記第2のヒータエレメントの複数の前記サブヒータについて、巡回的に割り振られた同一の長さの期間のうちで、前記第2のヒータエレメントの各サブヒータに印加するパルス電圧の時間幅を制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記制御部は、前記サブヒータに印加する電圧としてDC電圧を用いる、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記制御部は、前記第2のヒータエレメントの複数の前記サブヒータについて、前記サブヒータに印加する電圧の大きさを制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記制御部は、前記主ヒータに印加する電圧を制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記静電チャック部と前記温度調整用ベース部との温度差がある状況において、前記制御部は、前記主ヒータについては冷却工程以外では常に電圧を印加し、前記各サブヒータについては間欠的に電圧を印加し得る、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記制御部は、各主ヒータを分割する様に配された各サブヒータに印加する電圧の大きさを前記主ヒータに印加する電圧、電流、または電力の大きさに基づいて制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記制御部は、各主ヒータを分割する様に配された各サブヒータに印加する電圧の大きさを、少なくとも前記主ヒータに対応する温度検出結果と前記温度調整用ベース部のチラーに対応する温度検出結果との温度差に基づいて制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記サブヒータに印加する電圧を制御するために用いられる情報を記憶する記憶部を備え、前記制御部は、前記記憶部に記憶される情報に基づいて、前記サブヒータに印加する電圧を制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記記憶部は、前記サブヒータにより温度調整を行う温度域のうちの一部に対応する情報を記憶し、前記制御部は、前記記憶部に記憶される情報および前記主ヒータに印加する電圧、電流、または電力の大きさに基づいて、前記サブヒータに印加する電圧を制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記記憶部は、前記サブヒータにより温度調整を行う温度域のうちの一部に対応する情報を記憶し、前記制御部は、前記記憶部に記憶される情報および少なくとも前記主ヒータに対応する温度検出結果と前記温度調整用ベース部のチラーに対応する温度検出結果との温度差に基づいて、前記サブヒータに印加する電圧を制御する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記第1のヒータエレメントは、それぞれ独立した温度制御が可能な複数の前記主ヒータ調整領域の温度を調整する、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記サブヒータは、前記第1のヒータエレメントの各主ヒータ調整領域を分割する様に層状に配されている、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記サブヒータの単位面積あたりの発熱量が、前記主ヒータに対して1/5以下である、構成が用いられてもよい。
 一態様として、静電チャック装置において、前記第2のヒータエレメントは、単層もしくは複数の層よりなる、構成が用いられてもよい。
 一態様として、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調整用ベース部と、前記静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、を備える静電チャック装置における前記サブヒータに印加する電圧を制御する制御部を備える、静電チャック制御装置である。
 一態様として、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調整用ベース部と、前記静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、を備える静電チャック装置を制御するプログラムであって、前記サブヒータに印加する電圧としてパルス電圧を用いて 前記サブヒータに印加する電圧を制御するステップ、をコンピュータに実行させるためのプログラムである。
 一態様として、第1のヒータエレメントを構成する単独もしくは複数の主ヒータが、静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整し、第2のヒータエレメントを構成する複数のサブヒータが、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整し、制御部が、前記サブヒータに印加する電圧を制御する、静電チャック制御方法である。
 一態様として、主ヒータの主ヒータ調整領域を分割する様に配されたサブヒータに印加される電圧の大きさを、前記主ヒータに印加する電圧、電流、または電力の大きさに基づいて制御する、静電チャック制御方法である。
 一態様として、主ヒータの主ヒータ調整領域を分割する様に配されたサブヒータに印加される電圧の大きさを、少なくとも前記主ヒータに対応する温度検出結果と温度調整用ベース部のチラーの温度検出結果との温度差に基づいて制御する、静電チャック制御方法である。
 一態様として、主ヒータの主ヒータ調整領域を分割する様に配されたサブヒータの温度調整において、前記サブヒータへの供給電力は、パルス電圧の印加時間と電圧値により調整され、前記印加時間は、前記主ヒータによる温度により制御し、前記電圧値は、前記主ヒータの印加電力、もしくは、少なくとも前記主ヒータに対応する温度検出結果と温度調整用ベース部のチラーの温度検出結果との温度差により、制御する静電チャック制御方法である。
 一態様として、静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、を備える静電チャック装置において、前記サブヒータへの巡回的パルス電圧の印加において、DC電源と前記サブヒータとの間と、前記サブヒータとアースとの間と、の一方もしくは両方に、スイッチング素子を配し、前記サブヒータに所定のパルス電圧を印加する、静電チャック制御方法である。
 本発明の静電チャック装置のある態様によれば、高周波発生用電極から発生する高周波をガード電極が遮断し、主ヒータへの影響を抑制できる。したがって、主ヒータに接続されるヒータ電源が高周波により影響を受けることを抑制し、主ヒータの高周波カットフィルタを除去することができる。すなわち、静電チャック装置の構成が複雑になることを避け、静電チャック装置の作製コストの低減に寄与する。
 また本発明の静電チャック装置のある態様によれば、複数の主ヒータにより分割された各ゾーンの温度分布を個別に制御できるとともに、各ゾーン内の温度調節を主ヒータより単位面積当たりの発熱量を小さくしたサブヒータにより微調整できる。
 このため、板状試料を保持している際、プラズマの生成状態や成膜条件の変動により板状試料に部分的な温度分布が生じようとしても、サブヒータによる温度の微調整により温度分布を抑制することができる。このため、本発明の静電チャック装置により板状試料を保持しながらエッチングあるいは成膜処理を行うと、エッチングレートの均一性向上に寄与し、局所的なエッチングレートの制御、成膜の安定性向上に寄与する。
 また複数のサブヒータからなる第2のヒータエレメントと、高周波発生用電極との間には金属板を有する。そのため、第2のヒータエレメントが、高周波の影響を受けない。すなわち、第2のヒータエレメントを介して高周波電流がサブヒータ用の電源へ漏洩することを防止することができ、サブヒータのための高周波カットフィルタを除去することができる。
 また本発明のある態様によれば、静電チャック装置においてヒータを用いた温度制御を精度良く行うことができる。
本発明に係る第1実施形態の静電チャック装置を示す断面図。 本発明に係る第1実施形態の静電チャック装置に設けられる主ヒータエレメントのパターンの一例を示す平面図。 本発明に係る第1実施形態の静電チャック装置に設けられるガード電極のパターンの一例を示す平面図。 本発明に係る第2実施形態の静電チャック装置を示す断面図。 本発明に係る第2実施形態の静電チャック装置が支持した板状試料の表面温度分布をサーモカメラで調べている状態を示す説明図。 本発明に係る第2実施形態の静電チャック装置に設けられるサブヒータエレメントのパターンの一例を示す平面図。 本発明に係る第3実施形態の静電チャック装置を示す断面図。 同静電チャック装置に設けられる主ヒータエレメントのパターンの一例を示す平面図。 同静電チャック装置に設けられるサブヒータエレメントのパターンの一例を示す平面図。 同静電チャック装置に設けられる金属板のパターンの一例を示す平面図。 同静電チャック装置に設けられる金属板のパターンの一例を示す平面図。 同静電チャック装置が支持した板状試料の表面温度分布をサーモカメラで調べている状態を示す説明図。 本発明に係る第4実施形態の静電チャック装置を示す断面図。 同静電チャック装置に設けられる主ヒータエレメントのパターンの一例を示す平面図。 同静電チャック装置に設けられるサブヒータエレメントのパターンの一例を示す平面図。 同静電チャック装置が支持した板状試料の表面温度分布をサーモカメラで調べている状態を示す説明図。 本発明に係る第5実施形態の静電チャック装置を示す断面図。 本発明の一実施形態(第6実施形態)に係る静電チャック装置の概略的な構成を示すブロック図である。 本発明の一実施形態に係る静電チャック装置におけるヒータなどの配置を概略的に示す図である。 本発明の一実施形態に係る主ヒータおよびサブヒータにより温度を調整する領域(温度調整領域)の一例を示す図である。 本発明の一実施形態に係るサブヒータを制御する回路の一例を示す図である。 (A)、(B)および(C)は本発明の一実施形態に係るサブヒータを制御するパルス電圧の例を示す図である。 本発明の一実施形態(第7実施形態)に係る静電チャック装置の概略的な構成を示すブロック図である。 本発明の一実施形態(第8実施形態)に係る静電チャック装置の概略的な構成を示すブロック図である。
 以下、本発明を添付図面に示す実施形態に基づいて説明する。
 なお、この実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
「第1実施形態」
 図1は、本発明の第1実施形態の静電チャック装置を示す断面図である。この形態の静電チャック装置1は、一主面(上面)側を載置面とした円板状の静電チャック部2と、この静電チャック部2の下方に設けられて静電チャック部2を所望の温度に調整する厚みのある円板状の温度調節用ベース部3と、静電チャック部2と温度調節用ベース部3の間に介挿された高周波発生用電極4と、高周波発生用電極に接続された高周波電源(図視略)と、高周波発生用電極4と温度調節用ベース部3との間に層状に配置された複数の主ヒータからなる第1ヒータエレメント5と、高周波発生用電極4と第1ヒータエレメント5との間に層状に配置されたガード電極70を有する。
 また静電チャック装置1は、高周波発生用電極4を静電チャック部2の底面側に貼り付ける接着層4Aと、ガード電極70を高周波発生用電極4に貼り付ける接着層70Aと、第1ヒータエレメント5を温度調節用ベース部3で電気的に分離する絶縁板10と、これらの周囲を覆って形成された接着剤層11を備えて構成される。さらに、静電チャック装置1は、高周波発生用電極4に給電用端子41を介して接続された図示略の高周波電源を備えて構成される。
 静電チャック部2は、上面を半導体ウエハ等の板状試料Wを載置する載置面21aとした載置板21と、この載置板21と一体化され該載置板21の底部側を支持する支持板22と、これら載置板21と支持板22との間に設けられた静電吸着用電極(静電吸着用内部電極)23および静電吸着用電極23の周囲を絶縁する絶縁材層24と、支持板22を貫通するように設けられ静電吸着用電極23に直流電圧を印加するための取出電極端子25Aにより構成されている。
 載置板21および支持板22は、重ね合わせた面の形状を同じくする円板状のものであり、酸化アルミニウム-炭化ケイ素(Al-SiC)複合焼結体、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y)焼結体等の機械的な強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する絶縁性のセラミックス焼結体からなる。
 載置板21の載置面21aには、直径が板状試料の厚みより小さい突起部21bが複数所定の間隔で形成され、これらの突起部21bが板状試料Wを支える。
 載置板21、支持板22、静電吸着用電極23および絶縁材層24を含めた全体の厚み、即ち、静電チャック部2の厚みは一例として0.7mm以上かつ5.0mm以下に形成されている。
 例えば、静電チャック部2の厚みが0.7mmを下回ると、静電チャック部2の機械的強度を確保することが難しくなる。静電チャック部2の厚みが5.0mmを上回ると、静電チャック部2の熱容量が大きくなり、載置される板状試料Wの熱応答性が劣化する。すなわち、静電チャック部の横方向の熱伝達が増加し、板状試料Wの面内温度を所望の温度パターンに維持することが難しくなる。なお、ここで説明した各部の厚さは一例であって、前記範囲に限るものではない。
 静電吸着用電極23は、電荷を発生させて静電吸着力で板状試料Wを固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
 静電吸着用電極23は、酸化アルミニウム-炭化タンタル(Al-Ta)導電性複合焼結体、酸化アルミニウム-タングステン(Al-W)導電性複合焼結体、酸化アルミニウム-炭化ケイ素(Al-SiC)導電性複合焼結体、窒化アルミニウム-タングステン(AlN-W)導電性複合焼結体、窒化アルミニウム-タンタル(AlN-Ta)導電性複合焼結体、酸化イットリウム-モリブデン(Y-Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されることが好ましい。
 静電吸着用電極23の厚みは、特に限定されるものではないが、例えば、0.1μm以上かつ100μm以下の厚みを選択することができ、5μm以上かつ20μm以下の厚みがより好ましい。
 静電吸着用電極23の厚みが0.1μmを下回ると、充分な導電性を確保することが難しくなる。静電吸着用電極23の厚みが100μmを越えると、静電吸着用電極23と載置板21および支持板22との間の熱膨張率差に起因し、静電吸着用電極23と載置板21および支持板22との接合界面に剥離もしくはクラックが入り易くなる。
 このような厚みの静電吸着用電極23は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
 絶縁材層24は、静電吸着用電極23を囲繞して腐食性ガスおよびそのプラズマから静電吸着用電極23を保護するとともに、載置板21と支持板22との境界部、すなわち静電吸着用電極23以外の外周部領域を接合一体化するものであり、載置板21および支持板22を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。
 取出電極端子25Aは、静電吸着用電極23に直流電圧を印加するために設けられた棒状のもので、この取出電極端子25Aの材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用電極23および支持板22の熱膨張係数に近似したものが好ましく、例えば、Al-Taなどの導電性セラミック材料からなる。
 なお、取出電極端子25Aは導電性接着部25Bと後述する給電用端子25Cに接続されている。導電性接着部25Bは柔軟性と耐電性を有するシリコン系の導電性接着剤からなり、給電端子25Cはタングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料からなる。
 給電用端子25Cの外周側には、絶縁性を有する碍子25aが設けられ、この碍子25aにより金属製の温度調節用ベース部3に対し給電用端子25Cが絶縁されている。取出電極端子25Aは支持板22に接合一体化され、さらに、載置板21と支持板22は、静電吸着用電極23および絶縁材層24により接合一体化されて静電チャック部2が構成されている。
 給電用端子25Cは後に詳述する温度調節用ベース部3の貫通孔3bを貫通するように設けられている。
 温度調節用ベース部3は、静電チャック部2を所望の温度に調整するためのもので、厚みのある円板状のものである。この温度調節用ベース部3としては、例えば、その内部に水を循環させる流路3Aが形成された水冷ベース等が好適である。
 この温度調節用ベース部3を構成する材料としては、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はなく、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等が好適に用いられる。この温度調節用ベース部3の少なくともプラズマに曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
 本実施形態の構造では、温度調節用ベース部3の上面側に、絶縁板10と、第1ヒータエレメント5と、ガード電極70と、高周波発生電極4と、静電チャック部2の底面側とを収容可能な大きさの凹部3aが形成されている。この凹部3a内に底部側から順に接着層10A、絶縁板10、第1のヒータエレメント5、ガード電極70、接着層70A,高周波発生用電極4、接着層4A、支持板22の底部側が収容され、凹部3aを埋めるように形成された接着剤層11によりこれらが一体化されている。
 絶縁板10は、凹部3aの上面に接着層10Aにより接着されている。この接着層10Aはポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性、および、絶縁性を有するシート状またはフィルム状の接着性樹脂からなる。接着層は例えば厚み5~100μm程度に形成される。絶縁板10はポリイミド樹脂、エポキシ樹脂、アクリル樹脂などの耐熱性を有する樹脂の薄板、シートあるいはフィルムからなる。接着層4A、70Aは耐熱性を有するシート型の接着剤層からなり、接着層10Aと同等の材料からなる。
 なお、絶縁板10は、樹脂シートに代え、絶縁性のセラミック板でもよく、またアルミナ等の絶縁性を有する溶射膜でも良い。
 高周波発生用電極4は、装置内にプラズマを発生させるために高周波を発生させるためのものである。例えば、リアクティブイオンエッチング(RIE)装置では、高周波発生電源から高周波電力を高周波発生用電極4に印加することで、対向する対向電極との間に放電を生じさせ、ガスをプラズマ化することができる。
 高周波発生用電極4は、支持板22の底面側に接着層4Aを介して接着されている。高周波発生用電極4には、給電用端子41を介して接続された図示略の高周波電源が接続され、高周波電力を高周波発生用電極4に印加できる構成となっている。給電用端子41は、温度調節用ベース部3との絶縁性を保つために、碍子41aで被覆されている。
 高周波発生用電極4の形成材料は、非磁性の金属材料とすることが好ましい。高周波発生用電極4の形成材料を非磁性金属で形成することで、静電チャック装置1を高周波雰囲気中で用いても高周波発生用電極4が、高周波により自己発熱することを抑制することができる。したがって、高周波雰囲気中であっても、板状試料の面内温度を所望の一定温度または一定の温度パターンに維持することが容易となる。
 高周波発生用電極4の形成材料は、熱膨張率が4×10-6/K以上、10×10-6/K以下であることが好ましい。
 熱膨張率が当該範囲であれば、熱膨張率差により静電チャック部と高周波発生用電極4との接合界面の剥離が生じることをより抑制することができる。
 接合界面に剥離が発生した箇所と、発生していない箇所では静電チャック部と高周波発生用電極間の熱伝達性に差が生じ、静電チャック部面内の均熱性を維持することが難しくなる。
 高周波発生用電極4の厚みは、20μm以上、1000μm以下であることが好ましい。高周波発生用電極4の厚みが厚すぎると、熱容量が大きくなりすぎ、載置される板状試料Wの熱応答性が劣化する。また高周波発生用電極4の厚みが薄すぎると、高周波発生用電極の発熱ムラ、電界のムラを生じ、プラズマの均一性に影響を及ぼす。
 第1のヒータエレメント5は、高周波発生用電極4と温度調節用ベース部3との間に層状に配置されている。
 第1のヒータエレメント5は、図2に示すように、中心部の円環状の領域に配置された第1の主ヒータ5Aと、この第1の主ヒータ5Aを順次取り囲むように円環状の領域に配置された第2の主ヒータ5Bと、第3の主ヒータ5Cと、第4の主ヒータ5Dとからなる。図2に示すように第1~第4の主ヒータ5A~5Dが配置されている領域は、円板状の静電チャック部2と同程度の大きさであることが好ましい。
 なお、主ヒータ5A、5B、5C、5Dは、図2では平面視単純な円環状に描いたが、各主ヒータ5A、5B、5C、5Dは帯状のヒータを蛇行させて図2に示す円環状の領域を占めるように配置されている。このため、図1に示す断面構造では各主ヒータ5A、5B、5C、5Dを構成する帯状のヒータを個別に描いた。また第1のヒータエレメント5をその径方向に4つに分割して4つの主ヒータ5A~5Dからなる構造としたが、第1のヒータエレメント5の分割数は4に限らず、任意の数でよい。
 主ヒータ5A~5Dは、一例として、厚みが0.2mm以下、好ましくは0.1mm程度の一定の厚みを有する非磁性金属薄板、例えばチタン(Ti)薄板、タングステン(W)薄板、モリブデン(Mo)薄板等をフォトリソグラフィー法により所望のヒータ形状、例えば帯状のヒータを蛇行させた形状の全体輪郭を円環状に加工することで得られる。
 これらの主ヒータ5A~5Dは、厚みの均一な耐熱性および絶縁性を有する絶縁板10を介して、温度調節用ベース部3上に固定されている。
 第1のヒータエレメント5は主ヒータ5A、5B、5C、5Dからなるが、これら個々の主ヒータ5A、5B、5C、5Dに給電するための複数本の給電用端子51が設けられ、主ヒータを加熱するためのヒータ電源(正極)に接続されている。図2では主ヒータ5A、5B、5C、5Dの概形のみを示しているが、いずれのヒータであっても電源に接続するための導通部が各ヒータの一端側と他端側に設けられる。そのため、主ヒータ5A、5B、5C、5Dに対し2本ずつ、合計8本の給電用端子51が設けられている。
 図1では説明の簡略化のために、最外周の主ヒータ5Dに対し接続された給電用端子51を1本描いている。この給電用端子51は、温度調節用ベース部3と絶縁板10をそれらの厚さ方向に部分的に貫通するように配置されている。また、給電用端子51の外周面には絶縁用の筒型の碍子51aが装着され、温度調節用ベース部3と給電用端子51が絶縁されている。さらに給電端子51は、接着部51bを介して第1のヒータエレメント5と接着されている。
 給電用端子51を構成する材料は先の給電用端子25Cを構成する材料と同等の材料を用いることができる。
 ガード電極70は、第1ヒータエレメント5と高周波発生用電極4との間に設けられる。そのため、高周波発生用電極4から生じた高周波を遮断できる。すなわち、第1ヒータエレメント5を構成する主ヒータへの高周波の影響を抑制することができる。したがって、主ヒータに電力を供給するヒータ電源に、高周波がノイズとして印加されることを抑制し、ヒータ電源の動作ないし性能が害される恐れを低減する。
 また、ガード電極70が高周波を遮断するため、第1ヒータエレメント5を構成する主ヒータに高周波カットフィルタを設ける必要がない。すなわち、静電チャック装置1の構成が複雑になることを避け、静電チャック装置1の作製コストを低減することができる。
 ガード電極70は、高周波発生用電極4の底面側に接着層70Aを介して、接着されている。ガード電極70には、通電用端子71を介して外部に接地されている。通電用端子71は、温度調節用ベース部3との絶縁性を保つために、碍子71aで被覆されている。
 ガード電極70は、高周波発生用電極4から発生した高周波を遮断する。ガード電極は、その面内方向の熱伝導を阻害する伝熱障壁を有することが好ましい。伝熱障壁は、ガード電極に設けた切込、溝等でもよく、これらの内部を熱伝導性の悪い(ガード電極を構成する材料より熱伝導性が悪い)樹脂等で充填してもよい。以下、一例として切込の場合を基に説明する。図3は、本発明の第1実施形態の静電チャック装置1に用いられるガード電極70を平面視した図である。
 図3に示すように、ガード電極70は、第1のヒータエレメント5が配置された面に沿って円形領域に配置され、その円形領域の円周方向に延在する複数の切込(第1の伝熱障壁)を有している。またガード電極70の切込は、第1のヒータエレメント5を構成する複数の主ヒータ5A~5Dが、円形領域において同心状に配置されている場合、円形領域の径方向で隣り合う複数の主ヒータ5A~5Dの間の領域と平面的に重なって設けられていることが好ましい。
 ガード電極70が、その円周方向に延在する複数の切込を有することで、ガード電極内の円周方向の均熱性を高めることができる。静電チャック装置では、面内方向のうち、同心円方向(周方向)への熱伝導は許容されうる。一方で、径方向の熱伝導は均熱性の阻害要因となり得る。そのため、ガード電極70の径方向を熱的に分離することでより板状試料の領域毎の温度制御を精度よく行うことができる。
 また主ヒータの加熱領域に合せてガード電極70に切込を設けることで、主ヒータ5A~5Dにより加えられた熱が、ガード電極70の熱伝導によって径方向へ広がることをより抑制できる。すなわち、より板状試料の領域毎の温度制御を精度よく行うことができる。
 図3に示すように、ガード電極70に伝熱障壁を有している場合でも、ガード電極70は部分的に接続されており、電気的に一体であることが好ましい。電気的に一体化していることで、ガード電極70の電位を一定に保つことができる。そのため、プラズマ密度への影響も少なくすることができる。
 このような伝熱障壁は、高周波発生用電極4に設けてもよい。また高周波発生電極4及びガード電極70の両方に設けてもよい。高周波発生用電極4が、その円周方向に延在する複数の伝熱障壁(第2の伝熱障壁)を有することで、高周波発生用電極4内の円周方向の均熱性を高めることができる。上述のように、静電チャック装置では、面内方向のうち、同心円方向(周方向)への熱伝導は許容されうる。一方で、径方向の熱伝導は均熱性の阻害要因となり得る。そのため、高周波発生用電極4の径方向を熱的に分離することでより板状試料の領域毎の温度制御を精度よく行うことができる。
 また主ヒータの加熱領域に合せて高周波発生用電極4に伝熱障壁を設けることで、主ヒータ5A~5Dにより加えられた熱が、高周波発生用電極4の熱伝導によって径方向へ広がることをより抑制できる。すなわち、より板状試料の領域毎の温度制御を精度よく行うことができる。
 ガード電極70の形成材料は、高周波を遮断できる金属材料であればよいが、非磁性の金属材料とすることが好ましい。ガード電極70の形成材料を非磁性金属で形成することで、高周波発生用電極4から生じる高周波により、ガード電極70が発熱することを抑制することができる。したがって、高周波雰囲気中であっても、板状試料の面内温度を所望の一定温度または一定の温度パターンに維持することが容易となる。
 ガード電極70の形成材料は、熱膨張率が4×10-6/K以上、10×10-6/K以下であることが好ましい。
 熱膨張率が当該範囲であれば、熱膨張率差により高周波発生用電極4との接合界面の剥離等が生じることをより抑制することができる。接合界面に剥離が生じると、剥離が発生した箇所と、発生していない箇所で熱伝達性に差が生じ、面内の均熱性を維持することが難しくなる。
 ガード電極70の厚みは、20μm以上、1000μm以下であることが好ましい。ガード電極70の厚みが厚すぎると、熱容量が大きくなりすぎ、載置される板状試料Wの熱応答性が劣化する。またガード電極70の厚みが薄すぎると、十分な高周波遮蔽性が得られないとともに、発熱等の問題を生じる。
 主ヒータ5A、5B、5C、5Dの下面側には温度センサー30が設けられている。図1の構造では温度センサー30の温度調節用ベース部3をそれらの厚さ方向に部分的に貫通するように設置孔31が形成され、これらの設置孔31の最上部、主ヒータ5A、5B、5C、5Dのいずれかに近接する位置にそれぞれ温度センサー30が設置されている。
 なお、温度センサー30はできるだけ主ヒータ5A、5B、5C、5Dに近い位置に設置することが望ましい。
 また、温度センサー30は、温度調節用ベースの温度の影響を受けないため、温度センサーの一方の面を絶縁層を介してヒータ側に接着し、他の面は冷却ベースに接していないもしくは、ヒータと温度センサー30の熱伝達率に比較して温度センサー30が十分に小さい(1/5以下 より好ましくは1/10)ことが望ましい。
 温度センサー30は、一例として石英ガラス等からなる直方体形状の透光体の上面側に蛍光体層が形成された蛍光発光型の温度センサーであり、この温度センサー30が透光性および耐熱性を有するシリコン樹脂系接着剤等により主ヒータ5A、5B、5C、5Dの下面に接着されている。
 蛍光体層は、主ヒータからの発熱に応じて蛍光を発生する材料からなり、発熱に応じて蛍光を発生する材料であれば多種多様の蛍光材料を選択できるが、一例として、発光に適したエネルギー順位を有する希土類元素が添加された蛍光材料、AlGaAs等の半導体材料、酸化マグネシウム等の金属酸化物、ルビーやサファイア等の鉱物から適宜選択して用いることができる。
 主ヒータ5A、5B、5C、5Dに対応する温度センサー30はそれぞれ給電用端子などと干渉しない位置であって主ヒータ5A、5B、5C、5Dの下面周方向の任意の位置にそれぞれ設けられている。
 これらの温度センサー30の蛍光から主ヒータ5A~5Dの温度を測定する温度計測部32は、一例として、図1に示すように温度調節用ベース部3の設置孔31の外側(下側)に前記蛍光体層に対し励起光を照射する励起部33と、蛍光体層から発せられた蛍光を検出する蛍光検出器34と、励起部33および蛍光検出器34を制御するとともに前記蛍光に基づき主ヒータの温度を算出する制御部35とから構成されている。
 ところで、図1に符号38で示すものは温度調節用ベース部3から載置板23までをそれらの厚さ方向に部分的に貫通するように設けられたピン挿通孔であり、このピン挿通孔38に板状試料離脱用のリフトピンが設けられる。ピン挿通孔38の外周部には筒状の碍子38aが設けられている。
 前記構造の静電チャック装置1において、第1のヒータエレメント5と温度調節用ベース部3との間の熱伝達率は4000W/mKより小さく200W/mKより大きいことが好ましい。
 熱伝達率が200W/mKより大きいならば、第1のヒータエレメント5と温度調節用ベース部3との間の熱応答性を高くすることができ、静電チャック装置1の温度制御を行う場合に応答性の良好な温度制御が可能となる。
 なお、熱伝達率は4000W/mKより大きい場合、ヒータ部から温度調整ベースへの熱流出が大きくなり、搭載物(板状試料)Wを所定の温度まで昇温するのに過度の電力をヒータに供給する必要があり好ましくない。
 以上の説明のように構成された静電チャック装置1は、給電用端子25Cから静電チャック部2の静電吸着用電極23に通電して静電吸着力を発生させ、載置面21aの突起部21b上に板状試料Wを吸着して使用することができる。
 また、温度調節用ベース部3に冷媒を循環させて板状試料Wを冷却できるとともに、主ヒータ5A~5Dの各々に給電用端子51を介し電源から通電することで主ヒータ5A~5Dを個々に発熱させ、板状試料Wを加温することで温度制御することができる。
 静電チャック装置1は、上記構成を用いることで、複数に分割したヒータを備えた構造であっても各ヒータで加熱するゾーンの均一な温度制御を簡便な構成で実現することができる。また、その構成により第1のヒータエレメント5用の高周波カットフィルタが不要となり、静電チャック装置1の構成が複雑になることを避け、静電チャック装置1の作製コストを低減することができる。
「第2実施形態」
 図4は、本発明の第2実施形態の静電チャック装置を示す断面図である。この形態の静電チャック装置101は、第1ヒータエレメント5と温度調節用ベース部3の間に第2のヒータエレメントを備える点が異なる。また第2のヒータエレメントを設けることに付随して、絶縁板7、8、絶縁板7、8の間に介在した配線層9、絶縁板7を温度調節用ベース部3に接着する接着層7Aが配設されている。
 第2のヒータエレメント6は、図5では、第1のヒータエレメント5と温度調節用ベース部3との間に層状に配置されている。一方で、第1ヒータエレメント5とガード電極70の間に配置してもよい。いずれの場合でも、ガード電極70が、高周波発生用電極4から発生する高周波を遮断する。したがって、第1ヒータエレメントを構成する主ヒータおよび第2ヒータエレメントを構成するサブヒータに高周波がノイズとして印加されることを抑制し、ヒータ電源の動作ないし性能が害される恐れを低減する。したがって、主ヒータ及びサブヒータ用に高周波カットフィルタを設ける必要がない。そのため、静電チャック装置101の構成が複雑になることを避け、静電チャック装置101の作製コストを低減することができる。
 第2のヒータエレメント6は、図5に示すように中心部の円環状の領域に配置された第1のサブヒータ6Aと、この第1のサブヒータ6Aを順次取り囲むように円環状の領域に形成された第2のサブヒータ6Bと、第3のサブヒータ6Cと、第4のサブヒータ6Dとからなる。
 第1のサブヒータ6Aは、扇形環状体形状の領域に配置されたヒータ分割体6aを複数(図5の構成の場合2つ)組み合わせて円環状に形成され、第2のサブヒータ6Bは、扇形環状体形状の領域に配置されたヒータ分割体6bを複数(図5の構成の場合4つ)組み合わせて円環状に形成されている。第3のサブヒータ6Cは、扇形環状体形状の領域に配置されたヒータ分割体6cを複数(図5の構成の場合4つ)組み合わせて円環状に形成されている。第4のサブヒータ6Dは、扇形環状体形状の領域に配置されたヒータ分割体6dを複数(図5の構成の場合8つ)組み合わせて円環状に形成されている。
 ヒータ分割体6a~6dは、主ヒータ5A~5Dよりも薄い非磁性金属薄板、例えばモリブデン(Mo)薄板、タングステン(W)薄板、ニオブ(Nb)薄板、チタン(Ti)薄板、銅(Cu)薄板等をフォトリソグラフィー法により所望のヒータ形状、例えば帯状のヒータを蛇行させた形状の全体輪郭を扇形環状体形状に加工することで得られる。
 これらのヒータ分割体6a~6dは、主ヒータ5A~5Dの単位面積あたりの発熱量より低い発熱量を示す構成であることが好ましく、主ヒータ5A~5Dより薄い構造あるいは発熱量の低い材料から構成されていることが好ましい。一例として、主ヒータを厚み100μmのTi薄板から構成した場合、サブヒータを厚さ5μmのMo薄板から構成することができる。
 これらのヒータ分割体6a~6dは、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂等からなる図示略の接着剤層により絶縁板8の上面に接着・固定されている。
 なお、本実施形態ではサブヒータ6A、6B、6C、6Dを2分割、4分割あるいは8分割構造としたが、分割数は任意で良く、分割した場合の形状も任意でよい。
 静電チャック装置101のように、第2のヒータエレメント6を有する場合、ガード電極70に形成される第1伝熱障壁及び高周波発生用電極4に形成される第2の伝熱障壁は、隣り合う複数の主ヒータ間の領域および隣り合う複数のサブヒータ間の領域と、平面的に重なるように設けられていることが好ましい。
 次に、サブヒータ6A~6Dを構成するヒータ分割体とそれらに個々に給電するための構造について説明する。
 サブヒータ6A~6Dは、平面視すると図5に示すように各サブヒータ6A~6Dをそれらの周方向に個々に分割した複数のヒータ分割体6a、6b、6c、6dの集合構造とされている。ヒータ分割体6a、6b、6c、6dにそれぞれ給電するために、本実施形態では絶縁板7の上面側に銅などの低抵抗材料からなる配線層9が設けられている。
 配線層9は個々に分岐された複数の配線体9aからなり各配線体9aはヒータ分割体6a、6b、6c、6dのいずれかに接続されている。
 図4において配線体9aは絶縁板7の上面側にその中央部側から周縁側に延在するように複数配置され、各配線体9aの一端側が絶縁板8の一部に形成されているコンタクトホールに形成された溶接部等の導通部8bを介しヒータ分割体のいずれかに接続されている。また、各配線体9aの他端側が絶縁板7の一部に形成されているコンタクトホールに形成された溶接部等の導通部7bを介し給電用端子61に接続されている。この給電用端子61は温度調節用ベース部3の貫通孔3bに沿って温度調節用ベース部3をその厚さ方向に貫通し、絶縁板7に達するように形成されたもので、給電用端子61の外周側には絶縁用の碍子61aが設けられ、温度調節用ベース部3に対し絶縁されている。
 ヒータ分割体6a、6b、6c、6dはサブヒータ6A、6B、6C、6Dの周方向に複数形成されているので、これらに接続するための給電用端子61が相互干渉しないように給電用端子61を温度調節用ベース部3の周方向に対し離間された位置に配置され、これらヒータ分割体6a、6b、6c、6dが個々に個別の配線体9aを用いて接続されている。
 なお、ヒータ分割体6a、6b、6c、6dに対し個々に給電するためにこれらに対しそれぞれ2本の給電用端子61が接続されているが、図4の断面構造では一部のみ示し、他の配線体9aの接続構造は適宜記載を略している。
 ヒータ分割体6a、6b、6c、6dのいずれについても給電用端子61が2本ずつ接続され、ヒータ分割体6a、6b、6c、6dのそれぞれに対し2本の給電用端子61を介しスイッチ素子と電源装置が接続されている。
 以上説明の構成により、ヒータ分割体6a、6b、6c、6dのそれぞれに対し、スイッチ素子と電源の動作に応じて通電発熱制御ができるようになっている。スイッチング素子と電源の動作については、第1のヒータエレメント5と抵抗体の数が異なることに伴うスイッチング素子、正極、負極の数が異なるのみで、同様の構成で動作させることができる。
 なお、サブヒータ6A~6Dの給電用端子61の数は、ヒータパターンおよびスイッチ素子の配置によりヒータ分割体の数の2倍より減じることができる。
 板状試料Wをエッチング装置あるいは成膜装置に供給してプラズマ雰囲気や成膜雰囲気に晒すと、板状試料Wにはプラズマの生成状態あるいは成膜室内の温度分布等に応じて温度差が生じる。
 板状試料Wの表面の温度分布を例えば図6に示すようにサーモカメラ200で撮影してサーモグラフで分析し、板状試料Wにおいて温度の低い領域を生じているならば、該当する領域のヒータ分割体6a、6b、6c、6dのいずれかに通電し加温することで、ヒータ分割体6a、6b、6c、6dの個々の領域の上方に対応する板状試料Wの各ゾーンの表面温度を局所的に上昇させ、板状試料Wの表面温度を均一化することができる。
 加温する際の温度制御はヒータ分割体6a、6b、6c、6dの個々に通電する際の印加電圧制御、電圧印加時間制御、電流値制御等で行うことができる。
 上述の構造において、第2のヒータエレメント6を複数のヒータ分割体6a、6b、6c、6dに分割し、個々に通電発熱制御ができるように構成したので、吸着した板状試料Wに温度分布が生じようとした場合であっても温度の低いゾーンに対応する位置のヒータ分割体6a、6b、6c、6dのいずれかに通電し発熱させることで板状試料Wの温度の低いゾーンの温度を上昇させて温度分布を均一化できる。
 このため、プラズマエッチングあるいは成膜などのために静電チャック装置101により板状試料Wを保持している場合、ヒータ分割体6a~6dの個別温度制御により板状試料Wの表面温度を均一化することにより、均一なエッチングあるいは均一な成膜を行うことができる。
 また、主ヒータ5A~5Dに対し、ヒータ分割体6a、6b、6c、6dの単位面積当たりの発熱量を小さくすることで、温度微調整用のヒータ分割体6a、6b、6c、6dに対する通電量を小さくすることができる。更に、ヒータ分割体6a、6b、6c、6dの通電量を小さくできることから、例えば、ヒータ分割体6a、6b、6c、6dに対する通電電流をパルス電流とすることで電力供給量を削減できる。
 前述の構造において、主ヒータ5A~5Dの厚みとヒータ分割体6a、6b、6c、6dの厚みは製造時に自由に選択できるので、各ヒータ、各配線に応じた耐電圧を個別に設定することができ、各ヒータ、各配線に個別の望ましい耐電圧値を設定できる。例えば一例としてTi薄板からなる主ヒータの厚みを100μm、Mo薄板からなるヒータ分割体の厚みを5μmに設定することにより、ヒータ分割体の単位面積あたりの発熱量を主ヒータの1/5以下に調整することができる。勿論、構成材料とヒータ厚の他に、供給電圧の調整によって主ヒータとヒータ分割体の発熱量の調節を行ってもよい。
 ところで、第2実施形態の構造では第1のヒータエレメント5をその径方向に4つに分割して4つの主ヒータ5A~5Dからなる構造としたが、第1のヒータエレメント5の分割数は4に限らず、任意の数でよい。また、第2のヒータエレメント6について径方向に4つに分割して4つのサブヒータ6A~6Dから構成し、更に第1のサブヒータ6Aを2分割、第2のサブヒータ6Bを4分割、第3のサブヒータ6Cを4分割、第4のサブヒータ6Dを8分割構造としたが、第2のヒータエレメント6の径方向への分割数は任意の数で良く、各サブヒータの分割数も任意の数でよい。ただし、サブヒータにより局所的な温度微調整を行う観点から、第1のヒータエレメント5の分割数より第2のヒータエレメント6の分割数が多い方が好ましい。
 本実施形態において第2のヒータエレメント6について1層構造としたが、第2のヒータエレメント6は2層以上の多層構造でも差し支えない。また、本実施形態において第1のヒータエレメント5と第2のヒータエレメント6を平面視円環状に重なる領域に配置したが、平面視で重なる領域から多少ずれた位置に配置しても良い。例えば、第1のヒータエレメント5を構成する複数の主ヒータ設置領域(円環状の設置領域)の間に形成されている僅かな間隙を平面視で埋めるように第2のヒータエレメントの複数のサブヒータを配置し、複数の主ヒータ間の隙間領域を複数のサブヒータで埋めるように配置することも可能である。勿論、第2のサブヒータを2層以上配置した場合に各層の配置領域を平面視でずらすことで、主ヒータ間の間隙を埋める構造を採用しても良い。
 静電チャック装置101は、上記構成を用いることで、複数に分割したヒータを備えた構造であっても各ヒータで加熱するゾーンの均一な温度制御をすることができる静電チャック装置101を提供することができる。また、ガード電極70により第1のヒータエレメント5及び第2のヒータエレメント6を構成する主ヒータ及びサブヒータ用の高周波カットフィルタが不要となり、静電チャック装置101の構成が複雑になることを避け、静電チャック装置101の作製コストを低減することができる。
「第3実施形態」
 図7は、本発明の第3実施形態の静電チャック装置を示す断面図である。この形態の静電チャック装置501は、一主面(上面)側を載置面とした円板状の静電チャック部502と、この静電チャック部502の下方に設けられて静電チャック部502を所望の温度に調整する厚みのある円板状の温度調節用ベース部503と、静電チャック部502と温度調節用ベース部503の間に介挿された層状構造の高周波発生用電極550と、静電チャック部502と高周波発生用電極550の間に介挿された層状構造の第1のヒータエレメント505と、高周波発生用電極550と温度調節用ベース部503との間に介挿された層状構造の第2のヒータエレメント506と、高周波発生用電極550と第2ヒータエレメントの間に介挿された金属板551を備えている。また静電チャック装置501は、静電チャック部502の底面側と、第1のヒータエレメント505の周囲を覆って形成された接着剤層509Bを備えて構成される。
 静電チャック部502は、上面を半導体ウエハ等の板状試料Wを載置する載置面511aとした載置板511と、この載置板511と一体化され該載置板511の底部側を支持する支持板512と、これら載置板511と支持板512との間に設けられた静電吸着用電極(静電吸着用内部電極)513および静電吸着用電極513の周囲を絶縁する絶縁材層514と、支持板512を貫通するように設けられ静電吸着用電極513に直流電圧を印加するための取出電極端子515Aにより構成されている。
 載置板511および支持板512は、重ね合わせた面の形状を同じくする円板状のものである。これらは、酸化アルミニウム-炭化ケイ素(Al-SiC)複合焼結体、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y)焼結体等の機械的な強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する絶縁性のセラミックス焼結体からなる。
 載置板511の載置面511aには、直径が板状試料の厚みより小さい突起部511bが複数所定の間隔で形成されている。これらの突起部511bは、板状試料Wを支持する。
 載置板511、支持板512、静電吸着用電極513および絶縁材層514を含めた全体の厚み、即ち、静電チャック部502の厚みは一例として0.7mm以上かつ5.0mm以下に形成されている。
 例えば、静電チャック部502の厚みが0.7mmを下回ると、静電チャック部502の機械的強度を確保することが難しくなる。静電チャック部502の厚みが5.0mmを上回ると、静電チャック部502の熱容量が大きくなる。そのため、載置される板状試料Wの熱応答性が劣化し、静電チャック部502の横方向の熱伝達が増加する。そのため、板状試料Wの面内温度を所望の温度パターンに維持することが難しくなる。ここで説明した各部の厚さは一例であって、前記範囲に限るものではない。
 静電吸着用電極513は、電荷を発生させて静電吸着力で板状試料Wを固定するための静電チャック用電極として用いられる。用途によって、その形状や、大きさが適宜調整される。
 静電吸着用電極513は、酸化アルミニウム-炭化タンタル(Al-Ta)導電性複合焼結体、酸化アルミニウム-タングステン(Al-W)導電性複合焼結体、酸化アルミニウム-炭化ケイ素(Al-SiC)導電性複合焼結体、窒化アルミニウム-タングステン(AlN-W)導電性複合焼結体、窒化アルミニウム-タンタル(AlN-Ta)導電性複合焼結体、酸化イットリウム-モリブデン(Y-Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されることが好ましい。
 静電吸着用電極513の厚みは、特に限定されるものではないが、例えば、0.1μm以上かつ100μm以下の厚みを選択することができ、5μm以上かつ20μm以下の厚みがより好ましい。
 静電吸着用電極513の厚みが0.1μmを下回ると、充分な導電性を確保することが難しくなる。静電吸着用電極513の厚みが100μmを越えると、静電吸着用電極513と載置板511および支持板512との接合界面の剥離およびクラックが入り易くなる。これは、静電吸着用電極513と載置板511および支持板512との間の熱膨張率差に起因すると考えられる。
 このような厚みの静電吸着用電極513は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
 絶縁材層514は、静電吸着用電極513を囲繞して腐食性ガスおよびそのプラズマから静電吸着用電極513を保護するとともに、載置板511と支持板512との境界部、すなわち静電吸着用電極513以外の外周部領域を接合一体化するものであり、載置板511および支持板512を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。
 取出電極端子515Aは、静電吸着用電極513に直流電圧を印加するために設けられた棒状のものである。取出電極端子515Aの材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用電極513および支持板512の熱膨張係数に近似したものが好ましく、例えば、Al-Taなどの導電性セラミック材料からなる。
 取出電極端子515Aは導電性接着部515Bと後述する給電用端子515Cに接続されている。導電性接着部515Bは柔軟性と耐電性を有するシリコン系の導電性接着剤からなる。
給電端子515Cはタングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料からなる。
 給電用端子515Cの外周側には、絶縁性を有する碍子515aが設けられ、この碍子515aにより金属製の温度調節用ベース部503に対し給電用端子515Cが絶縁されている。取出電極端子515Aは支持板512に接合一体化され、さらに、載置板511と支持板512は、静電吸着用電極513および絶縁材層514により接合一体化されて静電チャック部502が構成されている。
 給電用端子515Cは後に詳述する温度調節用ベース部503の貫通孔503bを貫通するように設けられている。
 温度調節用ベース部503は、静電チャック部502を所望の温度に調整するためのもので、厚みのある円板状のものである。温度調節用ベース部503は、その内部に水等を循環させる流路503Aが形成されている。
 温度調節用ベース部503は、金属材料を形成材料とする。この金属材料は、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であることが好ましい。例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等が好適に用いられる。この温度調節用ベース部503の少なくともプラズマに曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
 温度調節用ベース部503の流路503Aに対し静電チャック部502側に形成された凹部503aには、開口部503Bが形成されている。その開口部503B内には、後述する第2のヒータエレメント506が配置されている。
 高周波発生用電極550は、装置内にプラズマを発生させるために高周波を発生させるためのものである。例えば、リアクティブイオンエッチング(RIE)装置では、高周波発生電源から高周波電力を高周波発生用電極550に印加することで、対向する対向電極との間に放電を生じさせ、ガスをプラズマ化することができる。
 高周波発生用電極550は、静電チャック部502と温度調節用ベース部503の間に介挿されている。高周波発生用電極550には、給電用端子552を介して接続された図示略の高周波電源が接続され、高周波電力を高周波発生用電極550に印加できる構成となっている。給電用端子552は、温度調節用ベース部503との絶縁性を保つために、碍子552aで被覆されている。
 高周波発生用電極550は、金属材料からなり、その周囲が絶縁層553で覆われている。
絶縁層553により、温度調節用ベース部503と絶縁されている。すなわち、高周波発生用電極550に印加された電圧が、外部に漏洩することを防ぐことができる。
 高周波発生用電極550の形成材料を非磁性金属で形成することが好ましい。非磁性金属を用いることで、静電チャック装置501を高周波雰囲気中で用いても高周波発生用電極550が、高周波により自己発熱することを抑制することができる。したがって、高周波雰囲気中であっても、板状試料の面内温度を所望の一定温度または一定の温度パターンに維持することが容易となる。
 高周波発生用電極550の厚みは、20μm以上、1000μm以下であることが好ましい。高周波発生用電極550の厚みが厚すぎると、熱容量が大きくなりすぎ、載置される板状試料Wの熱応答性が劣化する。また高周波発生用電極550の厚みが薄すぎると、高周波発生用電極の発熱ムラ、電界のムラを生じ、プラズマの均一性に影響を及ぼす。
 第1のヒータエレメント505は、高周波発生電極550を被覆する絶縁層553上に、接着層509Aを介して接着されている。接着層509Aは、接着剤層509Bと同様の接着性樹脂からなり、シート状またはフィルム状のものを用いることができる。また、支持板512の底面側に接着層509Aを介して接着してもよい。
 第1のヒータエレメント505は、図8に示すように、中心部の円環状の領域に配置された第1の主ヒータ505Aと、この第1の主ヒータ505Aを順次取り囲むように円環状の領域に配置された第2の主ヒータ505Bと、第3の主ヒータ505Cと、第4の主ヒータ505Dとからなる。図8に示すように第1~第4の主ヒータ505A~505Dが配置されている領域は、円板状の静電チャック部502と同程度の大きさであることが好ましい。
 なお、主ヒータ505A、505B、505C、505Dは、図8では平面視単純な円環状に描いたが、各主ヒータ505A、505B、505C、505Dは帯状のヒータを蛇行させて図8に示す円環状の領域を占めるように配置されている。このため、図7に示す断面構造では各主ヒータ505A、505B、505C、505Dを構成する帯状のヒータを個別に描いた。
 主ヒータ505A~505Dは、一例として、厚みが0.2mm以下、好ましくは0.1mm程度の一定の厚みを有する非磁性金属薄板、例えばチタン(Ti)薄板、タングステン(W)薄板、モリブデン(Mo)薄板等をフォトリソグラフィー法により所望のヒータ形状、例えば帯状のヒータを蛇行させた形状の全体輪郭を円環状に加工することで得られる。
 これらの主ヒータ505A~505Dは、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂等からなる接着層509Aにより支持板512の底面に接着・固定されている。
 第2のヒータエレメント506は、温度調節用ベース部503の凹部503a内に形成された開口部503B内に配設されている。開口部503Bは、温度調節用ベース部503の凹部503aと、その凹部503aの上部に設けられた金属板551によって形成される。開口部503Bには、流路503A側から、絶縁板507、配線層504、絶縁板508、第2のヒータエレメント506が順に積層され、これらの周囲を絶縁部510が覆うように形成されている。金属板551は、温度調節用ベース部503と同様の構成材料からなるものを用いることができる。
 絶縁板507は開口部503Bの流路503A側の面に接着層507Aにより接着されている。この接着層507Aは接着層509Aと同様のものを用いることができる。接着層507Aは例えば厚み5~100μm程度に形成される。絶縁板507、508はポリイミド樹脂、エポキシ樹脂、アクリル樹脂などの耐熱性を有する樹脂の薄板、シートあるいはフィルムからなる。
 なお、絶縁板507、508は、樹脂シートに代え、絶縁性のセラミック板でもよく、またアルミナ等の絶縁性を有する溶射膜でも良い。
 一例として絶縁板507の上面に配線層504が形成され、絶縁板508の上面に第2のヒータエレメント506が形成され、これらの周囲を絶縁部510で覆うことで図7に示す積層構造が実現されている。絶縁部510は、第2のヒータエレメント506と温度調節用ベース部503が電気的に接続されるのを避けるために設けられている。
 第2のヒータエレメント506は、図9に示すように中心部の円環状の領域に配置された第1のサブヒータ506Aと、この第1のサブヒータ506Aを順次取り囲むように円環状の領域に形成された第2のサブヒータ506Bと、第3のサブヒータ506Cと、第4のサブヒータ506Dとからなる。第1のサブヒータ506Aは、扇形環状体形状の領域に配置されたヒータ分割体506aを複数(図9の構成の場合2つ)組み合わせて円環状に形成され、第2のサブヒータ506Bは、扇形環状体形状の領域に配置されたヒータ分割体506bを複数(図9の構成の場合4つ)組み合わせて円環状に形成されている。第3のサブヒータ506Cは、扇形環状体形状の領域に配置されたヒータ分割体506cを複数(図9の構成の場合4つ)組み合わせて円環状に形成されている。第4のサブヒータ506Dは、扇形環状体形状の領域に配置されたヒータ分割体506dを複数(図9の構成の場合8つ)組み合わせて円環状に形成されている。
 ヒータ分割体506a~506dは、主ヒータ505A~505Dよりも薄い非磁性金属薄板、例えばモリブデン(Mo)薄板、タングステン(W)薄板、ニオブ(Nb)薄板、チタン(Ti)薄板、銅(Cu)薄板等をフォトリソグラフィー法により所望のヒータ形状、例えば帯状のヒータを蛇行させた形状の全体輪郭を扇形環状体形状に加工することで得られる。
 これらのヒータ分割体506a~506dは、主ヒータ505A~505Dの単位面積あたりの発熱量より低い発熱量を示す構成であることが好ましく、主ヒータ505A~505Dより薄い構造あるいは発熱量の低い材料から構成されていることが好ましい。一例として、主ヒータを厚み100μmのTi薄板から構成した場合、サブヒータを厚さ5μmのMo薄板から構成することができる。
 これらのヒータ分割体506a~506dは、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂等からなる図示略の接着剤層により絶縁板508の上面に接着・固定されている。
 なお、本実施形態ではサブヒータ506A、506B、506C、506Dを2分割、4分割あるいは8分割構造としたが、分割数は任意で良く、分割した場合の形状も任意でよい。
 金属板551は、複数のサブヒータからなる第2のヒータエレメント506と、高周波発生用電極550との間に設けられる。金属板551が接地されることにより、第2のヒータエレメント506が、高周波の影響を受けることを抑制できる。したがって、第2のヒータエレメント506を介して高周波電流がサブヒータ用の電源へ漏洩することを防止することができ、サブヒータのための高周波カットフィルタを除去することができる。
 すなわち、静電チャック装置501の構成が複雑になることを避け、静電チャック装置501の作製コストを低減することができる。また、高周波がヒータへの供給電源にノイズとして漏洩し、ヒータ電源の動作ないし性能が害される恐れもない。さらに、温度調節用ベース部503内部に配置された第2のヒータエレメント506が、高周波により発熱することも抑制でき、温度分布の微調整をより精密に行うことができる。
 また金属板551と温度調節用ベース部503は、電気的に接続されていることが好ましい。
金属板551と温度調節用ベース部503を接合して一体化してもよい。金属板551と温度調節用ベース部503が電気的に接続すれば、温度調節用ベース部503を接地するだけで、高周波発生用電極550から生じた高周波を、金属板551を介して温度調節用ベース部503から除去することができる。したがって、静電チャック装置501の構成が複雑になることをより避けることができる。
 金属板551は、その面内方向の伝熱が阻害される伝熱障壁(第1の伝熱障壁)を有していることが好ましい。具体的には、図10に示すように、その円周方向に延在する複数の切込、溝およびこれらの内部に熱伝導性の悪い(金属板を構成する金属より熱伝導性の悪い)樹脂等を埋め込む構成を有することが好ましい。熱伝導性の悪い樹脂としては、例えばポリイミド樹脂等を用いることができる。
 静電チャック装置では、面内方向のうち、同心円方向(周方向)への熱伝導は許容されうる。一方で、径方向の熱伝導は均熱性の阻害要因となり得る。金属板が面内方向に伝熱できると、制御された温度分布を緩和してしまう。そのため、金属板551に、円周方向に延在する複数の伝熱障壁を設けることで、金属板の面内方向への伝熱を阻害することができる。またこの切込は、熱伝導性の悪い樹脂等で埋めてもよい。熱伝導性の悪い樹脂としては、例えばポリイミド樹脂等を用いることができる。
 また円周方向に延在する伝熱障壁は、図10に示すように、円周方向の全周に渡って設けられていないことが好ましい。すなわち、金属板551は、電気的に分離されていない1枚の板からなることが好ましい。金属板551が1枚の板からなれば、金属板551のいずれか1点で接地すれば、金属板551全体を接地することができる。したがって、静電チャック装置501の構成が複雑になることをより避けることができる。
 また金属板551は、図11に示すように、隣り合う前記複数の主ヒータの間の領域及び隣り合う前記複数の主ヒータの間の領域と、平面的に重なって設けられた伝熱障壁を有することがさらに好ましい。金属板を551にこのような伝熱障壁を設けることで、各主ヒータ及びサブヒータにより温度制御される領域に合せて、金属板の面内方向の伝熱を阻害することができる。すなわち静電チャック装置501の領域毎の温度制御性をより高めることができる。
 このような伝熱障壁は、高周波発生用電極550に設けてもよい。また高周波発生電極550及び金属板551の両方に設けてもよい。高周波発生用電極550が、その円周方向に延在する複数の伝熱障壁(第2の伝熱障壁)を有することで、高周波発生用電極550内の円周方向の均熱性を高めることができる。上述のように、静電チャック装置では、面内方向のうち、同心円方向(周方向)への熱伝導は許容されうる。一方で、径方向の熱伝導は均熱性の阻害要因となり得る。そのため、高周波発生用電極550の径方向を熱的に分離することでより板状試料の領域毎の温度制御を精度よく行うことができる。
 また主ヒータの加熱領域及びサブヒータの加熱領域に合せて高周波発生用電極550に伝熱障壁を設けることで、主ヒータ及びサブヒータにより加えられた熱が、高周波発生用電極550の熱伝導によって径方向へ広がることをより抑制できる。すなわち、より板状試料の領域毎の温度制御を精度よく行うことができる。高周波発生用電極550も、電気的に分離されていない一枚の板からなることが好ましい。
 また本実施形態の構造では、温度調節用ベース部503を構成する金属板551の上面側に第1のヒータエレメント505と静電チャック部502の底部側とを収容可能な大きさの凹部503aが形成されている。この凹部を埋めるように形成された接着剤層509Bにより、高周波発生用電極550と、第1のヒータエレメント505及び静電チャック部502が一体化されている。接着剤層509Bは、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性、および、絶縁性を有する接着性樹脂を用いることができる。
 次いで、第1のヒータエレメント505に給電するための構造について説明する。
 第1のヒータエレメント505は主ヒータ505A、505B、505C、505Dからなるが、これら個々の主ヒータ505A、505B、505C、505Dに給電するための複数本の給電用端子517が設けられている。図8では主ヒータ505A、505B、505C、505Dの概形のみを示しているが、いずれのヒータであっても電源に接続するための導通部が各ヒータの一端側と他端側に設けられるので、主ヒータ505A、505B、505C、505Dに対し2本ずつ、合計8本の給電用端子517が設けられている。
 図7では説明の簡略化のために、最外周の主ヒータ505Dに対し接続された給電用端子517を1本のみ描いているが、この給電用端子517は、温度調節用ベース部503、絶縁板507、508、サブヒータ506D、絶縁部510、金属板551及び高周波発生用電極550をそれらの厚さ方向に部分的に貫通するように配置されている。また、給電用端子517の外周面には絶縁用の筒型の碍子518が装着され、温度調節用ベース部503と給電用端子517が絶縁されている。さらに給電端子517は、接着部509bを介して第1のヒータエレメント505と接着されている。
 給電用端子517を構成する材料は先の給電用端子515Cを構成する材料と同等の材料を用いることができる。
 図7では全ての給電用端子517を描いてはいないが、主ヒータ505A、505B、505C、505Dのいずれについても給電用端子517が2本ずつ接続され、主ヒータ505A、505B、505C、505Dの個々に対し2本の給電用端子517を介し電源装置が接続されて通電制御ができるようになっている。
 これらの給電用端子517はそれぞれ温度調節用ベース部503に形成された貫通孔503bを貫通するように設けられ、更に接続する相手が主ヒータ505A、505B、505C、505Dの何れかである場合は絶縁板507、508も貫通するように設けられている。
 以上説明の構成により、主ヒータ505A、505B、505C、505Dのそれぞれに対し、スイッチ素子と電源の動作に応じ主ヒータ個々の通電発熱制御ができるようになっている。
 また、主ヒータ505A、505B、505C、505Dの下面側には温度センサー520が設けられている。図7の構造では温度調節用ベース部503、絶縁板507、508、サブヒータ506D及び高周波発生用電極550をそれらの厚さ方向に部分的に貫通するように設置孔521が形成されている。これらの設置孔521の最上部、主ヒータ505A、505B、505C、505Dのいずれかに近接する位置にそれぞれ温度センサー520が設置されている。なお、温度センサー520はできるだけ主ヒータ505A、505B、505C、505Dに近い位置に設置することが望ましいので、図7の構造では主ヒータ側に突き出るように突出部520aが形成され、この突出部520aの内側に温度センサー520が設けられている。
 温度センサー520は一例として石英ガラス等からなる直方体形状の透光体の上面側に蛍光体層が形成された蛍光発光型の温度センサーであり、この温度センサー520が透光性および耐熱性を有するシリコン樹脂系接着剤等により主ヒータ505A、505B、505C、505Dの下面に接着されている。
 前記蛍光体層は、主ヒータからの発熱に応じて蛍光を発生する材料からなり、発熱に応じて蛍光を発生する材料であれば多種多様の蛍光材料を選択できるが、一例として、発光に適したエネルギー順位を有する希土類元素が添加された蛍光材料、AlGaAs等の半導体材料、酸化マグネシウム等の金属酸化物、ルビーやサファイア等の鉱物から適宜選択して用いることができる。
 主ヒータ505A、505B、505C、505Dに対応する温度センサー520はそれぞれ給電用端子などと干渉しない位置であって主ヒータ505A、505B、505C、505Dの下面周方向の任意の位置にそれぞれ設けられている。
 これらの温度センサー520の蛍光から主ヒータ505A~505Dの温度を測定する温度計測部522は、一例として、図7に示すように温度調節用ベース部503の設置孔521の外側(下側)に前記蛍光体層に対し励起光を照射する励起部523と、蛍光体層から発せられた蛍光を検出する蛍光検出器524と、励起部523および蛍光検出器524を制御するとともに前記蛍光に基づき主ヒータの温度を算出する制御部525とから構成されている。
 ところで、図7に符号528で示すものは温度調節用ベース部503から載置板511までをそれらの厚さ方向に部分的に貫通するように設けられたピン挿通孔であり、このピン挿通孔528に板状試料離脱用のリフトピンが設けられる。ピン挿通孔528の外周部には筒状の碍子529が設けられている。
 次に、サブヒータ506A~506Dを構成するヒータ分割体とそれらに個々に給電するための構造について説明する。
 サブヒータ506A~506Dは、平面視すると図9に示すように各サブヒータ506A~506Dをそれらの周方向に個々に分割した複数のヒータ分割体506a、506b、506c、506dの集合構造とされている。ヒータ分割体506a、506b、506c、506dにそれぞれ給電するために、本実施形態では絶縁板507の上面側に銅などの低抵抗材料からなる配線層504が設けられている。
 配線層504は個々に分岐された複数の配線体504aからなり各配線体504aはヒータ分割体506a、506b、506c、506dのいずれかに接続されている。
 図7において配線体504aは絶縁板507の上面側にその中央部側から周縁側に延在するように複数配置され、各配線体504aの一端側が絶縁板508の一部に形成されているコンタクトホールに形成された溶接部等の導通部508bを介しヒータ分割体のいずれかに接続されている。また、各配線体504aの他端側が絶縁板507の一部に形成されているコンタクトホールに形成された溶接部等の導通部507bを介し給電用端子526に接続されている。この給電用端子526は温度調節用ベース部503の貫通孔503bに沿って温度調節用ベース部503をその厚さ方向に貫通し、絶縁板507に達するように形成されたもので、給電用端子526の外周側には絶縁用の碍子527が設けられ、温度調節用ベース部503に対し絶縁されている。
 ヒータ分割体506a、506b、506c、506dはサブヒータ506A、506B、506C、506Dの周方向に複数形成されているので、これらに接続するための給電用端子526が相互干渉しないように給電用端子526を温度調節用ベース部503の周方向に対し離間された位置に配置され、これらヒータ分割体506a、506b、506c、506dが個々に個別の配線体504aを用いて接続されている。
 なお、ヒータ分割体506a、506b、506c、506dに対し個々に給電するためにこれらに対しそれぞれ2本の給電用端子526が接続されているが、図7の断面構造では一部のみ示し、他の配線体504aの接続構造は適宜記載を略している。
 ヒータ分割体506a、506b、506c、506dのいずれについても給電用端子526が2本ずつ接続され、ヒータ分割体506a、506b、506c、506dのそれぞれに対し2本の給電用端子526を介しスイッチ素子と電源装置が接続されている。
 以上説明の構成により、ヒータ分割体506a、506b、506c、506dのそれぞれに対し、スイッチ素子と電源の動作に応じて通電発熱制御ができるようになっている。
 なお、サブヒータ506A~506Dの給電用端子526の数は、ヒータパターンおよびスイッチ素子の配置によりヒータ分割体の数の2倍より減じることができる。
 前記構造の静電チャック装置501において、第1のヒータエレメント505と温度調節用ベース部503との間の熱伝達率は4000W/mKより小さく200W/mKより大きいことが好ましい。
 熱伝達率が200W/mKより大きいならば、第1のヒータエレメント505と温度調節用ベース部503との間の熱応答性を高くすることができ、静電チャック装置502の温度制御を行う場合に応答性の良好な温度制御が可能となる。
 なお、熱伝達率は4000W/mKより大きい場合、ヒータ部から温度調整ベースへの熱流出が大きくなり、搭載物(板状試料)Wを所定の温度まで昇温するのに過度の電力をヒータに供給する必要があり好ましくない。
 以上説明のように構成された静電チャック装置501は、給電用端子515Cから静電チャック部502の静電吸着用電極513に通電して静電吸着力を発生させ、載置面511aの突起部511b上に板状試料Wを吸着して使用することができる。
 また、温度調節用ベース部503に冷媒を循環させて板状試料Wを冷却できるとともに、主ヒータ505A~505Dの各々に給電用端子517を介し電源から通電することで主ヒータ505A~505Dを個々に発熱させ、板状試料Wを加温することで温度制御することができる。また、ヒータ分割体506a~506dに個別に通電することでこれらのヒータ分割体506a~506dに対応した領域の温度を微調節できる。
 板状試料Wをエッチング装置あるいは成膜装置に供給してプラズマ雰囲気や成膜雰囲気に晒すと、板状試料Wにはプラズマの生成状態あるいは成膜室内の温度分布等に応じて温度差が生じる。
 板状試料Wの表面の温度分布を例えば図12に示すようにサーモカメラ530で撮影してサーモグラフで分析し、板状試料Wにおいて温度の低い領域を生じているならば、該当する領域のヒータ分割体506a、506b、506c、506dのいずれかに通電し加温することで、ヒータ分割体506a、506b、506c、506dの個々の領域の上方に対応する板状試料Wの各ゾーンの表面温度を局所的に上昇させ、板状試料Wの表面温度を均一化することができる。
 加温する際の温度制御はヒータ分割体506a、506b、506c、506dの個々に通電する際の印加電圧制御、電圧印加時間制御、電流値制御等で行うことができる。
 上述の構造において、第2のヒータエレメント506を複数のヒータ分割体506a、506b、506c、506dに分割し、個々に通電発熱制御ができるように構成したので、吸着した板状試料Wに温度分布が生じようとした場合であっても温度の低いゾーンに対応する位置のヒータ分割体506a、506b、506c、506dのいずれかに通電し発熱させることで板状試料Wの温度の低いゾーンの温度を上昇させて温度分布を均一化できる。
 このため、プラズマエッチングあるいは成膜などのために静電チャック装置501により板状試料Wを保持している場合、ヒータ分割体506a~506dの個別温度制御により板状試料Wの表面温度を均一化することにより、均一なエッチングあるいは均一な成膜を行うことができる。
 また、主ヒータ505A~505Dに対し、ヒータ分割体506a、506b、506c、506dの単位面積当たりの発熱量を小さくすることで、温度微調整用のヒータ分割体506a、506b、506c、506dに対する通電量を小さくすることができる。更に、ヒータ分割体506a、506b、506c、506dの通電量を小さくできることから、例えば、ヒータ分割体506a、506b、506c、506dに対する通電電流をパルス電流とすることで電力供給量を削減できる。
 前述の構造において、主ヒータ505A~505Dの厚みとヒータ分割体506a、506b、506c、506dの厚みは製造時に自由に選択できるので、各ヒータ、各配線に応じた耐電圧を個別に設定することができ、各ヒータ、各配線に個別の望ましい耐電圧値を設定できる。例えば一例としてTi薄板からなる主ヒータの厚みを100μm、Mo薄板からなるヒータ分割体の厚みを5μmに設定することにより、ヒータ分割体の単位面積あたりの発熱量を主ヒータの1/5以下に調整することができる。勿論、構成材料とヒータ厚の他に、供給電圧の調整によって主ヒータとヒータ分割体の発熱量の調節を行ってもよい。
 ところで、第3実施形態の構造では第1のヒータエレメント505をその径方向に4つに分割して4つの主ヒータ505A~505Dからなる構造としたが、第1のヒータエレメント505の分割数は4に限らず、任意の数でよい。また、第2のヒータエレメント506について径方向に4つに分割して4つのサブヒータ506A~506Dから構成し、更に第1のサブヒータ506Aを2分割、第2のサブヒータ506Bを4分割、第3のサブヒータ506Cを4分割、第4のサブヒータ506Dを8分割構造としたが、第2のヒータエレメント506の径方向への分割数は任意の数で良く、各サブヒータの分割数も任意の数でよい。ただし、サブヒータにより局所的な温度微調整を行う観点から、第1のヒータエレメント505の分割数より第2のヒータエレメント506の分割数が多い方が好ましい。
 本実施形態において第2のヒータエレメント506について1層構造としたが、第2のヒータエレメント506は2層以上の多層構造でも差し支えない。また、本実施形態において第1のヒータエレメント505と第2のヒータエレメント506を平面視円環状に重なる領域に配置したが、平面視で重なる領域から多少ずれた位置に配置しても良い。例えば、第1のヒータエレメント505を構成する複数の主ヒータ設置領域(円環状の設置領域)の間に形成されている僅かな間隙を平面視で埋めるように第2のヒータエレメントの複数のサブヒータを配置し、複数の主ヒータ間の隙間領域を複数のサブヒータで埋めるように配置することも可能である。勿論、第2のサブヒータを2層以上配置した場合に各層の配置領域を平面視でずらすことで、主ヒータ間の間隙を埋める構造を採用しても良い。
「第4実施形態」
 図13は、本発明の第4実施形態の静電チャック装置を示す断面図であり、この形態の静電チャック装置601は、一主面(上面)側を載置面とした円板状の静電チャック部602と、この静電チャック部602の下方に設けられて静電チャック部602を所望の温度に調整する厚みのある円板状の温度調節用ベース部603と、静電チャック部602と温度調節用ベース部603の間に介挿された層状構造の第1のヒータエレメント605および第2のヒータエレメント606を備えている。また、静電チャック装置601は、静電チャック部602と温度調節用ベース部603の間に、前記ヒータエレメント606と積層するように介在された2枚の絶縁板607、608と、絶縁板607、608の間に介在された配線層604と、前記ヒータエレメント605を静電チャック部602の底面側に貼り付ける接着層609と、これらの周囲を覆って形成された接着剤層610を備えて構成される。
 静電チャック部602は、上面を半導体ウエハ等の板状試料Wを載置する載置面611aとした載置板611と、この載置板611と一体化され該載置板611の底部側を支持する支持板612と、これら載置板611と支持板612との間に設けられた静電吸着用電極(静電吸着用内部電極)613および静電吸着用電極613の周囲を絶縁する絶縁材層614と、支持板612を貫通するように設けられ静電吸着用電極613に直流電圧を印加するための取出電極端子615Aにより構成されている。
 載置板611および支持板612は、重ね合わせた面の形状を同じくする円板状のものであり、酸化アルミニウム-炭化ケイ素(Al2O3-SiC)複合焼結体、酸化アルミニウム(Al2O3)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y2O3)焼結体等の機械的な強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する絶縁性のセラミックス焼結体からなる。
 載置板611の載置面611aには、直径が板状試料の厚みより小さい突起部611bが複数所定の間隔で形成され、これらの突起部611bが板状試料Wを支える。
 載置板611、支持板612、静電吸着用電極613および絶縁材層614を含めた全体の厚み、即ち、静電チャック部602の厚みは一例として0.7mm以上かつ5.0mm以下に形成されている。
 例えば、静電チャック部602の厚みが0.7mmを下回ると、静電チャック部602の機械的強度を確保することが難しくなる。静電チャック部602の厚みが5.0mmを上回ると、静電チャック部602の熱容量が大きくなり、載置される板状試料Wの熱応答性が劣化し、静電チャック部の横方向の熱伝達の増加により、板状試料Wの面内温度を所望の温度パターンに維持することが難しくなる。なお、ここで説明した各部の厚さは一例であって、前記範囲に限るものではない。
 静電吸着用電極613は、電荷を発生させて静電吸着力で板状試料Wを固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
 静電吸着用電極613は、酸化アルミニウム-炭化タンタル(Al-Ta)導電性複合焼結体、酸化アルミニウム-タングステン(Al-W)導電性複合焼結体、酸化アルミニウム-炭化ケイ素(Al-SiC)導電性複合焼結体、窒化アルミニウム-タングステン(AlN-W)導電性複合焼結体、窒化アルミニウム-タンタル(AlN-Ta)導電性複合焼結体、酸化イットリウム-モリブデン(Y-Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されることが好ましい。
 静電吸着用電極613の厚みは、特に限定されるものではないが、例えば、0.1μm以上かつ100μm以下の厚みを選択することができ、5μm以上かつ20μm以下の厚みがより好ましい。
 静電吸着用電極613の厚みが0.1μmを下回ると、充分な導電性を確保することが難しくなる。静電吸着用電極613の厚みが100μmを越えると、静電吸着用電極613と載置板611および支持板612との間の熱膨張率差に起因し、静電吸着用電極613と載置板611および支持板612との接合界面にクラックが入り易くなる。
 このような厚みの静電吸着用電極613は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
 絶縁材層614は、静電吸着用電極613を囲繞して腐食性ガスおよびそのプラズマから静電吸着用電極613を保護するとともに、載置板611と支持板612との境界部、すなわち静電吸着用電極613以外の外周部領域を接合一体化するものであり、載置板611および支持板612を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。
 取出電極端子615Aは、静電吸着用電極613に直流電圧を印加するために設けられた棒状のもので、この取出電極端子615Aの材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用電極613および支持板612の熱膨張係数に近似したものが好ましく、例えば、Al-Taなどの導電性セラミック材料からなる。
 なお、取出電極端子615Aは導電性接着部615Bと後述する給電用端子615Cに接続されている。導電性接着部615Bは柔軟性と耐電性を有するシリコン系の導電性接着剤からなり、給電端子615Cはタングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料からなる。
 給電用端子615Cの外周側には、絶縁性を有する碍子615aが設けられ、この碍子615aにより金属製の温度調節用ベース部603に対し給電用端子615Cが絶縁されている。取出電極端子615Aは支持板612に接合一体化され、さらに、載置板611と支持板612は、静電吸着用電極613および絶縁材層614により接合一体化されて静電チャック部602が構成されている。
 給電用端子615Cは後に詳述するヒータエレメント606と2層構造の絶縁板607、608を貫通し、温度調節用ベース部603の貫通孔603bを貫通するように設けられている。
 温度調節用ベース部603は、静電チャック部602を所望の温度に調整するためのもので、厚みのある円板状のものである。この温度調節用ベース部603としては、例えば、その内部に水を循環させる流路603Aが形成された水冷ベース等が好適である。
 この温度調節用ベース部603を構成する材料としては、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はなく、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等が好適に用いられる。この温度調節用ベース部603の少なくともプラズマに曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
 本実施形態の構造では、温度調節用ベース部603の上面側に2層構造のヒータエレメント605、606と2層構造の絶縁板607、608と静電チャック部602の底部側とを収容可能な大きさの凹部603aが形成されている。この凹部603a内に底部側から順にシート型の接着層607A、絶縁板607、配線層604、絶縁板608、第2のヒータエレメント606、第1のヒータエレメント605、接着層609、支持板612の底部側が収容され、凹部603aを埋めるように形成された接着材層610によりこれらが一体化されている。
 絶縁板607は凹部603aの上面に接着層607Aにより接着されている。この接着層607Aはポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の耐熱性、および、絶縁性を有するシート状またはフィルム状の接着性樹脂からなる。接着層は例えば厚み5~100μm程度に形成される。絶縁板607、608はポリイミド樹脂、エポキシ樹脂、アクリル樹脂などの耐熱性を有する樹脂の薄板、シートあるいはフィルムからなる。接着層609は耐熱性を有するシート型の接着剤層からなり、接着層607Aと同等の材料からなる。
 なお、絶縁板607、608は、樹脂シートに代え、絶縁性のセラミック板でもよく、またアルミナ等の絶縁性を有する溶射膜でも良い。
 一例として絶縁板607の上面に配線層604が形成され、絶縁板608の上面に第2のヒータエレメント606が形成され、支持板612の底面側に第1のヒータエレメント605が接着され、絶縁板607、608が積層され、これらの周囲が接着材層610で覆われることで図13に示す積層構造が実現されている。
 第1のヒータエレメント605は、図14に示すように、中心部の円環状の領域に配置された第1の主ヒータ605Aと、この第1の主ヒータ605Aを順次取り囲むように円環状の領域に配置された第2の主ヒータ605Bと、第3の主ヒータ605Cと、第4の主ヒータ605Dとからなる。図14に示すように第1~第4の主ヒータ605A~605Dが配置されている領域は、円板状の静電チャック部602と同程度の大きさであることが好ましい。
 なお、主ヒータ605A、605B、605C、605Dは、図14では平面視単純な円環状に描いたが、各主ヒータ605A、605B、605C、605Dは帯状のヒータを蛇行させて図14に示す円環状の領域を占めるように配置されている。このため、図13に示す断面構造では各主ヒータ605A、605B、605C、605Dを構成する帯状のヒータを個別に描いた。
 主ヒータ605A~605Dは、一例として、厚みが0.2mm以下、好ましくは0.1mm程度の一定の厚みを有する非磁性金属薄板、例えばチタン(Ti)薄板、タングステン(W)薄板、モリブデン(Mo)薄板等をフォトリソグラフィー法により所望のヒータ形状、例えば帯状のヒータを蛇行させた形状の全体輪郭を円環状に加工することで得られる。
 これらの主ヒータ605A~605Dは、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂等からなる接着層609により支持板612の底面に接着・固定されている。
 第2のヒータエレメント606は、図15に示すように中心部の円環状の領域に配置された第1のサブヒータ606Aと、この第1のサブヒータ606Aを順次取り囲むように円環状の領域に形成された第2のサブヒータ606Bと、第3のサブヒータ606Cと、第4のサブヒータ606Dとからなる。第1のサブヒータ606Aは、扇形環状体形状の領域に配置されたヒータ分割体606aを複数(図15の構成の場合2つ)組み合わせて円環状に形成され、第2のサブヒータ606Bは、扇形環状体形状の領域に配置されたヒータ分割体606bを複数(図15の構成の場合4つ)組み合わせて円環状に形成されている。第3のサブヒータ606Cは、扇形環状体形状の領域に配置されたヒータ分割体606cを複数(図15の構成の場合4つ)組み合わせて円環状に形成されている。第4のサブヒータ606Dは、扇形環状体形状の領域に配置されたヒータ分割体606dを複数(図15の構成の場合8つ)組み合わせて円環状に形成されている。
 ヒータ分割体606a~606dは、主ヒータ605A~605Dよりも薄い非磁性金属薄板、例えばモリブデン(Mo)薄板、タングステン(W)薄板、ニオブ(Nb)薄板、チタン(Ti)薄板、銅(Cu)薄板等をフォトリソグラフィー法により所望のヒータ形状、例えば帯状のヒータを蛇行させた形状の全体輪郭を扇形環状体形状に加工することで得られる。これらのヒータ分割体606a~606dは、主ヒータ605A~605Dの単位面積あたりの発熱量より低い発熱量を示す構成であることが必要であり、主ヒータ605A~605Dより薄い構造あるいは発熱量の低い材料から構成されている。一例として、主ヒータを厚み100μmのTi薄板から構成した場合、サブヒータを厚さ5μmのMo薄板から構成することができる。
 これらのヒータ分割体606a~606dは、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂等からなる図示略の接着剤層により絶縁板608の上面に接着・固定されている。
 なお、本実施形態ではサブヒータ606A、606B、606C、606Dを2分割、4分割あるいは8分割構造としたが、分割数は任意で良く、分割した場合の形状も任意でよい。
 前述のように第1のヒータエレメント605は主ヒータ605A、605B、605C、605Dからなるが、これら個々の主ヒータ605A、605B、605C、605Dに給電するための複数本の給電用端子617が設けられている。図14では主ヒータ605A、605B、605C、605Dの概形のみを示しているが、いずれのヒータであっても電源に接続するための導通部が各ヒータの一端側と他端側に設けられるので、主ヒータ605A、605B、605C、605Dに対し2本ずつ、合計8本の給電用端子617が設けられている。
 図13では説明の簡略化のために、最外周の主ヒータ605Dに対し接続された給電用端子617を1本のみ描いているが、この給電用端子617は温度調節用ベース部603と絶縁板607、608とサブヒータ606Dとそれらの周囲に存在する接着材層610をそれらの厚さ方向に部分的に貫通するように配置されている。また、給電用端子617の外周面には絶縁用の筒型の碍子618が装着され、温度調節用ベース部603と給電用端子617が絶縁されている。
 給電用端子617を構成する材料は先の給電用端子615Cを構成する材料と同等の材料を用いることができる。
 図13では全ての給電用端子617を描いてはいないが、主ヒータ605A、605B、605C、605Dのいずれについても給電用端子617が2本ずつ接続され、主ヒータ605A、605B、605C、605Dの個々に対し2本の給電用端子617を介し図示略のスイッチ素子と電源装置が接続されて通電制御ができるようになっている。
 これらの給電用端子617はそれぞれ温度調節用ベース部603に形成された貫通孔603bを貫通するように設けられ、更に接続する相手が主ヒータ605A、605B、605C、605Dの何れかである場合は絶縁板607、608も貫通するように設けられている。
 以上説明の構成により、主ヒータ605A、605B、605C、605Dのそれぞれに対し、電源の動作に応じ主ヒータ個々の通電発熱制御ができるようになっている。
 また、主ヒータ605A、605B、605C、605Dの下面側には温度センサー620が設けられている。図13の構造では温度調節用ベース部603と絶縁板607、608とサブヒータ606Dとそれらの周囲に存在する接着材層610をそれらの厚さ方向に部分的に貫通するように設置孔621が形成され、これらの設置孔621の最上部、主ヒータ605A、605B、605C、605Dのいずれかに近接する位置にそれぞれ温度センサー620が設置されている。なお、温度センサー620はできるだけ主ヒータ605A、605B、605C、605Dに近い位置に設置することが望ましいので、図13の構造では絶縁板607の一部に主ヒータ側に突き出るように突出部607aが形成され、この突出部607aの内側に温度センサー620が設けられている。
 温度センサー620は一例として石英ガラス等からなる直方体形状の透光体の上面側に蛍光体層が形成された蛍光発光型の温度センサーであり、この温度センサー620が透光性および耐熱性を有するシリコン樹脂系接着剤等により主ヒータ605A、605B、605C、605Dの下面に接着されている。
 前記蛍光体層は、主ヒータからの発熱に応じて蛍光を発生する材料からなり、発熱に応じて蛍光を発生する材料であれば多種多様の蛍光材料を選択できるが、一例として、発光に適したエネルギー順位を有する希土類元素が添加された蛍光材料、AlGaAs等の半導体材料、酸化マグネシウム等の金属酸化物、ルビーやサファイア等の鉱物から適宜選択して用いることができる。
 主ヒータ605A、605B、605Dに対応する温度センサー620はそれぞれ給電用端子などと干渉しない位置であって主ヒータ605A、605B、605Dの下面周方向の任意の位置にそれぞれ設けられている。
 これらの温度センサー620の蛍光から主ヒータ605A~605Dの温度を測定する温度計測部622は、一例として、図13に示すように温度調節用ベース部603の設置孔621の外側(下側)に前記蛍光体層に対し励起光を照射する励起部623と、蛍光体層から発せられた蛍光を検出する蛍光検出器624と、励起部623および蛍光検出器624を制御するとともに前記蛍光に基づき主ヒータの温度を算出する制御部625とから構成されている。
 ところで、図13に符号628で示すものは温度調整用ベース部603から載置板611までをそれらの厚さ方向に部分的に貫通するように設けられたピン挿通孔であり、このピン挿通孔628に板状試料離脱用のリフトピンが設けられる。ピン挿通孔628の外周部には筒状の碍子629が設けられている。
 次に、サブヒータ606A~606Dを構成するヒータ分割体とそれらに個々に給電するための構造について説明する。
 サブヒータ606A~606Dは、平面視すると図15に示すように各サブヒータ606A~606Dをそれらの周方向に個々に分割した複数のヒータ分割体606a、606b、606c、606dの集合構造とされている。ヒータ分割体606a、606b、606c、606dにそれぞれ給電するために、本実施形態では絶縁板607の上面側に銅などの低抵抗材料からなる配線層604が設けられている。
 配線層604は個々に分岐された複数の配線体604aからなり各配線体604aはヒータ分割体606a、606b、606c、606dのいずれかに接続されている。
 図13において配線体604aは絶縁板607の上面側にその中央部側から周縁側に延在するように複数配置され、各配線体604aの一端側が絶縁板608の一部に形成されているコンタクトホールに形成された溶接部等の導通部608bを介しヒータ分割体のいずれかに接続されている。また、各配線体604aの他端側が絶縁板607の一部に形成されているコンタクトホールに形成された溶接部等の導通部607bを介し給電用端子626に接続されている。この給電用端子626は温度調節用ベース部603の貫通孔603bに沿って温度調節用ベース部603をその厚さ方向に貫通し、絶縁板607に達するように形成されたもので、給電用端子626の外周側には絶縁用の碍子627が設けられ、温度調節用ベース部603に対し絶縁されている。
 ヒータ分割体606a、606b、606c、606dはサブヒータ606A、606B、606C、606Dの周方向に複数形成されているので、これらに接続するための給電用端子626が相互干渉しないように給電用端子626を温度調節用ベース部603の周方向に対し離間された位置に配置され、これらヒータ分割体606a、606b、606c、606dが個々に個別の配線体604aを用いて接続されている。
 なお、ヒータ分割体606a、606b、606c、606dに対し個々に給電するためにこれらに対しそれぞれ2本の給電用端子626が接続されているが、図13の断面構造では一部のみ示し、他の配線体604aの接続構造は適宜記載を略している。
 ヒータ分割体606a、606b、606c、606dのいずれについても給電用端子626が2本ずつ接続され、ヒータ分割体606a、606b、606c、606dのそれぞれに対し2本の給電用端子626を介しスイッチ素子と電源装置が接続されている。
 以上説明の構成により、ヒータ分割体606a、606b、606c、606dのそれぞれに対し、スイッチ素子と電源の動作に応じて通電発熱制御ができるようになっている。
 なお、サブヒータ606A~606Dの給電用端子626の数は、ヒータパターンおよびスイッチ素子の配置によりヒータ分割体の数の2倍より減じることができる。
 前記構造の静電チャック装置601において、第1のヒータエレメント605と温度調節用ベース部603との間の熱伝達率は4000W/mKより小さく200W/mKより大きいことが好ましい。
 熱伝達率が200W/mKより大きいならば、第1のヒータエレメント605と温度調節用ベース部603との間の熱応答性を高くすることができ、静電チャック装置602の温度制御を行う場合に応答性の良好な温度制御が可能となる。
 以上説明のように構成された静電チャック装置601は、給電用端子615Cから静電チャック部602の静電吸着用電極613に通電して静電吸着力を発生させ、載置面611aの突起部611b上に板状試料Wを吸着して使用することができる。
 また、温度調節用ベース部603に冷媒を循環させて板状試料Wを冷却できるとともに、主ヒータ605A~605Dの各々に給電用端子617を介し電源から通電することで主ヒータ605A~605Dを個々に発熱させ、板状試料Wを加温することで温度制御することができる。また、ヒータ分割体606a~606dに個別に通電することでこれらのヒータ分割体606a~606dに対応した領域の温度を微調節できる。
 板状試料Wをエッチング装置あるいは成膜装置に供給してプラズマ雰囲気や成膜雰囲気に晒すと、板状試料Wにはプラズマの生成状態あるいは成膜室内の温度分布等に応じて温度差が生じる。
 板状試料Wの表面の温度分布を例えば図16に示すようにサーモカメラ630で撮影してサーモグラフで分析し、板状試料Wにおいて温度の低い領域を生じているならば、該当する領域のヒータ分割体606a、606b、606c、606dのいずれかに通電し加温することで、ヒータ分割体606a、606b、606c、606dの個々の領域の上方に対応する板状試料Wの各ゾーンの表面温度を局所的に上昇させ、板状試料Wの表面温度を均一化することができる。
 加温する際の温度制御はヒータ分割体606a、606b、606c、606dの個々に通電する際の印加電圧制御、電圧印加時間制御、電流値制御等で行うことができる。
 上述の構造において、第2のヒータエレメント606を複数のヒータ分割体606a、606b、606c、606dに分割し、個々に通電発熱制御ができるように構成したので、吸着した板状試料Wに温度分布が生じようとした場合であっても温度の低いゾーンに対応する位置のヒータ分割体606a、606b、606c、606dのいずれかに通電し発熱させることで板状試料Wの温度の低いゾーンの温度を上昇させて温度分布を均一化できる。
 このため、プラズマエッチングあるいは成膜などのために静電チャック装置1により板状試料Wを保持している場合、ヒータ分割体606a~606dの個別温度制御により板状試料Wの表面温度を均一化することにより、均一なエッチングあるいは均一な成膜を行うことができる。
 また、主ヒータ605A~605Dに対し、ヒータ分割体606a、606b、606c、606dの単位面積当たりの発熱量を小さくしているので、温度微調整用のヒータ分割体606a、606b、606c、606dに対する通電量を小さくすることができる。更に、ヒータ分割体606a、606b、606c、606dの通電量を小さくできることから、例えば、ヒータ分割体606a、606b、606c、606dに対する通電電流をパルス電流とすることで電力供給量を削減できる。
 前述の構造において、主ヒータ605A~605Dの厚みとヒータ分割体606a、606b、606c、606dの厚みは製造時に自由に選択できるので、各ヒータ、各配線に応じた耐電圧を個別に設定することができ、各ヒータ、各配線に個別の望ましい耐電圧値を設定できる。例えば一例としてTi薄板からなる主ヒータの厚みを100μm、Mo薄板からなるヒータ分割体の厚みを5μmに設定することにより、ヒータ分割体の単位面積あたりの発熱量を主ヒータの1/5以下に調整することができる。勿論、構成材料とヒータ厚の他に、供給電圧の調整によって主ヒータとヒータ分割体の発熱量の調節を行ってもよい。
 ところで、第4実施形態の構造では第1のヒータエレメント605をその径方向に4つに分割して4つの主ヒータ605A~605Dからなる構造としたが、第1のヒータエレメント605の分割数は4に限らず、任意の数でよい。また、第2のヒータエレメント606について径方向に4つに分割して4つのサブヒータ606A~606Dから構成し、更に第1のサブヒータ606Aを2分割、第2のサブヒータ606Bを4分割、第3のサブヒータ606Cを4分割、第4のサブヒータ606Dを8分割構造としたが、第2のヒータエレメント606の径方向への分割数は任意の数で良く、各サブヒータの分割数も任意の数でよい。ただし、サブヒータにより局所的な温度微調整を行う観点から、第1のヒータエレメント605の分割数より第2のヒータエレメント606の分割数が多い方が好ましい。
 本実施形態において第2のヒータエレメント606について1層構造としたが、第2のヒータエレメント606は2層以上の多層構造でも差し支えない。また、本実施形態において第1のヒータエレメント605と第2のヒータエレメント606を平面視円環状に重なる領域に配置したが、平面視で重なる領域から多少ずれた位置に配置しても良い。例えば、第1のヒータエレメント605を構成する複数の主ヒータ設置領域(円環状の設置領域)の間に形成されている僅かな間隙を平面視で埋めるように第2のヒータエレメントの複数のサブヒータを配置し、複数の主ヒータ間の隙間領域を複数のサブヒータで埋めるように配置することも可能である。勿論、第2のサブヒータを2層以上配置した場合に各層の配置領域を平面視でずらすことで、主ヒータ間の間隙を埋める構造を採用しても良い。
「第5実施形態」
 図17は、本発明に係る第5実施形態の静電チャック装置を示す断面図であり、この実施形態の静電チャック装置631は、第4実施形態の静電チャック装置601に対し主ヒータとサブヒータの上下関係を逆にした構造を有する。
 静電チャック装置631は、静電チャック部602と、静電チャック部602の下方に設けられた温度調節用ベース部603と、静電チャック部602と温度調節用ベース部603の間に介挿されたヒータエレメント605、606を備えている点については、先の第4実施形態の静電チャック装置601と同等であるが、第2のヒータエレメント606が第1のヒータエレメント605と静電チャック部602の間に設けられている点が異なる。
 静電チャック装置631は、静電チャック部602と温度調節用ベース部603の間に前記ヒータエレメント605、606と積層するように介在された2枚の絶縁板637、638、接着層639および接着層609と、絶縁板637と絶縁板638の間に介在された配線層604とこれらの周囲を覆って形成された接着剤層610を備えている。なお、静電チャック部602の構造は第4実施形態の構造と同等である。
 第5実施形態の構造において、温度調節用ベース部603の凹部603a内に底部側から順に接着層609、第1のヒータエレメント605、絶縁板637、配線層604、絶縁板638、第2のヒータエレメント606、接着層639、支持板612の底部側が収容され、凹部603aを埋めるように形成された接着材層610によりこれらが一体化されている。
 第1のヒータエレメント605は、第4実施形態の構造と同じように第1の主ヒータ605Aと第2の主ヒータ605Bと第3の主ヒータ605Cと第4の主ヒータ605Dからなる。
 第2のヒータエレメント606は、第4実施形態の構造と同じように第1のサブヒータ606Aと第2のサブヒータ605Bと第3のサブヒータ605Cと第4のサブヒータ606Dからなる。第1のサブヒータ606Aは2つのヒータ分割体606aからなり、第2のサブヒータ606Bは4つのヒータ分割体606bからなり、第3のサブヒータ606Cは4つのヒータ分割体606cからなり、第4のサブヒータ606Dは8つのヒータ分割体606dからなる。
 第1の主ヒータ605Aと第2の主ヒータ560Bと第3の主ヒータ605Cと第4の主ヒータ605Dにそれぞれに接続される複数の給電用端子648は、碍子649を伴って温度調節用ベース部603をその厚さ方向に貫通するように設けられ、接着層609に形成されたコンタクトホールに形成されている溶接部などの導通部609bを介し主ヒータ605A~605Dに接続されている。
 ヒータ分割体606a~606dにそれぞれ接続される複数の給電用端子646は、碍子647を伴って温度調節用ベース部603と接着層609と接着材層610をそれらの厚さ方向に貫通するように設けられ、絶縁板637に形成されたコンタクトホールに形成されている溶接部などの導通部637bを介し絶縁板638に形成された配線層604に接続されている。配線層604は絶縁板638の上面側に形成され、絶縁板638に形成したコンタクトホールに形成されている溶接部等の導通部638bを介しヒータ分割体606a、606b、606c、606dの何れかに接続されている。
 また、この実施形態において主ヒータ605A~605Dの何れかの位置の下方側に温度調節用ベース部603をそれらの厚さ方向に貫通する設置孔641が形成され、この設置孔641の上部であって、接着層609の下面側に主ヒータ605A~605Dのいずれかに近接するように温度センサー620が設けられている。
 以上説明した第1のヒータエレメント605と第2のヒータエレメント606の上下関係が第4実施形態の構造と逆転されており、それに関連して給電用端子646、648の構造が異なり、絶縁板637、638の構造が異なり、温度センサー620の設置位置が異なること以外について、第5実施形態の構造は、第4の実施形態の構造と同様である。
 第5実施形態の構造では、静電チャック部602に近い側に単位面積あたりの発熱量が小さい、例えば1/5以下の発熱量の第2のヒータエレメント606が設置され、静電チャック部602から離れた温度調節用ベース部603に近い側に第1のヒータエレメント605が設置されている。
 第5実施形態の構造においても、発熱量の大きい主ヒータ605A~605Dの発熱により板状試料Wを均一加熱するとともに、仮に板状試料Wに温度分布を生じようとした場合、発熱量の小さいヒータ分割体606a、606b、606c、606dの何れかに通電して板状試料Wの温度制御を行い、板状試料Wの表面温度の均一性を保つことができる。
 この実施形態では発熱量の小さいヒータ分割体606a、606b、606c、606dを板状試料Wに近い位置に配置しているので、発熱量の小さいヒータ分割体を利用し、より局所的な温度制御ができる。
 その他の作用効果については、先に説明した第4実施形態の構造から得られる作用効果と同様である。
 <第6実施形態>
 図18は、本発明の一実施形態(第6実施形態)に係る静電チャック装置1001の概略的な構成を示すブロック図である。
 静電チャック装置1001は、温度調整用ベース部1201(図19に示される。)と、静電チャック部1211(図19に示される。)と、主ヒータ1011と、サブヒータ1012と、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、第1のヒータエレメントの各主ヒータ1011の温調器(主ヒータ温調器1041)と、主ヒータ1011の電源の電流・電圧制御部1042と、サブヒータ1012の温調器(サブヒータ温調器1043)と、サブヒータ1012のDC電源の電圧制御部1044と、外部温度計測部1051と、計測データ記録部1052と、パルスタイム演算部1053と、パルスタイム調整部1054を備える。
 図19は、本発明の一実施形態に係る静電チャック装置1001におけるヒータなどの配置を概略的に示す図である。
 本実施形態に係る静電チャック装置1001では、下方から上方に向かって、温度調整用ベース部1201、サブヒータ1012、主ヒータ1011、静電チャック部1211の順で、層状に配置される。静電チャック部1211の上方の面には板状試料であるウエハ1221が載置される。
 なお、他の構成例として、サブヒータ1012は、主ヒータ1011より上方で静電チャック部1211より下方に配置されてもよい。
 ここで、静電チャック部1211は、一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備える。
 また、温度調整用ベース部1201は、静電チャック部1211に対し載置面とは反対側に配置され静電チャック部1211を冷却する。
 図20は、本発明の一実施形態に係る主ヒータ1011およびサブヒータ1012により温度を調整する領域(温度調整領域)の一例を示す図である。
 本実施形態では、第1のヒータエレメント1301は、全体としては円状の形状を有しており、径方向で、図20において(1)~(3)で示される3個の円状の領域(温度調整領域)に分割されている。これら3個の領域のそれぞれごとに、主ヒータ1011を備える。
 本実施形態では、第2のヒータエレメント1311は、全体としては円状の形状を有しており、径方向で、外側の領域と、内側の領域に分割されている。外側の領域は、周方向で、図20において(1)~(6)で示される6個の領域(温度調整領域)に分割されている。内側の領域は、中心部分と、それを囲む円状の領域に分割されており、この円状の領域は、周方向で、図20において(7)~(9)で示される3個の領域(温度調整領域)に分割されている。これら9個の領域(温度調整領域)のそれぞれごとに、サブヒータ1012を備える。なお、本実施形態では、中心部分には、サブヒータ1012を備えない。
 このように、本実施形態では、第1のヒータエレメント1301および第2のヒータエレメント1311は、上下で2個のゾーンを構成する。第1のヒータエレメント1301のゾーンは3個に分割されており、第2のヒータエレメント1311のゾーンは内側が4個(1個はサブヒータがない。)に分割されており外側が6個に分割されている。
 本実施形態では、第1のヒータエレメント1301は、主ヒータ1011により、それぞれ独立した温度制御が可能な複数の温度調整領域における(1)~(3)の温度を調整する。
 本実施形態では、サブヒータ1012は、第1のヒータエレメント1301の各温度調整領域を分割する様に配され(図20の例では、第2のヒータエレメント1311における(1)~(9))、層状に配されている。
 本実施形態では、各サブヒータ1012の単位面積あたりの発熱量が、主ヒータ1011に対して1/5以下である。
 なお、第1のヒータエレメント1301は、単層でなくてもよく、複数の層でもよい。第2のヒータエレメント1311は、単層でなくてもよく、複数の層でもよい。
 温度調整用ベース部1201は、冷媒である。温度調整用ベース部1201は、例えば、水、Heガス、N2ガス等の熱媒体を循環させる流路を用いて冷却する。
 静電チャック部1211は、ウエハ1221を載置し、静電吸着する。
 第1のヒータエレメント1301は、単独もしくは複数の領域に分割された単数もしくは複数の主ヒータ1011より構成する。
 第1のヒータエレメント1301は、静電チャック部1211の吸着面の温度を単独もしくは複数の領域(温度調整領域)で調整する単独もしくは複数の主ヒータ1011からなる。主ヒータ1011は、交流もしくは直流電流により制御される。主ヒータ1011は、これにより印加される電圧に応じて発熱する。
 第2のヒータエレメント1311は、複数のサブヒータ1012よりなり、各サブヒータ1012への電力供給により、主ヒータ1011のみでの領域より多くの領域の温度調整を行う。サブヒータ1012は、直流(DC)のパルス電流により制御される。サブヒータ1012は、これにより印加される電圧(パルス電圧)に応じて発熱する。
 主ヒータ1011とサブヒータ1012とは別体のヒータである。
 ここで、本実施形態では、図20に示される第1のヒータエレメント1301における領域(1)~(3)のすべてが、第1のヒータエレメント1301により温度を調整する領域(第1のヒータエレメント調整領域)に相当する。また、図20に示される第1のヒータエレメント1301における領域(1)~(3)のそれぞれが、第1のヒータエレメント1301におけるそれぞれのヒータ(この例では、3個の主ヒータ1011のそれぞれ)ごとにより温度を調整する領域(主ヒータ調整領域)に相当する。
 また、本実施形態では、図20に示される第2のヒータエレメント1311における領域(1)~(9)のすべてが、第2のヒータエレメント1311により温度を調整する領域(第2のヒータエレメント調整領域)に相当する。また、図20に示される第2のヒータエレメント1311における領域(1)~(9)のそれぞれが、第2のヒータエレメント1311におけるそれぞれのヒータ(この例では、9個のサブヒータ1012のそれぞれ)ごとにより温度を調整する領域(サブヒータ調整領域)に相当する。
 これらに関し、第1のヒータエレメント1301における1個の領域(1)が、第2のヒータエレメント1311における6個の領域(1)~(6)に分割されている。また、第1のヒータエレメント1301における1個の領域(2)が、第2のヒータエレメント1311における3個の領域(7)~(9)に分割されている。
 これにより、第1のヒータエレメント1301における1個の領域(1)について主ヒータ1011により温度を調整するとともに、第2のヒータエレメント1311における6個の領域(1)~(6)のそれぞれごとにサブヒータ1012により温度を調整することが可能である。また、第1のヒータエレメント1301における1個の領域(2)について主ヒータ1011により温度を調整するとともに、第2のヒータエレメント1311における3個の領域(7)~(9)のそれぞれごとにサブヒータ1012により温度を調整することが可能である。
 冷媒温度センサ1021は、温度調整用ベース部1201自体もしくはその近傍に設置され、温度調整用ベース部1201の温度を検出するセンサである。一例として、冷媒温度センサ1021は、温度調整用ベース部1201のチラーもしくはその近傍に設置され、当該チラーの温度を検出する。
 温度演算部1022は、冷媒温度センサ1021から出力される温度検出結果に応じた信号に基づいて、温度を演算する。
 静電チャック(ESC)内の温度センサ1031は、静電チャック(ESC)内に設置され、温度を検出するセンサである。この温度は、主ヒータ1011およびサブヒータ1012により影響され得る。この温度は、少なくとも主ヒータ1011に対応する温度となる。
 温度演算部1032は、温度センサ1031から出力される温度検出結果に応じた信号に基づいて、温度を演算する。
 主ヒータ温調器1041は、2個の温度演算部1022、1032により演算された温度に基づいて、主ヒータ1011による温度調整を行うための情報を生成して出力する。
 主ヒータ電源の電流・電圧制御部1042は、主ヒータ温調器1041により出力された情報に基づいて、主ヒータ1011の電源の電流・電圧(一方もしくは両方)を制御する。
 サブヒータ温調器1043は、主ヒータ温調器1041により出力された情報に基づいて、サブヒータ1012による温度調整を行うための情報を生成して出力する。主ヒータ温調器1041から出力される情報と、サブヒータ温調器1043から出力される情報との関係は、例えば、あらかじめ、設定されて記憶されている。
 サブヒータDC電源の電圧制御部1044は、サブヒータ温調器1043から出力される情報に基づいて、パルスタイム調整部1054を制御することで、サブヒータ1012のDC電源の電圧の値を制御する。
 外部温度計測部1051は、それぞれのサブヒータ1012ごとの温度調整領域に関する温度を計測する。この計測データとしては、例えば、サーモカメラで静電チャック部1211の上方から温度検出したデータ(サーモデータ)に基づくデータを用いることができる。また、この計測データは、例えば、事前に収集されて記録される。なお、温度としては、所定の時間における平均値が用いられてもよい。また、温度としては、静電チャック部1211の温度に限られず、静電チャック部1211の上方の面に載置されたウエハ1221の温度が用いられてもよい。
 計測データ記録部1052は、外部温度計測部1051により得られた計測データを記録(記憶)する。
 パルスタイム演算部1053は、計測データ記録部1052に記録された計測データに基づいてパルスタイム(例えば、それぞれのサブヒータ1012ごとのパルスタイム)を演算し、演算したパルスタイムの情報を出力する。この演算の仕方(例えば、式など)は、例えば、あらかじめ、設定されて記憶されている。
 パルスタイム調整部1054は、サブヒータDC電源の電圧制御部1044により制御されてパルス信号(例えば、パルス電流)の電圧値を調整するとともに、パルスタイム演算部1053から出力された情報に基づいて当該パルス信号のパルスタイム(パルス幅)を調整する。
この場合、パルスタイム調整部1054は、さらに計測データ記録部1052に記録された情報(例えば、計測時の温度の情報)をパルスタイム演算部1053を介して取得して、当該情報を用いて、電圧の値を演算してもよい。パルス信号の電圧値の調整の仕方およびパルスタイムの調整の仕方は、例えば、あらかじめ、設定されて記憶される。
 電圧値およびパルスタイムが調整されたパルス信号は、サブヒータ1012に印加される。
 ここで、本実施形態では、サブヒータ1012に印加する電圧を制御する制御部の機能が、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、サブヒータ温調器1043と、サブヒータDC電源の電圧制御部1044と、計測データ記録部1052と、パルスタイム演算部1053と、パルスタイム調整部1054の機能を用いて構成されている。なお、制御部の構成としては、本実施形態のものに限られず、例えば、必要な機能を実現する1個の処理部もしくは2個以上の処理部から構成される。
 本実施形態では、前記制御部は、サブヒータ1012に印加する電圧としてパルス電圧を用いる。
 本実施形態では、前記制御部は、サブヒータ1012に印加する電圧としてDC(直流)電圧を用いる。
 本実施形態では、前記制御部は、第2のヒータエレメント1311の複数の領域(温度調整領域)について、サブヒータ1012に印加する電圧の大きさ(電圧値)を制御する。
 本実施形態では、前記制御部は、主ヒータ1011に印加する電圧を制御する。
 本実施形態では、一例として、前記制御部は、各主ヒータ1011を分割する様に配されたサブヒータ1012に印加する電圧の大きさを主ヒータ1011に印加する電圧の大きさに基づいて制御する。例えば、前記制御部は、主ヒータ1011に印加する電圧の大きさに基づいて、当該主ヒータ1011の温度調整領域に含まれる分割領域(温度調整領域)のサブヒータ1012に印加する電圧の大きさを連動させるように制御する。連動としては、比例などが用いられる。なお、主ヒータ1011に印加する電圧の代わりに、電流または電力が用いられてもよい。
 本実施形態では、他の一例として、前記制御部は、各主ヒータ1011を分割する様に配されたサブヒータ1012に印加する電圧の大きさを、主ヒータ1011に関する温度検出結果(少なくとも主ヒータ1011に対応する温度検出結果)とチラー温度(温度調整用ベース部1201のチラーに対応する温度検出結果)との温度差に基づいて制御する。例えば、前記制御部は、主ヒータ1011に関する温度検出結果とチラー温度との温度差に基づいて、当該主ヒータ1011の温度調整領域に含まれる分割領域(温度調整領域)のサブヒータ1012に印加する電圧の大きさを連動させるように制御する。連動としては、比例などが用いられる。なお、主ヒータ1011に関する温度検出結果としては、本実施形態では、静電チャック(ESC)内の温度センサ1031による温度検出結果が用いられる。また、チラー温度としては、本実施形態では、冷媒温度センサ1021による温度検出結果の温度が用いられる。
 本実施形態では、静電チャック部1211と温度調整用ベース部1201との温度差がある状況において、前記制御部は、主ヒータ1011については冷却工程以外では常に電圧を印加し、サブヒータ1012については間欠的に電圧を印加し得る。
 具体的には、静電チャック部1211の温度と温度調整用ベース部1201の温度との差が一定(例えば、2度もしくは5度など)もしくは一定以上となるようにする。一例として、前記制御部は、2個の温度センサ(静電チャック(ESC)内の温度センサ1031および冷媒温度センサ1021)による温度検出結果に基づいて、静電チャック部1211の温度と温度調整用ベース部1201の温度との差を検出し、当該差が所定値となるように、主ヒータ1011に印加する電圧を制御する。他の一例として、前記制御部は、最大出力に対して所定の割合(例えば、2%など)となるように、主ヒータ1011に印加する電圧を制御してもよい。
 このような構成では、主ヒータ1011の発熱により静電チャック部1211の温度を調整することができ、この際に、静電チャック部1211の温度が温度調整用ベース部1201の温度よりも高くなり、その温度分布にムラ(例えば、層状の面におけるムラ)が生じ得る。
そこで、サブヒータ1012の発熱により、そのムラを補償するように、温度を調整する。静電チャック部1211の温度の調整は、例えば、静電チャック(ESC)内の温度センサ1031による温度検出結果に基づいて行われてもよい。
 なお、主ヒータ1011の発熱以外に、プラズマによる入熱についても、静電チャック部1211の温度に影響し得るため、この影響が考慮されてもよい。
 本実施形態では、サブヒータ1012に印加する電圧を制御するために用いられる情報(本実施形態では、計測データ)を記憶する記憶部(本実施形態では、計測データ記録部1052)を備える。そして、前記制御部は、前記記憶部に記憶される情報に基づいて、サブヒータ1012に印加する電圧を制御する。
 ここで、一例として、あらかじめ、想定されるすべての温度状況について計測データを収集して、サブヒータ1012に印加する電圧(パルス幅および電圧値)を事前に決めて記憶しておくことも可能であるが、通常は、データ量が多くなる。このため、他の例として、あらかじめ、想定されるすべての温度状況のうちの一部の温度状況について計測データを収集して、サブヒータ1012に印加する電圧(パルス幅および電圧値)を事前に決めて記憶しておき、事前に決められていない温度状況については、事前に記憶したデータおよび制御時の温度状況に基づいて、サブヒータ1012に印加する電圧を制御する、ことも可能である。
 具体的には、一構成例として、前記記憶部は、サブヒータ1012により温度調整を行う温度域のうちの一部に対応する情報を記憶し、前記制御部は、前記記憶部に記憶される情報および主ヒータ1011に印加する電圧の大きさに基づいて、サブヒータ1012に印加する電圧を制御する。なお、主ヒータ1011に印加する電圧の代わりに、電流または電力が用いられてもよい。他の一構成例として、前記記憶部は、サブヒータ1012により温度調整を行う温度域のうちの一部に対応する情報を記憶し、前記制御部は、前記記憶部に記憶される情報および主ヒータ1011に関する温度検出結果(少なくとも主ヒータ1011に対応する温度検出結果)とチラー温度(温度調整用ベース部1201のチラーに対応する温度検出結果)との温度差に基づいて、サブヒータ1012に印加する電圧を制御する。
 図21は、本発明の一実施形態に係るサブヒータ1012を制御する回路の一例を示す図である。図21の例では、9個の抵抗体R1~R9からなる9個のサブヒータ1012が備えられる場合を示す。
 図21に示される回路では、第1のDC電源1401と3個の抵抗体R1~R3との間にスイッチング素子1411(+側スイッチング素子)が接続されている。スイッチング素子1411には、制御回路が接続されている。3個の抵抗体R1~R3は並列である。
 同様に、第2のDC電源1421と3個の抵抗体R4~R6との間にスイッチング素子1431(+側スイッチング素子)が接続されている。スイッチング素子1431には、制御回路が接続されている。3個の抵抗体R4~R6は並列である。
 同様に、第3のDC電源1441と3個の抵抗体R7~R9との間にスイッチング素子1451(+側スイッチング素子)が接続されている。スイッチング素子1451には、制御回路が接続されている。3個の抵抗体R7~R9は並列である。
 図21に示される回路では、第1のアース1402(接地)と3個の抵抗体R1、R4、R7との間にスイッチング素子1412(-側スイッチング素子)が接続されている。スイッチング素子1412には、制御回路が接続されている。3個の抵抗体R1、R4、R7は並列である。
 同様に、第2のアース1422(接地)と3個の抵抗体R2、R5、R8との間にスイッチング素子1432(-側スイッチング素子)が接続されている。スイッチング素子432には、制御回路が接続されている。3個の抵抗体R2、R5、R8は並列である。
 同様に、第3のアース1442(接地)と3個の抵抗体R3、R6、R9との間にスイッチング素子1452(-側スイッチング素子)が接続されている。スイッチング素子1452には、制御回路が接続されている。3個の抵抗体R3、R6、R9は並列である。
 ここで、+側のスイッチング素子1411、1431、1451においては、例えば、トランジスタが用いられる場合には、ベース端子に制御回路が接続され、コレクタ端子にDC電源1401、1421、1441が接続され、エミッタ端子に抵抗体R1~R9が接続される。
 また、-側のスイッチング素子1412、1432、1452においては、例えば、トランジスタが用いられる場合には、ベース端子に制御回路が接続され、コレクタ端子にアース1402、1422、1442が接続され、エミッタ端子に抵抗体R1~R9が接続される。
 なお、スイッチング素子としては、電界効果トランジスタ(FET:Field Effect Transistor)などが用いられてもよい。
 図21に示される回路では、第1のDC電源1401に対応するスイッチング素子1411と第1のアース1402に対応するスイッチング素子1412をオンにすると抵抗体R1のみに電流が流れてオンになり、第1のDC電源1401に対応するスイッチング素子1411と第2のアース1422に対応するスイッチング素子1432をオンにすると抵抗体R2のみに電流が流れてオンになり、第1のDC電源1401に対応するスイッチング素子1411と第3のアース1442に対応するスイッチング素子1452をオンにすると抵抗体R3のみに電流が流れてオンになる。同様に、他の抵抗体R4~R9についても、スイッチングの状態に応じて、1個の抵抗体のみをオンにすることができる。
 なお、本実施形態では、DC電源1401、1421、1441とサブヒータ1012(抵抗R1~R9)との間と、サブヒータ1012(抵抗R1~R9)とアース1402、1422、1442との間との両方に、スイッチング素子1411、1431、1451、1412、1432、1442を配した。他の構成例として、これらの一方のみに、スイッチング素子を配することも可能である。
 また、他の構成例として、各スイッチング素子1411、1431、1451、1412、1432、1452と抵抗体R1~R9との間に、高周波カットフィルタを備えて、DC電源1401、1402、1421、1422、1441、1442およびスイッチング素子1411、1412、1431、1432、1451、1452を保護してもよい。
 図22(A)、図22(B)および図22(C)は、本発明の一実施形態に係るサブヒータ1012を制御するパルス電圧の例を示す図である。
 図22(A)、図22(B)および図22(C)に示されるグラフでは、横軸は時間を表し、縦軸はサブヒータ1012に印加する制御電圧(V)の値を表す。
 図22(A)は、主ヒータ1011の出力が100%であるときの例である。図22(B)は、主ヒータ1011の出力が50%であるときの例である。図22(C)は、主ヒータ1011の出力が2%であるときの例である。
 図22(A)、図22(B)および図22(C)の例では、所定の期間に相当する1サイクルにおいて、3個のサブヒータ1012に順次パルス電圧を印加する。これにより、3サイクルで9個のサブヒータ1012(1番目のサブヒータ、2番目のサブヒータ、・・・、9番目のサブヒータ)に順次パルス電圧を印加する。
 このパルス電圧は、オフ状態に相当する所定の低電圧値(本例では、ゼロ)とオン状態に相当する所定の高電圧値(本例では、制御可能な所定の電圧値)とで切り替えられるパルスの電圧である。オフ状態ではヒータ(該当する温度調整領域のヒータ)がオフとなり、オン状態ではヒータ(該当する温度調整領域のヒータ)がオンとなる。オン状態の期間が長いとヒータ(該当する温度調整領域のヒータ)の発熱量が大きくなり、オン状態の期間が短いとヒータ(該当する温度調整領域のヒータ)の発熱量が小さくなる。
 本実施形態では、図22(A)、図22(B)および図22(C)に示されるようなサイクル単位のパルス電圧の制御と同様な制御を、連続的に繰り返して行うことで、例えば、静電チャック装置1001の円状の載置面(図20に示される円状の面)における主ヒータ1011による温度調整にムラ(非均一性)があっても、それぞれの分割領域(温度調整領域)のサブヒータ1012による温度調整により、当該ムラを低減することができ、温度調整の均一性を確保することができる。
 本実施形態では、パルスタイム演算部1053において、それぞれのサブヒータ1012ごとに、パルス電流(それに応じたパルス電圧)のパルス幅(時間的な幅であり、印加時間)を演算することで、パルス幅を調整することが可能である。複数のサブヒータ1012のパルス電圧のパルス幅は、例えば、それぞれ独立に異なっていてもよく、もしくは、一部が同一であってもよい。
 本実施形態では、サブヒータDC電源の電圧制御部1044において、サブヒータ1012のDC電源の電圧の値を制御することで、それぞれのサブヒータ1012ごとに、パルス電流(それに応じたパルス電圧)のレベル(例えば、パルス電圧の値)を調整することが可能である。複数のサブヒータ1012のパルス電圧の値は、例えば、それぞれ独立に異なっていてもよく、もしくは、一部が同一であってもよい。
 なお、 図22(A)、図22(B)および図22(C)の例では、3個ずつのサブヒータ1012の組み合わせについて、それぞれのサブヒータ1012のパルス電圧のパルス幅を異ならせており、また、すべてのサブヒータ1012についてまとめてパルス電圧の値を同じレベルに制御している。
 このように、本実施形態では、前記制御部は、第2のヒータエレメント1311の複数の領域(温度制御領域)について、巡回的に割り振られた同一の長さの期間のうちで、第2のヒータエレメント1311の各温度調整領域のサブヒータ1012に印加するパルス電圧の時間幅(パルス幅)を制御する。
 ここで、1サイクルの長さとしては、任意の長さが用いられてもよい。
 また、1サイクルで制御されるサブヒータ1012の数としては、任意の数が用いられてもよい。
 また、本実施形態では、1サイクルで制御される複数のサブヒータ1012の数で当該1サイクルを等分して、それぞれのサブヒータ1012に同じ長さの期間を割り当てて、その期間の中でパルス幅を調整した。他の構成例として、1サイクルで制御される複数のサブヒータ1012について、それぞれのサブヒータ1012に任意の期間(等分でなくてもよい期間)を割り当てて、その期間の中でパルス幅を調整してもよい。この場合、例えば、パルス電圧の値を大きくする代わりに、パルス電圧のパルス幅を長くすることで、サブヒータ1012の発熱量を同じにしたまま、必要な電力量を低減させることが可能である。
 以上のように、本実施形態に係る静電チャック装置1001では、それぞれのサブヒータ1012ごとに印加するパルス電圧のパルス幅および電圧値を制御することで、主ヒータ1011およびサブヒータ1012を用いた温度制御を精度良く行うことができる。本実施形態では、例えば、パルス電圧のパルス幅については計測データに基づいて制御することが可能であり、パルス電圧の電圧値については温度状況に基づいて制御することが可能である。
 他の構成例として、パルス電圧のパルス幅について、さらに温度状況が用いられて制御されてもよい。また、他の構成例として、パルス電圧の電圧値について、さらに計測データが用いられて制御されてもよい。
 なお、本実施形態では、ある主ヒータ1011の温度調整領域を複数の温度調整領域に分割して、それぞれの分割領域ごとにサブヒータ1012を備えた。他の構成例として、ある主ヒータ1011の温度調整領域を複数の温度調整領域に分割して、1個の分割領域にはサブヒータを備えずに、他のそれぞれの分割領域ごとにサブヒータ1012を備える構成が用いられてもよい。つまり、1個の分割領域についてはサブヒータにより温度を調整しなくても、全体として温度を調整することが可能である。
 また、主ヒータ1011の数、それぞれの主ヒータ1011の温度調整領域、サブヒータ1012の数、それぞれのサブヒータ1012の温度調整領域としては、様々な構成が用いられてもよい。
 <第7実施形態>
 図23は、本発明の一実施形態(第7実施形態)に係る静電チャック装置(説明の便宜上、静電チャック装置1001Aという。)の概略的な構成を示すブロック図である。第6実施形態に係る図18に示されるものと同様な構成部については、同じ符号を付してある。
 静電チャック装置1001Aは、温度調整用ベース部1201(図19に示されるものと同様である。)と、静電チャック部1211(図19に示されるものと同様である。)と、主ヒータ1011と、サブヒータ1012と、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、主ヒータ電源の電流・電圧制御部1042と、サブヒータ温調器1101と、外部温度計測部1111と、計測データ記録部1112と、電圧演算部1113と、サブヒータDC電源の電圧制御部1114を備える。
 ここで、主ヒータ1011と、サブヒータ1012と、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、主ヒータ電源の電流・電圧制御部1042については、第6実施形態に係る図18に示されるものと同様である。
 サブヒータ温調器1101は、主ヒータ温調器1041により出力された情報に基づいて、サブヒータ1012による温度調整を行うための情報を生成して出力する。主ヒータ温調器1041から出力される情報と、サブヒータ温調器1101から出力される情報との関係は、例えば、あらかじめ、設定されて記憶されている。
 外部温度計測部1111は、第6実施形態の場合と同様に、それぞれのサブヒータ1012ごとの温度調整領域に関する温度を計測する。
 計測データ記録部1112は、第6実施形態の場合と同様に、外部温度計測部1111により得られた計測データを記録(記憶)する。
 電圧演算部1113は、サブヒータ温調器1101から出力された情報に基づいて電圧の値を演算し、演算した電圧の値の情報をサブヒータDC電源の電圧制御部1114に出力する。この場合、電圧演算部1113は、さらに計測データ記録部1112に記録された情報(例えば、計測時の温度の情報)を用いて、電圧の値を演算してもよい。この演算の仕方(例えば、式など)は、例えば、あらかじめ、設定されて記憶されている。
 サブヒータDC電源の電圧制御部1114は、電圧演算部1113から出力された情報に基づいて、パルス信号(例えば、パルス電流)の電圧値を調整するとともに、当該パルス信号のパルスタイム(パルス幅)を設定する。パルス信号の電圧値の調整の仕方は、例えば、あらかじめ、設定されて記憶される。また、本実施形態では、すべてのサブヒータ1012について同じパルスタイムが設定される。
 このパルス信号は、サブヒータ1012に印加される。
 ここで、本実施形態では、サブヒータ1012に印加する電圧を制御する制御部の機能が、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、サブヒータ温調器1101と、計測データ記録部1112と、電圧演算部1113と、サブヒータDC電源の電圧制御部1114の機能を用いて構成されている。なお、制御部の構成としては、本実施形態のものに限られず、例えば、必要な機能を実現する1個の処理部もしくは2個以上の処理部から構成される。
 本実施形態では、電圧演算部1113において、サブヒータ1012のDC電源の電圧の値を演算することで、それぞれのサブヒータ1012ごとに、パルス電流(それに応じたパルス電圧)のレベル(例えば、パルス電圧の値)を調整することが可能である。
 なお、本実施形態では、パルスタイム(パルス幅)については、一定のものを用いている。
 以上のように、本実施形態に係る静電チャック装置1001Aでは、それぞれのサブヒータ1012ごとに印加するパルス電圧の電圧値を制御することで、主ヒータ1011およびサブヒータ1012を用いた温度制御を精度良く行うことができる。本実施形態では、例えば、パルス電圧のパルス幅については一定とし、パルス電圧の電圧値については温度状況に基づいて制御することが可能である。
 他の構成例として、パルス電圧の電圧値について、さらに計測データが用いられて制御されてもよい。
 <第8実施形態>
 図24は、本発明の一実施形態(第8実施形態)に係る静電チャック装置(説明の便宜上、静電チャック装置1001Bという。)の概略的な構成を示すブロック図である。第6実施形態に係る図18に示されるものと同様な構成部については、同じ符号を付してある。
 静電チャック装置1001Bは、温度調整用ベース部1201(図19に示されるものと同様である。)と、静電チャック部1211(図19に示されるものと同様である。)と、主ヒータ1011と、サブヒータ1012と、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、主ヒータ電源の電流・電圧制御部1042と、サブヒータ温調器1151と、外部温度計測部1161と、計測データ記録部1162と、パルスタイム演算部1163と、サブヒータDC電源のパルスタイム制御部1164を備える。
 ここで、主ヒータ1011と、サブヒータ1012と、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、主ヒータ電源の電流・電圧制御部1042については、第6実施形態に係る図18に示されるものと同様である。
 サブヒータ温調器1151は、主ヒータ温調器1041により出力された情報に基づいて、サブヒータ1012による温度調整を行うための情報を生成して出力する。主ヒータ温調器1041から出力される情報と、サブヒータ温調器1151から出力される情報との関係は、例えば、あらかじめ、設定されて記憶されている。
 外部温度計測部1161は、第6実施形態の場合と同様に、それぞれのサブヒータ1012ごとの温度調整領域に関する温度を計測する。
 計測データ記録部1162は、第6実施形態の場合と同様に、外部温度計測部1161により得られた計測データを記録(記憶)する。
 パルスタイム演算部1163は、計測データ記録部1162に記録された計測データおよびサブヒータ温調器1151から出力された情報に基づいてパルスタイム(例えば、それぞれのサブヒータ1012ごとのパルスタイム)を演算し、演算したパルスタイムの情報を出力する。この演算の仕方(例えば、式など)は、例えば、あらかじめ、設定されて記憶されている。
 サブヒータDC電源のパルスタイム制御部1164は、パルスタイム演算部1163から出力された情報に基づいてパルス信号のパルスタイム(パルス幅)を調整する。また、本実施形態では、すべてのサブヒータ1012について同じ電圧値(パルス信号の電圧値)が設定される。
 このパルス信号は、サブヒータ1012に印加される。
 ここで、本実施形態では、サブヒータ1012に印加する電圧を制御する制御部の機能が、冷媒温度センサ1021と、温度演算部1022と、静電チャック(ESC)内の温度センサ1031と、温度演算部1032と、主ヒータ温調器1041と、サブヒータ温調器1151と、計測データ記録部1162と、パルスタイム演算部1163と、サブヒータDC電源のパルスタイム制御部1164の機能を用いて構成されている。なお、制御部の構成としては、本実施形態のものに限られず、例えば、必要な機能を実現する1個の処理部もしくは2個以上の処理部から構成される。
 本実施形態では、パルスタイム演算部1163において、それぞれのサブヒータ1012ごとに、パルス電流(それに応じたパルス電圧)のパルス幅(時間的な幅)を演算することで、パルス幅を調整することが可能である。複数のサブヒータ1012のパルス電圧のパルス幅は、例えば、それぞれ独立に異なっていてもよく、もしくは、一部が同一であってもよい。
 なお、本実施形態では、パルス信号の電圧値については、一定のものを用いている。
 以上のように、本実施形態に係る静電チャック装置1001Bでは、それぞれのサブヒータ1012ごとに印加するパルス電圧のパルス幅を制御することで、主ヒータ1011およびサブヒータ1012を用いた温度制御を精度良く行うことができる。本実施形態では、例えば、パルス電圧のパルス幅については計測データおよび温度状況に基づいて制御することが可能であり、パルス電圧の電圧値については一定とする。
 <以上の第6実施形態~第8実施形態について>
 ここで、以上の実施形態に係る静電チャック装置1001、1001A、1001Bにおける一部の機能を別体とした静電チャック制御装置を構成することも可能である。
 一例として、静電チャック制御装置は、静電チャック装置1001、1001A、1001B(静電チャック部1211の吸着面の温度を単独もしくは複数の領域で調整する単独もしくは複数の主ヒータ1011からなる第1のヒータエレメント1301と、第1のヒータエレメント1301の領域より多い領域の温度を調整する複数のサブヒータ1012からなる第2のヒータエレメント1311と、を備える静電チャック装置)におけるサブヒータ1012に印加する電圧を制御する制御部を備える。
 また、以上の実施形態に係る静電チャック装置1001、1001A、1001Bにおいて行われる制御の方法を静電チャック制御方法として実施することも可能である。
 一例として、静電チャック制御方法では、第1のヒータエレメント1301を構成する単独もしくは複数の主ヒータ1011が、静電チャック部1211の吸着面の温度を単独もしくは複数の領域で調整し、第2のヒータエレメント1311を構成する複数のサブヒータ1012が、第1のヒータエレメント1301の領域より多い領域の温度を調整し、制御部が、サブヒータ1012に印加する電圧を制御する。
 一例として、静電チャック制御方法では、主ヒータ1011の領域を分割する様に配されたサブヒータ1012に印加される電圧の大きさを、主ヒータ1011に印加する電圧の大きさに基づいて制御する。なお、主ヒータ1011に印加する電圧の代わりに、電流または電力が用いられてもよい。
 一例として、静電チャック制御方法では、主ヒータ1011の領域を分割する様に配されたサブヒータ1012に印加される電圧の大きさを、少なくとも主ヒータ1011に対応する温度検出結果と温度調整用ベース部1201のチラーの温度検出結果との温度差に基づいて制御する。
 一例として、静電チャック制御方法では、主ヒータ1011の領域を分割する様に配されたサブヒータ1012の温度調整において、サブヒータ1012への供給電力は、パルス電圧の印加時間(パルス幅)と電圧値により調整され、印加時間(パルス幅)は、主ヒータ1011による温度により制御し、電圧値は、主ヒータ1011の印加電力、もしくは、少なくとも主ヒータ1011に対応する検出温度と温度調整用ベース部1201のチラーの温度検出結果との温度差により、制御する。
 一例として、静電チャック制御方法では、第2のヒータエレメント1311の各分割されたサブヒータ1012への巡回的パルス電圧の印加において、DC電源(図21の例では、DC電源1401、1421、1441)とサブヒータ1012との間と、サブヒータ1012とアース(図21の例では、アース1402、1422、1442)との間と、の一方もしくは両方に、スイッチング素子(図21の例では、スイッチング素子1411、1431、1451、1412、1432、1452)を配し、各分割されたサブヒータ1012に所定のパルス電圧を印加する。
 なお、静電チャック制御方法において、制御部の機能(または制御部の機能および他の機能)を静電チャック装置1001、1001A、1001Bの本体とは別体の装置(例えば、静電チャック制御装置)に備えてもよい。
 また、以上の実施形態に係る静電チャック装置1001、1001A、1001Bにおいて行われる制御を実現するプログラムを実施することも可能である。
 一例として、静電チャック装置1001、1001A、1001B(静電チャック部1211の吸着面の温度を単独もしくは複数の領域で調整する単独もしくは複数の主ヒータ1011からなる第1のヒータエレメント1301と、第1のヒータエレメント1301の領域より多い領域の温度を調整する複数のサブヒータ1012からなる第2のヒータエレメント1311と、を備える静電チャック装置)を制御するプログラムであって、サブヒータ1012に印加する電圧としてパルス電圧を用いて サブヒータ1012に印加する電圧を制御するステップ、をコンピュータに実行させるためのプログラムを実施することが可能である。
 また、他の様々なステップをコンピュータに実行させるためのプログラムを実施することが可能である。
 なお、このようなプログラムを、静電チャック装置1001、1001A、1001Bの本体とは別体の装置(例えば、静電チャック制御装置)を構成するコンピュータにおいて実行してもよい。
 このように、以上に示した実施形態に係る各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、CPU(Central Processing Unit)などにより実行することにより、処理を行ってもよい。
 なお、ここでいう「コンピュータシステム」とは、オペレーティング・システム(OS:Operating System)や周辺機器等のハードウェアを含むものであってもよい。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disk)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 W…板状試料、1、101…静電チャック装置、2…静電チャック部、3…温度調節用ベース部、3a…凹部、3b…貫通孔、4…高周波発生用電極、5…第1のヒータエレメント、5A、5B、5C、5D…主ヒータ、6…第2のヒータエレメント、6A、6B、6C、6D…サブヒータ、6a、6b、6c、6d…ヒータ分割体、7、8、10…絶縁板、8b…導電部、9…配線層、9a…配線体、4A、7A…接着層、11…接着剤層、21…載置板、21a…載置面、22…支持板、23…静電吸着用電極(静電吸着用内部電極)、24…絶縁材層、25A…取出電極端子、25B…導電性接着部、25C…給電用端子、30…温度センサー、30a…突起部、31…設置孔、32…温度計測部、33…励起部、34…蛍光検出器、35…制御部、38…ピン挿通孔、41、51、61…給電用端子、71…通電用端子、25a、38a、51a、61a、71a…碍子、70…ガード電極、80…ヒータ部、200……サーモカメラ。
 W…板状試料、501…静電チャック装置、502…静電チャック部、503…温度調節用ベース部、503a…凹部、503A…流路、503b…貫通孔、503B…開口部、504…配線層、504a…配線体、505…第1のヒータエレメント、505A、505B、505C、505D…主ヒータ、506…第2のヒータエレメント、506A、506B、506C、506D…サブヒータ、506a、506b、506c、506d…ヒータ分割体、507、508…絶縁板、509A…接着層、507b、508b、509b…導通部、509B…接着材層、510…絶縁部、511…載置板、511a…載置面、511b…突起部、512…支持板、513…静電吸着用電極(静電吸着用内部電極)、514…絶縁材層、515A…取出電極端子、515B…導電性接着部、515C…給電用端子、515a…碍子、517…給電用端子、518…碍子、520…温度センサー、520a…突出部、521…設置孔、522…温度計測部、523…励起部、524…蛍光検出器、525…制御部、526…給電用端子、527…碍子、528…ピン挿通孔、529…碍子、530…サーモカメラ、550…高周波発生用電極、551…金属板、552…給電用端子、552a…碍子、553…絶縁層。
 W…板状試料、601…静電チャック装置、602…静電チャック部、603…温度調節用ベース部、603a…凹部、603b…貫通孔、604…配線層、605…第1のヒータエレメント、605A、605B、605C、605D…主ヒータ、606…第2のヒータエレメント、606A、606B、606C、606D…サブヒータ、606b、606c、606d…ヒータ分割体、607、608…絶縁板、609…接着層、607b、608b、609b…導通部、610…接着材層、611…載置板、611a…載置面、613…静電吸着用電極(静電吸着用内部電極)、615A…取出電極端子、615B…導電性接着部、615C…給電用端子、615a…碍子、617…給電用端子、618…碍子、620…温度センサー、621…設置孔、622…温度計測部、626…給電用端子、627…碍子、630…サーモカメラ、637、638…絶縁板、637b、638b…導通部、639…接着層、646、648…給電用端子、647、649…碍子。
1001…静電チャック装置、1011…主ヒータ、1012…サブヒータ、1021…冷媒温度センサ、1022、1032…温度演算部、1031…温度センサ、1041…主ヒータ温調器、1042…電流・電圧制御部、1043、1101、1151…サブヒータ温調器、1044、1114…電圧制御部、1051、1111、1161…外部温度計測部、1052、1112、1162…計測データ記録部、1053、1163…パルスタイム演算部、1054…パルスタイム調整部、1201…温度調整用ベース部、1211…静電チャック部、1221…ウエハ、1301…第1のヒータエレメント、1311…第2のヒータエレメント、1401、1421、1441…DC電源、1402、1422、1442…アース、1411、1412、1431、1432、1451、1452…スイッチング素子、R1~R9…抵抗体(ヒータ)、1113…電圧演算部、1164…パルスタイム制御部

Claims (49)

  1.  一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、
     前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、
     前記静電チャック部と前記温度調節用ベース部との間に層状に配置された高周波発生用電極と、
     前記高周波発生用電極に接続された高周波電源と、
     前記高周波発生用電極と前記温度調節用ベース部との間に層状に配置された複数の主ヒータからなる第1のヒータエレメントと、
     前記高周波発生用電極と前記第1ヒータエレメントとの間に層状に配置されたガード電極と、を備える静電チャック装置。
  2.  前記第1ヒータエレメントと前記ガード電極との間、または前記第1ヒータエレメントと前記温度調節用ベース部の間に、
     層状に配置された複数のサブヒータからなる第2のヒータエレメントをさらに備えることを特徴とする請求項1に記載の静電チャック装置。
  3.  前記ガード電極は、その円周方向に延在する第1の伝熱障壁を有する請求項1または2のいずれかに記載の静電チャック装置。
  4.  前記第1のヒータエレメントを構成する前記複数の主ヒータは、前記円形領域において同心円環状に配置され、
     前記第1の伝熱障壁は、前記円環領域の径方向で隣り合う前記複数の主ヒータの間の領域と平面的に重なって設けられている請求項3に記載の静電チャック装置。
  5.  前記第1のヒータエレメントを構成する前記複数の主ヒータは、前記円形領域において同心円環状に配置され、
     前記高周波発生用電極は、その円周方向に延在する第2の伝熱障壁を有し、
     前記第2の伝熱障壁は、前記円環領域の径方向で隣り合う前記複数の主ヒータの間の領域と平面的に重なって設けられていることを特徴とする請求項1から4のいずれか1項に記載の静電チャック装置。
  6.  前記高周波発生用電極の形成材料は、非磁性の金属材料である請求項1から5のいずれか1項に記載の静電チャック装置。
  7.  前記高周波発生用電極の形成材料は、熱膨張率が4×10-6/K以上、10×10-6/K以下である請求項1から6のいずれか1項に記載の静電チャック装置。
  8.  前記高周波発生用電極は、厚みが20μm以上、1000μm以下である請求項1から7のいずれか1項に記載の静電チャック装置。
  9.  前記主ヒータの単位面積あたりの発熱量よりも前記サブヒータの単位面積あたりの発熱量が小さく設定されている請求項2から8のいずれか1項に記載の静電チャック装置。
  10.  一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、
     前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、
     前記静電チャック部と前記温度調節用ベース部との間に層状に配置され、前記温度調節用ベース部に対し絶縁された高周波発生用電極と、
     前記高周波発生用電極に接続された高周波電源と、
     前記静電チャック部と前記高周波発生用電極との間に、層状に配置された複数の主ヒータからなる第1のヒータエレメントと、
     前記高周波発生用電極と前記温度調節用ベース部との間に、配置された複数のサブヒータからなる第2のヒータエレメントと、
     前記高周波発生用電極と前記第2のヒータエレメントとの間に配置された金属板とを備える静電チャック装置。
  11.  前記温度調節用ベース部が、金属材料を形成材料とし、
     前記金属板と前記温度調節用ベース部が電気的に接続されている請求項10に記載の静電チャック装置。
  12.  前記主ヒータの単位面積あたりの発熱量よりも前記サブヒータの単位面積あたりの発熱量が小さく設定されている請求項10または11のいずれかに記載の静電チャック装置。
  13.  前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、前記第1のヒータエレメントと前記第2のヒータエレメントが、それらの円周方向もしくは径方向に複数に分割され、前記第1のヒータエレメントの分割数よりも前記第2のヒータエレメントの分割数が多くされている請求項10~12のいずれか一項に記載の静電チャック装置。
  14.  前記第1のヒータエレメントを構成する前記複数の主ヒータは、前記円形領域において同心状に配置され、
     前記金属板が、その円周方向に延在する複数の第1の伝熱障壁を有する請求項10~13のいずれかに記載の静電チャック装置。
  15.  前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、
     前記金属板が、隣り合う前記複数の主ヒータの間の領域及び隣り合う前記複数のサブヒータの間の領域と、平面的に重なって設けられた複数の第1の伝熱障壁を有することを特徴とする請求項10~14のいずれか一項に記載の静電チャック装置。
  16.  前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、
     前記高周波発生用電極が、隣り合う前記複数の主ヒータの間の領域及び隣り合う前記複数のサブヒータの間の領域と、平面的に重なって設けられた複数の第2の伝熱障壁を有することを特徴とする請求項10~15のいずれか一項に記載の静電チャック装置。
  17.  前記主ヒータの前記温度調節用ベース部側に、前記主ヒータの温度を測定する温度センサーが主ヒータに絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置されている請求項10~16のいずれか1項に記載の静電チャック装置。
  18.  前記温度センサーの一面が絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置され、他の面が前記温度調節用ベース部に接触していないことを特徴とする請求項10~17のいずれか1項に記載の静電チャック装置。
  19.  一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、
     前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調節用ベース部と、
     前記静電チャック部と前記温度調節用ベース部との間に層状に配置された複数の主ヒータからなる第1のヒータエレメントと、
     前記温度調節用ベース部と前記第1のヒータエレメントとの間あるいは前記第1のヒータエレメントと前記静電チャック部との間に層状に配置された複数のサブヒータからなる第2のヒータエレメントを備え、
     前記主ヒータの単位面積あたりの発熱量よりも前記サブヒータの単位面積あたりの発熱量が小さく設定されたことを特徴とする静電チャック装置。
  20.  前記第1のヒータエレメントおよび前記第2のヒータエレメントがいずれも配置された面に沿って円形領域に配置され、前記第1のヒータエレメントと前記第2のヒータエレメントが、それらの円周方向もしくは径方向に複数に分割され、前記第1のヒータエレメントの分割数よりも前記第2のヒータエレメントの分割数が多くされたことを特徴とする請求項18に記載の静電チャック装置。
  21.  前記主ヒータの前記温度調節用ベース部側に、前記主ヒータの温度を測定する温度センサーが主ヒータに絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置されていることを特徴とする請求項19または請求項20に記載の静電チャック装置。
  22.  前記温度センサーの一面が絶縁材を介して接触もしくは主ヒータと同一面に設置された測温部に設置され、他の面が前記温度調節用ベース部に接触していないことを特徴とする請求項19~21のいずれか1項に記載の静電チャック装置。
  23.  前記温度調節用ベース部の前記静電チャック部側に前記第1ヒータエレメントと前記第2のヒータエレメントが複数の耐熱性絶縁板を介し積層され、前記絶縁板に設けられたコンタクトホールと前記温度調節用ベース部に設けられた貫通孔を介し前記主ヒータあるいは前記サブヒータに接続する給電用端子が設けられたことを特徴とする請求項20~22のいずれか一項に記載の静電チャック装置。
  24.  前記第2のヒータエレメントと前記温度調節用ベース部との間に絶縁シートが設けられ、該絶縁シートの前記温度調節用ベース部側の面に沿って前記第2のヒータエレメントに接続される配線層が形成されたことを特徴とする請求項20~23のいずれか一項に記載の静電チャック装置。
  25.  前記温度調節用ベース部と前記静電チャック部との間に前記静電チャック部側から順に第1のヒータエレメントと第2のヒータエレメントが絶縁板を介し積層されたことを特徴とする請求項20~24のいずれか一項に記載の静電チャック装置。
  26.  前記温度調節用ベース部と前記静電チャック部との間に前記静電チャック部側から順に第2のヒータエレメントと第1のヒータエレメントが絶縁板を介し積層されたことを特徴とする請求項20~24のいずれか一項に記載の静電チャック装置。
  27.  一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、
     前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調整用ベース部と、
     前記静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、
     前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、
     前記サブヒータに印加する電圧を制御する制御部と、を備える静電チャック装置。
  28.  前記制御部は、前記サブヒータに印加する電圧としてパルス電圧を用いる、請求項27に記載の静電チャック装置。
  29.  前記制御部は、前記第2のヒータエレメントの複数の前記サブヒータについて、巡回的に割り振られた同一の長さの期間のうちで、前記第2のヒータエレメントの各サブヒータに印加するパルス電圧の時間幅を制御する、請求項28に記載の静電チャック装置。
  30.  前記制御部は、前記サブヒータに印加する電圧としてDC電圧を用いる、請求項27から請求項29のいずれか1項に記載の静電チャック装置。
  31.  前記制御部は、前記第2のヒータエレメントの複数の前記サブヒータについて、前記サブヒータに印加する電圧の大きさを制御する、請求項27から請求項30のいずれか1項に記載の静電チャック装置。
  32.  前記制御部は、前記主ヒータに印加する電圧を制御する、請求項27から請求項31のいずれか1項に記載の静電チャック装置。
  33.  前記静電チャック部と前記温度調整用ベース部との温度差がある状況において、前記制御部は、前記主ヒータについては冷却工程以外では常に電圧を印加し、前記各サブヒータについては間欠的に電圧を印加し得る、請求項32に記載の静電チャック装置。
  34.  前記制御部は、各主ヒータを分割する様に配された各サブヒータに印加する電圧の大きさを前記主ヒータに印加する電圧、電流、または電力の大きさに基づいて制御する、請求項32または請求項33のいずれか1項に記載の静電チャック装置。
  35.  前記制御部は、各主ヒータを分割する様に配された各サブヒータに印加する電圧の大きさを、少なくとも前記主ヒータに対応する温度検出結果と前記温度調整用ベース部のチラーに対応する温度検出結果との温度差に基づいて制御する、請求項32から請求項34のいずれか1項に記載の静電チャック装置。
  36.  前記サブヒータに印加する電圧を制御するために用いられる情報を記憶する記憶部を備え、前記制御部は、前記記憶部に記憶される情報に基づいて、前記サブヒータに印加する電圧を制御する、請求項27から請求項35のいずれか1項に記載の静電チャック装置。
  37.  前記記憶部は、前記サブヒータにより温度調整を行う温度域のうちの一部に対応する情報を記憶し、前記制御部は、前記記憶部に記憶される情報および前記主ヒータに印加する電圧、電流、または電力の大きさに基づいて、前記サブヒータに印加する電圧を制御する、請求項36に記載の静電チャック装置。
  38.  前記記憶部は、前記サブヒータにより温度調整を行う温度域のうちの一部に対応する情報を記憶し、前記制御部は、前記記憶部に記憶される情報および少なくとも前記主ヒータに対応する温度検出結果と前記温度調整用ベース部のチラーに対応する温度検出結果との温度差に基づいて、前記サブヒータに印加する電圧を制御する、請求項36または請求項37のいずれか1項に記載の静電チャック装置。
  39.  前記第1のヒータエレメントは、それぞれ独立した温度制御が可能な複数の前記主ヒータ調整領域の温度を調整する、請求項27から請求項38のいずれか1項に記載の静電チャック装置。
  40.  前記サブヒータは、前記第1のヒータエレメントの各主ヒータ調整領域を分割する様に層状に配されている、請求項27から請求項39のいずれか1項に記載の静電チャック装置。
  41.  前記サブヒータの単位面積あたりの発熱量が、前記主ヒータに対して1/5以下である、請求項27から請求40のいずれか1項に記載の静電チャック装置。
  42.  前記第2のヒータエレメントは、単層もしくは複数の層よりなる、請求項27から請求項41のいずれか1項に記載の静電チャック装置。
  43.  一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調整用ベース部と、前記静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、を備える静電チャック装置における前記サブヒータに印加する電圧を制御する制御部を備える、静電チャック制御装置。
  44.  一主面に板状試料を載置する載置面を有するとともに静電吸着用電極を備えた静電チャック部と、前記静電チャック部に対し前記載置面とは反対側に配置され前記静電チャック部を冷却する温度調整用ベース部と、前記静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、を備える静電チャック装置を制御するプログラムであって、前記サブヒータに印加する電圧としてパルス電圧を用いて 前記サブヒータに印加する電圧を制御するステップ、をコンピュータに実行させるためのプログラム。
  45.  第1のヒータエレメントを構成する単独もしくは複数の主ヒータが、静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整し、第2のヒータエレメントを構成する複数のサブヒータが、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整し、制御部が、前記サブヒータに印加する電圧を制御する、静電チャック制御方法。
  46.  主ヒータの主ヒータ調整領域を分割する様に配されたサブヒータに印加される電圧の大きさを、前記主ヒータに印加する電圧、電流、または電力の大きさに基づいて制御する、静電チャック制御方法。
  47.  主ヒータの主ヒータ調整領域を分割する様に配されたサブヒータに印加される電圧の大きさを、少なくとも前記主ヒータに対応する温度検出結果と温度調整用ベース部のチラーの温度検出結果との温度差に基づいて制御する、静電チャック制御方法。
  48.  主ヒータの主ヒータ調整領域を分割する様に配されたサブヒータの温度調整において、
     前記サブヒータへの供給電力は、パルス電圧の印加時間と電圧値により調整され、前記印加時間は、前記主ヒータによる温度により制御し、前記電圧値は、前記主ヒータの印加電力、もしくは、少なくとも前記主ヒータに対応する温度検出結果と温度調整用ベース部のチラーの温度検出結果との温度差により、制御する静電チャック制御方法。
  49.  静電チャック部の吸着面の温度を単独もしくは複数の主ヒータ調整領域で調整する単独もしくは複数の主ヒータからなる第1のヒータエレメントと、前記第1のヒータエレメントの前記主ヒータ調整領域より多いサブヒータ調整領域の温度を調整する複数のサブヒータからなる第2のヒータエレメントと、を備える静電チャック装置において、前記サブヒータへの巡回的パルス電圧の印加において、DC電源と前記サブヒータとの間と、前記サブヒータとアースとの間と、の一方もしくは両方に、スイッチング素子を配し、前記サブヒータに所定のパルス電圧を印加する、静電チャック制御方法。
PCT/JP2015/082609 2014-11-20 2015-11-19 静電チャック装置 WO2016080502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/528,026 US10475687B2 (en) 2014-11-20 2015-11-19 Electrostatic chuck device
JP2015562234A JP6202111B2 (ja) 2014-11-20 2015-11-19 静電チャック装置
KR1020177014260A KR102233925B1 (ko) 2014-11-20 2015-11-19 정전 척 장치
CN201580063056.4A CN107004626B (zh) 2014-11-20 2015-11-19 静电卡盘装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014235454 2014-11-20
JP2014-235737 2014-11-20
JP2014235737 2014-11-20
JP2014-235454 2014-11-20
JP2015-054573 2015-03-18
JP2015-054985 2015-03-18
JP2015054985 2015-03-18
JP2015054573 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016080502A1 true WO2016080502A1 (ja) 2016-05-26

Family

ID=56014034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082609 WO2016080502A1 (ja) 2014-11-20 2015-11-19 静電チャック装置

Country Status (5)

Country Link
US (1) US10475687B2 (ja)
JP (3) JP6202111B2 (ja)
KR (1) KR102233925B1 (ja)
CN (1) CN107004626B (ja)
WO (1) WO2016080502A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228230A (ja) * 2016-06-24 2017-12-28 東京エレクトロン株式会社 基板処理システムおよび温度制御方法
JP2018026405A (ja) * 2016-08-08 2018-02-15 新光電気工業株式会社 基板固定装置及びその製造方法
JP2018056333A (ja) * 2016-09-29 2018-04-05 日本発條株式会社 基板載置台、および基板載置台の作製方法
CN108028221A (zh) * 2016-07-19 2018-05-11 日本碍子株式会社 静电卡盘加热器
CN108091535A (zh) * 2016-11-21 2018-05-29 东京毅力科创株式会社 载置台和等离子体处理装置
WO2018163935A1 (ja) * 2017-03-06 2018-09-13 日本碍子株式会社 ウエハ支持台
JP2018181992A (ja) * 2017-04-10 2018-11-15 日本特殊陶業株式会社 保持装置
TWI663685B (zh) * 2016-11-30 2019-06-21 南韓商細美事有限公司 用於支承基板的吸盤模組和包括該吸盤模組的探針台
US20190267218A1 (en) * 2018-02-23 2019-08-29 Lam Research Corporation Multi-plate electrostatic chucks with ceramic baseplates
WO2020008859A1 (ja) * 2018-07-04 2020-01-09 日本碍子株式会社 ウエハ支持台
KR20200056986A (ko) * 2017-09-29 2020-05-25 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치
JP2021012928A (ja) * 2019-07-04 2021-02-04 住友大阪セメント株式会社 静電チャック装置
TWI745556B (zh) * 2017-03-02 2021-11-11 日商日本碍子股份有限公司 晶圓加熱裝置
KR20220043043A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전척 및 반도체 제조 장치
KR20220043038A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전 척 및 반도체 제조 장치
KR20220043044A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전척 및 반도체 제조 장치
KR20220043042A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전 척 및 반도체 제조 장치
JP7129587B1 (ja) * 2021-04-01 2022-09-01 日本碍子株式会社 ウエハ支持台及びrfロッド
WO2022209619A1 (ja) * 2021-04-01 2022-10-06 日本碍子株式会社 ウエハ支持台及びrfロッド
US11967517B2 (en) 2019-02-12 2024-04-23 Lam Research Corporation Electrostatic chuck with ceramic monolithic body
TWI842344B (zh) 2022-03-07 2024-05-11 日商愛德萬測試股份有限公司 溫度控制裝置、試驗裝置、溫度控制方法及電腦可讀取媒體

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582570B2 (en) * 2016-01-22 2020-03-03 Applied Materials, Inc. Sensor system for multi-zone electrostatic chuck
US20170358431A1 (en) * 2016-06-13 2017-12-14 Applied Materials, Inc. Systems and methods for controlling a voltage waveform at a substrate during plasma processing
CN107690206B (zh) * 2017-08-21 2021-05-04 宁波柔碳电子科技有限公司 一种加热电极结构和加热装置
US11887877B2 (en) * 2017-09-29 2024-01-30 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
US11236422B2 (en) 2017-11-17 2022-02-01 Lam Research Corporation Multi zone substrate support for ALD film property correction and tunability
CN111712910B (zh) 2018-02-16 2023-11-07 日本特殊陶业株式会社 保持装置
US10633742B2 (en) 2018-05-07 2020-04-28 Lam Research Foundation Use of voltage and current measurements to control dual zone ceramic pedestals
JP7326344B2 (ja) * 2018-05-24 2023-08-15 アプライド マテリアルズ インコーポレイテッド 空間分解ウエハ温度制御のための仮想センサ
KR20210019573A (ko) 2018-07-05 2021-02-22 램 리써치 코포레이션 기판 프로세싱 시스템에서 기판 지지부의 동적 온도 제어
US11183400B2 (en) 2018-08-08 2021-11-23 Lam Research Corporation Progressive heating of components of substrate processing systems using TCR element-based heaters
US10872747B2 (en) 2018-08-08 2020-12-22 Lam Research Corporation Controlling showerhead heating via resistive thermal measurements
US11133211B2 (en) * 2018-08-22 2021-09-28 Lam Research Corporation Ceramic baseplate with channels having non-square corners
KR20200023988A (ko) * 2018-08-27 2020-03-06 삼성전자주식회사 정전 척 및 상기 정전 척을 탑재한 웨이퍼 식각 장치
CN110896045B (zh) * 2018-09-12 2022-12-30 中微半导体设备(上海)股份有限公司 一种升举顶针组件,静电夹盘及其所在的处理装置
JP7455536B2 (ja) * 2018-09-18 2024-03-26 日本特殊陶業株式会社 保持装置の製造方法
JP7008602B2 (ja) * 2018-09-27 2022-01-25 東京エレクトロン株式会社 成膜装置および温度制御方法
JP7329917B2 (ja) * 2018-11-30 2023-08-21 新光電気工業株式会社 基板固定装置
JP7299756B2 (ja) * 2019-05-24 2023-06-28 日本特殊陶業株式会社 保持装置
JP7071946B2 (ja) * 2019-06-21 2022-05-19 東京エレクトロン株式会社 プラズマ処理装置
WO2020263719A1 (en) * 2019-06-24 2020-12-30 Lam Research Corporation Temperature control of a multi-zone pedestal
KR102632768B1 (ko) * 2019-06-28 2024-02-01 엔지케이 인슐레이터 엘티디 웨이퍼 배치대
CN110600419A (zh) * 2019-09-20 2019-12-20 上海华力微电子有限公司 一种静电吸盘及其使用方法
CN110752171B (zh) * 2019-11-01 2022-07-29 长江存储科技有限责任公司 晶圆弯曲度调整装置及方法
JP7411431B2 (ja) * 2020-01-31 2024-01-11 新光電気工業株式会社 静電チャック、基板固定装置
JP7202326B2 (ja) * 2020-03-11 2023-01-11 日本碍子株式会社 セラミックヒータ
CN111446198B (zh) * 2020-03-23 2023-05-16 北京北方华创微电子装备有限公司 静电卡盘及其控制方法
CN115461856A (zh) 2020-04-29 2022-12-09 应用材料公司 用于均匀性改善的加热器盖板
EP4175755A1 (en) * 2020-07-02 2023-05-10 Ultima Genomics, Inc. Methods and systems for nucleic acid analysis
JP7449799B2 (ja) * 2020-07-09 2024-03-14 東京エレクトロン株式会社 載置台の温度調整方法及び検査装置
JP7296351B2 (ja) * 2020-10-02 2023-06-22 日本碍子株式会社 セラミックヒータ
US20220122817A1 (en) * 2020-10-15 2022-04-21 Applied Materials, Inc. Semiconductor substrate support power transmission components
CN116391250A (zh) * 2020-10-20 2023-07-04 朗姆研究公司 冷边缘低温静电卡盘
KR102242122B1 (ko) * 2020-12-15 2021-04-20 세메스 주식회사 온도 제어 장치 및 온도 제어 방법
CN115210860A (zh) * 2021-02-04 2022-10-18 日本碍子株式会社 半导体制造装置用构件及其制法
WO2022168368A1 (ja) * 2021-02-04 2022-08-11 日本碍子株式会社 半導体製造装置用部材及びその製法
JP7213592B1 (ja) 2021-08-19 2023-01-27 アダプティブ プラズマ テクノロジー コーポレーション 多重加熱領域構造の静電チャック
CN114496889A (zh) * 2022-01-21 2022-05-13 北京北方华创微电子装备有限公司 静电卡盘装置和温度控制方法
JPWO2023175690A1 (ja) 2022-03-14 2023-09-21
WO2023248406A1 (ja) * 2022-06-23 2023-12-28 株式会社日立ハイテク プラズマ処理装置
WO2024000284A1 (zh) * 2022-06-29 2024-01-04 沈阳芯源微电子设备股份有限公司 温度补偿***、半导体设备和温度补偿方法
CN116403943A (zh) * 2023-04-21 2023-07-07 江苏微导纳米科技股份有限公司 一种加热盘及其制造方法、一种半导体设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106319A (ja) * 1993-09-30 1995-04-21 Hitachi Electron Eng Co Ltd Cvd反応炉の加熱装置の電磁遮蔽方法
JPH10204645A (ja) * 1997-01-17 1998-08-04 Hitachi Electron Eng Co Ltd 下部電極
JP2000031253A (ja) * 1998-07-10 2000-01-28 Komatsu Ltd 基板処理装置及び方法
JP2002313899A (ja) * 2001-04-11 2002-10-25 Sumitomo Electric Ind Ltd 基板保持構造体および基板処理装置
JP2004508728A (ja) * 2000-09-05 2004-03-18 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド 多孔領域を有する静電チャック
JP2008300491A (ja) * 2007-05-30 2008-12-11 Sumitomo Osaka Cement Co Ltd 静電チャック

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133721A (ja) * 1985-12-05 1987-06-16 Anelva Corp 基体ホルダ−
US5729423A (en) * 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
JPH11163109A (ja) 1997-12-01 1999-06-18 Kyocera Corp ウエハ保持装置
JP2001007189A (ja) 1999-06-24 2001-01-12 Shin Etsu Chem Co Ltd 静電チャック及びその製造方法
US6875927B2 (en) * 2002-03-08 2005-04-05 Applied Materials, Inc. High temperature DC chucking and RF biasing cable with high voltage isolation for biasable electrostatic chuck applications
US6718246B2 (en) 2002-04-24 2004-04-06 Caterpillar Inc Automatic implement control for spreading material with a work machine
US7204912B2 (en) * 2002-09-30 2007-04-17 Tokyo Electron Limited Method and apparatus for an improved bellows shield in a plasma processing system
JP4247739B2 (ja) * 2003-07-09 2009-04-02 Toto株式会社 静電チャックによるガラス基板の吸着方法および静電チャック
US20080035306A1 (en) * 2006-08-08 2008-02-14 White John M Heating and cooling of substrate support
TWI459851B (zh) * 2007-09-10 2014-11-01 Ngk Insulators Ltd heating equipment
JP5239988B2 (ja) * 2009-03-24 2013-07-17 東京エレクトロン株式会社 載置台構造及び処理装置
US8637794B2 (en) 2009-10-21 2014-01-28 Lam Research Corporation Heating plate with planar heating zones for semiconductor processing
JP5496630B2 (ja) * 2009-12-10 2014-05-21 東京エレクトロン株式会社 静電チャック装置
JP2011187637A (ja) * 2010-03-08 2011-09-22 Hitachi Kokusai Electric Inc 半導体製造装置
JP5026549B2 (ja) 2010-04-08 2012-09-12 シャープ株式会社 加熱制御システム、それを備えた成膜装置、および温度制御方法
KR101769062B1 (ko) * 2011-04-27 2017-08-17 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치
CA2847342C (en) 2011-08-30 2016-10-04 Watlow Electric Manufacturing Company Method of manufacturing a high definition heater system
JP5879879B2 (ja) 2011-09-29 2016-03-08 住友大阪セメント株式会社 静電チャック装置
US9324589B2 (en) * 2012-02-28 2016-04-26 Lam Research Corporation Multiplexed heater array using AC drive for semiconductor processing
JP6014513B2 (ja) * 2012-08-29 2016-10-25 東京エレクトロン株式会社 プラズマエッチング装置及び制御方法
US10049948B2 (en) * 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
US8941969B2 (en) 2012-12-21 2015-01-27 Applied Materials, Inc. Single-body electrostatic chuck
US20150087144A1 (en) * 2013-09-26 2015-03-26 Taiwan Semiconductor Manufacturing Company Ltd. Apparatus and method of manufacturing metal gate semiconductor device
WO2016014138A1 (en) * 2014-07-23 2016-01-28 Applied Materials, Inc. Tunable temperature controlled substrate support assembly
US10008399B2 (en) * 2015-05-19 2018-06-26 Applied Materials, Inc. Electrostatic puck assembly with metal bonded backing plate for high temperature processes
JP6183567B1 (ja) * 2016-05-13 2017-08-23 Toto株式会社 静電チャック
JP6910227B2 (ja) * 2017-07-14 2021-07-28 株式会社ディスコ 静電チャック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106319A (ja) * 1993-09-30 1995-04-21 Hitachi Electron Eng Co Ltd Cvd反応炉の加熱装置の電磁遮蔽方法
JPH10204645A (ja) * 1997-01-17 1998-08-04 Hitachi Electron Eng Co Ltd 下部電極
JP2000031253A (ja) * 1998-07-10 2000-01-28 Komatsu Ltd 基板処理装置及び方法
JP2004508728A (ja) * 2000-09-05 2004-03-18 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド 多孔領域を有する静電チャック
JP2002313899A (ja) * 2001-04-11 2002-10-25 Sumitomo Electric Ind Ltd 基板保持構造体および基板処理装置
JP2008300491A (ja) * 2007-05-30 2008-12-11 Sumitomo Osaka Cement Co Ltd 静電チャック

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228230A (ja) * 2016-06-24 2017-12-28 東京エレクトロン株式会社 基板処理システムおよび温度制御方法
JPWO2018016384A1 (ja) * 2016-07-19 2018-07-19 日本碍子株式会社 静電チャックヒータ
CN108028221B (zh) * 2016-07-19 2022-12-06 日本碍子株式会社 静电卡盘加热器
CN108028221A (zh) * 2016-07-19 2018-05-11 日本碍子株式会社 静电卡盘加热器
US10483146B2 (en) 2016-07-19 2019-11-19 Ngk Insulators, Ltd. Electrostatic chuck heater
TWI751180B (zh) * 2016-07-19 2022-01-01 日商日本碍子股份有限公司 靜電夾頭加熱器
JP2018026405A (ja) * 2016-08-08 2018-02-15 新光電気工業株式会社 基板固定装置及びその製造方法
JP2018056333A (ja) * 2016-09-29 2018-04-05 日本発條株式会社 基板載置台、および基板載置台の作製方法
JP2018085372A (ja) * 2016-11-21 2018-05-31 東京エレクトロン株式会社 載置台及びプラズマ処理装置
TWI753970B (zh) * 2016-11-21 2022-02-01 日商東京威力科創股份有限公司 載置台及電漿處理裝置
CN108091535B (zh) * 2016-11-21 2020-06-09 东京毅力科创株式会社 载置台和等离子体处理装置
CN108091535A (zh) * 2016-11-21 2018-05-29 东京毅力科创株式会社 载置台和等离子体处理装置
TWI663685B (zh) * 2016-11-30 2019-06-21 南韓商細美事有限公司 用於支承基板的吸盤模組和包括該吸盤模組的探針台
US11515180B2 (en) 2017-03-02 2022-11-29 Ngk Insulators, Ltd. Wafer-heating device
TWI745556B (zh) * 2017-03-02 2021-11-11 日商日本碍子股份有限公司 晶圓加熱裝置
KR20190109496A (ko) * 2017-03-06 2019-09-25 엔지케이 인슐레이터 엘티디 웨이퍼 지지대
CN110235237B (zh) * 2017-03-06 2023-12-26 日本碍子株式会社 晶圆支撑台
KR102225236B1 (ko) * 2017-03-06 2021-03-10 엔지케이 인슐레이터 엘티디 웨이퍼 지지대
JPWO2018163935A1 (ja) * 2017-03-06 2019-12-26 日本碍子株式会社 ウエハ支持台
US11476096B2 (en) 2017-03-06 2022-10-18 Ngk Insulators, Ltd. Wafer support table
CN110235237A (zh) * 2017-03-06 2019-09-13 日本碍子株式会社 晶圆支撑台
WO2018163935A1 (ja) * 2017-03-06 2018-09-13 日本碍子株式会社 ウエハ支持台
JP7030420B2 (ja) 2017-04-10 2022-03-07 日本特殊陶業株式会社 保持装置
JP2018181992A (ja) * 2017-04-10 2018-11-15 日本特殊陶業株式会社 保持装置
KR20200056986A (ko) * 2017-09-29 2020-05-25 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치
KR102559436B1 (ko) * 2017-09-29 2023-07-26 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치
US11664261B2 (en) * 2017-09-29 2023-05-30 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
US20190267218A1 (en) * 2018-02-23 2019-08-29 Lam Research Corporation Multi-plate electrostatic chucks with ceramic baseplates
US11848177B2 (en) * 2018-02-23 2023-12-19 Lam Research Corporation Multi-plate electrostatic chucks with ceramic baseplates
JPWO2020008859A1 (ja) * 2018-07-04 2020-07-16 日本碍子株式会社 ウエハ支持台
WO2020008859A1 (ja) * 2018-07-04 2020-01-09 日本碍子株式会社 ウエハ支持台
US11764039B2 (en) 2018-07-04 2023-09-19 Ngk Insulators, Ltd. Wafer support
US11967517B2 (en) 2019-02-12 2024-04-23 Lam Research Corporation Electrostatic chuck with ceramic monolithic body
JP2021012928A (ja) * 2019-07-04 2021-02-04 住友大阪セメント株式会社 静電チャック装置
KR20220043042A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전 척 및 반도체 제조 장치
KR20220043043A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전척 및 반도체 제조 장치
US11756820B2 (en) 2020-09-28 2023-09-12 Toto Ltd. Electrostatic chuck and semiconductor manufacturing apparatus
KR20220043038A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전 척 및 반도체 제조 장치
US11776836B2 (en) 2020-09-28 2023-10-03 Toto Ltd. Electrostatic chuck and semiconductor manufacturing apparatus
KR20220043044A (ko) 2020-09-28 2022-04-05 토토 가부시키가이샤 정전척 및 반도체 제조 장치
WO2022209619A1 (ja) * 2021-04-01 2022-10-06 日本碍子株式会社 ウエハ支持台及びrfロッド
JP7129587B1 (ja) * 2021-04-01 2022-09-01 日本碍子株式会社 ウエハ支持台及びrfロッド
TWI842344B (zh) 2022-03-07 2024-05-11 日商愛德萬測試股份有限公司 溫度控制裝置、試驗裝置、溫度控制方法及電腦可讀取媒體

Also Published As

Publication number Publication date
JPWO2016080502A1 (ja) 2017-04-27
CN107004626B (zh) 2019-02-05
JP6586975B2 (ja) 2019-10-09
JP2017163157A (ja) 2017-09-14
KR20170088352A (ko) 2017-08-01
JP2017157855A (ja) 2017-09-07
US20190088517A1 (en) 2019-03-21
US10475687B2 (en) 2019-11-12
JP6202111B2 (ja) 2017-09-27
KR102233925B1 (ko) 2021-03-30
CN107004626A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016080502A1 (ja) 静電チャック装置
EP2752085B1 (en) Method of manufacturing a high definition heater system
JP6108051B1 (ja) 静電チャック装置
US10373853B2 (en) Electrostatic chuck and wafer processing apparatus
US11887877B2 (en) Electrostatic chuck device
US11664261B2 (en) Electrostatic chuck device
JP6775642B2 (ja) ワイヤ数の削減されたヒーターアレイブロック
JP6278277B2 (ja) 静電チャック装置
WO2019098087A1 (ja) 静電チャック装置
JP7189715B2 (ja) 静電チャック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562234

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014260

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15862066

Country of ref document: EP

Kind code of ref document: A1