WO2016079840A1 - カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム - Google Patents

カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム Download PDF

Info

Publication number
WO2016079840A1
WO2016079840A1 PCT/JP2014/080747 JP2014080747W WO2016079840A1 WO 2016079840 A1 WO2016079840 A1 WO 2016079840A1 JP 2014080747 W JP2014080747 W JP 2014080747W WO 2016079840 A1 WO2016079840 A1 WO 2016079840A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
wireless communication
capsule endoscope
data
communication environment
Prior art date
Application number
PCT/JP2014/080747
Other languages
English (en)
French (fr)
Inventor
柳舘 昌春
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201480083406.9A priority Critical patent/CN106922121B/zh
Priority to JP2016559749A priority patent/JP6271038B2/ja
Priority to PCT/JP2014/080747 priority patent/WO2016079840A1/ja
Priority to DE112014007039.4T priority patent/DE112014007039T8/de
Publication of WO2016079840A1 publication Critical patent/WO2016079840A1/ja
Priority to US15/584,385 priority patent/US20170231470A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/0002Operational features of endoscopes provided with data storages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00097Sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/067Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe using accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0013Medical image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0017Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system transmitting optical signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach

Definitions

  • the present invention relates to a capsule endoscope system, a capsule endoscope, a wireless communication method of the capsule endoscope, and a program.
  • the capsule endoscope system has a capsule endoscope and a receiver.
  • the capsule endoscope has an imaging unit that performs imaging and an acceleration sensor that detects an acceleration.
  • the capsule endoscope wirelessly transmits the image data from the imaging unit and the acceleration data from the acceleration sensor to the receiving device.
  • the receiving device receives the image data and the acceleration data, and stores the image data.
  • the receiving device also has a position detection function of detecting the position of the capsule endoscope in the human body.
  • the capsule endoscope has a dosing / examination function, and performs dosing / inspection when the capsule endoscope reaches the vicinity of the affected area.
  • Patent Document 1 includes a capsule endoscope that transmits information from an acceleration sensor disposed in a capsule endoscope to a receiver outside the body, and a receiver having a function of estimating the position of the capsule endoscope.
  • An example of a capsule-type medical device is disclosed.
  • Patent Document 1 it is possible to detect the position of the capsule endoscope in the human body.
  • the receiving device can not acquire information from the acceleration sensor. In this case, position detection is incorrect.
  • the present invention provides a capsule endoscope system, a capsule endoscope, a wireless communication method of the capsule endoscope, and a capsule endoscope system capable of suppressing a decrease in accuracy of position detection of the capsule endoscope when the wireless communication environment is deteriorated.
  • a capsule endoscope system has a capsule endoscope and a receiving device.
  • the capsule endoscope performs imaging and outputs an image data, an acceleration sensor outputting acceleration data, an acceleration data storage unit temporarily storing the acceleration data, and the image data by wireless communication.
  • the first wireless communication unit for transmitting the acceleration data and the acceleration data, the communication environment detection unit for detecting a wireless communication environment, and the communication environment detection unit detecting deterioration of the wireless communication environment,
  • the acceleration data is stored in the acceleration data storage unit, and recovery of the wireless communication environment is detected by the communication environment detection unit, and then the acceleration data stored in the acceleration data storage unit is used as the first wireless communication.
  • a capsule control unit that transmits the data to the reception device by the unit.
  • the receiving device includes a second wireless communication unit that receives the image data and the acceleration data from the capsule endoscope by wireless communication, and the capsule endoscope based on the image data and the acceleration data.
  • a capsule position detection unit that detects a position.
  • the first wireless communication unit may further receive work execution condition data and work instruction data from the receiving device.
  • the work execution condition data indicates the position where the treatment work is performed.
  • the work instruction data indicates an execution instruction of the treatment work.
  • the capsule endoscope further detects a moving speed and a moving distance of the capsule endoscope based on the acceleration data, and a timing based on the moving distance and the work execution condition data.
  • the apparatus may have an execution timing determination unit that instructs output of an execution instruction, and a treatment operation unit that performs medicine administration or “collection of tissue or body fluid” based on the execution instruction. When the movement speed is low, the capsule control unit may output the execution instruction to the treatment operation unit at the timing when the work instruction data is received.
  • the capsule control unit may output the execution instruction to the treatment working unit at a timing when the output of the execution instruction is instructed by the execution timing determination unit.
  • the receiving device further includes an operation unit that receives an operation of an operator, and a generation unit that generates the work execution condition data and the work instruction data based on the operation received by the operation unit. It is also good.
  • the second wireless communication unit may transmit the work execution condition data generated by the generation unit and the work instruction data to the capsule endoscope.
  • the capsule control unit when the movement speed is low and the communication environment detection unit does not detect deterioration of the wireless communication environment, the capsule control unit The execution instruction may be output to the treatment operation unit at the timing when work instruction data is received.
  • the capsule control unit performs the execution at a timing when the output of the execution instruction is instructed by the execution timing determination unit.
  • An instruction may be output to the treatment work unit.
  • the capsule endoscope further includes an image data storage unit for temporarily storing the image data output from the imaging unit.
  • the imaging unit may perform the imaging according to the movement distance at a position based on the position where the execution command is output.
  • the first wireless communication unit may further transmit the image data stored in the image data storage unit to the receiving device.
  • the capsule endoscope performs imaging and outputs an image data, an acceleration sensor outputting the acceleration data, and acceleration data temporarily storing the acceleration data.
  • a storage unit a first wireless communication unit that transmits the image data and the acceleration data to the receiving device by wireless communication, a communication environment detection unit that detects a wireless communication environment, and the wireless communication performed by the communication environment detection unit
  • the acceleration data is stored in the acceleration data storage unit, and recovery of the wireless communication environment is detected by the communication environment detection unit, and then stored in the acceleration data storage unit.
  • a capsule control unit that transmits acceleration data to the receiving device by the first wireless communication unit.
  • the deterioration of the wireless communication environment is detected in the communication environment detecting step of detecting the wireless communication environment and the communication environment detecting step.
  • Wirelessly communicating the acceleration data stored in the storage step after the storage step of temporarily storing the acceleration data output from the acceleration sensor, and after the recovery of the wireless communication environment is detected in the communication environment detection step Sending to the receiving device according to
  • the program is output from the acceleration sensor when the communication environment detection step of detecting the wireless communication environment and the deterioration of the wireless communication environment is detected in the communication environment detection step. After the recovery of the wireless communication environment is detected in the storage step of temporarily storing acceleration data and the communication environment detection step, transmission is performed to transmit the acceleration data stored in the storage step to the receiving device by wireless communication. It is a program for making a computer of a capsule endoscope perform steps.
  • acceleration data is temporarily stored, and after recovery of the wireless communication environment is detected, the stored acceleration data is transmitted from the capsule endoscope Will be sent. For this reason, the receiving apparatus can acquire acceleration data when the wireless communication environment is degraded. As a result, when the wireless communication environment is degraded, it is possible to suppress a decrease in the accuracy of position detection of the capsule endoscope.
  • the first embodiment of the present invention is an example in which the present invention is applied to a capsule endoscope system having a capsule endoscope and a receiving device.
  • the capsule endoscope has an imaging unit that performs imaging and outputs image data, and an acceleration sensor that detects acceleration and outputs acceleration data.
  • the capsule endoscope transmits image data and acceleration data to the receiving device by wireless communication.
  • the receiving device receives the image data and the acceleration data from the capsule endoscope.
  • the receiving device also has a function of calculating the position of the capsule endoscope in the human body using the received image data and acceleration data.
  • FIG. 1 shows the configuration of a capsule endoscope system 100.
  • FIG. 2 shows the use state of the capsule endoscope system 100.
  • FIG. 3 shows the configuration of the capsule endoscope 1.
  • FIG. 4 shows the configuration of the receiving device 2.
  • the capsule endoscope system 100 includes a capsule endoscope 1 and a receiving device 2.
  • Image data and acceleration data are wirelessly transmitted from the capsule endoscope 1 to the receiving device 2.
  • Control data for controlling the frame rate of the imaging unit of the capsule endoscope 1 is wirelessly transmitted from the receiving device 2 to the capsule endoscope 1.
  • the wireless communication between the capsule endoscope 1 and the receiving device 2 is performed via an antenna in the capsule endoscope 1 and the antennas 3a to 3d of the receiving device 2. In FIG. 1, only the antenna 3a and the antenna 3d are shown.
  • FIG. 2 shows a state in which the antennas 3a to 3d are attached to a human body (patient) and the positional relationship between the capsule endoscope 1 and the receiving device 2.
  • the capsule endoscope 1 operates with an internal battery for a long time. This minimizes the power used for wireless communications. For this reason, the antennas 3a to 3d are used in a state of being attached to the human body so that the distance between the capsule endoscope 1 and the antennas 3a to 3d becomes the shortest distance.
  • the power used by the capsule endoscope 1 for wireless communication is minimized. Therefore, the wireless communication environment is degraded due to the positional relationship between the capsule endoscope 1 and the antennas 3a to 3d attached to the human body and the state of the human body which is a communication path.
  • the receiving device 2 has a capsule position detecting function of detecting the position of the capsule endoscope 1 in the human body from the received image data and acceleration data.
  • Various methods have been devised to calculate the position of the capsule endoscope in the human body from image data and acceleration data.
  • a method is employed in which a characteristic site such as a site (junction) where an organ is switched is detected from image data. Further, in this method, the position is the reference position, and the position of the capsule endoscope is detected by calculating the amount of movement from each reference position using the acceleration data.
  • the change is treated as a change in the acceleration data due to the patient's movement, not the movement of the capsule endoscope 1. This eliminates the influence of the patient's motion and improves the position detection accuracy.
  • the position information obtained by the above method is stored in association with the image data. Further, control data for controlling a frame rate of imaging in accordance with the position of the capsule endoscope 1 is wirelessly transmitted.
  • the capsule endoscope 1 includes an imaging unit 4, an acceleration sensor 5, an acceleration data storage unit 6, a first wireless communication unit 7, a first image processing unit 8, and A power supply unit 9 of FIG. 1, a capsule control unit 10, a communication environment detection unit 11, and a data bus B1.
  • the imaging unit 4 (imaging element) performs imaging and outputs image data.
  • the imaging unit 4 captures an image of the inside of the human body at a designated frame rate.
  • the acceleration sensor 5 detects an acceleration applied to the capsule endoscope 1 and outputs acceleration data.
  • the acceleration sensor 5 periodically detects the acceleration.
  • the acceleration data storage unit 6 (storage medium) temporarily stores acceleration data.
  • the first wireless communication unit 7 (first wireless communication circuit) transmits image data and acceleration data to the receiving device 2 by wireless communication. Further, the first wireless communication unit 7 receives control data from the receiving device 2 by wireless communication.
  • the first image processing unit 8 (first image processing circuit) performs image processing such as compression processing on the image data from the imaging unit 4.
  • the first power supply unit 9 (first power supply circuit) supplies power to each unit.
  • the capsule control unit 10 controls the operation of each unit. For example, when the communication environment detection unit 11 detects the deterioration of the wireless communication environment, the capsule control unit 10 causes the acceleration data storage unit 6 to store acceleration data. In addition, after the recovery of the wireless communication environment is detected by the communication environment detection unit 11, the capsule control unit 10 transmits the acceleration data stored in the acceleration data storage unit 6 to the receiving device 2 by the first wireless communication unit 7. Do.
  • the capsule control unit 10 also detects a frame rate designation value from the received control data, and sets a frame rate based on the frame rate designation value in the imaging unit 4.
  • the communication environment detection unit 11 detects a wireless communication environment from the communication state of the first wireless communication unit 7.
  • the first image processing unit 8, the capsule control unit 10, and the communication environment detection unit 11 may be configured by an integrated circuit such as a processor.
  • the data bus B1 transmits various data.
  • the capsule control unit 10 stores a program for controlling the operation of the capsule control unit 10 and necessary data.
  • the function of the capsule control unit 10 can be realized as a software function by causing a computer of the capsule endoscope 1 to read and execute a program including an instruction that defines the operation of the capsule control unit 10.
  • This program may be provided by a "computer readable recording medium" such as flash memory.
  • the program described above may be transmitted to the capsule endoscope 1 from a computer having a storage device or the like in which the program is stored, via a transmission medium, or by transmission waves in the transmission medium.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • a network such as the Internet
  • a communication line such as a telephone line.
  • the above-described program may realize part of the above-described functions.
  • the above-described program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer.
  • the capsule endoscope 1 Since the capsule endoscope 1 operates in the human body, the size of the capsule endoscope 1 is limited. Thus, the capacity of the battery usable as the first power supply unit 9 is limited. Therefore, imaging of organs or regions not to be diagnosed is required to reduce the frame rate to save power. Control data used to control the frame rate is transmitted from the receiver 2 at a predetermined cycle.
  • the communication environment detection unit 11 detects deterioration of the wireless communication environment from the reception status of control data.
  • the detection result by the communication environment detection unit 11 indicates “good” or “deterioration”.
  • the capsule endoscope 1 incorporates an acceleration sensor 5 that outputs acceleration data indicating the acceleration of the capsule endoscope 1.
  • time data indicating the detection timing is added to the acceleration data from the acceleration sensor 5.
  • Acceleration data to which time data is added is transmitted from the first wireless communication unit 7.
  • time data indicating a detection timing is added to the acceleration data.
  • the acceleration data to which the time data is added is temporarily stored in the acceleration data storage unit 6.
  • the acceleration data stored in the acceleration data storage unit 6 is transmitted from the first wireless communication unit 7 at the timing when the detection result of the communication environment detection unit 11 becomes "good".
  • the capsule control unit 10 detects the recovery of the wireless communication environment by the communication environment detection unit 11. If it is determined, the first wireless communication unit 7 transmits the acceleration data stored in the acceleration data storage unit 6 to the receiving device 2.
  • the receiving device 2 includes antennas 3 a, 3 b, 3 c, 3 d, a second wireless communication unit 12, a second image processing unit 13, a data storage unit 14, and an acceleration processing unit 15. , A speed / position detection unit 16, a control data generation unit 17, a reception device control unit 18, and a second power supply unit 19.
  • the antennas 3a, 3b, 3c, 3d are connected to the capsule endoscope 1 by radio.
  • the second wireless communication unit 12 receives image data and acceleration data from the capsule endoscope 1 by wireless communication.
  • the second wireless communication unit 12 also transmits control data to the capsule endoscope 1 by wireless communication.
  • the second image processing unit 13 (second image processing circuit) performs image processing such as expansion processing on the image data received by the second wireless communication unit 12, and the image data has a format suitable for each unit. Convert to the data of The image data processed by the second image processing unit 13 is output to the velocity / position detection unit 16 and the data storage unit 14.
  • the acceleration processing unit 15 converts acceleration data received by the second wireless communication unit 12 into velocity data and movement distance data for each predetermined time.
  • the velocity data and the movement distance data are output to the velocity / position detection unit 16.
  • the velocity / position detection unit 16 detects the position based on the image data from the second image processing unit 13 and the velocity data and movement distance data for each predetermined time from the acceleration processing unit 15. Calculate data and velocity data.
  • the position data calculated by the speed / position detection unit 16 indicates the position of the capsule endoscope 1 in the human body.
  • the velocity data calculated by the velocity / position detection unit 16 indicates the velocity corresponding to the position of the capsule endoscope 1 in the human body.
  • the position data and the velocity data are output to the data storage unit 14 and the receiver control unit 18.
  • the acceleration processing unit 15 and the velocity / position detection unit 16 constitute a capsule position detection unit that detects the position of the capsule endoscope 1 based on the image data and the acceleration data.
  • the data storage unit 14 stores the image data from the second image processing unit 13 and the position data and velocity data from the velocity / position detection unit 16.
  • the receiver control unit 18 controls the operation of each unit. For example, the reception device control unit 18 generates a frame rate designation value in accordance with the velocity data from the velocity / position detection unit 16.
  • the control data generation unit 17 (control data generation circuit) generates control data from the frame rate designation value from the reception device control unit 18, and outputs the generated control data to the second wireless communication unit 12.
  • the second image processing unit 13, the acceleration processing unit 15, the speed / position detection unit 16, the control data generation unit 17, and the reception device control unit 18 may be configured by an integrated circuit such as a processor.
  • the second power supply unit 19 (second power supply circuit) supplies power to each unit.
  • FIG. 5 shows a procedure of acceleration data transmission processing performed by the capsule endoscope 1.
  • the capsule control unit 10 performs acceleration data transmission processing by controlling each unit in the capsule endoscope 1.
  • the acceleration data transmission process of the embodiment of the present invention is performed in synchronization with the imaging operation of the imaging unit 4. For example, when imaging is performed at 2 frames per second, acceleration data transmission processing is performed with a cycle (0.5, 1, 2, 4 seconds, etc.) of an integral multiple of 1/2 second. For example, it is possible to specify a cycle corresponding to a frame rate as a cycle of acceleration data transmission processing. Alternatively, the cycle of acceleration data transmission processing can be specified by transmitting data of the cycle as control data separately to the receiving device 2.
  • the capsule control unit 10 executes reading of acceleration data (S2).
  • the capsule control unit 10 reads the acceleration data from the acceleration sensor 5.
  • time data indicating a time when the acceleration data is read is added to the acceleration data.
  • the capsule control unit 10 executes communication environment determination (S3).
  • the capsule control unit 10 reads the detection result of the wireless communication environment from the communication environment detection unit 11, and determines the process according to the detection result of the wireless communication environment. That is, the capsule control unit 10 detects the wireless communication environment.
  • the capsule control unit 10 executes storage of acceleration data (S4).
  • the capsule control unit 10 causes the acceleration data storage unit 6 to store the acceleration data to which the time data is added. That is, when deterioration of the wireless communication environment is detected, the acceleration data storage unit 6 temporarily stores the acceleration data output from the acceleration sensor. After storing the acceleration data (S4), the acceleration data transmission process ends (S8).
  • the capsule control unit 10 determines whether there is data stored in the storage of acceleration data (S4) (S5). If there is stored data, the capsule control unit 10 executes transmission of the stored data (S6). In transmission of stored data (S6), the capsule control unit 10 transmits the acceleration data stored in the acceleration data storage unit 6 to the receiving device 2 by the first wireless communication unit 7. That is, after the recovery of the wireless communication environment is detected, the first wireless communication unit 7 transmits the acceleration data stored in the storage of the acceleration data (S4) to the receiving device 2 by wireless communication.
  • the capsule control unit 10 executes transmission of the read data (S7).
  • the capsule control unit 10 transmits the latest acceleration data read by the reading (S2) of the acceleration data to the receiving device 2 by the first wireless communication unit 7. That is, when the deterioration of the wireless communication environment is not detected, the first wireless communication unit 7 transmits the latest acceleration data read by reading the acceleration data (S2) to the receiving device 2 by wireless communication.
  • the acceleration data transmission process ends (S8).
  • the capsule control unit 10 executes transmission (S7) of the read data. After the transmission of the read data (S7) is executed, the acceleration data transmission process ends (S8).
  • the capsule endoscope according to each aspect of the present invention includes an imaging unit 4, an acceleration sensor 5, an acceleration data storage unit 6, a first wireless communication unit 7, a communication environment detection unit 11, and a capsule control unit 10. It does not have to have at least one of the other configurations.
  • the receiving device according to each aspect of the present invention may not have at least one of the configurations other than the second wireless communication unit 12, the acceleration processing unit 15, and the speed / position detection unit 16.
  • a capsule endoscope system 100 including the capsule endoscope 1 and the receiving device 2 is configured.
  • the capsule endoscope 1 includes an imaging unit 4, an acceleration sensor 5, an acceleration data storage unit 6, a first wireless communication unit 7, a communication environment detection unit 11, and a capsule control unit 10.
  • the receiving device 2 has a second wireless communication unit 12 and a capsule position detection unit (acceleration processing unit 15, speed / position detection unit 16).
  • the imaging unit 4, the acceleration sensor 5, the acceleration data storage unit 6, the first wireless communication unit 7, the communication environment detection unit 11, and the capsule control unit 10 The capsule endoscope 1 is configured.
  • the wireless communication method of the capsule endoscope 1 including the communication environment detecting step (S3), the storing step (S4), and the transmitting step (S6) is configured.
  • a program for causing the computer of the capsule endoscope 1 to execute the communication environment detection step (S3), the storage step (S4), and the transmission step (S6) is configured. Be done.
  • the reception device 2 can acquire acceleration data when the wireless communication environment is degraded. As a result, when the wireless communication environment is degraded, it is possible to suppress a decrease in the accuracy of position detection of the capsule endoscope 1.
  • the capsule endoscope of the second embodiment of the present invention has the function of the capsule endoscope 1 shown in the first embodiment.
  • the capsule endoscope of the second embodiment has a function of treatment work including drug administration or “collection of tissue or body fluid”, and a function of controlling execution of treatment work.
  • the receiving device of the second embodiment has a relay and an operation / storage device.
  • the relay is attached to the patient.
  • the relay is mainly in charge of wireless communication with the capsule endoscope.
  • the operation and storage unit is disposed separately from the relay unit.
  • the operation / storage device operates in a wirelessly connected state with the relay device and takes charge of storing image data and controlling treatment work.
  • FIG. 6 shows the configuration of the capsule endoscope system 101.
  • FIG. 7 shows the use state of the capsule endoscope system 101.
  • FIG. 8 shows the configuration of the capsule endoscope 20.
  • FIG. 9 shows the configuration of the relay unit 32.
  • FIG. 10 shows the configuration of the operation and storage unit 35.
  • the capsule endoscope system 101 of the second embodiment includes a capsule endoscope 20 and a receiving device 30.
  • the receiving device 30 has a relay 32 and an operation / storage device 35.
  • FIG. 7 shows a state in which the antennas 31a to 31d are attached to a human body (patient), and the positional relationship between the capsule endoscope 20, the relay unit 32, and the operation and storage unit 35.
  • the capsule endoscope 20 has a therapeutic function, and executes a therapeutic operation according to an instruction from the operation and storage unit 35.
  • the image data and the acceleration data are transmitted from the capsule endoscope 20 to the operation / storage device 35 via the relay 32.
  • the image data and the acceleration data are stored in the operation and storage unit 35.
  • the acceleration of the capsule endoscope 20 and the acceleration of the relay 32 are measured.
  • the acceleration data of the relay unit 32 is transmitted to the operation and storage unit 35 separately from the acceleration data of the capsule endoscope 20.
  • the operation and storage unit 35 subtracts the acceleration data of the relay 32 from the acceleration data of the capsule endoscope 20. Thereby, acceleration data excluding acceleration data generated by movement of a human body can be obtained. Therefore, it is possible to calculate the position of the capsule endoscope 20 more accurately.
  • the control data of the second embodiment is any one of the same data for frame rate control as in the first embodiment, the task execution condition data, and the task instruction data.
  • the task execution condition data indicates the position where the treatment task is to be performed.
  • the work instruction data indicates the execution instruction of the treatment work.
  • Control data is generated by the operation and storage unit 35. The generated control data is transmitted to the capsule endoscope 20 via the repeater 32. The details of the task execution condition data and the task instruction data will be described later.
  • the wireless communication between the capsule endoscope 20 and the repeater 32 is performed via the antenna in the capsule endoscope 20 and the antennas 31 a to 31 d of the repeater 32.
  • the wireless communication between the relay unit 32 and the operation / storage unit 35 is performed via the antenna 33 of the relay unit 32 and the antenna 34 of the operation / storage unit 35.
  • FIG. 6 only the antenna 31a, the antenna 31d, the antenna 33, and the antenna 34 are shown.
  • the capsule endoscope 20 includes an imaging unit 4, an acceleration sensor 5, an acceleration data storage unit 6, a first image processing unit 8, a first power supply unit 9, and a communication environment. It has a detection unit 11 and a data bus B1. Furthermore, the capsule endoscope 20 includes an imaging unit 21, an execution timing determination unit 22, a first wireless communication unit 23, a velocity / distance detection unit 24, a capsule control unit 25, and a treatment operation unit 26. Have.
  • the imaging unit 4 and the imaging unit 21 perform imaging and output image data.
  • the imaging unit 4 and the imaging unit 21 perform imaging in the human body at a designated frame rate.
  • the imaging unit 4 and the imaging unit 21 have their back surfaces facing each other at both ends of the main body of the capsule endoscope 20 (first end and second end different from the first end). It is arranged to turn.
  • the imaging unit 4 is disposed at the first end of the capsule endoscope 20 so that the imaging direction is the outer direction.
  • the imaging unit 21 is disposed at the second end of the capsule endoscope 20 so that the imaging direction is the outer direction, that is, the direction substantially opposite to the imaging direction of the imaging unit 4.
  • the imaging unit 4 and the imaging unit 21 are arranged such that the imaging direction is substantially the same as the moving direction of the capsule endoscope 20 or the opposite direction.
  • an imaging unit capable of imaging a lesion site is selected by the receiving device 30 among the imaging unit 4 and the imaging unit 21.
  • the selected imaging unit performs imaging.
  • the imaging unit 4 and the imaging unit 21 alternately perform imaging.
  • the first wireless communication unit 23 (first wireless communication circuit) performs the same wireless communication as the wireless communication performed by the first wireless communication unit 7 of the first embodiment.
  • the first wireless communication unit 23 further receives work execution condition data and work instruction data from the receiving device 30.
  • the task execution condition data indicates the position where the treatment task is performed.
  • the work instruction data indicates the execution instruction of the treatment work.
  • the speed / distance detection unit 24 detects the movement speed and movement distance of the capsule endoscope 20 based on the acceleration data from the acceleration sensor 5.
  • the execution timing determination unit 22 instructs output of the execution instruction at timing based on the movement distance detected by the speed / distance detection unit 24 and the work execution condition data received by the first wireless communication unit 23.
  • the execution timing determination unit 22 determines a timing independent of the timing designated by the work instruction data from the receiving device 30.
  • the execution timing determination unit 22 notifies the capsule control unit 25 of the determined timing by instructing the capsule control unit 25 to output the execution instruction.
  • the treatment operation unit 26 performs drug administration or “collection of tissue or body fluid” based on the execution instruction from the capsule control unit 25. That is, the treatment working unit 26 performs drug administration. Alternatively, the treatment working unit 26 collects tissue or body fluid.
  • the capsule control unit 25 (capsule control circuit) performs the same control as the control performed by the capsule control unit 10 of the first embodiment.
  • the capsule control unit 25 further performs control regarding the treatment operation.
  • the capsule control unit 25 determines the timing of the treatment operation according to the movement speed of the capsule endoscope 20 after receiving the operation execution condition data and the wireless communication environment, and performs the treatment operation at the determined timing.
  • Control the execution of The timing of the treatment operation is any one of the timing instructed from the receiving device 30 and the timing instructed from the execution timing determination unit 22.
  • the capsule control unit 25 outputs an execution instruction to the treatment operation unit 26 at the timing when the work instruction data is received.
  • the capsule control unit 25 outputs the execution instruction to the treatment operation unit 26 at the timing when the output of the execution instruction is instructed by the execution timing determination unit 22.
  • the capsule control unit 25 when the movement speed is low and the communication environment detection unit 11 does not detect deterioration of the wireless communication environment, the capsule control unit 25 outputs an execution instruction to the treatment operation unit 26 at the timing when the work instruction data is received. . Furthermore, when the movement speed is low and the communication environment detection unit 11 detects deterioration of the wireless communication environment, the capsule control unit 25 treats the execution instruction at the timing when the output of the execution instruction is instructed by the execution timing determination unit 22. Output to the working unit 26.
  • the first image processing unit 8, the communication environment detection unit 11, the execution timing determination unit 22, the speed / distance detection unit 24, and the capsule control unit 25 may be configured by an integrated circuit such as a processor. Regarding the points other than the above, the configuration shown in FIG. 8 is the same as the configuration shown in FIG.
  • the operator recognizes the image of the lesion site displayed on the operation and storage unit 35, and determines the execution condition of the treatment operation.
  • the task execution condition data generated according to the determined execution condition is transmitted to the capsule control unit 25 of the capsule endoscope 20 via the relay unit 32. Details of the method of determining the execution timing of the treatment work will be described later with reference to FIGS. 11 to 14.
  • the relay 32 constituting the receiving device 30 is attached to the patient's body.
  • the relay unit 32 relays data transmission between the capsule endoscope 20 and the operation and storage unit 35.
  • the relay 32 includes antennas 31a, 31b, 31c, 31d, 33, a first relay wireless communication unit 40 (second wireless communication unit), and a data temporary storage unit 41.
  • a second relay wireless communication unit 42, an acceleration sensor 43, a relay control unit 44, and a data bus B2 are provided.
  • the antennas 31a, 31b, 31c, and 31d are connected to the capsule endoscope 20 by radio.
  • the first relay wireless communication unit 40 (first relay wireless communication circuit) receives image data and acceleration data from the capsule endoscope 20 by wireless communication. Further, the first relay wireless communication unit 40 transmits control data to the capsule endoscope 20 by wireless communication.
  • Control data in the second embodiment may be work execution condition data and work instruction data.
  • the task execution condition data and the task instruction data are generated by the operation / storage unit 35. Therefore, the first relay wireless communication unit 40 transmits the work execution condition data and the work instruction data generated by the operation and storage unit 35 to the capsule endoscope 20.
  • the relay unit 32 incorporates a data temporary storage unit 41 (storage medium) in order to cope with a communication failure that occurs during relay processing.
  • the second relay wireless communication unit 42 (second relay wireless communication circuit) transmits the image data and the acceleration data to the operation and storage unit 35 by wireless communication.
  • the second relay wireless communication unit 42 receives control data from the operation and storage unit 35 by wireless communication.
  • Control data in the second embodiment may be work execution condition data and work instruction data. Therefore, the second relay wireless communication unit 42 receives the task execution condition data and the task instruction data from the operation and storage unit 35.
  • the relay unit 32 incorporates an acceleration sensor 43 in order to detect the acceleration accompanying the movement of the patient.
  • the acceleration sensor 43 detects the acceleration applied to the relay 32 and outputs acceleration data.
  • the acceleration data from the acceleration sensor 43 is transmitted to the operation and storage unit 35.
  • the relay control unit 44 controls the operation of each unit.
  • the data bus B2 transmits various data.
  • the operation / storage device 35 constituting the receiving device 30 stores the image data and the position data of the capsule endoscope 20 calculated from the acceleration data, as in the receiving device 2 of the first embodiment. Do. Further, unlike the first embodiment, the operation / storage device 35 has a display function for the operator to perform the treatment operation and a control function for the treatment operation. As shown in FIG. 10, the operation / storage unit 35 includes the antenna 34, the second wireless communication unit 50, the second image processing unit 51, the data storage unit 52, the acceleration processing unit 53, and the speed / speed. The position detection unit 54, the lesion site detection unit 55, the display processing unit 56, the display unit 57, the reception device control unit 58 (generation unit), the control data generation unit 59, the operation unit 60, and the second And a power supply unit 61.
  • the antenna 34 is wirelessly connected to the repeater 32.
  • the second wireless communication unit 50 receives image data and acceleration data from the relay 32 by wireless communication. Further, the second wireless communication unit 50 transmits control data to the relay 32 by wireless communication.
  • the second image processing unit 51 (second image processing circuit) is the same as the second image processing unit 13 of the first embodiment.
  • the acceleration processing unit 53 converts the acceleration data received by the second wireless communication unit 50 into velocity data and movement distance data for each predetermined time. At this time, the acceleration processing unit 53 subtracts the acceleration data of the relay 32 from the acceleration data of the capsule endoscope 20 to obtain acceleration data excluding the acceleration data generated by the movement of the patient. The velocity data and the movement distance data are output to the velocity / position detection unit 54.
  • the speed / position detection unit 54 (speed / position detection circuit) is the same as the speed / position detection unit 16 of the first embodiment.
  • the data storage unit 52 storage medium is the same as the data storage unit 14 of the first embodiment.
  • the lesion site detection unit 55 detects a lesion site based on the image data.
  • Various algorithms have been devised to detect lesion sites based on image data. Since these algorithms are known, their detailed description is omitted.
  • the position information of the lesion site detected by the lesion site detection unit 55 is output to the display processing unit 56.
  • the display processing unit 56 superimposes information based on position information of a lesion site on the image data from the second image processing unit 51.
  • the image data processed by the display processing unit 56 is output to the display unit 57.
  • the display unit 57 displays an image based on the image data.
  • the operation unit 60 receives an operation of the operator.
  • the receiver control unit 58 (receiver control circuit) performs the same control as the control performed by the receiver control unit 18 according to the first embodiment.
  • the receiving device control unit 58 further generates work execution condition data and work instruction data based on the operation accepted by the operation unit 60.
  • the work execution condition data and the work instruction data are output to the control data generation unit 59.
  • the control data generation unit 59 (control data generation circuit) generates control data from the frame rate instruction value from the reception device control unit 58, the work execution condition data, and the work instruction data, and the generated control data is It is output to the wireless communication unit 50 of FIG.
  • the second wireless communication unit 50 transmits control data to the relay 32.
  • the second wireless communication unit 50 transmits the work execution condition data and the work instruction data generated by the receiving device control unit 58 to the relay unit 32.
  • the second power supply unit 61 (second power supply circuit) supplies power to each unit.
  • the operation of the operation and storage unit 35 will be described focusing on the display function and the control function regarding the treatment operation. While observing the image displayed on the display unit 57, the operator determines the position at which the treatment operation is performed on the lesion site. The determined position is notified to the reception device control unit 58 via the operation unit 60.
  • the “position where the treatment operation is performed” that the operator determines at this point is not the position based on the instruction from the receiving device 30.
  • the “position where the treatment operation is performed” determined by the operator at this point is the position where the capsule endoscope 20 performs the treatment operation independently.
  • the capsule endoscope 20 passes the lesion site and the high speed movement or the deterioration of the wireless communication environment occurs, the capsule endoscope 20 performs the treatment operation independently.
  • the treatment operation may be performed at a position different from the position based on the instruction from the receiving device 30.
  • the capsule endoscope 20 can perform the treatment operation independently.
  • the capsule endoscope 20 dispenses the drug immediately before the capsule endoscope 20 reaches the lesion site.
  • the administered drug reaches the lesion site as time progresses. If the location of the medication is very far from the lesion site, the drug may spread widely and the drug may become thin. Also, if the location of the medication is very close to the lesion site, the drug may not be applied to part of the lesion site.
  • the operator determines the dosing position in consideration of the shape of the lesion site and the nature of the drug. Specifically, while observing the image displayed on the display unit 57, the operator determines "a position at which the treatment operation is performed". The operator operates the operation unit 60 to input "a position at which a treatment operation is performed”. The receiving device control unit 58 determines work execution conditions based on the determined relationship between the “position where treatment work is performed” and the position of the lesion site, and generates work execution condition data.
  • the work execution condition data includes work content information indicating contents of treatment work such as medication and body fluid collection, and positions of a lesion site and the capsule endoscope 20 when the capsule endoscope 20 performs the treatment work independently. And work execution position information indicating a relationship.
  • the content of the treatment operation is "dosing execution”.
  • the work execution position is “a position where the capsule endoscope 20 has moved 20 mm from the position at which the work execution condition data is received”.
  • the therapeutic function of the capsule endoscope 20 is fluid sampling in which fluid collection is performed around a lesion site.
  • Body fluid collection is performed when the capsule endoscope 20 is over the lesion site or immediately after the capsule endoscope 20 passes through the lesion site.
  • the content of the treatment work is "body fluid sampling execution".
  • the work execution position is “a position where the capsule endoscope 20 has moved 30 mm from the position at which the work execution condition data is received”.
  • the work execution condition data generated by the receiving device control unit 58 is transmitted to the relay 32 via the control data generation unit 59 and the second wireless communication unit 50.
  • the task execution condition data received by the repeater 32 is transmitted to the capsule endoscope 20 by the repeater 32.
  • the receiving device 30 transmits work execution condition data to the capsule endoscope 20 when the capsule endoscope 20 is at a position separated from the lesion site by a predetermined distance.
  • the capsule endoscope 20 executes the treatment work when moving from the position where the work execution condition data is received by the distance designated by the work execution condition data.
  • the operator performs the treatment work while observing the image displayed on the display unit 57. Determine the timing.
  • the operator operates the operation unit 60 and inputs an instruction of the treatment operation at the timing of performing the treatment operation.
  • the receiving device control unit 58 generates work instruction data based on the instruction of the treatment operation.
  • the work instruction data generated by the receiving device control unit 58 is transmitted to the relay 32 via the control data generation unit 59 and the second wireless communication unit 50.
  • the work instruction data received by the repeater 32 is transmitted to the capsule endoscope 20 by the repeater 32.
  • the capsule endoscope 20 executes the treatment operation when the operation instruction data is received. Details of a method of generating work execution condition data and work instruction data will be described later with reference to FIGS. 11 to 13.
  • FIG. 11 shows the state of the capsule endoscope 20 when the capsule endoscope 20 performs a treatment operation.
  • FIG. 12 shows an image captured by the imaging unit in front of the capsule endoscope 20 (in the advancing direction) during the treatment operation.
  • FIG. 13 shows an image captured by the imaging unit at the back (in the reverse direction) of the capsule endoscope 20 during the treatment operation.
  • FIG. 14 shows the procedure of the treatment process performed by the capsule endoscope 20.
  • FIG. 15 shows the procedure of the execution timing determination process performed by the capsule endoscope 20.
  • FIG. 11 shows the position of the capsule endoscope 20 in the intestinal tract and the execution timing of the treatment operation on the lesion site.
  • the capsule endoscope 20 is moving in the right direction.
  • the capsule endoscope 20 finds a lesion site at the position (P1).
  • the capsule endoscope 20 receives the task execution condition data at the proximity position (P2).
  • the capsule endoscope 20 performs the treatment operation (medication) at the execution position (P3) of the treatment operation.
  • the capsule endoscope 20 performs imaging in the backward direction to confirm execution of the treatment operation until the proximity position (P4) in the opposite direction is reached.
  • the total length of the capsule endoscope 20 is about 26 mm, about 46 seconds are required for the capsule endoscope 20 to move the distance of the entire length.
  • the capsule endoscope 20 is positioned from the position (P2) It takes about 53 seconds to move to (P3).
  • the frame rate is 2 frames per second, 106 images are captured during the movement from position (P2) to position (P3). Therefore, even when the operator performs the operation while observing the image, it is possible to maintain the accuracy of the treatment operation sufficiently.
  • FIG. 12 and 13 are examples of images captured by the capsule endoscope 20 at the time of treatment operation.
  • FIG. 12 shows an image captured by the imaging unit 21 facing the traveling direction of the capsule endoscope 20 at the position (P1) and the position (P2) in FIG.
  • the lesion site is shown by a rectangle.
  • the lesion site is at a position far from the capsule endoscope 20. Thus, there is a small lesion at the center of the image.
  • the capsule endoscope 20 is at the position (P2), the lesion site is near the capsule endoscope 20. For this reason, there is a large lesion site at the periphery of the image.
  • the operator determines the operation execution condition for the lesion site.
  • work execution condition data is transmitted from the operation / storage unit 35 to the capsule endoscope 20 via the relay unit 32.
  • the range between two circles in FIG. 12 is the range of the proximity position. It is detected from the image of the range of the proximity position that the capsule endoscope 20 has approached the lesion site beyond the position (P2).
  • the receiving device control unit 58 transmits the work execution condition data to the relay unit 32 by the second wireless communication unit 50. Do.
  • the details of the treatment operation will be described using a specific example of timing.
  • the distance N between the position (P2) and the position (P3) is 30 mm
  • the content of the task execution condition notified to the capsule endoscope 20 is that the task execution condition data is received.
  • the medical treatment operation is performed at a position where the capsule endoscope 20 has advanced 30 mm from the position (P2). After the treatment operation is performed, imaging in the reverse direction is performed until the capsule endoscope 20 reaches the position (P4) to confirm the execution result.
  • FIG. 13 illustrates an image captured by the imaging unit 4 facing the backward direction of the capsule endoscope 20 at the position (P4).
  • the range between two circles in FIG. 13 is the range of the proximity position. It is detected from the image of the range of the close position that the capsule endoscope 20 has moved beyond the position (P4) and away from the lesion site.
  • the reception device control unit 58 causes the second wireless communication unit 50 to finish imaging. The control data shown is transmitted to the relay 32.
  • the self-sustaining treatment work of the capsule endoscope 20 based on the work execution condition data is performed when the capsule endoscope 20 moves at high speed after the work execution condition data is received, or It is performed only when the wireless communication environment with the capsule endoscope 20 is deteriorated.
  • FIG. 14 shows the procedure of the capsule treatment process performed by the capsule endoscope 20.
  • the capsule control unit 25 performs capsule treatment processing by controlling each unit in the capsule endoscope 20.
  • the capsule control unit 25 When the capsule treatment process is started (S10), the capsule control unit 25 performs the reception judgment (S11) of the work execution condition data. In the reception determination of work execution condition data (S11), the capsule control unit 25 determines whether or not work execution condition data is received. When the work execution condition is not received, the reception judgment (S11) of the work execution condition data is repeated.
  • the first wireless communication unit 23 receives work execution condition data from the receiving device 30.
  • the capsule control unit 25 executes the movement speed determination (S12) based on the speed data from the speed / distance detection unit 24.
  • the capsule control unit 25 determines the movement speed of the capsule endoscope 20. For example, the capsule control unit 25 determines whether the moving speed of the capsule endoscope 20 is equal to or more than a predetermined speed. When the moving speed of the capsule endoscope 20 is equal to or higher than a predetermined speed, the capsule control unit 25 determines that the moving speed of the capsule endoscope 20 is high. When the moving speed of the capsule endoscope 20 is less than a predetermined speed, the capsule control unit 25 determines that the moving speed of the capsule endoscope 20 is low.
  • the capsule control unit 25 executes communication environment determination (S13).
  • the capsule control unit 25 reads the detection result of the wireless communication environment from the communication environment detection unit 11, and determines the process according to the detection result of the wireless communication environment. That is, the capsule control unit 25 detects the wireless communication environment.
  • the capsule control unit 25 When the wireless communication environment is good, the capsule control unit 25 performs the reception judgment (S14) of the work instruction data. In the reception determination of work instruction data (S14), the capsule control unit 25 determines whether the work instruction data has been received. When the work instruction data is not received, the capsule control unit 25 executes the movement speed determination (S12).
  • the first wireless communication unit 23 receives work instruction data from the receiving device 30.
  • the capsule control unit 25 executes a treatment work instruction (S16).
  • the capsule control unit 25 outputs an execution instruction of the treatment operation to the treatment operation unit 26. That is, when the movement speed is low and the communication environment detection unit 11 does not detect deterioration of the wireless communication environment, the capsule control unit 25 outputs an execution instruction to the treatment operation unit 26 at the timing when the work instruction data is received. Do.
  • the treatment operation unit 26 executes the treatment operation based on the execution instruction from the capsule control unit 25. After the treatment work instruction (S16) is executed, the capsule treatment process ends (S17).
  • the capsule control unit 25 performs the issue determination (S15) of the execution start notification.
  • the capsule control unit 25 determines whether the execution start notification has been issued from the execution timing determination unit 22 or not.
  • the issuance of the execution start notification instructs the output of the execution instruction of the treatment work. If the execution start notification has not been issued, the issuance determination (S15) of the execution start notification is repeated.
  • the capsule control unit 25 executes a treatment work instruction (S16). That is, when the moving speed is high, the capsule control unit 25 outputs the execution instruction to the treatment operation unit 26 at the timing when the output of the execution instruction is instructed by the execution timing determination unit 22. Also, when the movement speed is low and the communication environment detection unit 11 detects deterioration of the wireless communication environment, the capsule control unit 25 executes the execution instruction at the timing when the output of the execution instruction is instructed by the execution timing determination unit 22. It outputs to the treatment working unit 26. The treatment operation unit 26 executes the treatment operation based on the execution instruction from the capsule control unit 25. After the treatment work instruction (S16) is executed, the capsule treatment process ends (S17).
  • FIG. 15 shows the procedure of the execution timing determination process performed by the capsule endoscope 20.
  • the execution timing determination unit 22 performs an execution timing determination process.
  • the execution timing determination unit 22 executes the execution timing determination process shown in FIG.
  • the execution timing determination process is started (S20)
  • the execution timing determination unit 22 executes reading of the movement distance (S21).
  • the execution timing determination unit 22 reads movement distance data from the speed / distance detection unit 24.
  • the execution timing determination unit 22 executes the determination of the movement distance (S22). In the movement distance determination (S22), the execution timing determination unit 22 determines whether the movement distance indicated by the movement distance data is equal to or more than the distance specified by the work execution condition data. If the movement distance is less than the distance specified by the work execution condition data, the execution timing determination unit 22 executes the reading of the movement distance (S21).
  • the execution timing determination unit 22 executes issuance of an execution start notification (S23).
  • the execution timing determination unit 22 issues an execution start notification to the capsule control unit 25.
  • the execution timing determination unit 22 instructs the capsule control unit 25 to output the execution instruction of the treatment work.
  • the execution timing determination process ends (S24).
  • the execution timing determination unit 22 determines that the movement distance from the time when the work execution condition data is received becomes the distance designated by the work execution position information included in the work execution condition data. Determine if it was. Thereby, the execution timing determination unit 22 determines the execution timing of the treatment work.
  • the capsule control unit 25 instructs the imaging unit 4 to perform imaging. Thereby, imaging of the image shown in FIG. 13 is performed.
  • the determination of the execution timing of the treatment task may not depend on the determination of the wireless communication environment. For example, when it is determined that the moving speed is low according to the moving speed determination (S12), the communication environment determination (S13) may not be performed and the reception determination of the work instruction data (S14) may be performed. When work instruction data is received, a treatment work instruction (S16) is executed. When the moving speed is low and the wireless communication environment is deteriorated, the processes of S12 and S14 are repeated. In this case, the operator observes the display unit 57. For this reason, the operator confirms that the capsule endoscope 20 has passed the lesion site without performing the treatment operation. If the passage is confirmed, a separate instruction is issued from the receiving device 30, and the capsule treatment process is discontinued.
  • the receiving device 30 is divided into a relay 32 and an operation / storage device 35.
  • a receiver in which the relay unit 32 and the operation / storage unit 35 are integrated may be attached to a human body (patient).
  • the treatment operation is performed at the timing instructed by the execution timing determination unit 22. . For this reason, the capsule endoscope 20 can execute the treatment operation at an appropriate timing.
  • the capsule endoscope 20 in the capsule endoscope system 101 shown in FIG. 6 is changed.
  • the capsule endoscope of the third embodiment has the function of the capsule endoscope 20.
  • the capsule endoscope of the third embodiment has a function of imaging an image around a lesion site where a treatment operation is performed at a predetermined position, and a function of temporarily storing image data in the capsule endoscope. Have.
  • the capsule endoscope can reliably transmit image data to the receiving apparatus regardless of the deterioration of the wireless communication environment.
  • FIG. 16 shows the configuration of the capsule endoscope 70.
  • the capsule endoscope 70 includes an imaging unit 4, an acceleration sensor 5, an acceleration data storage unit 6, a first image processing unit 8, a first power supply unit 9, and a communication environment.
  • the capsule endoscope 70 has an image data storage unit 71 and a capsule control unit 72.
  • the imaging unit 4 and the imaging unit 21 perform imaging in accordance with the movement distance of the capsule endoscope 70 at a position based on the position at which the execution instruction of the treatment operation is output. That is, the imaging unit 4 and the imaging unit 21 perform imaging in accordance with the movement distance of the capsule endoscope 70 in the vicinity of the position where the execution instruction of the treatment operation is output. Therefore, the imaging unit 4 and the imaging unit 21 perform imaging at a position near the lesion site and output image data around the lesion site.
  • the image data storage unit 71 (storage medium) temporarily stores the image data output from the imaging unit 4 and the imaging unit 21.
  • the image data stored in the image data storage unit 71 is image data around the lesion site where the treatment operation is performed.
  • the image data storage unit 71 is a storage medium different from the acceleration data storage unit 6.
  • one storage medium has a first storage area and a second storage area, the first storage area is the acceleration data storage unit 6, and the second storage area is the image data storage unit 71. May be
  • the capsule control unit 72 performs the same control as the capsule control unit 25 of the second embodiment.
  • the capsule control unit 72 further has a control function of the image data storage unit 71 and a transmission function of transmitting the image data stored in the image data storage unit 71 to the receiving device 30. Therefore, the first wireless communication unit 23 transmits the image data stored in the image data storage unit 71 to the receiving device 30.
  • the first image processing unit 8, the communication environment detection unit 11, the execution timing determination unit 22, the speed / distance detection unit 24, and the capsule control unit 72 may be configured by an integrated circuit such as a processor.
  • the configuration shown in FIG. 16 is the same as the configuration shown in FIG.
  • the capsule endoscope 70 reliably captures an image around the lesion site where the treatment operation has been performed at a predetermined position regardless of the deterioration of the wireless communication environment. be able to. In addition, the capsule endoscope 70 can reliably transmit image data to the receiving device 30.
  • the first wireless communication unit 23 receives work execution condition data from the receiving device 30 as in the second embodiment. Thereby, the capsule endoscope 70 executes the treatment work at timing based on the work execution condition data when the capsule endoscope 70 moves at high speed or when the wireless communication environment is deteriorated.
  • imaging conditions of images around a lesion site where a treatment operation is to be performed are specified by operation execution condition data.
  • This imaging condition includes an imaging position.
  • the distance from the proximity position (P2) to the execution position (P3) of the treatment operation is 30 mm
  • the distance from the execution position (P3) to the proximity position (P4) is 30 mm
  • the task execution condition data includes an instruction indicating that an image from the proximity position (P2) to the proximity position (P4) is captured each time the capsule endoscope 70 moves 1 mm.
  • 61 images from the close position (P2) to the close position (P4) are stored in the image data storage unit 71.
  • the capsule endoscope 70 starts imaging from the proximity position (P2) at which the task execution condition data is received.
  • the capsule endoscope 70 performs imaging and storage of image data each time the distance indicated by the distance data from the speed / distance detection unit 24 is updated by 1 mm.
  • the capsule endoscope 70 ends imaging and storage of image data when 61 pieces of image data are stored before reaching the proximity position (P4).
  • the image data stored in the image data storage unit 71 is transmitted to the receiving device 30 at a timing different from the timing at which communication of normal image data is performed.
  • the capsule endoscope 70 performs communication while performing reception confirmation processing (ACK-NACK) for assuring reliable transmission, using an idle time of communication of normal image data.
  • ACK-NACK reception confirmation processing
  • the communication method involving the reception confirmation process is known, so the description thereof is omitted.
  • the description thereof is omitted since a communication method which is used in normal image data communication and in which the reception confirmation process is not performed is also known, the description thereof is omitted.
  • FIG. 17 shows the procedure of the image storage process performed by the capsule endoscope 70.
  • the capsule control unit 72 performs image storage processing by controlling each unit in the capsule endoscope 70.
  • the capsule control unit 72 executes position detection (S31).
  • position detection the capsule control unit 72 reads out distance data from the speed / distance detection unit 24.
  • the capsule control unit 72 executes determination of the imaging planned position (S32).
  • the capsule control unit 72 determines whether the capsule endoscope 70 has moved by a predetermined distance from the position at which the previous imaging was performed. That is, the capsule control unit 72 determines whether the capsule endoscope 70 is at the imaging scheduled position.
  • the predetermined distance is 1 mm.
  • the determination of the planned imaging position (S32) after the position detection (S31) is performed only once it is determined that the capsule endoscope 70 is not at the planned imaging position. Further, after the position detection (S31) is performed twice or more, until the first imaging is performed, it is determined that the capsule endoscope 70 is not at the imaging planned position in the imaging planned position determination (S32) .
  • the capsule control unit 72 executes position detection (S31).
  • the capsule control unit 72 executes an imaging process (S33).
  • the capsule control unit 72 selects a predetermined imaging unit and causes the selected imaging unit to perform imaging. Specifically, from the proximity position (P2) to the execution position (P3) of the treatment operation, the imaging unit 21 imaging the traveling direction is selected. After the capsule endoscope 70 exceeds the execution position (P3) of the treatment operation, the imaging unit 4 imaging the backward direction is selected until the capsule endoscope 70 reaches the proximity position (P4).
  • the imaging unit 4 or the imaging unit 21 performs imaging at a position near the lesion site, and outputs image data around the lesion site. Further, since the imaging process (S33) is performed according to the determination of the imaging planned position (S32), the imaging unit 4 or the imaging unit 21 performs imaging according to the movement distance.
  • the capsule control unit 72 executes storage of image data (S34).
  • the capsule control unit 72 causes the image data storage unit 71 to store the image data output from the imaging unit 4 or the imaging unit 21. That is, the image data storage unit 71 temporarily stores the image data output from the imaging unit 4 or the imaging unit 21.
  • the capsule control unit 72 executes the imaging end determination (S35).
  • the imaging end determination (S35) the capsule control unit 72 determines whether the imaging is ended by determining whether the imaging position is the proximity position (P4).
  • the proximity position (P4) is detected by the method described with reference to FIG.
  • the capsule control unit 72 executes position detection (S31).
  • the imaging position is the close position (P4), the imaging ends.
  • the capsule control unit 72 executes an end notification (S36).
  • the capsule control unit 72 transmits information indicating that the image storage process is ended to the receiving device 30 by the first wireless communication unit 23.
  • the capsule control unit 72 executes image transmission (S37).
  • the capsule control unit 72 transmits the image data stored in the image data storage unit 71 to the receiving device 30 by the first wireless communication unit 23. That is, the first wireless communication unit 23 transmits the image data stored in the image data storage unit 71 to the receiving device 30.
  • the image storage process ends (S38).
  • the receiving device 30 notified of the end of the image storage process by the end notification (S36) starts an image reception process corresponding to the image transmission (S37).
  • the reception process of the image around the position where the treatment work has been performed is performed by the communication method including the above-mentioned reception confirmation process. Since the details of the communication method are known, the description thereof is omitted.
  • the capsule control unit 72 may perform the same determination as the communication environment determination (S13) in FIG. 14 and may perform image transmission (S37) when deterioration of the wireless communication environment is not detected.
  • each time the capsule endoscope 70 moves by a predetermined distance image data around the lesion site is temporarily stored.
  • the stored image data is transmitted to the receiving device 30. Therefore, the capsule endoscope 70 can reliably transmit the image data to the receiving device 30 regardless of the deterioration of the wireless communication environment.
  • acceleration data when degradation of the wireless communication environment is detected, acceleration data is temporarily stored, and after recovery of the wireless communication environment is detected, the stored acceleration data is stored in the capsule Sent from the mirror. For this reason, the receiving apparatus can acquire acceleration data when the wireless communication environment is degraded. As a result, when the wireless communication environment is degraded, it is possible to suppress a decrease in the accuracy of position detection of the capsule endoscope.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Endoscopes (AREA)

Abstract

 カプセル内視鏡システムは、カプセル内視鏡と、受信装置と、を有する。前記カプセル内視鏡は、無線通信環境の劣化が検出された場合、加速度データを一時的に記憶する。前記カプセル内視鏡は、通信環境の回復が検出された後、記憶された加速度データを前記受信装置に送信する。前記受信装置は、前記画像データと前記加速度データとを前記カプセル内視鏡から受信する。前記受信装置は、前記画像データと前記加速度データとに基づいて前記カプセル内視鏡の位置を検出する。

Description

カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム
 本発明は、カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラムに関する。
 カプセル内視鏡システムはカプセル内視鏡と受信装置とを有する。カプセル内視鏡は、撮像を行う撮像部と、加速度を検出する加速度センサーとを有する。また、カプセル内視鏡は、撮像部からの画像データと加速度センサーからの加速度データとを受信装置に無線送信する。受信装置は、画像データと加速度データとを受信し、画像データを記憶する。また、受信装置は、人体内におけるカプセル内視鏡の位置を検出する位置検出機能を有する。また、カプセル内視鏡は、投薬/検査機能を持ち、カプセル内視鏡が患部の近傍に到達した時点で投薬/検査を実行する。
 特許文献1には、カプセル内視鏡内に配置された加速度センサーからの情報を体外の受信装置に送信するカプセル内視鏡と、カプセル内視鏡の位置を推定する機能を持つ受信装置とを有するカプセル型医療装置の例が開示されている。
日本国特開2005-185644号公報
 特許文献1に開示された従来技術では、人体内におけるカプセル内視鏡の位置を検出することは可能である。しかし、無線通信環境が劣化した場合、受信装置が加速度センサーからの情報を取得することができない。この場合、位置検出が不正確である。
 本発明は、無線通信環境が劣化した場合にカプセル内視鏡の位置検出の精度の低下を抑制することができるカプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラムを提供する。
 本発明の第1の態様によれば、カプセル内視鏡システムは、カプセル内視鏡と、受信装置と、を有する。前記カプセル内視鏡は、撮像を行い、画像データを出力する撮像部と、加速度データを出力する加速度センサーと、前記加速度データを一時的に記憶する加速度データ記憶部と、無線通信により前記画像データと前記加速度データとを前記受信装置に送信する第1の無線通信部と、無線通信環境を検出する通信環境検出部と、前記通信環境検出部により前記無線通信環境の劣化が検出された場合、前記加速度データを前記加速度データ記憶部に記憶させ、前記通信環境検出部により前記無線通信環境の回復が検出された後、前記加速度データ記憶部に記憶された前記加速度データを前記第1の無線通信部により前記受信装置に送信するカプセル制御部と、を有する。前記受信装置は、無線通信により前記画像データと前記加速度データとを前記カプセル内視鏡から受信する第2の無線通信部と、前記画像データと前記加速度データとに基づいて前記カプセル内視鏡の位置を検出するカプセル位置検出部と、を有する。
 本発明の第2の態様によれば、第1の態様において、前記第1の無線通信部はさらに、作業実行条件データと作業指示データとを前記受信装置から受信してもよい。前記作業実行条件データは治療作業が行われる位置を示す。前記作業指示データは前記治療作業の実行指示を示す。前記カプセル内視鏡はさらに、前記加速度データに基づいて前記カプセル内視鏡の移動速度と移動距離とを検出する速度/距離検出部と、前記移動距離と前記作業実行条件データとに基づくタイミングで実行命令の出力を指示する実行タイミング決定部と、前記実行命令に基づいて、薬品投与または「組織もしくは体液の採取」を行う治療作業部と、を有してもよい。前記カプセル制御部は、前記移動速度が低速である場合、前記作業指示データが受信されたタイミングで前記実行命令を前記治療作業部に出力してもよい。前記カプセル制御部は、前記移動速度が高速である場合、前記実行タイミング決定部によって前記実行命令の出力が指示されたタイミングで前記実行命令を前記治療作業部に出力してもよい。前記受信装置はさらに、操作者の操作を受け付ける操作部と、前記操作部によって受け付けられた前記操作に基づいて前記作業実行条件データと前記作業指示データとを生成する生成部と、を有してもよい。前記第2の無線通信部は、前記生成部によって生成された前記作業実行条件データと前記作業指示データとを前記カプセル内視鏡に送信してもよい。
 本発明の第3の態様によれば、第2の態様において、前記カプセル制御部は、前記移動速度が低速であり前記通信環境検出部により前記無線通信環境の劣化が検出されていない場合、前記作業指示データが受信されたタイミングで前記実行命令を前記治療作業部に出力してもよい。前記カプセル制御部は、前記移動速度が低速であり前記通信環境検出部により前記無線通信環境の劣化が検出された場合、前記実行タイミング決定部によって前記実行命令の出力が指示されたタイミングで前記実行命令を前記治療作業部に出力してもよい。
 本発明の第4の態様によれば、第2または第3の態様において、前記カプセル内視鏡はさらに、前記撮像部から出力された前記画像データを一時的に記憶する画像データ記憶部を有してもよい。前記撮像部は、前記実行命令が出力された位置を基準とする位置において、前記移動距離に応じて前記撮像を行ってもよい。前記第1の無線通信部はさらに、前記画像データ記憶部に記憶された前記画像データを前記受信装置に送信してもよい。
 本発明の第5の態様によれば、カプセル内視鏡は、撮像を行い、画像データを出力する撮像部と、加速度データを出力する加速度センサーと、前記加速度データを一時的に記憶する加速度データ記憶部と、無線通信により前記画像データと前記加速度データとを受信装置に送信する第1の無線通信部と、無線通信環境を検出する通信環境検出部と、前記通信環境検出部により前記無線通信環境の劣化が検出された場合、前記加速度データを前記加速度データ記憶部に記憶させ、前記通信環境検出部により前記無線通信環境の回復が検出された後、前記加速度データ記憶部に記憶された前記加速度データを前記第1の無線通信部により前記受信装置に送信するカプセル制御部と、を有する。
 本発明の第6の態様によれば、カプセル内視鏡の無線通信方法は、無線通信環境を検出する通信環境検出ステップと、前記通信環境検出ステップで前記無線通信環境の劣化が検出された場合、加速度センサーから出力された加速度データを一時的に記憶する記憶ステップと、前記通信環境検出ステップで前記無線通信環境の回復が検出された後、前記記憶ステップで記憶された前記加速度データを無線通信により受信装置に送信する送信ステップと、を有する。
 本発明の第7の態様によれば、プログラムは、無線通信環境を検出する通信環境検出ステップと、前記通信環境検出ステップで前記無線通信環境の劣化が検出された場合、加速度センサーから出力された加速度データを一時的に記憶する記憶ステップと、前記通信環境検出ステップで前記無線通信環境の回復が検出された後、前記記憶ステップで記憶された前記加速度データを無線通信により受信装置に送信する送信ステップと、をカプセル内視鏡のコンピュータに実行させるためのプログラムである。
 上記の各態様によれば、無線通信環境の劣化が検出された場合、加速度データが一時的に記憶され、無線通信環境の回復が検出された後、記憶された加速度データがカプセル内視鏡から送信される。このため、受信装置は、無線通信環境が劣化しているときの加速度データを取得することが可能である。この結果、無線通信環境が劣化した場合にカプセル内視鏡の位置検出の精度の低下を抑制することができる。
本発明の第1の実施形態のカプセル内視鏡システムの構成を示すブロック図である。 本発明の第1の実施形態のカプセル内視鏡システムの使用状態を示す概略図である。 本発明の第1の実施形態のカプセル内視鏡の構成を示すブロック図である。 本発明の第1の実施形態の受信装置の構成を示すブロック図である。 本発明の第1の実施形態のカプセル内視鏡の動作の手順を示すフローチャートである。 本発明の第2の実施形態のカプセル内視鏡システムの構成を示すブロック図である。 本発明の第2の実施形態のカプセル内視鏡システムの使用状態を示す概略図である。 本発明の第2の実施形態のカプセル内視鏡の構成を示すブロック図である。 本発明の第2の実施形態の中継機の構成を示すブロック図である。 本発明の第2の実施形態の操作・格納機の構成を示すブロック図である。 本発明の第2の実施形態のカプセル内視鏡が治療作業を行うときのカプセル内視鏡の状態を示す参考図である。 本発明の第2の実施形態のカプセル内視鏡が治療作業中に撮像する画像を示す参考図である。 本発明の第2の実施形態のカプセル内視鏡が治療作業中に撮像する画像を示す参考図である。 本発明の第2の実施形態のカプセル内視鏡の動作の手順を示すフローチャートである。 本発明の第2の実施形態のカプセル内視鏡の動作の手順を示すフローチャートである。 本発明の第3の実施形態のカプセル内視鏡の構成を示すブロック図である。 本発明の第3の実施形態のカプセル内視鏡の動作の手順を示すフローチャートである。
 図面を参照し、本発明の実施形態を説明する。
(第1の実施形態)
 本発明の第1の実施形態は、カプセル内視鏡と、受信装置とを有するカプセル内視鏡システムに本発明を適用した例である。カプセル内視鏡は、撮像を行って画像データを出力する撮像部と、加速度を検出して加速度データを出力する加速度センサーとを有する。また、カプセル内視鏡は、画像データと加速度データとを無線通信により受信装置に送信する。受信装置は、カプセル内視鏡からの画像データと加速度データとを受信する。また、受信装置は、受信された画像データと加速度データとを使って人体内におけるカプセル内視鏡の位置を算出する機能を有する。
 図1から図4を用いて、システム構成と、装置構成とを説明する。図1は、カプセル内視鏡システム100の構成を示している。図2は、カプセル内視鏡システム100の使用状態を示している。図3は、カプセル内視鏡1の構成を示している。図4は、受信装置2の構成を示している。
 図1に示すように、カプセル内視鏡システム100は、カプセル内視鏡1と、受信装置2とを有する。画像データと加速度データとがカプセル内視鏡1から受信装置2に無線送信される。カプセル内視鏡1が有する撮像部のフレームレートを制御する制御データが受信装置2からカプセル内視鏡1に無線送信される。カプセル内視鏡1と受信装置2との間の無線通信は、カプセル内視鏡1内のアンテナと、受信装置2のアンテナ3a-3dとを介して行われる。図1では、アンテナ3aとアンテナ3dとのみが示されている。
 図2は、人体(患者)に対してアンテナ3a-3dが取り付けられた状態と、カプセル内視鏡1および受信装置2の位置関係とを示している。カプセル内視鏡1は、内部の電池で長時間動作する。このため、無線通信に使用される電力が最小限に抑えられる。この理由から、カプセル内視鏡1とアンテナ3a-3dとの間の距離が最短距離となるように、アンテナ3a-3dは人体に取り付けられた状態で使用される。
 上記のように、カプセル内視鏡1が無線通信に使用する電力が最小限に抑えられている。このため、カプセル内視鏡1と人体に取り付けられたアンテナ3a-3dとの位置関係、および通信路である人体の状態により無線通信環境の劣化が生じる。
 受信装置2は、受信された画像データと加速度データとから人体内におけるカプセル内視鏡1の位置を検出するカプセル位置検出機能を有する。画像データと加速度データとから人体内におけるカプセル内視鏡の位置を算出する各種の方法が考案されている。本発明の実施形態では、臓器が切り替わる部位(接合部)等の特徴のある部位を画像データから検出する方法が採用されている。また、この方法では、その部位が基準位置であり、加速度データを用いて各基準位置からの移動量を計算することによりカプセル内視鏡の位置が検出される。
 隣接するフレームで画像の変化がなく、加速度データが変化した場合には、その変化は、カプセル内視鏡1の移動ではなく患者の運動による加速度データの変化として扱われる。これにより、患者の運動の影響が除かれ、位置検出精度が高まる。
 本発明の実施形態では、上記の方法で得られた位置情報が画像データと関連付けられて記憶される。また、カプセル内視鏡1の位置に応じて撮像のフレームレートを制御するための制御データが無線送信される。
 図3に示すように、カプセル内視鏡1は、撮像部4と、加速度センサー5と、加速度データ記憶部6と、第1の無線通信部7と、第1の画像処理部8と、第1の電源部9と、カプセル制御部10と、通信環境検出部11と、データバスB1とを有する。
 撮像部4(撮像素子)は、撮像を行い、画像データを出力する。撮像部4は、指定されたフレームレートで人体内の撮像を行う。加速度センサー5は、カプセル内視鏡1に加わる加速度を検出し、加速度データを出力する。加速度センサー5は周期的に加速度を検出する。加速度データ記憶部6(記憶媒体)は、加速度データを一時的に記憶する。第1の無線通信部7(第1の無線通信回路)は、無線通信により画像データと加速度データとを受信装置2に送信する。また、第1の無線通信部7は、無線通信により制御データを受信装置2から受信する。第1の画像処理部8(第1の画像処理回路)は、撮像部4からの画像データに圧縮処理等の画像処理を行う。第1の電源部9(第1の電源回路)は、各部に電源を供給する。
 カプセル制御部10(カプセル制御回路)は、各部の動作を制御する。例えば、カプセル制御部10は、通信環境検出部11により無線通信環境の劣化が検出された場合、加速度データを加速度データ記憶部6に記憶させる。また、カプセル制御部10は、通信環境検出部11により無線通信環境の回復が検出された後、加速度データ記憶部6に記憶された加速度データを第1の無線通信部7により受信装置2に送信する。また、カプセル制御部10は、受信された制御データからフレームレート指定値を検出し、フレームレート指定値に基づくフレームレートを撮像部4に設定する。通信環境検出部11は、第1の無線通信部7の通信状態から無線通信環境を検出する。第1の画像処理部8と、カプセル制御部10と、通信環境検出部11とは、プロセッサなどの集積回路により構成されてもよい。データバスB1は、各種データの伝送を行う。
 カプセル制御部10は、カプセル制御部10の動作を制御するためのプログラムと必要なデータとを記憶する。例えば、カプセル制御部10の機能は、カプセル制御部10の動作を規定する命令を含むプログラムを、カプセル内視鏡1のコンピュータが読み込んで実行することにより、ソフトウェアの機能として実現可能である。このプログラムは、例えばフラッシュメモリのような「コンピュータ読み取り可能な記録媒体」により提供されてもよい。また、上述したプログラムは、このプログラムが保存された記憶装置等を有するコンピュータから、伝送媒体を介して、あるいは伝送媒体中の伝送波によりカプセル内視鏡1に伝送されてもよい。プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように、情報を伝送する機能を有する媒体である。また、上述したプログラムは、前述した機能の一部を実現してもよい。さらに、上述したプログラムは、前述した機能をコンピュータに既に記録されているプログラムとの組合せで実現できる、いわゆる差分ファイル(差分プログラム)であってもよい。
 カプセル内視鏡1は人体内で動作するため、カプセル内視鏡1の大きさに制限がある。これにより、第1の電源部9として使用可能な電池の容量に限りがある。したがって、診断対象ではない臓器または部位の撮影では、節電のためにフレームレートを下げることが要求される。フレームレートを制御するために使用される制御データは、受信装置2から所定の周期で送信される。
 例えば、通信環境検出部11は、制御データの受信状況から無線通信環境の劣化の検出を行う。通信環境検出部11による検出結果は、“良好”または“劣化”を示す。
 カプセル内視鏡1は、カプセル内視鏡1の加速度を示す加速度データを出力する加速度センサー5を内蔵している。通信環境検出部11の検出結果が“良好”である場合、加速度センサー5からの加速度データに、検出タイミングを示す時間データが付加される。時間データが付加された加速度データが第1の無線通信部7から送信される。通信環境検出部11の検出結果が“劣化”である場合、加速度データに、検出タイミングを示す時間データが付加される。時間データが付加された加速度データは加速度データ記憶部6に一時的に記憶される。加速度データ記憶部6に記憶された加速度データは、通信環境検出部11の検出結果が“良好”となったタイミングで第1の無線通信部7から送信される。したがって、カプセル制御部10は、通信環境検出部11により無線通信環境の劣化が検出されて加速度データが加速度データ記憶部6に記憶された後、通信環境検出部11により無線通信環境の回復が検出された場合、加速度データ記憶部6に記憶された加速度データを第1の無線通信部7により受信装置2に送信する。
 図4に示すように、受信装置2は、アンテナ3a,3b,3c,3dと、第2の無線通信部12と、第2の画像処理部13と、データ蓄積部14と、加速度処理部15と、速度/位置検出部16と、制御データ生成部17と、受信装置制御部18と、第2の電源部19とを有する。
 アンテナ3a,3b,3c,3dは、カプセル内視鏡1と無線で接続する。第2の無線通信部12(第2の無線通信回路)は、無線通信により画像データと加速度データとをカプセル内視鏡1から受信する。また、第2の無線通信部12は、無線通信により制御データをカプセル内視鏡1に送信する。第2の画像処理部13(第2の画像処理回路)は、第2の無線通信部12によって受信された画像データに対して伸張処理等の画像処理を行い、画像データを各部に適したフォーマットのデータに変換する。第2の画像処理部13によって処理された画像データは、速度/位置検出部16とデータ蓄積部14とに出力される。
 加速度処理部15(加速度処理回路)は、第2の無線通信部12によって受信された加速度データを所定時間毎の速度データと移動距離データとに変換する。速度データと移動距離データとは速度/位置検出部16に出力される。速度/位置検出部16(速度/位置検出回路)は、第2の画像処理部13からの画像データと、加速度処理部15からの所定時間毎の速度データおよび移動距離データとに基づいて、位置データと速度データとを算出する。速度/位置検出部16によって算出された位置データは、人体内におけるカプセル内視鏡1の位置を示す。速度/位置検出部16によって算出された速度データは、人体内におけるカプセル内視鏡1の位置に対応した速度を示す。位置データと速度データとはデータ蓄積部14と受信装置制御部18とに出力される。加速度処理部15と速度/位置検出部16とは、画像データと加速度データとに基づいてカプセル内視鏡1の位置を検出するカプセル位置検出部を構成する。
 データ蓄積部14(記憶媒体)は、第2の画像処理部13からの画像データと、速度/位置検出部16からの位置データと速度データとを蓄積する。受信装置制御部18(受信装置制御回路)は、各部の動作を制御する。例えば、受信装置制御部18は、速度/位置検出部16からの速度データに応じてフレームレート指定値を生成する。制御データ生成部17(制御データ生成回路)は、受信装置制御部18からのフレームレート指定値から制御データを生成し、生成された制御データを第2の無線通信部12に出力する。第2の画像処理部13と、加速度処理部15と、速度/位置検出部16と、制御データ生成部17と、受信装置制御部18とは、プロセッサなどの集積回路により構成されてもよい。第2の電源部19(第2の電源回路)は、各部に電源を供給する。
 図5を用いて、カプセル内視鏡1が行う加速度データ送信処理を説明する。図5は、カプセル内視鏡1が行う加速度データ送信処理の手順を示している。
 カプセル制御部10は、カプセル内視鏡1内の各部を制御することにより加速度データ送信処理を行う。本発明の実施形態の加速度データ送信処理は、撮像部4の撮像動作に同期して行われる。例えば、2フレーム/秒で撮像が行われている場合、1/2秒の整数倍の周期(0.5、1、2、4秒など)で加速度データ送信処理が行われる。例えば、加速度データ送信処理の周期として、フレームレートに対応する周期の指定が可能である。あるいは、別途、受信装置2が制御データとして周期のデータを送信することにより加速度データ送信処理の周期の指定が可能である。
 加速度データ送信処理が開始されると(S1)、カプセル制御部10は加速度データの読み出し(S2)を実行する。加速度データの読み出し(S2)では、カプセル制御部10は、加速度センサー5から加速度データを読み出す。加速度データの読み出し(S2)では、加速度データに、加速度データが読み出された時間を示す時間データが付加される。
 加速度データが読み出された後、カプセル制御部10は通信環境判断(S3)を実行する。通信環境判断(S3)では、カプセル制御部10は、通信環境検出部11から無線通信環境の検出結果を読み出し、無線通信環境の検出結果に応じて処理を決定する。つまり、カプセル制御部10は、無線通信環境を検出する。
 無線通信環境が劣化している場合、カプセル制御部10は加速度データの記憶(S4)を実行する。加速度データの記憶(S4)では、カプセル制御部10は、時間データが付加された加速度データを加速度データ記憶部6に記憶させる。つまり、無線通信環境の劣化が検出された場合、加速度データ記憶部6は、加速度センサーから出力された加速度データを一時的に記憶する。加速度データの記憶(S4)が実行された後、加速度データ送信処理が終了する(S8)。
 無線通信環境が良好である場合、カプセル制御部10は、加速度データの記憶(S4)で記憶されたデータがあるか否かを判断する(S5)。記憶されたデータがある場合、カプセル制御部10は、記憶されたデータの送信(S6)を実行する。記憶されたデータの送信(S6)では、カプセル制御部10は、加速度データ記憶部6に記憶された加速度データを第1の無線通信部7により受信装置2に送信する。つまり、第1の無線通信部7は、無線通信環境の回復が検出された後、加速度データの記憶(S4)で記憶された加速度データを無線通信により受信装置2に送信する。
 その後、カプセル制御部10は、読み出されたデータの送信(S7)を実行する。読み出されたデータの送信(S7)では、カプセル制御部10は、加速度データの読み出し(S2)により読み出された最新の加速度データを第1の無線通信部7により受信装置2に送信する。つまり、第1の無線通信部7は、無線通信環境の劣化が検出されていない場合、加速度データの読み出し(S2)により読み出された最新の加速度データを無線通信により受信装置2に送信する。読み出されたデータの送信(S7)が実行された後、加速度データ送信処理が終了する(S8)。
 記憶されたデータがない場合、カプセル制御部10は、読み出されたデータの送信(S7)を実行する。読み出されたデータの送信(S7)が実行された後、加速度データ送信処理が終了する(S8)。
 本発明の各態様のカプセル内視鏡は、撮像部4と、加速度センサー5と、加速度データ記憶部6と、第1の無線通信部7と、通信環境検出部11と、カプセル制御部10と以外の構成の少なくとも1つを有していなくてもよい。また、本発明の各態様の受信装置は、第2の無線通信部12と、加速度処理部15と、速度/位置検出部16と以外の構成の少なくとも1つを有していなくてもよい。
 第1の実施形態によれば、カプセル内視鏡1と、受信装置2とを有するカプセル内視鏡システム100が構成される。カプセル内視鏡1は、撮像部4と、加速度センサー5と、加速度データ記憶部6と、第1の無線通信部7と、通信環境検出部11と、カプセル制御部10とを有する。受信装置2は、第2の無線通信部12と、カプセル位置検出部(加速度処理部15、速度/位置検出部16)とを有する。
 また、第1の実施形態によれば、撮像部4と、加速度センサー5と、加速度データ記憶部6と、第1の無線通信部7と、通信環境検出部11と、カプセル制御部10とを有するカプセル内視鏡1が構成される。
 また、第1の実施形態によれば、通信環境検出ステップ(S3)と、記憶ステップ(S4)と、送信ステップ(S6)と、を有するカプセル内視鏡1の無線通信方法が構成される。
 また、第1の実施形態によれば、通信環境検出ステップ(S3)と、記憶ステップ(S4)と、送信ステップ(S6)と、をカプセル内視鏡1のコンピュータに実行させるためのプログラムが構成される。
 第1の実施形態では、無線通信環境の劣化が検出された場合、加速度データが一時的に記憶され、無線通信環境の回復が検出された後、記憶された加速度データがカプセル内視鏡1から送信される。このため、受信装置2は、無線通信環境が劣化しているときの加速度データを取得することが可能である。この結果、無線通信環境が劣化した場合にカプセル内視鏡1の位置検出の精度の低下を抑制することができる。
 (第2の実施形態)
 本発明の第2の実施形態のカプセル内視鏡は、第1の実施形態で示したカプセル内視鏡1の機能を有する。また、第2の実施形態のカプセル内視鏡は、薬品投与または「組織もしくは体液の採取」を含む治療作業の機能と、治療作業の実行制御機能とを有する。第2の実施形態の受信装置は、中継機と操作・格納機とを有する。
 中継機は、患者に取り付けられる。中継機は、主にカプセル内視鏡との無線通信を担当する。操作・格納機は、中継機と分離されて配置される。操作・格納機は、中継機と無線接続された状態で動作し、画像データの格納と治療作業の制御とを担当する。
 図6から図10を用いて、システム構成と、装置構成と、動作の概要とを説明する。図6は、カプセル内視鏡システム101の構成を示している。図7は、カプセル内視鏡システム101の使用状態を示している。図8は、カプセル内視鏡20の構成を示している。図9は、中継機32の構成を示している。図10は、操作・格納機35の構成を示している。
 図6に示すように、第2の実施形態のカプセル内視鏡システム101は、カプセル内視鏡20と、受信装置30とを有する。受信装置30は、中継機32と、操作・格納機35とを有する。
 図7は、人体(患者)に対してアンテナ31a-31dが取り付けられた状態と、カプセル内視鏡20、中継機32、および操作・格納機35の位置関係とを示している。前述したように、カプセル内視鏡20は、治療機能を有し、操作・格納機35からの指示により治療作業を実行する。第2の実施形態では、画像データと加速度データとは、カプセル内視鏡20から中継機32を経由して操作・格納機35に送信される。画像データと加速度データとは、操作・格納機35に格納される。第2の実施形態では、カプセル内視鏡20の加速度と中継機32の加速度とが測定される。中継機32の加速度データは、カプセル内視鏡20の加速度データとは別に操作・格納機35に送信される。操作・格納機35は、カプセル内視鏡20の加速度データから中継機32の加速度データを減算する。これにより、人体の移動によって発生する加速度データを除いた加速度データが得られる。したがって、より正確なカプセル内視鏡20の位置を算出することが可能である。
 第2の実施形態の制御データは、第1の実施形態と同じフレームレート制御用のデータと、作業実行条件データと、作業指示データとのいずれか1つである。作業実行条件データは治療作業が行われる位置を示す。作業指示データは治療作業の実行指示を示す。制御データは、操作・格納機35によって生成される。生成された制御データは、中継機32を経由してカプセル内視鏡20に送信される。作業実行条件データと作業指示データとの詳細については、後述する。
 カプセル内視鏡20と中継機32との間の無線通信は、カプセル内視鏡20内のアンテナと中継機32のアンテナ31a-31dとを介して行われる。中継機32と操作・格納機35との間の無線通信は、中継機32のアンテナ33と操作・格納機35のアンテナ34とを介して行われる。図6では、アンテナ31aと、アンテナ31dと、アンテナ33と、アンテナ34とのみが示されている。
 図8に示すように、カプセル内視鏡20は、撮像部4と、加速度センサー5と、加速度データ記憶部6と、第1の画像処理部8と、第1の電源部9と、通信環境検出部11と、データバスB1とを有する。さらに、カプセル内視鏡20は、撮像部21と、実行タイミング決定部22と、第1の無線通信部23と、速度/距離検出部24と、カプセル制御部25と、治療作業部26とを有する。
 図8に示す構成について、図3に示す構成と異なる点を説明する。撮像部4(撮像素子)と撮像部21(撮像素子)とは、撮像を行い、画像データを出力する。撮像部4と撮像部21とは、指定されたフレームレートで人体内の撮像を行う。撮像部4と撮像部21とは、カプセル内視鏡20の本体の両端(第1の端部、および第1の端部と異なる第2の端部)に、それぞれの撮像面が互いに背を向けるように配置されている。撮像部4は、カプセル内視鏡20の第1の端部において、撮像方向が外側の方向となるように配置されている。撮像部21は、カプセル内視鏡20の第2の端部において、撮像方向が外側の方向、すなわち撮像部4の撮像方向とほぼ反対の方向となるように配置されている。また、撮像部4と撮像部21とは、撮像方向がカプセル内視鏡20の移動方向またはその反対の方向とほぼ同一になるように配置されている。
 治療作業が行われているとき、撮像部4と撮像部21とのうち、病変部位を撮像可能な撮像部が受信装置30により選択される。治療作業が行われているとき、選択された撮像部のみが撮像を行う。治療作業が行われていないとき、撮像部4と撮像部21とは交互に撮像を行う。
 第1の無線通信部23(第1の無線通信回路)は、第1の実施形態の第1の無線通信部7が行う無線通信と同様の無線通信を行う。第1の無線通信部23はさらに、作業実行条件データと作業指示データとを受信装置30から受信する。前述したように、作業実行条件データは治療作業が行われる位置を示す。作業指示データは治療作業の実行指示を示す。
 速度/距離検出部24(速度/距離検出回路)は、加速度センサー5からの加速度データに基づいてカプセル内視鏡20の移動速度と移動距離とを検出する。実行タイミング決定部22は、速度/距離検出部24によって検出された移動距離と、第1の無線通信部23によって受信された作業実行条件データとに基づくタイミングで実行命令の出力を指示する。これにより、実行タイミング決定部22は、受信装置30からの作業指示データにより指定されたタイミングとは独立したタイミングを決定する。実行タイミング決定部22は、実行命令の出力をカプセル制御部25に指示することにより、決定されたタイミングをカプセル制御部25に通知する。治療作業部26は、カプセル制御部25からの実行命令に基づいて、薬品投与または「組織もしくは体液の採取」を行う。つまり、治療作業部26は、薬品投与を行う。あるいは、治療作業部26は、組織もしくは体液の採取を行う。
 カプセル制御部25(カプセル制御回路)は、第1の実施形態のカプセル制御部10が行う制御と同様の制御を行う。カプセル制御部25はさらに、治療作業に関する制御を行う。例えば、カプセル制御部25は、作業実行条件データが受信された後のカプセル内視鏡20の移動速度と無線通信環境とに応じて、治療作業のタイミングを決定し、決定されたタイミングで治療作業の実行を制御する。治療作業のタイミングは、受信装置30から指示されたタイミングと、実行タイミング決定部22から指示されたタイミングとのいずれか1つである。具体的には、カプセル制御部25は、移動速度が低速である場合、作業指示データが受信されたタイミングで実行命令を治療作業部26に出力する。カプセル制御部25は、移動速度が高速である場合、実行タイミング決定部22によって実行命令の出力が指示されたタイミングで実行命令を治療作業部26に出力する。
 カプセル制御部25はさらに、移動速度が低速であり通信環境検出部11により無線通信環境の劣化が検出されていない場合、作業指示データが受信されたタイミングで実行命令を治療作業部26に出力する。カプセル制御部25はさらに、移動速度が低速であり通信環境検出部11により無線通信環境の劣化が検出された場合、実行タイミング決定部22によって実行命令の出力が指示されたタイミングで実行命令を治療作業部26に出力する。
 第1の画像処理部8と、通信環境検出部11と、実行タイミング決定部22と、速度/距離検出部24と、カプセル制御部25とは、プロセッサなどの集積回路により構成されてもよい。上記以外の点については、図8に示す構成は図3に示す構成と同様である。
 操作者は、操作・格納機35に表示された病変部位の画像を認識して、治療作業の実行条件を決定する。決定された実行条件に応じて生成された作業実行条件データが中継機32を介してカプセル内視鏡20のカプセル制御部25に伝送される。治療作業の実行タイミングの決定方法の詳細については、図11~図14を用いて後述する。
 受信装置30を構成する中継機32は患者の体に取り付けられる。中継機32は、カプセル内視鏡20と操作・格納機35との間のデータ伝送の中継を行う。図9に示すように、中継機32は、アンテナ31a,31b,31c,31d,33と、第1の中継機無線通信部40(第2の無線通信部)と、データ一時記憶部41と、第2の中継機無線通信部42と、加速度センサー43と、中継機制御部44と、データバスB2とを有する。
 アンテナ31a,31b,31c,31dは、カプセル内視鏡20と無線で接続する。第1の中継機無線通信部40(第1の中継機無線通信回路)は、無線通信により画像データと加速度データとをカプセル内視鏡20から受信する。また、第1の中継機無線通信部40は、無線通信により制御データをカプセル内視鏡20に送信する。第2の実施形態の制御データは、作業実行条件データと作業指示データとでありうる。作業実行条件データと作業指示データとは、操作・格納機35によって生成される。このため、第1の中継機無線通信部40は、操作・格納機35によって生成された作業実行条件データと作業指示データとをカプセル内視鏡20に送信する。
 中継処理中に発生する通信障害に対応するために中継機32はデータ一時記憶部41(記憶媒体)を内蔵している。第2の中継機無線通信部42(第2の中継機無線通信回路)は、無線通信により画像データと加速度データとを操作・格納機35に送信する。また、第2の中継機無線通信部42は、無線通信により制御データを操作・格納機35から受信する。第2の実施形態の制御データは、作業実行条件データと作業指示データとでありうる。このため、第2の中継機無線通信部42は、作業実行条件データと作業指示データとを操作・格納機35から受信する。
 患者の移動に伴う加速度を検出するために中継機32は加速度センサー43を内蔵している。加速度センサー43は、中継機32に加わる加速度を検出し、加速度データを出力する。加速度センサー43からの加速度データは操作・格納機35に送信される。中継機制御部44は、各部の動作を制御する。データバスB2は、各種データの伝送を行う。
 受信装置30を構成する操作・格納機35は、第1の実施形態の受信装置2と同様に、画像データの格納と、加速度データから算出されたカプセル内視鏡20の位置データの格納とを行う。また、第1の実施形態とは異なり、操作・格納機35は、操作者が治療作業を行うための表示機能と、治療作業に関する制御機能とを有する。図10に示すように、操作・格納機35は、アンテナ34と、第2の無線通信部50と、第2の画像処理部51と、データ蓄積部52と、加速度処理部53と、速度/位置検出部54と、病変部位検出部55と、表示処理部56と、表示部57と、受信装置制御部58(生成部)と、制御データ生成部59と、操作部60と、第2の電源部61とを有する。
 アンテナ34は、中継機32と無線で接続する。第2の無線通信部50(第2の無線通信回路)は、無線通信により画像データと加速度データとを中継機32から受信する。また、第2の無線通信部50は、無線通信により制御データを中継機32に送信する。第2の画像処理部51(第2の画像処理回路)は、第1の実施形態の第2の画像処理部13と同様である。
 加速度処理部53(加速度処理回路)は、第2の無線通信部50によって受信された加速度データを所定時間毎の速度データと移動距離データとに変換する。このとき、加速度処理部53は、カプセル内視鏡20の加速度データから中継機32の加速度データを減算することにより、患者の移動によって発生する加速度データを除いた加速度データを得る。速度データと移動距離データとは速度/位置検出部54に出力される。速度/位置検出部54(速度/位置検出回路)は、第1の実施形態の速度/位置検出部16と同様である。データ蓄積部52(記憶媒体)は、第1の実施形態のデータ蓄積部14と同様である。
 病変部位検出部55は、画像データに基づいて病変部位の検出を行う。画像データに基づいて病変部位を検出する種々のアルゴリズムが考案されている。これらのアルゴリズムは既知であるので、その詳細な説明を省略する。病変部位検出部55によって検出された病変部位の位置情報は表示処理部56に出力される。表示処理部56は、第2の画像処理部51からの画像データに、病変部位の位置情報に基づく情報を重畳する。表示処理部56によって処理された画像データは表示部57に出力される。表示部57は、画像データに基づいて画像を表示する。
 操作部60は、操作者の操作を受け付ける。受信装置制御部58(受信装置制御回路)は、第1の実施形態の受信装置制御部18が行う制御と同様の制御を行う。受信装置制御部58はさらに、操作部60によって受け付けられた操作に基づいて作業実行条件データと作業指示データとを生成する。作業実行条件データと作業指示データとは制御データ生成部59に出力される。制御データ生成部59(制御データ生成回路)は、受信装置制御部58からのフレームレート指示値と、作業実行条件データと、作業指示データとから制御データを生成し、生成された制御データを第2の無線通信部50に出力する。前述したように、第2の無線通信部50は制御データを中継機32に送信する。これにより、第2の無線通信部50は、受信装置制御部58によって生成された作業実行条件データと作業指示データとを中継機32に送信する。
 第2の画像処理部51と、加速度処理部53と、速度/位置検出部54と、病変部位検出部55と、表示処理部56と、受信装置制御部58と、制御データ生成部59とは、プロセッサなどの集積回路により構成されてもよい。第2の電源部61(第2の電源回路)は、各部に電源を供給する。
 以下では、操作・格納機35の動作を、表示機能と、治療作業に関する制御機能とを中心に説明する。操作者は、表示部57に表示された画像を観察しながら、病変部位に対する治療作業が行われる位置を決定する。決定された位置は、操作部60を介して受信装置制御部58に通知される。
 操作者がこの時点で決定する“治療作業が行われる位置”は、受信装置30からの指示に基づく位置ではない。操作者がこの時点で決定する“治療作業が行われる位置”は、カプセル内視鏡20が自立的に治療作業を行う位置である。カプセル内視鏡20が病変部位を通過するときに高速移動または無線通信環境の劣化が発生した場合にカプセル内視鏡20は自立的に治療作業を行う。カプセル内視鏡20が高速に移動している場合、受信装置30からの指示に基づく位置と異なる位置で治療作業が行われる可能性がある。また、無線通信環境が劣化している場合、受信装置30からの指示がカプセル内視鏡20に通知されない可能性がある。このため、カプセル内視鏡20は自立的に治療作業を行うことが可能である。
 例えば、病変部位に対する治療作業が投薬である場合には、カプセル内視鏡20が病変部位に到達する直前にカプセル内視鏡20は投薬を行う。投与された薬剤は、時間の進行と共に病変部位に到達する。投薬の位置が病変部位から非常に離れている場合には薬剤が大きく広がり、薬剤が薄くなる可能性がある。また、投薬の位置が病変部位に非常に近い場合には薬剤が病変部位の一部に塗布されない可能性がある。
 このため、操作者は病変部位の形状と薬剤の性質とを考慮して投薬の実行位置を決定する。具体的には、操作者は、表示部57に表示された画像を観察しながら、“治療作業が行われる位置”を決定する。操作者は、操作部60を操作し、“治療作業が行われる位置”を入力する。受信装置制御部58は、決定された“治療作業が行われる位置”と病変部位の位置との関係に基づいて作業実行条件を決定し、作業実行条件データを生成する。
 作業実行条件データは、投薬および体液収集等の治療作業の内容を示す作業内容情報と、カプセル内視鏡20が自立的に治療作業を実行する場合の病変部位とカプセル内視鏡20との位置関係を示す作業実行位置情報とを含む。カプセル内視鏡20の治療機能が投薬である場合、治療作業の内容は“投薬実行”である。例えば、作業実行位置は“作業実行条件データが受信された位置からカプセル内視鏡20が20mm移動した位置”である。
 カプセル内視鏡20の治療機能が、病変部位周辺で体液収集を行う体液サンプリングである例を説明する。体液収集は、カプセル内視鏡20が病変部位の上にあるとき、またはカプセル内視鏡20が病変部位を通過した直後に行われる。このため、治療作業の内容は“体液サンプリング実行”である。例えば、作業実行位置は“作業実行条件データが受信された位置からカプセル内視鏡20が30mm移動した位置”である。
 受信装置制御部58によって生成された作業実行条件データは、制御データ生成部59と第2の無線通信部50とを介して中継機32に送信される。中継機32によって受信された作業実行条件データは、中継機32によってカプセル内視鏡20に送信される。
 第2の実施形態では、カプセル内視鏡20が病変部位から所定距離分離れた位置にある時点で受信装置30は作業実行条件データをカプセル内視鏡20に送信する。カプセル内視鏡20は、作業実行条件データを受信した位置から、作業実行条件データにより指定された距離分移動した時点で治療作業を実行する。
 カプセル内視鏡20が病変部位を通過するときに高速移動と無線通信環境の劣化とが発生しない場合には、操作者が、表示部57に表示された画像を観察しながら、治療作業を行うタイミングを決定する。操作者は、操作部60を操作し、治療作業を行うタイミングで治療作業の指示を入力する。受信装置制御部58は、治療作業の指示に基づいて作業指示データを生成する。
 受信装置制御部58によって生成された作業指示データは、制御データ生成部59と第2の無線通信部50とを介して中継機32に送信される。中継機32によって受信された作業指示データは、中継機32によってカプセル内視鏡20に送信される。カプセル内視鏡20は、作業指示データを受信した時点で治療作業を実行する。作業実行条件データと作業指示データとの生成方法の詳細については、図11から図13を用いて後述する。
 図11から図15を用いて治療作業の詳細を説明する。図11は、カプセル内視鏡20が治療作業を行うときのカプセル内視鏡20の状態を示している。図12は、カプセル内視鏡20の前方(進行方向)の撮像部が治療作業中に撮像する画像を示している。図13は、カプセル内視鏡20の後方(後退方向)の撮像部が治療作業中に撮像する画像を示している。図14は、カプセル内視鏡20が行う治療作業処理の手順を示している。図15は、カプセル内視鏡20が行う実行タイミング決定処理の手順を示している。
 図11は、腸管内のカプセル内視鏡20の位置と、病変部位に対する治療作業の実行タイミングとを示している。図11では、カプセル内視鏡20は右方向に移動している。カプセル内視鏡20は、位置(P1)で病変部位を発見する。カプセル内視鏡20は、近接位置(P2)で作業実行条件データを受信する。カプセル内視鏡20は、治療作業の実行位置(P3)で治療作業(投薬)を行う。カプセル内視鏡20は、反対方向の近接位置(P4)に到達するまで治療作業の実行確認のために後退方向の撮像を行う。
 例えば、カプセル内視鏡20が長さ6mの小腸を3時間かけて通過する場合、カプセル内視鏡20の平均速度は0.56mm/s(6000/(3×60×60)=0.56)である。例えば、カプセル内視鏡20の全長が約26mmである場合、カプセル内視鏡20がその全長分の距離を移動するのに約46秒が必要である。例えば、図11に示す位置(P2)と位置(P3)との間の距離Nが、カプセル内視鏡20の全長よりも長い30mmである場合、カプセル内視鏡20が位置(P2)から位置(P3)に移動するのに約53秒が必要である。フレームレートが2フレーム/秒である場合、位置(P2)から位置(P3)への移動の間に106枚の画像が撮像される。したがって、操作者が画像を観察しながら操作を行う場合でも治療作業の精度を十分に保つことが可能である。
 図12と図13とは、治療作業時にカプセル内視鏡20が撮像する画像の例である。図12は、図11の位置(P1)と位置(P2)とにおいて、カプセル内視鏡20の進行方向を向いた撮像部21により撮像される画像を示している。図12において、病変部位は矩形で示されている。
 カプセル内視鏡20が位置(P1)にある時点では、病変部位はカプセル内視鏡20から遠い位置にある。このため、画像の中央部に小さな病変部位がある。カプセル内視鏡20が位置(P2)にある時点では、病変部位はカプセル内視鏡20に近い位置にある。このため、画像の周辺部に大きな病変部位がある。第2の実施形態では、カプセル内視鏡20の位置が位置(P1)と位置(P2)との間であるときに、操作者は病変部位に対する作業実行条件を決定する。カプセル内視鏡20が位置(P2)に到達した時点で作業実行条件データが、操作・格納機35から中継機32を介してカプセル内視鏡20に送信される。
 具体的には、図12において2つの円に挟まれた範囲が近接位置の範囲である。カプセル内視鏡20が位置(P2)を越えて病変部位に接近したことが近接位置の範囲の画像から検出される。操作・格納機35の速度/位置検出部54が近接位置の範囲から病変部位を検出したとき、受信装置制御部58は、第2の無線通信部50により作業実行条件データを中継機32に送信する。
 以下では具体的なタイミングの例を用いて治療作業の詳細を説明する。例えば、図11において、位置(P2)と位置(P3)との間の距離Nが30mmである場合、カプセル内視鏡20に通知される作業実行条件の内容は、作業実行条件データが受信された位置(P2)からカプセル内視鏡20が30mm進んだ位置で治療作業が実行されることを示す。治療作業が実行された後、実行結果の確認のために、カプセル内視鏡20が位置(P4)に到達するまで後退方向の撮像が行われる。
 図13は、位置(P4)において、カプセル内視鏡20の後退方向を向いた撮像部4により撮像される画像を示している。図13において2つの円に挟まれた範囲が近接位置の範囲である。カプセル内視鏡20が位置(P4)を越えて病変部位から離れたことが近接位置の範囲の画像から検出される。操作・格納機35の速度/位置検出部54が、近接位置の範囲から病変部位が外れたことを検出したとき、受信装置制御部58は、第2の無線通信部50により、撮像の終了を示す制御データを中継機32に送信する。
 前述したように、作業実行条件データに基づくカプセル内視鏡20の自立的な治療作業は、作業実行条件データが受信された後にカプセル内視鏡20が高速に移動した場合、または中継機32とカプセル内視鏡20との間の無線通信環境が悪化した場合にのみ行われる。
 図14を用いて、カプセル内視鏡20が行うカプセル治療処理を説明する。図14は、カプセル内視鏡20が行うカプセル治療処理の手順を示している。カプセル制御部25は、カプセル内視鏡20内の各部を制御することによりカプセル治療処理を行う。
 カプセル治療処理が開始されると(S10)、カプセル制御部25は、作業実行条件データの受信判断(S11)を実行する。作業実行条件データの受信判断(S11)では、カプセル制御部25は、作業実行条件データが受信されたか否かを判断する。作業実行条件が受信されていない場合、作業実行条件データの受信判断(S11)が繰り返される。
 第1の無線通信部23は、作業実行条件データを受信装置30から受信する。作業実行条件データが受信された場合、カプセル制御部25は、速度/距離検出部24からの速度データに基づいて移動速度判断(S12)を実行する。移動速度判断(S12)では、カプセル制御部25は、カプセル内視鏡20の移動速度を判断する。例えば、カプセル制御部25は、カプセル内視鏡20の移動速度が所定の速度以上であるか否かを判断する。カプセル内視鏡20の移動速度が所定の速度以上である場合、カプセル制御部25は、カプセル内視鏡20の移動速度が高速であると判断する。また、カプセル内視鏡20の移動速度が所定の速度未満である場合、カプセル制御部25は、カプセル内視鏡20の移動速度が低速であると判断する。
 カプセル内視鏡20の移動速度が低速である場合、カプセル制御部25は、通信環境判断(S13)を実行する。通信環境判断(S13)では、カプセル制御部25は、通信環境検出部11から無線通信環境の検出結果を読み出し、無線通信環境の検出結果に応じて処理を決定する。つまり、カプセル制御部25は、無線通信環境を検出する。
 無線通信環境が良好である場合、カプセル制御部25は、作業指示データの受信判断(S14)を実行する。作業指示データの受信判断(S14)では、カプセル制御部25は、作業指示データが受信されたか否かを判断する。作業指示データが受信されていない場合、カプセル制御部25は、移動速度判断(S12)を実行する。
 第1の無線通信部23は、作業指示データを受信装置30から受信する。作業指示データが受信された場合、カプセル制御部25は、治療作業指示(S16)を実行する。治療作業指示(S16)では、カプセル制御部25は、治療作業の実行命令を治療作業部26に出力する。つまり、カプセル制御部25は、移動速度が低速であり通信環境検出部11により無線通信環境の劣化が検出されていない場合、作業指示データが受信されたタイミングで実行命令を治療作業部26に出力する。治療作業部26は、カプセル制御部25からの実行命令に基づいて治療作業を実行する。治療作業指示(S16)が実行された後、カプセル治療処理が終了する(S17)。
 カプセル内視鏡20の移動速度が高速である場合、または無線通信環境が劣化している場合、カプセル制御部25は、実行開始通知の発行判断(S15)を実行する。実行開始通知の発行判断(S15)では、カプセル制御部25は、実行タイミング決定部22から実行開始通知が発行されたか否かを判断する。実行開始通知の発行によって、治療作業の実行命令の出力が指示される。実行開始通知が発行されていない場合、実行開始通知の発行判断(S15)が繰り返される。
 実行開始通知が発行された場合、カプセル制御部25は、治療作業指示(S16)を実行する。つまり、カプセル制御部25は、移動速度が高速である場合、実行タイミング決定部22によって実行命令の出力が指示されたタイミングで実行命令を治療作業部26に出力する。また、カプセル制御部25は、移動速度が低速であり通信環境検出部11により無線通信環境の劣化が検出された場合、実行タイミング決定部22によって実行命令の出力が指示されたタイミングで実行命令を治療作業部26に出力する。治療作業部26は、カプセル制御部25からの実行命令に基づいて治療作業を実行する。治療作業指示(S16)が実行された後、カプセル治療処理が終了する(S17)。
 カプセル内視鏡20の移動速度が低速であり無線通信環境が良好である場合、S12とS13とS14との処理が繰り返される。これらの処理は判断処理であり、高速に処理が行われる。このため、作業指示データが受信されてから治療作業が実行されるまでの遅延時間は無視できる。
 図15を用いて、カプセル内視鏡20が行う実行タイミング決定処理を説明する。図15は、カプセル内視鏡20が行う実行タイミング決定処理の手順を示している。実行タイミング決定部22は、実行タイミング決定処理を行う。
 実行タイミング決定部22は、受信装置30から作業実行条件データが受信された直後に、図15に示す実行タイミング決定処理を実行する。実行タイミング決定処理が開始されると(S20)、実行タイミング決定部22は、移動距離の読み出し(S21)を実行する。移動距離の読み出し(S21)では、実行タイミング決定部22は、速度/距離検出部24から移動距離データを読み出す。
 移動距離データが読み出された後、実行タイミング決定部22は、移動距離の判断(S22)を実行する。移動距離の判断(S22)では、実行タイミング決定部22は、移動距離データが示す移動距離が、作業実行条件データによって指定された距離以上であるか否かを判断する。移動距離が、作業実行条件データによって指定された距離未満である場合、実行タイミング決定部22は、移動距離の読み出し(S21)を実行する。
 移動距離が、作業実行条件データによって指定された距離以上である場合、実行タイミング決定部22は、実行開始通知の発行(S23)を実行する。実行開始通知の発行(S23)では、実行タイミング決定部22は、実行開始通知をカプセル制御部25に発行する。これにより、実行タイミング決定部22は、治療作業の実行命令の出力をカプセル制御部25に指示する。実行開始通知の発行(S23)が実行された後、実行タイミング決定処理が終了する(S24)。
 図15に示す実行タイミング決定処理では、実行タイミング決定部22は、作業実行条件データが受信された時点からの移動距離が、作業実行条件データに含まれる作業実行位置情報により指定された距離になったか否かを判断する。これにより、実行タイミング決定部22は、治療作業の実行タイミングを決定する。
 例えば、カプセル内視鏡20の移動距離が、作業実行条件データにより指定された移動距離(N=30mm)になったと判断された時点で実行開始通知の発行(S23)が実行される。これにより、治療作業指示(S16)が実行される。図11に示す例では、カプセル治療処理が終了した後、カプセル制御部25は、撮像部4に撮像を指示する。これにより、図13に示す画像の撮像が行われる。
 治療作業の実行タイミングの決定は無線通信環境の判断に依存しなくてもよい。例えば、移動速度判断(S12)により移動速度が低速であると判断された場合、通信環境判断(S13)が行われずに作業指示データの受信判断(S14)が実行されてもよい。作業指示データが受信された場合、治療作業指示(S16)が実行される。移動速度が低速であり無線通信環境の劣化が発生した場合、S12とS14との処理が繰り返される。この場合、操作者は表示部57を観察している。このため、操作者は、治療作業が実行されずにカプセル内視鏡20が病変部位を通過したことを確認する。通過が確認された場合、受信装置30から別途指示が出され、カプセル治療処理は中止される。
 第2の実施形態では、受信装置30が中継機32と操作・格納機35とに分かれている。しかし、中継機32と操作・格納機35とが一体化された受信装置が人体(患者)に取り付けられてもよい。
 第2の実施形態では、カプセル内視鏡20の移動速度が高速である場合、または無線通信環境の劣化が検出された場合、実行タイミング決定部22によって指示されたタイミングで治療作業が実行される。このため、カプセル内視鏡20は適切なタイミングで治療作業を実行することができる。
 (第3の実施形態)
 本発明の第3の実施形態のカプセル内視鏡システムでは、図6に示すカプセル内視鏡システム101におけるカプセル内視鏡20が変更される。第3の実施形態のカプセル内視鏡は、カプセル内視鏡20の機能を有する。また、第3の実施形態のカプセル内視鏡は、治療作業が行われる病変部位周辺の画像を所定の位置で撮像する機能と、画像データをカプセル内視鏡内に一時的に記憶する機能とを有する。これにより、カプセル内視鏡は、無線通信環境の劣化の有無に係わらず、画像データを受信装置に確実に伝送することができる。
 図16を用いて、第3の実施形態のカプセル内視鏡70の構成と動作の概要とを説明する。図16は、カプセル内視鏡70の構成を示している。
 図16に示すように、カプセル内視鏡70は、撮像部4と、加速度センサー5と、加速度データ記憶部6と、第1の画像処理部8と、第1の電源部9と、通信環境検出部11と、撮像部21と、実行タイミング決定部22と、第1の無線通信部23と、速度/距離検出部24と、治療作業部26と、データバスB1とを有する。さらに、カプセル内視鏡70は、画像データ記憶部71と、カプセル制御部72とを有する。
 図16に示す構成について、図8に示す構成と異なる点を説明する。撮像部4と撮像部21とは、治療作業の実行命令が出力された位置を基準とする位置において、カプセル内視鏡70の移動距離に応じて撮像を行う。つまり、撮像部4と撮像部21とは、治療作業の実行命令が出力された位置の近傍において、カプセル内視鏡70の移動距離に応じて撮像を行う。したがって、撮像部4と撮像部21とは、病変部位の近傍の位置で撮像を行い、病変部位周辺の画像データを出力する。
 画像データ記憶部71(記憶媒体)は、撮像部4と撮像部21とから出力された画像データを一時的に記憶する。画像データ記憶部71に記憶される画像データは、治療作業が行われる病変部位周辺の画像データである。例えば、画像データ記憶部71は加速度データ記憶部6と異なる記憶媒体である。あるいは、1つの記憶媒体が第1の記憶領域と第2の記憶領域とを有し、第1の記憶領域は加速度データ記憶部6であり、第2の記憶領域は画像データ記憶部71であってもよい。
 カプセル制御部72は、第2の実施形態のカプセル制御部25と同様の制御を行う。カプセル制御部72はさらに、画像データ記憶部71の制御機能と、画像データ記憶部71に記憶された画像データを受信装置30に送信する送信機能とを有する。このため、第1の無線通信部23は、画像データ記憶部71に記憶された画像データを受信装置30に送信する。
 第1の画像処理部8と、通信環境検出部11と、実行タイミング決定部22と、速度/距離検出部24と、カプセル制御部72とは、プロセッサなどの集積回路により構成されてもよい。上記以外の点については、図16に示す構成は図8に示す構成と同様である。
 病変部位周辺の画像データの一時記憶機能により、カプセル内視鏡70は、無線通信環境の劣化の有無に係わらず、治療作業が実行された病変部位周辺の画像を所定の位置で確実に撮像することができる。また、カプセル内視鏡70は、画像データを受信装置30に確実に伝送することが可能である。
 第1の無線通信部23は、第2の実施形態と同様に、作業実行条件データを受信装置30から受信する。これにより、カプセル内視鏡70は、カプセル内視鏡70が高速に移動した場合、または無線通信環境が劣化した場合に作業実行条件データに基づくタイミングで治療作業を実行する。
 第3の実施形態では、第2の実施形態と異なり、治療作業が実行される病変部位周辺の画像の撮像条件が作業実行条件データによって指定される。この撮像条件は、撮像位置を含む。
 以下では、具体的な例を用いて説明を行う。第2の実施形態と同様に、カプセル内視鏡70と病変部位との位置関係は図11に示されている。以下では、図11におけるカプセル内視鏡20がカプセル内視鏡70に置き換わる。
 例えば、近接位置(P2)から治療作業の実行位置(P3)までの距離は30mmであり、治療作業の実行位置(P3)から近接位置(P4)までの距離は30mmである。例えば、作業実行条件データは、近接位置(P2)から近接位置(P4)までの画像を、カプセル内視鏡70が1mm移動する毎に撮像することを示す指示を含む。その場合、画像データ記憶部71には、近接位置(P2)から近接位置(P4)までの61枚の画像が格納される。具体的には、カプセル内視鏡70は、作業実行条件データが受信された近接位置(P2)から撮像を開始する。カプセル内視鏡70は、速度/距離検出部24からの距離データが示す距離が1mm更新される毎に撮像と画像データの格納とを行う。カプセル内視鏡70は、近接位置(P4)に到達する前に、61枚の画像データが格納された時点で撮像と画像データの格納とを終了する。
 画像データ記憶部71に記憶された画像データは、通常の画像データの通信が行われるタイミングと異なるタイミングで受信装置30に送信される。具体的には、カプセル内視鏡70は、通常の画像データの通信の空き時間を使って、確実な伝送を保証する受信確認処理(ACK-NACK)を行いながら通信を行う。受信確認処理を伴う通信方法は公知であるので、その説明を省略する。また、通常の画像データの通信で使用される、受信確認処理を行わない通信方法も公知であるので、その説明を省略する。
 図17を用いて、カプセル内視鏡70が行う画像記憶処理を説明する。図17は、カプセル内視鏡70が行う画像記憶処理の手順を示している。カプセル制御部72は、カプセル内視鏡70内の各部を制御することにより画像記憶処理を行う。
 画像記憶処理が開始されると(S30)、カプセル制御部72は、位置検出(S31)を実行する。位置検出(S31)では、カプセル制御部72は、速度/距離検出部24から距離データを読み出す。
 距離データが読み出された後、カプセル制御部72は、撮像予定位置の判断(S32)を実行する。撮像予定位置の判断(S32)では、カプセル制御部72は、前回の撮像が行われた位置からカプセル内視鏡70が所定距離分移動したか否かを判断する。つまり、カプセル制御部72は、カプセル内視鏡70が撮像予定位置にあるか否かを判断する。本例では、所定距離は1mmである。位置検出(S31)が1回のみ行われた後の撮像予定位置の判断(S32)では、カプセル内視鏡70が撮像予定位置にないと判断される。また、位置検出(S31)が2回以上行われた後、1回目の撮像が行われるまで、撮像予定位置の判断(S32)では、カプセル内視鏡70が撮像予定位置にないと判断される。
 カプセル内視鏡70が撮像予定位置にない場合、カプセル制御部72は、位置検出(S31)を実行する。カプセル内視鏡70が撮像予定位置にある場合、カプセル制御部72は、撮像処理(S33)を実行する。撮像処理(S33)では、カプセル制御部72は、所定の撮像部を選択し、選択された撮像部に撮像を実行させる。具体的には、近接位置(P2)から治療作業の実行位置(P3)までは進行方向を撮像している撮像部21が選択される。カプセル内視鏡70が治療作業の実行位置(P3)を越えた後、カプセル内視鏡70が近接位置(P4)に到達するまで、後退方向を撮像している撮像部4が選択される。撮像処理(S33)により、撮像部4または撮像部21は、病変部位の近傍の位置で撮像を行い、病変部位周辺の画像データを出力する。また、撮像予定位置の判断(S32)に応じて撮像処理(S33)が行われるため、撮像部4または撮像部21は、移動距離に応じて撮像を行う。
 撮像処理(S33)が実行された後、カプセル制御部72は、画像データの記憶(S34)を実行する。画像データの記憶(S34)では、カプセル制御部72は、撮像部4または撮像部21から出力された画像データを画像データ記憶部71に記憶させる。つまり、画像データ記憶部71は、撮像部4または撮像部21から出力された画像データを一時的に記憶する。
 画像データが記憶された後、カプセル制御部72は、撮像終了判断(S35)を実行する。撮像終了判断(S35)では、カプセル制御部72は、撮像位置が近接位置(P4)であるか否かを判断することにより、撮像を終了するか否かを判断する。近接位置(P4)は、図13を用いて説明した方法により検出される。
 撮像位置が近接位置(P4)でない場合、撮像が継続する。この場合、カプセル制御部72は、位置検出(S31)を実行する。撮像位置が近接位置(P4)である場合、撮像が終了する。この場合、カプセル制御部72は、終了通知(S36)を実行する。終了通知(S36)では、カプセル制御部72は、画像記憶処理が終了したことを示す情報を第1の無線通信部23により受信装置30に送信する。
 終了通知(S36)が実行された後、カプセル制御部72は、画像送信(S37)を実行する。画像送信(S37)では、カプセル制御部72は、画像データ記憶部71に記憶された画像データを第1の無線通信部23により受信装置30に送信する。つまり、第1の無線通信部23は、画像データ記憶部71に記憶された画像データを受信装置30に送信する。画像送信(S37)が実行された後、画像記憶処理が終了する(S38)。
 終了通知(S36)により画像記憶処理の終了が通知された受信装置30は、画像送信(S37)に対応する、画像の受信処理を開始する。治療作業が行われた位置の周辺の画像の受信処理は、前述した受信確認処理を伴う通信方法で行われる。通信方法の詳細は公知であるので、その説明を省略する。
 カプセル制御部72は、図14の通信環境判断(S13)と同様の判断を行い、無線通信環境の劣化が検出されていない場合に画像送信(S37)を行ってもよい。
 第3の実施形態では、カプセル内視鏡70が所定距離分移動する毎に、病変部位周辺の画像データが一時的に記憶される。記憶された画像データは受信装置30に送信される。このため、カプセル内視鏡70は、無線通信環境の劣化の有無に係わらず、画像データを受信装置30に確実に伝送することができる。
 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明の各実施形態によれば、無線通信環境の劣化が検出された場合、加速度データが一時的に記憶され、無線通信環境の回復が検出された後、記憶された加速度データがカプセル内視鏡から送信される。このため、受信装置は、無線通信環境が劣化しているときの加速度データを取得することが可能である。この結果、無線通信環境が劣化した場合にカプセル内視鏡の位置検出の精度の低下を抑制することができる。
 1,20,70 カプセル内視鏡
 2,30 受信装置
 3a,3b,3c,3d,31a,31b,31c,31d,33,34 アンテナ
 4,21 撮像部
 5,43 加速度センサー
 6 加速度データ記憶部
 7,23 第1の無線通信部
 8 第1の画像処理部
 9 第1の電源部
 10,25,72 カプセル制御部
 11 通信環境検出部
 12,50 第2の無線通信部
 13,51 第2の画像処理部
 14,52 データ蓄積部
 15,53 加速度処理部
 16,54 速度/位置検出部
 17,59 制御データ生成部
 18,58 受信装置制御部
 19,61 第2の電源部
 22 実行タイミング決定部
 24 速度/距離検出部
 26 治療作業部
 32 中継機
 35 操作・格納機
 40 第1の中継機無線通信部
 41 データ一時記憶部
 42 第2の中継機無線通信部
 44 中継機制御部
 55 病変部位検出部
 56 表示処理部
 57 表示部
 60 操作部
 71 画像データ記憶部
 100,101 カプセル内視鏡システム

Claims (7)

  1.  カプセル内視鏡と、受信装置と、を有し、
     前記カプセル内視鏡は、
     撮像を行い、画像データを出力する撮像部と、
     加速度データを出力する加速度センサーと、
     前記加速度データを一時的に記憶する加速度データ記憶部と、
     無線通信により前記画像データと前記加速度データとを前記受信装置に送信する第1の無線通信部と、
     無線通信環境を検出する通信環境検出部と、
     前記通信環境検出部により前記無線通信環境の劣化が検出された場合、前記加速度データを前記加速度データ記憶部に記憶させ、前記通信環境検出部により前記無線通信環境の回復が検出された後、前記加速度データ記憶部に記憶された前記加速度データを前記第1の無線通信部により前記受信装置に送信するカプセル制御部と、
     を有し、
     前記受信装置は、
     無線通信により前記画像データと前記加速度データとを前記カプセル内視鏡から受信する第2の無線通信部と、
     前記画像データと前記加速度データとに基づいて前記カプセル内視鏡の位置を検出するカプセル位置検出部と、
     を有するカプセル内視鏡システム。
  2.  前記第1の無線通信部はさらに、作業実行条件データと作業指示データとを前記受信装置から受信し、前記作業実行条件データは治療作業が行われる位置を示し、前記作業指示データは前記治療作業の実行指示を示し、
     前記カプセル内視鏡はさらに、
     前記加速度データに基づいて前記カプセル内視鏡の移動速度と移動距離とを検出する速度/距離検出部と、
     前記移動距離と前記作業実行条件データとに基づくタイミングで実行命令の出力を指示する実行タイミング決定部と、
     前記実行命令に基づいて、薬品投与または組織もしくは体液の採取を行う治療作業部と、
     を有し、
     前記カプセル制御部は、前記移動速度が低速である場合、前記作業指示データが受信されたタイミングで前記実行命令を前記治療作業部に出力し、前記移動速度が高速である場合、前記実行タイミング決定部によって前記実行命令の出力が指示されたタイミングで前記実行命令を前記治療作業部に出力し、
     前記受信装置はさらに、操作者の操作を受け付ける操作部と、
     前記操作部によって受け付けられた前記操作に基づいて前記作業実行条件データと前記作業指示データとを生成する生成部と、
     を有し、
     前記第2の無線通信部は、前記生成部によって生成された前記作業実行条件データと前記作業指示データとを前記カプセル内視鏡に送信する
     請求項1に記載のカプセル内視鏡システム。
  3.  前記カプセル制御部は、前記移動速度が低速であり前記通信環境検出部により前記無線通信環境の劣化が検出されていない場合、前記作業指示データが受信されたタイミングで前記実行命令を前記治療作業部に出力し、前記移動速度が低速であり前記通信環境検出部により前記無線通信環境の劣化が検出された場合、前記実行タイミング決定部によって前記実行命令の出力が指示されたタイミングで前記実行命令を前記治療作業部に出力する
     請求項2に記載のカプセル内視鏡システム。
  4.  前記カプセル内視鏡はさらに、前記撮像部から出力された前記画像データを一時的に記憶する画像データ記憶部を有し、
     前記撮像部は、前記実行命令が出力された位置を基準とする位置において、前記移動距離に応じて前記撮像を行い、
     前記第1の無線通信部はさらに、前記画像データ記憶部に記憶された前記画像データを前記受信装置に送信する
     請求項2または請求項3に記載のカプセル内視鏡システム。
  5.  撮像を行い、画像データを出力する撮像部と、
     加速度データを出力する加速度センサーと、
     前記加速度データを一時的に記憶する加速度データ記憶部と、
     無線通信により前記画像データと前記加速度データとを受信装置に送信する第1の無線通信部と、
     無線通信環境を検出する通信環境検出部と、
     前記通信環境検出部により前記無線通信環境の劣化が検出された場合、前記加速度データを前記加速度データ記憶部に記憶させ、前記通信環境検出部により前記無線通信環境の回復が検出された後、前記加速度データ記憶部に記憶された前記加速度データを前記第1の無線通信部により前記受信装置に送信するカプセル制御部と、
     を有するカプセル内視鏡。
  6.  無線通信環境を検出する通信環境検出ステップと、
     前記通信環境検出ステップで前記無線通信環境の劣化が検出された場合、加速度センサーから出力された加速度データを一時的に記憶する記憶ステップと、
     前記通信環境検出ステップで前記無線通信環境の回復が検出された後、前記記憶ステップで記憶された前記加速度データを無線通信により受信装置に送信する送信ステップと、
     を有するカプセル内視鏡の無線通信方法。
  7.  無線通信環境を検出する通信環境検出ステップと、
     前記通信環境検出ステップで前記無線通信環境の劣化が検出された場合、加速度センサーから出力された加速度データを一時的に記憶する記憶ステップと、
     前記通信環境検出ステップで前記無線通信環境の回復が検出された後、前記記憶ステップで記憶された前記加速度データを無線通信により受信装置に送信する送信ステップと、
     をカプセル内視鏡のコンピュータに実行させるためのプログラム。
PCT/JP2014/080747 2014-11-20 2014-11-20 カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム WO2016079840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480083406.9A CN106922121B (zh) 2014-11-20 2014-11-20 胶囊内窥镜***、胶囊内窥镜、胶囊内窥镜的无线通信方法和程序
JP2016559749A JP6271038B2 (ja) 2014-11-20 2014-11-20 カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム
PCT/JP2014/080747 WO2016079840A1 (ja) 2014-11-20 2014-11-20 カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム
DE112014007039.4T DE112014007039T8 (de) 2014-11-20 2014-11-20 Kapselendoskopsystem, Kapselendoskop, drahtloses Kommunikationsverfahren des Kapselendoskops und Programm
US15/584,385 US20170231470A1 (en) 2014-11-20 2017-05-02 Capsule endoscope system, capsule endoscope, wireless communication method of capsule endoscope, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080747 WO2016079840A1 (ja) 2014-11-20 2014-11-20 カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/584,385 Continuation US20170231470A1 (en) 2014-11-20 2017-05-02 Capsule endoscope system, capsule endoscope, wireless communication method of capsule endoscope, and program

Publications (1)

Publication Number Publication Date
WO2016079840A1 true WO2016079840A1 (ja) 2016-05-26

Family

ID=56013448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080747 WO2016079840A1 (ja) 2014-11-20 2014-11-20 カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム

Country Status (5)

Country Link
US (1) US20170231470A1 (ja)
JP (1) JP6271038B2 (ja)
CN (1) CN106922121B (ja)
DE (1) DE112014007039T8 (ja)
WO (1) WO2016079840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342233B1 (ja) 2022-12-09 2023-09-11 セイコーソリューションズ株式会社 保安システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6335007B2 (ja) * 2014-04-18 2018-05-30 オリンパス株式会社 カプセル内視鏡システム、カプセル内視鏡、受信装置、カプセル内視鏡の作動方法、及びプログラム
JP6249867B2 (ja) * 2014-04-18 2017-12-20 オリンパス株式会社 カプセル内視鏡システム、カプセル内視鏡、受信装置、カプセル内視鏡の撮像制御方法、及びプログラム
US10143364B2 (en) * 2015-07-23 2018-12-04 Ankon Technologies Co., Ltd Controlled image capturing method including position tracking and system used therein
US10314514B2 (en) * 2016-05-29 2019-06-11 Ankon Medical Technologies (Shanghai) Co., Ltd. System and method for using a capsule device
CN108523822B (zh) * 2018-04-04 2021-01-12 重庆金山医疗器械有限公司 一种图像传输方法及胶囊式内窥镜***
DE102019217145A1 (de) * 2019-11-06 2021-05-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audiopille
CN110897595A (zh) * 2019-12-05 2020-03-24 重庆金山医疗技术研究院有限公司 运动检测方法、帧率调节方法、胶囊式内窥镜、记录仪及***
CN110996009B (zh) * 2019-12-20 2021-07-23 安翰科技(武汉)股份有限公司 胶囊内窥镜***及其自动帧率调整方法及计算机可读存储介质
CN111277777A (zh) * 2020-01-16 2020-06-12 杭州华冲科技有限公司 一种用于胶囊膀胱镜的数据发射方法以及发射***
CN111481420B (zh) * 2020-06-01 2022-08-09 上海安翰医疗技术有限公司 振动胶囊的控制方法
CN111885355A (zh) * 2020-07-21 2020-11-03 深圳市资福医疗技术有限公司 一种胶囊内窥镜的通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185644A (ja) * 2003-12-26 2005-07-14 Olympus Corp カプセル型医療装置システム
JP2011177339A (ja) * 2010-03-01 2011-09-15 Panasonic Corp カプセル型投薬装置
JP2012055630A (ja) * 2010-09-13 2012-03-22 Olympus Corp 体内情報取得システムおよび体内情報取得システムの制御方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313835A (en) * 1991-12-19 1994-05-24 Motorola, Inc. Integrated monolithic gyroscopes/accelerometers with logic circuits
US6709387B1 (en) * 2000-05-15 2004-03-23 Given Imaging Ltd. System and method for controlling in vivo camera capture and display rate
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
US6934573B1 (en) * 2001-07-23 2005-08-23 Given Imaging Ltd. System and method for changing transmission from an in vivo sensing device
US8021356B2 (en) * 2003-09-29 2011-09-20 Olympus Corporation Capsule medication administration system, medication administration method using capsule medication administration system, control method for capsule medication administration system
JP2005143560A (ja) * 2003-11-11 2005-06-09 Olympus Corp カプセル型医療装置
US7857767B2 (en) * 2004-04-19 2010-12-28 Invention Science Fund I, Llc Lumen-traveling device
ATE399501T1 (de) * 2004-12-30 2008-07-15 Given Imaging Ltd System zur lokalisation einer in-vivo signalquelle
CN103462581B (zh) * 2005-12-28 2015-11-04 奥林巴斯医疗株式会社 被检体内导入***
WO2007077768A1 (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. 被検体内観察システムおよび被検体内観察方法
CN101351148B (zh) * 2005-12-28 2010-09-08 奥林巴斯医疗株式会社 被检体内观察***
US20120035439A1 (en) * 2006-04-12 2012-02-09 Bran Ferren Map-based navigation of a body tube tree by a lumen traveling device
US20120035434A1 (en) * 2006-04-12 2012-02-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Control of a lumen traveling device in a body tube tree
WO2008012700A1 (en) * 2006-06-23 2008-01-31 Koninklijke Philips Electronics, N.V. Medicament delivery system
WO2008030481A2 (en) * 2006-09-06 2008-03-13 Innurvation, Inc. Imaging and locating systems and methods for a swallowable sensor device
EP2116169A4 (en) * 2007-02-14 2012-11-07 Olympus Medical Systems Corp OPERATING DEVICE, MONITORING DEVICE AND CAPS LEADING SYSTEM
WO2008149674A1 (ja) * 2007-06-05 2008-12-11 Olympus Corporation 画像処理装置、画像処理プログラムおよび画像処理方法
JP5399253B2 (ja) * 2007-09-26 2014-01-29 オリンパスメディカルシステムズ株式会社 被検体内導入システム
US7920462B2 (en) * 2007-10-01 2011-04-05 Infineon Technologies Ag Amplitude attenuation estimation and recovery systems for OFDM signal used in communication systems
JP2009225933A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp カプセル内視鏡システム及びカプセル内視鏡の動作制御方法
JP4718646B2 (ja) * 2008-12-04 2011-07-06 オリンパスメディカルシステムズ株式会社 カプセル型推進装置およびその作動方法
CN102421350B (zh) * 2009-03-11 2014-12-17 奥林巴斯医疗株式会社 图像处理***、其外部装置及其图像处理方法
EP2465408A4 (en) * 2009-11-10 2014-11-05 Olympus Medical Systems Corp GUIDING SYSTEM OF A CAPSULE MEDICAL DEVICE AND METHOD FOR GUIDING A CAPSULE MEDICAL DEVICE
WO2011061746A1 (en) * 2009-11-20 2011-05-26 Given Imaging Ltd. System and method for controlling power consumption of an in vivo device
JP5580637B2 (ja) * 2010-03-30 2014-08-27 オリンパス株式会社 画像処理装置、内視鏡装置の作動方法及びプログラム
WO2012006454A2 (en) * 2010-07-07 2012-01-12 Therasyn Sensors, Inc. A device and method for continuous chemical sensing
CN103281951B (zh) * 2011-01-28 2016-05-04 奥林巴斯株式会社 胶囊内窥镜***
EP2684511A4 (en) * 2011-07-22 2014-12-17 Olympus Medical Systems Corp CAPSULE TYPE ENDOSCOPE SYSTEM, IMAGE DISPLAY METHOD, AND IMAGE DISPLAY PROGRAM
US20130261410A1 (en) * 2012-03-28 2013-10-03 Larger Reality Technologies LLC System and Method for Body and In-Vivo Device, Motion and Orientation Sensing and Analysis
US10045713B2 (en) * 2012-08-16 2018-08-14 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
WO2014113697A1 (en) * 2013-01-17 2014-07-24 Vanderbilt University Real-time pose and magnetic force detection for wireless magnetic capsule
WO2014141251A1 (en) * 2013-03-11 2014-09-18 Given Imaging Ltd. Maneuvering coils setup for maneuvering a swallowable in-vivo device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185644A (ja) * 2003-12-26 2005-07-14 Olympus Corp カプセル型医療装置システム
JP2011177339A (ja) * 2010-03-01 2011-09-15 Panasonic Corp カプセル型投薬装置
JP2012055630A (ja) * 2010-09-13 2012-03-22 Olympus Corp 体内情報取得システムおよび体内情報取得システムの制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342233B1 (ja) 2022-12-09 2023-09-11 セイコーソリューションズ株式会社 保安システム
JP2024083118A (ja) * 2022-12-09 2024-06-20 セイコーソリューションズ株式会社 保安システム

Also Published As

Publication number Publication date
JP6271038B2 (ja) 2018-01-31
CN106922121A (zh) 2017-07-04
JPWO2016079840A1 (ja) 2017-04-27
DE112014007039T5 (de) 2017-08-10
CN106922121B (zh) 2019-03-01
DE112014007039T8 (de) 2017-09-07
US20170231470A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2016079840A1 (ja) カプセル内視鏡システム、カプセル内視鏡、カプセル内視鏡の無線通信方法、およびプログラム
JP5248834B2 (ja) 生体内デバイスの生のトラッキングカーブをモデル化するシステムの作動方法
JP5388657B2 (ja) 画像処理装置、画像処理装置の作動方法、およびシステム
JP2015070915A (ja) データ受信装置、カプセル内視鏡システム、データ受信方法、及びプログラム
JP7331697B2 (ja) 振動発生装置、振動制御方法及びプログラム
JP2006334297A (ja) 画像表示装置
JP2010035746A (ja) カプセル内視鏡システム、カプセル内視鏡及びカプセル内視鏡の動作制御方法
WO2006030772A1 (ja) 被検体内導入システム、受信装置および被検体内導入装置
CN105636497A (zh) 体外终端、胶囊内窥镜***、胶囊内窥镜控制方法和程序
WO2018074223A1 (ja) 内視鏡システム、端末装置、サーバ、送信方法およびプログラム
WO2016052175A1 (ja) 内視鏡システム
JP6313913B2 (ja) 内視鏡画像観察支援システム
JP6132984B2 (ja) カプセル内視鏡システム及びその撮像方法
JP2005218584A (ja) 画像情報の表示処理装置、その表示処理方法及び表示処理プログラム
JP5340566B2 (ja) 受信装置
US20110245731A1 (en) Medical apparatus system, capsule medical apparatus system, and method of displaying posture item of subject
WO2011108179A1 (ja) カプセル型投薬装置
WO2005091649A1 (ja) 単一の撮像装置で連続取得したビデオ映像による立体表示方法
JP4868965B2 (ja) 画像表示装置
WO2015044978A1 (ja) 情報処理装置、撮影システム、情報処理方法及びプログラム
JP2006288808A (ja) カプセル内視鏡を備えた内視鏡システム
JP5780985B2 (ja) 医療画像送信システム、送信装置及び受信装置
JP6995793B2 (ja) 内視鏡システム、その作動方法、内視鏡システムに用いられる受信側装置および同期信号中継装置
US9706901B2 (en) Internal device, external device, diagnosis apparatus including the same, and endoscope apparatus
JP6076867B2 (ja) 医用x線画像処理システム、x線撮影装置及びx線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559749

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014007039

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906251

Country of ref document: EP

Kind code of ref document: A1