WO2016074585A1 - 一种射频通道的校正方法及装置 - Google Patents

一种射频通道的校正方法及装置 Download PDF

Info

Publication number
WO2016074585A1
WO2016074585A1 PCT/CN2015/093869 CN2015093869W WO2016074585A1 WO 2016074585 A1 WO2016074585 A1 WO 2016074585A1 CN 2015093869 W CN2015093869 W CN 2015093869W WO 2016074585 A1 WO2016074585 A1 WO 2016074585A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
radio frequency
compensation coefficient
correction
frequency channel
Prior art date
Application number
PCT/CN2015/093869
Other languages
English (en)
French (fr)
Inventor
易雄书
徐波
张超超
陈卫民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016074585A1 publication Critical patent/WO2016074585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for correcting a radio frequency channel.
  • the uplink and downlink channel reciprocity is used to improve the weight precision and obtain Array gain or multi-user multiplexing gain.
  • the reciprocity of the uplink and downlink RF channels must be ensured, that is, the response of each RF channel in the signal reception is consistent, and the response of each RF channel in the signal transmission is consistent.
  • the response of each RF channel in the signal reception is inconsistent or the response of each RF channel in the signal transmission is inconsistent, it is necessary to correct the receiving channel (ie, each RF channel in signal reception) or the transmitting channel (ie, each RF channel in the signal transmission). .
  • the embodiment of the invention provides a method and a device for correcting a radio frequency channel, which can determine a correction compensation coefficient of a radio frequency channel correction according to a channel estimation value, a delay value and a sampling time of the radio frequency channel, and can transmit a radio frequency channel to a transmission signal of the antenna unit. Calibration is performed to ensure the reciprocity of the uplink and downlink channels.
  • a first aspect of the embodiments of the present invention provides a method for correcting a radio frequency channel, which may include:
  • the baseband unit BBU obtains a channel estimation value of the first radio frequency channel according to the digital correction signal fed back by the antenna unit, and determines an initial correction compensation coefficient of the first radio frequency channel according to the channel estimation value;
  • the BBU corrects an initial correction compensation coefficient of the first radio frequency channel according to a delay value and a sampling time of the first radio frequency channel, to obtain a first correction compensation coefficient
  • the BBU performs alignment correction on the first correction compensation coefficient according to a correction compensation coefficient of the reference radio frequency channel to obtain a second correction compensation coefficient, and calibrates the transmission signal mapped to the antenna unit according to the second correction compensation coefficient.
  • the first radio frequency channel is a transmitting channel
  • the first radio frequency channel is a receiving channel
  • the BBU is configured according to a delay value and a sampling time of the first radio frequency channel. Correcting an initial correction compensation coefficient of the first radio frequency channel to obtain a first correction compensation coefficient, including:
  • the BBU multiplies the initial correction compensation coefficient of the first radio frequency channel by a specified index to correct an initial correction compensation coefficient of the first radio frequency channel to obtain a first correction compensation coefficient
  • the k is an identifier of the subcarrier
  • the ⁇ e is a delay value of the first radio frequency channel
  • the Ts is a sampling time
  • the N is a fast Fourier transform FFT point number.
  • the BBU performs alignment correction on the first correction compensation coefficient according to a correction compensation coefficient of a reference radio frequency channel, to obtain a second correction compensation.
  • Coefficients including:
  • the BBU divides the first correction compensation coefficient of the first radio frequency channel by the correction compensation coefficient of the reference radio frequency channel to obtain a second correction compensation coefficient of the first radio frequency channel;
  • the reference radio frequency channel is a transmission channel randomly selected from a transmission signal to at least one transmission channel of the antenna unit, or a reception selected randomly from at least one reception channel receiving a correction signal fed back by the antenna unit. aisle.
  • the first radio frequency channel is the transmitting signal to each transmitting channel of the antenna unit Any one of the receiving channels that receive the correction signal fed back by the antenna unit.
  • the performing, according to the second correction compensation coefficient, performing calibration on a transmit signal mapped to the antenna unit includes:
  • the transmitting according to the second correction compensation coefficient of each of the radio frequency channels, calibrating the transmission signals of the respective radio frequency channels to obtain a mapping
  • the target transmission signal to the antenna unit includes:
  • the element on the main diagonal of the diagonal matrix is a second correction compensation coefficient of each of the radio frequency channels.
  • the radio frequency channel when the radio frequency channel is a transmission channel in a time domain, the channel is according to the channel After the estimated value determines the initial correction compensation coefficient of the first radio frequency channel, the method further includes:
  • the main path is a path in which the radio frequency channel transmits a signal to a plurality of paths of the antenna unit, and the reference radio frequency channel is any radio frequency channel randomly selected in the radio frequency channel.
  • the RF channel acts as a reference channel.
  • the method further includes: compensating an initial phase of each of the radio frequency channels to adjust a time delay value in a time domain The phase is transformed to the frequency domain for calibration.
  • the compensating the initial phase of each of the radio frequency channels includes:
  • a second aspect of the embodiments of the present invention provides a radio frequency channel calibration apparatus, which may include:
  • a determining module configured to acquire a channel estimation value of the first radio frequency channel according to the digital correction signal fed back by the antenna unit, and determine an initial correction compensation coefficient of the first radio frequency channel according to the channel estimation value;
  • a correction module configured to correct an initial correction compensation coefficient of the first radio frequency channel determined by the determining module according to a delay value and a sampling time of the first radio frequency channel, to obtain a first correction compensation coefficient
  • a calibration module configured to perform alignment correction on the first correction compensation coefficient corrected by the correction module according to a correction compensation coefficient of the reference RF channel, to obtain a second correction compensation coefficient
  • the calibration module is further configured to calibrate a transmit signal mapped to the antenna unit according to the second correction compensation coefficient.
  • the first radio frequency channel is a transmitting channel
  • the determining module is specifically configured to:
  • the first radio frequency channel is a receiving channel
  • the determining module is specifically configured to:
  • the modification module is specifically configured to:
  • the k is an identifier of the subcarrier
  • the ⁇ e is a delay value of the first radio frequency channel
  • the Ts is a sampling time
  • the N is a fast Fourier transform FFT point number.
  • the calibration module is specifically configured to:
  • the reference radio frequency channel is a transmission channel randomly selected from a transmission signal to at least one transmission channel of the antenna unit, or at least one of a correction signal fed back by the antenna unit.
  • the first radio frequency channel is the transmitting signal to each transmitting channel of the antenna unit Any one of the receiving channels that receive the correction signal fed back by the antenna unit.
  • the calibration module is specifically configured to:
  • the calibration module is specifically configured to:
  • the element on the main diagonal of the diagonal matrix is a second correction compensation coefficient of each of the radio frequency channels.
  • the device when the radio frequency channel is a transmission channel in a time domain, the device further includes:
  • An obtaining module configured to obtain a delay value of each of the radio frequency channels according to a time domain channel response of a main path of each of the radio frequency channels;
  • the acquiring module is further configured to obtain, according to a delay value of the reference radio frequency channel, a delay difference between each of the radio frequency channel and the reference radio frequency channel;
  • the correction module is further configured to: correct an initial correction compensation coefficient of the first radio frequency channel according to a delay difference between the first radio frequency channel and the reference radio frequency channel, and a sampling time of the first radio frequency channel Obtaining a first correction compensation coefficient of the first radio frequency channel;
  • the main path is a path with the strongest transmitted signal in the multiple paths of the radio frequency channel to the antenna unit, and the reference radio frequency channel is any radio frequency channel randomly selected in the radio frequency channel.
  • the RF channel is used as a reference channel.
  • the apparatus further includes:
  • the compensation module is configured to compensate the initial phase of each of the RF channels to convert the delay value and phase in the time domain to the frequency domain for calibration.
  • the compensation module is specifically configured to:
  • the correction module is further configured to perform initial correction compensation coefficients of each of the RF channels according to a phase difference between each of the RF channels and the reference RF channel, and a delay value and a sampling time of each of the RF channels. Correction, obtaining a first correction compensation coefficient of each of the radio frequency channels.
  • the embodiment of the present invention can obtain the channel estimation value of the radio frequency channel according to the digital correction signal fed back by the antenna unit, determine the initial correction compensation coefficient of the radio frequency channel according to the channel estimation value of the radio frequency channel, and compare the radio frequency channel according to the delay value and the sampling time of the radio frequency channel.
  • the initial correction compensation coefficient of the channel is corrected, and then the transmission signal mapped to the antenna unit is calibrated according to the corrected correction compensation coefficient, thereby realizing the correction of the RF channel in the frequency division duplex system, and the reciprocity of the uplink and downlink channels can be guaranteed.
  • FIG. 1 is a schematic diagram of a base station architecture according to an embodiment of the present invention.
  • FIG. 2 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • FIG. 3 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a first embodiment of a method for correcting a radio frequency channel according to an embodiment of the present invention
  • FIG. 6 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a second embodiment of a method for correcting a radio frequency channel according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a first embodiment of a radio frequency channel calibration apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a radio frequency channel calibration apparatus according to an embodiment of the present invention.
  • the method for correcting the radio frequency channel described in the embodiment of the present invention is mainly to correct the radio frequency channel in the FDD LTE system, where the radio frequency channel includes: each radio frequency channel (also referred to as a receiving channel) in signal reception. , or each RF channel (also called a transmit channel) in the signal transmission.
  • the method for correcting the radio frequency channel described in the embodiment of the present invention is applicable to a plurality of base station architectures, and the base station architecture includes: a baseband unit (BBU), a remote radio unit (RRU), and an antenna unit. Wait.
  • the RRU may include an RRU of two ports and an RRU of four ports.
  • FIG. 1 is a schematic diagram of a base station architecture according to an embodiment of the present invention.
  • the base station architecture shown in FIG. 1 may be composed of a BBU and a 4-port RRU and a 4-port antenna unit.
  • FIG. 2 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • the base station architecture shown in FIG. 2 may be composed of a BBU, two 2-port RRUs, and one 4-port antenna unit.
  • FIG. 3 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • the base station architecture shown in FIG. 3 may be composed of a BBU, a 4-port RRU, and two 2-port antenna units.
  • FIG. 1 is a schematic diagram of a base station architecture according to an embodiment of the present invention.
  • the base station architecture shown in FIG. 1 may be composed of a BBU and a 4-port RRU and a 4-port antenna unit.
  • FIG. 2 is another schematic diagram of a base station architecture according to an embodiment of the present
  • FIG. 4 is another schematic diagram of a base station architecture according to an embodiment of the present invention.
  • the base station architecture shown in FIG. 4 may be composed of a BBU and two 2-port RRUs and two 2-port antenna units.
  • the BBUs and the RRUs can be two independent functional modules.
  • the BBUs can be integrated into the RRUs, or some functions of the BBUs can be integrated into the RRUs.
  • the method for correcting the radio frequency channel described in the embodiment of the present invention is applicable to the base station architecture described in the foregoing FIG. 1 to FIG. 4, and is applicable to other base station architectures, and is not limited herein.
  • FIG. 5 is a schematic flowchart diagram of a first embodiment of a method for correcting a radio frequency channel according to an embodiment of the present invention.
  • the method for correcting a radio frequency channel described in the embodiment of the present invention includes the following steps:
  • the baseband unit BBU obtains a channel estimation value of the first radio frequency channel according to the digital correction signal fed back by the antenna unit, and determines an initial correction compensation coefficient of the first radio frequency channel according to the channel estimation value.
  • the BBU may establish a connection with the RRU through a Common Public Radio Interface (CPRI), and the BBU may transmit a digital signal to the RRU through the CPRI interface to send a signal to the antenna unit through the RRU.
  • CPRI Common Public Radio Interface
  • the BBU can send a digital signal to the RRU through the CPRI interfaces A0 and C0.
  • the RRU can convert the digital signal into a radio frequency correction signal and pass the radio frequency cable (as shown in FIG. 6).
  • A1->A2, B1->B2, C1->C2, and D1->D2, etc. transmit a radio frequency correction signal to the antenna unit.
  • the radio frequency correction signal sent by the RRU to the antenna unit is communicated via the signal coupling of the antenna unit
  • the radio frequency correction signal is looped back from the internal dedicated channel of the RRU or the feedback channel for measuring the quality of the transmission channel.
  • the RRU can convert the loopback RF correction signal into a digital correction signal and return it to the BBU.
  • the BBU can obtain the first RF channel according to the digital correction signal fed back by the antenna unit (that is, the RF correction signal fed back by the antenna unit is converted into a digital correction signal by the RRU). Channel estimate.
  • the radio frequency channel described in the embodiment of the present invention may include a transmitting channel and a receiving channel, and the BBU may first initiate joint correction of the transmitting channel, and then initiate joint correction of the receiving channel.
  • the method for correcting the radio frequency channel provided by the embodiment of the present invention will be specifically described as an example of the method for correcting the radio frequency channel when the BBU initiates the joint correction of the transmission channel.
  • the first radio frequency channel described in the embodiment of the present invention is any one of multiple transmission channels, that is, the first radio frequency channel is taken as an example below, and the correcting step of each transmission channel is specifically described.
  • the BBU may select a receiving channel corresponding to any one of the plurality of transmitting channels (set as the first RF channel) to receive the digital correction signal, according to the above number.
  • the correction signal determines a channel estimate for the transmit channel.
  • the BBU when the BBU corrects each of the plurality of transmission channels, the BBU can receive the digital correction signal from the same receiving channel (ie, the designated receiving channel), that is, the digital correction signal can be looped back from the same receiving channel. Loopback, the BBU can determine the channel estimate of the transmit channel based on the digital correction signal received from the receive channel. Specifically, when the BBU transmits the signal to the antenna unit, the BBU can transmit from the multiple transmit channels.
  • the BBU can receive the signal fed back by the RRU from the receiving channel corresponding to the multiple transmit channels, and then select the designated receive.
  • the received signal of the channel (the correction of all the transmission channels is selected to be corrected by the digital signal received by the same receiving channel) is digitally processed to obtain the channel estimation value of the first RF channel.
  • the initial correction compensation coefficient of the first radio frequency channel may be determined according to the channel estimation value.
  • the BBU can obtain the digital correction signal received by the receiving channel corresponding to the transmitting channel i, and determine the channel estimation value h tx,i (k,l) of the digital correction signal on the subcarrier k and the channel with the symbol l.
  • the BBU can determine the channel estimation value of the above-mentioned transmission channel 0 as h tx,0 (k, l) according to the digital correction signal fed back from the transmission channel 0 of the RRU0.
  • the BBU may also determine, according to the digital correction signal fed back by the receiving channel corresponding to the transmitting channel 1 of the RRU1 (ie, the designated receiving channel), the channel estimation value of the transmitting channel 1 is h tx, 1 (k, l)), and then according to the above
  • the channel estimation value of the transmission channel 0 or the transmission channel 1 determines the initial correction compensation coefficient of the transmission channel 0, or the initial correction compensation coefficient of the transmission channel 1.
  • the correction signal of the transmission channel may not be present on all subcarriers in the system bandwidth, it may be considered to obtain the frequency domain channel response of all subcarriers in the full frequency band by using adjacent point interpolation (ie, Channel estimation value), the frequency domain channel response of all subcarriers may also be obtained in other manners, and is not limited herein.
  • adjacent point interpolation ie, Channel estimation value
  • the BBU corrects an initial correction compensation coefficient of the first radio frequency channel according to a delay value and a sampling time of the first radio frequency channel, to obtain a first correction compensation coefficient.
  • one of the RRU0 transmission channels (such as Tx0) is used as the reference radio frequency channel. If the correction signal received by the RRU0 is looped back from the A1 interface, the Tx0 is sent. The corrected signal is directly reflected inside RRU0, without the cable passing through A1 to A2, and the other correction signals such as B2 to A1, C2 to A1 or D2 to A1 are all passed through the RF cable, and both transmit and receive. To pass the RF cable, there will be a 2x cable delay. That is, in the above scenario, the correction loopback signal of Tx0 is 2 times less than the correction signal of other transmission channels, so it is necessary to correct the initial correction compensation coefficient of each transmission channel to obtain the corrected correction compensation coefficient. .
  • the initial correction compensation coefficient of the first RF channel may be corrected according to the delay value and the sampling time of the first RF channel,
  • the first correction compensation coefficient of the first RF channel that is, the corrected compensation coefficient after the initial correction compensation coefficient of the first RF channel is corrected.
  • the delay value ⁇ e of the radio frequency channel is obtained through a network management tool configuration such as an operation management area (Operation Manager, OM), or a base station architecture is installed. Direct field input.
  • the BBU may multiply the initial correction compensation coefficient of the first RF channel by a specified index, and correct the initial correction compensation coefficient of the first RF channel by using the multiplication operation to obtain a first correction compensation coefficient.
  • k is the identifier of the subcarrier
  • ⁇ e is the delay value of the first radio frequency channel
  • Ts is the sampling time
  • N is the Fast Fourier Transformation (FFT) point number.
  • the sampling frequency may be 30.72 M corresponding to the 20 M bandwidth system
  • the sampling time Ts is the reciprocal of the sampling frequency.
  • the initial correction compensation coefficient of the transmission channel 0 can be multiplied by the specified function to obtain the first correction compensation coefficient of the transmission channel 0. .
  • ⁇ tx,0 (k,l)1 ⁇ tx,0 (k,l)
  • ⁇ tx,0 (k,l)1 is the correction compensation coefficient corrected by the initial correction compensation coefficient of the transmission channel 0 (ie, the emission
  • ⁇ e is the delay value of the transmission channel 0, that is, the propagation delay of A1 to A2
  • Ts is the sampling time of the transmission channel 0.
  • the BBU can correct the initial correction compensation coefficients of the respective transmission channels according to the foregoing modification manner, and obtain the first correction compensation coefficients of the respective transmission channels, which are not described in detail herein.
  • the BBU performs alignment correction on the first correction compensation coefficient according to a correction compensation coefficient of a reference radio frequency channel, to obtain a second correction compensation coefficient, and a transmission signal mapped to the antenna unit according to the second correction compensation coefficient pair Perform calibration.
  • the first correction compensation coefficients of the respective transmission channels may be aligned and corrected to obtain a second correction compensation coefficient. Then, according to the second correction compensation coefficient, the transmission signals mapped to the antenna unit of each transmission channel are calibrated, and the influence of the delay on the transmission signal mapped to the antenna unit is eliminated.
  • the BBU may randomly select one RF channel from each RF channel (specifically, a transmission channel) as a reference RF channel, for example, a transmission channel 0 (Tx0), and use the reference RF channel as a reference object for alignment correction, for each other The first correction compensation coefficient of the RF channel is aligned and corrected.
  • a transmission channel may be randomly selected from each of the transmission channels as a reference RF channel. If the BBU corrects the receiving channel, it may be from each receiving channel.
  • a receiving channel is randomly selected as the reference RF channel. That is, the reference video channel described in the embodiment of the present invention may be any one of a plurality of transmission channels transmitting a signal to the antenna unit, or a plurality of receiving channels receiving the correction signal fed back by the antenna unit, specifically According to the actual scene selection, there is no limit here.
  • the BBU can perform alignment correction on the first correction compensation coefficient ( ⁇ tx, i (k, l) 1) of each RF channel according to the above alignment correction manner, and obtain a second correction compensation coefficient ( ⁇ tx of each RF channel). , i (k, l) 2), will not be described in detail here.
  • the BBU may calibrate the transmission signals of the respective RF channels according to the second correction compensation coefficient of each RF channel.
  • the BBU may form a diagonal matrix according to the second correction compensation coefficient of each radio frequency channel, where the elements on the main diagonal of the diagonal matrix are the second correction compensation coefficients of the respective radio frequency channels.
  • the BBU can also form a column matrix according to the frequency domain signals transmitted on the subcarrier k and the symbol l of each RF channel, and then multiply the above diagonal matrix by the above column matrix to obtain a target transmission signal mapped onto the antenna unit.
  • a diagonal matrix can be established, and the second correction of each transmission channel is performed.
  • the compensation coefficient is placed on the main diagonal of the diagonal matrix, and the frequency domain signals transmitted by the respective transmission channels on the subcarrier k and the symbol l are grouped into a column matrix, and the diagonal matrix is left-multiplied by the column matrix to obtain a downlink signal mapping.
  • a signal is transmitted to the destination on the antenna unit.
  • the joint correction of the receive channel may also be initiated, where the correction compensation coefficient of the receive channel includes an initial correction compensation coefficient, a first correction compensation coefficient, and a second
  • the correction compensation coefficient of the receive channel includes an initial correction compensation coefficient, a first correction compensation coefficient, and a second
  • the method of obtaining the correction compensation coefficient refer to the implementation manner of obtaining the correction compensation coefficient of the above-mentioned transmission channel, and details are not described herein again.
  • the BBU determines the second correction compensation coefficient of each receiving channel according to the foregoing implementation manner
  • a diagonal matrix may be established, and the second correction compensation coefficient of each receiving channel is placed in the main matrix of the diagonal matrix.
  • the frequency domain signals transmitted by the respective receiving channels on the subcarrier k and the symbol 1 are grouped into a column matrix, and the diagonal matrix is vertically multiplied by the column matrix to obtain a calibrated uplink receiving signal.
  • the user equipment may be used to assist the receiving channel. Correction.
  • the foregoing UE may correspond to multiple transmission channels.
  • the UE transmits a signal to the antenna unit, and the BBU obtains a channel estimation value of the receiving channel according to the digital correction signal fed back by the antenna unit, and determines an initial correction compensation coefficient of the receiving channel according to the channel estimation value.
  • the BBU can perform digital signal processing on the digital correction signal fed back by the antenna unit input by the input channel, obtain the channel estimation value of the receiving channel, and then take the reciprocal of the channel estimation value to obtain an initial correction compensation coefficient of the receiving channel.
  • the inter-cell coordination may be performed, and in the uplink corrected time slot TTI or on some symbols in the TTI, other interfering cells do not transmit signals, or select multiple
  • the UE performs auxiliary correction, and finally uses the statistical average method to obtain a higher precision correction compensation coefficient to improve the correction accuracy of the receiving channel.
  • the BBU may obtain channel estimation values of the respective radio frequency channels according to the received correction signals, determine initial correction compensation coefficients of the respective radio frequency channels according to channel estimation values of the respective radio frequency channels, and then according to delays of the respective radio frequency channels.
  • the initial correction compensation coefficient of each RF channel is corrected and aligned by the value, sampling time, etc., and the corrected correction compensation coefficient is obtained, and the transmission signals mapped to the antenna unit of each RF channel can be calibrated to realize the FDD LTE system.
  • Radio frequency Correction of the channel ensures the reciprocity of the uplink and downlink channels.
  • FIG. 7 is a schematic flowchart diagram of a second embodiment of a method for correcting a radio frequency channel according to an embodiment of the present invention.
  • the method for correcting a radio frequency channel described in the embodiment of the present invention includes the following steps:
  • the baseband unit BBU obtains a channel estimation value of the first radio frequency channel according to the digital correction signal fed back by the antenna unit, and determines an initial correction compensation coefficient of the first radio frequency channel according to the channel estimation value.
  • step S101 for a specific implementation process of determining the initial correction compensation coefficient of the radio frequency channel, which is described in the embodiment of the present invention, refer to step S101 in the first embodiment of the radio frequency channel correction method provided by the embodiment of the present invention. No longer.
  • the main path described in the embodiment of the present invention may specifically be a path in which a transmitting channel transmits a signal to a plurality of paths of an antenna unit and has the strongest transmitting signal.
  • the path of the antenna unit that transmits the signal in each of the transmitting channels has multiple paths, that is, the transmitting signal that is finally transmitted to the antenna unit in each of the transmitting channels may be a superposition of signals arriving by multiple paths, in the embodiment of the present invention.
  • the path with the strongest signal when the antenna unit is reached is selected as the main path from the plurality of paths, and the delay of the main path is taken as the delay of the transmission channel.
  • the time delay of each transmit channel may be obtained according to the time domain channel response of the primary path of each transmit channel (ie, the time domain channel response of the primary path of the transmit channel) value.
  • the reference radio frequency channel described in the embodiment of the present invention may specifically be any one of radio frequency channels randomly selected from all radio frequency channels that transmit signals to the antenna unit, that is, from the transmitting signal to the antenna unit.
  • a plurality of radio frequency channels randomly select one radio frequency channel, and the radio frequency channel is used as a reference channel, for example, Tx0.
  • the delay of each RF channel and the reference RF channel can be obtained according to the delay value of the reference RF channel and the delay value of each RF channel (that is, the delay of the main path of each RF channel). difference.
  • the delay value of the main path of the transmission channel i is ⁇ tx,i
  • the reference radio frequency channel is the transmission channel 0
  • the delay value is ⁇ tx,0
  • the first RF after acquiring the delay difference between the arbitrary transmit channel (ie, the first RF channel) and the reference RF channel, the first RF may be compared according to the delay difference and the sampling time of the first RF channel.
  • the initial correction compensation coefficient of the channel is corrected to obtain a first correction compensation coefficient of the first RF channel.
  • the initial correction compensation coefficient ⁇ tx,i (k,l) of the first RF channel for example, the transmission channel i
  • the specified index may be used.
  • ⁇ ' tx,i in the above specified index is the delay difference between the transmitting channel i and the reference radio frequency channel
  • Ts is the sampling time of the transmitting channel i.
  • the method for correcting the radio frequency channel can also compensate the initial phase of each radio frequency channel to convert the delay value and phase in the time domain to the frequency domain for calibration.
  • the phases of the respective transmit channels are extracted from the time domain channel responses of the respective RF channels, and the phase difference between the respective RF channels and the reference RF channels is obtained according to the phase of the reference transmit channels, and then according to the respective RF channels and the reference RF channels.
  • the phase difference, as well as the delay value and sampling time of each RF channel correct the initial correction compensation coefficients of the respective RF channels to obtain the first correction compensation coefficient of each RF channel.
  • phase information ⁇ tx, i can be extracted from the main path strengths ⁇ tx, i e j ⁇ tx, i of the respective RF channels, where ⁇ tx,i is the magnitude of the main path strength.
  • the BBU performs alignment correction on the first correction compensation coefficient according to a correction compensation coefficient of the reference radio frequency channel, to obtain a second correction compensation coefficient, and the transmission signal mapped to the antenna unit according to the second correction compensation coefficient pair Perform calibration.
  • the specific implementation process of performing the alignment correction on the first correction compensation coefficient of each radio frequency channel may be referred to step S103 in the first embodiment of the radio frequency channel correction method provided by the embodiment of the present invention. Narration.
  • the BBU may obtain channel estimation values of the respective radio frequency channels according to the received correction signals, determine initial correction compensation coefficients of the respective radio frequency channels according to channel estimation values of the respective radio frequency channels, and then according to delays of the respective radio frequency channels.
  • the initial correction coefficient of each RF channel is corrected and aligned by the value, the sampling time, etc., and the corrected correction compensation coefficient is obtained, and the transmission signals mapped to the antenna unit of each RF channel can be calibrated.
  • the embodiment of the invention can also convert the delay difference in the time domain to the frequency domain, correct the RF channel in the frequency domain, compensate the phase, and correct the RF channel by combining the phase difference to implement the FDD LTE system.
  • the correction of the RF channel underneath ensures the reciprocity of the uplink and downlink channels.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a radio frequency channel calibration apparatus according to an embodiment of the present invention.
  • the calibration device for the radio frequency channel described in the embodiment of the present invention includes:
  • the determining module 10 is configured to obtain a channel estimation value of the first radio frequency channel according to the digital correction signal fed back by the antenna unit, and determine an initial correction compensation coefficient of the first radio frequency channel according to the channel estimation value.
  • the correction module 20 is configured to correct an initial correction compensation coefficient of the first radio frequency channel determined by the determining module according to a delay value and a sampling time of the first radio frequency channel, to obtain a first correction compensation coefficient.
  • the calibration module 30 is configured to perform alignment correction on the first correction compensation coefficient corrected by the correction module according to a correction compensation coefficient of the reference radio frequency channel, to obtain a second correction compensation coefficient.
  • the calibration module 30 is further configured to calibrate a transmit signal mapped to the antenna unit according to the second correction compensation coefficient.
  • the correcting device for the radio frequency channel described in the embodiment of the present invention may be specifically the BBU provided by the embodiment of the present invention, where the BBU may be used in the first embodiment of the method for correcting the radio frequency channel provided by the embodiment of the present invention.
  • the implementation of the above-described embodiments may be implemented by the determining module 10, the correcting module 20, and the calibration module 30, as described in the above embodiments. , will not repeat them here.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a radio frequency channel calibration apparatus according to an embodiment of the present invention.
  • the calibration device for the radio frequency channel described in the embodiment of the present invention includes:
  • a determining module 40 configured to acquire a channel estimation value of the first radio frequency channel according to the digital correction signal fed back by the antenna unit, and determine an initial correction compensation of the first radio frequency channel according to the channel estimation value coefficient.
  • the correction module 60 is configured to correct an initial correction compensation coefficient of the first radio frequency channel determined by the determining module according to a delay value and a sampling time of the first radio frequency channel, to obtain a first correction compensation coefficient.
  • the calibration module 80 is configured to perform alignment correction on the first correction compensation coefficient corrected by the correction module according to a correction compensation coefficient of the reference radio frequency channel, to obtain a second correction compensation coefficient.
  • the calibration module 80 is further configured to calibrate a transmit signal mapped to the antenna unit according to the second correction compensation coefficient.
  • the determining module 40, the modifying module 60, and the correcting module 80 may perform the implementations performed by the determining module 10, the modifying module 20, and the correcting module 30 described in the foregoing embodiments, and may perform other operations as follows:
  • the first radio frequency channel is a transmitting channel
  • the determining module 40 is specifically configured to:
  • the first radio frequency channel is a receiving channel
  • the determining module 40 is specifically configured to:
  • the foregoing modification module 60 is specifically configured to:
  • the k is an identifier of the subcarrier
  • the ⁇ e is a delay value of the first radio frequency channel
  • the Ts is a sampling time
  • the N is a fast Fourier transform FFT point number.
  • the calibration module 80 is specifically configured to:
  • the reference radio frequency channel is a transmission channel randomly selected from a transmission signal to at least one transmission channel of the antenna unit, or a reception selected randomly from at least one reception channel receiving a correction signal fed back by the antenna unit. aisle.
  • the calibration module 80 is specifically configured to:
  • the calibration module 80 is specifically configured to:
  • the element on the main diagonal of the diagonal matrix is a second correction compensation coefficient of each of the radio frequency channels.
  • the apparatus for correcting radio frequency channels provided by the embodiments of the present invention further includes:
  • the obtaining module 50 is configured to obtain a delay value of each of the radio frequency channels according to a time domain channel response of a main path of each of the radio frequency channels;
  • the obtaining module 50 is further configured to obtain, according to a delay value of the reference radio frequency channel, a delay difference between each of the radio frequency channel and the reference radio frequency channel;
  • the correction module 60 is further configured to perform an initial correction compensation coefficient of the first RF channel according to a delay difference between the first RF channel and the reference RF channel, and a sampling time of the first RF channel Correcting, obtaining a first correction compensation coefficient of the first RF channel;
  • the main path is a path in which the radio frequency channel transmits a signal to a plurality of paths of the antenna unit, and the reference radio frequency channel is any radio frequency channel randomly selected in the radio frequency channel.
  • the RF channel acts as a reference channel.
  • the compensation module 70 is configured to compensate the initial phase of each of the RF channels to convert the delay value and phase in the time domain to the frequency domain for calibration.
  • the compensation module 70 is specifically configured to:
  • the correction module is further configured to perform initial correction compensation coefficients of each of the RF channels according to a phase difference between each of the RF channels and the reference RF channel, and a delay value and a sampling time of each of the RF channels. Correction, obtaining a first correction compensation coefficient of each of the radio frequency channels.
  • the apparatus for correcting the radio frequency channel described in the embodiment of the present invention may be implemented in the first embodiment and the second embodiment in the method for correcting the radio frequency channel described in the embodiment of the present invention. See the above embodiments, and details are not described herein again.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种射频通道的校正方法,包括:BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数;所述BBU根据所述第一射频通道的时延值和采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。本发明实施例还公开了一种射频通道的校正装置。采用本发明,具有可对各个射频通道进行校正,保障上下行通道的互易性的优点。

Description

一种射频通道的校正方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种射频通道的校正方法及装置。
背景技术
在频分双工(Frequency Division Duplex,FDD)长期演进无线接入***(Long Term Evolution,LTE)***中,当基站侧角度扩展较小时,利用上下行信道互易性,提高权值精度,获得阵列增益或多用户复用增益。在FDD场景下,必须保证上下行射频通道的互易性,即信号接收中各射频通道响应一致,信号发射中各射频通道响应一致。当信号接收中各射频通道响应不一致或者信号发射中各射频通道响应不一致时,则需要对接收通道(即信号接收中的各射频通道)或者发射通道(即信号发射中的各射频通道)进行校正。
现有技术中没有在FDD场景下的射频通道的校正方案,在FDD场景下,若信号接收中各射频通道响应不一致,或者信号发射中各射频通道响应不一致,则无法保障上下行信道的互易性。
发明内容
本发明实施例提供一种射频通道的校正方法及装置,可根据射频通道的信道估计值和时延值、采样时间确定射频通道校正的校正补偿系数,可对射频信道映射到天线单元的发射信号进行校准,保障上下行信道的互易性。
本发明实施例第一方面提供了一种射频通道的校正方法,其可包括:
基带单元BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数;
所述BBU根据所述第一射频通道的时延值和采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
结合第一方面,在第一种可能的实现方式中,所述第一射频通道为发射通道;
所述BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数,包括:
所述BBU从指定接收通道接收所述天线单元反馈的数字校正信号,对所述天线单元反馈的数字校正信号进行数字信号处理,获取所述发射通道的信道估计值;
取所述发射通道的信道估计值的倒数,得到所述发射通道的初始校正补偿系数。
结合第一方面,在第二种可能的实现方式中,所述第一射频通道为接收通道;
所述BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数,包括:
所述BBU通过所述接收通道接收天线单元反馈的数字校正信号,对所述数字校正信号进行数字信号处理,获取所述接收通道的信道估计值;
取所述接收通道的信道估计值的倒数,得到所述接收通道的初始校正补偿系数。
结合第一方面第一种可能的实现方式或者第一方面第二种可能的实现方式,在第三种可能的实现方式中,所述BBU根据所述第一射频通道的时延值和采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数,包括:
所述BBU将所述第一射频通道的初始校正补偿系数与指定指数进行乘法运算,以对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
其中,所述指定指数为
Figure PCTCN2015093869-appb-000001
所述k为子载波的标识,所述τe为所述第一射频通道的时延值,所述Ts为采样时间,所述N为快速傅里叶变换FFT点数。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,包括:
所述BBU将所述第一射频通道的所述第一校正补偿系数除以所述参考射频通道的校正补偿系数,得到第一射频通道的第二校正补偿系数;
其中,所述参考射频通道为从发射信号到所述天线单元的至少一个发射通道中随机选择的一发射通道,或者接收所述天线单元反馈的校正信号的至少一个接收通道中随机选择的一接收通道。
结合第一方面至第一方面第四种可能的实现方式中任一种,在第五种可能的实现方式中,所述第一射频通道为所述发射信号到所述天线单元的各个发射通道中的任意一个,或者接收所述天线单元反馈的校正信号的各个接收通道中的任意一个。
结合第一方面第五种可能的实现方式,在第六种可能的实现方式中,所述根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准包括:
确定各个射频通道的第二校正补偿系数,根据各个所述射频通道的第二校正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号。
结合第一方面第六种可能的实现方式,在第七种可能的实现方式中,所述根据各个所述射频通道的第二校正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号,包括:
根据各个所述射频通道的所述第二校正补偿系数组成对角矩阵,并根据各个所述射频通道在所述子载波k、符号l上发射的频域信号组成列矩阵;
将所述对角矩阵左乘所述列矩阵,得到所述映射到所述天线单元上的目的发射信号;
其中,所述对角矩阵的主对角线上的元素为各个所述射频通道的第二校正补偿系数。
结合第一方面至第一方面第七种可能的实现方式中任一种,在第八种可能的实现方式中,当所述射频通道为时域上的发射通道时,所述根据所述信道估计值确定所述第一射频通道的初始校正补偿系数之后,所述方法还包括:
根据各个所述射频通道的主径的时域信道响应获取各个所述射频通道的时延值;
根据参考射频通道的时延值,获取各个所述射频通道与所述参考射频通道的时延差;
根据所述第一射频通道与所述参考射频通道的时延差,以及所述第一射频通道的采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到所述第一射频通道的第一校正补偿系数;
其中,所述主径为所述射频通道发射信号到天线单元的多个路径中发射信号最强的路径,所述参考射频通道为所述射频通道中随机选择的任一射频通道,以所述射频通道作为参考通道。
结合第一方面第八种可能的实现方式,在第九种可能的实现方式中,所述方法还包括:对各个所述射频通道的初相进行补偿,以将时域上的时延值和相位变换至频域上进行校准。
结合第一方面第九种可能的实现方式,在第十种可能的实现方式中,所述对各个所述射频通道的初相进行补偿包括:
从各个所述射频通道的时域信道响应中提取各个所述射频通道的相位;
根据所述参考射频通道的相位,获取各个所述射频通道与所述参考射频通道的相位差;
根据各个所述射频通道与所述参考射频通道的相位差,以及各个所述射频通道的时延值和采样时间,对各个所述射频通道的初始校正补偿系数进行修正,得到各个所述射频通道的第一校正补偿系数。
本发明实施例第二方面提供了一种射频通道的校正装置,其可包括:
确定模块,用于根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数;
修正模块,用于根据所述第一射频通道的时延值和采样时间对所述确定模块确定的所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
校准模块,用于根据参考射频通道的校正补偿系数对所述修正模块修正得到的所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数;
所述校准模块,还用于根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
结合第二方面,在第一种可能的实现方式中,所述第一射频通道为发射通道;
所述确定模块,具体用于:
从指定接收通道接收所述天线单元反馈的数字校正信号,对所述天线单元反馈的数字校正信号进行数字信号处理,获取所述发射通道的信道估计值;
取所述发射通道的信道估计值的倒数,得到所述发射通道的初始校正补偿系数。
结合第二方面,在第二种可能的实现方式中,所述第一射频通道为接收通道;
所述确定模块具体用于:
通过所述接收通道接收天线单元反馈的数字校正信号,对所述数字校正信号进行数字信号处理,获取所述接收通道的信道估计值;
取所述接收通道的信道估计值的倒数,得到所述接收通道的初始校正补偿系数。
结合第二方面第一种可能的实现方式或者第二方面第二种可能的实现方式,在第三种可能的实现方式中,所述修正模块具体用于:
将所述第一射频通道的初始校正补偿系数与指定指数进行乘法运算,以对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
其中,所述指定指数为
Figure PCTCN2015093869-appb-000002
所述k为子载波的标识,所述τe为所述第一射频通道的时延值,所述Ts为采样时间,所述N为快速傅里叶变换FFT点数。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中,所述校准模块具体用于:
将所述第一射频通道的所述第一校正补偿系数除以所述参考射频通道的校正补偿系数,得到第一射频通道的第二校正补偿系数;
其中,所述参考射频通道为从发射信号到所述天线单元的至少一个发射通道中随机选择的一发射通道,或者接收所述天线单元反馈的校正信号的至少一 个接收通道中随机选择的一接收通道。
结合第二方面至第二方面第四种可能的实现方式中任一种,在第五种可能的实现方式中,所述第一射频通道为所述发射信号到所述天线单元的各个发射通道中的任意一个,或者接收所述天线单元反馈的校正信号的各个接收通道中的任意一个。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,所述校准模块具体用于:
确定各个射频通道的第二校正补偿系数,根据各个所述射频通道的第二校正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号。
结合第二方面第六种可能的实现方式,在第七种可能的实现方式中,所述校准模块具体用于:
根据各个所述射频通道的所述第二校正补偿系数组成对角矩阵,并根据各个所述射频通道在所述子载波k、符号l上发射的频域信号组成列矩阵;
将所述对角矩阵左乘所述列矩阵,得到所述映射到所述天线单元上的目的发射信号;
其中,所述对角矩阵的主对角线上的元素为各个所述射频通道的第二校正补偿系数。
结合第二方面至第二方面第七种可能的实现方式中任一种,在第八种可能的实现方式中,当所述射频通道为时域上的发射通道时,所述装置还包括:
获取模块,用于根据各个所述射频通道的主径的时域信道响应获取各个所述射频通道的时延值;
所述获取模块,还用于根据参考射频通道的时延值,获取各个所述射频通道与所述参考射频通道的时延差;
所述修正模块,还用于根据所述第一射频通道与所述参考射频通道的时延差,以及所述第一射频通道的采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到所述第一射频通道的第一校正补偿系数;
其中,所述主径为所述射频通道发射信号到天线单元的多个路径中发射信号最强的路径,所述参考射频通道为所述射频通道中随机选择的任一射频通道, 以所述射频通道作为参考通道。
结合第二方面第八种可能的实现方式,在第九种可能的实现方式中,所述装置还包括:
补偿模块,用于对各个所述射频通道的初相进行补偿,以将时域上的时延值和相位变换至频域上进行校准。
结合第二方面第九种可能的实现方式,在第十种可能的实现方式中,所述补偿模块具体用于:
从各个所述射频通道的时域信道响应中提取各个所述射频通道的相位,根据所述参考射频通道的相位,获取各个所述射频通道与所述参考射频通道的相位差;
所述修正模块,还用于根据各个所述射频通道与所述参考射频通道的相位差,以及各个所述射频通道的时延值和采样时间,对各个所述射频通道的初始校正补偿系数进行修正,得到各个所述射频通道的第一校正补偿系数。
本发明实施例可根据天线单元反馈的数字校正信号获取射频通道的信道估计值,根据射频通道的信道估计值确定射频通道的初始校正补偿系数,并根据射频通道的时延值和采样时间对射频通道的初始校正补偿系数进行修正,进而根据修正后的校正补偿系数对映射到天线单元的发射信号进行校准,实现频分双工***下的射频通道的校正,可保障上下行信道的互易性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的基站架构的一示意图;
图2是本发明实施例提供的基站架构的另一示意图;
图3是本发明实施例提供的基站架构的另一示意图;
图4是本发明实施例提供的基站架构的另一示意图;
图5是本发明实施例提供的射频通道的校正方法的第一实施例流程示意 图;
图6是本发明实施例提供的基站架构的另一示意图;
图7是本发明实施例提供的射频通道的校正方法的第二实施例流程示意图;
图8是本发明实施例提供的射频通道的校正装置的第一实施例结构示意图;
图9是本发明实施例提供的射频通道的校正装置的第二实施例结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实现中,本发明实施例中所描述的射频通道的校正方法主要是对FDD LTE***中的射频通道进行校正,其中,上述射频通道包括:信号接收中的各个射频通道(也称接收通道),或者信号发射中的各个射频通道(也称发射通道)。本发明实施例中所描述的射频通道的校正方法可适用于多种基站架构,上述基站架构中包括:基带单元(Baseband Unit,BBU)、拉远射频单元(Remote Radio Unit,RRU)和天线单元等。其中,上述RRU可包括2个端口的RRU和4个端口的RRU,其中,上述天线单元也可包括2个端口的天线单元和4个端口的天线单元等,在此不做限制。如图1,为本发明实施例提供的基站架构的一示意图,图1中所示的基站架构可由BBU和4端口的RRU、4端口的天线单元组成。如图2,为本发明实施例提供的基站架构的另一示意图,图2中所示的基站架构可由BBU、2个2端口的RRU和1个4端口的天线单元组成。图3是本发明实施例提供的基站架构的另一示意图,图3中所示的基站架构可由BBU、1个4端口的RRU和2个2端口的天线单元组成。图4是本发明实施例提供的基站架构的另一示意图,图4中所示的基站架构可由BBU和2个2端口的RRU、2个2端口的天线单元组成。具体实现中,上述 各基站架构中,BBU和RRU可为两个独立的功能模块,也可将BBU集成到RRU内部中,或者将BBU的部分功能集成到RRU中,在此不做限制。
本发明实施例所描述的射频通道的校正方法可适用于上述图1至图4中所描述的基站架构中,也可适用于其他基站架构,在此不做限制。
参见图5,是本发明实施例提供的射频通道的校正方法的第一实施例流程示意图。本发明实施例中所描述的射频通道的校正方法,包括步骤:
S101,基带单元BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数。
在一些可行的实施方式中,BBU可通过通用公共无线电接口(Common Public Radio Interface,CPRI)与RRU建立连接,BBU可通过CPRI接口将数字信号传递给RRU,以通过RRU向天线单元发送信号。如图6,BBU可通过CPRI接口A0和C0发送数字信号给RRU,RRU接收到BBU发送的数字信号之后,则可将上述数字信号转换为射频校正信号,并通过射频电缆(如图6中的A1->A2、B1->B2、C1->C2和D1->D2等)将射频校正信号发送至天线单元。RRU发送到天线单元的射频校正信号经过天线单元的信号耦合通信之后,从RRU内部专用通道或者用于测量发射通道质量的反馈通道把射频校正信号环回。RRU可将环回的射频校正信号转换为数字校正信号返回给BBU,BBU可根据天线单元反馈的数字校正信号(即天线单元反馈的射频校正信号通过RRU转换为数字校正信号)获取第一射频通道的信道估计值。
具体实现中,本发明实施例中所描述的射频通道可包括发射通道和接收通道,BBU可首先发起发射通道的联合校正,再发起接收通道的联合校正。下面将主要以BBU发起发射通道的联合校正时的射频通道的校正方法为例,对本发明实施例提供的射频通道的校正方法进行具体描述。
具体实现中,本发明实施例中所描述的第一射频通道为多个发射通道中的任意一个,即,下面将要第一射频通道为例,对每个发射通道的校正步骤进行具体说明。
在一些可行的实施方式中,BBU可从多个发射通道中选择任一个发射通道(设为第一射频通道)对应的接收通道来接收数字校正信号,根据上述数字 校正信号确定该发射通道的信道估计值。具体实现中,BBU对多个发射通道中每个发射通道进行校正时,均可从同一个接收通道(即指定接收通道)接收数字校正信号,即数字校正信号环回时可从同一个接收通道环回,BBU可根据从该接收通道接收到的数字校正信号确定发射通道的信道估计值。具体的,BBU发射信号到天线单元时可从多个发射通道发射出去,信号接收时,BBU可从上述多个发射通道对应的接收通道接收天线单元通过RRU反馈的信号,进而可从中选择指定接收通道(所有发射通道的校正都选择同一个接收通道接收到的数字信号进行校正)的接收到的信号进行数字信号处理,获取第一射频通道的信道估计值。
具体实现中,BBU获取得到第一射频通道的信道估计值之后,则可根据上述信道估计值确定第一射频通道的初始校正补偿系数。具体的,BBU可获取发射通道i对应的接收通道接收到的数字校正信号,确定上述数字校正信号在子载波k和符号为l的信道上的信道估计值htx,i(k,l)。如图6,BBU可根据RRU0的发射通道0反馈的数字校正信号,确定上述发射通道0的信道估计值为htx,0(k,l)。BBU还可根据RRU1的发射通道1对应的接收通道(即指定接收通道)反馈的数字校正信号,确定上述发射通道1的信道估计值为htx, 1(k,l)),进而可根据上述发射通道0或者发射通道1的信道估计值确定发射通道0的初始校正补偿系数,或者发射通道1的初始校正补偿系数。具体的,BBU可取上述发射通道0的信道估计值的倒数,得到发射通道0的初始校正补偿系数βtx,0(k,l))=1/(htx,0(k,l)),取上述发射通道1的信道估计值的倒数,得到发射通道1的初始校正补偿系数βtx,1(k,l))=1/(htx,1(k,1))。
在本发明实施例中,由于发射通道的校正信号有可能不是***带宽内的所有子载波上都有,此时可以考虑采用邻近点插值的方式获得全频带所有子载波的频域信道响应(即信道估计值),也可采用其他方式获取所有子载波的频域信道响应,在此不做限制。
S102,所述BBU根据所述第一射频通道的时延值和采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数。
在本发明实施例中,如图6,假设以RRU0中的一个发射通道(如Tx0)为参考射频通道,如果RRU0接收到的校正信号从A1接口环回,由于Tx0发 射的校正信号直接在RRU0内部反射,没有经过A1到A2的线缆,而其他点如B2到A1、C2到A1或者D2到A1的校正信号都是经过射频线缆的,并且发射和接收都要经过射频线缆,因此将有2倍的线缆时延。即,在上述场景中,Tx0的校正环回信号较其他发射通道的校正信号少2倍的线缆时延,故此需要对各个发射通道的初始校正补偿系数进行修正,得到修正后的校正补偿系数。
在一些可行的实施方式中,BBU对第一射频通道的初始校正补偿系数进行修正时,可根据第一射频通道的时延值和采样时间对第一射频通道的初始校正补偿系数进行修正,得到第一射频通道的第一校正补偿系数,即第一射频通道的初始校正补偿系数修正后的校正补偿系数。在本发明实施例中,上述射频通道(包括第一射频通道和其他各个射频通道)的时延值τe,进而通过操作管理区(Operation Manager,OM)等网管工具配置获得,或者基站架构安装时直接现场输入。具体的,BBU可将上述第一射频通道的初始校正补偿系数与指定指数进行乘法运算,通过上述乘法运算对第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数。其中,上述指定指数为
Figure PCTCN2015093869-appb-000003
其中,k为子载波的标识,τe为所述第一射频通道的时延值,Ts为采样时间,N为快速傅里叶变换(Fast Fourier Transformation,FFT)点数。在LTE***中,对应20M带宽***,采样频率可为30.72M,上述采样时间Ts即为该采样频率的倒数。例如,以发射通道0为例,对发射通道0的初始校正补偿系数进行修正时,可将发射通道0的初始校正补偿系数与上述指定函数进行乘法运算,得到发射通道0的第一校正补偿系数。例如,βtx,0(k,l)1=βtx,0(k,l)
Figure PCTCN2015093869-appb-000004
其中,上述βtx,0(k,l)为发射通道0的初始校正补偿系数,βtx,0(k,l)1为发射通道0的初始校正补偿系数修正后的校正补偿系数(即发射通道0的第一校正补偿系数),τe为所述发射通道0的时延值,即A1到A2的传播时延,Ts为发射通道0的采样时间。
具体实现中,BBU可根据上述修正方式对各个发射通道的初始校正补偿系数进行修正,得到各个发射通道的第一校正补偿系数,在此不再详细描述。
S103,所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
在一些可行的实施方式中,为了避免校正补偿后导致所有补偿后通道一起延时或提前比较大的时间,可对各个发射通道的第一校正补偿系数进行对齐校正,得到第二校正补偿系数,再根据第二校正补偿系数对各个发射通道映射到天线单元的发射信号进行校准,消除时延对映射到天线单元的发射信号的影响。具体的,BBU可从各个射频通道(具体可为发射通道)中随机选择一个射频通道作为参考射频通道,例如发射通道0(Tx0),以上述参考射频通道为对齐校正的参考对象,对其他各个射频通道的第一校正补偿系数进行对齐校正。BBU对第一射频通道(例如发射通道i)的第一校正补偿系数βtx,i(k,l)1进行对齐校正时,可将发射通道i的第一校正补偿系数βtx,i(k,l)1除以参考射频通道的校正补偿系数(即参考射频通道的第一校正补偿系数βtx,0(k,l)1),得到第一射频通道的第二校正补偿系数βtx,i(k,l)2,如βtx,i(k,l)2=βtx,i(k,l)1/βtx,0(k,l)1。
在本发明实施例中,若BBU是对发射通道进行校正,则可从各个发射通道中选择随机选择一个发射通道作为参考射频通道,若BBU是对接收通道进行校正,则可从各个接收通道中随机选择一个接收通道作为参考射频通道。即,本发明实施例中所描述的参考视频通道可为发射信号到天线单元的多个发射通道中的任意一个,或者接收天线单元反馈的校正信号的多个接收通道中的任意一个,具体可根据实际场景选择,在此不做限制。
具体实现中,BBU可根据上述对齐校正方式对各个射频通道的第一校正补偿系数(βtx,i(k,l)1)进行对齐校正,得到各个射频通道的第二校正补偿系数(βtx,i(k,l)2),在此不再详细描述。
在一些可行的实施方式中,BBU确定发射信号到天线单元的各个射频通道的第二校正补偿系数之后,则可根据各个射频通道的第二校正补偿系数对各个射频通道的发射信号进行校准,得到映射到天线单元的目的发射信号。具体的,BBU可根据各个射频通道的第二校正补偿系数组成对角矩阵,其中,上述对角矩阵的主对角线上的元素为各个射频通道的第二校正补偿系数。BBU还可根据各个射频通道在子载波k、符号l上发射的频域信号组成列矩阵,再将上述对角矩阵左乘上述列矩阵,得到映射到天线单元上的目的发射信号。具体的,下行信号发射时,可建立一个对角矩阵,并将各个发射通道的第二校正 补偿系数放置在对角矩阵的主对角线上,将各个发射通道在子载波k、符号l上发射的频域信号组成列矩阵,将上述对角矩阵左乘上述列矩阵,得到下行信号映射到天线单元上的目的发射信号。
在一些可行的实施方式中,BBU发起发射通道的联合校正之后,还可发起接收通道的联合校正,其中,上述接收通道的校正补偿系数,包括初始校正补偿系数、第一校正补偿系数和第二校正补偿系数的获取方式可参见上述发射通道的校正补偿系数的获取的实现方式,在此不再赘述。
进一步的,BBU根据上述实现方式确定了各个接收通道的第二校正补偿系数之后,上行信号接收时,可建立一个对角矩阵,将各个接收通道的第二校正补偿系数放置在对角矩阵的主对角线上,将各个接收通道在子载波k、符号l上发射的频域信号组成列矩阵,将上述对角矩阵左乘上述列矩阵,得到校准后的上行接收信号。
进一步的,在本发明实施例中,在接收通道的联合校正的实现过程中,对于FDD RRU,由于没有接收频点的发射通路,故此可采用用户设备(User Equipment,UE)辅助进行接收通道的校正。其中,上述UE可对应多个发射通道。UE发射信号到天线单元,BBU根据天线单元反馈的数字校正信号获取接收通道的信道估计值,根据上述信道估计值确定接收通道的初始校正补偿系数。BBU可对上述输入通道输入的天线单元反馈的数字校正信号进行数字信号处理,获取接收通道的信道估计值,再取上述信道估计值的倒数,得到接收通道的初始校正补偿系数。
进一步的,为了提高接收通道的校正精度,可通过多小区之间进行协调,在上行校正的时隙TTI内或者该TTI内的某些符号上,其他干扰小区不发射信号,或者通过选择多个UE进行辅助校正,最后采用统计平均方式获取精度更高的校正补偿系数,以提高接收通道的校正精度。
在本发明实施例中,BBU可根据接收到的校正信号获取各个射频通道的信道估计值,根据各个射频通道的信道估计值确定各个射频通道的初始校正补偿系数,再根据各个射频通道的时延值、采样时间等对各个射频通道的初始校正补偿系数进行修正和对齐校正,得到校正后的校正补偿系数,进而可对各个射频通道映射到天线单元的发射信号进行校准,实现FDD LTE***下的射频 通道的校正,保障上下行信道的互易性。
参见图7,是本发明实施例提供的射频通道的校正方法的第二实施例流程示意图。本发明实施例中所描述的射频通道的校正方法,包括步骤:
S201,基带单元BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数。
具体实现中,本发明实施例中所描述的确定射频通道的初始校正补偿系数的具体实现过程可参见上述本发明实施例提供的射频通道的校正方法的第一实施例中的步骤S101,在此不再赘述。
S202,根据各个所述射频通道的主径的时域信道响应获取各个所述射频通道的时延值。
在一些可行的实施方式中,本发明实施例中所描述的主径具体可为发射通道发射信号到天线单元的多个路径中发射信号最强的路径。具体实现中,每个发射通道发射信号的天线单元的路径是有多个路径的,即每个发射通道最终发射到天线单元的发射信号可能是多个路径到达的信号的叠加,本发明实施例可从上述多个路径中选择达到天线单元时信号最强的路径作为主径,将主径的时延作为该发射通道的时延。具体的,获取每个发射通道的时延值时,可根据每个发射通道的主径的时域信道响应(即该发射通道的主径的时域信道响应)获取每个发射通道的时延值。
S203,根据参考射频通道的时延值,获取各个所述射频通道与所述参考射频通道的时延差。
在一些可行的实施方式中,本发明实施例中所描述的参考射频通道具体可为发射信号到天线单元的所有射频通道中随机选择的任一射频通道,即,可从发射信号到天线单元的多个射频通道随机选择一个射频通道,将该射频通道作为参考通道,例如Tx0。选定参考射频通道之后,则可根据参考射频通道的时延值,结合各个射频通道的时延值(即,各个射频通道的主径的时延)获取各个射频通道与参考射频通道的时延差。假设发射信道i的主径的时延值为τtx,i,参考射频信道为发射通道0,其时延值为τtx,0,则可获取得到发射通道i和发射通道0的时延差为τ’tx,i=τtx,itx,0
S204,根据所述第一射频通道与所述参考射频通道的时延差,以及所述第一射频通道的采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到所述第一射频通道的第一校正补偿系数。
在一些可行的实施方式中,获取得到任意发射通道(即第一射频通道)与参考射频通道的时延差之后,则可根据上述时延差,以及第一射频通道的采样时间对第一射频通道的初始校正补偿系数进行修正,得到第一射频通道的第一校正补偿系数。具体的,可将第一射频通道(例如发射通道i)的初始校正补偿系数βtx,i(k,l)与指定指数
Figure PCTCN2015093869-appb-000005
进行乘法运算,得到第一射频通道的第一校正补偿系数βtx,i(k,l)1=,即βtx,i(k,l)1=βtx,i(k,l)
Figure PCTCN2015093869-appb-000006
其中,上述指定指数中的τ’tx,i为发射通道i与参考射频通道的时延差,Ts为发射通道i的采样时间。
进一步的,本发明实施例提供的射频通道的校正方法还可对各个射频通道的初相进行补偿,以将时域上的时延值和相位变换至频域上进行校准。具体的,可从各个射频通道的时域信道响应中提取各个发射通道的相位,根据参考发射通道的相位,获取各个射频通道与参考射频通道的相位差,进而根据各个射频通道与参考射频通道的相位差,以及各个射频通道的时延值和采样时间,对各个射频通道的初始校正补偿系数进行修正,得到各个射频通道的第一校正补偿系数。具体的,可从各个射频通道的主径强度αtx,iejθtx,i中提取出相位信息θtx, i,其中,αtx,i为主径强度的幅度。获取各个射频通道的相位之后,则可确定各个射频通道(比如发射通道i)与参考射频通道的相位差θ’tx,i=θtx,itx,0,进而根据相位差,和各个射频通道(发射通道i)的时延值和采样时间,对各个射频通道的初始校正补偿系数进行修正,得到各个射频通道的第一校正补偿系数,如βtx,i(k,l)1=βtx,i(k,l)
Figure PCTCN2015093869-appb-000007
S205,所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
具体实现中,上述对各个射频通道的第一校正补偿系数进行对齐校正的具体实现过程可参见上述本发明实施例提供的射频通道的校正方法的第一实施例中的步骤S103,在此不再赘述。
在本发明实施例中,BBU可根据接收到的校正信号获取各个射频通道的信道估计值,根据各个射频通道的信道估计值确定各个射频通道的初始校正补偿系数,再根据各个射频通道的时延值、采样时间等对各个射频通道的初始校正补偿系数进行修正和对齐校正,得到校正后的校正补偿系数,进而可对各个射频通道映射到天线单元的发射信号进行校准。本发明实施例还可将时域上的时延差转换到频域上,在频域上进行射频通道的校正,还可对相位进行补偿,结合相位差进行射频通道的校正,实现FDD LTE***下的射频通道的校正,保障上下行信道的互易性。
参见图8,是本发明实施例提供的射频通道的校正装置的第一实施例结构示意图。本发明实施例中所描述的射频通道的校正装置,包括:
确定模块10,用于根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数。
修正模块20,用于根据所述第一射频通道的时延值和采样时间对所述确定模块确定的所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数。
校准模块30,用于根据参考射频通道的校正补偿系数对所述修正模块修正得到的所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数。
上述校准模块30,还用于根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
具体实现中,本发明实施例中所描述的射频通道的校正装置具体可为本发明实施例提供的BBU,上述BBU可执行上述本发明实施例提供的射频通道的校正方法的第一实施例中所描述的实现方式,本发明实施例中所描述的射频通道的校正装置可通过其确定模块10、修正模块20和校准模块30来执行上述实施例所描述的实现方式,具体可参见上述实施例,在此不再赘述。
参见图9,是本发明实施例提供的射频通道的校正装置的第二实施例结构示意图。本发明实施例中所描述的射频通道的校正装置,包括:
确定模块40,用于根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿 系数。
修正模块60,用于根据所述第一射频通道的时延值和采样时间对所述确定模块确定的所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数。
校准模块80,用于根据参考射频通道的校正补偿系数对所述修正模块修正得到的所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数。
上述校准模块80,还用于根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
具体实现中,上述确定模块40、修正模块60和校正模块80可执行上述实施例中所描述的确定模块10、修正模块20和校正模块30所执行的实现方式,还可执行如下其他操作:
在一些可行的实施方式中,所述第一射频通道为发射通道;
所述确定模块40,具体用于:
从指定接收通道接收所述天线单元反馈的数字校正信号,对所述天线单元反馈的数字校正信号进行数字信号处理,获取所述发射通道的信道估计值;
取所述发射通道的信道估计值的倒数,得到所述发射通道的初始校正补偿系数。
在一些可行的实施方式中,所述第一射频通道为接收通道;
所述确定模块40具体用于:
通过所述接收通道接收天线单元反馈的数字校正信号,对所述数字校正信号进行数字信号处理,获取所述接收通道的信道估计值;
取所述接收通道的信道估计值的倒数,得到所述接收通道的初始校正补偿系数。
在一些可行的实施方式中,上述修正模块60具体用于:
将所述第一射频通道的初始校正补偿系数与指定指数进行乘法运算,以对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
其中,所述指定指数为
Figure PCTCN2015093869-appb-000008
所述k为子载波的标识,所述τe为所述第一射频通道的时延值,所述Ts为采样时间,所述N为快速傅里叶变换FFT点数。
在一些可行的实施方式中,上述校准模块80具体用于:
将所述第一射频通道的所述第一校正补偿系数除以所述参考射频通道的校正补偿系数,得到第一射频通道的第二校正补偿系数;
其中,所述参考射频通道为从发射信号到所述天线单元的至少一个发射通道中随机选择的一发射通道,或者接收所述天线单元反馈的校正信号的至少一个接收通道中随机选择的一接收通道。
在一些可行的实施方式中,上述校准模块80具体用于:
确定各个射频通道的第二校正补偿系数,根据各个所述射频通道的第二校正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号。
在一些可行的实施方式中,上述校准模块80具体用于:
根据各个所述射频通道的所述第二校正补偿系数组成对角矩阵,并根据各个所述射频通道在所述子载波k、符号l上发射的频域信号组成列矩阵;
将所述对角矩阵左乘所述列矩阵,得到所述映射到所述天线单元上的目的发射信号;
其中,所述对角矩阵的主对角线上的元素为各个所述射频通道的第二校正补偿系数。
在一些可行的实施方式中,本发明实施例提供的射频通道的校正装置还包括:
获取模块50,用于根据各个所述射频通道的主径的时域信道响应获取各个所述射频通道的时延值;
所述获取模块50,还用于根据参考射频通道的时延值,获取各个所述射频通道与所述参考射频通道的时延差;
所述修正模块60,还用于根据所述第一射频通道与所述参考射频通道的时延差,以及所述第一射频通道的采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到所述第一射频通道的第一校正补偿系数;
其中,所述主径为所述射频通道发射信号到天线单元的多个路径中发射信号最强的路径,所述参考射频通道为所述射频通道中随机选择的任一射频通道,以所述射频通道作为参考通道。
补偿模块70,用于对各个所述射频通道的初相进行补偿,以将时域上的时延值和相位变换至频域上进行校准。
上述补偿模块70具体用于:
从各个所述射频通道的时域信道响应中提取各个所述射频通道的相位,根据所述参考射频通道的相位,获取各个所述射频通道与所述参考射频通道的相位差;
所述修正模块,还用于根据各个所述射频通道与所述参考射频通道的相位差,以及各个所述射频通道的时延值和采样时间,对各个所述射频通道的初始校正补偿系数进行修正,得到各个所述射频通道的第一校正补偿系数。
具体实现中,本发明实施例所描述的射频通道的校正装置可执行本发明实施例中所描述的射频通道的校正方法的第一实施例和第二实施例中所描述的实现方式,具体可参见上述实施例,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (22)

  1. 一种射频通道的校正方法,其特征在于,包括:
    基带单元BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数;
    所述BBU根据所述第一射频通道的时延值和采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
    所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
  2. 如权利要求1所述的方法,其特征在于,所述第一射频通道为发射通道;
    所述BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数,包括:
    所述BBU从指定接收通道接收所述天线单元反馈的数字校正信号,对所述天线单元反馈的数字校正信号进行数字信号处理,获取所述发射通道的信道估计值;
    取所述发射通道的信道估计值的倒数,得到所述发射通道的初始校正补偿系数。
  3. 如权利要求1所述的方法,其特征在于,所述第一射频通道为接收通道;
    所述BBU根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数,包括:
    所述BBU通过所述接收通道接收天线单元反馈的数字校正信号,对所述数字校正信号进行数字信号处理,获取所述接收通道的信道估计值;
    取所述接收通道的信道估计值的倒数,得到所述接收通道的初始校正补偿系数。
  4. 如权利要求2或3所述的方法,其特征在于,所述BBU根据所述第一射频通道的时延值和采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数,包括:
    所述BBU将所述第一射频通道的初始校正补偿系数与指定指数进行乘法运算,以对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
    其中,所述指定指数为
    Figure PCTCN2015093869-appb-100001
    所述k为子载波的标识,所述τe为所述第一射频通道的时延值,所述Ts为采样时间,所述N为快速傅里叶变换FFT点数。
  5. 如权利要求4所述的方法,其特征在于,所述BBU根据参考射频通道的校正补偿系数对所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数,包括:
    所述BBU将所述第一射频通道的所述第一校正补偿系数除以所述参考射频通道的校正补偿系数,得到第一射频通道的第二校正补偿系数;
    其中,所述参考射频通道为从发射信号到所述天线单元的至少一个发射通道中随机选择的一发射通道,或者接收所述天线单元反馈的校正信号的至少一个接收通道中随机选择的一接收通道。
  6. 如权利要求1-5任意一项所述的方法,其特征在于,所述第一射频通道为所述发射信号到所述天线单元的各个发射通道中的任意一个,或者接收所述天线单元反馈的校正信号的各个接收通道中的任意一个。
  7. 如权利要求6所述的方法,其特征在于,所述根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准包括:
    确定各个射频通道的第二校正补偿系数,根据各个所述射频通道的第二校 正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号。
  8. 如权利要求7所述的方法,其特征在于,所述根据各个所述射频通道的第二校正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号,包括:
    根据各个所述射频通道的所述第二校正补偿系数组成对角矩阵,并根据各个所述射频通道在所述子载波k、符号l上发射的频域信号组成列矩阵;
    将所述对角矩阵左乘所述列矩阵,得到所述映射到所述天线单元上的目的发射信号;
    其中,所述对角矩阵的主对角线上的元素为各个所述射频通道的第二校正补偿系数。
  9. 如权利要求1-8任意一项所述的方法,其特征在于,当所述射频通道为时域上的发射通道时,所述根据所述信道估计值确定所述第一射频通道的初始校正补偿系数之后,所述方法还包括:
    根据各个所述射频通道的主径的时域信道响应获取各个所述射频通道的时延值;
    根据参考射频通道的时延值,获取各个所述射频通道与所述参考射频通道的时延差;
    根据所述第一射频通道与所述参考射频通道的时延差,以及所述第一射频通道的采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到所述第一射频通道的第一校正补偿系数;
    其中,所述主径为所述射频通道发射信号到天线单元的多个路径中发射信号最强的路径,所述参考射频通道为所述射频通道中随机选择的任一射频通道,以所述射频通道作为参考通道。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:对各个所述射频通道的初相进行补偿,以将时域上的时延值和相位变换至频域上进行校 准。
  11. 如权利要求10所述的方法,其特征在于,所述对各个所述射频通道的初相进行补偿包括:
    从各个所述射频通道的时域信道响应中提取各个所述射频通道的相位;
    根据所述参考射频通道的相位,获取各个所述射频通道与所述参考射频通道的相位差;
    根据各个所述射频通道与所述参考射频通道的相位差,以及各个所述射频通道的时延值和采样时间,对各个所述射频通道的初始校正补偿系数进行修正,得到各个所述射频通道的第一校正补偿系数。
  12. 一种射频通道的校正装置,其特征在于,包括:
    确定模块,用于根据天线单元反馈的数字校正信号获取第一射频通道的信道估计值,并根据所述信道估计值确定所述第一射频通道的初始校正补偿系数;
    修正模块,用于根据所述第一射频通道的时延值和采样时间对所述确定模块确定的所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
    校准模块,用于根据参考射频通道的校正补偿系数对所述修正模块修正得到的所述第一校正补偿系数进行对齐校正,得到第二校正补偿系数;
    所述校准模块,还用于根据所述第二校正补偿系数对映射到所述天线单元的发射信号进行校准。
  13. 如权利要求12所述的装置,其特征在于,所述第一射频通道为发射通道;
    所述确定模块,具体用于:
    从指定接收通道接收所述天线单元反馈的数字校正信号,对所述天线单元反馈的数字校正信号进行数字信号处理,获取所述发射通道的信道估计值;
    取所述发射通道的信道估计值的倒数,得到所述发射通道的初始校正补偿系数。
  14. 如权利要求12所述的装置,其特征在于,所述第一射频通道为接收通道;
    所述确定模块具体用于:
    通过所述接收通道接收天线单元反馈的数字校正信号,对所述数字校正信号进行数字信号处理,获取所述接收通道的信道估计值;
    取所述接收通道的信道估计值的倒数,得到所述接收通道的初始校正补偿系数。
  15. 如权利要求13或14所述的装置,其特征在于,所述修正模块具体用于:
    将所述第一射频通道的初始校正补偿系数与指定指数进行乘法运算,以对所述第一射频通道的初始校正补偿系数进行修正,得到第一校正补偿系数;
    其中,所述指定指数为
    Figure PCTCN2015093869-appb-100002
    所述k为子载波的标识,所述τe为所述第一射频通道的时延值,所述Ts为采样时间,所述N为快速傅里叶变换FFT点数。
  16. 如权利要求15所述的装置,其特征在于,所述校准模块具体用于:
    将所述第一射频通道的所述第一校正补偿系数除以所述参考射频通道的校正补偿系数,得到第一射频通道的第二校正补偿系数;
    其中,所述参考射频通道为从发射信号到所述天线单元的至少一个发射通道中随机选择的一发射通道,或者接收所述天线单元反馈的校正信号的至少一个接收通道中随机选择的一接收通道。
  17. 如权利要求12-16任意一项所述的装置,其特征在于,所述第一射频通道为所述发射信号到所述天线单元的各个发射通道中的任意一个,或者接收所述天线单元反馈的校正信号的各个接收通道中的任意一个。
  18. 如权利要求17所述的装置,其特征在于,所述校准模块具体用于:
    确定各个射频通道的第二校正补偿系数,根据各个所述射频通道的第二校正补偿系数对所述各个射频通道的发射信号进行校准,得到映射到所述天线单元上的目的发射信号。
  19. 如权利要求18所述的装置,其特征在于,所述校准模块具体用于:
    根据各个所述射频通道的所述第二校正补偿系数组成对角矩阵,并根据各个所述射频通道在所述子载波k、符号l上发射的频域信号组成列矩阵;
    将所述对角矩阵左乘所述列矩阵,得到所述映射到所述天线单元上的目的发射信号;
    其中,所述对角矩阵的主对角线上的元素为各个所述射频通道的第二校正补偿系数。
  20. 如权利要求12-19任意一项所述的装置,其特征在于,当所述射频通道为时域上的发射通道时,所述装置还包括:
    获取模块,用于根据各个所述射频通道的主径的时域信道响应获取各个所述射频通道的时延值;
    所述获取模块,还用于根据参考射频通道的时延值,获取各个所述射频通道与所述参考射频通道的时延差;
    所述修正模块,还用于根据所述第一射频通道与所述参考射频通道的时延差,以及所述第一射频通道的采样时间对所述第一射频通道的初始校正补偿系数进行修正,得到所述第一射频通道的第一校正补偿系数;
    其中,所述主径为所述射频通道发射信号到天线单元的多个路径中发射信号最强的路径,所述参考射频通道为所述射频通道中随机选择的任一射频通道,以所述射频通道作为参考通道。
  21. 如权利要求20所述的装置,其特征在于,所述装置还包括:
    补偿模块,用于对各个所述射频通道的初相进行补偿,以将时域上的时延值和相位变换至频域上进行校准。
  22. 如权利要求21所述的装置,其特征在于,所述补偿模块具体用于:
    从各个所述射频通道的时域信道响应中提取各个所述射频通道的相位,根据所述参考射频通道的相位,获取各个所述射频通道与所述参考射频通道的相位差;
    所述修正模块,还用于根据各个所述射频通道与所述参考射频通道的相位差,以及各个所述射频通道的时延值和采样时间,对各个所述射频通道的初始校正补偿系数进行修正,得到各个所述射频通道的第一校正补偿系数。
PCT/CN2015/093869 2014-11-11 2015-11-05 一种射频通道的校正方法及装置 WO2016074585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410632335.5 2014-11-11
CN201410632335.5A CN105656815B (zh) 2014-11-11 2014-11-11 一种射频通道的校正方法及装置

Publications (1)

Publication Number Publication Date
WO2016074585A1 true WO2016074585A1 (zh) 2016-05-19

Family

ID=55953737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093869 WO2016074585A1 (zh) 2014-11-11 2015-11-05 一种射频通道的校正方法及装置

Country Status (2)

Country Link
CN (1) CN105656815B (zh)
WO (1) WO2016074585A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219265A1 (zh) * 2016-06-22 2017-12-28 华为技术有限公司 通道校正方法及装置
WO2018018466A1 (zh) * 2016-07-27 2018-02-01 华为技术有限公司 一种有源天线***、基站及通信***
CN106209705B (zh) * 2016-09-07 2019-06-14 江苏中兴微通信息科技有限公司 一种毫米波稀疏信道的主径估计方法及装置
CN110024304B (zh) * 2016-12-02 2021-04-09 华为技术有限公司 相位校正方法及装置
CN106788801A (zh) * 2016-12-16 2017-05-31 四川九洲电器集团有限责任公司 一种信号校准方法及电子设备
CN107395533B (zh) * 2017-06-20 2020-06-16 上海华为技术有限公司 一种通道校正方法以及校正装置
CN107911178B (zh) * 2017-11-14 2020-01-14 京信通信***(中国)有限公司 一种通道校准的方法及装置
CN110299950B (zh) * 2018-03-22 2022-05-06 中兴通讯股份有限公司 一种射频通道校正方法和装置
CN110333478B (zh) * 2018-03-30 2022-05-17 华为技术有限公司 一种到达角度、出发角度确定方法及通信装置
CN108540241B (zh) * 2018-03-30 2020-06-02 华中科技大学 一种多天线无线通信***的信道互易性校正方法
CN110661736B (zh) * 2018-06-30 2021-01-05 上海华为技术有限公司 信号处理方法及相关装置
CN111130582B (zh) * 2018-11-01 2022-02-25 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
CN111147222B (zh) * 2019-12-23 2022-07-12 中国人民解放军战略支援部队信息工程大学 面向时分双工***的互易随机源提取方法及装置
CN113949468B (zh) * 2020-07-17 2022-12-30 华为技术有限公司 发射通道的初相校正方法、基站及计算机存储介质
CN113328763B (zh) * 2021-06-03 2022-10-25 联想(北京)有限公司 一种载波功率控制方法、装置及射频拉远单元

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073823A1 (en) * 2004-10-06 2006-04-06 Mark Kent Method and system for channel estimation in a single channel MIMO system with multiple RF chains for WCDMA/HSDPA
CN102195695A (zh) * 2010-03-02 2011-09-21 电信科学技术研究院 天线校准的方法及装置
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm***中的天线阵列校准方法和装置
CN103229471A (zh) * 2012-12-17 2013-07-31 华为技术有限公司 通道校正补偿方法、基带处理单元及***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624470B (zh) * 2012-02-27 2015-04-08 清华大学 一种多通道发射机射频响应的实时校准方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073823A1 (en) * 2004-10-06 2006-04-06 Mark Kent Method and system for channel estimation in a single channel MIMO system with multiple RF chains for WCDMA/HSDPA
CN102195695A (zh) * 2010-03-02 2011-09-21 电信科学技术研究院 天线校准的方法及装置
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm***中的天线阵列校准方法和装置
CN103229471A (zh) * 2012-12-17 2013-07-31 华为技术有限公司 通道校正补偿方法、基带处理单元及***

Also Published As

Publication number Publication date
CN105656815B (zh) 2019-01-25
CN105656815A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2016074585A1 (zh) 一种射频通道的校正方法及装置
JP2022160541A (ja) Lteにおける4txコードブックエンハンスメント
CN102474836B (zh) 在应用分量载波聚合的电信***中用于传送时序对准的方法和设备
EP3484070B1 (en) Method and device for calibrating antenna array
US9825716B2 (en) Methods and apparatus for antenna calibration
EP3565134B1 (en) Antenna correction method and device
KR101532748B1 (ko) 무선통신 시스템에서 2개의 경로를 갖는 라디오 유닛들을 이용한 4-빔포밍 장치 및 방법
JP5981658B2 (ja) 通信デバイス、ベースバンドユニット、および通信方法
WO2019096010A1 (zh) 一种通道校准的方法及装置
WO2017000895A2 (zh) 通道联合校正的方法和相关装置及***
EP2755435B1 (en) Multi-access point calibration method and device
EP3110045A1 (en) Method of correcting reciprocity between ues, and device and communication system
US8923374B2 (en) Method and arrangement of delay calibration for orthogonal frequency division multiplexing (OFDM) system
US20240168153A1 (en) Techniques for intelligent reflecting surface (irs) position determination in irs aided positioning
US10236999B2 (en) Method, apparatus and computer program for antenna calibration
CN114389785A (zh) 参考信号的调整方法及装置、终端及网络侧设备
CN104378775B (zh) Rru间通道校准的方法
WO2019165842A1 (zh) 一种天线校准的方法、装置及设备
WO2017063497A1 (zh) 信号通道校正补偿方法、装置和***
WO2016074442A1 (zh) 大规模多入多出***中下行校正方法及装置
CN105207723A (zh) 通道校正方法、基站、用户设备和通信***
US10715261B2 (en) Method and apparatus for antenna array calibration using on-board receiver
WO2012100699A1 (zh) 一种天线校准的方法和***
WO2023065950A1 (zh) 一种信号传输装置以及信号传输方法
US11456909B2 (en) Joint linear delay and phase compensation for multiple antenna branches

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859441

Country of ref document: EP

Kind code of ref document: A1