WO2016075811A1 - Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine - Google Patents

Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine Download PDF

Info

Publication number
WO2016075811A1
WO2016075811A1 PCT/JP2014/080178 JP2014080178W WO2016075811A1 WO 2016075811 A1 WO2016075811 A1 WO 2016075811A1 JP 2014080178 W JP2014080178 W JP 2014080178W WO 2016075811 A1 WO2016075811 A1 WO 2016075811A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
electric vehicle
actual
turning
yaw moment
Prior art date
Application number
PCT/JP2014/080178
Other languages
French (fr)
Japanese (ja)
Inventor
隆明 石井
野中 剛
荘平 大賀
大戸 基道
森本 進也
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/080178 priority Critical patent/WO2016075811A1/en
Publication of WO2016075811A1 publication Critical patent/WO2016075811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the embodiment of the disclosure relates to a turning assist system for an electric vehicle, an electric vehicle, and a rotating electric machine.
  • Patent Document 1 describes a control device that controls torque distribution to left and right wheels of a vehicle.
  • the control device includes a steering mode detection unit that detects a steering mode of the vehicle, a target yaw moment calculation unit that calculates a target yaw moment of the vehicle from the detected steering mode, and a left and right wheel drive torque for generating the target yaw moment.
  • the above prior art is for setting a target yaw moment based on a steering mode by a driver.
  • the target yaw moment does not change dynamically according to the vehicle behavior, but is determined statically with respect to the steering angle. There is a problem that the effect is not sufficient for tire wear.
  • the present invention has been made in view of such problems, and provides a turning assist system for an electric vehicle, an electric vehicle, and a rotating electrical machine capable of effectively reducing tire wear of the vehicle while ensuring turning response. With the goal.
  • a turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, and the field magnetic flux is changed.
  • At least a pair of motors that individually drive the at least a pair of drive wheels, a steering angle sensor that detects a steering angle of the steering wheel, a vehicle state quantity sensor that detects a vehicle state quantity of the electric vehicle, and the steering
  • a necessary yaw moment calculating unit that calculates a necessary yaw moment required for the electric vehicle to travel on the target turning path based on the steering angle based on the angle and the vehicle state quantity; and torque on the at least one pair of driving wheels.
  • An actual torque amount calculating unit that calculates an actual torque amount individually applied to the at least one pair of drive wheels so as to generate the necessary yaw moment by giving a difference; and A field control unit individually controlling the field flux of said at least one pair of motor based on the torque amount, the turning assist system for an electric vehicle having applied.
  • an electric vehicle having at least a pair of drive wheels, a pair of steering wheels, and the turning assist system is applied.
  • a rotating electrical machine that is provided in the turning assist system of the electric vehicle and configured to change the field magnetic flux is applied.
  • a turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, wherein the field magnetic flux is changed, and the at least one pair of At least a pair of motors that individually drive the driving wheels, a means for detecting a steering angle of the steering wheels that is input by a driver, and a field magnetic flux of the at least one pair of motors are individually varied to thereby change the electric motor
  • a turn assist system for an electric vehicle having means for generating a yaw moment necessary for the vehicle to travel on a target turning trajectory based on the steering angle is applied.
  • a turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, wherein the field magnetic flux is changed, and the at least one pair of At least a pair of motors that individually drive the driving wheels; a steering angle sensor that detects a steering angle of the steering wheel that is input by a driver; a vehicle state quantity sensor that detects a vehicle state quantity of the electric vehicle; Based on the steering angle and the vehicle state quantity, a necessary yaw moment required for the electric vehicle to travel on the target turning path based on the steering angle is calculated, and a torque difference is given to the at least one pair of driving wheels.
  • An actual torque amount individually applied to the at least one pair of drive wheels is calculated so as to generate a necessary yaw moment, and the at least one pair of motors is calculated based on the actual torque amount.
  • Turning-assist system for an electric vehicle and a control device for controlling the field magnetic flux individually applies.
  • a turning assist method for an electric vehicle including at least a pair of driving wheels and a pair of steering wheels, the steering angle of the steering wheels input by a driver and the electric motor.
  • a step of individually controlling the field magnetic fluxes of at least a pair of motors that individually drive the drive wheels are individually controlled.
  • a control device for assisting turning of an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, the steering angle of the steering wheels being input by a driver.
  • a necessary yaw moment calculating unit that calculates a necessary yaw moment necessary for the electric vehicle to travel on a target turning trajectory based on the steering angle based on a vehicle state quantity of the electric vehicle, and the at least one pair of drive wheels
  • An actual torque amount calculation unit for calculating an actual torque amount to be individually applied to the at least one pair of drive wheels so as to generate a necessary yaw moment by giving a torque difference to the magnetic field flux, and a field magnetic flux based on the actual torque amount
  • a field control unit configured to individually control the field magnetic flux of at least a pair of motors configured to individually change the at least a pair of driving wheels. Location is applied.
  • tire wear can be effectively reduced while ensuring turning response of an electric vehicle.
  • FIG. 1 is an overall configuration diagram illustrating an example of a conceptual configuration of an electric vehicle and a turning assist system according to a first embodiment. It is an axial direction sectional view showing an example of composition of a motor provided with a variable field mechanism installed in an electric vehicle. It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the maximum. It is a perspective view showing an example of the state of a rotor when field magnetic flux is medium. It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the minimum. It is a characteristic view showing an example of the relationship between the relative angle of two sets of field magnetic pole parts, and field strength.
  • electric vehicle refers to a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV) with an external charging function, a hydrogen fuel cell vehicle (so-called electric vehicle (EV), FCV) and the like.
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • FCV hydrogen fuel cell vehicle
  • the electric vehicle 100 includes a pair of steering wheels 101 and 102, a handle 108, a steering actuator 110, an operation pedal 113, a pair of drive wheels 103 and 104, and a pair of Motors 105 and 106 and a turning assist system 150 are mainly provided.
  • the pair of steered wheels 101 and 102 have a degree of freedom of rotation so that they can be steered, and are fixed to the front of the vehicle body.
  • the steering wheel 108 inputs a steering amount when the driver steers, and is connected to the steering actuator 110 via a steering angle sensor 109 (an example of means for detecting a steering angle).
  • the steered actuator 110 adjusts the steering angle of the steered wheels 101 and 102 based on the steering amount of the handle 108 and is connected to the steered wheels 101 and 102 via tie rods.
  • the steering actuator 110 and the handle 108 are mechanically connected by, for example, a steering column, so that the steering amount of the handle 108 is controlled by the control amount of the steering actuator 110 (that is, the steering wheels 101 and 102 are steered). (Corner) may be directly reflected.
  • the pair of drive wheels 103 and 104 are connected to a pair of motors 105 and 106 fixed to the rear of the vehicle body via a shaft.
  • Motors 105 and 106 (corresponding to an example of a rotating electrical machine) are electrically connected to a control device 107, and individually drive or brake the drive wheels 103 and 104.
  • Each of the motor 105 and the motor 106 includes a variable field mechanism (see FIG. 2 and the like), which will be described later, and is configured to change the field magnetic flux.
  • the turning assist system 150 is mounted on the electric vehicle 100 and assists the turning of the electric vehicle 100.
  • the turning assist system 150 includes the motors 105 and 106, a steering angle sensor 109, a vehicle state quantity sensor 120, and a control device 107.
  • the vehicle state quantity sensor 120 includes a vehicle body motion sensor 111, an absolute speed sensor 112, wheel speed sensors 114, 115, 116, 117 (corresponding to an example of a rotational speed sensor) and the like.
  • the control device 107 performs drive control of the motors 105 and 106 based on information from various sensors including the steering angle sensor 109.
  • the control device 107 is connected to an operation pedal 113 and a steering angle sensor 109, and an acceleration request and a deceleration request from the driver are transmitted from the operation pedal 113, and a turning request from the driver is transmitted from the steering angle sensor 109. Is done.
  • the control device 107 includes wheel speed sensors 114, 115, 116, and 117 that detect rotational speeds of the steering wheels 101 and 102 and the drive wheels 103 and 104, and a vehicle body motion sensor 111 that detects yaw rate, longitudinal acceleration, and lateral acceleration.
  • an absolute speed sensor 112 that directly measures the ground speed of the electric vehicle 100, and information about the electric vehicle 100 is acquired from these sensors 111, 112, and 114 to 117.
  • the control device 107 When accelerating or decelerating the electric vehicle 100, the control device 107, based on the driver's acceleration request or deceleration request input from the operation pedal 113, the torque (requested torque) required to realize the acceleration desired by the driver. ) Is calculated.
  • the driving of the vehicle is controlled by supplying a driving current corresponding to the required torque to the motors 105 and 106. Details of the function of the control device 107 will be described later (see FIG. 9).
  • the motor 105 includes a stator 10 including a stator winding 12 and a stator core 13, and a rotor 30, and a plurality of rotors 30 (three in this example) in the axial direction. ) And is configured to be rotatable relative to each other.
  • the motor 105 is provided outside the anti-load side of the frame 17 and operates on a control motor 70 (see FIG. 9 to be described later) that operates a mechanism for rotating the rotor 30 relative to the anti-load side surface of the rotor 30.
  • the sensor magnet 20 is provided, and the rotational position detector 25 is provided so as to face the sensor magnet 20.
  • the rotational position detector 25 detects the rotational position of the rotor 30.
  • the “load side” refers to the direction in which the load is attached to the motor 105, that is, the direction in which the shaft 34 projects (right side in FIG. 2) in this example.
  • the direction opposite to the side, that is, the direction in which the gear wheel 23 and the like are disposed with respect to the motor 105 (left side in FIG. 2) is indicated.
  • the stator winding 12 is mounted on a stator core 13, the stator core 13 is fastened to a load side bracket 16 by a stator fastening bolt 14, and the frame 17 is fastened to the load side bracket 16 by a bolt 11. .
  • the shaft 34 is rotatably held by a load side bearing 18 installed on the load side bracket 16 and an anti-load side bearing 19 installed on the frame 17.
  • the rotor 30 is configured such that a plurality of magnetic pole portions 53 and 63 in which field magnets are installed are divided into two sets and are relatively rotated, and two fixed rotors 50 and one movable rotation. It has a child 60.
  • the movable rotor 60 is disposed at the center, and the two fixed rotors 50 are disposed adjacent to both sides in the axial direction of the movable rotor 60.
  • the movable rotor 60 has a structure that is rotated by a control motor 70.
  • the control motor 70 relatively rotates the two magnetic pole portions 53 and 63. Specifically, when the control motor 70 rotates the worm gear 27, the gear wheel 23 rotates and the feed male screw 42 moves in the axial direction with respect to the feed screw 43. A movable bearing 40 is attached to the load side end of the feed male screw 42, and the pin 36 and the pin holder 28 are moved in the axial direction while blocking the rotation of the rotor 30. The pin 36 moves the slider 37 outside the shaft 34 in the axial direction. Since the outside of the slider 37 is engaged with the hub 32 by a torsion spline, when the slider 37 moves in the axial direction, the hub 32 and the central movable rotor 60 engaged therewith are fixed to the shaft 34. It rotates with respect to the two fixed rotors 50.
  • the two fixed rotors 50 are fixed to the shaft 34 by bolts 35 via the load side plate 31 and the anti-load side plate 33.
  • O-rings 15 are mounted on both sides of the hub 32 to prevent the grease filled in the mechanism for rotating the rotor 30 from being relatively scattered.
  • the feed male screw 42 and the feed screw 43 are, for example, trapezoidal threaded.
  • the gear wheel 23 is rotatably supported by a bearing 26. Since the feed male screw 42 has a hexagonal hole and is engaged with the hexagonal shaft 23a of the gear wheel 23, rotation is transmitted so as to be movable in the axial direction.
  • two angular bearings are used facing each other in the movable bearing 40 attached to the feed male screw 42 and are fixed by a bearing holder 44 and a bolt 45.
  • two angular bearings are used facing each other and fixed to the fixed bearing 41 attached to the feed screw 43 by a nut 29.
  • the gear wheel 23 is covered with a cover 24. Further, a connection portion 21 is provided on the side opposite to the load of the stator 10.
  • the fixed rotor 50 includes an annular first iron core 51 and a plurality of first permanent magnets 52 (corresponding to an example of a field magnet) embedded in the first iron core 51 in the axial direction. It has.
  • the plurality of first permanent magnets 52 is a mode in which two permanent magnets 52 with the same poles facing each other form a V-shaped pair projecting radially inward, and the opposing magnetic poles are alternately changed in the circumferential direction.
  • One iron core 51 is disposed.
  • a plurality of first magnetic pole portions 53 having N and S poles having different polarities alternately are formed in the circumferential direction of the fixed rotor 50.
  • the movable rotor 60 is configured to rotate relative to the shaft 34.
  • the movable rotor 60 includes an annular second iron core 61 and a plurality of second permanent magnets 62 (corresponding to an example of field magnets) (not shown) embedded in the axial direction of the second iron core 61.
  • the plurality of second permanent magnets 62 is a mode in which two permanent magnets 62 with the same polarity facing each other form a V-shaped pair protruding radially inward, and the opposing magnetic poles are alternately changed in the circumferential direction.
  • Two iron cores 61 are arranged.
  • a plurality of second magnetic pole portions 63 having N and S poles having different polarities alternately are formed in the circumferential direction of the movable rotor 60.
  • FIG. 3 shows the state of the rotor when the field magnetic flux is maximum.
  • the magnetic pole portions of the same polarity of each fixed rotor 50 and the movable rotor 60 that is, the first magnetic pole portion 53 of the N pole (S pole) of the fixed rotor 50 and the N pole (S pole) of the movable rotor 60.
  • the second magnetic pole portion 63 is aligned in the axial direction (relative angle is 0 degree in electrical angle), so that the field magnetic flux generated by the permanent magnet 52 of the fixed rotor 50 and the permanent magnet 62 of the movable rotor 60 is maximized. It becomes a state.
  • FIG. 4 shows the state of the rotor when the field magnetic flux is medium.
  • the movable rotor 60 rotates relative to the two fixed rotors 50.
  • the first magnetic pole portion 53 of each fixed rotor 50 and the second magnetic pole portion 63 of the movable rotor 60 have the same polarity, the first magnetic pole portion 53 of N pole (S pole) and the second pole of N pole (S pole).
  • the state in which the magnetic pole part 63 is aligned in the axial direction and the state in which the first magnetic pole part 53 having the N pole (S pole) and the second magnetic pole part 63 having the S pole (N pole) having different polarities are aligned in the axial direction.
  • the field magnetic flux generated by the permanent magnet 52 of the fixed rotor 50 and the permanent magnet 62 of the movable rotor 60 is in an intermediate state.
  • FIG. 5 shows the state of the rotor when the field magnetic flux is minimum.
  • the magnetic pole portions of different polarities of the fixed rotor 50 and the movable rotor 60 that is, the first magnetic pole portion 53 of the N pole (S pole) of the fixed rotor 50 and the S pole (N pole) of the movable rotor 60.
  • the second magnetic pole portion 63 is aligned in the axial direction (the relative angle is 180 degrees in electrical angle), so that the magnetic flux generated by the permanent magnet 52 of each fixed rotor 50 and the permanent magnet 62 of the movable rotor 60 is fixedly rotated.
  • a short circuit occurs between the first iron core 51 of the child 50 and the second iron core 61 of the movable rotor 60, so that the field magnetic flux is minimized.
  • the iron loss generated in the rotor 30 can be sufficiently reduced, and the motor 105 can operate with high efficiency even in the high rotation operation region.
  • the field magnetic flux (induced voltage) becomes the maximum
  • the field magnetic flux (induced voltage) is minimized when the different first magnetic pole portion 53 and second magnetic pole portion 63 are aligned in the axial direction.
  • the rotor 30 can arbitrarily adjust the relative angle between the fixed rotor 50 and the movable rotor 60 between FIG. 3 and FIG. 5 by operating the control motor 70, thereby increasing the field strength. Can be changed.
  • FIG. 7A and 7B an example of control numerical map measurement at the time of maximum efficiency vector control of the motors 105 and 106 will be described.
  • the rotation speed and torque output ratio are plotted on the horizontal and vertical axes, respectively.
  • 7A shows the magnetic field factor ⁇
  • FIG. 7B shows the phase angle ⁇ of the current in the three-phase current that flows through the stator winding 12 with respect to the magnetic pole position created by the two sets of magnetic pole portions 53 and 63 in total. Yes.
  • the phase angle ⁇ of the current increases, the rotating electromagnetic force generated by the stator 10 advances with respect to the magnetic poles of the rotor 30 and the field weakening force increases.
  • the relative angle ⁇ of the two magnetic pole portions 53 and 63 is adjusted so that the magnetic field factor is 69%, and the current phase angle ⁇ is If energized at 78 °, the efficiency of the motor 105 is maximized.
  • the field factor ⁇ is decreased as the rotation speed is higher, the output is lower, and the current phase angle ⁇ is smaller.
  • the control may be performed such that the higher the rotation speed is, the higher the output is, and the higher the output is.
  • map control can be performed by replacing the output with a torque command for convenience.
  • the degree of depression of the operation pedal 113 is made to correspond to the magnitude of the torque command, and the field factor ⁇ , the current phase angle ⁇ and the current I are read from the rotational speed N of the motors 105 and 106 and the torque command T. It is controlled within the error set by feedback control using it as a target value.
  • Dmn stores three pieces of data, ie, a field factor ⁇ mn, a current phase angle ⁇ mn, and a current Imn.
  • ⁇ mn a field factor
  • ⁇ mn a current phase angle
  • Imn a current Imn
  • control device 107 appropriately corrects the drive current in accordance with the turning request of the driver, thereby assisting the drive wheels 103 and 104 to provide the yaw moment required at the start of turning. Torque control is performed. As shown in FIG. 9, in order to perform this torque control, the control device 107 performs a target wheel slip angle calculation unit 151, an actual vehicle slip angle calculation unit 152, an actual wheel slip angle calculation unit 153, a necessary yaw amount, and the like. A moment calculation unit 154, a torque correction amount calculation unit 155, an actual torque amount calculation unit 156, and a field control unit 157 (an example of means for generating a necessary yaw moment) are provided.
  • both the torque correction amount calculation unit 155 and the actual torque amount calculation unit 156 correspond to an example of the actual torque amount calculation unit.
  • processing in the necessary yaw moment calculation unit 154, the actual torque amount calculation unit 156, the field control unit 157, and the like described above is not limited to the example of sharing of these processes, and for example, a smaller number of processing units It may be processed by (one processing unit or the like), or may be processed by a further subdivided processing unit. Further, in the control device 107, all functions may be implemented by a program executed by a CPU 901 (see FIG. 17) to be described later, or a part or all of the functions may actually be an ASIC, FPGA, other electric circuit, or the like. May be implemented by the apparatus.
  • step S201 When the driver steers the steered wheels 101 and 102 via the handle 108 to turn the vehicle body while traveling, the control device 107 steers the steered wheels 101 and 102 detected by the steering angle sensor 109 in step S201. Get the corner. Since this steering angle is the magnitude of the driver's turning request, subsequent control is performed with the turning radius of the electric vehicle 100 calculated based on the steering angle as a target.
  • step S201 ends, the process proceeds to step S202.
  • step S202 the control device 107, in the target wheel slip angle calculation unit 151, based on the steering angle acquired in step S201 and the current vehicle speed detected by the absolute speed sensor 112, a target turning trajectory that is a control target. And the target wheel slip angle required for the electric vehicle 100 to travel on the target turning trajectory is calculated.
  • the control device 107 first calculates the lateral acceleration (that is, the centrifugal force acting on the electric vehicle 100) when turning on the target turning trajectory. Next, the lateral force necessary to generate the calculated lateral acceleration is calculated for each of the wheels 101 to 104. Then, the target wheel slip angle of each wheel 101 to 104 is calculated based on the calculated magnitude of the lateral force and the contact state of each wheel 101 to 104 (for example, the contact load or contact angle of the wheel). In addition, what is necessary is just to utilize a target vehicle body slip angle as the target wheel slip angle of the drive wheels 103 and 104 which do not steer. This is because the drive wheels 103 and 104 are usually mounted substantially parallel to the length direction of the vehicle body, which is equivalent to controlling the target vehicle body slip angle as a target value. When step S202 ends, the process proceeds to step S203.
  • the lateral acceleration that is, the centrifugal force acting on the electric vehicle 100
  • the lateral force necessary to generate the calculated lateral acceleration is calculated for each of the wheels 101 to
  • step S ⁇ b> 203 the control device 107 acquires a vehicle state quantity (for example, acceleration or speed of the electric vehicle 100) necessary for controlling the motors 105 and 106 via the vehicle state quantity sensor 120 provided in the electric vehicle 100.
  • the vehicle state quantity sensor 120 corresponds to the vehicle body movement sensor 111, the absolute speed sensor 112, the wheel speed sensors 114 to 117, and the vehicle state quantity acquired by the control device 107 is the vehicle state movement sensor 111.
  • step S204 the control device 107 calculates the actual vehicle body slip angle in the actual vehicle body slip angle calculation unit 152 based on the vehicle state quantity acquired in step S203.
  • step S204 a method using an approximate calculation formula using vehicle speed, steering angle, yaw rate, or lateral acceleration
  • vehicle motion It is preferable to calculate using an observer method using a model.
  • a vehicle motion model that simulates the dynamic turning motion of the vehicle is built in the control logic, and the vehicle state quantity acquired in step S203 is input to the model.
  • the measurable vehicle state quantity such as the yaw rate is compared with the vehicle state quantity in the model, and the error is fed back to the model so that the behavior of the model matches the actual vehicle.
  • the observer's idea is to use the vehicle body slip angle, which is an internal variable of the vehicle motion model obtained in this way, as an estimated vehicle body slip angle for control.
  • step S205 the control device 107 uses the actual wheel slip angle calculation unit 153 to calculate the actual vehicle slip angle calculated in step S204 and the relative positions of the wheels 101 to 104 (mainly the steering angles of the steering wheels 101 and 102).
  • the actual wheel slip angles of the wheels 101 to 104 are calculated.
  • the simplest method for calculating the actual wheel slip angle of the steered wheels 101, 102 is to subtract the actual vehicle body slip angle calculated in step S204 from the steering angle.
  • the simplest method is to regard the actual vehicle slip angle calculated in step S204 as the actual wheel slip angle.
  • step S205 the process proceeds to step S206.
  • step S206 the control device 107 causes the required yaw moment calculation unit 154 to calculate the target wheel slip angle of each wheel 101 to 104 calculated in step S202 and the actual wheel slip angle of each wheel 101 to 104 calculated in step S205. In comparison, a yaw moment (hereinafter referred to as “necessary yaw moment”) necessary for traveling on the target turning trajectory is calculated.
  • the necessary yaw moment can be calculated by multiplying the insufficient lateral force by the distance from the center of gravity to the corresponding wheel and adding up all the wheels 101-104.
  • step S206 From the viewpoint of absorbing torque delay, detection error, output error, etc., a controller such as PID control is mounted, and a value obtained by multiplying the necessary yaw moment calculated as described above by some control gain is used as a control value. It is preferable to set the required moment.
  • step S206 ends, the process proceeds to step S207.
  • step S207 the control device 107 individually provides the drive wheels 103 and 104 with the torque correction amount calculation unit 155 to provide the torque difference to the drive wheels 103 and 104 and generate the necessary yaw moment calculated in step S206.
  • a torque correction amount (torque correction amount) to be applied is calculated. Basically, if the value of the required yaw moment in step S206 is divided by the distance from the center of gravity to the drive wheels 103, 104, the force to be applied to the drive wheels 103, 104 can be obtained individually. Therefore, if this force is multiplied by the radius of the drive wheels 103 and 104, a torque correction amount for generating the necessary yaw moment can be calculated.
  • step S207 ends, the process proceeds to step S208.
  • step S208 the control device 107 adds the torque correction amount calculated in step S207 to the required torque amount calculated from the depression amount of the operation pedal 113 (driver's required acceleration) in the actual torque amount calculation unit 156, The actual amount of torque actually applied to each of the drive wheels 103 and 104 is calculated.
  • step S208 ends the process proceeds to step S209.
  • step S209 the control device 107 causes the field control unit 157 to apply the actual torque amount calculated in step S208 to the drive wheels 103 and 104 via the motors 105 and 106, respectively, so that the field magnetic flux of the motors 105 and 106 is increased.
  • the field controller 157 determines the field ratio ⁇ , the phase angle ⁇ , the rotational speed of the motors 105 and 106 detected by the wheel speed sensors 116 and 117, and the actual torque amount calculated in step S208.
  • the target value of the current I is read with reference to the map. Then, the control motor 70 is controlled so that the field ratio ⁇ becomes the target value, and the stator winding 12 is energized so that the phase angle ⁇ and the current value I become the target values.
  • FIG. 11 is a response curve diagram illustrating an example of a vehicle body motion response of the electric vehicle 100 by the turning assist system 150.
  • the solid line 301 in the upper response curve diagram of FIG. 11 shows the change with time of the steering angle of the steered wheels 101 and 102.
  • a broken line 302 in the response curve diagram in the second stage in FIG. 11 indicates a time change of the wheel slip angle of the steered wheels 101 and 102 when the torque correction control described in FIG. 10 is not performed.
  • a solid line 303 indicates a time change of the wheel slip angle of the steered wheels 101 and 102 in the present embodiment in which the torque correction control is performed.
  • the wheel slip angles of the steering wheels 101 and 102 rise rapidly and start the yaw movement of the vehicle body as indicated by the broken line 302 when torque correction control is not performed. After passing through an excessive state, it converges to a wheel slip angle commensurate with the centrifugal force and shifts to a steady turning state.
  • the yaw moment generation by the drive wheels 103 and 104 described with reference to FIG. 10 is performed prior to the yaw moment generation by the steering wheels 101 and 102.
  • the wheel slip angles of the steered wheels 101 and 102 can quickly converge to a steady value without transitioning to an excessive state and shift to a steady turning state.
  • the increase in the wheel slip angle of the steered wheels 101, 102 during turning can be suppressed, the increase in the dynamic friction area of the tire can be suppressed, and the tire wear can be reduced.
  • a solid line 305 indicates a change over time in the wheel slip angles of the drive wheels 103 and 104 in the present embodiment in which the torque correction control is performed.
  • the wheel slip angles of the drive wheels 103 and 104 have gone through an excessive state in which the yaw movement of the vehicle body starts suddenly as the steering angle increases as indicated by the broken line 304. Later, it converges to a wheel slip angle commensurate with the centrifugal force and shifts to a steady turning state.
  • the wheel slip angles of the drive wheels 103 and 104 promptly enter a transient state in which the course change precedes the rotational movement of the vehicle body as the steering angle increases. It is possible to shift to a steady turning state.
  • FIG. 11 is a response curve diagram of the left and right drive torques of the drive wheels 103 and 104 in the present embodiment in which the torque correction control is performed.
  • a solid line 306 in the lowermost response curve diagram shows a change over time in the drive torque of the turning outer wheel (for example, the drive wheel 103) of the drive wheels 103 and 104 when the torque correction control is performed.
  • An alternate long and short dash line 307 indicates a change over time in the driving torque of the turning inner wheel (for example, the driving wheel 104) of the driving wheels 103 and 104.
  • the yaw moment is generated by generating a large left-right torque difference between the drive wheels 103 and 104 in a transient state at the initial turning.
  • a torque correction amount (left-right drive torque difference in the steady state) that assists the turn in the steady state as well as the turning transient state is calculated. This may be added to the required torque amount to obtain the actual torque amount.
  • the target wheel slip angle and the actual wheel slip angle of all the wheels 101 to 104 are calculated.
  • the present invention is not limited to this.
  • the required yaw moment may be calculated by obtaining the target wheel slip angle and the actual wheel slip angle of one of the pair of steered wheels 101 and 102 and the pair of drive wheels 103 and 104.
  • the wheel slip angle of the steered wheels 101 and 102 can be reduced.
  • the pair of steered wheels 101 and 102 is a control target, the occurrence of slippage of the steered wheels 101 and 102 can be prevented, and if the pair of drive wheels 103 and 104 is a control target, vehicle body stability can be prevented. Can be achieved.
  • the turning assist system 150 of the present embodiment includes the pair of motors 105 and 106, the steering angle sensor 109, the vehicle state quantity sensor 120, and the control device that are configured so that the field magnetic flux changes. 107.
  • the control device 107 includes a field control unit 157 that individually controls the field magnetic flux of the pair of motors 105 and 106 based on the steering angle and the vehicle state quantity.
  • a torque difference corresponding to the steering angle and the vehicle state quantity can be given to the pair of drive wheels 103 and 104. It becomes.
  • the lateral force load on the steered wheels 101 and 102 can be reduced, so that the wheel slip angle on the steered wheels 101 and 102 can be reduced, and the amount of tire wear can be reduced. Therefore, tire wear can be effectively reduced while ensuring turning response.
  • control device 107 of the turning assist system 150 includes a necessary yaw moment calculator 154, a torque correction amount calculator 155, and an actual torque amount calculator 156.
  • 104 can assist. That is, the yaw motion (rotational motion in the turning direction) of the vehicle body at the time of turning can be caused using not only the lateral force due to the steering of the steering wheels 101 and 102 but also the longitudinal force of the driving wheels 103 and 104.
  • the lateral force load on the steered wheels 101 and 102 can be reduced, so that the wheel slip angle on the steered wheels 101 and 102 can be reduced, and the amount of tire wear can be reduced. Therefore, tire wear can be effectively reduced while ensuring turning response.
  • the torque applied to the drive wheels 103 and 104 is controlled by changing the field magnetic flux of the motors 105 and 106, the torque is high in a wide torque range from low torque to high torque compared to a motor with fixed field magnetic flux. It can be driven efficiently. As a result, there is also an effect that the heat generation of the motors 105 and 106 (particularly, the motor on the outer ring side when turning) can be suppressed.
  • the motors 105 and 106 are provided with the stator 10 including the stator winding 12, the plurality of magnetic pole portions 53 provided with the first permanent magnet 52, and the second permanent magnet 62.
  • the rotor 30 is configured to be relatively rotated by being divided into two sets of a plurality of magnetic pole portions 63, and a control motor 70 that relatively rotates the two sets of magnetic pole portions 53 and 63.
  • the field control unit 157 controls the field magnetic flux of the motors 105 and 106 by controlling the control motor 70 based on the actual torque amount. With such a structure, the field magnetic flux can be accurately controlled regardless of the load torque and rotation speed of the motors 105 and 106.
  • the vehicle state quantity sensor 120 includes wheel speed sensors 116 and 117 that detect the rotation speeds of the motors 105 and 106, and the field control unit 157 determines the field speed based on the rotation speed and the actual torque amount.
  • Map control is performed for reading out the magnetic susceptibility ⁇ , the phase angle ⁇ , and the current target value with reference to the map.
  • the field magnetic flux of the motors 105 and 106 can be finely adjusted according to the rotational speed and the actual torque amount, so that highly accurate torque control can be performed on the drive wheels 103 and 104.
  • control device 107 includes a target wheel slip angle calculation unit 151, an actual vehicle body slip angle calculation unit 152, and an actual wheel slip angle calculation unit 153, and a necessary yaw moment calculation unit 154. Calculates the required yaw moment based on the difference between the target wheel slip angle and the actual wheel slip angle.
  • the field control of the motors 105 and 106 is performed so that the actual wheel slip angle of the drive wheels 103 and 104 becomes the target wheel slip angle, so the actual vehicle body slip angle is controlled with respect to the target value. Will do. Therefore, it is possible to avoid the occurrence of spin (oversteer) in which the vehicle body slip angle is excessive and understeer in which the slip angle of the steerable wheels 101 and 102 is excessive, thereby stabilizing the running performance. be able to.
  • the target wheel slip angle calculation unit 151 calculates the target wheel slip angle for both the steering wheels 101 and 102 and the drive wheels 103 and 104
  • the actual wheel slip angle calculation unit 153 includes the steering wheel.
  • the wheel slip angles are calculated for both 101 and 102 and the drive wheels 103 and 104.
  • the target wheel slip angle calculation unit 151 calculates the target wheel slip angle only for one of the steering wheels 101 and 102 or the drive wheels 103 and 104 (for example, the steering wheels 101 and 102), and the actual wheel slip angle calculation unit. 153 may calculate the actual wheel slip angle for only one of the steered wheels 101, 102 or the drive wheels 103, 104. In this case, since the amount of calculation can be reduced, the processing speed of the control device 107 can be increased and the cost can be reduced.
  • Second Embodiment> Next, a second embodiment will be described.
  • the amount of yaw moment generated by torque correction of the drive wheels 103 and 104 in the first embodiment is positively increased, and the burden on the steered wheels 101 and 102 is further reduced.
  • the wear of the steered wheels 101 and 102 can be further reduced.
  • the steering actuator 110 and the handle 108 are mechanically separated from each other, or provided with a variable gear ratio mechanism or the like in the middle of the steering column.
  • the reason for this configuration is that in the first embodiment, the steering angle of the steered wheels 101 and 102 is not the control target of the control device 107, so it does not matter whether the steered actuator 110 and the handle 108 are mechanically connected. This is because, in this embodiment, the steering angle is the control target.
  • the steering angle of the steered wheels 101 and 102 can be set independently of the handle angle (steering amount) of the handle 108.
  • the control device 107A includes a turning yaw moment calculating unit 158 and an actual steering angle calculating unit 159 in addition to the functions of the target wheel slip angle calculating unit 151 and the like described in the first embodiment.
  • step S401 When the driver turns the vehicle body with the handle 108 while the driver is traveling, the control device 107A first acquires the steering amount (handle angle) of the handle 108 that is input from the driver and detected by the steering angle sensor 109 in step S401. To do. When step S401 ends, the process proceeds to step S402.
  • step S402 the control device 107A assumes that the turning yaw moment calculation unit 158 performs a turning motion at an input steering angle that is directly obtained from the steering amount (turning request) acquired in step S401. Calculate the yaw moment that Then, an amount of assisting the calculated yaw moment with a yaw moment (hereinafter referred to as “turning yaw moment”) generated by torque control of the drive wheels 103 and 104 is calculated. That is, here, a part of the yaw moment that the steering wheels 101 and 102 bear in the first embodiment is also borne by the driving wheels 103 and 104 based on a predetermined burden ratio or the like.
  • the amount that 103 and 104 bear (the amount of generation of the turning yaw moment) is determined. For example, if all of the necessary yaw moment is generated by torque control, the steering wheel 101, 102 is turned without turning the steering wheel, and on the contrary, the generation rate by torque control is reduced. If it does, the steering angle and the vehicle state at the time of turning approach the vehicle of “no control”. When step S402 ends, the process proceeds to step S403.
  • step S403 the control device 107A calculates a steering angle (steering angle correction amount) corresponding to the turning yaw moment calculated in step S402 in the actual steering angle calculation unit 159, and calculates the calculated steering angle from the input steering angle.
  • the actual steering angle for actually adjusting the steered wheels 101 and 102 is calculated by subtracting.
  • the steering actuator 110 corresponding to an example of a steering angle adjusting unit
  • the actual steering angle can be calculated by subtracting the calculated steering angle correction amount from the steering angle obtained by multiplying the steering amount acquired in step S401 by the steering gain (that is, the input steering angle).
  • Steps S404 to S408 are basically the same as steps S202 to S206 in FIG. 10, and the same procedure as described in the first embodiment is performed to calculate the necessary yaw moment.
  • the target wheel slip angle calculation unit 151 (step S404) and the actual wheel slip angle calculation unit 153 (step S407) use the actual steering angle calculated in step S403 as the steering angle of the steered wheels 101 and 102.
  • the point of utilization differs from the first embodiment.
  • step S409 the control device 107A causes the torque correction amount calculation unit 155 to generate a total yaw moment corresponding to the sum of the required yaw moment calculated in step S408 and the turning yaw moment calculated in step S402 on the drive wheels 103 and 104.
  • torque correction amounts to be individually applied to the driving wheels 103 and 104 are calculated.
  • step S410 the control device 107A calculates the actual torque amount by adding the required torque amount to the torque correction amount calculated in step S409 in the actual torque amount calculation unit 156.
  • step S410 ends, the process proceeds to step S411.
  • step S411 the control device 107A causes the field control unit 157 to apply the actual torque amount calculated in step S410 to the drive wheels 103 and 104 individually via the motors 105 and 106, so that the field magnetic flux of the motors 105 and 106 is increased. Are controlled individually.
  • the yaw moment borne by the steered wheels 101 and 102 can be reduced by an amount corresponding to the turning yaw moment assisted by the drive wheels 103 and 104.
  • the steering angle of the steered wheels 101, 102 can be reduced to reduce the lateral force load on the steered wheels 101, 102, so that the amount of tire wear can be further reduced.
  • the yaw moment is generated by the drive wheels in a steady turning state, and at the same time, the steering angle is adjusted according to the generation amount, so the turning response gain is always kept constant with respect to the steering amount input from the steering wheel. It is possible to prevent the handle from being cut too much. Therefore, in addition to generation of yaw moment in the excessive turning state (at the start of turning), generation of yaw moment in the steady turning state can reduce a sense of discomfort with respect to the steering wheel operation of the driver, and can improve the operational feeling.
  • the present embodiment relates to a configuration in which a vehicle including two motors 105 and 106 supplies electric power generated by one motor to the other motor.
  • a vehicle including two motors 105 and 106 supplies electric power generated by one motor to the other motor.
  • one motor for example, the motor 105
  • the driving wheel for example, the driving wheel 103
  • the power running operation is performed and the other motor (for example, the motor 106) performs the regenerative operation by braking the other driving wheel (for example, the driving wheel 104).
  • the power generated by the regenerative operation can be used as the power for the power running operation by devising the configuration of the drive circuit.
  • the driving circuit shown in FIG. 14 includes a voltage source 501 in a normal driving state such as a generator or a battery, an inverter 503 connected to the motor 105 to control current, an inverter 504 connected to the motor 106 to control current, Inverters 503 and 504 and a switch 502 for switching connection / disconnection of the voltage source 501 are provided.
  • a voltage source 501 in a normal driving state such as a generator or a battery
  • an inverter 503 connected to the motor 105 to control current
  • an inverter 504 connected to the motor 106 to control current
  • Inverters 503 and 504 and a switch 502 for switching connection / disconnection of the voltage source 501 are provided.
  • the switch 502 is closed during normal travel of the electric vehicle 100, and the motors 105 and 106 are driven by controlling the current from the voltage source 501 by inverters 503 and 504.
  • one motor for example, the motor 105) of the pair of motors 105 and 106 applies a braking torque to the driving wheel (for example, the driving wheel 103), and the other motor (for example, the motor 106) has a driving wheel (for example, driving).
  • the switch 502 is opened and the voltage source 501 is disconnected from the circuit.
  • the voltage source 501 is disconnected in this way, regenerative power generated by regenerative braking of one motor (for example, the motor 105) is transferred to and consumed by the other motor (for example, the motor 106) that performs power running drive.
  • the switch 502 is opened when power running and regeneration occur at the same time. Instead of opening the switch 502, control is performed to set the supply voltage of the voltage source 501 lower than the voltage generated by regeneration. Also good. Even if comprised in this way, since regenerative electric power can be supplied to the other motor, the effect similar to the above can be acquired.
  • a converter that converts the power generation output of the motors 105 and 106 to be higher than the supply voltage of the voltage source 501 is mounted in parallel to each of the inverter 503 and the inverter 504, and power running and regeneration occur simultaneously.
  • a configuration may be adopted in which the power generation output of the motor being regenerated is boosted by the converter.
  • regenerative power is generated in a battery-less vehicle, it is necessary to convert it to heat with a resistor or the like.
  • a circuit is configured by adding a converter in this way, the regenerative power is not converted into heat even in a battery-less vehicle. The motor can be effectively consumed.
  • the pair of motors 105 and 106 can exchange the current generated by any one of the motors (for example, the motor 105) with another motor (for example, the motor 106).
  • the regenerative electric power generated when one motor (for example, the motor 105) applies a braking torque to the driving wheel (for example, the driving wheel 103) is connected to the other wheel (for example, the motor 106). It is consumed as electric power used when a driving torque is applied to the.
  • regenerative electric power can always be reused irrespective of the presence or absence of a battery or the charge rate. Accordingly, it is possible to reduce power consumption when generating the yaw moment under the situation where power running and regeneration are performed simultaneously.
  • step S402 of the second embodiment the generation amount of the turning yaw moment that the driving wheels 103 and 104 bear is determined based on the tire wear amounts of the steering wheels 101 and 102 and the driving wheels 103 and 104. Is.
  • control device 107B (4-1. Control contents by the control device) An example of the functional configuration of the control device 107B in the present embodiment will be described with reference to FIG. It should be noted that the same parts as those in FIG.
  • the control device 107B shown in this figure includes a tire wear amount estimation unit 160 in addition to the functions of the turning yaw moment calculation unit 158 and the like described in the second embodiment.
  • the tire wear amount estimation unit 160 includes a cumulative value of braking force and driving force (braking and driving force) from the motors 105 and 106 to the driving wheels 103 and 104, and wheel slip angles of the steering wheels 101 and 102 and the driving wheels 103 and 104.
  • the tire wear amount of the steered wheels 101 and 102 and the drive wheels 103 and 104 is estimated on the basis of the accumulated value of.
  • the tire contact surface has an adhesion area where no slip occurs with the ground and a slip area where the slip occurs, but the tire wear amount is mainly caused by the slip area of the tire contact surface. Therefore, when the slip area of the tire ground contact surface increases in accordance with the braking / driving force from the motors 105 and 106 or the increase of the wheel slip angle, the amount of tire wear also increases. Therefore, for example, by integrating a value obtained by multiplying the braking / driving force and the wheel slip angle by a previously obtained tire wear amount gain, an estimated value of the tire wear amount can be calculated.
  • the turning yaw moment calculating unit 158 in the present embodiment first calculates the yaw moment that the steered wheels 101 and 102 bear when assuming a turning motion at the input steering angle, as in the second embodiment. Next, the process shifts to a process of calculating the amount of the calculated yaw moment that the driving wheels 103 and 104 bear (a turning yaw moment generation amount). At this time, the tire wear amount of each of the wheels 101 to 104 approaches equally. As described above, the amount of generation of the turning yaw moment is calculated based on the estimated value of the tire wear amount of each of the wheels 101 to 104 calculated by the tire wear amount estimation unit 160. Then, based on the turning yaw moment calculated in this way, the same procedure as that after step S403 in the second embodiment is executed.
  • the generation amount of the turning yaw moment is adjusted based on the tire wear amounts of the steered wheels 101 and 102 and the drive wheels 103 and 104. Therefore, the tire wear amounts of the wheels 101 to 104 vary. Generation
  • production can be suppressed. As a result, maintenance costs such as tire rotation can be reduced.
  • the turning assist system 150A includes a position sensor 601 (corresponding to an example of a position sensor) that detects the traveling position of the electric vehicle 100, and the electric vehicle 100.
  • a route information storage unit 602 is provided that stores travel route information (for example, road curvature, gradient, road surface state) associated with the position information.
  • the position sensor 601 and the path information storage unit 602 are connected to the control device 107.
  • the control device 107 acquires the current travel position by the position sensor 601, calls the travel route information at the travel position or the position where the travel is scheduled after a predetermined time from the route information storage unit 602, and the retrieved travel route information is obtained. Reference is made as appropriate in each procedure executed when torque control of the drive wheels 103 and 104 is performed.
  • position detection methods examples include (1) a method using absolute coordinate measurement by GPS (Global Positioning System), (2) a marker provided on a travel route (for example, a course), a radio wave, and the like.
  • GPS Global Positioning System
  • a marker provided on a travel route (for example, a course), a radio wave, and the like.
  • a dead reckoning method using passage determination using a phototube or the like and wheel rotation speed, steering angle, and yaw rate measurement, and (3) a detection accuracy improved by using both the GPS and dead reckoning methods.
  • route information storage unit 602 there is a method of inputting map information in advance.
  • a method of creating travel route information by traveling while accumulating position information serving as the travel locus in an internal memory there is a method of creating travel route information by traveling while accumulating position information serving as the travel locus in an internal memory.
  • the control device 107 can call the travel route information at the current and future travel positions from the route information storage unit 602 in real time during travel. Thereby, the control apparatus 107 can know beforehand driving
  • the type of the electric vehicle 100 to which the turning assist system 150 (150A) is applied is not particularly mentioned, but a transport vehicle (for example, a cargo bed at the rear is loaded on the rear side).
  • a transport vehicle for example, a cargo bed at the rear is loaded on the rear side.
  • a vehicle having a container or a vehicle for container transportation When a heavy object is loaded on this type of vehicle, the center of gravity moves toward the rear wheels (drive wheels 103 and 104), and the load on the front wheels (steering wheels 101 and 102) decreases.
  • the lateral force is proportional to both the load and the slip angle, if the same lateral force is to be output, the front wheel with a small load requires a larger slip angle.
  • the vehicle in which the steered wheels 101 and 102 and the drive wheels 103 and 104 are individually divided (that is, mainly the rear wheel drive vehicle) has been described.
  • the wheel slip angle of the driving wheel can be replaced with that of a driven wheel (rear wheel).
  • the electric vehicle 100 is a two-wheel drive.
  • the electric vehicle 100 is a four-wheel drive vehicle (a so-called 4WD vehicle) that drives four wheels of the front wheels and the rear wheels with a motor. ).
  • the two front wheels may be driven by one motor or may be individually driven by two motors.
  • the field flux of the motors 105 and 106 is varied by partially rotating the rotor 30 divided in the axial direction.
  • the field flux of the motors 105 and 106 is varied.
  • the configuration is not limited to this.
  • the field magnetic flux may be varied by partially rotating the rotor divided in the radial direction.
  • a configuration in which so-called field weakening control that adjusts the field by the d-axis current of the stator winding may be performed, or the magnetic force of the magnet may be electrically
  • a configuration in which (the number of poles) is variable may be employed.
  • the rotor may include a rotor winding, and the field magnetic flux may be varied by adjusting the current of the rotor winding.
  • control device 107 which implements processing by the necessary yaw moment calculation unit 154, the actual torque amount calculation unit 156, the field control unit 157, and the like, which are implemented by the program executed by the CPU 901 described above.
  • An example of a hardware configuration of the control devices 107A and 107B (same below) will be described.
  • the control device 107 includes, for example, a CPU 901, a ROM 903, a RAM 905, a dedicated integrated circuit 907 constructed for a specific application such as an ASIC or FPGA, an input device 913, and an output device 915.
  • the program can be recorded in a recording device such as the ROM 903, the RAM 905, or the storage device 917, for example.
  • the program can be temporarily or permanently recorded on a magnetic disk such as a flexible disk, an optical disk such as various CD / MO disks / DVDs, or a removable storage medium 925 such as a semiconductor memory.
  • a removable storage medium 925 can also be provided as so-called package software.
  • the program recorded in these removable storage media 925 may be read by the drive 919 and recorded in the recording device via the input / output interface 919, the bus 909, or the like.
  • the program can be recorded on, for example, a download site, another computer, another recording device (not shown), or the like.
  • the program is transferred via a network NW such as a LAN or the Internet, and the communication device 923 receives this program.
  • the program received by the communication device 923 may be recorded in the recording device via the input / output interface 919, the bus 909, or the like.
  • the program can be recorded in, for example, an appropriate external connection device 927.
  • the program may be transferred via an appropriate connection port 921 and recorded in the recording device via the input / output interface 919, the bus 909, or the like.
  • the CPU 901 executes various processes according to the program recorded in the recording device, thereby realizing the processes by the necessary yaw moment calculation unit 154, the actual torque amount calculation unit 156, the field control unit 157, and the like.
  • the CPU 901 may directly read and execute the program from the recording apparatus, or may be executed after it is once loaded into the RAM 905. Further, for example, when the program is received via the communication device 923, the drive 919, and the connection port 921, the CPU 901 may directly execute the received program without recording it in the recording device.
  • the CPU 901 may perform various processes based on signals and information input from the input device 913 such as a mouse, a keyboard, and a microphone (not shown) as necessary.
  • the input device 913 such as a mouse, a keyboard, and a microphone (not shown) as necessary.
  • the CPU 902 may output the result of executing the above processing from an output device 915 such as a display device or an audio output device, and the CPU 902 further outputs the processing result as necessary to the communication device 923 or the connection device 923. It may be transmitted via the port 921 or recorded on the recording device or the removable storage medium 925.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

[Problem] To effectively reduce tire wear while ensuring turning responsiveness of an electric vehicle. [Solution] The present invention comprises: a pair of motors 105, 106 which are configured so as to have varying magnetic field fluxes and which individually drive a pair of driven wheels 103, 104; a steering angle sensor 109 that detects the steering angle of steered wheels 101, 102; a vehicle state quantity sensor 120 that detects a vehicle state quantity of an electric vehicle 100; a required yaw moment calculation unit 154 that, on the basis of the steering angle and the vehicle state quantity, calculates a required yaw moment necessary for the electric vehicle 100 to travel over a target turning trajectory based on the steering angle; a torque correction quantity calculation unit 155 and an actual torque quantity calculation unit 156 that calculate the actual torque quantities to be individually applied to the pair of driven wheels 103, 104 so as to generate the required yaw moment by the application of a torque differential to the pair of driven wheels 103, 104; and a field control unit 157 that individually controls the magnetic field fluxes of the pair of motors 105, 106 on the basis of the actual torque quantities.

Description

電動車両の旋回補助システム、電動車両、回転電機Electric vehicle turning assist system, electric vehicle, rotating electric machine
 開示の実施形態は、電動車両の旋回補助システム、電動車両、回転電機に関する。 The embodiment of the disclosure relates to a turning assist system for an electric vehicle, an electric vehicle, and a rotating electric machine.
 特許文献1には、車両の左右輪へのトルク配分を制御する制御装置が記載されている。この制御装置は、車両の操舵態様を検出する操舵態様検出手段と、検出した操舵態様から車両の目標ヨーモーメントを算出する目標ヨーモーメント演算手段と、目標ヨーモーメントを生じさせるための左右輪駆動トルクを算出する左右輪駆動トルク演算手段等を有する。 Patent Document 1 describes a control device that controls torque distribution to left and right wheels of a vehicle. The control device includes a steering mode detection unit that detects a steering mode of the vehicle, a target yaw moment calculation unit that calculates a target yaw moment of the vehicle from the detected steering mode, and a left and right wheel drive torque for generating the target yaw moment. Left and right wheel drive torque calculating means and the like.
特開平6-1158号公報Japanese Patent Laid-Open No. 6-1158
 一般に、車両において操舵により旋回を行う場合、直進している車体の向きを変えてヨー運動を引き起こす動作が必要となる。しかし、この旋回の過渡状態では、必要ヨーモーメントが大きくなり、操舵輪における車輪スリップ角も大きくなることから、タイヤが磨耗し易い傾向にある。 Generally, when turning by steering in a vehicle, an operation that causes a yaw motion by changing the direction of the vehicle traveling straight is required. However, in this turning transient state, the necessary yaw moment increases and the wheel slip angle on the steered wheels also increases, so that the tires tend to wear out.
 上記従来技術は、運転者による操舵態様に基づいて目標ヨーモーメントを設定するものである。しかし、その目標ヨーモーメントは、車両挙動に応じて動的に変化するものではなく、操舵角に対して静的に決定されるものであるため、旋回特性の改善は期待できても、操舵輪のタイヤ磨耗に対しては効果が十分でないという課題がある。 The above prior art is for setting a target yaw moment based on a steering mode by a driver. However, the target yaw moment does not change dynamically according to the vehicle behavior, but is determined statically with respect to the steering angle. There is a problem that the effect is not sufficient for tire wear.
 本発明はこのような問題点に鑑みてなされたものであり、旋回応答性を確保しつつ車両のタイヤ磨耗を効果的に低減できる電動車両の旋回補助システム、電動車両、回転電機を提供することを目的とする。 The present invention has been made in view of such problems, and provides a turning assist system for an electric vehicle, an electric vehicle, and a rotating electrical machine capable of effectively reducing tire wear of the vehicle while ensuring turning response. With the goal.
 上記課題を解決するため、本発明の一の観点によれば、少なくとも一対の駆動輪と一対の操舵輪を備えた電動車両の旋回補助システムであって、界磁磁束が変化するように構成され、前記少なくとも一対の駆動輪を個別に駆動する少なくとも一対のモータと、前記操舵輪の操舵角を検出する操舵角センサと、前記電動車両の車両状態量を検出する車両状態量センサと、前記操舵角及び前記車両状態量に基づいて前記電動車両が前記操舵角に基づく目標旋回軌道上を走行するために必要な必要ヨーモーメントを算出する必要ヨーモーメント算出部と、前記少なくとも一対の駆動輪にトルク差を与えて前記必要ヨーモーメントを発生させるように、前記少なくとも一対の駆動輪に個別に与える実トルク量を算出する実トルク量算出部と、前記実トルク量に基づいて前記少なくとも一対のモータの界磁磁束を個別に制御する界磁制御部と、を有する電動車両の旋回補助システムが適用される。 In order to solve the above-described problem, according to one aspect of the present invention, there is provided a turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, and the field magnetic flux is changed. , At least a pair of motors that individually drive the at least a pair of drive wheels, a steering angle sensor that detects a steering angle of the steering wheel, a vehicle state quantity sensor that detects a vehicle state quantity of the electric vehicle, and the steering A necessary yaw moment calculating unit that calculates a necessary yaw moment required for the electric vehicle to travel on the target turning path based on the steering angle based on the angle and the vehicle state quantity; and torque on the at least one pair of driving wheels. An actual torque amount calculating unit that calculates an actual torque amount individually applied to the at least one pair of drive wheels so as to generate the necessary yaw moment by giving a difference; and A field control unit individually controlling the field flux of said at least one pair of motor based on the torque amount, the turning assist system for an electric vehicle having applied.
 また、本発明の別の観点によれば、少なくとも一対の駆動輪と、一対の操舵輪と、上記旋回補助システムと、を有する電動車両が適用される。 Further, according to another aspect of the present invention, an electric vehicle having at least a pair of drive wheels, a pair of steering wheels, and the turning assist system is applied.
 また、本発明の別の観点によれば、上記電動車両の旋回補助システムに備えられ、界磁磁束が変化するように構成される回転電機が適用される。 Further, according to another aspect of the present invention, a rotating electrical machine that is provided in the turning assist system of the electric vehicle and configured to change the field magnetic flux is applied.
 また、本発明の別の観点によれば、少なくとも一対の駆動輪と一対の操舵輪を備えた電動車両の旋回補助システムであって、界磁磁束が変化するように構成され、前記少なくとも一対の駆動輪を個別に駆動する少なくとも一対のモータと、運転者により入力される前記操舵輪の操舵角を検出する手段と、前記少なくとも一対のモータの界磁磁束を個別に可変させることで、前記電動車両が前記操舵角に基づく目標旋回軌道上を走行するために必要なヨーモーメントを発生させる手段と、を有する電動車両の旋回補助システムが適用される。 According to another aspect of the present invention, there is provided a turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, wherein the field magnetic flux is changed, and the at least one pair of At least a pair of motors that individually drive the driving wheels, a means for detecting a steering angle of the steering wheels that is input by a driver, and a field magnetic flux of the at least one pair of motors are individually varied to thereby change the electric motor A turn assist system for an electric vehicle having means for generating a yaw moment necessary for the vehicle to travel on a target turning trajectory based on the steering angle is applied.
 また、本発明の別の観点によれば、少なくとも一対の駆動輪と一対の操舵輪を備えた電動車両の旋回補助システムであって、界磁磁束が変化するように構成され、前記少なくとも一対の駆動輪を個別に駆動する少なくとも一対のモータと、運転者により入力される前記操舵輪の操舵角を検出する操舵角センサと、前記電動車両の車両状態量を検出する車両状態量センサと、前記操舵角及び前記車両状態量に基づいて前記電動車両が前記操舵角に基づく目標旋回軌道上を走行するために必要な必要ヨーモーメントを算出し、前記少なくとも一対の駆動輪にトルク差を与えて前記必要ヨーモーメントを発生させるように、前記少なくとも一対の駆動輪に個別に与える実トルク量を算出し、前記実トルク量に基づいて前記少なくとも一対のモータの界磁磁束を個別に制御する制御装置と、を有する電動車両の旋回補助システムが適用される。 According to another aspect of the present invention, there is provided a turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, wherein the field magnetic flux is changed, and the at least one pair of At least a pair of motors that individually drive the driving wheels; a steering angle sensor that detects a steering angle of the steering wheel that is input by a driver; a vehicle state quantity sensor that detects a vehicle state quantity of the electric vehicle; Based on the steering angle and the vehicle state quantity, a necessary yaw moment required for the electric vehicle to travel on the target turning path based on the steering angle is calculated, and a torque difference is given to the at least one pair of driving wheels. An actual torque amount individually applied to the at least one pair of drive wheels is calculated so as to generate a necessary yaw moment, and the at least one pair of motors is calculated based on the actual torque amount. Turning-assist system for an electric vehicle and a control device for controlling the field magnetic flux individually applies.
 また、本発明の別の観点によれば、少なくとも一対の駆動輪と一対の操舵輪を備えた電動車両の旋回補助方法であって、運転者により入力される前記操舵輪の操舵角及び前記電動車両の車両状態量に基づいて前記電動車両が前記操舵角に基づく目標旋回軌道上を走行するために必要な必要ヨーモーメントを算出するステップと、前記少なくとも一対の駆動輪にトルク差を与えて前記必要ヨーモーメントを発生させるように、前記少なくとも一対の駆動輪に個別に与える実トルク量を算出するステップと、前記実トルク量に基づいて、界磁磁束が変化するように構成され前記少なくとも一対の駆動輪を個別に駆動する少なくとも一対のモータの前記界磁磁束を個別に制御するステップと、を有する電動車両の旋回補助方法が適用される。 According to another aspect of the present invention, there is provided a turning assist method for an electric vehicle including at least a pair of driving wheels and a pair of steering wheels, the steering angle of the steering wheels input by a driver and the electric motor. Calculating a necessary yaw moment necessary for the electric vehicle to travel on a target turning path based on the steering angle based on a vehicle state quantity of the vehicle; and applying a torque difference to the at least one pair of drive wheels A step of calculating an actual torque amount individually applied to the at least one pair of drive wheels so as to generate a necessary yaw moment; and a field magnetic flux is configured to change based on the actual torque amount; And a step of individually controlling the field magnetic fluxes of at least a pair of motors that individually drive the drive wheels.
 また、本発明の別の観点によれば、少なくとも一対の駆動輪と一対の操舵輪を備えた電動車両の旋回補助を行う制御装置であって、運転者により入力される前記操舵輪の操舵角及び前記電動車両の車両状態量に基づいて前記電動車両が前記操舵角に基づく目標旋回軌道上を走行するために必要な必要ヨーモーメントを算出する必要ヨーモーメント算出部と、前記少なくとも一対の駆動輪にトルク差を与えて前記必要ヨーモーメントを発生させるように、前記少なくとも一対の駆動輪に個別に与える実トルク量を算出する実トルク量算出部と、前記実トルク量に基づいて、界磁磁束が変化するように構成され前記少なくとも一対の駆動輪を個別に駆動する少なくとも一対のモータの前記界磁磁束を個別に制御する界磁制御部と、を有する制御装置が適用される。 According to another aspect of the present invention, there is provided a control device for assisting turning of an electric vehicle including at least a pair of drive wheels and a pair of steering wheels, the steering angle of the steering wheels being input by a driver. And a necessary yaw moment calculating unit that calculates a necessary yaw moment necessary for the electric vehicle to travel on a target turning trajectory based on the steering angle based on a vehicle state quantity of the electric vehicle, and the at least one pair of drive wheels An actual torque amount calculation unit for calculating an actual torque amount to be individually applied to the at least one pair of drive wheels so as to generate a necessary yaw moment by giving a torque difference to the magnetic field flux, and a field magnetic flux based on the actual torque amount A field control unit configured to individually control the field magnetic flux of at least a pair of motors configured to individually change the at least a pair of driving wheels. Location is applied.
 本発明によれば、電動車両の旋回応答性を確保しつつタイヤ磨耗を効果的に低減できる。 According to the present invention, tire wear can be effectively reduced while ensuring turning response of an electric vehicle.
第1実施形態に係る電動車両及び旋回補助システムの概念的な構成の一例を表す全体構成図である。1 is an overall configuration diagram illustrating an example of a conceptual configuration of an electric vehicle and a turning assist system according to a first embodiment. 電動車両に設置された可変界磁機構を備えるモータの構成の一例を表す軸方向断面図である。It is an axial direction sectional view showing an example of composition of a motor provided with a variable field mechanism installed in an electric vehicle. 界磁磁束が最大の時の回転子の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the maximum. 界磁磁束が中程度の時の回転子の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of a rotor when field magnetic flux is medium. 界磁磁束が最小の時の回転子の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the minimum. 2組の界磁磁極部の相対角度と界磁の強さとの関係の一例を表す特性図である。It is a characteristic view showing an example of the relationship between the relative angle of two sets of field magnetic pole parts, and field strength. モータの最大効率ベクトル制御時のトルク出力と回転速度とによる界磁率の制御数値マップの一例を表す図である。It is a figure showing an example of the control numerical value map of the magnetic field factor by the torque output at the time of the maximum efficiency vector control of a motor, and rotational speed. モータの最大効率ベクトル制御時のトルク出力と回転速度とによる電流の位相角の制御数値マップの一例を表す図である。It is a figure showing an example of the numerical control map of the phase angle of the electric current by the torque output at the time of the maximum efficiency vector control of a motor, and rotational speed. 最大効率ベクトル制御を実現するマップ制御の一例を表す説明図である。It is explanatory drawing showing an example of the map control which implement | achieves maximum efficiency vector control. 第1実施形態における制御装置の機能構成の一例を表すブロック図である。It is a block diagram showing an example of functional composition of a control device in a 1st embodiment. 第1実施形態における制御装置がモータに対して行うトルク制御の内容の一例を表すフローチャートである。It is a flowchart showing an example of the content of the torque control which the control apparatus in 1st Embodiment performs with respect to a motor. 旋回補助システムによる電動車両の車体運動応答の一例を表す応答曲線図である。It is a response curve figure showing an example of the body motion response of the electric vehicle by a turning assistance system. 第2実施形態における制御装置の機能構成の一例を表すブロック図である。It is a block diagram showing an example of a functional structure of the control apparatus in 2nd Embodiment. 第2実施形態における制御装置がモータに対して行うトルク制御の内容の一例を表すフローチャートである。It is a flowchart showing an example of the content of the torque control which the control apparatus in 2nd Embodiment performs with respect to a motor. 第3実施形態に係る電動車両の旋回補助システムにおける駆動回路構成の一例を表す図である。It is a figure showing an example of the drive circuit structure in the turning assistance system of the electric vehicle which concerns on 3rd Embodiment. 第4実施形態における制御装置の機能構成の一例を表すブロック図である。It is a block diagram showing an example of a functional structure of the control apparatus in 4th Embodiment. 第5実施形態に係る電動車両及び旋回補助システムの概念的な構成の一例を表す全体構成図である。It is a whole block diagram showing an example of a notional structure of the electric vehicle and turning assistance system which concern on 5th Embodiment. 制御装置のハードウェア構成の一例を表す説明図である。It is explanatory drawing showing an example of the hardware constitutions of a control apparatus.
 以下、実施の形態について図面を参照しつつ説明する。なお、以下において、電動車両の旋回補助システム等の構成の説明の便宜上、上下左右等の方向を適宜使用する場合があるが、旋回補助システム等の各構成の位置関係を限定するものではない。 Hereinafter, embodiments will be described with reference to the drawings. In the following, for convenience of description of the configuration of the turning assist system and the like of the electric vehicle, directions such as up, down, left, and right may be used as appropriate, but the positional relationship of each component such as the turning assist system is not limited.
 また、本明細書において、「電動車両」とは、いわゆる電気自動車(EV)の他、ハイブリッド電気自動車(HEV)、外部充電機能を追加したプラグインハイブリッド電気自動車(PHEV)、水素燃料電池自動車(FCV)等を含むものである。 In addition, in this specification, “electric vehicle” refers to a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV) with an external charging function, a hydrogen fuel cell vehicle (so-called electric vehicle (EV), FCV) and the like.
 <1.第1実施形態>
  (1-1.電動車両及び旋回補助システムの構成)
 図1を用いて、第1実施形態に係る電動車両及び旋回補助システムの構成の一例について説明する。図1に示すように、電動車両100は、1対の操舵輪101,102と、ハンドル108と、転舵アクチュエータ110と、操作ペダル113と、1対の駆動輪103,104と、1対のモータ105,106と、旋回補助システム150とを主に備えている。
<1. First Embodiment>
(1-1. Configuration of electric vehicle and turning assist system)
An example of the configuration of the electric vehicle and the turning assist system according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the electric vehicle 100 includes a pair of steering wheels 101 and 102, a handle 108, a steering actuator 110, an operation pedal 113, a pair of drive wheels 103 and 104, and a pair of Motors 105 and 106 and a turning assist system 150 are mainly provided.
 1対の操舵輪101,102は、転舵可能なように回転自由度を有し、車体前方に固定されている。ハンドル108は、運転者が操舵することによって操舵量を入力するもので、操舵角センサ109(操舵角を検出する手段の一例)を介して転舵アクチュエータ110と接続されている。 The pair of steered wheels 101 and 102 have a degree of freedom of rotation so that they can be steered, and are fixed to the front of the vehicle body. The steering wheel 108 inputs a steering amount when the driver steers, and is connected to the steering actuator 110 via a steering angle sensor 109 (an example of means for detecting a steering angle).
 転舵アクチュエータ110は、ハンドル108の操舵量に基づいて操舵輪101,102の操舵角を調節するもので、タイロッドを介して操舵輪101,102と接続されている。なお、本実施形態における転舵アクチュエータ110とハンドル108は、例えばステアリングコラムによって機械的に接続する等により、ハンドル108の操舵量が転舵アクチュエータ110の制御量(すなわち、操舵輪101,102の操舵角)に直接反映されるように接続されてもよい。 The steered actuator 110 adjusts the steering angle of the steered wheels 101 and 102 based on the steering amount of the handle 108 and is connected to the steered wheels 101 and 102 via tie rods. In this embodiment, the steering actuator 110 and the handle 108 are mechanically connected by, for example, a steering column, so that the steering amount of the handle 108 is controlled by the control amount of the steering actuator 110 (that is, the steering wheels 101 and 102 are steered). (Corner) may be directly reflected.
 1対の駆動輪103,104は、車体後方に固定された1対のモータ105,106にシャフトを介して接続されている。モータ105,106(回転電機の一例に相当)は、それぞれ、制御装置107と電気的に接続されており、駆動輪103,104を個別に駆動又は制動する。モータ105及びモータ106の各々は、後述の可変界磁機構(図2等参照)を備えており、界磁磁束が変化するように構成されている。 The pair of drive wheels 103 and 104 are connected to a pair of motors 105 and 106 fixed to the rear of the vehicle body via a shaft. Motors 105 and 106 (corresponding to an example of a rotating electrical machine) are electrically connected to a control device 107, and individually drive or brake the drive wheels 103 and 104. Each of the motor 105 and the motor 106 includes a variable field mechanism (see FIG. 2 and the like), which will be described later, and is configured to change the field magnetic flux.
 旋回補助システム150は、電動車両100に搭載されて電動車両100の旋回を補助する。旋回補助システム150は、上記モータ105,106と、操舵角センサ109と、車両状態量センサ120と、制御装置107とを有する。車両状態量センサ120は、車体運動センサ111と、絶対速度センサ112と、車輪速センサ114,115,116,117(回転速度センサの一例に相当)等を含む。 The turning assist system 150 is mounted on the electric vehicle 100 and assists the turning of the electric vehicle 100. The turning assist system 150 includes the motors 105 and 106, a steering angle sensor 109, a vehicle state quantity sensor 120, and a control device 107. The vehicle state quantity sensor 120 includes a vehicle body motion sensor 111, an absolute speed sensor 112, wheel speed sensors 114, 115, 116, 117 (corresponding to an example of a rotational speed sensor) and the like.
 制御装置107は、操舵角センサ109を初めとする各種センサ等からの情報に基づいて、モータ105,106の駆動制御を行う。制御装置107は、操作ペダル113と操舵角センサ109とに接続されており、操作ペダル113からは運転者からの加速要求及び減速要求が、操舵角センサ109からは運転者からの旋回要求が伝達される。また、制御装置107は、操舵輪101,102及び駆動輪103,104の回転速度を検出する車輪速センサ114,115,116,117と、ヨーレートや前後加速度、横加速度を検出する車体運動センサ111と、電動車両100の対地速度を直接計測する絶対速度センサ112等とに接続されており、これら各センサ111,112,114~117から電動車両100に関する情報を取得している。 The control device 107 performs drive control of the motors 105 and 106 based on information from various sensors including the steering angle sensor 109. The control device 107 is connected to an operation pedal 113 and a steering angle sensor 109, and an acceleration request and a deceleration request from the driver are transmitted from the operation pedal 113, and a turning request from the driver is transmitted from the steering angle sensor 109. Is done. In addition, the control device 107 includes wheel speed sensors 114, 115, 116, and 117 that detect rotational speeds of the steering wheels 101 and 102 and the drive wheels 103 and 104, and a vehicle body motion sensor 111 that detects yaw rate, longitudinal acceleration, and lateral acceleration. And an absolute speed sensor 112 that directly measures the ground speed of the electric vehicle 100, and information about the electric vehicle 100 is acquired from these sensors 111, 112, and 114 to 117.
 電動車両100を加速又は減速する場合、制御装置107は、操作ペダル113から入力された運転者の加速要求又は減速要求に基づいて、運転者が望む加速度を実現するために必要なトルク(要求トルク)を算出する。そして、その要求トルクに見合った駆動電流をモータ105,106に供給することで、車両の走行を制御している。なお、制御装置107の機能の詳細については後述する(図9参照)。 When accelerating or decelerating the electric vehicle 100, the control device 107, based on the driver's acceleration request or deceleration request input from the operation pedal 113, the torque (requested torque) required to realize the acceleration desired by the driver. ) Is calculated. The driving of the vehicle is controlled by supplying a driving current corresponding to the required torque to the motors 105 and 106. Details of the function of the control device 107 will be described later (see FIG. 9).
  (1-2.モータの構成)
 次に、図2及び図3を用いて、可変界磁機構を備えたモータの構成の一例について説明する。なお、モータ105とモータ106は同一構成とすることができるので、ここではモータ105について説明する。
(1-2. Motor configuration)
Next, an example of the configuration of a motor having a variable field mechanism will be described with reference to FIGS. Since the motor 105 and the motor 106 can have the same configuration, the motor 105 will be described here.
 図2に示すように、モータ105は、固定子巻線12と固定子鉄心13を備えた固定子10と、回転子30とを備え、回転子30が軸方向に複数(この例では3つ)に分割されて互いに相対的に回転可能に構成された可変界磁型モータである。 As shown in FIG. 2, the motor 105 includes a stator 10 including a stator winding 12 and a stator core 13, and a rotor 30, and a plurality of rotors 30 (three in this example) in the axial direction. ) And is configured to be rotatable relative to each other.
 また、モータ105は、フレーム17の反負荷側の外部に設けられ、回転子30を相対回転させる機構を作動する制御モータ70(後述の図9参照)と、回転子30の反負荷側側面に設けられたセンサマグネット20と、センサマグネット20に対向して設けられた回転位置検出器25と、を有する。回転位置検出器25は、回転子30の回転位置を検出する。 The motor 105 is provided outside the anti-load side of the frame 17 and operates on a control motor 70 (see FIG. 9 to be described later) that operates a mechanism for rotating the rotor 30 relative to the anti-load side surface of the rotor 30. The sensor magnet 20 is provided, and the rotational position detector 25 is provided so as to face the sensor magnet 20. The rotational position detector 25 detects the rotational position of the rotor 30.
 なお、本明細書において「負荷側」とはモータ105に対して負荷が取り付けられる方向、すなわちこの例ではシャフト34が突出する方向(図2中右側)を指し、「反負荷側」とは負荷側の反対方向、すなわちモータ105に対してギヤホイール23等が配置される方向(図2中左側)を指す。 In the present specification, the “load side” refers to the direction in which the load is attached to the motor 105, that is, the direction in which the shaft 34 projects (right side in FIG. 2) in this example. The direction opposite to the side, that is, the direction in which the gear wheel 23 and the like are disposed with respect to the motor 105 (left side in FIG. 2) is indicated.
 固定子巻線12は、固定子鉄心13に装着され、固定子鉄心13は、負荷側ブラケット16に固定子締結ボルト14により締結され、フレーム17はボルト11により負荷側ブラケット16に締結されている。 The stator winding 12 is mounted on a stator core 13, the stator core 13 is fastened to a load side bracket 16 by a stator fastening bolt 14, and the frame 17 is fastened to the load side bracket 16 by a bolt 11. .
 シャフト34は、負荷側ブラケット16に設置された負荷側軸受18とフレーム17に設置された反負荷側軸受19とにより回転自在に保持される。 The shaft 34 is rotatably held by a load side bearing 18 installed on the load side bracket 16 and an anti-load side bearing 19 installed on the frame 17.
 回転子30は、界磁用磁石が設置された複数の磁極部53,63が2組に分かれて相対的に回動するように構成されており、2つの固定回転子50と1つの可動回転子60を有する。可動回転子60は中央に配置され、2つの固定回転子50は可動回転子60の軸方向両側に隣接して配置される。可動回転子60は、制御モータ70で回動される構造となっている。 The rotor 30 is configured such that a plurality of magnetic pole portions 53 and 63 in which field magnets are installed are divided into two sets and are relatively rotated, and two fixed rotors 50 and one movable rotation. It has a child 60. The movable rotor 60 is disposed at the center, and the two fixed rotors 50 are disposed adjacent to both sides in the axial direction of the movable rotor 60. The movable rotor 60 has a structure that is rotated by a control motor 70.
 制御モータ70は、2組の磁極部53,63を相対的に回動させる。具体的には、制御モータ70がウォームギヤ27を回転させると、ギヤホイール23が回転し、送りおねじ42が送りめねじ43に対して軸方向に移動する。送りおねじ42の負荷側端部には可動軸受40が装着され、回転子30の回転を遮断しながらピン36とピンホルダ28を軸方向に移動させる。ピン36はシャフト34の外側のスライダ37を軸方向に移動させる。スライダ37の外側はハブ32と捩れスプラインで係合しているため、スライダ37が軸方向に移動すると、ハブ32とそれに係合された中央の可動回転子60が、シャフト34に固定された2つの固定回転子50に対し回動する。 The control motor 70 relatively rotates the two magnetic pole portions 53 and 63. Specifically, when the control motor 70 rotates the worm gear 27, the gear wheel 23 rotates and the feed male screw 42 moves in the axial direction with respect to the feed screw 43. A movable bearing 40 is attached to the load side end of the feed male screw 42, and the pin 36 and the pin holder 28 are moved in the axial direction while blocking the rotation of the rotor 30. The pin 36 moves the slider 37 outside the shaft 34 in the axial direction. Since the outside of the slider 37 is engaged with the hub 32 by a torsion spline, when the slider 37 moves in the axial direction, the hub 32 and the central movable rotor 60 engaged therewith are fixed to the shaft 34. It rotates with respect to the two fixed rotors 50.
 2つの固定回転子50は、負荷側プレート31及び反負荷側プレート33を介しボルト35によりシャフト34に固定されている。ハブ32の両側には、Oリング15が装着され、回転子30を相対回転させる機構に充填されたグリスの飛散を防止している。 The two fixed rotors 50 are fixed to the shaft 34 by bolts 35 via the load side plate 31 and the anti-load side plate 33. O-rings 15 are mounted on both sides of the hub 32 to prevent the grease filled in the mechanism for rotating the rotor 30 from being relatively scattered.
 送りおねじ42と送りめねじ43は、例えば台形ねじ加工がなされている。ギヤホイール23は、軸受26により回転自在に支持されている。送りおねじ42は六角穴を有し、ギヤホイール23の六角シャフト23aに係合しているため、軸方向に移動可能に回転が伝達される。送りおねじ42に装着された可動軸受40には、例えばアンギュラベアリングが2個向かい合わせで用いられ、軸受ホルダ44とボルト45により固定されている。送りめねじ43に装着された固定軸受41にも、例えばアンギュラベアリングが2個向かい合わせで用いられ、ナット29により固定されている。 The feed male screw 42 and the feed screw 43 are, for example, trapezoidal threaded. The gear wheel 23 is rotatably supported by a bearing 26. Since the feed male screw 42 has a hexagonal hole and is engaged with the hexagonal shaft 23a of the gear wheel 23, rotation is transmitted so as to be movable in the axial direction. For example, two angular bearings are used facing each other in the movable bearing 40 attached to the feed male screw 42 and are fixed by a bearing holder 44 and a bolt 45. For example, two angular bearings are used facing each other and fixed to the fixed bearing 41 attached to the feed screw 43 by a nut 29.
 ギヤホイール23はカバー24により覆われる。また、固定子10の反負荷側には結線部21が設けられる。 The gear wheel 23 is covered with a cover 24. Further, a connection portion 21 is provided on the side opposite to the load of the stator 10.
 図3に示すように、固定回転子50は、環状の第1鉄心51と、第1鉄心51に軸方向に埋設された複数の第1永久磁石52(界磁用磁石の一例に相当)とを備えている。複数の第1永久磁石52は、同極同士が対向した2つの永久磁石52が径方向内側に凸のV字状の対をなす態様で、対向する磁極を周方向に交互に異ならせて第1鉄心51に配置されている。これにより、図3に示すように、固定回転子50の周方向に交互に極性の異なるN極とS極の複数の第1磁極部53が形成されている。 As shown in FIG. 3, the fixed rotor 50 includes an annular first iron core 51 and a plurality of first permanent magnets 52 (corresponding to an example of a field magnet) embedded in the first iron core 51 in the axial direction. It has. The plurality of first permanent magnets 52 is a mode in which two permanent magnets 52 with the same poles facing each other form a V-shaped pair projecting radially inward, and the opposing magnetic poles are alternately changed in the circumferential direction. One iron core 51 is disposed. As a result, as shown in FIG. 3, a plurality of first magnetic pole portions 53 having N and S poles having different polarities alternately are formed in the circumferential direction of the fixed rotor 50.
 可動回転子60は、シャフト34に対して相対回転するように構成される。可動回転子60は、環状の第2鉄心61と、第2鉄心61の軸方向に埋設された図示しない複数の第2永久磁石62(界磁用磁石の一例に相当)とを備えている。複数の第2永久磁石62は、同極同士が対向した2つの永久磁石62が径方向内側に凸のV字状の対をなす態様で、対向する磁極を周方向に交互に異ならせて第2鉄心61に配置されている。これにより、可動回転子60の周方向に交互に極性の異なるN極とS極の複数の第2磁極部63が形成されている。 The movable rotor 60 is configured to rotate relative to the shaft 34. The movable rotor 60 includes an annular second iron core 61 and a plurality of second permanent magnets 62 (corresponding to an example of field magnets) (not shown) embedded in the axial direction of the second iron core 61. The plurality of second permanent magnets 62 is a mode in which two permanent magnets 62 with the same polarity facing each other form a V-shaped pair protruding radially inward, and the opposing magnetic poles are alternately changed in the circumferential direction. Two iron cores 61 are arranged. Thus, a plurality of second magnetic pole portions 63 having N and S poles having different polarities alternately are formed in the circumferential direction of the movable rotor 60.
  (1-3.回転子の界磁磁束の変化)
 次に、図3~図5を用いて、回転子30の界磁磁束の変化の一例について説明する。図3に、界磁磁束が最大である時の回転子の状態を示す。このときには、各固定回転子50と可動回転子60の同じ極性の磁極部、すなわち固定回転子50のN極(S極)の第1磁極部53と可動回転子60のN極(S極)の第2磁極部63とが軸方向に揃う(相対角度が電気角で0度)ことで、固定回転子50の永久磁石52と可動回転子60の永久磁石62とによる界磁磁束は最大の状態となる。
(1-3. Change in rotor field magnetic flux)
Next, an example of changes in the field magnetic flux of the rotor 30 will be described with reference to FIGS. FIG. 3 shows the state of the rotor when the field magnetic flux is maximum. At this time, the magnetic pole portions of the same polarity of each fixed rotor 50 and the movable rotor 60, that is, the first magnetic pole portion 53 of the N pole (S pole) of the fixed rotor 50 and the N pole (S pole) of the movable rotor 60. The second magnetic pole portion 63 is aligned in the axial direction (relative angle is 0 degree in electrical angle), so that the field magnetic flux generated by the permanent magnet 52 of the fixed rotor 50 and the permanent magnet 62 of the movable rotor 60 is maximized. It becomes a state.
 図4に、界磁磁束が中程度である時の回転子の状態を示す。このとき、可動回転子60が2つの固定回転子50に対し相対回転する。各固定回転子50の第1磁極部53と可動回転子60の第2磁極部63は、同じ極性であるN極(S極)の第1磁極部53とN極(S極)の第2磁極部63とが軸方向に揃う状態と、異なる極性であるN極(S極)の第1磁極部53とS極(N極)の第2磁極部63とが軸方向に揃う状態との中間状態にあり、固定回転子50の永久磁石52と可動回転子60の永久磁石62とによる界磁磁束は中程度の状態となる。 FIG. 4 shows the state of the rotor when the field magnetic flux is medium. At this time, the movable rotor 60 rotates relative to the two fixed rotors 50. The first magnetic pole portion 53 of each fixed rotor 50 and the second magnetic pole portion 63 of the movable rotor 60 have the same polarity, the first magnetic pole portion 53 of N pole (S pole) and the second pole of N pole (S pole). The state in which the magnetic pole part 63 is aligned in the axial direction and the state in which the first magnetic pole part 53 having the N pole (S pole) and the second magnetic pole part 63 having the S pole (N pole) having different polarities are aligned in the axial direction. In the intermediate state, the field magnetic flux generated by the permanent magnet 52 of the fixed rotor 50 and the permanent magnet 62 of the movable rotor 60 is in an intermediate state.
 図5に、界磁磁束が最小である時の回転子の状態を示す。このときには、各固定回転子50と可動回転子60の異なる極性の磁極部、すなわち固定回転子50のN極(S極)の第1磁極部53と可動回転子60のS極(N極)の第2磁極部63とが軸方向に揃う(相対角度が電気角で180度)ことで、各固定回転子50の永久磁石52と可動回転子60の永久磁石62とによる磁束が、固定回転子50の第1鉄心51と可動回転子60の第2鉄心61との間で短絡し、界磁磁束が最小の状態となる。その結果、回転子30に発生する鉄損の低減を十分行うことができ、モータ105は、高回転運転領域でも高効率で作動することができる。 FIG. 5 shows the state of the rotor when the field magnetic flux is minimum. At this time, the magnetic pole portions of different polarities of the fixed rotor 50 and the movable rotor 60, that is, the first magnetic pole portion 53 of the N pole (S pole) of the fixed rotor 50 and the S pole (N pole) of the movable rotor 60. The second magnetic pole portion 63 is aligned in the axial direction (the relative angle is 180 degrees in electrical angle), so that the magnetic flux generated by the permanent magnet 52 of each fixed rotor 50 and the permanent magnet 62 of the movable rotor 60 is fixedly rotated. A short circuit occurs between the first iron core 51 of the child 50 and the second iron core 61 of the movable rotor 60, so that the field magnetic flux is minimized. As a result, the iron loss generated in the rotor 30 can be sufficiently reduced, and the motor 105 can operate with high efficiency even in the high rotation operation region.
 以上のように、極性の等しい固定回転子50の第1磁極部53と可動回転子60の第2磁極部63とが軸方向に揃うときに界磁磁束(誘起電圧)は最大となり、極性の異なる第1磁極部53と第2磁極部63とが軸方向に揃うときに界磁磁束(誘起電圧)は最小となる。回転子30は、制御モータ70を作動させることにより、固定回転子50と可動回転子60との相対角度を図3から図5の間で随意に調整することができ、界磁の強さを変化させることができる。 As described above, when the first magnetic pole portion 53 of the fixed rotor 50 having the same polarity and the second magnetic pole portion 63 of the movable rotor 60 are aligned in the axial direction, the field magnetic flux (induced voltage) becomes the maximum, The field magnetic flux (induced voltage) is minimized when the different first magnetic pole portion 53 and second magnetic pole portion 63 are aligned in the axial direction. The rotor 30 can arbitrarily adjust the relative angle between the fixed rotor 50 and the movable rotor 60 between FIG. 3 and FIG. 5 by operating the control motor 70, thereby increasing the field strength. Can be changed.
  (1-4.界磁磁束のマップ制御)
 次に、図6を用いて、2組の磁極部53,63の相対角度と界磁の強さとの関係を表す特性の一例について説明する。固定回転子50の第1磁極部53と可動回転子60の第2磁極部63の2組の磁極部53と磁極部63とが並んだ、界磁が最も強い状態における誘起電圧定数の大きさを100%とし、2組の磁極部53と磁極部63とが相対的に回動した状態での誘起電圧定数の割合を界磁率αと定義すると、2組の磁極部53,63の相対角度θに対する界磁率αの特性は、例えば図6に示すようになる。この図6に示す例では、2組の磁極部53,63の相対角度θを0~120°まで変化させることで、界磁率αは100~30%まで変化できることを示している。
(1-4. Map control of field magnetic flux)
Next, an example of characteristics representing the relationship between the relative angle of the two sets of magnetic pole portions 53 and 63 and the field strength will be described with reference to FIG. The magnitude of the induced voltage constant in the state where the field is strongest in which the two magnetic pole portions 53 of the first magnetic pole portion 53 of the fixed rotor 50 and the second magnetic pole portion 63 of the movable rotor 60 are aligned. Is defined as 100%, and the ratio of the induced voltage constant in the state where the two magnetic pole portions 53 and the magnetic pole portion 63 are relatively rotated is defined as the field factor α, the relative angle between the two magnetic pole portions 53 and 63 The characteristic of the magnetic field factor α with respect to θ is as shown in FIG. 6, for example. The example shown in FIG. 6 shows that the field factor α can be changed from 100 to 30% by changing the relative angle θ between the two sets of magnetic pole portions 53 and 63 from 0 to 120 °.
 図7A及び図7Bを用いて、モータ105,106の最大効率ベクトル制御時の制御数値マップ測定例について説明する。それぞれ回転速度とトルクの出力割合を横軸と縦軸に取る。図7Aは、界磁率αを示し、図7Bは、2組の磁極部53,63が総合して作り出す磁極位置に対する固定子巻線12に通電する3相電流における電流の位相角βを示している。電流の位相角βが大きくなるほど、回転子30の磁極に対し固定子10が発する回転電磁力が進角するとともに、弱め界磁力が強まる。 7A and 7B, an example of control numerical map measurement at the time of maximum efficiency vector control of the motors 105 and 106 will be described. The rotation speed and torque output ratio are plotted on the horizontal and vertical axes, respectively. 7A shows the magnetic field factor α, and FIG. 7B shows the phase angle β of the current in the three-phase current that flows through the stator winding 12 with respect to the magnetic pole position created by the two sets of magnetic pole portions 53 and 63 in total. Yes. As the phase angle β of the current increases, the rotating electromagnetic force generated by the stator 10 advances with respect to the magnetic poles of the rotor 30 and the field weakening force increases.
 図7A、図7B示すように、例えば16000rev/min、70%出力時には、界磁率は69%となるように2組の磁極部53,63の相対角度θを調整し、電流の位相角βは78°で通電すれば、モータ105の効率は最大となる。このマップより次のことが明らかである。可変界磁式のモータ効率を最大とするには、界磁率αは、回転速度に対しては高回転ほど、出力の大きさに対しては低出力ほど小さくするとともに、電流の位相角βは、回転速度に対しては高回転ほど、出力の大きさに対しては高出力ほど大きくする制御とすれば良い。 As shown in FIGS. 7A and 7B, for example, at 16000 rev / min and 70% output, the relative angle θ of the two magnetic pole portions 53 and 63 is adjusted so that the magnetic field factor is 69%, and the current phase angle β is If energized at 78 °, the efficiency of the motor 105 is maximized. The following is clear from this map. In order to maximize the efficiency of the variable field motor, the field factor α is decreased as the rotation speed is higher, the output is lower, and the current phase angle β is smaller. The control may be performed such that the higher the rotation speed is, the higher the output is, and the higher the output is.
 図8を用いて、最大効率ベクトル制御を再現するマップ制御の一例について説明する。モータ105,106の制御においては、便宜上出力をトルク指令に置き換えて、マップ制御を行うことが可能である。この場合、操作ペダル113の踏込みの大きさをトルク指令の大きさに対応させて、モータ105,106の回転速度Nとトルク指令Tより、界磁率α、電流の位相角βと電流Iが読み出され、それを目標値としてフィードバック制御により設定された誤差以内に制御される。 An example of map control that reproduces the maximum efficiency vector control will be described with reference to FIG. In the control of the motors 105 and 106, map control can be performed by replacing the output with a torque command for convenience. In this case, the degree of depression of the operation pedal 113 is made to correspond to the magnitude of the torque command, and the field factor α, the current phase angle β and the current I are read from the rotational speed N of the motors 105 and 106 and the torque command T. It is controlled within the error set by feedback control using it as a target value.
 具体的には、モータの回転速度がNmからNm+1の間にあり、トルク指令がTnからTn+1の間にあれば、Dmnの場所からデータが読み出される。Dmnは界磁率αmn、電流の位相角βmnと電流Imnの3つのデータを格納している。回転速度がNm-1からNmの間に下がると、Dm-1nの場所からデータが読み出される。制御のためのデータは、モータ105が運転される全ての回転速度とトルク指令に対して準備されている。 Specifically, if the rotation speed of the motor is between Nm and Nm + 1 and the torque command is between Tn and Tn + 1, data is read from the location of Dmn. Dmn stores three pieces of data, ie, a field factor αmn, a current phase angle βmn, and a current Imn. When the rotation speed falls between Nm-1 and Nm, data is read from the location of Dm-1n. Data for control is prepared for all rotation speeds and torque commands at which the motor 105 is operated.
  (1-5.制御装置による制御内容)
 次に、図9を用いて、制御装置107の機能構成の一例を説明する。制御装置107は、上記のような一般的な駆動制御に加えて、運転者の旋回要求に応じて駆動電流を適宜補正することで、旋回開始時に必要なヨーモーメントを駆動輪103,104で補助するためのトルク制御を行う。図9に示すように、制御装置107は、このトルク制御を実施するために、目標車輪スリップ角算出部151と、実車体スリップ角算出部152と、実車輪スリップ角算出部153と、必要ヨーモーメント算出部154と、トルク補正量算出部155と、実トルク量算出部156と、界磁制御部157(必要なヨーモーメントを発生させる手段の一例)とを備えている。
(1-5. Control contents by the control device)
Next, an example of a functional configuration of the control device 107 will be described with reference to FIG. In addition to the general drive control as described above, the control device 107 appropriately corrects the drive current in accordance with the turning request of the driver, thereby assisting the drive wheels 103 and 104 to provide the yaw moment required at the start of turning. Torque control is performed. As shown in FIG. 9, in order to perform this torque control, the control device 107 performs a target wheel slip angle calculation unit 151, an actual vehicle slip angle calculation unit 152, an actual wheel slip angle calculation unit 153, a necessary yaw amount, and the like. A moment calculation unit 154, a torque correction amount calculation unit 155, an actual torque amount calculation unit 156, and a field control unit 157 (an example of means for generating a necessary yaw moment) are provided.
 なお、上記トルク補正量算出部155と実トルク量算出部156の両方が、実トルク量算出部の一例に相当する。 Note that both the torque correction amount calculation unit 155 and the actual torque amount calculation unit 156 correspond to an example of the actual torque amount calculation unit.
 なお、上述した必要ヨーモーメント算出部154、実トルク量算出部156、界磁制御部157等における処理等は、これらの処理の分担の例に限定されるものではなく、例えば、さらに少ない数の処理部(1つの処理部等)で処理されてもよく、また、更に細分化された処理部により処理されてもよい。また、制御装置107は、全ての機能が後述するCPU901(図17参照)が実行するプログラムにより実装されてもよいし、その機能の一部又は全部がASICやFPGA、その他の電気回路等の実際の装置により実装されてもよい。 Note that the processing in the necessary yaw moment calculation unit 154, the actual torque amount calculation unit 156, the field control unit 157, and the like described above is not limited to the example of sharing of these processes, and for example, a smaller number of processing units It may be processed by (one processing unit or the like), or may be processed by a further subdivided processing unit. Further, in the control device 107, all functions may be implemented by a program executed by a CPU 901 (see FIG. 17) to be described later, or a part or all of the functions may actually be an ASIC, FPGA, other electric circuit, or the like. May be implemented by the apparatus.
 図10を用いて、電動車両100の旋回時に制御装置107がモータ105,106に対して行うトルク制御の内容の一例について説明する。 An example of the content of torque control performed by the control device 107 on the motors 105 and 106 when the electric vehicle 100 turns will be described with reference to FIG.
 運転者が走行中に車体を旋回させるためにハンドル108を介して操舵輪101,102を操舵すると、制御装置107は、ステップS201において、操舵角センサ109で検出された操舵輪101,102の操舵角を取得する。この操舵角は、運転者の旋回要求の大きさであるから、操舵角に基づき算出された電動車両100の旋回半径を目標にして以後の制御が行われる。ステップS201が終了すると、ステップS202に移る。 When the driver steers the steered wheels 101 and 102 via the handle 108 to turn the vehicle body while traveling, the control device 107 steers the steered wheels 101 and 102 detected by the steering angle sensor 109 in step S201. Get the corner. Since this steering angle is the magnitude of the driver's turning request, subsequent control is performed with the turning radius of the electric vehicle 100 calculated based on the steering angle as a target. When step S201 ends, the process proceeds to step S202.
 ステップS202では、制御装置107は、目標車輪スリップ角算出部151において、ステップS201で取得した操舵角と、絶対速度センサ112で検出された現在の車速に基づいて、制御の目標となる目標旋回軌道を算出し、その目標旋回軌道上を電動車両100が走行するために必要な目標車輪スリップ角を算出する。 In step S202, the control device 107, in the target wheel slip angle calculation unit 151, based on the steering angle acquired in step S201 and the current vehicle speed detected by the absolute speed sensor 112, a target turning trajectory that is a control target. And the target wheel slip angle required for the electric vehicle 100 to travel on the target turning trajectory is calculated.
 この手順をより具体的に説明すると、制御装置107は、まず、目標旋回軌道上を旋回するときの横加速度(すなわち、電動車両100に作用する遠心力)を算出する。次に、この算出した横加速度を発生するために必要な横力を、各車輪101~104ごとに算出する。そして、この算出した横力の大きさと各車輪101~104の接地状況(例えば、車輪の接地荷重や接地角度等)に基づいて、各車輪101~104の目標車輪スリップ角を算出する。なお、操舵を行わない駆動輪103,104の目標車輪スリップ角としては、目標車体スリップ角を利用すれば良い。これは、通常、駆動輪103,104は、車体の長さ方向に対して概ね平行に取り付けられており、目標車体スリップ角を目標値として制御することと等価となるからである。ステップS202が終了すると、ステップS203に移る。 Describing this procedure more specifically, the control device 107 first calculates the lateral acceleration (that is, the centrifugal force acting on the electric vehicle 100) when turning on the target turning trajectory. Next, the lateral force necessary to generate the calculated lateral acceleration is calculated for each of the wheels 101 to 104. Then, the target wheel slip angle of each wheel 101 to 104 is calculated based on the calculated magnitude of the lateral force and the contact state of each wheel 101 to 104 (for example, the contact load or contact angle of the wheel). In addition, what is necessary is just to utilize a target vehicle body slip angle as the target wheel slip angle of the drive wheels 103 and 104 which do not steer. This is because the drive wheels 103 and 104 are usually mounted substantially parallel to the length direction of the vehicle body, which is equivalent to controlling the target vehicle body slip angle as a target value. When step S202 ends, the process proceeds to step S203.
 ステップS203では、制御装置107は、電動車両100に備えられた車両状態量センサ120を介してモータ105,106の制御に必要な車両状態量(例えば、電動車両100の加速度や速度等)を取得する。前述のように、車両状態量センサ120としては、車体運動センサ111や、絶対速度センサ112、車輪速センサ114~117等が該当し、制御装置107が取得する車両状態量は、車体運動センサ111からの前後・横加速度やヨーレート、絶対速度センサ112若しくは車輪速センサ114~117からの車速等である。ステップS203が終了すると、ステップS204に移る。 In step S <b> 203, the control device 107 acquires a vehicle state quantity (for example, acceleration or speed of the electric vehicle 100) necessary for controlling the motors 105 and 106 via the vehicle state quantity sensor 120 provided in the electric vehicle 100. To do. As described above, the vehicle state quantity sensor 120 corresponds to the vehicle body movement sensor 111, the absolute speed sensor 112, the wheel speed sensors 114 to 117, and the vehicle state quantity acquired by the control device 107 is the vehicle state movement sensor 111. Vehicle speed from the longitudinal / lateral acceleration, yaw rate, absolute speed sensor 112 or wheel speed sensors 114-117, etc. When step S203 ends, the process proceeds to step S204.
 ステップS204では、制御装置107は、実車体スリップ角算出部152において、ステップS203で取得した車両状態量に基づいて実車体スリップ角を算出する。 In step S204, the control device 107 calculates the actual vehicle body slip angle in the actual vehicle body slip angle calculation unit 152 based on the vehicle state quantity acquired in step S203.
 このとき、実車体スリップ角は一般的に直接計測が困難であるため、(1)車速や操舵角、ヨーレートや横加速度を用いた近似的な計算式を利用する方法や、(2)車両運動モデルを用いたオブザーバによる方法等を利用して算出することが好ましい。例えば、後者のオブザーバによる方法では、まず、車両の力学的な旋回運動を模擬する車両運動モデルを制御ロジック内に構築し、そのモデルにステップS203で取得した車両状態量を入力することで、モデルの走行を実走行と同時に再現する。そして、ヨーレート等の計測可能な車両状態量とモデル内の当該車両状態量とを比較して、その誤差をモデルにフィードバックすることでモデルの挙動を実車両と一致させるようにする。このようにして得た車両運動モデルの内部変数である車体スリップ角を推定車体スリップ角として制御に用いるのがオブザーバの考え方である。ステップS204が終了すると、ステップS205に移る。 At this time, since the actual vehicle body slip angle is generally difficult to directly measure, (1) a method using an approximate calculation formula using vehicle speed, steering angle, yaw rate, or lateral acceleration, or (2) vehicle motion It is preferable to calculate using an observer method using a model. For example, in the latter method using the observer, first, a vehicle motion model that simulates the dynamic turning motion of the vehicle is built in the control logic, and the vehicle state quantity acquired in step S203 is input to the model. Reproduce the driving at the same time as the actual driving. Then, the measurable vehicle state quantity such as the yaw rate is compared with the vehicle state quantity in the model, and the error is fed back to the model so that the behavior of the model matches the actual vehicle. The observer's idea is to use the vehicle body slip angle, which is an internal variable of the vehicle motion model obtained in this way, as an estimated vehicle body slip angle for control. When step S204 ends, the process proceeds to step S205.
 ステップS205では、制御装置107は、実車輪スリップ角算出部153において、ステップS204で算出した実車体スリップ角と各車輪101~104の相対位置(主に操舵輪101,102の操舵角)に基づいて、各車輪101~104の実車輪スリップ角を算出する。操舵輪101,102の実車輪スリップ角の具体的な算出方法としては、ステップS204で算出した実車体スリップ角を操舵角から減じるものが最も簡単である。また、車体に固定されている駆動輪103,104については、ステップS204で算出した実車体スリップ角を実車輪スリップ角とみなす方法が最も簡単である。また、サスペンションの変位によるジオメトリ変化をテーブル等のかたちで制御装置107に予め保持しておき、これを利用することで実車輪スリップ角の算出精度を向上させても良い。ステップS205が終了すると、ステップS206に移る。 In step S205, the control device 107 uses the actual wheel slip angle calculation unit 153 to calculate the actual vehicle slip angle calculated in step S204 and the relative positions of the wheels 101 to 104 (mainly the steering angles of the steering wheels 101 and 102). Thus, the actual wheel slip angles of the wheels 101 to 104 are calculated. The simplest method for calculating the actual wheel slip angle of the steered wheels 101, 102 is to subtract the actual vehicle body slip angle calculated in step S204 from the steering angle. For the drive wheels 103 and 104 fixed to the vehicle body, the simplest method is to regard the actual vehicle slip angle calculated in step S204 as the actual wheel slip angle. Further, the geometric change due to the displacement of the suspension may be held in advance in the control device 107 in the form of a table or the like, and this may be used to improve the calculation accuracy of the actual wheel slip angle. When step S205 ends, the process proceeds to step S206.
 ステップS206では、制御装置107は、必要ヨーモーメント算出部154において、ステップS202で算出した各車輪101~104の目標車輪スリップ角とステップS205で算出した各車輪101~104の実車輪スリップ角とを比較して、目標旋回軌道上を走行するために必要なヨーモーメント(以下「必要ヨーモーメント」という)を算出する。 In step S206, the control device 107 causes the required yaw moment calculation unit 154 to calculate the target wheel slip angle of each wheel 101 to 104 calculated in step S202 and the actual wheel slip angle of each wheel 101 to 104 calculated in step S205. In comparison, a yaw moment (hereinafter referred to as “necessary yaw moment”) necessary for traveling on the target turning trajectory is calculated.
 ここで利用可能な必要ヨーモーメントの具体的算出方法としては下記のものがある。まず、線形域の仮定の下では、タイヤにより発生する横力はコーナリングパワーと車輪スリップ角の積であり、不足した横力は、最も簡単には、各車輪101~104の目標車輪スリップ角と実車輪スリップ角の差分にコーナリングパワーを掛けた値とみなすことができる。したがって、この不足した横力に重心から該当する車輪までの距離を掛け、すべての車輪101~104について合計すれば、必要ヨーモーメントを算出することができる。なお、トルク遅れ、検出誤差、出力誤差などを吸収する観点からは、PID制御等の制御器を実装し、上記のように算出した必要ヨーモーメントに何らかの制御ゲインを掛けた値を制御値としての必要モーメントとすることが好ましい。ステップS206が終了すると、ステップS207に移る。 The following is a specific method for calculating the necessary yaw moment that can be used here. First, under the assumption of the linear range, the lateral force generated by the tire is the product of the cornering power and the wheel slip angle, and the insufficient lateral force is most simply calculated as the target wheel slip angle of each wheel 101-104. It can be regarded as a value obtained by multiplying the difference between the actual wheel slip angles by the cornering power. Therefore, the necessary yaw moment can be calculated by multiplying the insufficient lateral force by the distance from the center of gravity to the corresponding wheel and adding up all the wheels 101-104. From the viewpoint of absorbing torque delay, detection error, output error, etc., a controller such as PID control is mounted, and a value obtained by multiplying the necessary yaw moment calculated as described above by some control gain is used as a control value. It is preferable to set the required moment. When step S206 ends, the process proceeds to step S207.
 ステップS207では、制御装置107は、トルク補正量算出部155において、駆動輪103,104にトルク差を与えてステップS206で算出した必要ヨーモーメントを発生させるために、駆動輪103,104に個別に与えるトルクの補正量(トルク補正量)を算出する。基本的にはステップS206の必要ヨーモーメントの値を重心から駆動輪103,104までの距離で除すれば、駆動輪103,104に与えるべき力が個別に求められる。したがって、この力に駆動輪103,104の半径を掛ければ、必要ヨーモーメントを発生させるためのトルク補正量を算出することができる。ステップS207が終了すると、ステップS208に移る。 In step S207, the control device 107 individually provides the drive wheels 103 and 104 with the torque correction amount calculation unit 155 to provide the torque difference to the drive wheels 103 and 104 and generate the necessary yaw moment calculated in step S206. A torque correction amount (torque correction amount) to be applied is calculated. Basically, if the value of the required yaw moment in step S206 is divided by the distance from the center of gravity to the drive wheels 103, 104, the force to be applied to the drive wheels 103, 104 can be obtained individually. Therefore, if this force is multiplied by the radius of the drive wheels 103 and 104, a torque correction amount for generating the necessary yaw moment can be calculated. When step S207 ends, the process proceeds to step S208.
 ステップS208では、制御装置107は、実トルク量算出部156において、ステップS207で算出したトルク補正量を、操作ペダル113の踏み込み量(運転者の要求加速度)から算出した要求トルク量に加算し、駆動輪103,104のそれぞれに実際に与える実トルク量を算出する。ステップS208が終了すると、ステップS209に移る。 In step S208, the control device 107 adds the torque correction amount calculated in step S207 to the required torque amount calculated from the depression amount of the operation pedal 113 (driver's required acceleration) in the actual torque amount calculation unit 156, The actual amount of torque actually applied to each of the drive wheels 103 and 104 is calculated. When step S208 ends, the process proceeds to step S209.
 ステップS209では、制御装置107は、界磁制御部157において、ステップS208で算出した実トルク量をモータ105,106を介して駆動輪103,104に個別に与えるように、モータ105,106の界磁磁束を個別に制御する。具体的には、界磁制御部157は、車輪速センサ116,117で検出されたモータ105,106の回転速度と、上記ステップS208で算出した実トルク量に基づいて、界磁率α、位相角β、及び電流Iの目標値をマップを参照して読み出す。そして、界磁率αが目標値となるように制御モータ70を制御すると共に、位相角β、及び電流値Iが目標値となるように固定子巻線12を通電する。 In step S209, the control device 107 causes the field control unit 157 to apply the actual torque amount calculated in step S208 to the drive wheels 103 and 104 via the motors 105 and 106, respectively, so that the field magnetic flux of the motors 105 and 106 is increased. Are controlled individually. Specifically, the field controller 157 determines the field ratio α, the phase angle β, the rotational speed of the motors 105 and 106 detected by the wheel speed sensors 116 and 117, and the actual torque amount calculated in step S208. The target value of the current I is read with reference to the map. Then, the control motor 70 is controlled so that the field ratio α becomes the target value, and the stator winding 12 is energized so that the phase angle β and the current value I become the target values.
  (1-6.旋回補助システムによる旋回補助作用)
 次に、図11を用いて、上記のように構成される本実施形態の旋回補助システム150による旋回補助作用の一例について説明する。図11は、旋回補助システム150による電動車両100の車体運動応答の一例を示す応答曲線図である。
(1-6. Turn assist action by the turn assist system)
Next, with reference to FIG. 11, an example of a turning assisting action by the turning assisting system 150 of the present embodiment configured as described above will be described. FIG. 11 is a response curve diagram illustrating an example of a vehicle body motion response of the electric vehicle 100 by the turning assist system 150.
 図11の上段の応答曲線図の実線301は、操舵輪101,102の操舵角の時間変化を示す。また、図11の2段目の応答曲線図の破線302は、図10で説明したトルク補正制御を行わない場合の操舵輪101,102の車輪スリップ角の時間変化を示し、同応答曲線図の実線303は、上記トルク補正制御を行った本実施形態の場合の操舵輪101,102の車輪スリップ角の時間変化を示す。 The solid line 301 in the upper response curve diagram of FIG. 11 shows the change with time of the steering angle of the steered wheels 101 and 102. Further, a broken line 302 in the response curve diagram in the second stage in FIG. 11 indicates a time change of the wheel slip angle of the steered wheels 101 and 102 when the torque correction control described in FIG. 10 is not performed. A solid line 303 indicates a time change of the wheel slip angle of the steered wheels 101 and 102 in the present embodiment in which the torque correction control is performed.
 操舵輪101,102の車輪スリップ角は、実線301のように操舵角が増加すると、トルク補正制御を行わない場合では、破線302に示されるように、急激に立ち上がって車体のヨー運動を開始する過度状態を経た後に、遠心力に見合った車輪スリップ角へ収束して定常旋回状態に移行する。これに対し、本実施形態では、操舵輪101,102によるヨーモーメント生成に先だって、図10で説明した駆動輪103,104によるヨーモーメント生成が行われる。そのため、操舵輪101,102の車輪スリップ角が、実線303に示されるように、過度状態に至ることなく速やかに定常値へと収束して、定常旋回状態に移行することができる。このように、本実施形態によれば、旋回中の操舵輪101,102の車輪スリップ角の増加を抑制できるので、タイヤの動摩擦域の増加が抑制でき、タイヤ摩耗を低減することができる。 When the steering angle increases as indicated by the solid line 301, the wheel slip angles of the steering wheels 101 and 102 rise rapidly and start the yaw movement of the vehicle body as indicated by the broken line 302 when torque correction control is not performed. After passing through an excessive state, it converges to a wheel slip angle commensurate with the centrifugal force and shifts to a steady turning state. On the other hand, in this embodiment, the yaw moment generation by the drive wheels 103 and 104 described with reference to FIG. 10 is performed prior to the yaw moment generation by the steering wheels 101 and 102. Therefore, as shown by the solid line 303, the wheel slip angles of the steered wheels 101 and 102 can quickly converge to a steady value without transitioning to an excessive state and shift to a steady turning state. Thus, according to this embodiment, since the increase in the wheel slip angle of the steered wheels 101, 102 during turning can be suppressed, the increase in the dynamic friction area of the tire can be suppressed, and the tire wear can be reduced.
 図11の3段目の応答曲線図の破線304は、上記トルク補正制御を行なわない場合の駆動輪103,104の車輪スリップ角(=車体スリップ角)の時間変化を示し、同応答曲線図の実線305は、上記トルク補正制御を行なった本実施形態の場合の駆動輪103,104の車輪スリップ角の時間変化を示す。 A broken line 304 in the response curve diagram in the third stage of FIG. 11 shows the time change of the wheel slip angle (= vehicle body slip angle) of the drive wheels 103 and 104 when the torque correction control is not performed. A solid line 305 indicates a change over time in the wheel slip angles of the drive wheels 103 and 104 in the present embodiment in which the torque correction control is performed.
 駆動輪103,104の車輪スリップ角は、トルク補正制御を行わない場合では、破線304に示されるように、操舵角が増加すると、急激に立ち下がって車体のヨー運動を開始する過度状態を経た後に、遠心力に見合った車輪スリップ角へ収束して定常旋回状態に移行する。これに対し、本実施形態では、駆動輪103,104の車輪スリップ角は、実線305に示されるように、操舵角が増加すると、進路の変更が車体の回転運動を先回る過渡状態を速やかに脱して、定常旋回状態へと移行できる。このように、本実施形態では、速やかに駆動輪103,104の車輪スリップ角(=車体スリップ角)が定常値に安定するため、特に、滑り易い路面で発生しやすい車体スリップ角のオーバーシュート(すなわち、スピン状態)を容易に回避することができるという利点がある。 When the torque correction control is not performed, the wheel slip angles of the drive wheels 103 and 104 have gone through an excessive state in which the yaw movement of the vehicle body starts suddenly as the steering angle increases as indicated by the broken line 304. Later, it converges to a wheel slip angle commensurate with the centrifugal force and shifts to a steady turning state. On the other hand, in the present embodiment, as indicated by the solid line 305, the wheel slip angles of the drive wheels 103 and 104 promptly enter a transient state in which the course change precedes the rotational movement of the vehicle body as the steering angle increases. It is possible to shift to a steady turning state. As described above, in this embodiment, the wheel slip angle (= vehicle slip angle) of the drive wheels 103 and 104 is quickly stabilized at a steady value, and therefore, particularly, an overshoot of the vehicle slip angle that is likely to occur on a slippery road surface ( That is, there is an advantage that the spin state) can be easily avoided.
 図11の最下段は、上記トルク補正制御を行った本実施形態における駆動輪103,104の左右の駆動トルクの応答曲線図である。最下段の応答曲線図の実線306は、上記トルク補正制御を行った場合の駆動輪103,104のうちの旋回外輪(例えば駆動輪103)の駆動トルクの時間変化を示し、同応答曲線図の一点鎖線307は、駆動輪103,104のうちの旋回内輪(例えば駆動輪104)の駆動トルクの時間変化を示す。この図に示すように、本実施形態では、旋回初期の過渡状態で駆動輪103,104に大きな左右トルク差を発生させることで、ヨーモーメントを生成している。なお、もしも電動車両100が制御目標に比べてアンダーステア特性を示す場合には、旋回過渡状態だけでなく定常状態においても旋回を補助するトルク補正量(定常状態における左右駆動トルク差)を算出し、これを要求トルク量に加算して実トルク量とすれば良い。 11 is a response curve diagram of the left and right drive torques of the drive wheels 103 and 104 in the present embodiment in which the torque correction control is performed. A solid line 306 in the lowermost response curve diagram shows a change over time in the drive torque of the turning outer wheel (for example, the drive wheel 103) of the drive wheels 103 and 104 when the torque correction control is performed. An alternate long and short dash line 307 indicates a change over time in the driving torque of the turning inner wheel (for example, the driving wheel 104) of the driving wheels 103 and 104. As shown in this figure, in the present embodiment, the yaw moment is generated by generating a large left-right torque difference between the drive wheels 103 and 104 in a transient state at the initial turning. If the electric vehicle 100 exhibits an understeer characteristic as compared with the control target, a torque correction amount (left-right drive torque difference in the steady state) that assists the turn in the steady state as well as the turning transient state is calculated. This may be added to the required torque amount to obtain the actual torque amount.
 なお、上記の説明では、ステップS206で必要ヨーモーメントを求めるために、全ての車輪101~104(操舵輪101,102、駆動輪103,104)の目標車輪スリップ角と実車輪スリップ角を算出したが、これに限定されるものではない。例えば、1対の操舵輪101,102と、1対の駆動輪103,104のうち、いずれか一方の目標車輪スリップ角と実車輪スリップ角を求めて必要ヨーモーメントを算出しても良い。このように必要ヨーモーメントを算出しても、操舵輪101,102の車輪スリップ角を低減することができる。特に、1対の操舵輪101,102を制御対象とすれば、操舵輪101,102のスリップ発生防止を図ることができ、1対の駆動輪103,104を制御対象とすれば、車体の安定化を図ることができる。 In the above description, in order to obtain the necessary yaw moment in step S206, the target wheel slip angle and the actual wheel slip angle of all the wheels 101 to 104 ( steering wheels 101 and 102, drive wheels 103 and 104) are calculated. However, the present invention is not limited to this. For example, the required yaw moment may be calculated by obtaining the target wheel slip angle and the actual wheel slip angle of one of the pair of steered wheels 101 and 102 and the pair of drive wheels 103 and 104. Thus, even if the necessary yaw moment is calculated, the wheel slip angle of the steered wheels 101 and 102 can be reduced. In particular, if the pair of steered wheels 101 and 102 is a control target, the occurrence of slippage of the steered wheels 101 and 102 can be prevented, and if the pair of drive wheels 103 and 104 is a control target, vehicle body stability can be prevented. Can be achieved.
  (1-7.第1実施形態の効果)
 以上説明したように、本実施形態の旋回補助システム150は、界磁磁束が変化するように構成された一対のモータ105,106と、操舵角センサ109と、車両状態量センサ120と、制御装置107とを有する。制御装置107は、操舵角及び車両状態量に基づいて一対のモータ105,106の界磁磁束を個別に制御する界磁制御部157を有する。これにより、各駆動輪103,104のモータ105,106の界磁磁束を個別に制御することで、一対の駆動輪103,104に操舵角及び車両状態量に応じたトルク差を与えることが可能となる。その結果、操舵輪101,102の横力負担を軽減することができるので、操舵輪101,102における車輪スリップ角を減少でき、タイヤ磨耗量を減少することができる。したがって、旋回応答性を確保しつつタイヤ磨耗を効果的に低減することができる。
(1-7. Effects of First Embodiment)
As described above, the turning assist system 150 of the present embodiment includes the pair of motors 105 and 106, the steering angle sensor 109, the vehicle state quantity sensor 120, and the control device that are configured so that the field magnetic flux changes. 107. The control device 107 includes a field control unit 157 that individually controls the field magnetic flux of the pair of motors 105 and 106 based on the steering angle and the vehicle state quantity. Thus, by individually controlling the field magnetic flux of the motors 105 and 106 of the drive wheels 103 and 104, a torque difference corresponding to the steering angle and the vehicle state quantity can be given to the pair of drive wheels 103 and 104. It becomes. As a result, the lateral force load on the steered wheels 101 and 102 can be reduced, so that the wheel slip angle on the steered wheels 101 and 102 can be reduced, and the amount of tire wear can be reduced. Therefore, tire wear can be effectively reduced while ensuring turning response.
 また、本実施形態では特に、旋回補助システム150の制御装置107は、必要ヨーモーメント算出部154と、トルク補正量算出部155及び実トルク量算出部156とを有する。これにより、次の効果を奏する。 Further, particularly in the present embodiment, the control device 107 of the turning assist system 150 includes a necessary yaw moment calculator 154, a torque correction amount calculator 155, and an actual torque amount calculator 156. Thereby, there exists the following effect.
 すなわち、各駆動輪103,104のモータ105,106の界磁磁束を個別に制御することで一対の駆動輪103,104にトルク差を与え、旋回開始時に必要なヨーモーメントの生成を駆動輪103,104で補助することができる。すなわち、操舵輪101,102の操舵による横力だけでなく駆動輪103,104の前後力も利用しながら、旋回時における車体のヨー運動(旋回方向の回転運動)を引き起こすことができる。これにより、操舵輪101,102の横力負担を軽減することができるので、操舵輪101,102における車輪スリップ角を減少でき、タイヤ磨耗量を減少することができる。したがって、旋回応答性を確保しつつタイヤ磨耗を効果的に低減することができる。 That is, by individually controlling the field magnetic fluxes of the motors 105 and 106 of the drive wheels 103 and 104, a torque difference is given to the pair of drive wheels 103 and 104, and generation of the yaw moment necessary at the start of turning is generated. , 104 can assist. That is, the yaw motion (rotational motion in the turning direction) of the vehicle body at the time of turning can be caused using not only the lateral force due to the steering of the steering wheels 101 and 102 but also the longitudinal force of the driving wheels 103 and 104. As a result, the lateral force load on the steered wheels 101 and 102 can be reduced, so that the wheel slip angle on the steered wheels 101 and 102 can be reduced, and the amount of tire wear can be reduced. Therefore, tire wear can be effectively reduced while ensuring turning response.
 また、モータ105,106の界磁磁束を変化させて駆動輪103,104に与えるトルクを制御するので、界磁磁束が固定されたモータに比べて、低トルクから高トルクまで広いトルク範囲で高効率に駆動することができる。その結果、モータ105,106(特に旋回時に外輪側となるモータ等)の発熱を抑制できる効果もある。 In addition, since the torque applied to the drive wheels 103 and 104 is controlled by changing the field magnetic flux of the motors 105 and 106, the torque is high in a wide torque range from low torque to high torque compared to a motor with fixed field magnetic flux. It can be driven efficiently. As a result, there is also an effect that the heat generation of the motors 105 and 106 (particularly, the motor on the outer ring side when turning) can be suppressed.
 また、本実施形態では特に、モータ105,106は、固定子巻線12を備えた固定子10と、第1永久磁石52が設置された複数の磁極部53及び第2永久磁石62が設置された複数の磁極部63の2組に分かれて相対的に回動するように構成された回転子30と、2組の磁極部53,63を相対的に回動させる制御モータ70と、を有し、界磁制御部157は、上記実トルク量に基づいて制御モータ70を制御することでモータ105,106の界磁磁束を制御する。このような構造とすることで、モータ105,106の負荷トルクや回転速度に関わりなく、界磁磁束を正確に制御することができる。 In the present embodiment, in particular, the motors 105 and 106 are provided with the stator 10 including the stator winding 12, the plurality of magnetic pole portions 53 provided with the first permanent magnet 52, and the second permanent magnet 62. The rotor 30 is configured to be relatively rotated by being divided into two sets of a plurality of magnetic pole portions 63, and a control motor 70 that relatively rotates the two sets of magnetic pole portions 53 and 63. The field control unit 157 controls the field magnetic flux of the motors 105 and 106 by controlling the control motor 70 based on the actual torque amount. With such a structure, the field magnetic flux can be accurately controlled regardless of the load torque and rotation speed of the motors 105 and 106.
 また、本実施形態では特に、車両状態量センサ120は、モータ105,106の回転速度を検出する車輪速センサ116,117を含み、界磁制御部157は、回転速度と実トルク量に基づいて、界磁率α、位相角β、及び電流の目標値を、マップを参照して読み出すマップ制御を行う。これにより、モータ105,106の界磁磁束を回転速度と実トルク量に応じて微調整することができるので、駆動輪103,104に対し精度の高いトルク制御を実行することができる。 In the present embodiment, in particular, the vehicle state quantity sensor 120 includes wheel speed sensors 116 and 117 that detect the rotation speeds of the motors 105 and 106, and the field control unit 157 determines the field speed based on the rotation speed and the actual torque amount. Map control is performed for reading out the magnetic susceptibility α, the phase angle β, and the current target value with reference to the map. As a result, the field magnetic flux of the motors 105 and 106 can be finely adjusted according to the rotational speed and the actual torque amount, so that highly accurate torque control can be performed on the drive wheels 103 and 104.
 また、本実施形態では特に、制御装置107が、目標車輪スリップ角算出部151と、実車体スリップ角算出部152と、実車輪スリップ角算出部153と、を有し、必要ヨーモーメント算出部154は、目標車輪スリップ角と実車輪スリップ角の差分に基づいて必要ヨーモーメントを算出する。 In the present embodiment, in particular, the control device 107 includes a target wheel slip angle calculation unit 151, an actual vehicle body slip angle calculation unit 152, and an actual wheel slip angle calculation unit 153, and a necessary yaw moment calculation unit 154. Calculates the required yaw moment based on the difference between the target wheel slip angle and the actual wheel slip angle.
 このように、本実施形態では、駆動輪103,104の実車輪スリップ角が目標車輪スリップ角となるように各モータ105,106の界磁制御を行うので、実車体スリップ角を目標値に対して制御することになる。そのため、車体スリップ角が過剰な状態であるスピン(オーバーステア)や、操舵輪101,102のスリップ角が過剰な状態であるアンダーステアの発生を回避することが可能となり、走行性の安定化を図ることができる。 As described above, in this embodiment, the field control of the motors 105 and 106 is performed so that the actual wheel slip angle of the drive wheels 103 and 104 becomes the target wheel slip angle, so the actual vehicle body slip angle is controlled with respect to the target value. Will do. Therefore, it is possible to avoid the occurrence of spin (oversteer) in which the vehicle body slip angle is excessive and understeer in which the slip angle of the steerable wheels 101 and 102 is excessive, thereby stabilizing the running performance. be able to.
 また、本実施形態では特に、目標車輪スリップ角算出部151は、操舵輪101,102及び駆動輪103,104の両方について目標車輪スリップ角を算出し、実車輪スリップ角算出部153は、操舵輪101,102及び駆動輪103,104の両方について車輪スリップ角を算出する。このように、全ての車輪についてスリップ角を算出することで、必要ヨーモーメントの算出の正確性を高めることができる。 In the present embodiment, in particular, the target wheel slip angle calculation unit 151 calculates the target wheel slip angle for both the steering wheels 101 and 102 and the drive wheels 103 and 104, and the actual wheel slip angle calculation unit 153 includes the steering wheel. The wheel slip angles are calculated for both 101 and 102 and the drive wheels 103 and 104. Thus, by calculating the slip angle for all the wheels, the accuracy of calculating the necessary yaw moment can be improved.
 なお、目標車輪スリップ角算出部151が、操舵輪101,102又は駆動輪103,104のいずれか一方(例えば操舵輪101,102)についてのみ目標車輪スリップ角を算出し、実車輪スリップ角算出部153が、操舵輪101,102又は駆動輪103,104のいずれか一方についてのみ実車輪スリップ角を算出してもよい。この場合には、演算量を少なくできるので、制御装置107の処理速度の高速化やコスト削減を図ることができる。 The target wheel slip angle calculation unit 151 calculates the target wheel slip angle only for one of the steering wheels 101 and 102 or the drive wheels 103 and 104 (for example, the steering wheels 101 and 102), and the actual wheel slip angle calculation unit. 153 may calculate the actual wheel slip angle for only one of the steered wheels 101, 102 or the drive wheels 103, 104. In this case, since the amount of calculation can be reduced, the processing speed of the control device 107 can be increased and the cost can be reduced.
 <2.第2実施形態>
 次に、第2実施形態について説明する。本実施形態は、第1実施形態において駆動輪103,104のトルク補正により生成したヨーモーメントの量を積極的に増加させ、操舵輪101,102の負担をさらに低減することを図ったものである。たとえば、このトルク補正によって定常旋回中の車体の自転運動に必要なヨーモーメントを生成すれば、さらなる操舵輪101,102の摩耗低減を実現できる。
<2. Second Embodiment>
Next, a second embodiment will be described. In the present embodiment, the amount of yaw moment generated by torque correction of the drive wheels 103 and 104 in the first embodiment is positively increased, and the burden on the steered wheels 101 and 102 is further reduced. . For example, if the yaw moment necessary for the rotational motion of the vehicle body during steady turning is generated by this torque correction, the wear of the steered wheels 101 and 102 can be further reduced.
 本実施形態における転舵アクチュエータ110とハンドル108は、互いに機械的に切り離された状態にするか、又はそのステアリングコラムの途中に可変ギア比機構等を備えるものとする。このように構成する理由は、第1実施形態では、操舵輪101,102の操舵角は制御装置107の制御対象でなかったため転舵アクチュエータ110とハンドル108が機械的に接続されているかどうかは問わなかったが、本実施形態では操舵角を制御対象としているからである。このように構成すると、ハンドル108のハンドル角(操舵量)と独立して操舵輪101,102の操舵角を設定することができる。 In this embodiment, the steering actuator 110 and the handle 108 are mechanically separated from each other, or provided with a variable gear ratio mechanism or the like in the middle of the steering column. The reason for this configuration is that in the first embodiment, the steering angle of the steered wheels 101 and 102 is not the control target of the control device 107, so it does not matter whether the steered actuator 110 and the handle 108 are mechanically connected. This is because, in this embodiment, the steering angle is the control target. With this configuration, the steering angle of the steered wheels 101 and 102 can be set independently of the handle angle (steering amount) of the handle 108.
  (2-1.制御装置による制御内容)
 図12を用いて、第2実施形態における制御装置107Aの機能構成の一例を説明する。なお、先の図9と同じ部分には同じ符号を付して説明は省略する。制御装置107Aは、第1実施形態で説明した目標車輪スリップ角算出部151等の各機能に加えて、旋回ヨーモーメント算出部158と、実操舵角算出部159とを備えている。
(2-1. Control contents by the control device)
An example of the functional configuration of the control device 107A in the second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as previous FIG. 9, and description is abbreviate | omitted. The control device 107A includes a turning yaw moment calculating unit 158 and an actual steering angle calculating unit 159 in addition to the functions of the target wheel slip angle calculating unit 151 and the like described in the first embodiment.
 図13を用いて、制御装置107Aが操舵輪101,102とモータ105,106に対して行う制御の内容の一例について説明する。なお、先の図10と同じ部分には同じ符号を付して説明は省略する。 An example of the contents of control performed by the control device 107A on the steered wheels 101 and 102 and the motors 105 and 106 will be described with reference to FIG. The same parts as those in FIG. 10 are denoted by the same reference numerals and description thereof is omitted.
 制御装置107Aは、運転者が走行中にハンドル108で車体を旋回させるとき、まず、ステップS401において、運転者から入力され操舵角センサ109で検出されるハンドル108の操舵量(ハンドル角)を取得する。ステップS401が終了すると、ステップS402に移る。 When the driver turns the vehicle body with the handle 108 while the driver is traveling, the control device 107A first acquires the steering amount (handle angle) of the handle 108 that is input from the driver and detected by the steering angle sensor 109 in step S401. To do. When step S401 ends, the process proceeds to step S402.
 ステップS402では、制御装置107Aは、旋回ヨーモーメント算出部158において、ステップS401で取得した操舵量(旋回要求)から直接的に求められる入力操舵角で旋回運動すると仮定した場合に操舵輪101,102が負担するヨーモーメントを算出する。そして、その算出したヨーモーメントを駆動輪103,104のトルク制御で生成するヨーモーメント(以下「旋回ヨーモーメント」という)で補助する量を算出する。すなわち、ここでは、第1実施形態で操舵輪101,102が負担していたヨーモーメントの一部を予め定めた負担割合等に基づいて駆動輪103,104にも負担させており、その駆動輪103,104が負担する量(旋回ヨーモーメントの生成量)を決定している。例えば、必要なヨーモーメントの全てをトルク制御によって生成することにすれば、操舵輪101,102の転舵を行なうことなくトルクステアのみでの旋回になるし、反対にトルク制御による生成割合を減らしていけば操舵角と旋回時の車両状態は「制御なし」の車両に近づいていく。ステップS402が終了すると、ステップS403に移る。 In step S402, the control device 107A assumes that the turning yaw moment calculation unit 158 performs a turning motion at an input steering angle that is directly obtained from the steering amount (turning request) acquired in step S401. Calculate the yaw moment that Then, an amount of assisting the calculated yaw moment with a yaw moment (hereinafter referred to as “turning yaw moment”) generated by torque control of the drive wheels 103 and 104 is calculated. That is, here, a part of the yaw moment that the steering wheels 101 and 102 bear in the first embodiment is also borne by the driving wheels 103 and 104 based on a predetermined burden ratio or the like. The amount that 103 and 104 bear (the amount of generation of the turning yaw moment) is determined. For example, if all of the necessary yaw moment is generated by torque control, the steering wheel 101, 102 is turned without turning the steering wheel, and on the contrary, the generation rate by torque control is reduced. If it does, the steering angle and the vehicle state at the time of turning approach the vehicle of “no control”. When step S402 ends, the process proceeds to step S403.
 ステップS403では、制御装置107Aは、実操舵角算出部159において、ステップS402で算出した旋回ヨーモーメントに対応する操舵角(操舵角補正量)を算出し、その算出した操舵角を入力操舵角から減じて操舵輪101,102を実際に調節する実操舵角を算出する。そして、この実操舵角に基づいて、転舵アクチュエータ110(操舵角調節部の一例に相当)は操舵輪101,102を調節する。ここで、操舵角補正量を算出する場合には、例えば、ステップS402で算出した旋回ヨーモーメントに相当する横力を算出し、これをタイヤのコーナリングパワーで除すれば良い。そして、この算出した操舵角補正量を、ステップS401で取得した操舵量に操舵ゲインを掛けた操舵角(すなわち、入力操舵角)から減じれば、実操舵角を算出することができる。ステップS403が終了すると、ステップS404に移る。 In step S403, the control device 107A calculates a steering angle (steering angle correction amount) corresponding to the turning yaw moment calculated in step S402 in the actual steering angle calculation unit 159, and calculates the calculated steering angle from the input steering angle. The actual steering angle for actually adjusting the steered wheels 101 and 102 is calculated by subtracting. Then, based on the actual steering angle, the steering actuator 110 (corresponding to an example of a steering angle adjusting unit) adjusts the steering wheels 101 and 102. Here, when calculating the steering angle correction amount, for example, a lateral force corresponding to the turning yaw moment calculated in step S402 may be calculated and divided by the cornering power of the tire. Then, the actual steering angle can be calculated by subtracting the calculated steering angle correction amount from the steering angle obtained by multiplying the steering amount acquired in step S401 by the steering gain (that is, the input steering angle). When step S403 ends, the process proceeds to step S404.
 ステップS404からステップS408までは、図10のステップS202からステップS206と基本的に同じであり、第1実施形態で説明したのと同様の手順を行い、必要ヨーモーメントを算出する。ただし、本実施形態では、目標車輪スリップ角算出部151(ステップS404)と実車輪スリップ角算出部153(ステップS407)において、操舵輪101,102の操舵角としてステップS403で算出した実操舵角を利用する点が第1実施形態と異なる。ステップS408が終了すると、ステップS409に移る。 Steps S404 to S408 are basically the same as steps S202 to S206 in FIG. 10, and the same procedure as described in the first embodiment is performed to calculate the necessary yaw moment. However, in the present embodiment, the target wheel slip angle calculation unit 151 (step S404) and the actual wheel slip angle calculation unit 153 (step S407) use the actual steering angle calculated in step S403 as the steering angle of the steered wheels 101 and 102. The point of utilization differs from the first embodiment. When step S408 ends, the process proceeds to step S409.
 ステップS409では、制御装置107Aは、トルク補正量算出部155において、ステップS408で算出した必要ヨーモーメントとステップS402で算出した旋回ヨーモーメントの和に相当する量の総ヨーモーメントを駆動輪103,104にトルク差を与えて発生させるために、駆動輪103,104に個別に与えるトルク補正量を算出する。ステップS409が終了すると、ステップS410に移る。 In step S409, the control device 107A causes the torque correction amount calculation unit 155 to generate a total yaw moment corresponding to the sum of the required yaw moment calculated in step S408 and the turning yaw moment calculated in step S402 on the drive wheels 103 and 104. In order to generate a torque difference between the driving wheels 103 and 104, torque correction amounts to be individually applied to the driving wheels 103 and 104 are calculated. When step S409 ends, the process proceeds to step S410.
 ステップS410では、制御装置107Aは、実トルク量算出部156において、ステップS409で算出したトルク補正量に要求トルク量を加算して実トルク量を算出する。ステップS410が終了すると、ステップS411に移る。 In step S410, the control device 107A calculates the actual torque amount by adding the required torque amount to the torque correction amount calculated in step S409 in the actual torque amount calculation unit 156. When step S410 ends, the process proceeds to step S411.
 ステップS411では、制御装置107Aは、界磁制御部157において、ステップS410で算出した実トルク量をモータ105,106を介して駆動輪103,104に個別に与えるように、モータ105,106の界磁磁束を個別に制御する。 In step S411, the control device 107A causes the field control unit 157 to apply the actual torque amount calculated in step S410 to the drive wheels 103 and 104 individually via the motors 105 and 106, so that the field magnetic flux of the motors 105 and 106 is increased. Are controlled individually.
  (2-2.第2実施形態の効果)
 本実施形態によれば、操舵輪101,102が負担するヨーモーメントを、駆動輪103,104で補助した旋回ヨーモーメントに相当する分だけ低減できる。これにより、操舵輪101,102の操舵角を低減して操舵輪101,102の横力負担を低減できるので、タイヤ磨耗量をさらに低減できる。
(2-2. Effect of Second Embodiment)
According to this embodiment, the yaw moment borne by the steered wheels 101 and 102 can be reduced by an amount corresponding to the turning yaw moment assisted by the drive wheels 103 and 104. As a result, the steering angle of the steered wheels 101, 102 can be reduced to reduce the lateral force load on the steered wheels 101, 102, so that the amount of tire wear can be further reduced.
 また、定常旋回状態での駆動輪によるヨーモーメント生成を行うと同時に、その生成量に応じて操舵角を加減させるので、ハンドルから入力される操舵量に対して旋回応答のゲインを常に一定に保持することが可能となり、ハンドルの切れ過ぎ防止等を図ることができる。したがって、旋回過度状態(旋回開始時)のヨーモーメント生成に加え、定常旋回状態でのヨーモーメント生成においても、運転者のハンドル操作に対する違和感を低減でき、操作感を向上できる。 In addition, the yaw moment is generated by the drive wheels in a steady turning state, and at the same time, the steering angle is adjusted according to the generation amount, so the turning response gain is always kept constant with respect to the steering amount input from the steering wheel. It is possible to prevent the handle from being cut too much. Therefore, in addition to generation of yaw moment in the excessive turning state (at the start of turning), generation of yaw moment in the steady turning state can reduce a sense of discomfort with respect to the steering wheel operation of the driver, and can improve the operational feeling.
 <3.第3実施形態>
 次に、第3実施形態について説明する。本実施形態は、2つのモータ105,106を備える車両において、一方のモータで発生した電力を他方のモータに供給する構成に関する。例えば、加減速の無い状態等、駆動トルクがゼロに近い状態でヨーモーメントの生成を行う場合等には、一方のモータ(例えばモータ105)が一方の駆動輪(例えば駆動輪103)を駆動することで力行動作をし、他方のモータ(例えばモータ106)が他方の駆動輪(例えば駆動輪104)を制動することで回生動作をする場合が存在する。このような場合には、駆動回路の構成を工夫することにより、回生動作によって発生した電力を力行動作の電力として利用することができる。
<3. Third Embodiment>
Next, a third embodiment will be described. The present embodiment relates to a configuration in which a vehicle including two motors 105 and 106 supplies electric power generated by one motor to the other motor. For example, when the yaw moment is generated when the driving torque is close to zero, such as when there is no acceleration / deceleration, one motor (for example, the motor 105) drives one driving wheel (for example, the driving wheel 103). Thus, there is a case where the power running operation is performed and the other motor (for example, the motor 106) performs the regenerative operation by braking the other driving wheel (for example, the driving wheel 104). In such a case, the power generated by the regenerative operation can be used as the power for the power running operation by devising the configuration of the drive circuit.
  (3-1.駆動回路の構成)
 図14を用いて、本実施形態に係る電動車両の旋回補助システムにおける駆動回路の一例について説明する。なお、先の図と同じ部分には同じ符号を付して説明は省略する。
(3-1. Configuration of drive circuit)
An example of the drive circuit in the turning assist system for the electric vehicle according to the present embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as the previous figure, and description is abbreviate | omitted.
 この図14に示す駆動回路は、発電機やバッテリなど通常の駆動状態における電圧源501と、モータ105と接続され電流を制御するインバータ503と、モータ106と接続され電流を制御するインバータ504と、インバータ503,504と電圧源501の接続/非接続を切り換えるスイッチ502とを備えている。 The driving circuit shown in FIG. 14 includes a voltage source 501 in a normal driving state such as a generator or a battery, an inverter 503 connected to the motor 105 to control current, an inverter 504 connected to the motor 106 to control current, Inverters 503 and 504 and a switch 502 for switching connection / disconnection of the voltage source 501 are provided.
 この駆動回路は、電動車両100の通常走行時、スイッチ502が閉じられており、電圧源501からの電流をインバータ503,504により制御して、モータ105,106を駆動する構成になっている。ここで、1対のモータ105,106のうち一方のモータ(例えばモータ105)が駆動輪(例えば駆動輪103)に制動トルクを与えて、他方のモータ(例えばモータ106)が駆動輪(例えば駆動輪104)に駆動トルクを与える動作条件になる場合には、スイッチ502が開かれて電圧源501が回路から切り離される。このように電圧源501を切り離すと、一方のモータ(例えばモータ105)の回生制動によって生じた回生電力は、力行駆動を行う他方のモータ(例えばモータ106)に授受されて消費される。 In this drive circuit, the switch 502 is closed during normal travel of the electric vehicle 100, and the motors 105 and 106 are driven by controlling the current from the voltage source 501 by inverters 503 and 504. Here, one motor (for example, the motor 105) of the pair of motors 105 and 106 applies a braking torque to the driving wheel (for example, the driving wheel 103), and the other motor (for example, the motor 106) has a driving wheel (for example, driving). When the operating condition is to apply driving torque to the wheel 104), the switch 502 is opened and the voltage source 501 is disconnected from the circuit. When the voltage source 501 is disconnected in this way, regenerative power generated by regenerative braking of one motor (for example, the motor 105) is transferred to and consumed by the other motor (for example, the motor 106) that performs power running drive.
 なお、上記では、力行と回生が同時に起こった場合にスイッチ502を開いたが、スイッチ502を開く代わりに、電圧源501の供給電圧を回生で発生する電圧よりも低く設定する制御を実施しても良い。このように構成しても、回生電力を他方のモータに供給することができるので、上記と同様の効果を得ることができる。 In the above description, the switch 502 is opened when power running and regeneration occur at the same time. Instead of opening the switch 502, control is performed to set the supply voltage of the voltage source 501 lower than the voltage generated by regeneration. Also good. Even if comprised in this way, since regenerative electric power can be supplied to the other motor, the effect similar to the above can be acquired.
 また、上記の駆動回路において、モータ105,106の発電出力を電圧源501の供給電圧より高く変換するコンバータを、インバータ503とインバータ504のそれぞれに対して並列して取り付け、力行と回生が同時に発生した場合に回生が行われているモータの発電出力を当該コンバータで昇圧する構成を採用しても良い。バッテリーレスの車両で回生電力が発生すると抵抗器等で熱に変換する必要が生じるが、このようにコンバータを加えて回路を構成すると、バッテリーレスの車両でも回生電力を熱に変換することなく他方のモータで効果的に消費することができる。 In the above drive circuit, a converter that converts the power generation output of the motors 105 and 106 to be higher than the supply voltage of the voltage source 501 is mounted in parallel to each of the inverter 503 and the inverter 504, and power running and regeneration occur simultaneously. In this case, a configuration may be adopted in which the power generation output of the motor being regenerated is boosted by the converter. When regenerative power is generated in a battery-less vehicle, it is necessary to convert it to heat with a resistor or the like. However, if a circuit is configured by adding a converter in this way, the regenerative power is not converted into heat even in a battery-less vehicle. The motor can be effectively consumed.
  (3-2.第3実施形態の効果)
 以上説明したように、本実施形態の旋回補助システム150では、一対のモータ105,106は、いずれか一つのモータ(例えばモータ105)が発生した電流を他のモータ(例えばモータ106)が授受できるように互いに接続されており、一つのモータ(例えばモータ105)が駆動輪(例えば駆動輪103)に制動トルクを与えたときに生じる回生電力は、他のモータ(例えばモータ106)が駆動輪104に駆動トルクを与えるときに用いる電力として消費される。これにより、バッテリの有無や充電率の高低に関わらず回生電力を常に再利用することができる。したがって、力行と回生が同時に行われる状況下において、ヨーモーメント生成時の電力消費を低減することができる。
(3-2. Effects of Third Embodiment)
As described above, in the turning assist system 150 of the present embodiment, the pair of motors 105 and 106 can exchange the current generated by any one of the motors (for example, the motor 105) with another motor (for example, the motor 106). The regenerative electric power generated when one motor (for example, the motor 105) applies a braking torque to the driving wheel (for example, the driving wheel 103) is connected to the other wheel (for example, the motor 106). It is consumed as electric power used when a driving torque is applied to the. Thereby, regenerative electric power can always be reused irrespective of the presence or absence of a battery or the charge rate. Accordingly, it is possible to reduce power consumption when generating the yaw moment under the situation where power running and regeneration are performed simultaneously.
 <4.第4実施形態>
 次に、第4実施形態について説明する。本実施形態は、上記第2実施形態のステップS402において、駆動輪103,104が負担する旋回ヨーモーメントの生成量を操舵輪101,102及び駆動輪103,104のタイヤ磨耗量に基づいて決定するものである。
<4. Fourth Embodiment>
Next, a fourth embodiment will be described. In the present embodiment, in step S402 of the second embodiment, the generation amount of the turning yaw moment that the driving wheels 103 and 104 bear is determined based on the tire wear amounts of the steering wheels 101 and 102 and the driving wheels 103 and 104. Is.
  (4-1.制御装置による制御内容)
 図15を用いて、本実施形態における制御装置107Bの機能構成の一例を説明する。なお、先の図12等と同じ部分には同じ符号を付して説明は省略する。この図に示す制御装置107Bは、第2実施形態で説明した旋回ヨーモーメント算出部158等の機能に加え、タイヤ磨耗量推定部160を備えている。
(4-1. Control contents by the control device)
An example of the functional configuration of the control device 107B in the present embodiment will be described with reference to FIG. It should be noted that the same parts as those in FIG. The control device 107B shown in this figure includes a tire wear amount estimation unit 160 in addition to the functions of the turning yaw moment calculation unit 158 and the like described in the second embodiment.
 タイヤ磨耗量推定部160は、モータ105,106から駆動輪103,104への制動力及び駆動力(制駆動力)の累積値や、操舵輪101,102及び駆動輪103,104の車輪スリップ角の累積値等に基づいて、操舵輪101,102及び駆動輪103,104のタイヤ磨耗量を推定する。 The tire wear amount estimation unit 160 includes a cumulative value of braking force and driving force (braking and driving force) from the motors 105 and 106 to the driving wheels 103 and 104, and wheel slip angles of the steering wheels 101 and 102 and the driving wheels 103 and 104. The tire wear amount of the steered wheels 101 and 102 and the drive wheels 103 and 104 is estimated on the basis of the accumulated value of.
 タイヤ接地面には、地面との滑りが生じていない粘着域と、滑りが生じている滑り域とがあるが、タイヤ磨耗量は主にタイヤ接地面の滑り域に起因する。そのため、モータ105,106からの制駆動力又は車輪スリップ角の増加に応じてタイヤ接地面の滑り域が増加するとタイヤ磨耗量も増加する。したがって、例えば、制駆動力及び車輪スリップ角のそれぞれに予め求めたタイヤ磨耗量ゲインを掛けた値を積分していくことで、タイヤ磨耗量の推定値を算出することができる。 The tire contact surface has an adhesion area where no slip occurs with the ground and a slip area where the slip occurs, but the tire wear amount is mainly caused by the slip area of the tire contact surface. Therefore, when the slip area of the tire ground contact surface increases in accordance with the braking / driving force from the motors 105 and 106 or the increase of the wheel slip angle, the amount of tire wear also increases. Therefore, for example, by integrating a value obtained by multiplying the braking / driving force and the wheel slip angle by a previously obtained tire wear amount gain, an estimated value of the tire wear amount can be calculated.
 本実施形態における旋回ヨーモーメント算出部158は、まず、第2実施形態と同様に、入力操舵角で旋回運動すると仮定した場合に操舵輪101,102が負担するヨーモーメントを算出する。次に、その算出したヨーモーメントのうち駆動輪103,104が負担する量(旋回ヨーモーメント生成量)を算出する過程に移るが、この際、各車輪101~104のタイヤ摩耗量が均等に近づくように、タイヤ磨耗量推定部160で算出された各車輪101~104のタイヤ摩耗量の推定値に基づいて旋回ヨーモーメント生成量を加減して算出する。そして、このように算出された旋回ヨーモーメントに基づいて、第2実施形態におけるステップS403以降と同様の手順を実行する。 The turning yaw moment calculating unit 158 in the present embodiment first calculates the yaw moment that the steered wheels 101 and 102 bear when assuming a turning motion at the input steering angle, as in the second embodiment. Next, the process shifts to a process of calculating the amount of the calculated yaw moment that the driving wheels 103 and 104 bear (a turning yaw moment generation amount). At this time, the tire wear amount of each of the wheels 101 to 104 approaches equally. As described above, the amount of generation of the turning yaw moment is calculated based on the estimated value of the tire wear amount of each of the wheels 101 to 104 calculated by the tire wear amount estimation unit 160. Then, based on the turning yaw moment calculated in this way, the same procedure as that after step S403 in the second embodiment is executed.
  (4-2.第4実施形態の効果)
 このように、本実施形態では、操舵輪101,102と駆動輪103,104のタイヤ磨耗量に基づいて旋回ヨーモーメントの生成量を調節するので、各車輪101~104のタイヤ磨耗量にばらつきが発生するのを抑制できる。その結果タイヤローテーション等のメンテナンスコストを削減できる。
(4-2. Effects of the fourth embodiment)
As described above, in the present embodiment, the generation amount of the turning yaw moment is adjusted based on the tire wear amounts of the steered wheels 101 and 102 and the drive wheels 103 and 104. Therefore, the tire wear amounts of the wheels 101 to 104 vary. Generation | occurrence | production can be suppressed. As a result, maintenance costs such as tire rotation can be reduced.
 <5.第5実施形態>
 次に、第5実施形態について説明する。
  (5-1.旋回補助システムの構成)
 図16を用いて、第5実施形態に係る電動車両の旋回補助システム150Aの構成の一例について説明する。なお、先の図1と同じ部分には同じ符号を付して説明は省略する。
<5. Fifth Embodiment>
Next, a fifth embodiment will be described.
(5-1. Configuration of turning assist system)
An example of the configuration of a turning assist system 150A for an electric vehicle according to the fifth embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as previous FIG. 1, and description is abbreviate | omitted.
 図16に示すように、旋回補助システム150Aは、第1実施形態で説明した構成に加え、電動車両100の走行位置を検出する位置センサ601(位置センサの一例に相当)と、電動車両100の走行経路の走行経路情報(例えば、道路の曲率、勾配、路面状態)が位置情報に関連づけて記憶される経路情報記憶部602を備えている。位置センサ601と経路情報記憶部602は制御装置107と接続されている。制御装置107は、位置センサ601によって現在の走行位置を取得し、その走行位置又は所定時間後に走行が予定される位置における走行経路情報を経路情報記憶部602から呼び出し、その呼び出した走行経路情報を駆動輪103,104のトルク制御の際に実施される各手順で適宜参照している。 As shown in FIG. 16, in addition to the configuration described in the first embodiment, the turning assist system 150A includes a position sensor 601 (corresponding to an example of a position sensor) that detects the traveling position of the electric vehicle 100, and the electric vehicle 100. A route information storage unit 602 is provided that stores travel route information (for example, road curvature, gradient, road surface state) associated with the position information. The position sensor 601 and the path information storage unit 602 are connected to the control device 107. The control device 107 acquires the current travel position by the position sensor 601, calls the travel route information at the travel position or the position where the travel is scheduled after a predetermined time from the route information storage unit 602, and the retrieved travel route information is obtained. Reference is made as appropriate in each procedure executed when torque control of the drive wheels 103 and 104 is performed.
 位置センサ601において利用可能な位置検出手法としては、例えば、(1)GPS(Global Positioning System)による絶対座標計測を利用したものや、(2)走行経路(例えばコース)上に設けたマーカ、電波及び光電管等による通過判定と車輪回転数、操舵角、及びヨーレート計測を利用したデッドレコニング方式、(3)GPSとデッドレコニング方式の双方を兼用して検出精度を高めたもの等がある。 Examples of position detection methods that can be used in the position sensor 601 include (1) a method using absolute coordinate measurement by GPS (Global Positioning System), (2) a marker provided on a travel route (for example, a course), a radio wave, and the like. In addition, there are a dead reckoning method using passage determination using a phototube or the like and wheel rotation speed, steering angle, and yaw rate measurement, and (3) a detection accuracy improved by using both the GPS and dead reckoning methods.
 また、経路情報記憶部602において経路情報を記憶する方法としては、まず、予め地図情報をインプットしておく手法がある。また、同じ経路を繰り返し走行する場合には、その走行軌跡となる位置情報を内部メモリに蓄積しながら走行することで走行経路情報を作成していく方法がある。 Further, as a method of storing route information in the route information storage unit 602, there is a method of inputting map information in advance. When traveling on the same route repeatedly, there is a method of creating travel route information by traveling while accumulating position information serving as the travel locus in an internal memory.
  (5-2.第5実施形態の効果)
 上記のように、本実施形態の電動車両100によれば、制御装置107は、経路情報記憶部602から現在及び将来の走行位置における走行経路情報を走行中にリアルタイムに呼び出すことができる。これにより、制御装置107は、車両のおかれた地点における道路形状等の走行経路情報を予め知ることができる。例えば、このように呼び出した走行経路情報を参照しながら必要ヨーモーメント量を事前に算出しておけば、より早期の段階での駆動輪103,104によるヨーモーメント生成補助を行うことができる上、走行経路全体を考慮したヨーモーメント生成を計画することができる。また、上記の走行経路情報のうち走行経路の曲率に応じて旋回ヨーモーメント生成の負担割合を決定しても良い。さらに、路面摩擦係数等の情報を経路情報記憶部602に蓄積しておき、その情報に基づいてコーナリングパワー等のモデル特性を決定する数値を調整するために位置センサ601と経路情報記憶部602を利用しても良い。
(5-2. Effects of the fifth embodiment)
As described above, according to the electric vehicle 100 of the present embodiment, the control device 107 can call the travel route information at the current and future travel positions from the route information storage unit 602 in real time during travel. Thereby, the control apparatus 107 can know beforehand driving | running route information, such as a road shape in the point where the vehicle was placed. For example, if the necessary yaw moment amount is calculated in advance while referring to the travel route information called in this way, yaw moment generation assistance by the drive wheels 103 and 104 can be performed at an earlier stage. It is possible to plan yaw moment generation in consideration of the entire travel route. Moreover, you may determine the burden ratio of turning yaw moment generation according to the curvature of a driving path among said driving path information. Further, information such as a road surface friction coefficient is accumulated in the route information storage unit 602, and a position sensor 601 and a route information storage unit 602 are provided to adjust numerical values for determining model characteristics such as cornering power based on the information. May be used.
 <6.変形例等>
 なお、上記各実施形態では、旋回補助システム150(150A)が適用される電動車両100の種類については特に言及しなかったが、車両後方に重量物を積載する輸送車両(例えば、後方に荷台を有する車両や、コンテナ輸送用の車両等)に適用することが好ましい。この種の車両において重量物を積載すると、後輪(駆動輪103,104)側に重心が移動して前輪(操舵輪101,102)側の荷重が少なくなる。ここで、横力は荷重及びスリップ角の両者に比例するため、同じ横力を出そうとすると、荷重が少ない前輪はより大きなスリップ角が必要となる。すなわち、この種の車両では旋回による磨耗が前輪である操舵輪101,102に生じやすい傾向がある。しかし、上記の各実施形態の旋回補助システムを適用すれば、荷重が大きい後輪である駆動輪103,104を用いて横力を発生させることができるので、操舵輪101,102の磨耗を抑制しながら所望の横力を容易に得ることができ、一般的な車両と比較して特に顕著な効果が発揮される。
<6. Modified example>
In each of the above-described embodiments, the type of the electric vehicle 100 to which the turning assist system 150 (150A) is applied is not particularly mentioned, but a transport vehicle (for example, a cargo bed at the rear is loaded on the rear side). For example, a vehicle having a container or a vehicle for container transportation. When a heavy object is loaded on this type of vehicle, the center of gravity moves toward the rear wheels (drive wheels 103 and 104), and the load on the front wheels (steering wheels 101 and 102) decreases. Here, since the lateral force is proportional to both the load and the slip angle, if the same lateral force is to be output, the front wheel with a small load requires a larger slip angle. That is, in this type of vehicle, wear due to turning tends to occur on the steering wheels 101 and 102 which are front wheels. However, if the turning assist system of each of the above embodiments is applied, the lateral force can be generated using the driving wheels 103 and 104 which are the rear wheels having a large load, so that the wear of the steering wheels 101 and 102 is suppressed. However, a desired lateral force can be easily obtained, and a particularly remarkable effect is exhibited as compared with a general vehicle.
 なお、上記の各実施形態においては、操舵輪101,102と駆動輪103,104が個別に分けられた車両(すなわち、主に後輪駆動車)について説明してきた。しかし、この他の車両の構成として、操舵輪と駆動輪の両方を一対の車輪で兼用しているもの(すなわち、主に前輪駆動車)でも、前述の各実施形態と同様に適用することができる。その場合には、駆動輪の車輪スリップ角については、従動輪(後輪)のものとして置き換えることが可能である。この場合、転舵によって駆動輪の方向が車両の進行方向を向くことになるため、旋回ヨーモーメントの生成という観点では、上記各実施形態の後輪駆動車の場合よりもさらに効率よくモーメント生成を行なうことができるという効果がある。 In each of the above embodiments, the vehicle in which the steered wheels 101 and 102 and the drive wheels 103 and 104 are individually divided (that is, mainly the rear wheel drive vehicle) has been described. However, as another vehicle configuration, even in a case where both the steered wheels and the drive wheels are shared by a pair of wheels (that is, mainly the front-wheel drive vehicle), it can be applied in the same manner as in each of the above-described embodiments. it can. In that case, the wheel slip angle of the driving wheel can be replaced with that of a driven wheel (rear wheel). In this case, since the direction of the drive wheel is directed in the traveling direction of the vehicle by turning, the moment generation is more efficiently performed from the viewpoint of generating the turning yaw moment than in the case of the rear wheel drive vehicle in each of the above embodiments. There is an effect that it can be performed.
 また、上記の各実施形態においては、電動車両100が2輪駆動である場合について説明したが、電動車両100は、前輪と後輪の4輪をモータで駆動する4輪駆動車(いわゆる4WD車)であってもよい。この場合、前輪の2輪については1台のモータで駆動してもよいし、2台のモータで個別に駆動してもよい。 In each of the above embodiments, the case where the electric vehicle 100 is a two-wheel drive has been described. However, the electric vehicle 100 is a four-wheel drive vehicle (a so-called 4WD vehicle) that drives four wheels of the front wheels and the rear wheels with a motor. ). In this case, the two front wheels may be driven by one motor or may be individually driven by two motors.
 また、以上では、軸方向に分割された回転子30を部分的に相対回転させることによりモータ105,106の界磁磁束を可変させるようにしたが、モータ105,106の界磁磁束を可変させる構成はこれに限定されるものではない。例えば、径方向に分割された回転子を部分的に相対回転させることにより界磁磁束を可変させてもよい。また、このように磁石位置を機械的に移動させる構成以外にも、例えば固定子巻線のd軸電流により界磁を調整するいわゆる弱め界磁制御を行う構成としてもよいし、電気的に磁石の磁力(極数)を可変させる構成としてもよい。また、例えば回転子が回転子巻線を備える構成とし、回転子巻線の電流を調整して界磁磁束を可変させてもよい。 In the above description, the field flux of the motors 105 and 106 is varied by partially rotating the rotor 30 divided in the axial direction. However, the field flux of the motors 105 and 106 is varied. The configuration is not limited to this. For example, the field magnetic flux may be varied by partially rotating the rotor divided in the radial direction. In addition to the configuration in which the magnet position is mechanically moved in this way, for example, a configuration in which so-called field weakening control that adjusts the field by the d-axis current of the stator winding may be performed, or the magnetic force of the magnet may be electrically A configuration in which (the number of poles) is variable may be employed. For example, the rotor may include a rotor winding, and the field magnetic flux may be varied by adjusting the current of the rotor winding.
 <7.制御装置のハードウェア構成例>
 次に、図17を参照しつつ、上記で説明したCPU901が実行するプログラムにより実装された必要ヨーモーメント算出部154や実トルク量算出部156、界磁制御部157等による処理を実現する制御装置107(制御装置107A,107Bも含む。以下同様)のハードウェア構成例について説明する。
<7. Hardware configuration example of control device>
Next, referring to FIG. 17, the control device 107 (which implements processing by the necessary yaw moment calculation unit 154, the actual torque amount calculation unit 156, the field control unit 157, and the like, which are implemented by the program executed by the CPU 901 described above. An example of a hardware configuration of the control devices 107A and 107B (same below) will be described.
 図17に示すように、制御装置107は、例えば、CPU901と、ROM903、RAM905と、ASIC又はFPGA等の特定の用途向けに構築された専用集積回路907と、入力装置913と、出力装置915と、ストレージ装置917と、ドライブ919と、接続ポート921と、通信装置923とを有する。これらの構成は、バス909や入出力インターフェース911を介し相互に信号を伝達可能に接続されている。 As shown in FIG. 17, the control device 107 includes, for example, a CPU 901, a ROM 903, a RAM 905, a dedicated integrated circuit 907 constructed for a specific application such as an ASIC or FPGA, an input device 913, and an output device 915. A storage device 917, a drive 919, a connection port 921, and a communication device 923. These components are connected to each other via a bus 909 and an input / output interface 911 so that signals can be transmitted to each other.
 プログラムは、例えば、ROM903やRAM905、ストレージ装置917等の記録装置に記録しておくことができる。 The program can be recorded in a recording device such as the ROM 903, the RAM 905, or the storage device 917, for example.
 また、プログラムは、例えば、フレキシブルディスクなどの磁気ディスク、各種のCD・MOディスク・DVD等の光ディスク、半導体メモリ等のリムーバブル記憶媒体925に、一時的又は永続的に記録しておくこともできる。このようなリムーバブル記憶媒体925は、いわゆるパッケージソフトウエアとして提供することもできる。この場合、これらのリムーバブル記憶媒体925に記録されたプログラムは、ドライブ919により読み出されて、入出力インターフェイス919やバス909等を介し上記記録装置に記録されてもよい。 Also, the program can be temporarily or permanently recorded on a magnetic disk such as a flexible disk, an optical disk such as various CD / MO disks / DVDs, or a removable storage medium 925 such as a semiconductor memory. Such a removable storage medium 925 can also be provided as so-called package software. In this case, the program recorded in these removable storage media 925 may be read by the drive 919 and recorded in the recording device via the input / output interface 919, the bus 909, or the like.
 また、プログラムは、例えば、ダウンロードサイト・他のコンピュータ・他の記録装置等(図示せず)に記録しておくこともできる。この場合、プログラムは、LANやインターネット等のネットワークNWを介し転送され、通信装置923がこのプログラムを受信する。そして、通信装置923が受信したプログラムは、入出力インターフェイス919やバス909等を介し上記記録装置に記録されてもよい。 Also, the program can be recorded on, for example, a download site, another computer, another recording device (not shown), or the like. In this case, the program is transferred via a network NW such as a LAN or the Internet, and the communication device 923 receives this program. The program received by the communication device 923 may be recorded in the recording device via the input / output interface 919, the bus 909, or the like.
 また、プログラムは、例えば、適宜の外部接続機器927に記録しておくこともできる。この場合、プログラムは、適宜の接続ポート921を介し転送され、入出力インターフェイス919やバス909等を介し上記記録装置に記録されてもよい。 Also, the program can be recorded in, for example, an appropriate external connection device 927. In this case, the program may be transferred via an appropriate connection port 921 and recorded in the recording device via the input / output interface 919, the bus 909, or the like.
 そして、CPU901が、上記記録装置に記録されたプログラムに従い各種の処理を実行することにより、上記の必要ヨーモーメント算出部154や実トルク量算出部156、界磁制御部157等による処理が実現される。この際、CPU901は、例えば、上記記録装置からプログラムを、直接読み出して実行してもよく、RAM905に一旦ロードした上で実行してもよい。更にCPU901は、例えば、プログラムを通信装置923やドライブ919、接続ポート921を介し受信する場合、受信したプログラムを記録装置に記録せずに直接実行してもよい。 Then, the CPU 901 executes various processes according to the program recorded in the recording device, thereby realizing the processes by the necessary yaw moment calculation unit 154, the actual torque amount calculation unit 156, the field control unit 157, and the like. At this time, for example, the CPU 901 may directly read and execute the program from the recording apparatus, or may be executed after it is once loaded into the RAM 905. Further, for example, when the program is received via the communication device 923, the drive 919, and the connection port 921, the CPU 901 may directly execute the received program without recording it in the recording device.
 また、CPU901は、必要に応じて、例えばマウス・キーボード・マイク(図示せず)等の入力装置913から入力する信号や情報に基づいて各種の処理を行ってもよい。 Further, the CPU 901 may perform various processes based on signals and information input from the input device 913 such as a mouse, a keyboard, and a microphone (not shown) as necessary.
 そして、CPU902は、上記の処理を実行した結果を、例えば表示装置や音声出力装置等の出力装置915から出力してもよく、さらにCPU902は、必要に応じてこの処理結果を通信装置923や接続ポート921を介し送信してもよく、上記記録装置やリムーバブル記憶媒体925に記録させてもよい。 Then, the CPU 902 may output the result of executing the above processing from an output device 915 such as a display device or an audio output device, and the CPU 902 further outputs the processing result as necessary to the communication device 923 or the connection device 923. It may be transmitted via the port 921 or recorded on the recording device or the removable storage medium 925.
 なお、以上の説明において、「垂直」「平行」「平面」等の記載がある場合には、当該記載は厳密な意味ではない。すなわち、それら「垂直」「平行」「平面」とは、設計上、製造上の公差、誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」という意味である。 In addition, in the above description, when there are descriptions such as “vertical”, “parallel”, and “plane”, the description is not strict. That is, the terms “vertical”, “parallel”, and “plane” are acceptable in design and manufacturing tolerances and errors, and mean “substantially vertical”, “substantially parallel”, and “substantially plane”. .
 また、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」等の記載がある場合は、当該記載は厳密な意味ではない。すなわち、それら「同一」「等しい」「異なる」とは、設計上、製造上の公差、誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」という意味である。 In addition, in the above description, when there is a description such as “same”, “equal”, “different”, etc., in terms of external dimensions and size, the description is not strict. That is, the terms “identical”, “equal”, and “different” mean that “tolerance and error in manufacturing are allowed in design and that they are“ substantially identical ”,“ substantially equal ”, and“ substantially different ”. .
 また、以上既に述べた以外にも、上記各実施形態による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above embodiments may be used in appropriate combination.
 その他、一々例示はしないが、上記各実施形態は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, each of the above-described embodiments is implemented with various modifications within a range not departing from the gist thereof.
 10       固定子
 12       固定子巻線
 30       回転子
 52       第1永久磁石(界磁用磁石の一例)
 53       第1磁極部(磁極部の一例)
 62       第2永久磁石(界磁用磁石の一例)
 63       第2磁極部(磁極部の一例)
 70       制御モータ
 100      電動車両
 101,102  操舵輪
 103,104  駆動輪
 105,106  モータ(回転電機の一例)
 109      操舵角センサ
 110      転舵アクチュエータ(操舵角調節部の一例)
 112      絶対速度センサ(車両状態量センサの一例)
 111      車体運動センサ(車両状態量センサの一例)
 114~117  車輪速センサ(回転速度センサの一例、車両状態量センサの一例)
 120      車両状態量センサ
 150,150A 旋回補助システム
 151      目標車輪スリップ角算出部
 152      実車体スリップ角算出部
 153      実車輪スリップ角算出部
 154      必要ヨーモーメント算出部
 155      トルク補正量算出部
 156      実トルク量算出部
 157      界磁制御部
 158      旋回ヨーモーメント算出部
 159      実操舵角算出部
 160      タイヤ磨耗量推定部
 601      位置センサ
 602      経路情報記憶部
 
DESCRIPTION OF SYMBOLS 10 Stator 12 Stator winding 30 Rotor 52 1st permanent magnet (an example of field magnet)
53 1st magnetic pole part (an example of a magnetic pole part)
62 2nd permanent magnet (an example of a field magnet)
63 2nd magnetic pole part (an example of a magnetic pole part)
70 Control motor 100 Electric vehicle 101, 102 Steering wheel 103, 104 Drive wheel 105, 106 Motor (an example of rotating electrical machine)
109 Steering angle sensor 110 Steering actuator (an example of a steering angle adjusting unit)
112 Absolute speed sensor (an example of a vehicle state quantity sensor)
111 Car body motion sensor (an example of a vehicle state quantity sensor)
114 to 117 Wheel speed sensor (an example of a rotational speed sensor, an example of a vehicle state quantity sensor)
DESCRIPTION OF SYMBOLS 120 Vehicle state quantity sensor 150,150A Turning assistance system 151 Target wheel slip angle calculation part 152 Real vehicle body slip angle calculation part 153 Actual wheel slip angle calculation part 154 Necessary yaw moment calculation part 155 Torque correction amount calculation part 156 Actual torque amount calculation part 157 Field control unit 158 Turning yaw moment calculation unit 159 Actual steering angle calculation unit 160 Tire wear amount estimation unit 601 Position sensor 602 Route information storage unit

Claims (14)

  1.  少なくとも一対の駆動輪と一対の操舵輪を備えた電動車両の旋回補助システムであって、
     界磁磁束が変化するように構成され、前記少なくとも一対の駆動輪を個別に駆動する少なくとも一対のモータと、
     前記操舵輪の操舵角を検出する操舵角センサと、
     前記電動車両の車両状態量を検出する車両状態量センサと、
     前記操舵角及び前記車両状態量に基づいて前記少なくとも一対のモータの界磁磁束を個別に制御する界磁制御部と、
    を有することを特徴とする電動車両の旋回補助システム。
    A turning assist system for an electric vehicle including at least a pair of drive wheels and a pair of steering wheels,
    At least a pair of motors configured to change the field magnetic flux and individually driving the at least a pair of drive wheels;
    A steering angle sensor for detecting a steering angle of the steering wheel;
    A vehicle state quantity sensor for detecting a vehicle state quantity of the electric vehicle;
    A field control unit for individually controlling the field magnetic flux of the at least one pair of motors based on the steering angle and the vehicle state quantity;
    A turning assist system for an electric vehicle characterized by comprising:
  2.  前記操舵角及び前記車両状態量に基づいて前記電動車両が前記操舵角に基づく目標旋回軌道上を走行するために必要な必要ヨーモーメントを算出する必要ヨーモーメント算出部と、
     前記少なくとも一対の駆動輪にトルク差を与えて前記必要ヨーモーメントを発生させるように、前記少なくとも一対の駆動輪に個別に与える実トルク量を算出する実トルク量算出部と、をさらに有する
    ことを特徴とする請求項1に記載の電動車両の旋回補助システム。
    A necessary yaw moment calculating unit that calculates a necessary yaw moment necessary for the electric vehicle to travel on a target turning path based on the steering angle based on the steering angle and the vehicle state quantity;
    An actual torque amount calculating unit that calculates an actual torque amount to be individually applied to the at least one pair of driving wheels so as to generate a necessary yaw moment by giving a torque difference to the at least one pair of driving wheels. The turning assist system for an electric vehicle according to claim 1.
  3.  前記モータは、
     固定子巻線を備えた固定子と、
     界磁用磁石が設置された複数の磁極部が2組に分かれて相対的に回動するように構成された回転子と、
     2組の前記磁極部を相対的に回動させる制御モータと、を有し、
     前記界磁制御部は、
     前記実トルク量に基づいて前記制御モータを制御することで前記モータの界磁磁束を制御する
    ことを特徴とする請求項2に記載の電動車両の旋回補助システム。
    The motor is
    A stator with a stator winding;
    A rotor configured such that a plurality of magnetic pole portions in which field magnets are installed are divided into two sets and rotate relatively;
    A control motor for relatively rotating two sets of the magnetic pole portions,
    The field controller is
    3. The turning assist system for an electric vehicle according to claim 2, wherein a field magnetic flux of the motor is controlled by controlling the control motor based on the actual torque amount.
  4.  前記車両状態量センサは、
     前記モータの回転速度を検出する回転速度センサを含み、
     前記界磁制御部は、
     前記回転速度と前記実トルク量に基づいて、極性の等しい2組の前記磁極部が並び界磁が最も強い状態における誘起電圧定数に対する前記2組の磁極部が相対的に回動した状態における誘起電圧定数の割合である界磁率、前記2組の磁極部が総合して作り出す磁極位置に対する前記固定子巻線に通電する電流の位相角、及び電流の目標値を、マップを参照して読み出すマップ制御を行う
    ことを特徴とする請求項3に記載の電動車両の旋回補助システム。
    The vehicle state quantity sensor
    A rotational speed sensor for detecting the rotational speed of the motor;
    The field controller is
    Based on the rotational speed and the actual torque amount, two sets of the magnetic pole portions having the same polarity are aligned, and induction is performed in a state where the two magnetic pole portions are relatively rotated with respect to an induced voltage constant in a state where the field is strongest. A map that reads out a field factor that is a ratio of a voltage constant, a phase angle of a current that flows through the stator winding with respect to a magnetic pole position that is formed by the two sets of magnetic pole portions, and a target value of the current with reference to the map 4. The turning assist system for an electric vehicle according to claim 3, wherein control is performed.
  5.  前記操舵角に基づいて前記電動車両が前記目標旋回軌道上を走行するために必要な目標車輪スリップ角を算出する目標車輪スリップ角算出部と、
     前記車両状態量に基づいて実車体スリップ角を算出する実車体スリップ角算出部と、
     前記実車体スリップ角と前記操舵角に基づいて実車輪スリップ角を算出する実車輪スリップ角算出部と、をさらに有し、
     前記必要ヨーモーメント算出部は、
     前記目標車輪スリップ角と前記実車輪スリップ角の差分に基づいて前記必要ヨーモーメントを算出する
    ことを特徴とする請求項1乃至4のいずれか1項に記載の電動車両の旋回補助システム。
    A target wheel slip angle calculation unit that calculates a target wheel slip angle necessary for the electric vehicle to travel on the target turning path based on the steering angle;
    An actual vehicle slip angle calculation unit for calculating an actual vehicle slip angle based on the vehicle state quantity;
    An actual wheel slip angle calculating unit that calculates an actual wheel slip angle based on the actual vehicle body slip angle and the steering angle;
    The necessary yaw moment calculator is
    5. The electric vehicle turning assist system according to claim 1, wherein the required yaw moment is calculated based on a difference between the target wheel slip angle and the actual wheel slip angle. 6.
  6.  前記操舵角で旋回すると仮定した場合に前記操舵輪が負担するヨーモーメントを算出し、その算出したヨーモーメントの少なくとも一部を前記少なくとも一対の駆動輪にトルク差を与えて発生させる旋回ヨーモーメントで補助する量を算出する旋回ヨーモーメント算出部と、
     前記旋回ヨーモーメントに対応する補助操舵角を算出し、その算出した補助操舵角を前記操舵角から減じて実操舵角を算出する実操舵角算出部と、
     前記操舵輪を前記実操舵角に調節する操舵角調節部と、をさらに有し、
     前記目標車輪スリップ角算出部は、
     前記実操舵角に基づいて前記目標車輪スリップ角を算出し、
     前記実車輪スリップ角算出部は、
     前記実車体スリップ角と前記実操舵角に基づいて前記実車輪スリップ角を算出し、
     前記実トルク量算出部は、
     前記ヨーモーメントと前記旋回ヨーモーメントとの和に相当する総ヨーモーメントを発生させるように、前記少なくとも一対の駆動輪に個別に与える前記実トルク量を算出する
    ことを特徴とする請求項5に記載の電動車両の旋回補助システム。
    A yaw moment that the steered wheel bears when it is assumed to turn at the steering angle is calculated, and at least a part of the calculated yaw moment is generated by giving a torque difference to the at least one pair of drive wheels. A turning yaw moment calculator for calculating the amount of assistance;
    An actual steering angle calculation unit that calculates an auxiliary steering angle corresponding to the turning yaw moment, and calculates an actual steering angle by subtracting the calculated auxiliary steering angle from the steering angle;
    A steering angle adjusting unit that adjusts the steering wheel to the actual steering angle;
    The target wheel slip angle calculation unit
    Calculating the target wheel slip angle based on the actual steering angle;
    The actual wheel slip angle calculation unit
    Calculate the actual wheel slip angle based on the actual vehicle body slip angle and the actual steering angle,
    The actual torque amount calculation unit
    6. The actual torque amount to be individually applied to the at least one pair of drive wheels is calculated so as to generate a total yaw moment corresponding to the sum of the yaw moment and the turning yaw moment. Assist system for turning electric vehicles.
  7.  前記操舵輪及び前記駆動輪に作用する制駆動力と、前記操舵輪及び前記駆動輪の車輪スリップ角とに基づいて、前記操舵輪及び前記駆動輪のタイヤ磨耗量を推定するタイヤ磨耗量推定部をさらに有し、
     前記旋回ヨーモーメント算出部は、
     前記タイヤ磨耗量推定部により推定された前記操舵輪のタイヤ磨耗量と前記駆動輪のタイヤ磨耗量とが均等に近づくように、前記旋回ヨーモーメントで補助する量を算出する
    ことを特徴とする請求項6に記載の電動車両の旋回補助システム。
    A tire wear amount estimation unit that estimates the tire wear amount of the steering wheel and the drive wheel based on the braking / driving force acting on the steering wheel and the drive wheel and the wheel slip angle of the steering wheel and the drive wheel. Further comprising
    The turning yaw moment calculating unit
    The amount of assistance by the turning yaw moment is calculated so that the tire wear amount of the steered wheels and the tire wear amount of the drive wheels estimated by the tire wear amount estimation unit are evenly approximated. Item 7. A turning assist system for an electric vehicle according to Item 6.
  8.  前記目標車輪スリップ角算出部は、
     前記操舵輪及び前記駆動輪の両方について前記目標車輪スリップ角を算出し、
     前記実車輪スリップ角算出部は、
     前記操舵輪及び前記駆動輪の両方について前記実車輪スリップ角を算出する
    ことを特徴とする請求項5乃至7のいずれか1項に記載の電動車両の旋回補助システム。
    The target wheel slip angle calculation unit
    Calculating the target wheel slip angle for both the steered wheel and the drive wheel;
    The actual wheel slip angle calculation unit
    The turning assist system for an electric vehicle according to any one of claims 5 to 7, wherein the actual wheel slip angle is calculated for both the steered wheel and the drive wheel.
  9.  前記目標車輪スリップ角算出部は、
     前記操舵輪又は前記駆動輪のいずれか一方について前記目標車輪スリップ角を算出し、
     前記実車輪スリップ角算出部は、
     前記操舵輪又は前記駆動輪のいずれか一方について前記実車輪スリップ角を算出する
    ことを特徴とする請求項5乃至7のいずれか1項に記載の電動車両の旋回補助システム。
    The target wheel slip angle calculation unit
    Calculating the target wheel slip angle for either the steered wheel or the drive wheel;
    The actual wheel slip angle calculation unit
    The turning assist system for an electric vehicle according to any one of claims 5 to 7, wherein the actual wheel slip angle is calculated for either the steered wheel or the drive wheel.
  10.  前記電動車両の走行位置を検出する位置センサと、
     前記電動車両の走行経路情報が位置と関連づけて記憶された経路情報記憶部と、をさらに有し、
     前記実トルク量算出部は、
     前記位置センサで得られた前記走行位置に対応する前記走行経路情報を参照して、前記少なくとも一対の駆動輪に個別に与える前記実トルク量を算出する
    ことを特徴とする請求項2乃至9のいずれか1項に記載の電動車両の旋回補助システム。
    A position sensor for detecting a traveling position of the electric vehicle;
    A route information storage unit in which travel route information of the electric vehicle is stored in association with a position;
    The actual torque amount calculation unit
    10. The actual torque amount individually applied to the at least one pair of driving wheels is calculated with reference to the travel route information corresponding to the travel position obtained by the position sensor. The turning assist system for an electric vehicle according to any one of the preceding claims.
  11.  前記少なくとも一対のモータは、
     いずれか一の前記モータが発生した電流を他の前記モータが授受できるように互いに接続されており、
     前記一のモータが前記駆動輪に制動トルクを与えたときに生じる回生電力は、前記他のモータが前記駆動輪に駆動トルクを与えるときに用いる電力として消費される
    ことを特徴とする請求項2乃至10のいずれか1項に記載の電動車両の旋回補助システム。
    The at least one pair of motors is
    Are connected to each other so that the other motor can send and receive the current generated by any one of the motors,
    3. The regenerative electric power generated when the one motor gives a braking torque to the driving wheel is consumed as electric power used when the other motor gives a driving torque to the driving wheel. The turning assist system for an electric vehicle according to any one of claims 1 to 10.
  12.  少なくとも一対の駆動輪と、
     一対の操舵輪と、
     請求項1乃至11のいずれか1項に記載の旋回補助システムと、
    を有することを特徴とする電動車両。
    At least a pair of drive wheels;
    A pair of steering wheels;
    A turning assist system according to any one of claims 1 to 11,
    An electric vehicle comprising:
  13.  前記駆動輪と前記操舵輪は、
     一対の車輪で兼用されている
    ことを特徴とする請求項12に記載の電動車両。
    The driving wheel and the steering wheel are
    The electric vehicle according to claim 12, wherein the electric vehicle is shared by a pair of wheels.
  14.  請求項1乃至11のいずれか1項に記載の電動車両の旋回補助システムに備えられ、界磁磁束が変化するように構成される
    ことを特徴とする回転電機。
    An electric rotating machine comprising the turning assist system for an electric vehicle according to any one of claims 1 to 11, and configured to change a field magnetic flux.
PCT/JP2014/080178 2014-11-14 2014-11-14 Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine WO2016075811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080178 WO2016075811A1 (en) 2014-11-14 2014-11-14 Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080178 WO2016075811A1 (en) 2014-11-14 2014-11-14 Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2016075811A1 true WO2016075811A1 (en) 2016-05-19

Family

ID=55953924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080178 WO2016075811A1 (en) 2014-11-14 2014-11-14 Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine

Country Status (1)

Country Link
WO (1) WO2016075811A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187480A (en) * 2009-02-12 2010-08-26 Hitachi Constr Mach Co Ltd Turning assisting device of electric vehicle
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine
JP2013215019A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Vehicular drive device
JP2014036532A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Vehicular drive force control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187480A (en) * 2009-02-12 2010-08-26 Hitachi Constr Mach Co Ltd Turning assisting device of electric vehicle
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine
JP2013215019A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Vehicular drive device
JP2014036532A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Vehicular drive force control device

Similar Documents

Publication Publication Date Title
JP4842335B2 (en) Electric vehicle turning assist device
CN105682980A (en) Antilock brake control device
US20150251541A1 (en) Adaptive Torque Control Circuit and Method of Operation
JP2017132312A (en) Vehicle control device and vehicle control method
US20160236589A1 (en) Four motor propulsion system and yaw vectoring control circuit
JP5636439B2 (en) Electric motorcycle
CN105555590A (en) Control device for electric vehicle
WO2012070106A1 (en) Two-wheeled electric vehicle
US11121654B2 (en) Dynamic stability control for electric motor drives using stator flux oriented control
CN107848526A (en) Turn inside diameter control device
CN104169123A (en) Electric vehicle driving force control device and electric vehicle driving force control method
Fujimoto et al. Range extension control system of electric vehicle based on optimal torque distribution and cornering resistance minimization
JP2015074421A (en) Steering device
JP6243142B2 (en) Electric vehicle control device
Sumiya et al. Range extension control system for electric vehicle with active front steering and driving/braking force distribution on curving road
JP6267440B2 (en) Vehicle control device
WO2017138587A1 (en) Drive control apparatus for individual-wheel drive vehicles
JP5450834B2 (en) Electric motorcycle
Baumann et al. A two-wheel driven power train for improved safety and efficiency in electric motorbikes
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
Ge et al. Torque distribution control for electric vehicle based on traction force observer
WO2016075811A1 (en) Turning assistance system for electric vehicle, electric vehicle, and rotary electrical machine
CN105308850A (en) Electric-vehicle control device
WO2016125686A1 (en) Vehicle braking/driving torque control device
WO2016079836A1 (en) Driving force control system for electric vehicle, electric vehicle, rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP