WO2016078503A1 - 一种统计小区无线负荷的方法和装置 - Google Patents

一种统计小区无线负荷的方法和装置 Download PDF

Info

Publication number
WO2016078503A1
WO2016078503A1 PCT/CN2015/093064 CN2015093064W WO2016078503A1 WO 2016078503 A1 WO2016078503 A1 WO 2016078503A1 CN 2015093064 W CN2015093064 W CN 2015093064W WO 2016078503 A1 WO2016078503 A1 WO 2016078503A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
cell
ngbr
bit rate
load
Prior art date
Application number
PCT/CN2015/093064
Other languages
English (en)
French (fr)
Inventor
苑秋红
赵刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016078503A1 publication Critical patent/WO2016078503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • Embodiments of the present invention relate to, but are not limited to, wireless communication technologies, and in particular, to a method and apparatus for calculating a wireless load of a cell.
  • Radio Load Control refers to controlling the load of a cell in units of cells. When the cell is overloaded, measures are taken to restore the cell to normal as soon as possible, and the stability of the system is maintained.
  • the cell overload refers to the uplink or downlink load of the cell exceeding the overload threshold set during network planning. At this time, the cell capacity is close to the limit and is in an unstable state.
  • Radio Load Balancing refers to the use of wireless in the unsteady process such as service establishment or handover, if the current load of the target cell that is currently connected or switched in may affect system performance or system stability.
  • the location relationship between the cells in the network accesses or cuts the corresponding services into the light-weight cells, and the power resources between the cells are equally shared as much as possible, so that the system resources are effectively utilized to improve the performance of the system and increase the capacity of the system.
  • Radio Access Control means that after receiving a new radio bearer request, the base station needs to determine whether it needs to access the radio bearer.
  • the quality of service QoS, Quality of Service
  • the quality of service of the current intra-cell session must also be guaranteed. Therefore, it is necessary to consider the state of all resources in the system, the QoS requirements of the new service, and the new service. The priority and the QoS of the current session.
  • the statistics of the wireless load are the basis of RLC, RLB, and RAC. Whether the statistics of the wireless load is accurate or not directly relates to whether the RLC, RLB, and RAC are valid, and the RLC, RLB, and RAC are effective. Sex affects the QoS of each user equipment (UE, User Equipment) in the cell, and also affects the key performance indicator (KPI) of the cell. Therefore, it is particularly important to effectively calculate the wireless load of the cell.
  • KPI key performance indicator
  • the P U is the total number of available physical resource blocks (PRBs) of the cells in the uplink during the measurement period
  • the B UGBR (q) is the guaranteed bit rate (GBR) service of all users in the cell.
  • the service type identifier QCI, QoS Class Identifier
  • QCI QoS Class Identifier
  • B UNGBR (q) the QCI of the non-guaranteed bit rate (NGBR) service of all users in the cell.
  • Sum_PBR_U is the sum of the minimum guaranteed bit rates of the NGBR services of all users in the cell
  • ULNG_Thput is the actual throughput of the uplink NGBR services of all users in the cell.
  • P D is the total number of PRBs of the cell in the downlink during the measurement period
  • B DGBR (q) is the number of PRBs actually occupied by the downlink when the QCI of the GBR service of all users in the cell is q in the measurement period
  • B DNGBR (q) is the number of PRBs actually occupied by the downlink when the QCI of the NGBR service of all users in the cell is q
  • the RSM , D (q) is the QCI of the NGBR service of all users in the cell during the measurement period.
  • P D is counted by MAC
  • B D (q) and V D (q) are counted by MAC according to QCI classification.
  • the radio load of the cell is counted according to the actual number of PRBs occupied by each UE, and the service of each UE can reach the maximum bit rate when the resources are sufficient (MBR) (Maximum Bit Rate), resulting in a large number of statistical PRBs; for NGBR services, NGBRs corresponding to different QCIs of different UEs
  • MLR Maximum Bit Rate
  • NGBR NGBRs corresponding to different QCIs of different UEs
  • the throughput of the service is different, and the minimum guaranteed bit rate is also different, which is complemented by the process of superimposing the throughput or the minimum guaranteed bit rate, thereby masking the details.
  • the embodiment of the invention provides a method and a device for counting the wireless load of a cell, which can improve the accuracy of statistics.
  • the embodiment of the invention provides a method for calculating a radio load of a cell, including:
  • the cell radio load is calculated according to the wireless load of the GBR service in the cell and the radio load of the NGBR service.
  • the determining, according to the guaranteed bit rate and the maximum bit rate of each guaranteed bit rate GBR service of each user equipment UE in the cell, the radio load of the GBR service in the cell includes:
  • the calculated wireless load of each GBR service of each UE is superposed to obtain the radio load of the GBR service in the cell.
  • the determining, according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell, the radio load of the GBR service of the UE includes:
  • the calculating the radio load of the NGBR service in the cell according to the historical spectral efficiency of each UE in the cell and the minimum guaranteed bit rate of each non-guaranteed bit rate NGBR service of each UE includes:
  • the PRB used by the NGBR service of the UE is calculated according to the number of PRBs used by the converted NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period. number;
  • the number of PRBs used by the NGBR service of the converted UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period are used to calculate the number of PRBs used by the NGBR service of the UE, including :
  • the smaller value of the number of PRBs used by the NGBR service of the converted UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period is taken as the number of PRBs used by the NGBR service of the UE.
  • the number of PRBs used by the converted NGBR service of the UE is calculated according to the following formula:
  • the A is the number of PRBs used by the NGBR service whose QCI is q
  • the U1PBR (q, i) is the uplink when the QCI of the NGBR service of the i-th UE is q.
  • the minimum guaranteed bit rate, ucUPOvheaderRatio is the head overhead
  • UlSpectrumEffective i is the uplink historical spectral efficiency of the i-th UE
  • ucNumRE is the number of REs used for transmitting data in one PRB pair
  • ucNumUlSubFrame is the number of uplink subframes of one radio frame
  • N_OFDM The number of OFDM symbols for orthogonal frequency division multiplexing.
  • the number of PRBs used by the converted NGBR service of the UE is calculated according to the following formula:
  • C is the number of PRBs used by the NGBR service whose QCI is q for the i-th UE of the i-th UE
  • DLPBR i is the minimum guaranteed bit rate of the downlink when the QCI of the NGBR service of the i-th UE is q
  • ucDPOvheaderRatio is Head overhead
  • DlSpectrumEffective i is the downlink historical spectral efficiency of the i-th UE
  • ucNumRadioFramDlRE is the number of REs that a radio frame unit RB can use for downlink transmission data.
  • the calculating the radio load of the cell according to the wireless load of the GBR service in the cell and the radio load of the NGBR service includes:
  • the cell radio load is a sum between a radio load of a GBR service in the cell and a radio load of the NGBR service.
  • An embodiment of the present invention further provides an apparatus for counting a radio load of a cell, including:
  • the first statistic module is configured to calculate a radio load of the GBR service in the cell according to the guaranteed bit rate and the maximum bit rate of each guaranteed bit rate GBR service of each user equipment UE in the cell;
  • a second statistic module configured to calculate a radio load of the NGBR service in the cell according to a historical spectral efficiency of each UE in the cell and a minimum guaranteed bit rate of each non-guaranteed bit rate NGBR service of each UE;
  • the calculation module is configured to calculate the cell radio load according to the wireless load of the GBR service in the cell and the radio load of the NGBR service.
  • the first statistic module is set to:
  • the radio load of the GBR service of the UE is calculated according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell; the calculated wireless of each GBR service of each UE is calculated.
  • the load is superimposed to obtain the GBR industry in the cell Wireless load.
  • the calculating, by the first statistic module, the radio load of the GBR service of the UE according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell including:
  • the first statistic module calculates a first ratio between the guaranteed bit rate and the maximum bit rate of the GBR service of the UE; and calculates the number and measurement of the physical resource block PRB occupied by the GBR service of the UE measured during the measurement period. a second ratio between the total number of available PRBs of the cells measured during the period; calculating a product between the first ratio and the second ratio to obtain a radio load of the GBR service in the cell.
  • the second statistic module is set to:
  • the PRB used by the NGBR service of the UE is calculated according to the number of PRBs used by the converted NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period. Number; superimposes the calculated number of PRBs used by each NGBR service of each UE to obtain the number of PRBs used by the NGBR service in the cell; calculates the number of PRBs used by the NGBR service in the cell and the total measured within the measurement period The ratio between the number of available PRBs gives the wireless load of the NGBR service in the cell.
  • the second statistic module calculates, according to the number of PRBs used by the converted NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period, the NGBR service of the UE is used.
  • the number of PRBs includes:
  • the second statistic module takes the smaller number of PRBs used by the NGBR service of the converted UE and the number of PRBs used by the NGBR service of the UE measured in the measurement period as the NGBR service of the UE. The number of PRBs.
  • the second statistic module is further configured to:
  • the A is the number of PRBs used by the NGBR service whose QI is q
  • the U1PBR (q, i) is the uplink when the QCI of the NGBR service of the i-th UE is q.
  • the minimum guaranteed bit rate, ucUPOvheaderRatio is the head overhead
  • UlSpectrumEffective i is the uplink historical spectral efficiency of the i-th UE
  • ucNumRE is the number of REs used for transmitting data in one PRB pair
  • ucNumUlSubFrame is the number of uplink subframes of one radio frame
  • N_OFDM The number of OFDM symbols for orthogonal frequency division multiplexing.
  • the second statistic module is further configured to:
  • C is the number of PRBs used by the NGBR service whose QCI is q for the i-th UE of the i-th UE
  • DLPBR i is the minimum guaranteed bit rate of the downlink when the QCI of the NGBR service of the i-th UE is q
  • ucDPOvheaderRatio is Head overhead
  • DlSpectrumEffective i is the downlink historical spectral efficiency of the i-th UE
  • ucNumRadioFramDlRE is the number of REs that a radio frame unit RB can use for downlink transmission data.
  • the computing module is configured to:
  • a sum of a radio load of the GBR service in the cell and a radio load of the NGBR service is calculated as the cell radio load.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • the embodiment of the present invention includes: calculating a radio load of a GBR service in a cell according to a guaranteed bit rate and a maximum bit rate of each guaranteed bit rate GBR service of each user equipment UE in the cell; according to each of the cells
  • the historical spectrum efficiency of the UE and the minimum guaranteed bit rate of each non-guaranteed bit rate NGBR service of each UE are used to count the radio load of the NGBR service in the cell; the cell is calculated according to the wireless load of the GBR service in the cell and the radio load of the NGBR service. Wireless load.
  • the radio load of the cell is counted at the UE level, thereby improving the accuracy of statistics.
  • FIG. 1 is a flowchart of a method for counting a radio load of a cell according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an apparatus for counting a radio load of a cell according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for calculating a radio load of a cell, including:
  • Step 100 Calculate the radio load of the GBR service in the cell according to the guaranteed bit rate and the maximum bit rate of each GBR service of each UE in the cell.
  • the radio load of the GBR service of the UE is calculated according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell; each of each UE to be calculated is calculated.
  • the wireless load of the GBR service is superimposed to obtain the wireless load of the GBR service in the cell.
  • the radio load of the GBR service of the UE is calculated according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell, including:
  • the uplink wireless load of the GBR service in the cell is counted.
  • the P U is the total number of available PRBs of the cell measured in the measurement period
  • the B UGBR (q, i) is the uplink when the QCI of the GBR service of the i th UE in the cell measured in the measurement period is q.
  • the uplink maximum bit rate when the QCI of the GBR service of the UE is q.
  • UlGBR (q, i) and UlMBR (q, i) are allocated by the core network for users.
  • the downlink radio load of the GBR service in the cell is counted.
  • P D is the total number of available PRBs of the cell measured in the measurement period
  • B DGBR (q, i) is the downlink when the QCI of the GBR service of the i th UE in the cell measured in the measurement period is q
  • N is the number of UEs
  • DlGBR (q, i) is the downlink guaranteed bit rate when the QCI of the GBR service of the i-th UE in the cell is q
  • DlMBR (q, i) is the i-th in the cell.
  • the downlink maximum bit rate when the QCI of the GBR service of the UE is q.
  • DlGBR (q, i) and DlMBR (q, i) are allocated by the core network for users.
  • Step 101 Calculate the radio load of the NGBR service in the cell according to the historical spectral efficiency of each UE in the cell and the minimum guaranteed bit rate of each NGBR service of each UE.
  • the NGBR service of the UE is calculated according to the number of PRBs used by the converted NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period.
  • the number of PRBs used superimposes the calculated number of PRBs used by each NGBR service of each UE to obtain the number of PRBs used by the NGBR service in the cell; calculates the number of PRBs used in the NGBR service in the cell and the measurement period
  • the ratio between the total number of available available PRBs is measured to obtain the wireless load of the NGBR service in the cell.
  • the calculating the number of PRBs used by the NGBR service of the UE according to the number of PRBs used by the NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured in the measurement period includes:
  • the smaller number of PRBs used by the NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period are taken as the number of PRBs used by the NGBR service of the UE.
  • the upstream NGBR service it can be based on the formula The uplink wireless load of the NGBR service in the cell is counted.
  • the B UNGBR (q, i) is the number of PRBs occupied by the uplink when the QCI of the NGBR service of the i-th UE in the cell measured in the measurement period is q, and the Q of the i-th UE that is converted is q.
  • the UPPQ (q, i) is the minimum guaranteed bit rate in the uplink when the QCI of the NGBR service of the i-th UE is q, and the ucUPOvheaderRatio is the head overhead.
  • the general experience value is 0.05
  • the UlSpectrumEffective i is the uplink history of the i-th UE.
  • Spectrum efficiency ucNumRE is the number of REs used to transmit data in a PRB pair, ucNumRE is related to the standard, TDD ratio, subframe configuration, transmission mode, etc.
  • ucNumUlSubFrame is the number of uplink subframes of a radio frame
  • ucNumUlSubFrame and standard Related factors such as TDD ratio, subframe configuration, and transmission mode
  • N_OFDM is the number of symbols of Orthogonal Frequency Division Multiplexing (OFDM).
  • the N_OFDM when the cyclic prefix length of the physical channel of the non-mobile multimedia broadcast signal (MBSFN) subframe is a normal cyclic prefix, the N_OFDM is 14; when the non-MBSFN sub When the cyclic prefix length of the frame physical channel is an extended cyclic prefix, N_OFDM is 12.
  • the downstream NGBR service it can be based on the formula The downlink wireless load of the NGBR service in the cell is counted.
  • the B DNGBR (q, i) is the number of PRBs occupied by the downlink when the QCI of the NGBR service of the i-th UE in the cell measured in the measurement period is q, and the QI of the i-th UE that is converted is q.
  • the DLPBR i is the minimum guaranteed bit rate in the downlink when the QCI of the NGBR service of the i-th UE is q
  • the ucDPOvheaderRatio is the head overhead
  • the general experience value is 0.05
  • the DlSpectrumEffective i is the downlink historical spectrum efficiency of the i-th UE
  • ucNumRadioFramDlRE For a radio frame unit, RB can be used for the number of REs for downlink transmission data, and ucNumRadioFramDlRE is related to factors such as system, TDD ratio, subframe configuration, and transmission mode.
  • Step 100 and step 101 are in no particular order.
  • Step 102 Calculate a cell radio load according to the radio load of the GBR service in the cell and the radio load of the NGBR service.
  • the cell radio load is the sum of the radio load of the GBR service in the cell and the radio load of the NGBR service.
  • the uplink radio load of the cell is the sum of the uplink radio load of the GBR service in the cell and the uplink radio load of the NGBR service.
  • the uplink wireless load of the cell is calculated according to formula (3):
  • the downlink radio load of the cell is the sum of the downlink radio load of the GBR service in the cell and the downlink radio load of the NGBR service.
  • the downlink radio load of the cell is calculated according to formula (4):
  • the system bandwidth of the FDD LTE system is 20 M, and the total number of available PRBs in the downlink in the measurement period is 100, one radio frame.
  • the media access control (MAC, Media Access Control) layer statistics UE1 downlink historical spectral efficiency is: 3.97, the configured DlPBR is 2560 bit rate (kbps), and the number of downlink PRBs used is 20;
  • the downlink historical spectrum efficiency of UE2 is 2.8, and the configured DlPBR is 1280. Kbps, the number of downlink PRBs used is one;
  • the downlink historical spectrum efficiency of UE3 is: 4.6, the configured DlPBR is 1280 kbps, and the number of downlink PRBs used is one;
  • the throughput of UE1 counted by MAC is: 11116 kbps.
  • the throughput of UE2 counted by MAC is: 392kbps
  • the throughput of UE3 counted by MAC is: 784kbps
  • Equation (2) Access control algorithms can cause false positives. Since the minimum guaranteed bit rate is configured for the NGBR service, the actual traffic of the second and third UEs does not reach the minimum guaranteed bit rate, and the actual occupied system wireless load is less than 1%, which is calculated according to formula (2). The method is to add the three together and not refined to the degree of calculation of a single UE, so the wireless load of the statistical calculation will be much higher.
  • the bandwidth of the system is 20M
  • the number of available PRBs in the downlink in the measurement period is 100
  • the number of REs in which one radio frame unit RB can be used for downlink transmission data is 1400.
  • the number of PRBs is 14;
  • the cell NGBR total throughput 15036 kbps
  • the load balancing threshold set by the cell is 30%. According to the calculation method of formula (2), misjudgment will be caused. Switching one UE to another cell will affect the user's feeling.
  • a regular CP in a TDD LTE system, a regular CP, a 20 M bandwidth, a total number of available PRBs in the downlink of the cell in the measurement period is 100, an uplink and downlink subframe configuration 2, and a special subframe configuration 0/5, one
  • the DlMBR is 5120 kbps, the confirmation rate reaches 5120 kbps, and the number of occupied RBs is 09;
  • the throughput of UE1 is: 6669.6 kbps
  • the throughput of UE2 is: 2352 kbps
  • the throughput of UE3 is: 3864 kbps
  • the total throughput of the cell NGBR 12885.6 kbps
  • the load of the cell wireless load calculated according to formula (2) is generally higher, and the actual error is also larger.
  • the minimum guaranteed bit rate of the NGBR is set by the operator, and the actual rate of the user or Greater than or less than the minimum guaranteed bit rate, the method of calculation using equation (2) is not recognizable for a single user less than the minimum guaranteed bit rate, so there will be errors, DlMBR and DlGBR are also set by the operator, the original setting method Failure to consider the impact of DlMBR can also lead to large errors, because when the system resources are insufficient, the guaranteed bit rate can be reduced from DlMBR to DlGBR, and more radio resources can be released.
  • the number of available PRBs in the uplink in the measurement period is 100, and the number of REs that can be used for uplink transmission of data in one radio subframe unit (1 ms) is 168.
  • the uplink wireless load of the cell is normal cyclic prefix, and the number of OFDM symbols on one subframe.
  • the uplink historical spectrum efficiency of UE1 is 2, the configured UlPBR is 256 kbps, and the number of uplink PRBs used is 20.
  • the uplink historical spectrum efficiency of UE2 is 2.8, the configured UlPBR is 512 kbps, and the number of uplink PRBs used is one.
  • the uplink historical spectrum efficiency of UE3 is: 1, the configured UlPBR is 64 kbps, and the number of uplink PRBs used is 50;
  • the measured throughput of UE1 is: 5600 kbps
  • the measured throughput of UE2 is: 392 kbps
  • the throughput to UE3 is: 7000 kbps
  • the total throughput of the cell NGBR 12992 kbps
  • the UE3 accesses the GBR service at this time, and the UlGBR is set to a large size. It is assumed that 96 RBs are needed. According to formula (2), the remaining PRBs are 95, and can be accessed according to formula (4). For the access control algorithm will cause misjudgment. Since the minimum guaranteed bit rate is configured for the NGBR service, the actual traffic of UE2 and UE3 does not reach the minimum guaranteed bit rate, and the actual occupied system wireless load is less than 1%. The calculation according to formula (2) is to add the three. Calculated together, it is not refined to a single UE calculation level, so the statistical calculation of the wireless load will be much higher.
  • the number of available PRBs in the uplink in the measurement period is 50, and the number of REs that can be used for uplink transmission of data in one radio subframe unit (1 ms) is 168.
  • the uplink wireless load of the cell is normal cyclic prefix, and the number of OFDM symbols on one subframe.
  • the uplink historical spectrum efficiency of UE1 is 2, and the configured UlPBR is 256 kbps.
  • the number of uplink PRBs is 20;
  • the uplink historical spectrum efficiency of UE2 is 2.8, the configured UlPBR is 512 kbps, and the number of uplink PRBs used is one.
  • the uplink historical spectrum efficiency of UE3 is: 1, the configured UlPBR is 1024 kbps, and the number of uplink PRBs used is 29;
  • the measured throughput of UE1 is: 6720 kbps
  • the measured throughput of UE2 is: 470 kbps
  • the throughput to UE3 is: 4872 kbps
  • the total throughput of the cell NGBR 12062 kbps
  • the UE3 accesses the GBR service at this time, and the UlGBR is set to a large size. It is assumed that 97 RBs are required. According to formula (2), the remaining PRBs are 93, and can be accessed according to formula (4). For the access control algorithm will cause misjudgment. Since the minimum guaranteed bit rate is configured for the NGBR service, the actual traffic of UE2 and UE3 does not reach the minimum guaranteed bit rate, and the actual occupied system wireless load is less than 1%. The calculation according to formula (2) is to add the three. Calculated together, it is not refined to a single UE calculation level, so the statistical calculation of the wireless load will be much higher.
  • an embodiment of the present invention further provides an apparatus for collecting a radio load of a cell, including:
  • the first statistic module 201 is configured to collect, according to the guaranteed bit rate and the maximum bit rate of each guaranteed bit rate GBR service of each user equipment UE in the cell, the radio load of the GBR service in the cell;
  • the second statistic module 202 is configured to calculate a radio load of the NGBR service in the cell according to a historical spectral efficiency of each UE in the cell and a minimum guaranteed bit rate of each non-guaranteed bit rate NGBR service of each UE;
  • the calculation module 203 is configured to perform wireless load and NGBR of the GBR service in the cell according to statistics.
  • the wireless load of the service calculates the cell wireless load.
  • the first statistic module 201 is configured to:
  • the radio load of the GBR service of the UE is calculated according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell; the calculated wireless of each GBR service of each UE is calculated. The load is superimposed to obtain the wireless load of the GBR service in the cell.
  • the calculating, by the first statistic module 201, the radio load of the GBR service of the UE according to the guaranteed bit rate and the maximum bit rate of the GBR service of the UE in the cell includes:
  • the first statistic module 201 calculates a first ratio between a guaranteed bit rate and a maximum bit rate of the GBR service of the UE; and calculates a number of physical resource blocks PRB occupied by the GBR service of the UE measured during the measurement period. Measuring a second ratio between the total number of available PRBs of the cell measured during the measurement period; calculating a product between the first ratio and the second ratio to obtain a wireless load of the GBR service in the cell.
  • the second statistic module 202 is configured to:
  • the PRB used by the NGBR service of the UE is calculated according to the number of PRBs used by the converted NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period. Number; superimposes the calculated number of PRBs used by each NGBR service of each UE to obtain the number of PRBs used by the NGBR service in the cell; calculates the number of PRBs used by the NGBR service in the cell and the total measured within the measurement period The ratio between the number of available PRBs gives the wireless load of the NGBR service in the cell.
  • the second statistic module 202 calculates the number of PRBs used by the NGBR service of the UE according to the number of PRBs used by the NGBR service of the UE and the number of PRBs used by the NGBR service of the UE measured during the measurement period. include:
  • the second statistic module 202 takes the smaller number of PRBs used by the NGBR service of the converted UE and the number of PRBs used by the NGBR service of the UE measured in the measurement period as the NGBR service of the UE. The number of PRBs used.
  • the second statistic module 202 is further configured to:
  • A is the number of PRBs used by the NGBR service whose QCI is q of the i-th UE of the i-th UE
  • U1PBR (q, i) is the minimum guaranteed bit of the NGBR service of the i-th UE when the QCI is q.
  • ucUPOvheaderRatio is the head overhead
  • UlSpectrumEffective i is the uplink historical spectrum efficiency of the i-th UE
  • ucNumRE is the number of REs used for transmitting data in one PRB pair
  • ucNumUlSubFrame is the number of uplink subframes of one radio frame
  • N_OFDM is orthogonal Frequency division multiplexing technique OFDM symbol number.
  • the second statistic module 202 is further configured to:
  • C is the number of PRBs used by the NGBR service whose QCI is q for the i-th UE of the i-th UE
  • DLPBR i is the minimum guaranteed bit rate of the downlink when the QCI of the NGBR service of the i-th UE is q
  • ucDPOvheaderRatio is Head overhead
  • DlSpectrumEffective i is the downlink historical spectral efficiency of the i-th UE
  • ucNumRadioFramDlRE is the number of REs that a radio frame unit RB can use for downlink transmission data.
  • the calculating module 203 is configured to:
  • a sum of a radio load of the GBR service in the cell and a radio load of the NGBR service is calculated as the cell radio load.
  • the embodiment of the invention includes: calculating the radio load of the GBR service in the cell according to the guaranteed bit rate and the maximum bit rate of each guaranteed bit rate GBR service of each user equipment UE in the cell; according to the historical spectral efficiency of each UE in the cell
  • the minimum guaranteed bit rate of each non-guaranteed bit rate NGBR service of each UE is used to count the radio load of the NGBR service in the cell;
  • the cell radio load is calculated according to the wireless load of the GBR service in the cell and the radio load of the NGBR service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种统计小区无线负荷的方法和装置,所述方法包括:根据小区中每个用户设备(UE)的每个保证比特率(GBR)业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷(100);根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率(NGBR)业务的最小保证比特速率统计小区中NGBR业务的无线负荷(101);根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷(102)。

Description

一种统计小区无线负荷的方法和装置 技术领域
本发明实施例涉及但不限于无线通信技术,尤指一种统计小区无线负荷的方法和装置。
背景技术
无线负荷控制(RLC,Radio Load Control)是指以小区为单位,控制一个小区的负荷情况。当小区过载时,采取措施使小区尽快恢复到正常,保持***的稳定性。其中,小区过载是指小区的上行或下行负荷超过网络规划时设置的过载门限,此时小区容量接近极限,处于不稳定的状态。
无线负荷均衡(RLB,Radio Load Balancing)是指在业务建立或切换等非稳态过程中,如果当前接入或切入的目标小区的负荷较高可能影响***性能或***的稳定性时,利用无线网络中小区间的位置关系将相应的业务接入或切入到负荷较轻的小区中,尽量使小区间的功率资源平均分担,从而有效利用***资源提高***的性能,并增加***的容量。
无线接入控制(RAC,Radio Admission Control)是指基站在接收到建立新无线承载请求后,需要判断是否需要接入这个无线承载。在充分利用小区中的无线资源的前提下,还必须同时保证当前小区内会话的服务质量(QoS,Quality of Service),因此,需要考虑***中全部资源的状态,新业务的QoS要求、新业务的优先级以及当前会话的QoS等因素。
长期演进(LTE,Long Term Evolution)***中,无线负荷的统计是RLC、RLB和RAC的基础,无线负荷的统计是否准确直接关系着RLC、RLB和RAC是否有效,而RLC、RLB和RAC的有效性影响着小区中每个用户设备(UE,User Equipment)的QoS,对小区的关键绩效指标(KPI,Key Performance Indicator)也会有影响,因此,有效统计小区无线负荷特别重要。
相关技术的统计小区无线负荷的方法大致包括:
根据公式(1)统计小区上行无线负荷,根据公式(2)统计小区下行无 线负荷。
Figure PCTCN2015093064-appb-000001
其中,PU为测量周期内小区在上行总的可用的物理资源块(PRB,Physical Resource Block)数目,BUGBR(q)为小区中的所有用户的保证比特率(GBR,Guaranteed Bit Rate)业务的业务类型标识(QCI,QoS Class Identifier)为q时,在上行所占用的PRB数目,BUNGBR(q)为小区中的所有用户的非保证比特率(NGBR,Non Guaranteed Bit Rate)业务的QCI为q时,在上行所占用的PRB数目,Sum_PBR_U为小区内所有用户的NGBR业务的最小保证比特速率之和,ULNG_Thput为小区内所有用户的上行NGBR业务上行的实际吞吐量。
其中,PU
Figure PCTCN2015093064-appb-000002
Sum_PBR_U、ULNG_Thput由媒体接入控制(MAC,Media Access Control)统计。
Figure PCTCN2015093064-appb-000003
其中,PD为测量周期内小区在下行总的PRB数目,BDGBR(q)为测量周期内小区中的所有用户的GBR业务的QCI为q时,在下行实际所占用的PRB数目,BDNGBR(q)为测量周期内小区中的所有用户的NGBR业务的QCI为q时,在下行实际所占用的PRB数目,RSM,D(q)为测量周期内小区内所有用户的NGBR业务的QCI为q时,在下行的最小保证比特速率之和,用户的NGBR业务的QCI为q时在下行的最小保证比特速率由运营商配置,VD(q)为测量周期内小区内所有用户的NGBR业务的QCI为q时在下行的实际吞吐量之和。
其中,PD由MAC统计,BD(q)、VD(q)由MAC按QCI分类统计。
相关技术的统计小区无线负荷的方法中,对于GBR业务,按照每个UE占用的实际PRB数目来统计小区的无线负荷,而每个UE的业务在资源充足的情况下可以达到最大比特速率(MBR,Maximum Bit Rate),从而导致统计的PRB数目偏多;对于NGBR业务,由于不同UE的不同QCI对应的NGBR 业务的吞吐量不同,最小保证比特速率也不相同,在将吞吐量或最小保证比特速率进行叠加的过程中相互添补,从而将细节掩盖。
因此,相关技术的统计小区无线负荷的方法的精度较低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种统计小区无线负荷的方法和装置,能够提高统计的精度。
本发明实施例提出了一种统计小区无线负荷的方法,包括:
根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;
根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;
根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。
可选地,其中,所述根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷包括:
对于每一个UE的每一个GBR业务,根据所述小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷;
将计算得到的每个UE的每个GBR业务的无线负荷进行叠加得到所述小区中GBR业务的无线负荷。
可选地,其中,所述根据小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷包括:
计算所述UE的GBR业务的保证比特速率和最大比特速率之间的第一比值;
计算测量周期内测量的所述UE的GBR业务所占用的物理资源块PRB 数目和测量周期内测量的小区总的可用的PRB数目之间的第二比值;
计算所述第一比值和所述第二比值之间的乘积得到所述小区中GBR业务的无线负荷。
可选地,其中,所述根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷包括:
对于每一个UE的每一个NGBR业务,根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目;
将计算得到的每个UE的每个NGBR业务所使用的PRB数目进行叠加得到小区中NGBR业务所使用的PRB数目;
计算小区中NGBR业务所使用的PRB数目和测量周期内测量的总的可用的PRB数目之间的比值得到所述小区中NGBR业务的无线负荷。
可选地,其中,所述根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目包括:
取所述折算的UE的NGBR业务所使用的PRB数目和所述测量周期内测量的UE的NGBR业务所使用的PRB数目的较小值作为所述UE的NGBR业务所使用的PRB数目。
可选地,其中,根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
Figure PCTCN2015093064-appb-000004
其中,A为折算的第i个UE的业务类型标识QCI为q的NGBR业务在上行所使用的PRB数目,UlPBR(q,i)为第i个UE的NGBR业务的QCI为q时在上行的最小保证比特速率,ucUPOvheaderRatio为头开销,UlSpectrumEffectivei为第i个UE的上行历史频谱效率,ucNumRE为一个PRB 对中用于传输数据的RE数,ucNumUlSubFrame为一个无线帧的上行子帧个数,N_OFDM为正交频分复用技术OFDM符号数。
可选地,其中,根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
Figure PCTCN2015093064-appb-000005
其中,C为折算的第i个UE的QCI为q的NGBR业务在下行所使用的PRB数目,DLPBRi为第i个UE的NGBR业务的QCI为q时在下行的最小保证比特速率,ucDPOvheaderRatio为头开销,DlSpectrumEffectivei为第i个UE的下行历史频谱效率,ucNumRadioFramDlRE为一个无线帧单位RB能用于下行传输数据的RE数。
可选地,其中,所述根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷包括:
所述小区无线负荷为所述小区中GBR业务的无线负荷和所述NGBR业务的无线负荷之间的和。
本发明实施例还提出了一种统计小区无线负荷的装置,包括:
第一统计模块,设置为根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;
第二统计模块,设置为根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;以及
计算模块,设置为根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。
可选地,其中,所述第一统计模块是设置为:
对于每一个UE的每一个GBR业务,根据所述小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷;将计算得到的每个UE的每个GBR业务的无线负荷进行叠加得到所述小区中GBR业 务的无线负荷。
可选地,其中,所述第一统计模块根据小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷包括:
所述第一统计模块计算所述UE的GBR业务的保证比特速率和最大比特速率之间的第一比值;计算测量周期内测量的所述UE的GBR业务所占用的物理资源块PRB数目和测量周期内测量的小区总的可用的PRB数目之间的第二比值;计算所述第一比值和所述第二比值之间的乘积得到所述小区中GBR业务的无线负荷。
可选地,所述第二统计模块是设置为:
对于每一个UE的每一个NGBR业务,根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目;将计算得到的每个UE的每个NGBR业务所使用的PRB数目进行叠加得到小区中NGBR业务所使用的PRB数目;计算小区中NGBR业务所使用的PRB数目和测量周期内测量的总的可用的PRB数目之间的比值得到所述小区中NGBR业务的无线负荷。
可选地,其中,所述第二统计模块根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目包括:
所述第二统计模块取所述折算的UE的NGBR业务所使用的PRB数目和所述测量周期内测量的UE的NGBR业务所使用的PRB数目的较小值作为所述UE的NGBR业务所使用的PRB数目。
可选地,所述第二统计模块还设置为:
根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
Figure PCTCN2015093064-appb-000006
其中,A为折算的第i个UE的业务类型标识QCI为q的NGBR业务在上行所使用的PRB数目,UlPBR(q,i)为第i个UE的NGBR业务的QCI为q 时在上行的最小保证比特速率,ucUPOvheaderRatio为头开销,UlSpectrumEffectivei为第i个UE的上行历史频谱效率,ucNumRE为一个PRB对中用于传输数据的RE数,ucNumUlSubFrame为一个无线帧的上行子帧个数,N_OFDM为正交频分复用技术OFDM符号数。
可选地,所述第二统计模块还设置为:
根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
Figure PCTCN2015093064-appb-000007
其中,C为折算的第i个UE的QCI为q的NGBR业务在下行所使用的PRB数目,DLPBRi为第i个UE的NGBR业务的QCI为q时在下行的最小保证比特速率,ucDPOvheaderRatio为头开销,DlSpectrumEffectivei为第i个UE的下行历史频谱效率,ucNumRadioFramDlRE为一个无线帧单位RB能用于下行传输数据的RE数。
可选地,其中,所述计算模块是设置为:
计算所述小区中GBR业务的无线负荷和所述NGBR业务的无线负荷之和作为所述小区无线负荷。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
与相关技术相比,本发明实施例包括:根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。通过本发明实施例的方案,在UE级别对小区无线负荷进行统计,从而提高了统计的精度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的统计小区无线负荷的方法流程图;
图2为本发明实施例的统计小区无线负荷的装置的结构组成示意图。
本发明的实施方式
下面结合附图对本发明实施例进行详细描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
参见图1,本发明实施例提出了一种统计小区无线负荷的方法,包括:
步骤100、根据小区中每个UE的每个GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷。
本步骤中,对于每一个UE的每一个GBR业务,根据所述小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷;将计算得到的每个UE的每个GBR业务的无线负荷进行叠加得到所述小区中GBR业务的无线负荷。
其中,根据小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷包括:
计算UE的GBR业务的保证比特速率和最大比特速率之间的第一比值;计算测量周期内测量的UE的GBR业务所占用的物理资源块PRB数目和测量周期内测量的小区总的可用的PRB数目之间的第二比值;计算第一比值和第二比值之间的乘积得到小区中GBR业务的无线负荷。
对于上行GBR业务,可以根据公式
Figure PCTCN2015093064-appb-000008
统计小区中GBR业务的上行无线负荷。
其中,PU为测量周期内测量的小区在上行总的可用的PRB数目,BUGBR(q,i)为测量周期内测量的小区中第i个UE的GBR业务的QCI为q时在上行所占用的PRB数目,N为UE的数目,UlGBR(q,i)为小区中第i个UE的GBR业务的QCI为q时的上行保证比特速率,UlMBR(q,i)为小区中第i个UE的GBR业务的QCI为q时的上行最大比特速率。
其中,UlGBR(q,i)和UlMBR(q,i)由核心网为用户分配。
对于下行GBR业务,可以根据公式
Figure PCTCN2015093064-appb-000009
统计小区中GBR业务的下行无线负荷。
其中,PD为测量周期内测量的小区在下行总的可用的PRB数目,BDGBR(q,i)为测量周期内测量的小区中第i个UE的GBR业务的QCI为q时在下行所占用的PRB数目,N为UE的数目,DlGBR(q,i)为小区中第i个UE的GBR业务的QCI为q时的下行保证比特速率,DlMBR(q,i)为小区中第i个UE的GBR业务的QCI为q时的下行最大比特速率。
其中,DlGBR(q,i)和DlMBR(q,i)由核心网为用户分配。
步骤101、根据小区中每个UE的历史频谱效率和每个UE的每个NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷。
本步骤中,对于每一个UE的每一个NGBR业务,根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目;将计算得到的每个UE的每个NGBR业务所使用的PRB数目进行叠加得到小区中NGBR业务所使用的PRB数目;计算小区中NGBR业务所使用的PRB数目和测量周期内测量的总的可用的PRB数目之间的比值得到所述小区中NGBR业务的无线负荷。
其中,根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目包括:
取折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目的较小值作为UE的NGBR业务所使用的PRB数目。
对于上行NGBR业务,可以根据公式
Figure PCTCN2015093064-appb-000010
统计小区中NGBR业务的上行无线负荷。
其中,BUNGBR(q,i)为测量周期内测量的小区中第i个UE的NGBR业务的QCI为q时在上行所占用的PRB数目,A为折算的第i个UE的QCI为q的NGBR业务在上行所使用的PRB数目。
Figure PCTCN2015093064-appb-000011
其中,UlPBR(q,i)为第i个UE的NGBR业务的QCI为q时在上行的最小保证比特速率,ucUPOvheaderRatio为头开销,一般经验值取0.05,UlSpectrumEffectivei为第i个UE的上行历史频谱效率,ucNumRE为一个PRB对中用于传输数据的RE数,ucNumRE与制式、TDD配比、子帧配置、传输模式等因素相关,ucNumUlSubFrame为一个无线帧的上行子帧个数,ucNumUlSubFrame与制式、TDD配比、子帧配置、传输模式等因素相关,N_OFDM为正交频分复用技术(OFDM,Orthogonal Frequency Division Multiplexing)符号数。
其中,当非移动多媒体广播单频网(MBSFN,Mobile Multimedia Broadcasting Signal Frequency Networks)子帧物理信道的循环前缀长度的取值为常规循环前缀(normal cyclic prefix)时,N_OFDM为14;当非MBSFN子帧物理信道的循环前缀长度的取值为扩展循环前缀(extended cyclic prefix)时,N_OFDM为12。
对于下行NGBR业务,可以根据公式
Figure PCTCN2015093064-appb-000012
统计小区中NGBR业务的下行无线负荷。
其中,BDNGBR(q,i)为测量周期内测量的小区中第i个UE的NGBR业务的QCI为q时在下行所占用的PRB数目,C为折算的第i个UE的QCI为q的NGBR业务在下行所使用的PRB数目。
其中,
Figure PCTCN2015093064-appb-000013
其中,DLPBRi为第i个UE的NGBR业务的QCI为q时在下行的最小保证比特速率,ucDPOvheaderRatio为头开销,一般经验值取0.05,DlSpectrumEffectivei为第i个UE的下行历史频谱效率,ucNumRadioFramDlRE 为一个无线帧单位RB能用于下行传输数据的RE数,ucNumRadioFramDlRE与制式、TDD配比、子帧配置、传输模式等因素相关。
步骤100和步骤101之间不分先后顺序。
步骤102、根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。
本步骤中,小区无线负荷为小区中GBR业务的无线负荷和NGBR业务的无线负荷之和。
其中,小区的上行无线负荷为小区中GBR业务的上行无线负荷和NGBR业务的上行无线负荷之和。
可选地,根据公式(3)计算小区的上行无线负荷:
Figure PCTCN2015093064-appb-000014
其中,小区的下行无线负荷为小区中GBR业务的下行无线负荷和NGBR业务的下行无线负荷之和。
可选地,根据公式(4)计算小区的下行无线负荷:
Figure PCTCN2015093064-appb-000015
下面通过应用实施例详细说明本发明实施例的方法。
第一应用实施例,在频分双工(FDD,Frequency Dividion Duplexing)LTE***中,FDD LTE***的***带宽为20M,测量周期内小区在下行总的可用的PRB数目为100个,一个无线帧单位RB能用于下行传输数据的RE数为1400,常规循环前缀(Normal CP),小区中有3个UE进行NGBR QCI=8的业务,下面统计小区的下行无线负荷。
(1)媒体接入控制(MAC,Media Access Control)层统计UE1的下行历史频谱效率为:3.97,配置的DlPBR为2560比特率(kbps),使用的下行PRB数目为20个;
(2)MAC统计UE2的下行历史频谱效率为:2.8,配置的DlPBR为1280 kbps,使用的下行PRB数目为1个;
(3)MAC统计UE3的下行历史频谱效率为:4.6,配置的DlPBR为1280kbps,使用的下行PRB数目1个;
如果按照公式(2),则只需要吞吐量和PRB就可以计算:
MAC统计到的UE1的吞吐量为:11116kbps
MAC统计到的UE2的吞吐量为:392kbps
MAC统计到的UE3的吞吐量为:784kbps
那么小区内所有用户的NGBR业务总的吞吐量:12292kbps
计算小区无线负荷为:40×(2560+1280+1280)/12292/100=17%
如果按照公式(4),则
DLT={min(2560×1.005/(3.97×1400),20)+min(1280×1.005/(2.8×1400),1)+min(1280×1.005/(4.6×1400),1)}/100={0.46+0.328+0.199}/100=0.987%
假设此时UE3接入建立GBR业务,假设需要85个PRB,按照公式(2)计算则剩余的PRB为83个不能接入,而按照公式(4)计算则可以接入,公式(2)对于接入控制算法会造成误判。由于为NGBR业务配置最小保证比特速率中,第二个和第三个UE实际业务量都没达到最小保证比特速率,实际占用的***无线负荷都是小于1%的,按照公式(2)的计算方式是将三者加在一起计算的,并未精细化到单个UE计算程度,所以统计计算的无线负荷会偏高很多。
第二应用实施例,在FDD LTE***中,***的带宽为20M,测量周期内小区在下行中的可用的PRB数目为100个,一个无线帧单位RB能用于下行传输数据的RE数为1400,Normal CP,为了计算方便和比较形象,只举例了三个UE,实际小区中UE数目远远多于此,小区中有3个UE进行NGBR QCI=8的业务和GBR QCI=4的业务,下面统计小区的下行无线负荷。
其中,UE1的下行历史频谱效率为:3.97,配置的DLPBR为2560kbps,QCI=8的NGBR业务使用的下行PRB数目为20个;QCI=4的DlGBR值为 3840kbps,DlMBR为5120kbps,确认速率达到5120kbps,占用的PRB数目9;
UE2的下行历史频谱效率为:2.8,配置的DLPBR为1280kbps,QCI=8的NGBR业务使用的下行PRB数目为10个;QCI=4的DlGBR值为3840kbps,DlMBR为5120kbps,确认速率达到5120kbps占用的PRB数目14;
UE3的下行历史频谱效率为:4.6,配置的DLPBR为1280kbps,QCI=8的NGBR业务使用的下行PRB数目为20个;QCI=4的DlGBR值为3840kbps,DlMBR为5120kbps,确认速率达到5120kbps,占用的RB数目7;
按照公式(4)
DLT=(3840×9/5120+3840×14/5120+3840×7/5120)/100+{min(2560×1.005/(3.97×1400),20)+min(1280×1.005/(2.8×1400),10)+min(1280×1.005/(4.6×1400),20)}/100={22.5+0.46+0.328+0.199}/100=23%
如果按照公式(2)进行计算,则
UE1的QCI=8吞吐量为:11116kbps,UE2的QCI=8吞吐量为:3920kbps,UE3的QCI=8吞吐量为:6440kbps,则小区NGBR总的吞吐量:15036kbps
计算小区的无线负荷:{(9+14+7)+40×(2560+1280+1280)/15036}/100=31%
小区设置的负荷均衡门限是30%,按照公式(2)的计算方式会造成误判,将其中一个UE切换到别的小区,会影响用户的感受。
第三应用实施例,在TDD LTE***中,常规CP,20M带宽,测量周期内小区在下行总的可用的PRB数目为100个,上下行子帧配置2,特殊子帧配置0/5,一个无线帧单位RB能用于下行传输数据的RE数为840,小区中有3个UE进行NGBR QCI=8的业务和GBR QCI=4的业务,下面统计小区的下行无线负荷。
其中UE1的历史频谱效率为:3.97,配置的DlPBR为256kbps,QCI=8的NGBR业务使用的下行PRB数目为20个;QCI=4的DlGBR值为3840kbps, DlMBR为5120kbps,确认速率达到5120kbps,占用的RB数目09;
UE2的历史频谱效率为:2.8,配置的DLPBR为128kbps,QCI=8的NGBR业务使用的下行PRB数目为10个;QCI=4的DlGBR值为3840kbps,DlMBR为5120kbps,确认速率达到5120kbps占用的RB数目14;
UE3的历史频谱效率为:4.6,配置的DLPBR为128kbps,QCI=8的NGBR业务使用的下行PRB数目为20个;QCI=4的DlGBR值为3840kbps,DlMBR为5120kbps,确认速率达到5120kbps,占用的RB数目7;
如果按照公式(2),UE1的吞吐量为:6669.6kbps,UE2的吞吐量为:2352kbps,UE3的吞吐量为:3864kbps,小区NGBR总的吞吐量:12885.6kbps,则计算小区无线负荷为:{30+40×(256+128+128)/12885.6}/100=32%
如果根据公式(4),
DLT=3840×9/5120+3840×1.4/5120+3840×7/5120+{min(2560×1.005/(3.97×840),20)+min(1280×1.005/(2.8×840),10)+min(1280×1.005/(4.6×840),10)}={22.5+0.76+0.546+0.33}/100=24%
可以看出根据公式(2)计算得到的小区无线负荷一般评估的负荷会较高,与实际误差也较大,实际中NGBR的最小保证比特速率都是运营商设置的,而用户的实际速率或者大于或者小于最小保证比特速率,用公式(2)进行计算的方法对于单个用户小于最小保证比特速率的不具备识别性,所以就会出现误差,DlMBR和DlGBR也是运营商设置的,原来设置的方式未考虑DlMBR的影响也会带来很大的误差,因为当***资源不足时,可以将保证比特速率从DlMBR降低到DlGBR,可以释放更多无线资源。
第四应用实施例,在FDD LTE***中,20M带宽,测量周期内小区在上行中的可用的PRB数目为100个,一个无线子帧单位(1ms)RB能用于上行传输数据的RE数为168,非MBSFN子帧物理信道的循环前缀长度的取值为normal cyclic prefix,则一个子帧上的OFDM符号数N_OFDM=14,小区中有3个UE进行NGBR QCI=8的上行业务,下面统计小区的上行无线负荷统。
其中UE1的上行历史频谱效率为:2,配置的UlPBR为256kbps,使用的上行PRB数目为20个;
UE2的上行历史频谱效率为:2.8,配置的UlPBR为512kbps,使用的上行PRB数目为1个;
UE3的上行历史频谱效率为:1,配置的UlPBR为64kbps,使用的上行PRB数目50个;
如果按照公式(2),统计到的UE1的吞吐量为:5600kbps,统计到的UE2的吞吐量为:392kbps,统计到UE3的吞吐量为:7000kbps,那么小区NGBR总的吞吐量:12992kbps,计算小区的上行无线负荷:71×(256+512+64)/12292/100=6.28%。
如果按照公式(4),DLT={min(256×1.005×14/(12×2×10×168),20)+min(512×1.005×14×/(12×2.8×10×168),1)+min(64×1.005×14/(12×1×10×168),50)}/100={0.09+0.13+0.04}/100=0.26%
假设此时UE3接入建立GBR业务,UlGBR设置的很大,假设需要96个RB,按照公式(2)计算则剩余的PRB为95个不能接入,而按照公式(4)计算则可以接入,对于接入控制算法会造成误判。由于为NGBR业务配置最小保证比特速率中,UE2和UE3实际业务量都没达到最小保证比特速率,实际占用的***无线负荷都是小于1%的,按照公式(2)进行计算是将三者加在一起计算的,并未精细化到单个UE计算程度,所以统计计算的无线负荷会偏高很多。
第五应用实施例,在FDD LTE***中,10M带宽,测量周期内小区在上行中的可用的PRB数目为50个,一个无线子帧单位(1ms)RB能用于上行传输数据的RE数为168,非MBSFN子帧物理信道的循环前缀长度的取值为normal cyclic prefix,则一个子帧上的OFDM符号数N_OFDM=14,小区中有3个UE进行NGBR QCI=8的上行业务,下面统计小区的上行无线负荷统。
其中UE1的上行历史频谱效率为:2,配置的UlPBR为256kbps,使用 的上行PRB数目为20个;
UE2的上行历史频谱效率为:2.8,配置的UlPBR为512kbps,使用的上行PRB数目为1个;
UE3的上行历史频谱效率为:1,配置的UlPBR为1024kbps,使用的上行PRB数目29个;
如果按照公式(2),统计到的UE1的吞吐量为:6720kbps,统计到的UE2的吞吐量为:470kbps,统计到UE3的吞吐量为:4872kbps,那么小区NGBR总的吞吐量:12062kbps,计算小区的上行无线负荷:50×(256+512+1024)/12062/100=7.4%。
如果按照公式(4),DLT={min(256×1.005×14/(12×2×10×168),20)+min(512×1.005×14×/(12×2.8×10×168),1)+min(1024×1.005×14/(12×1×10×168),29)}/100={0.09+0.13+0.71}/100=0.93%。
假设此时UE3接入建立GBR业务,UlGBR设置的很大,假设需要97个RB,按照公式(2)计算则剩余的PRB为93个不能接入,而按照公式(4)计算则可以接入,对于接入控制算法会造成误判。由于为NGBR业务配置最小保证比特速率中,UE2和UE3实际业务量都没达到最小保证比特速率,实际占用的***无线负荷都是小于1%的,按照公式(2)进行计算是将三者加在一起计算的,并未精细化到单个UE计算程度,所以统计计算的无线负荷会偏高很多。
参见图2,本发明实施例还提出了一种统计小区无线负荷的装置,包括:
第一统计模块201,设置为根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;
第二统计模块202,设置为根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;以及
计算模块203,设置为根据统计的小区中GBR业务的无线负荷和NGBR 业务的无线负荷计算小区无线负荷。
本发明实施例的装置中,第一统计模块201是设置为:
对于每一个UE的每一个GBR业务,根据所述小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷;将计算得到的每个UE的每个GBR业务的无线负荷进行叠加得到所述小区中GBR业务的无线负荷。
其中,所述第一统计模块201根据小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷包括:
所述第一统计模块201计算所述UE的GBR业务的保证比特速率和最大比特速率之间的第一比值;计算测量周期内测量的所述UE的GBR业务所占用的物理资源块PRB数目和测量周期内测量的小区总的可用的PRB数目之间的第二比值;计算所述第一比值和所述第二比值之间的乘积得到所述小区中GBR业务的无线负荷。
本发明实施例的装置中,第二统计模块202是设置为:
对于每一个UE的每一个NGBR业务,根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目;将计算得到的每个UE的每个NGBR业务所使用的PRB数目进行叠加得到小区中NGBR业务所使用的PRB数目;计算小区中NGBR业务所使用的PRB数目和测量周期内测量的总的可用的PRB数目之间的比值得到所述小区中NGBR业务的无线负荷。
其中,所述第二统计模块202根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目包括:
所述第二统计模块202取所述折算的UE的NGBR业务所使用的PRB数目和所述测量周期内测量的UE的NGBR业务所使用的PRB数目的较小值作为所述UE的NGBR业务所使用的PRB数目。
本发明实施例的装置中,第二统计模块202还设置为:
根据以下公式计算折算的UE的NGBR业务所使用的PRB数目:
Figure PCTCN2015093064-appb-000016
其中,A为折算的第i个UE的QCI为q的NGBR业务在上行所使用的PRB数目,UlPBR(q,i)为第i个UE的NGBR业务的QCI为q时在上行的最小保证比特速率,ucUPOvheaderRatio为头开销,UlSpectrumEffectivei为第i个UE的上行历史频谱效率,ucNumRE为一个PRB对中用于传输数据的RE数,ucNumUlSubFrame为一个无线帧的上行子帧个数,N_OFDM为正交频分复用技术OFDM符号数。
本发明实施例的装置中,第二统计模块202还设置为:
根据以下公式计算折算的UE的NGBR业务所使用的PRB数目:
Figure PCTCN2015093064-appb-000017
其中,C为折算的第i个UE的QCI为q的NGBR业务在下行所使用的PRB数目,DLPBRi为第i个UE的NGBR业务的QCI为q时在下行的最小保证比特速率,ucDPOvheaderRatio为头开销,DlSpectrumEffectivei为第i个UE的下行历史频谱效率,ucNumRadioFramDlRE为一个无线帧单位RB能用于下行传输数据的RE数。
本发明实施例的装置中,所述计算模块203是设置为:
计算所述小区中GBR业务的无线负荷和所述NGBR业务的无线负荷之和作为所述小区无线负荷。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例包括:根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。通过本发明实施例的方案,在UE级别对小区无线负荷进行统计,从而提高了统计的精度。

Claims (17)

  1. 一种统计小区无线负荷的方法,包括:
    根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;
    根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;
    根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。
  2. 根据权利要求1所述的方法,其中,所述根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷包括:
    对于每一个UE的每一个GBR业务,根据所述小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷;
    将计算得到的每个UE的每个GBR业务的无线负荷进行叠加得到所述小区中GBR业务的无线负荷。
  3. 根据权利要求2所述的方法,其中,所述根据小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷包括:
    计算所述UE的GBR业务的保证比特速率和最大比特速率之间的第一比值;
    计算测量周期内测量的所述UE的GBR业务所占用的物理资源块PRB数目和测量周期内测量的小区总的可用的PRB数目之间的第二比值;
    计算所述第一比值和所述第二比值之间的乘积得到所述小区中GBR业务的无线负荷。
  4. 根据权利要求1所述的方法,其中,所述根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷包括:
    对于每一个UE的每一个NGBR业务,根据折算的UE的NGBR业务所 使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目;
    将计算得到的每个UE的每个NGBR业务所使用的PRB数目进行叠加得到小区中NGBR业务所使用的PRB数目;
    计算小区中NGBR业务所使用的PRB数目和测量周期内测量的总的可用的PRB数目之间的比值得到所述小区中NGBR业务的无线负荷。
  5. 根据权利要求4所述的方法,其中,所述根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目包括:
    取所述折算的UE的NGBR业务所使用的PRB数目和所述测量周期内测量的UE的NGBR业务所使用的PRB数目的较小值作为所述UE的NGBR业务所使用的PRB数目。
  6. 根据权利要求5所述的方法,其中,根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
    Figure PCTCN2015093064-appb-100001
    其中,A为折算的第i个UE的业务类型标识QCI为q的NGBR业务在上行所使用的PRB数目,UlPBR(q,i)为第i个UE的NGBR业务的QCI为q时在上行的最小保证比特速率,ucUPOvheaderRatio为头开销,UlSpectrumEffectivei为第i个UE的上行历史频谱效率,ucNumRE为一个PRB对中用于传输数据的RE数,ucNumUlSubFrame为一个无线帧的上行子帧个数,N_OFDM为正交频分复用技术OFDM符号数。
  7. 根据权利要求5所述的方法,其中,根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
    Figure PCTCN2015093064-appb-100002
    其中,C为折算的第i个UE的QCI为q的NGBR业务在下行所使用的PRB数目,DLPBRi为第i个UE的NGBR业务的QCI为q时在下行的最小保 证比特速率,ucDPOvheaderRatio为头开销,DlSpectrumEffectivei为第i个UE的下行历史频谱效率,ucNumRadioFramDlRE为一个无线帧单位RB能用于下行传输数据的RE数。
  8. 根据权利要求1所述的方法,其中,所述根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷包括:
    所述小区无线负荷为所述小区中GBR业务的无线负荷和所述NGBR业务的无线负荷之和。
  9. 一种统计小区无线负荷的装置,包括:
    第一统计模块,设置为根据小区中每个用户设备UE的每个保证比特率GBR业务的保证比特速率和最大比特速率统计小区中GBR业务的无线负荷;
    第二统计模块,设置为根据小区中每个UE的历史频谱效率和每个UE的每个非保证比特率NGBR业务的最小保证比特速率统计小区中NGBR业务的无线负荷;以及
    计算模块,设置为根据统计的小区中GBR业务的无线负荷和NGBR业务的无线负荷计算小区无线负荷。
  10. 根据权利要求9所述的装置,其中,所述第一统计模块是设置为:
    对于每一个UE的每一个GBR业务,根据所述小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷;将计算得到的每个UE的每个GBR业务的无线负荷进行叠加得到所述小区中GBR业务的无线负荷。
  11. 根据权利要求10所述的装置,其中,所述第一统计模块根据小区中UE的GBR业务的保证比特速率和最大比特速率计算UE的GBR业务的无线负荷包括:
    所述第一统计模块计算所述UE的GBR业务的保证比特速率和最大比特速率之间的第一比值;计算测量周期内测量的所述UE的GBR业务所占用的物理资源块PRB数目和测量周期内测量的小区总的可用的PRB数目之间的第二比值;计算所述第一比值和所述第二比值之间的乘积得到所述小区中GBR业务的无线负荷。
  12. 根据权利要求9所述的装置,其中,所述第二统计模块是设置为:
    对于每一个UE的每一个NGBR业务,根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目;将计算得到的每个UE的每个NGBR业务所使用的PRB数目进行叠加得到小区中NGBR业务所使用的PRB数目;计算小区中NGBR业务所使用的PRB数目和测量周期内测量的总的可用的PRB数目之间的比值得到所述小区中NGBR业务的无线负荷。
  13. 根据权利要求12所述的装置,其中,所述第二统计模块根据折算的UE的NGBR业务所使用的PRB数目和测量周期内测量的UE的NGBR业务所使用的PRB数目计算所述UE的所述NGBR业务所使用的PRB数目包括:
    所述第二统计模块取所述折算的UE的NGBR业务所使用的PRB数目和所述测量周期内测量的UE的NGBR业务所使用的PRB数目的较小值作为所述UE的NGBR业务所使用的PRB数目。
  14. 根据权利要求13所述的装置,所述第二统计模块还设置为:
    根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
    Figure PCTCN2015093064-appb-100003
    其中,A为折算的第i个UE的业务类型标识QCI为q的NGBR业务在上行所使用的PRB数目,UlPBR(q,i)为第i个UE的NGBR业务的QCI为q时在上行的最小保证比特速率,ucUPOvheaderRatio为头开销,UlSpectrumEffectivei为第i个UE的上行历史频谱效率,ucNumRE为一个PRB对中用于传输数据的RE数,ucNumUlSubFrame为一个无线帧的上行子帧个数,N_OFDM为正交频分复用技术OFDM符号数。
  15. 根据权利要求13所述的装置,其中,所述第二统计模块还设置为:
    根据以下公式计算所述折算的UE的NGBR业务所使用的PRB数目:
    Figure PCTCN2015093064-appb-100004
    其中,C为折算的第i个UE的QCI为q的NGBR业务在下行所使用的PRB数目,DLPBRi为第i个UE的NGBR业务的QCI为q时在下行的最小保证比特速率,ucDPOvheaderRatio为头开销,DlSpectrumEffectivei为第i个UE的下行历史频谱效率,ucNumRadioFramDlRE为一个无线帧单位RB能用于下行传输数据的RE数。
  16. 根据权利要求9所述的装置,其中,所述计算模块是设置为:
    计算所述小区中GBR业务的无线负荷和所述NGBR业务的无线负荷之和作为所述小区无线负荷。
  17. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-8任一项所述的方法。
PCT/CN2015/093064 2014-11-17 2015-10-28 一种统计小区无线负荷的方法和装置 WO2016078503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410655252.8A CN105682130A (zh) 2014-11-17 2014-11-17 一种统计小区无线负荷的方法和装置
CN201410655252.8 2014-11-17

Publications (1)

Publication Number Publication Date
WO2016078503A1 true WO2016078503A1 (zh) 2016-05-26

Family

ID=56013267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093064 WO2016078503A1 (zh) 2014-11-17 2015-10-28 一种统计小区无线负荷的方法和装置

Country Status (2)

Country Link
CN (1) CN105682130A (zh)
WO (1) WO2016078503A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001454A (zh) * 2006-06-22 2007-07-18 华为技术有限公司 一种上行增强链路中用户调度方法及***
CN101969651A (zh) * 2009-07-28 2011-02-09 中兴通讯股份有限公司 一种lte***中的指数型负荷估计方法及装置
US20110149879A1 (en) * 2009-12-23 2011-06-23 At&T Mobility Ii Llc Chromatic scheduler for network traffic with disparate service requirements
CN103037439A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 一种负载均衡方法及接入网设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001454A (zh) * 2006-06-22 2007-07-18 华为技术有限公司 一种上行增强链路中用户调度方法及***
CN101969651A (zh) * 2009-07-28 2011-02-09 中兴通讯股份有限公司 一种lte***中的指数型负荷估计方法及装置
US20110149879A1 (en) * 2009-12-23 2011-06-23 At&T Mobility Ii Llc Chromatic scheduler for network traffic with disparate service requirements
CN103037439A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 一种负载均衡方法及接入网设备

Also Published As

Publication number Publication date
CN105682130A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
US11558770B2 (en) Method for determining QoS description information and apparatus
US9538551B2 (en) Admission control for control channel
US9300588B2 (en) Mobile communication method, mobile communication system and radio base station
JP6363231B2 (ja) 進化型ノードb、モビリティマネジメントエンティティ、及びユーザ機器、並びに留意されているサービス及び留意されていないサービスをサポートする方法
EP2850879A1 (en) Method and apparatus for network traffic offloading
CN110326269B (zh) 一种数据报文传输方法及装置
US8953447B2 (en) Method and apparatus for controlling traffic transfer rate based on cell capacity in mobile communication system
US10111129B2 (en) Method and apparatus for admission control of wireless communications network
WO2017133012A1 (zh) 一种上行控制信息传输的方法及装置
TWI531186B (zh) 多重介面網路裝置與網路封包傳送選擇方法
CN101795472B (zh) 速率控制方法和控制装置
US10075255B2 (en) Physical downlink control channel (PDCCH) inter-cell-interference coordination
CN107846702B (zh) 增强物理下行控制信道的资源配置方法
EP4108022A1 (en) Communication apparatuses and communication methods for mode 2 resource (re-)selection for packet delay budget limited scenario
US10827400B2 (en) Allocating radio resources in a cellular network
WO2014101235A1 (zh) 一种信道资源配置方法、装置、基站及用户设备
WO2016078503A1 (zh) 一种统计小区无线负荷的方法和装置
US20170019908A1 (en) Method and System for Controlling Quality of Service of Sharing Network
JP2015050714A (ja) 無線基地局、無線基地局の制御方法及び制御プログラム
CN103442406A (zh) 一种接入控制方法及装置
CN104602272B (zh) 一种无线空口资源prb负载评估方法及装置
WO2014187139A1 (zh) 一种资源调度的方法及装置
WO2016150109A1 (zh) 一种用户设备调度方法、装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860691

Country of ref document: EP

Kind code of ref document: A1