WO2016150109A1 - 一种用户设备调度方法、装置和*** - Google Patents

一种用户设备调度方法、装置和*** Download PDF

Info

Publication number
WO2016150109A1
WO2016150109A1 PCT/CN2015/089246 CN2015089246W WO2016150109A1 WO 2016150109 A1 WO2016150109 A1 WO 2016150109A1 CN 2015089246 W CN2015089246 W CN 2015089246W WO 2016150109 A1 WO2016150109 A1 WO 2016150109A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user equipment
target base
historical throughput
throughput information
Prior art date
Application number
PCT/CN2015/089246
Other languages
English (en)
French (fr)
Inventor
赵黎波
姬舒平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016150109A1 publication Critical patent/WO2016150109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • This document relates to, but is not limited to, the field of communications, and in particular, to a user equipment scheduling method, apparatus, and system.
  • the scheduling algorithm of the user equipment plays a key role in obtaining the resources that satisfy the service requirements and ensuring the overall system throughput in the cell.
  • the main problem solved by the scheduling algorithm of the MAC layer is to decide which users to allocate to at what time.
  • kind of wireless resources to communicate for example, the Long Term Evolution (LTE) standard system developed by the 3rd Generation Partnership Project (3GPP).
  • the throughput generally refers to the amount of data transmitted per unit time.
  • the fairness refers to whether all user equipments (User Equipments, UEs) of the cell have obtained certain service opportunities.
  • the purpose of the MAC layer scheduling algorithm is to use the time-varying characteristics of the UE to obtain multi-user diversity gain, improve the overall throughput of the system, and ensure the fairness of the cell users. Therefore, a good scheduling algorithm should take into account both cell throughput and user fairness. .
  • the current MAC layer scheduling algorithms mainly have the following three types:
  • Max C/I Maximum carrier-to-interference ratio
  • the Max C/I scheduling algorithm always assigns resource blocks (RBs) to the C/I maximum, that is, the UE with the best channel conditions.
  • RBs resource blocks
  • the biggest advantage of this algorithm is that it can obtain the maximum cell data throughput and resources. Utilization, but unfavorable is that the fairness of resource allocation is not considered at all, resulting in UEs with poor channel conditions being blocked for a long time. For example, a UE at the cell edge may not be as good as a UE at the cell center because the C/I is not as good as the UE at the cell center. There is no chance of being assigned an RB at all;
  • the core of the RR scheduling algorithm is to assume that all UEs have the same scheduling priority, so as to ensure that resources are allocated to all UEs in the system with equal opportunities, so that the UEs occupy radio resources for communication in a certain order. From the perspective of resource occupation, the RR scheduling algorithm is the most fair, but since the channel conditions of the user are not considered, the reliability of the transmission is not high, resulting in extremely low cell throughput and resource utilization.
  • the PF scheduling algorithm allocates a priority to each UE in the cell, and at each scheduling moment, the UE with the highest priority is preferentially scheduled.
  • the PF scheduling algorithm not only considers the channel time-varying characteristics of the UE, but also ensures the balance between multi-user diversity and fairness of the system, so that the throughput of the system and the fairness of resource allocation can be considered.
  • the above three scheduling algorithms only distinguish the scheduling priority of the UE according to the quality of the wireless channel, and do not consider the actual demand of the UE for the resource.
  • the actual demand of the UE for resources is not directly related to the quality of the wireless channel.
  • the actual demand of the UE for the resource may be reflected from the historical throughput of the UE in the cell, and the historical throughput of the UE in the cell is larger, which indicates that the actual demand of the UE for the resource is greater to some extent. Therefore, an algorithm for measuring the UE scheduling priority according to the historical throughput of the UE in the cell has emerged. If the historical throughput of the UE is higher, the scheduling priority of the UE is also higher.
  • the above algorithm for measuring the UE scheduling priority according to the UE's historical throughput in the cell is used.
  • the target base station cannot know that the UE is in the source.
  • the base station corresponds to the historical throughput in the cell, and the historical throughput of the UE in the corresponding cell of the target base station can be referred to. Therefore, when the UE switches to the target base station, the target base station needs to count the historical throughput of the UE from zero, and cannot be based on the UE.
  • the existing historical throughput is used to calculate the scheduling priority of the UE, so that the scheduling of the target base station to the UE may not meet the requirements of the UE for resources, resulting in a decrease in scheduling performance.
  • the embodiments of the present invention provide a user equipment scheduling method, apparatus, and system, to solve the technical problem of how to improve the scheduling performance of the target base station to the user equipment when the user equipment switches from the source base station to the target base station.
  • An embodiment of the present invention provides a user equipment scheduling method, where the method includes:
  • the source base station transmits the historical throughput information of the user equipment to the source base station to the target base station;
  • the target base station determines a scheduling priority of the user equipment according to the historical throughput information
  • the target base station schedules the user equipment according to the scheduling priority.
  • the historical throughput information that the source base station accesses the user equipment in the source base station to the target base station includes:
  • the source base station transmits the historical throughput information to the target base station through the user equipment;
  • the source base station transmits the historical throughput information to the target base station through the core network;
  • the source base station transmits the historical throughput information to the target base station via the X2 interface.
  • the source base station transmitting the historical throughput information to the target base station by using the user equipment includes:
  • the source base station After transmitting the handover request to the target base station, and receiving the handover response of the consent handover sent by the target base station, the source base station sends a connection reconfiguration message carrying the historical throughput information to the user equipment;
  • connection reconfiguration complete message carrying the historical throughput information to the target base station.
  • the transmitting, by the source base station, the historical throughput information to the target base station by using the core network includes:
  • the source base station When it is determined that the user equipment is handed over to the target base station, and the handover mode is the handover based on the S1 interface, the source base station sends a handover request carrying the historical throughput information to the target base station via the core network.
  • the transmitting, by the source base station, the historical throughput information to the target base station by using the X2 interface includes:
  • the source base station When it is determined that the user equipment is handed over to the target base station, and the handover mode is an X2 interface-based handover, the source base station sends a handover request carrying the historical throughput information to the target base station via the X2 interface.
  • determining, by the target base station, the scheduling priority of the user equipment according to the historical throughput information includes:
  • the historical throughput information is used as an initial value of the historical throughput when the user equipment accesses the target base station, and the algorithm for determining the scheduling priority of the user equipment according to the historical throughput is used to calculate the initial scheduling priority of the user equipment in the target base station. .
  • the determining, by the target base station, the scheduling priority of the user equipment according to the historical throughput information includes:
  • the historical throughput indicated by the historical throughput information includes an average throughput of the user equipment within a set time window, and a current instantaneous throughput of the user equipment.
  • the embodiment of the invention further provides a user equipment scheduling method, the method comprising:
  • the source base station transmits the historical throughput information of the user equipment to the source base station to the target base station, where the historical throughput information is used to switch to the user equipment.
  • the target base station determines the scheduling priority of the user equipment according to the historical throughput information, and schedules the user equipment according to the scheduling priority.
  • the historical throughput information that the source base station accesses the user equipment in the source base station to the target base station includes:
  • the source base station transmits the historical throughput information to the target base station through the user equipment;
  • the source base station transmits the historical throughput information to the target base station through the core network;
  • the source base station transmits the historical throughput information to the target base station via the X2 interface.
  • the source base station transmitting the historical throughput information to the target base station by using the user equipment includes:
  • the source base station sends a connection reconfiguration message carrying the historical throughput information to the user equipment.
  • the user equipment successfully switches to the target base station according to the connection reconfiguration message, the user equipment sends the historical throughput information to the target base station.
  • the connection reconfiguration complete message When the user equipment successfully switches to the target base station according to the connection reconfiguration message, the user equipment sends the historical throughput information to the target base station.
  • the connection reconfiguration complete message When the user equipment successfully switches to the target base station according to the connection reconfiguration message, the user equipment sends the historical throughput information to the target base station.
  • the transmitting, by the source base station, the historical throughput information to the target base station by using the core network includes:
  • the source base station When it is determined that the user equipment is handed over to the target base station, and the handover mode is the handover based on the S1 interface, the source base station sends a handover request carrying the historical throughput information to the target base station via the core network.
  • the transmitting, by the source base station, the historical throughput information to the target base station by using the X2 interface includes:
  • the source base station When it is determined that the user equipment is handed over to the target base station, and the handover mode is an X2 interface-based handover, the source base station sends a handover request carrying the historical throughput information to the target base station via the X2 interface.
  • the embodiment of the invention further provides a user equipment scheduling method, the method comprising:
  • the target base station receives historical throughput information that the user equipment transmitted from the source base station accesses in the source base station;
  • the target base station determines a scheduling priority of the user equipment according to the historical throughput information
  • the target base station schedules the user equipment according to the scheduling priority.
  • An embodiment of the present invention further provides a user equipment scheduling apparatus, where the apparatus includes:
  • a delivery module configured to: during a process of the user equipment switching from the source base station to the target base station, the historical throughput information that the user equipment accesses in the source base station is transmitted to the target base station, where the historical throughput information is used in the user equipment After switching to the target base station, the target base station determines the scheduling priority of the user equipment according to the historical throughput information, and schedules the user equipment according to the scheduling priority.
  • the delivery module includes:
  • a first delivery unit configured to transmit the historical throughput information to the target base station via the user equipment
  • a second delivery unit configured to transmit the historical throughput information to the target base station via the core network
  • the third transfer unit is configured to transmit the historical throughput information to the target base station via the X2 interface.
  • the first delivery unit is configured to:
  • connection reconfiguration message carrying the historical throughput information is sent to the user equipment, and the user equipment successfully switches to the reconfiguration message according to the connection.
  • target base station transmits a connection reconfiguration complete message carrying the historical throughput information to the target base station.
  • the second delivery unit is configured to:
  • the core network When it is determined that the user equipment is handed over to the target base station, and the handover mode is the handover based on the S1 interface, the core network sends a handover request carrying the historical throughput information to the target base station.
  • the third delivery unit is configured to:
  • the X2 interface When it is determined that the user equipment is switched to the target base station, and the handover mode is the X2 interface-based handover, the X2 interface sends a handover request carrying the historical throughput information to the target base station.
  • An embodiment of the present invention further provides a user equipment scheduling apparatus, where the apparatus includes:
  • a receiving module configured to receive, during a process of the user equipment switching from the source base station to the target base station, historical throughput information that the user equipment transmitted from the source base station accesses in the source base station;
  • a determining module configured to determine a scheduling priority of the user equipment according to the historical throughput information after the user equipment switches to the target base station;
  • the scheduling module is configured to schedule the user equipment according to the scheduling priority.
  • the embodiment of the present invention further provides a user equipment scheduling system, including a source base station and a target base station, where the source base station includes the foregoing user equipment scheduling apparatus, and the target base station includes the foregoing user equipment scheduling apparatus.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the source base station transmits the historical throughput information of the user equipment to the source base station to the target base station, and after the user equipment switches to the target base station, the target base station according to the historical throughput.
  • the information determines the scheduling priority of the user equipment, and the user equipment is scheduled according to the scheduling priority, so that the scheduling performance of the target base station to the user equipment can be improved.
  • FIG. 1 is a schematic flowchart of a user equipment scheduling method according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a connection architecture of a source base station, a target base station, and a user equipment.
  • FIG. 3 is a diagram showing an example of delivery of a connection reconfiguration message and a connection reconfiguration completion message.
  • FIG. 4 is a schematic flowchart diagram of a user equipment scheduling method according to a second embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a user equipment scheduling method according to a third embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a user equipment scheduling apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 is a functional block diagram of a user equipment scheduling apparatus according to a fifth embodiment of the present invention.
  • FIG. 8 is a block diagram of a user equipment scheduling system according to a sixth embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of a user equipment (User Equipment, UE for short) scheduling method according to a first embodiment of the present invention.
  • the user equipment scheduling method includes the following steps:
  • Step S1 in the process of the UE switching from the source base station to the target base station, the source base station transmits the historical throughput information of the UE to the source base station to the target base station;
  • Step S2 after the UE switches to the target base station, the target base station according to the historical throughput information Determining a scheduling priority of the UE;
  • Step S3 The target base station schedules the UE according to the scheduling priority.
  • the target base station when the UE is handed over from the source base station to the target base station, the target base station can calculate the scheduling priority of the UE according to the historical throughput of the UE, thereby improving the scheduling performance of the target base station to the UE.
  • the UE described in step S1 may be, for example, a smartphone, a tablet or other similar mobile communication electronic device.
  • the UE 1, the source base station 2, and the target base station 3 may be connected according to an architecture of an LTE (Long Term Evolution) standard system.
  • the LTE system is composed of an Evolved Universal Terrestrial Radio Access Network (EP-C) and an Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
  • E-UTRAN includes the source base station 2 and the target base station 3.
  • the source base station 2 and the target base station 3 are interconnected through an X2 interface, and the source base station 2 and the target base station 3 respectively pass through the S1 interface and the core.
  • Network 4 is connected.
  • the UE 1 performs wireless communication by accessing one of the E-UTRANs.
  • the UE 1 in the connected state moves from one cell to another, in order to make the communication of the UE 1 uninterrupted, the UE needs to be 1 Perform a handover operation of the accessed base station.
  • the base station that the UE 1 accesses before the handover is the source base station 2
  • the base station that is accessed after the handover is the target base station 3.
  • the process of handover of the UE 1 from the source base station 2 to the target base station 3 includes the following steps:
  • step a the source base station 2 determines that the UE 1 needs to be handed over to the target base station 3 according to the measurement report of the UE 1;
  • Step b the source base station 2 sends a handover request to the target base station 3, requesting to handover the UE 1 to the target base station 3;
  • Step c after the target base station 3 determines to agree to access the UE 1, sends a handover response to the source base station 2 to agree to the handover;
  • Step d After receiving the handover response, the source base station 2 sends a connection reconfiguration message to the UE 1;
  • Step e when the UE 1 successfully switches to the target base station 3 according to the connection reconfiguration message, to the target base
  • the station 3 transmits a connection reconfiguration complete message, thereby notifying the target base station 3 that the UE 1 successfully accesses the target base station 3.
  • the UE 1 Since the source base station 2 and the target base station 3 have direct interconnection communication directly through the X2 interface and indirect interconnection communication through the S1 interface and the core network 4. Therefore, there are two ways for the UE 1 to switch between the source base station 2 and the target base station 3: one is that the signaling is directly transmitted between the source base station 2 and the target base station 3 through the X2 interface, and is called based on The switching of the X2 interface, and the switching of the signaling indirectly through the S1 interface and the core network 4 between the source base station 2 and the target base station 3, is referred to as an S1 interface based handover.
  • the source base station 2 sends a handover request to the target base station 3 in a manner directly through the X2 interface. It is transmitted to the target base station 3.
  • the manner in which the target base station 3 transmits the handover response agreeing to the handover to the source base station 2 is also directly transmitted to the source base station 2 through the X2 interface.
  • the source base station 2 sends a handover request to the target base station 3 in a manner of passing the handover request.
  • the S1 interface and the core network 4 are indirectly transmitted to the target base station 3.
  • the manner in which the target base station 3 transmits the handover response agreeing to the handover to the source base station 2 is also transmitted to the source base station 2 indirectly through the S1 interface and the core network 4.
  • the historical throughput information that the UE 1 accesses in the source base station 2 in step S1 refers to the history of the UE 1 that is obtained by the source base station 2 when it is determined that the UE 1 needs to be handed over from the source base station 2 to the target base station 3.
  • the historical throughput information includes, for example, the average throughput of the UE 1 within a set time window, the current instantaneous throughput of the UE 1 , and the maximum average throughput and maximum instantaneous throughput of the UE 1 within the set time window. ,and many more.
  • the maximum average throughput and the maximum instantaneous throughput of the UE 1 can be considered to be constant, and the average throughput of the UE 1 in the set time window and the current instantaneous throughput of the UE 1 can be It is considered a variable, which can reflect the amount of resources required by the UE.
  • the historical throughput information may be obtained by the source base station 2 when performing media access control (MAC) layer scheduling on the UE 1. Generally, in order to save the air interface resources, before the historical throughput information is transmitted, the obtained historical throughput information needs to be encoded, thereby reducing the data amount of the historical throughput information.
  • MAC media access control
  • step S1 The method for the source base station 2 to transmit the historical throughput information when the UE 1 accesses the source base station to the target base station 3 may include the following three types:
  • the source base station 2 transmits the historical throughput information to the target base station 3 via the UE 1. Specifically, after step a, the source base station 2 determines that the UE 1 needs to be handed over to the target base station 3, and the handover mode is an S1 interface-based handover or an X2-interface-based handover, and after step b and step c, the source base station 2 After the target base station 3 sends a handover request, and after receiving the handover response of the consent handover sent by the target base station 3, the source base station 2 transmits a connection reconfiguration message carrying the historical throughput information to the UE 1, and then the UE 1 reconfigures according to the connection.
  • connection reconfiguration complete message carrying the historical throughput information is transmitted to the target base station 3, thereby transmitting the historical throughput information to the target base station 3.
  • the connection reconfiguration message may be an RRC connection reconfiguration message RRCConnectionReconfiguration commonly used in a related RRC (Radio Resource Control) connection
  • the connection reconfiguration complete message may be The RRC Connection Reconfiguration Complete message RRCConnectionReconfigurationComplete.
  • the source base station 2 transmits the historical throughput information to the target base station 3 via the core network 4. Specifically, after the source base station 2 determines that the UE 1 needs to be handed over to the target base station 3, and the handover mode is the handover based on the S1 interface, the source base station 2 passes the core network 4 to the target base station 3 through step b. The handover request carrying the historical throughput information is transmitted, thereby transmitting the historical throughput information to the target base station 3.
  • the source base station 2 directly transmits the historical throughput information to the target base station 3 via the X2 interface. Specifically, after the source base station 2 determines that the UE 1 needs to be handed over to the target base station 3, and the handover mode is the X2 interface-based handover, the source base station 2 directly goes to the target base station 3 via the X2 interface. The handover request carrying the historical throughput information is transmitted, thereby transmitting the historical throughput information to the target base station 3.
  • the target base station 3 determines the scheduling priority of the UE 1 according to the historical throughput information.
  • the historical throughput information may be used as the initial value of the historical throughput when the UE 1 accesses the target base station 3,
  • the initial scheduling priority of the UE 1 in the target base station 3 is calculated using an algorithm that determines the scheduling priority of the UE 1 based on the historical throughput. For example, assume that the historical throughput information includes the average throughput R(t) of the UE 1 within the set time window, the current instantaneous throughput r(t) of the UE 1, and the UE 1 is within the set time window.
  • the quantity rmax the algorithm for determining the scheduling priority of the user equipment according to the historical throughput may calculate the reference factor P according to the above R(t), r(t), Rmax and rmax, and the reference factor P may reflect when R(t) Or the larger the r(t), the larger the reference factor P, and further determine that the scheduling priority of the UE 1 is higher according to the reference factor P.
  • the calculation formula of the reference factor P is as follows:
  • the scheduling priority of the UE 1 may also be obtained according to other formulas, such as an exponential or logarithmic formula, but the target base station determines that the scheduling priority of the user equipment is higher, if the historical throughput indicated by the historical throughput information is higher. The principle of higher level.
  • the target base station 3 schedules the UE 1 according to the determined scheduling priority.
  • the scheduling priority is determined according to the historical throughput information when the UE 1 accesses the source base station 2. According to the foregoing principles, if the historical throughput of the UE 1 when accessing the source base station 2 is higher, the UE 1 accesses.
  • the scheduling priority at the target base station 3 is also higher, so that when the UE 1 is handed over from the source base station 2 to the target base station 3, the target base station 3 can calculate the scheduling priority of the UE1 according to the historical throughput of the UE1, thereby improving the target base station 3. Scheduling performance for UE1.
  • FIG. 4 is a schematic flowchart diagram of a user equipment scheduling method according to a second embodiment of the present invention.
  • the user equipment scheduling method is performed by the source base station 2, and the user equipment scheduling method includes the following steps:
  • Step S10 in the process of the UE 1 switching from the source base station 2 to the target base station 3, the source base station 2 transmits the historical throughput information of the UE 1 in the source base station 2 to the target base station 3;
  • Step S11 After the UE 1 switches to the target base station 3, the target base station 3 determines the scheduling priority of the UE 1 according to the historical throughput information, and schedules the UE 1 according to the scheduling priority.
  • the user equipment scheduling method is performed by the target base station 3, and the user equipment scheduling method includes the following steps:
  • Step S20 in the process of the UE 1 switching from the source base station 2 to the target base station 3, the target base station 3 receives the historical throughput information that the UE 1 transmitted from the source base station 2 accesses in the source base station 2;
  • Step S21 after the UE 1 switches to the target base station 3, the target base station 3 determines the scheduling priority of the UE 1 according to the historical throughput information.
  • step S22 the target base station 3 schedules the UE 1 according to the scheduling priority.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • FIG. 6 is a functional block diagram of a user equipment scheduling apparatus 100 according to a fourth embodiment of the present invention.
  • the user equipment scheduling apparatus 100 is operated in the source base station 2.
  • the user equipment scheduling apparatus 100 includes:
  • the delivery module 101 is configured to transmit the historical throughput information of the UE 1 in the source base station 2 to the target base station 3 during the process of the UE 1 switching from the source base station 2 to the target base station 3.
  • the historical throughput information is transmitted.
  • the target base station 3 determines the scheduling priority of the UE 1 according to the historical throughput information, and schedules the UE 1 according to the scheduling priority.
  • the delivery module 101 includes:
  • a first delivery unit configured to transmit the historical throughput information to the target base station 3 via the UE 1;
  • a second transfer unit configured to pass the historical throughput information to the target base station 3 via the core network 4;
  • a third transfer unit configured to pass the historical throughput information to the target base via the X2 interface Station 3.
  • FIG. 7 is a functional block diagram of a user equipment scheduling apparatus 200 according to a fifth embodiment of the present invention.
  • the user equipment scheduling apparatus 200 is operated in the target base station 3.
  • the user equipment scheduling apparatus 200 includes:
  • the receiving module 201 is configured to receive, during the process of the UE 1 switching from the source base station 2 to the target base station 3, the historical throughput information that the UE 1 transmitted from the source base station 2 accesses in the source base station 2;
  • the determining module 202 is configured to determine, according to the historical throughput information, a scheduling priority of the UE 1 after the UE 1 switches to the target base station 3;
  • the scheduling module 203 is configured to schedule the UE 1 according to the scheduling priority.
  • the user equipment scheduling system 300 includes the source base station 2 and the target base station 3, wherein the source base station 2 includes the user equipment scheduling apparatus 100 according to the fourth embodiment of the present invention, and the target base station 3 includes the fifth embodiment of the present invention.
  • User equipment scheduling device 200 includes the source base station 2 and the target base station 3, wherein the source base station 2 includes the user equipment scheduling apparatus 100 according to the fourth embodiment of the present invention, and the target base station 3 includes the fifth embodiment of the present invention.
  • the user equipment scheduling method, apparatus, and system provided by the embodiment of the present invention, during the process of handover of the UE 1 from the source base station 2 to the target base station 3, the history of the source base station 2 when the UE 1 is connected to the source base station 2 The quantity information is transmitted to the target base station 3.
  • the target base station 3 determines the scheduling priority of the UE 1 according to the historical throughput information, and schedules the UE 1 according to the scheduling priority.
  • the scheduling performance of the target base station 3 to the UE 1 can be improved.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the foregoing technical solution improves the scheduling performance of the target base station to the user equipment when the user equipment switches from the source base station to the target base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用户设备调度方法、装置及***,其中,所述方法包括:在用户设备从源基站切换至目标基站的过程中,该源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站;当用户设备切换至目标基站后,该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级;目标基站根据该调度优先级调度该用户设备。上述技术方案可以提高基站切换后用户设备的调度性能。

Description

一种用户设备调度方法、装置和*** 技术领域
本文涉及但不限于通信领域,尤其涉及一种用户设备调度方法、装置和***。
背景技术
在无线通信技术领域,例如第三代合作伙伴计划((3rd Generation Partnership Project,3GPP)制定的长期演进(Long Term Evolution,LTE)标准***中,基站介质访问控制(Media Access Control,MAC)层对用户设备的调度算法对用户获得满足业务需求的资源、保证小区内整体的***吞吐量等方面具有非常关键的作用。该MAC层的调度算法解决的主要问题是判决在什么时间分配给哪些用户什么样的无线资源来进行通信。
对于MAC层调度算法有两个重要的设计参数:一个是吞吐量,另一个是公平性。吞吐量一般是指单位时间内传输的数据量,公平性则是指在一段时间内小区所有的用户设备(User Equipment,UE)是否都获得了一定的服务机会。MAC层调度算法的目的就是利用UE的信道时变特性,获得多用户分集增益,提高***的总体吞吐量,保证小区用户公平性,因此一个好的调度算法应该同时兼顾小区吞吐量和用户公平性。
根据公平性的级别不同,目前的MAC层调度算法主要有以下三类:
最大载干比(C/I)调度算法(简称Max C/I算法)
Max C/I调度算法总是将资源块(Resource Block,RB)优先分配给C/I最大,即信道条件最好的UE,这种算法最大的好处是能够获得最大的小区数据吞吐量和资源利用率,但不利的是根本不考虑资源分配的公平性问题,从而导致信道条件不好的UE会被长期阻塞,例如处在小区边缘的UE由于C/I不如处于小区中心的UE,则可能一点被分配RB的机会都没有;
轮询(RoundRobin,RR)调度算法
RR调度算法的核心是假设所有UE具有相同的调度优先级,从而保证以均等的机会为***中所有UE分配资源,使UE按照某种确定的顺序占用无线资源进行通信。从占用资源的角度来说,RR调度算法是最公平的,但由于没有考虑到用户信道状况的不同,因此传输的可靠性并不高,导致小区吞吐量和资源利用率极低。
正比公平(Proportional Fair,PF)调度算法
PF调度算法为小区内每个UE都分配了一个优先级,在每一个调度时刻,会优先调度优先级别最高的UE。PF调度算法不仅考虑到UE的信道时变特性,还保证了***多用户分集和公平性之间的平衡,因此能够兼顾***的吞吐量和资源分配的公平性。
但是,上述三种调度算法都只根据无线信道的好坏情况来区分UE的调度优先级,而并未考虑到UE对资源的实际需求。事实上,UE对资源的实际需求与无线信道的好坏并无直接的关系。通常,UE对资源的实际需求可以从UE在小区内的历史吞吐量反映出来,UE在小区内的历史吞吐量越大,一定程度上说明UE对资源的实际需求越大。因此,目前一种根据UE在小区内历史吞吐量衡量UE调度优先级的算法应运而生,若UE的历史吞吐量越高,则该UE的调度优先级也越高。
然而,采用上述根据UE在小区内历史吞吐量衡量UE调度优先级的算法,当对UE进行小区切换,即将该UE的接入从源基站切换至目标基站时,由于目标基站无法获知UE在源基站对应小区内的历史吞吐量,又无UE在目标基站对应小区内的历史吞吐量可参考,因此在UE切换至目标基站的最初,目标基站需要从零统计UE的历史吞吐量,无法根据UE已有的历史吞吐量来计算UE的调度优先级,使目标基站对UE的调度可能无法满足UE对资源的需求,造成调度性能下降。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种用户设备调度方法、装置和***,以解决在用户设备从源基站切换至目标基站时,如何提高目标基站对用户设备的调度性能的技术问题。
本发明实施例提供了一种用户设备调度方法,该方法包括:
在用户设备从源基站切换至目标基站的过程中,该源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站;
当用户设备切换至目标基站后,该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级;
目标基站根据该调度优先级调度该用户设备。
可选的,所述源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站包括:
源基站将该历史吞吐量信息经过该用户设备传递至目标基站;或者
源基站将该历史吞吐量信息经过核心网传递至目标基站;或者
源基站将该历史吞吐量信息经过X2接口传递至目标基站。
可选的,所述源基站将该历史吞吐量信息经过该用户设备传递至目标基站包括:
在向目标基站发送切换请求,并且接收到目标基站发送的同意切换的切换响应后,源基站向用户设备发送携带有该历史吞吐量信息的连接重配消息;
用户设备根据该连接重配消息成功切换至目标基站时,向目标基站发送携带有该历史吞吐量信息的连接重配完成消息。
可选的,所述源基站将该历史吞吐量信息经过核心网传递至目标基站包括:
在判定将用户设备切换至目标基站,且切换方式为基于S1接口的切换时,源基站经过所述核心网向目标基站发送携带有该历史吞吐量信息的切换请求。
可选的,所述源基站将该历史吞吐量信息经过X2接口传递至目标基站包括:
在判定将用户设备切换至目标基站,且切换方式为基于X2接口的切换时,源基站经过所述X2接口向目标基站发送携带有该历史吞吐量信息的切换请求。
可选的,所述目标基站根据该历史吞吐量信息确定该用户设备的调度优先级包括:
将所述历史吞吐量信息作为用户设备接入目标基站时历史吞吐量的初始值,利用根据历史吞吐量确定用户设备调度优先级的算法,从而计算出用户设备在目标基站中初始的调度优先级。
可选的,所述该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级包括:
该历史吞吐量信息指示的历史吞吐量越高,则目标基站确定该用户设备的调度优先级越高。
可选的,所述历史吞吐量信息指示的历史吞吐量包括用户设备在设定的时间窗内的平均吞吐量,以及用户设备当前的瞬时吞吐量。
本发明实施例还提供了一种用户设备调度方法,该方法包括:
在用户设备从源基站切换至目标基站的过程中,该源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站,该历史吞吐量信息用于在用户设备切换至目标基站后,目标基站根据该历史吞吐量信息确定该用户设备的调度优先级,并根据该调度优先级调度该用户设备。
可选的,所述源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站包括:
源基站将该历史吞吐量信息经过该用户设备传递至目标基站;或者
源基站将该历史吞吐量信息经过核心网传递至目标基站;或者
源基站将该历史吞吐量信息经过X2接口传递至目标基站。
可选的,所述源基站将该历史吞吐量信息经过该用户设备传递至目标基站包括:
在向目标基站发送切换请求,并且接收到目标基站发送的同意切换的切 换响应后,源基站向用户设备发送携带有该历史吞吐量信息的连接重配消息,用户设备根据该连接重配消息成功切换至目标基站时,向目标基站发送携带有该历史吞吐量信息的连接重配完成消息。
可选的,所述源基站将该历史吞吐量信息经过核心网传递至目标基站包括:
在判定将用户设备切换至目标基站,且切换方式为基于S1接口的切换时,源基站经过所述核心网向目标基站发送携带有该历史吞吐量信息的切换请求。
可选的,所述源基站将该历史吞吐量信息经过X2接口传递至目标基站包括:
在判定将用户设备切换至目标基站,且切换方式为基于X2接口的切换时,源基站经过所述X2接口向目标基站发送携带有该历史吞吐量信息的切换请求。
本发明实施例还提供了一种用户设备调度方法,该方法包括:
在用户设备从源基站切换至目标基站的过程中,该目标基站接收自该源基站传递而来的该用户设备接入在源基站中的历史吞吐量信息;
当用户设备切换至目标基站后,该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级;
目标基站根据该调度优先级调度该用户设备。
本发明实施例还提供了一种用户设备调度装置,该装置包括:
传递模块,设置为在用户设备从源基站切换至目标基站的过程中,将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站,该历史吞吐量信息用于在用户设备切换至目标基站后,目标基站根据该历史吞吐量信息确定该用户设备的调度优先级,并根据该调度优先级调度该用户设备。
可选的,所述传递模块包括:
第一传递单元,设置为将该历史吞吐量信息经过该用户设备传递至目标基站;或者
第二传递单元,设置为将该历史吞吐量信息经过核心网传递至目标基站;或者
第三传递单元,设置为将该历史吞吐量信息经过X2接口传递至目标基站。
可选的,所述第一传递单元是设置为:
在向目标基站发送切换请求,并且接收到目标基站发送的同意切换的切换响应后,向用户设备发送携带有该历史吞吐量信息的连接重配消息,用户设备根据该连接重配消息成功切换至目标基站时,向目标基站发送携带有该历史吞吐量信息的连接重配完成消息。
可选的,所述第二传递单元是设置为:
在判定将用户设备切换至目标基站,且切换方式为基于S1接口的切换时,经过所述核心网向目标基站发送携带有该历史吞吐量信息的切换请求。
可选的,所述第三传递单元是设置为:
在判定将用户设备切换至目标基站,且切换方式为基于X2接口的切换时,经过所述X2接口向目标基站发送携带有该历史吞吐量信息的切换请求。
本发明实施例还提供了一种用户设备调度装置,该装置包括:
接收模块,设置为在用户设备从源基站切换至目标基站的过程中,接收自该源基站传递而来的该用户设备接入在源基站中的历史吞吐量信息;
确定模块,设置为当用户设备切换至目标基站后,根据该历史吞吐量信息确定该用户设备的调度优先级;
调度模块,设置为根据该调度优先级调度该用户设备。
本发明实施例还提供了一种用户设备调度***,包括源基站和目标基站,该源基站包括上述的用户设备调度装置,该目标基站包括上述的用户设备调度装置。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供的用户设备调度方法、装置和***,在用户设备从源 基站切换至目标基站的过程中,该源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站,当用户设备切换至目标基站后,该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级,并根据该调度优先级调度该用户设备,从而可以提高目标基站对用户设备的调度性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明第一实施例提供的用户设备调度方法的流程示意图。
图2为源基站、目标基站和用户设备的连接架构示例图。
图3为连接重配消息和连接重配完成消息的传递示例图。
图4为本发明第二实施例提供的用户设备调度方法的流程示意图。
图5为本发明第三实施例提供的用户设备调度方法的流程示意图。
图6为本发明第四实施例提供的用户设备调度装置的功能模块图。
图7为本发明第五实施例提供的用户设备调度装置的功能模块图。
图8为本发明第六实施例提供的用户设备调度***的框图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
第一实施例
参阅图1所示,为本发明第一实施例提供的一种用户设备(User Equipment,简称UE)调度方法的流程示意图。在本实施例中,该用户设备调度方法包括以下步骤:
步骤S1,在UE从源基站切换至目标基站的过程中,该源基站将该UE接入在源基站中的历史吞吐量信息传递至该目标基站;
步骤S2,当UE切换至目标基站后,该目标基站根据该历史吞吐量信息 确定该UE的调度优先级;
步骤S3,目标基站根据该调度优先级调度该UE。
通过本实施例的用户设备调度方法,可以在UE从源基站切换至目标基站时,使目标基站可以根据UE的历史吞吐量计算UE的调度优先级,从而提高目标基站对UE的调度性能。
下面针对上述各步骤的实现细节进行进一步的描述:
步骤S1所述的UE例如可以是智能手机、平板电脑或者其他类似的移动通信电子装置。
在一个实施例中,例如图2所示,所述UE 1、源基站2和目标基站3之间可以参照LTE(Long Term Evolution,长期演进)标准***的架构进行连接。可选的,LTE***由演进分组核心网(全称Evolved Packet Core,EPC)4、演进型的统一陆地无线接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)和UE 1组成。其中,所述E-UTRAN中包括所述源基站2和目标基站3,源基站2和目标基站3之间通过X2接口进行互连,而源基站2和目标基站3又分别通过S1接口与核心网4相连。
通常UE 1通过接入到所述E-UTRAN中的一个基站中进行无线通信,当处于连接状态的UE 1从一个小区移动到另一个小区时,为了使UE 1的通信不中断,需要对UE 1进行所接入基站的切换操作。此时,UE 1在切换前所接入的基站即为所述源基站2,在切换后所接入的基站即为所述目标基站3。将UE 1从源基站2切换到目标基站3的过程包括以下步骤:
步骤a,源基站2根据UE 1的测量上报判定需要将UE 1向目标基站3进行切换;
步骤b,源基站2向目标基站3发送切换请求,请求将UE 1切换至目标基站3;
步骤c,目标基站3判定同意接入UE 1后,向源基站2发送同意切换的切换响应;
步骤d,源基站2接收到所述切换响应后,向UE 1发送连接重配消息;
步骤e,UE 1根据该连接重配消息成功切换至目标基站3时,向目标基 站3发送连接重配完成消息,从而通知目标基站3该UE 1成功接入目标基站3。
由于源基站2与目标基站3之间有直接通过所述X2接口直接互连通信和通过S1接口及核心网4间接互连通信两种方式。因此UE 1在源基站2和目标基站3之间进行切换的方式也对应有两种:一种是信令通过X2接口在源基站2和目标基站3之间直接传递的切换,被称为基于X2接口的切换,另一种是信令通过S1接口和核心网4在源基站2和目标基站3之间间接传递的切换,被称为基于S1接口的切换。
因此,若UE 1在源基站2和目标基站3之间采用所述基于X2接口的切换方式,则在所述步骤b中,源基站2向目标基站3发送切换请求的方式为通过X2接口直接向目标基站3发送。而在所述步骤c中,目标基站3向源基站2发送同意切换的切换响应的方式也为通过X2接口直接向源基站2发送。
若UE 1在源基站2和目标基站3之间采用所述基于S1接口的切换方式,则在所述步骤b中,源基站2向目标基站3发送切换请求的方式为将该切换请求经过所述S1接口和核心网4间接向目标基站3发送。而在所述步骤c中,目标基站3向源基站2发送同意切换的切换响应的方式也为经过所述S1接口和核心网4间接向源基站2发送。
步骤S1所述UE 1接入在源基站2中的历史吞吐量信息是指当判定需要将UE 1从源基站2切换至目标基站3的时刻,源基站2所统计得到的该UE 1的历史吞吐量信息。该历史吞吐量信息例如包括UE 1在设定的时间窗内的平均吞吐量,UE 1当前的瞬时吞吐量,UE 1在所述设定的时间窗内的最大平均吞吐量和最大瞬时吞吐量,等等。通常在一定的时间窗内,所述UE 1的最大平均吞吐量和最大瞬时吞吐量可以认为是常量,而UE 1在设定的时间窗内的平均吞吐量和UE 1当前的瞬时吞吐量可以认为是变量,该变量可以反映UE所需资源的多少。该历史吞吐量信息可以由源基站2在对UE 1进行介质访问控制(Media Access Control,MAC)层调度时统计得到。通常为了节约空口资源,在传递该历史吞吐量信息前,还需要将所得到的历史吞吐量信息进行编码,从而降低该历史吞吐量信息的数据量。
根据上述将UE 1从源基站2切换到目标基站3的过程描述,步骤S1中 源基站2将UE 1接入在源基站时的历史吞吐量信息传递至目标基站3的方法可以包括以下三种:
第一种:源基站2将该历史吞吐量信息经过UE 1传递至目标基站3。具体而言,经过步骤a,源基站2判定需要将UE 1切换至目标基站3,且切换方式为基于S1接口的切换或基于X2接口的切换,再经过步骤b和步骤c,源基站2向目标基站3发送切换请求,并且接收到目标基站3发送的同意切换的切换响应后,源基站2向UE 1发送携带有该历史吞吐量信息的连接重配消息,然后UE 1根据该连接重配消息成功切换至目标基站3时,向目标基站3发送携带有该历史吞吐量信息的连接重配完成消息,从而将该历史吞吐量信息传递至目标基站3。在一个实施例中,如图3所示,该连接重配消息可以为相关RRC(Radio Resource Control,无线资源控制协议)连接中常用的RRC连接重配置消息RRCConnectionReconfiguration,该连接重配完成消息可以为RRC连接重配置完成消息RRCConnectionReconfigurationComplete。
第二种:源基站2将该历史吞吐量信息经过核心网4传递至目标基站3。具体而言,经过步骤a,源基站2判定需要将UE 1切换至目标基站3,且切换方式为基于S1接口的切换时,经过步骤b,源基站2经过所述核心网4向目标基站3发送携带有该历史吞吐量信息的切换请求,从而将该历史吞吐量信息传递至目标基站3。
第三种:源基站2将该历史吞吐量信息经过X2接口直接传递至目标基站3。具体而言,经过步骤a,源基站2判定需要将UE 1切换至目标基站3,且切换方式为基于X2接口的切换时,经过步骤b,源基站2经过所述X2接口直接向目标基站3发送携带有该历史吞吐量信息的切换请求,从而将该历史吞吐量信息传递至目标基站3。
步骤S2中目标基站3根据该历史吞吐量信息确定UE 1的调度优先级,具体而言,步骤S2可以将所述历史吞吐量信息作为UE 1接入目标基站3时历史吞吐量的初始值,利用根据历史吞吐量确定UE 1调度优先级的算法,从而计算出UE 1在目标基站3中初始的调度优先级。例如,假设该历史吞吐量信息包括UE 1在设定的时间窗内的平均吞吐量R(t),UE 1当前的瞬时吞吐量r(t),UE 1在所述设定的时间窗内的最大平均吞吐量Rmax和最大瞬时吞吐 量rmax,则该根据历史吞吐量确定用户设备调度优先级的算法可以为根据上述R(t)、r(t)、Rmax和rmax计算出参考因子P,该参考因子P可以反映当R(t)或r(t)越大,则参考因子P越大,并进一步根据该参考因子P确定UE 1的调度优先级越高。该参考因子P的计算公式例如如下:
P=R(t)*r(t)/(Rmax*rmax)。
当然,UE 1的调度优先级也可以根据其他公式得到,例如指数或对数型公式,但要符合若该历史吞吐量信息指示的历史吞吐量越高,则目标基站确定该用户设备的调度优先级越高的原则。
步骤S3中目标基站3根据所确定的调度优先级调度UE 1。该调度优先级是根据UE 1接入在源基站2时的历史吞吐量信息确定的,根据上述原则可知,若UE 1接入在源基站2时的历史吞吐量越高,则UE 1接入在目标基站3时的调度优先级也越高,从而使UE 1从源基站2切换至目标基站3时,目标基站3可以根据UE1的历史吞吐量计算UE1的调度优先级,从而提高目标基站3对UE1的调度性能。
第二实施例
参阅图4所示,为本发明第二实施例提供的用户设备调度方法的流程示意图。在本实施例中,该用户设备调度方法由所述源基站2执行,该用户设备调度方法包括以下步骤:
步骤S10,在UE 1从源基站2切换至目标基站3的过程中,该源基站2将该UE 1接入在源基站2中的历史吞吐量信息传递至该目标基站3;
步骤S11,在UE 1切换至目标基站3后,使目标基站3根据该历史吞吐量信息确定该UE 1的调度优先级,并根据该调度优先级调度该UE 1。
上述步骤的具体实施细节可参考本发明第一实施例提供的用户设备调度方法中的描述,此处不再赘述。
第三实施例
参阅图5所示,为本发明第三实施例提供的用户设备调度方法的流程示 意图。在本实施例中,该用户设备调度方法由所述目标基站3执行,该用户设备调度方法包括以下步骤:
步骤S20,在UE 1从源基站2切换至目标基站3的过程中,该目标基站3接收自该源基站2传递而来的该UE 1接入在源基站2中的历史吞吐量信息;
步骤S21,当UE 1切换至目标基站3后,目标基站3根据该历史吞吐量信息确定该UE 1的调度优先级;
步骤S22,目标基站3根据该调度优先级调度该UE 1。
上述步骤的具体实施细节可参考本发明第一实施例提供的用户设备调度方法中的描述,此处不再赘述。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
第四实施例
参阅图6所示,为本发明第四实施例提供的用户设备调度装置100的功能模块图。在本实施例中,该用户设备调度装置100运行于所述源基站2中,该用户设备调度装置100包括:
传递模块101,设置为在UE 1从源基站2切换至目标基站3的过程中,将该UE 1接入在源基站2中的历史吞吐量信息传递至该目标基站3,该历史吞吐量信息用于在UE 1切换至目标基站3后,目标基站3根据该历史吞吐量信息确定该UE 1的调度优先级,并根据该调度优先级调度该UE 1。
可选地,该传递模块101包括:
第一传递单元,设置为将该历史吞吐量信息经过该UE 1传递至目标基站3;或者
第二传递单元,设置为将该历史吞吐量信息经过核心网4传递至目标基站3;或者
第三传递单元,设置为将该历史吞吐量信息经过X2接口传递至目标基 站3。
上述模块的具体实施细节可参考本发明第一实施例提供的用户设备调度方法中的描述,此处不再赘述。
第五实施例
参阅图7所示,为本发明第五实施例提供的用户设备调度装置200的功能模块图。在本实施例中,该用户设备调度装置200运行于所述目标基站3中,该用户设备调度装置200包括:
接收模块201,设置为在UE 1从源基站2切换至目标基站3的过程中,接收自该源基站2传递而来的该UE 1接入在源基站2中的历史吞吐量信息;
确定模块202,设置为当UE 1切换至目标基站3后,根据该历史吞吐量信息确定该UE 1的调度优先级;
调度模块203,设置为根据该调度优先级调度该UE 1。
上述模块的具体实施细节可参考本发明第一实施例提供的用户设备调度方法中的描述,此处不再赘述。
第六实施例
参阅图8所示,为本发明第六实施例提供的用户设备调度***300的框图。该用户设备调度***300包括所述源基站2和目标基站3,其中,该源基站2包括本发明第四实施例提供的用户设备调度装置100,该目标基站3包括本发明第五实施例提供的用户设备调度装置200。
本发明实施例提供的用户设备调度方法、装置和***,在将UE 1从源基站2切换至目标基站3的过程中,该源基站2将该UE 1接入在源基站2时的历史吞吐量信息传递至该目标基站3,当UE 1切换至目标基站3后,该目标基站3根据该历史吞吐量信息确定该UE 1的调度优先级,并根据该调度优先级调度该UE 1,从而可以提高目标基站3对UE 1的调度性能。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案在用户设备从源基站切换至目标基站时,提高了目标基站对用户设备的调度性能。

Claims (24)

  1. 一种用户设备调度方法,该方法包括:
    在用户设备从源基站切换至目标基站的过程中,该源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站;
    当用户设备切换至目标基站后,该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级;
    目标基站根据该调度优先级调度该用户设备。
  2. 如权利要求1所述的用户设备调度方法,其中,所述源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站包括:
    源基站将该历史吞吐量信息经过该用户设备传递至目标基站;或者
    源基站将该历史吞吐量信息经过核心网传递至目标基站;或者
    源基站将该历史吞吐量信息经过X2接口传递至目标基站。
  3. 如权利要求2所述的用户设备调度方法,其中,所述源基站将该历史吞吐量信息经过该用户设备传递至目标基站包括:
    在向目标基站发送切换请求,并且接收到目标基站发送的同意切换的切换响应后,源基站向用户设备发送携带有该历史吞吐量信息的连接重配消息;
    用户设备根据该连接重配消息成功切换至目标基站时,向目标基站发送携带有该历史吞吐量信息的连接重配完成消息。
  4. 如权利要求2所述的用户设备调度方法,其中,所述源基站将该历史吞吐量信息经过核心网传递至目标基站包括:
    在判定将用户设备切换至目标基站,且切换方式为基于S1接口的切换时,源基站经过所述核心网向目标基站发送携带有该历史吞吐量信息的切换请求。
  5. 如权利要求2所述的用户设备调度方法,其中,所述源基站将该历史吞吐量信息经过X2接口传递至目标基站包括:
    在判定将用户设备切换至目标基站,且切换方式为基于X2接口的切换时,源基站经过所述X2接口向目标基站发送携带有该历史吞吐量信息的切 换请求。
  6. 如权利要求1所述的用户设备调度方法,其中,所述目标基站根据该历史吞吐量信息确定该用户设备的调度优先级包括:
    将所述历史吞吐量信息作为用户设备接入目标基站时历史吞吐量的初始值,利用根据历史吞吐量确定用户设备调度优先级的算法,从而计算出用户设备在目标基站中初始的调度优先级。
  7. 如权利要求1所述的用户设备调度方法,其中,所述该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级包括:
    该历史吞吐量信息指示的历史吞吐量越高,则目标基站确定该用户设备的调度优先级越高。
  8. 如权利要求7所述的用户设备调度方法,其中,所述历史吞吐量信息指示的历史吞吐量包括用户设备在设定的时间窗内的平均吞吐量,以及用户设备当前的瞬时吞吐量。
  9. 一种用户设备调度方法,该方法包括:
    在用户设备从源基站切换至目标基站的过程中,该源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站,该历史吞吐量信息用于在用户设备切换至目标基站后,目标基站根据该历史吞吐量信息确定该用户设备的调度优先级,并根据该调度优先级调度该用户设备。
  10. 如权利要求9所述的用户设备调度方法,其中,所述源基站将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站包括:
    源基站将该历史吞吐量信息经过该用户设备传递至目标基站;或者
    源基站将该历史吞吐量信息经过核心网传递至目标基站;或者
    源基站将该历史吞吐量信息经过X2接口传递至目标基站。
  11. 如权利要求10所述的用户设备调度方法,其中,所述源基站将该历史吞吐量信息经过该用户设备传递至目标基站包括:
    在向目标基站发送切换请求,并且接收到目标基站发送的同意切换的切换响应后,源基站向用户设备发送携带有该历史吞吐量信息的连接重配消息, 用户设备根据该连接重配消息成功切换至目标基站时,向目标基站发送携带有该历史吞吐量信息的连接重配完成消息。
  12. 如权利要求10所述的用户设备调度方法,其中,所述源基站将该历史吞吐量信息经过核心网传递至目标基站包括:
    在判定将用户设备切换至目标基站,且切换方式为基于S1接口的切换时,源基站经过所述核心网向目标基站发送携带有该历史吞吐量信息的切换请求。
  13. 如权利要求10所述的用户设备调度方法,其中,所述源基站将该历史吞吐量信息经过X2接口传递至目标基站包括:
    在判定将用户设备切换至目标基站,且切换方式为基于X2接口的切换时,源基站经过所述X2接口向目标基站发送携带有该历史吞吐量信息的切换请求。
  14. 一种用户设备调度方法,该方法包括:
    在用户设备从源基站切换至目标基站的过程中,该目标基站接收自该源基站传递而来的该用户设备接入在源基站中的历史吞吐量信息;
    当用户设备切换至目标基站后,该目标基站根据该历史吞吐量信息确定该用户设备的调度优先级;
    目标基站根据该调度优先级调度该用户设备。
  15. 一种用户设备调度装置,该装置包括:
    传递模块,设置为在用户设备从源基站切换至目标基站的过程中,将该用户设备接入在源基站中的历史吞吐量信息传递至该目标基站,该历史吞吐量信息用于在用户设备切换至目标基站后,目标基站根据该历史吞吐量信息确定该用户设备的调度优先级,并根据该调度优先级调度该用户设备。
  16. 如权利要求15所述的用户设备调度装置,其中,所述传递模块包括:
    第一传递单元,设置为将该历史吞吐量信息经过该用户设备传递至目标基站;或者
    第二传递单元,设置为将该历史吞吐量信息经过核心网传递至目标基站; 或者
    第三传递单元,设置为将该历史吞吐量信息经过X2接口传递至目标基站。
  17. 如权利要求16所述的用户设备调度装置,其中,所述第一传递单元是设置为:
    在向目标基站发送切换请求,并且接收到目标基站发送的同意切换的切换响应后,向用户设备发送携带有该历史吞吐量信息的连接重配消息,用户设备根据该连接重配消息成功切换至目标基站时,向目标基站发送携带有该历史吞吐量信息的连接重配完成消息。
  18. 如权利要求16所述的用户设备调度装置,其中,所述第二传递单元是设置为:
    在判定将用户设备切换至目标基站,且切换方式为基于S1接口的切换时,经过所述核心网向目标基站发送携带有该历史吞吐量信息的切换请求。
  19. 如权利要求16所述的用户设备调度装置,其中,所述第三传递单元是设置为:
    在判定将用户设备切换至目标基站,且切换方式为基于X2接口的切换时,经过所述X2接口向目标基站发送携带有该历史吞吐量信息的切换请求。
  20. 一种用户设备调度装置,该装置包括:
    接收模块,设置为在用户设备从源基站切换至目标基站的过程中,接收自该源基站传递而来的该用户设备接入在源基站中的历史吞吐量信息;
    确定模块,设置为当用户设备切换至目标基站后,根据该历史吞吐量信息确定该用户设备的调度优先级;
    调度模块,设置为根据该调度优先级调度该用户设备。
  21. 一种用户设备调度***,包括源基站和目标基站,该源基站包括权利要求15至19中任一项所述的用户设备调度装置,该目标基站包括权利要求20所述的用户设备调度装置。
  22. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行 指令,所述计算机可执行指令用于执行权利要求1~8中任一项所述的方法。
  23. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求9~13中任一项所述的方法。
  24. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求14所述的方法。
PCT/CN2015/089246 2015-03-26 2015-09-09 一种用户设备调度方法、装置和*** WO2016150109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510137003.4A CN106162772A (zh) 2015-03-26 2015-03-26 一种用户设备调度方法、装置和***
CN201510137003.4 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016150109A1 true WO2016150109A1 (zh) 2016-09-29

Family

ID=56978822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089246 WO2016150109A1 (zh) 2015-03-26 2015-09-09 一种用户设备调度方法、装置和***

Country Status (2)

Country Link
CN (1) CN106162772A (zh)
WO (1) WO2016150109A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996301B (zh) * 2017-12-29 2021-02-12 上海无线通信研究中心 整网信道资源的智能调度方法及接入控制器和服务器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026875A (zh) * 2007-01-15 2007-08-29 中兴通讯股份有限公司 一种比例公平调度算法多模式配置及调度方法
CN102316540A (zh) * 2010-07-08 2012-01-11 中兴通讯股份有限公司 一种切换时的接入控制方法及***
US20120099454A1 (en) * 2010-10-22 2012-04-26 Korea Advanced Institute Of Science And Technology Apparatus and method for scheduling in wireless communication system
CN103634861A (zh) * 2012-08-27 2014-03-12 华为技术有限公司 一种小区切换的判断方法及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026875A (zh) * 2007-01-15 2007-08-29 中兴通讯股份有限公司 一种比例公平调度算法多模式配置及调度方法
CN102316540A (zh) * 2010-07-08 2012-01-11 中兴通讯股份有限公司 一种切换时的接入控制方法及***
US20120099454A1 (en) * 2010-10-22 2012-04-26 Korea Advanced Institute Of Science And Technology Apparatus and method for scheduling in wireless communication system
CN103634861A (zh) * 2012-08-27 2014-03-12 华为技术有限公司 一种小区切换的判断方法及基站

Also Published As

Publication number Publication date
CN106162772A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US10993277B2 (en) Enhanced PDCP duplication handling and RLC failure handling
US10999774B2 (en) Method and apparatus for inter-cell load distribution and interference mitigation in wireless communication system
US11729755B2 (en) MAC-PHY model for sidelink carrier (re)selection
TWI559803B (zh) 指派雙連接性操作中之分量載波
CN113170487B (zh) 无线通信***的自主模式下的副链路服务质量管理以及相关的方法和装置
CN111052787A (zh) 基于5g环境中的利用水平的功能选择
WO2014101674A1 (zh) 负载均衡的方法和网络控制节点
JP6363231B2 (ja) 進化型ノードb、モビリティマネジメントエンティティ、及びユーザ機器、並びに留意されているサービス及び留意されていないサービスをサポートする方法
KR101813822B1 (ko) D2d 발견 신호의 송신 방법과 송신 장치
WO2012116604A1 (zh) 上行预调度处理方法、装置和***
US20190342893A1 (en) Data Packet Transmission Method and Terminal
WO2016171716A1 (en) Flexible quality of service for inter-base station handovers within wireless network
WO2014094310A1 (zh) 资源调度的方法和装置
EP2922336A1 (en) Method, apparatus, and system for radio bearer control
US10237876B2 (en) Method and device for controlling access of terminal for efficient use of resources in mobile communication system
JP7386252B2 (ja) コンポーネントキャリア上の制御チャネルを取り扱うための技術
US20170188259A1 (en) Distributing l2 buffer status information in 5g multi-connectivity for efficient radio scheduling
CN107113335B (zh) 一种用户设备切换方法及设备
WO2017054128A1 (zh) 一种载波聚合技术中载波选择方法和设备
WO2013097789A1 (zh) 根据服务质量确定载波的方法、装置及***
WO2015085494A1 (zh) 基站及用户调度方法
WO2016077950A1 (zh) 一种控制信息处理的方法、装置和***
JP6900498B2 (ja) ハンドオーバー制御方法、ネットワーク側機器及びシステム
WO2016150109A1 (zh) 一种用户设备调度方法、装置和***
GB2495473A (en) Modifying transmission time interval (tti) allocation using high speed shared control channel (hs-scch) order

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886038

Country of ref document: EP

Kind code of ref document: A1