WO2017000895A2 - 通道联合校正的方法和相关装置及*** - Google Patents

通道联合校正的方法和相关装置及*** Download PDF

Info

Publication number
WO2017000895A2
WO2017000895A2 PCT/CN2016/087858 CN2016087858W WO2017000895A2 WO 2017000895 A2 WO2017000895 A2 WO 2017000895A2 CN 2016087858 W CN2016087858 W CN 2016087858W WO 2017000895 A2 WO2017000895 A2 WO 2017000895A2
Authority
WO
WIPO (PCT)
Prior art keywords
rru
channels
reference signal
correction
receiving
Prior art date
Application number
PCT/CN2016/087858
Other languages
English (en)
French (fr)
Other versions
WO2017000895A3 (zh
Inventor
陈卫民
温立
李铮铮
官鹭
张怀治
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES16817259T priority Critical patent/ES2769069T3/es
Priority to EP16817259.1A priority patent/EP3301832B1/en
Publication of WO2017000895A2 publication Critical patent/WO2017000895A2/zh
Publication of WO2017000895A3 publication Critical patent/WO2017000895A3/zh
Priority to US15/858,983 priority patent/US10320464B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and related apparatus for channel joint correction and related systems.
  • the inter-cell small base station spacing is generally small (within 30 m). If each small base station is configured as an independent cell in one area, the inter-cell interference is severe. Although the single-frequency network mode can eliminate interference between independent cells, the spectrum utilization is low.
  • Multi-User Beamforming is a means of improving spectrum utilization and is difficult to apply due to existing product constraints. This is because, due to volume reasons, existing single small base stations generally have only two transmitting antennas, and the space freedom is limited, and it is difficult to find a suitable multi-user weight. It is found that combining multiple small base stations for transmission can increase the number of transmitting antennas and increase the spatial freedom, so as to find multiple orthogonal weights, which can realize multi-user spatial multiplexing and improve spectrum utilization.
  • Each radio channel in a remote radio unit (RRU) used by a base station is composed of independent hardware. This causes different uplink and downlink channel responses of each radio channel to affect the downlink beamforming. performance. Therefore, it is necessary to correct the uplink and downlink channels of each RF channel by means of channel correction, so that the ratio of the uplink and downlink channel responses of the RF channels in the RRU is the same, so as to ensure the accuracy of the downlink beamforming as much as possible.
  • the inventors of the present invention have found through research and practice that although there are some methods for multi-RRU channel correction, in the existing channel correction method between multiple RRUs, it usually takes two steps to complete, firstly, the first step is to A dedicated correction reference channel in each RRU completes the channel self-correction within each RRU and then performs channel correction between the RRUs.
  • This existing channel correction mechanism allows for RRUs without correction reference channels (ie, no channel self) Correction function RRU), channel correction between multiple RRUs cannot be completed.
  • Embodiments of the present invention provide a method and related device and system for channel joint correction, so as to make no pass Channel correction is implemented between the RRUs of the channel self-correction function.
  • a first aspect of the embodiments of the present invention provides a channel joint correction method, including:
  • X1 is an integer greater than one.
  • X2 is an integer greater than one.
  • the X1 may be equal to 7, 17, 2, 3, 4, 5, 6, 8, 12, 16, 19, 32, 50 or other values.
  • the X2 can be equal to 9, 11, 2, 3, 4, 5, 6, 8, 12, 15, 21, 30, 50 or other values.
  • one service channel includes one transmission channel and one reception channel, and one service channel includes one transmission channel and one reception channel share the same antenna.
  • the service channel is a channel that can be used for sending and receiving service signals. Different service channels can correspond to different antennas.
  • the X1 service channels may be part or all of the service channels of the first RRU.
  • the X2 service channels may be part or all of the service channels of the second RRU.
  • the first RRU and/or the second RRU do not have a self-correcting function.
  • the first RRU and the first RRU may be, for example, RRUs of the same or different small base stations.
  • the correction compensation coefficient can be used to compensate for the inconsistency of the channel response between the receiving channel and the transmitting channel of the service channel.
  • the channel joint correction device is directed to the first RRU Sending a first channel joint correction command, triggering the first RRU to send a first correction reference signal through X1 transmission channels in the X1 service channels of the first RRU; and sending a second channel joint correction instruction to the second RRU, triggering the The second RRU sends the second corrected reference signal through the X2 transmit channels of the X2 service channels of the second RRU.
  • the channel joint correction device uses the traffic channels of the first RRU and the second RRU to send and receive the correction reference signal, and the service channel of the first RRU is calculated based on the corrected reference signal transmitted and received by the traffic channel of the first RRU and the second RRU.
  • the correction compensation coefficient of the service channel of the second RRU by means of the multi-RRU channel joint correction mechanism described above, even if the first RRU and the second RRU do not have a channel correction reference channel (ie, the channel self-correction function is not provided), the first Channel correction between the RRU and the second RRU. It can be seen that some technical solutions provided by the embodiments of the present application have stronger channel correction universality.
  • each step of the channel joint correction method can be performed by at least two devices in cooperation.
  • the first channel joint correction command may be sent to the first RRU by, for example, a switching device or a baseband unit BBU or a remote management device.
  • the second channel joint correction command can be sent to the second RRU by, for example, a switching device or a BBU or a remote management device.
  • the receiving result of the X2 receiving channels of the X2 service channels sent by the second RRU for the first corrected reference signal may be received by the switching device or the BBU or the remote management device.
  • the receiving result of the X1 receiving channels of the X1 service channels sent by the first RRU for the second corrected reference signal may be received by the switching device or the BBU or the remote management device.
  • the switching device or the BBU or the remote management device calculates a correction compensation coefficient of the X1 service channels and/or the X2 service channels.
  • the execution body of the related steps of the channel joint correction can be more flexible, which is advantageous for expanding the application scenario and application range of the channel correction, and is advantageous for improving the limitation of the channel due to limited processing performance of some components. Corrected condition.
  • a second aspect of the embodiments of the present invention further provides a channel joint correction device, wherein the channel joint correction
  • the device can be used to perform any channel joint correction method provided by the embodiments of the present invention.
  • the channel joint correction device may include:
  • a sending unit configured to send a first channel joint correction command to the first RRU, where the first channel joint correction command is used to trigger the first RRU to send the X1 transmit channels in the X1 service channels of the first RRU.
  • a correction reference signal ;
  • the sending unit is further configured to send a second channel joint correction instruction to the second RRU, where the second channel joint correction instruction is used to trigger the second RRU to pass the X2 in the X2 service channels of the second RRU. Transmitting channels transmit a second corrected reference signal;
  • a receiving unit configured to receive a receiving result of the X2 receiving channels of the X2 service channels sent by the second RRU for the first corrected reference signal; and receive the X1 services sent by the first RRU X1 receiving channels in the channel are for receiving results of the second corrected reference signal;
  • a processing unit configured to: according to the first correction reference signal, the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels And correcting the correction result of the X1 service channels and/or the X2 service channels, where X1 and X2 are integers greater than 1.
  • a third aspect of the embodiments of the present invention further provides a communication system, including: a remote management device, a first remote radio unit RRU, and a second RRU.
  • the entity in the communication system can cooperate with the channel joint correction method provided by the embodiment of the present invention.
  • the remote management device is configured to send a first channel joint correction command to the first RRU, where the first channel joint correction command is used to trigger the first RRU to pass through the X1 transmit channels in the X1 service channels of the first RRU. Transmitting a first correction reference signal; and transmitting, to the second RRU, a second channel joint correction instruction, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU And transmitting, by the X2 transmitting channels, a second correction reference signal; receiving, by the X2 serving channels of the X2 service channels, the receiving result of the first corrected reference signal; receiving the first RRU sending The X1 receiving channels of the X1 service channels are for the receiving result of the second corrected reference signal; according to the first corrected reference signal, the X2 receiving channels are received for the first corrected reference signal a result, the second corrected reference signal, and the reception result of the X1 receiving channels for the second corrected reference signal,
  • the base station mentioned in the embodiments of the present application may be, for example, an indoor small base station or another type of base station.
  • a fourth aspect of the embodiments of the present invention further provides a base station, including: a switching device and a first remote radio unit RRU.
  • the entity in the base station can cooperate with the channel joint correction method provided by the embodiment of the present invention.
  • the switching device is configured to send a first channel joint correction instruction to the first RRU, where the first channel joint correction command is used to trigger the first RRU to transmit through X1 of the X1 service channels of the first RRU.
  • the channel sends a first correction reference signal, and sends a second channel joint correction instruction to the second RRU, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU
  • a fifth aspect of the embodiments of the present invention further provides a base station, including: a baseband unit and a first remote radio unit RRU.
  • the entity in the base station can cooperate with the channel joint correction method provided by the embodiment of the present invention.
  • the baseband unit is configured to send a first channel joint correction instruction to the first RRU, where the first channel joint correction command is used to trigger the first RRU to transmit through X1 of the X1 service channels of the first RRU.
  • the channel sends a first correction reference signal, and sends a second channel joint correction instruction to the second RRU, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU
  • the X2 transmit channels send the second corrected reference signal; and receive the X2 receive channels of the X2 service channels sent by the second RRU for the first corrected reference signal a receiving result of the number; receiving a receiving result of the X1 receiving channels of the X1 service channels sent by the first RRU for the second corrected reference signal; according to the first corrected reference signal, the X2 Receiving, by the receiving channel, the X1 service channels and/or the reception result of the first correction reference signal, the second correction reference signal, and the reception result of the X1 receiving channels for the second
  • a sixth aspect of the embodiments of the present invention further provides a base station, including: a switching device, a baseband unit, and a first RRU.
  • the entity in the base station can cooperate with the channel joint correction method provided by the embodiment of the present invention.
  • the switching device is configured to send a first channel joint correction instruction to the first RRU, where the first channel joint correction command is used to trigger the first RRU to transmit through X1 of the X1 service channels of the first RRU.
  • the channel sends a first correction reference signal, and sends a second channel joint correction instruction to the second RRU, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU
  • the baseband unit is configured to: according to the first correction reference signal, the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels Calculating a correction compensation coefficient of the X1 service channels and/or the X2 service channels, where the X1 and the X2 are integers greater than 1.
  • a seventh aspect of the embodiments of the present invention further provides a channel joint correction apparatus, which may include: a transceiver and a processor.
  • a transceiver configured to send a first channel joint correction command to the first RRU, where the first channel joint correction command is used to trigger the first RRU to send through the X1 transmit channels in the X1 service channels of the first RRU.
  • a correction reference signal ;
  • the transceiver is further configured to send a second channel joint correction instruction to the second RRU, where the second pass
  • the channel joint correction command is configured to trigger the second RRU to send the second correction reference signal by using the X2 transmit channels of the X2 service channels of the second RRU;
  • the transceiver is further configured to receive a receiving result of the X2 receiving channels of the X2 service channels sent by the second RRU for the first corrected reference signal, and receive the first RRU sending X1 receiving channels of the X1 service channels are for receiving results of the second corrected reference signal;
  • a processor configured to: according to the first correction reference signal, the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels And correcting the correction result of the X1 service channels and/or the X2 service channels, where X1 and X2 are integers greater than 1.
  • the channel joint correction device may be, for example, a baseband unit, a remote management device, or a switching device in a base station.
  • the first RRU and the second RRU are RRUs that provide services for the same UE. It can be understood that the RRU that provides services for the same UE is divided into one RRU cluster. If the RRUs in the same RRU cluster are corrected, that is, the number of RRUs that are mutually corrected by moderate restrictions is beneficial to a certain extent. Reduce the correction complexity.
  • the first channel joint correction instruction further indicates that the X1 transmit channels of the X1 service channels of the first RRU send the time resource of the first corrected reference signal and/or Or the frequency resource
  • the second channel joint correction instruction further indicating that the X2 receiving channels of the X2 service channels of the second RRU receive the time resource and/or the frequency resource of the first corrected reference signal.
  • the second channel joint correction instruction further indicates that the X2 transmit channels of the X2 service channels of the second RRU send the time resource of the second corrected reference signal and/or Or the frequency resource, the first channel joint correction instruction further indicating that the X1 receiving channels of the X1 service channels of the first RRU receive time resources and/or frequency resources of the second corrected reference signal.
  • channel joint correction command is used to explicitly indicate the time resource of the transmission and correction reference signal, this is beneficial to improve the time synergy of the signal transmission and reception, and is beneficial to avoid the receiver being invalid. Time resources also receive signals.
  • channel joint correction command is used to explicitly indicate the frequency resource of the transmission and correction reference signal, which is beneficial to improve the frequency resource synergy of the signal transmission and reception dual-issue, and is beneficial to avoid the receiver receiving the signal in the invalid frequency resource.
  • the first channel joint correction command carries a first correction reference signal.
  • the second channel joint correction command carries a second correction reference signal.
  • the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels Calculating, by the receiving result of the second corrected reference signal, a correction compensation coefficient of the X1 service channels and/or the X2 service channels, including: receiving, according to the first correction reference signal and the X2 And calculating, by the channel, a channel response estimated value between the X1 transmit channels and the X2 receive channels, according to the received result of the first corrected reference signal; according to the second corrected reference signal and the X1 Receiving, by the receiving channel, a channel response estimation value from the X2 transmitting channels and the X1 receiving channels, according to the receiving result of the second corrected reference signal; according to the X1 transmitting channels and the X2 The estimated channel response between the receiving channels and the estimated channel response from the X2 transmitting channels and the X1 receiving channels, and the X1 service channels are calculated.
  • Correction compensation coefficient for the track including: receiving, according to the first correction reference signal and the X2
  • the channel response estimate is represented by the following formula:
  • Channel channel estimation value indicating a receiving channel in the kth service channel of the i-th RRU
  • Calculating the correction compensation coefficient of the X1 service channels and/or the X2 service channels which may include: according to the following formula, according to the X1 transmission channels and the X2 receiving channels Inter-channel channel estimation estimates and channel response estimates from the X2 transmit channels and the X1 receive channels, and the corrected compensation coefficients of the X2 service channels are calculated;
  • the method further includes: calculating, by using the following formula, a correction compensation coefficient of the X1 service channels;
  • an embodiment of the present invention further provides a computer readable storage medium storing program code for performing a channel joint correction method.
  • the program code includes instructions for performing a channel joint correction method.
  • FIG. 1 is a schematic diagram of a network architecture of a base station and a remote management device according to an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram of two architectures of a base station according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a channel joint correction method according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of another channel joint correction method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another channel joint correction method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a channel joint correction apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another channel joint correction apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of an RRU according to an embodiment of the present invention.
  • Embodiments of the present invention provide a channel joint correction method and related apparatus, which can implement channel correction between RRUs without channel self-correction function.
  • FIG. 1-a to FIG. 1-c are schematic diagrams of several architectures of a base station according to an embodiment of the present invention.
  • the base station includes a baseband unit (BBU) and a plurality of RRUs.
  • the BBU and the RRU are interconnected by a switching device (for example, a hub (rHub).
  • the switching device in the embodiment of the present invention is a switching device for connecting the BBU and the RRU.
  • the RRU in the indoor small base station is also It can be called a pico Remote Radio Unit (PRRU).
  • PRRU pico Remote Radio Unit
  • the base station may also be connected to a remote management device, and the remote management device may also participate (dominant or assist) the multi-RRU channel joint correction process, remote management.
  • the device may be a network management server, a cloud computing center, or other device that can remotely manage the base station.
  • the technical solution of the embodiment of the present invention may be specifically implemented based on the architecture illustrated in the foregoing FIG. 1-a to FIG. 1-c or its variant architecture.
  • This single execution entity may be a switching device (e.g., rHub), a baseband unit (BBU), or a remote management device, etc., collectively referred to herein as a channel joint correction device.
  • a switching device e.g., rHub
  • BBU baseband unit
  • remote management device e.g., a remote management device
  • a multi-RRU channel joint correction method provided by an embodiment of the present invention may include:
  • the channel joint correction device sends a first channel joint correction instruction to the first RRU.
  • the first channel joint correction command is used to trigger the first RRU to send the first correction reference signal through the X1 transmit channels of the X1 service channels of the first RRU.
  • the first RRU is an RRU that does not have a self-correcting function.
  • the channel joint correction device sends a second channel joint correction instruction to the second RRU.
  • the second channel joint correction command is used to trigger the second RRU to send a second correction reference signal through X2 transmit channels in the X2 service channels of the second RRU.
  • the second RRU is an RRU that does not have a self-correcting function.
  • one service channel includes one transmission channel and one reception channel, and one service channel includes one transmission channel and one reception channel share the same antenna.
  • the service channel is a channel that can be used for sending and receiving service signals. Different service channels can correspond to different antennas.
  • the first RRU and the second RRU may belong to the same base station, and may belong to different base stations.
  • the first RRU and the second RRU are served by the same UE, that is, channel joint correction may be performed for the RRUs that are served for the same UE.
  • the channel joint correcting apparatus receives a receiving result of the X2 receiving channels of the X2 service channels sent by the second RRU for the first corrected reference signal.
  • the channel joint correcting apparatus receives a receiving result of the X1 receiving channels of the X1 service channels sent by the first RRU for the second corrected reference signal.
  • the channel joint correction device is configured according to the first correction reference signal, the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels.
  • the result of receiving the second corrected reference signal calculates a correction compensation coefficient of the X1 service channels and/or the X2 service channels.
  • the correction compensation coefficient of the X1 service channels can be used to perform correction compensation on signals sent and received by the X1 service channels.
  • the correction compensation coefficients of the X2 service channels can be used to perform correction compensation on signals sent and received by the X2 service channels.
  • X1 is an integer greater than one.
  • X2 is an integer greater than one.
  • the X1 may be equal to 7, 17, 2, 3, 4, 5, 6, 8, 12, 16, 19, 32, 50 or other values.
  • the X2 can be equal to 9, 11, 2, 3, 4, 5, 6, 8, 12, 15, 21, 30, 50 or other values.
  • the X1 service channels may be part or all of the service channels of the first RRU.
  • the X2 service channels may be part or all of the service channels of the second RRU.
  • steps S201 to S205 are mainly performed by the same device in steps S201 to S205.
  • steps 201-205 can all be performed by a switching device (for example, rHub), a baseband unit (BBU), or a remote management device.
  • steps 201-204 may be performed by a switching device (for example, rHub), and step 205 may be performed by a baseband unit BBU or a remote management device.
  • the manner in which multiple devices are cooperatively executed is not limited to the above examples.
  • the execution body of the relevant steps of the channel joint correction can be compared In order to be flexible and changeable, this is advantageous for extending the application scenario and application range of the channel correction, and is advantageous for improving the channel correction due to limited processing performance of some components.
  • the switching device mentioned in the embodiments of the present application is a device in the base station for exchanging data between the BBU and the RRU, and may be, for example, a hub (rHub) or the like.
  • the remote management device mentioned in the embodiments of the present application is connected to the base station through a network, and the remote management device can be used for remotely managing the device.
  • the remote management device can be, for example, a network management server, a cloud computing center, or other remotely manageable base station. device of.
  • the first channel joint correction command carries the first correction reference signal. That is to say, for example, the first correction reference signal can be transmitted to the first RRU through the first channel joint correction command, and of course the first correction reference signal can also be transmitted to the first RRU or the first RRU by other instructions.
  • the first corrected reference signal can be pre-stored.
  • the second channel joint correction command carries the second correction reference signal. That is to say, the second correction reference signal can be transmitted to the second RRU, for example, through the second channel joint correction command, of course, the second correction reference signal can also be transmitted to the second RRU or the second RRU by other instructions.
  • the second correction reference signal can be pre-stored.
  • first correction reference signal may not be carried in the first channel joint correction command, but may be transmitted independently of the first channel joint correction command.
  • the second correction reference signal may also not be carried in the second channel joint correction command, but may be transmitted independently of the second channel joint correction command.
  • the first channel joint correction instruction may further carry the identifier of the first RRU.
  • the identifier of the first RRU may include, for example, a first RRU number and a cell number, that is, may be identified by, for example, a corresponding cell number+RRU number.
  • the first channel joint correction command may further carry the number of the antenna corresponding to the X1 service channels. That is, the antenna corresponding to the X1 service channels may be carried by the first channel joint correction command. A number indicating to receive/receive the correction reference signal by the X1 service channels of the first RRU.
  • the second channel joint correction instruction may further carry the identifier of the second RRU.
  • the identifier of the second RRU may include, for example, a second RRU number and a cell number, that is, may be identified by, for example, a corresponding cell number+RRU number.
  • the second channel joint correction command may also carry the number of the antenna corresponding to the X2 service channels, that is, may be carried by the joint correction command in the second channel.
  • the number of the antenna corresponding to the X2 service channels is used to indicate that the X2 service channels of the second RRU are used for receiving/transmitting the correction reference signal.
  • the value range of the cell number may be, for example, 0 to 503.
  • the value range of the RRU number can be, for example, 0 to 95.
  • the first channel joint correction instruction further indicates that the X1 transmit channels of the X1 service channels of the first RRU send time resources and/or frequency resources of the first corrected reference signal
  • the second channel joint correction instruction further indicates that X2 receiving channels of the X2 service channels of the second RRU receive time resources and/or frequency resources of the first corrected reference signal. That is, the first channel joint correction command and the second channel joint correction command may dynamically appoint the first RRU and the second RRU to send and receive time resources and/or frequency resources of the first correction reference signal, such that Advantageously, the first RRU and the second RRU are accurately matched to the time resource and/or frequency resource of the first corrected reference signal.
  • the first RRU and the second RRU may also send and receive the first corrected reference signal according to the default time resource and/or frequency resource. In this case, the channel joint correction command is not needed to stipulate the two parties.
  • the second channel joint correction instruction further indicates that the X2 transmit channels of the X2 service channels of the second RRU send time resources and/or frequency resources of the second corrected reference signal
  • the first channel joint correction instruction further indicates that X1 receiving channels of the X1 service channels of the first RRU receive time resources and/or frequency resources of the second corrected reference signal. That is, the first channel joint correction command and the second channel joint correction command may dynamically appoint time resources and/or frequency resources of the first RRU and the second RRU to send and receive the second correction reference signal, such that Advantageously, the first RRU and the second RRU are accurately matched to the time resource and/or frequency resource of the first corrected reference signal.
  • the first RRU and the second RRU may also send and receive the first corrected reference signal according to the default time resource and/or frequency resource. In this case, the channel joint correction command is not needed to stipulate the two parties.
  • the time resource of the receive/transmit correction reference signal may be jointly determined by, for example, a radio frame number, a subframe number, and a transmission symbol number.
  • the time resource of the received/received reference signal can be indicated by carrying the radio frame number, the subframe number, and the transmission symbol number in the channel joint correction command.
  • the range of the wireless frame number can be, for example, 0 to 1023.
  • Subframe The value range of the number may be, for example, 0 to 9, and the value range of the transmission symbol number may be, for example, 0 to 13.
  • the range of values of the radio frame number, sub-frame number, and transmission symbol number may be different. The above range is only an example.
  • the frequency resource of the received/transmitted correction reference signal (such as the first corrected reference signal or the second corrected reference signal, etc.) may be determined by, for example, a subcarrier number or a resource block number. That is to say, for example, the frequency resource of the received/received reference signal can be indicated by carrying the subcarrier number or the resource block number in the channel joint correction command.
  • the channel joint correction command is used to explicitly indicate the time resource for transmitting and receiving the correction reference signal, this is advantageous for improving the time synergy of the signal transmission and reception dual-issue, and is beneficial for avoiding the receiver receiving the signal in the invalid time resource.
  • the first corrected reference signal mentioned in the embodiments of the present application may be a known reference signal sequence or a reference signal sequence obtained based on a preset rule.
  • the second corrected reference signal mentioned in the embodiments of the present application may be a known reference signal sequence or a reference signal sequence obtained based on a preset rule.
  • the first correction reference signal and the second correction reference signal may be the same or different.
  • the first RRU and the second RRU may be RRUs serving the same UE. That is to say, channel correction can be performed between RRUs serving the same UE, and channel correction can be performed between RRUs serving different UEs, that is, mutually independent channel corrections can be performed between RRUs serving different UEs.
  • the RRUs served by the same UE may be classified into the same RRU cluster, and the channel correction may be performed between the RRUs in the RRU cluster, and the channel correction may be performed independently between the different RRU clusters.
  • the manner of dividing the RRU clusters may not be limited to the UE granularity, and may also be clustered by referring to other parameters.
  • a plurality of RRUs adjacent to each other may be divided into the same RRU cluster, or may be adjacent to each other.
  • An RRU that has a signal to noise ratio greater than a threshold value of a reference RRU eg, the 0th RRU
  • a threshold value of a reference RRU eg, the 0th RRU
  • the channel joint correction device sends a first channel joint correction command to the first RRU, and triggers the first RRU to send the first one of the X1 service channels in the X1 service channels of the first RRU. a correction reference signal; sending a second channel joint correction command to the second RRU, triggering the second RRU to send the second correction reference signal through the X2 transmission channels of the X2 service channels of the second RRU.
  • the channel joint correction device uses the traffic channels of the first RRU and the second RRU to send and receive the correction reference signal, and the service channel of the first RRU is calculated based on the corrected reference signal transmitted and received by the traffic channel of the first RRU and the second RRU.
  • the correction compensation coefficient of the service channel of the second RRU by means of the multi-RRU channel joint correction mechanism described above, even if the first RRU and the second RRU do not have a channel correction reference channel (ie, the channel self-correction function is not provided), the first Channel correction between the RRU and the second RRU.
  • the technical solution of the embodiment can solve the problem of channel joint correction of the indoor RRU for the indoor small base station scenario, and the channel joint correction can increase the antenna dimension of the joint transmission, increase the number of reuse users, and improve the spectrum efficiency.
  • FIG. 3 is a schematic flowchart diagram of a channel joint correction method according to another embodiment of the present invention.
  • the channel joint correction method shown in FIG. 3 can be implemented in a base station of the architecture shown in the example of 1-a.
  • the main X1 and X2 are both equal to 2, and the case where X1 and X2 are equal to other values may be deduced.
  • a channel joint correction method provided by another embodiment of the present invention may include:
  • a switching device (such as rHub) sends a first channel joint correction command to the first RRU.
  • the first channel joint correction command is used to trigger the first RRU to send the first calibration reference signal by using two of the two service channels of the first RRU.
  • the first RRU is an RRU that does not have a self-correcting function.
  • the first RRU receives the first channel joint correction command.
  • the first channel joint correction command may carry the first correction reference signal.
  • the first channel joint correction instruction may further carry the identifier of the first RRU (the identifier of the first RRU may include, for example, a cell number, that is, the first RRU may be identified by, for example, a corresponding cell number+RRU number.
  • the first channel joint correction command may also carry the number of the antenna corresponding to the two service channels of the first RRU. That is, the number of the antenna corresponding to the two service channels of the first RRU may be carried by the first channel joint correction command. To indicate that the reception/reception of the correction reference signal is performed by the two service channels of the first RRU.
  • the first channel joint correction instruction further indicates that two of the two service channels of the first RRU send time resources and/or frequency resources of the first corrected reference signal.
  • the first correction reference signal may also not be carried in the first channel joint correction command, but may be transmitted to the first RRU independently of the first channel joint correction command.
  • the switching device sends a second channel joint correction instruction to the second RRU.
  • the second channel joint correction command is used to trigger the second RRU to send the second calibration reference signal by using two of the two service channels of the second RRU.
  • the second RRU is an RRU that does not have a self-correcting function.
  • the second RRU receives the second channel joint correction command.
  • the second channel joint correction command may carry the second correction reference signal.
  • the second correction reference signal may not be carried in the second channel joint correction command, but may be transmitted to the second RRU independently of the second channel joint correction command.
  • the second channel joint correction instruction may further carry the identifier of the second RRU.
  • the identifier of the second RRU may include, for example, a second RRU number and a corresponding cell number, that is, for example, may be identified by a corresponding cell number+RRU number.
  • the first channel joint correction command may also carry the number of the antenna corresponding to the two service channels of the first RRU. That is, the two services of the second RRU may be carried by the joint correction command in the second channel.
  • the number of the antenna corresponding to the channel indicates that the two reference service channels of the first RRU are used for receiving/transmitting the corrected reference signal.
  • the second channel joint correction instruction further indicates that two of the two service channels of the second RRU send time resources and/or frequency resources of the second correction reference signal.
  • the second channel joint correction instruction further indicates that two of the two service channels of the second RRU receive time resources and/or frequency resources of the first corrected reference signal.
  • the first channel joint correction command also indicates the Two of the two service channels of the first RRU receive time resources and/or frequency resources of the second corrected reference signal.
  • the two channels of the two service channels of the first RRU indicated by the first channel joint correction instruction receive the time resource and/or the frequency resource of the second correction reference signal, and are jointly corrected by the second channel.
  • the two transmission channels of the two service channels of the second RRU indicated by the instruction transmit time resources and/or frequency resources of the second correction reference signal.
  • the two channel of the two service channels of the first RRU indicated by the first channel joint correction instruction sends the time resource and/or the frequency resource of the first correction reference signal, which is the same as the second channel joint correction.
  • the two receiving channels of the two service channels of the second RRU indicated by the instruction receive time resources and/or frequency resources of the first corrected reference signal.
  • the second channel of the second RRU of the second RRU indicated by the second channel joint correction instruction sends a time resource of the second correction reference signal, for example, may be indicated by the joint correction instruction with the first channel.
  • the 2 receiving channels of the 2 service channels of the first RRU have an intersection between time resources receiving the second corrected reference signal.
  • the second channel of the second RRU of the second RRU indicated by the second channel joint correction instruction receives the time resource of the first correction reference signal, for example, may be indicated by the first channel joint correction instruction.
  • the two of the two service channels of the first RRU have an intersection between time resources for transmitting the first correction reference signal.
  • the first RRU sends a first calibration reference signal by using two of the two service channels of the first RRU according to the indication of the first channel joint correction instruction.
  • the second RRU sends, to the switching device, the receiving result of the two receiving channels of the second RRU for the first corrected reference signal.
  • the switching device forwards the reception result of the two receiving channels of the second RRU to the first corrected reference signal to the BBU.
  • the second RRU sends a second calibration reference signal by using two of the two service channels of the second RRU according to the indication of the second channel joint correction instruction.
  • the first RRU sends, to the switching device, the receiving result of the second receiving channel of the first RRU for the second corrected reference signal.
  • the switching device forwards the reception result of the two receiving channels of the first RRU to the second corrected reference signal to the BBU.
  • the BBU forwards the second correction reference signal and the receiving result of the two receiving channels of the first RRU for the second calibration reference signal to the remote management device.
  • the BBU forwards the first correction reference signal and the reception result of the two reception channels of the second RRU for the first correction reference signal to the remote management device.
  • the remote management device receives, according to the first correction reference signal, the two receiving channels of the second RRU, the received result of the first corrected reference signal, the second corrected reference signal, and two receiving channels of the first RRU. And calculating, by the receiving result of the second corrected reference signal, a correction compensation coefficient of two service channels of the first RRU and two service channels of the second RRU.
  • the remote management device can feed back the calculated correction compensation coefficients of the two service channels of the first RRU and the two service channels of the second RRU to the BBU, and the BBU can correct the two service channels of the first RRU.
  • the compensation coefficient is fed back to the first RRU, and the BBU can feed back the correction compensation coefficients of the two service channels of the second RRU to the second RRU.
  • the correction compensation coefficient is used to compensate for the inconsistency of the channel response between the receiving channel and the transmitting channel of the service channel.
  • the correction compensation coefficients of the two service channels of the first RRU may be used to perform phase compensation and/or amplitude compensation on signals received/transmitted by the two service channels of the first RRU.
  • the correction compensation coefficients of the two service channels of the second RRU may be used for phase compensation and/or amplitude compensation of signals received/transmitted by the two service channels of the second RRU.
  • the first calibration reference signal sent by the two of the two service channels of the first RRU may be in a frequency division, a code division, or a time division manner. Make a distinction.
  • the second calibration reference signal sent by the two of the two service channels of the second RRU may be in a frequency division, a code division, or a time division manner. Make a distinction.
  • the remote management device may refer to the reception result of the first correction reference signal, the first correction reference signal, the second correction reference signal, and the two receiving channels of the second RRU according to the example manner in the foregoing embodiment.
  • the two receiving channels of the first RRU calculate the correction compensation coefficients of the two service channels of the first RRU and the two service channels of the second RRU for the receiving result of the second corrected reference signal.
  • the channel joint correction is performed by using the two RRUs of the first RRU and the second RRU as an example.
  • the scenario can be deduced.
  • the base station further includes the RRU 2 , and the channel joint correction may also be performed between the first RRU and the RRU 2 in a similar manner to the channel joint correction with the first RRU and the second RRU.
  • the first RRU can perform channel joint correction in synchronization with multiple RRUs.
  • multiple RRUs can also perform channel joint correction in a serial manner.
  • channel joint correction mode refer to the above examples, which are not described herein.
  • the switching device (rHub) of the base station sends a first channel joint correction command to the first RRU, and triggers the first RRU to pass through two of the two service channels of the first RRU. Transmitting a first correction reference signal; the switching device sends a second channel joint correction command to the second RRU, and triggering the second RRU to send a second correction reference signal by using two of the two service channels of the second RRU.
  • the remote management device is configured according to the first correction reference signal, the receiving result of the receiving channel of the second RRU for the first corrected reference signal, the second corrected reference signal, and the receiving channel of the first RRU for the second corrected reference signal As a result of the reception, the correction compensation coefficients of the two service channels of the first RRU and the two service channels of the second RRU are calculated.
  • the service channel of the first RRU and the second RRU is used to send and receive the correction reference signal, and the two service channels of the first RRU are calculated based on the correction reference signals sent and received by the service channel of the first RRU and the second RRU.
  • the correction compensation coefficient of the two service channels of the second RRU by means of the multi-RRU channel joint correction mechanism, even if the first RRU and the second RRU do not have a channel correction reference channel (ie, does not have a channel self-correction function), It is beneficial to achieve channel correction between multiple RRUs.
  • the technical solution of the embodiment can solve the problem of channel joint correction of the indoor RRU for the indoor small base station scenario, and the channel joint correction can increase the antenna dimension of the joint transmission, increase the number of reuse users, and improve the spectrum efficiency.
  • the switching device and the like assist in controlling the joint correction of the execution channel, so that it is not necessary to add another correction auxiliary unit, and the feasibility is high. Since it can be beneficial to realize channel joint correction between RRUs without self-correction function, the cost of the self-correction channel and the required space can be saved, which is advantageous for further reducing product size and improving product competitiveness.
  • the correction compensation coefficient is calculated by the remote management device as an example.
  • the correction compensation coefficient can be directly calculated by the BBU, and if the correction is calculated by the BBU. With the compensation factor, the remote management device becomes unnecessary, and the steps associated with interacting with the remote management device become unnecessary.
  • X1 and X2 are both equal to 2, and the case where X1 and X2 are equal to other values may be deduced.
  • FIG. 4 is a schematic flowchart diagram of a channel joint calibration method according to another embodiment of the present invention.
  • the channel joint correction method shown in FIG. 4 can be embodied in a base station of the architecture shown in the 1-c example.
  • the main X1 and X2 are both equal to 2, and the case where X1 and X2 are equal to other values may be deduced.
  • a channel joint correction method provided by an embodiment of the present invention may include:
  • the BBU sends a first channel joint correction instruction to the first RRU.
  • the first channel joint correction command is used to trigger the first RRU to send the first calibration reference signal by using two of the two service channels of the first RRU.
  • the first RRU is an RRU that does not have a self-correcting function.
  • the first RRU receives the first channel joint correction command.
  • the first channel joint correction command may carry the first correction reference signal.
  • the first correction reference signal may also not be carried in the first channel joint correction command, but may be transmitted to the first RRU independently of the first channel joint correction command.
  • the first channel joint correction instruction may further carry the identifier of the first RRU (the identifier of the first RRU may include, for example, a cell number, that is, the first RRU may be identified by, for example, a corresponding cell number+RRU number.
  • the first channel joint correction command may also carry the number of the antenna corresponding to the two service channels of the first RRU. That is, the number of the antenna corresponding to the two service channels of the first RRU may be carried by the first channel joint correction command. To indicate that the reception/reception of the correction reference signal is performed by the two service channels of the first RRU.
  • the first channel joint correction instruction further indicates that two of the two service channels of the first RRU send time resources and/or frequency resources of the first corrected reference signal.
  • the BBU sends a second channel joint correction instruction to the second RRU.
  • the second channel joint correction command is used to trigger the second RRU to send the second calibration reference signal by using two of the two service channels of the second RRU.
  • the second RRU is not RRU with calibration function.
  • the second RRU receives the second channel joint correction command.
  • the second channel joint correction command may carry the second correction reference signal.
  • the second correction reference signal may also not be carried in the first channel joint correction command, but may be transmitted to the second RRU independently of the second channel joint correction command.
  • the second channel joint correction instruction may further carry the identifier of the second RRU.
  • the identifier of the second RRU may include, for example, a second RRU number and a corresponding cell number, that is, for example, may be identified by a corresponding cell number+RRU number.
  • the first channel joint correction command may also carry the number of the antenna corresponding to the two service channels of the first RRU. That is, the two services of the second RRU may be carried by the joint correction command in the second channel.
  • the number of the antenna corresponding to the channel indicates that the two reference service channels of the first RRU are used for receiving/transmitting the corrected reference signal.
  • the second channel joint correction instruction further indicates that two of the two service channels of the second RRU send time resources and/or frequency resources of the second correction reference signal.
  • the second channel joint correction instruction further indicates that two of the two service channels of the second RRU receive time resources and/or frequency resources of the first corrected reference signal.
  • the first channel joint correction command further indicates that two of the two service channels of the first RRU receive time resources and/or frequency resources of the second corrected reference signal.
  • the two channels of the two service channels of the first RRU indicated by the first channel joint correction instruction receive the time resource and/or the frequency resource of the second correction reference signal, and are jointly corrected by the second channel.
  • the two transmission channels of the two service channels of the second RRU indicated by the instruction transmit time resources and/or frequency resources of the second correction reference signal.
  • the two channel of the two service channels of the first RRU indicated by the first channel joint correction instruction sends the time resource and/or the frequency resource of the first correction reference signal, which is the same as the second channel joint correction.
  • the two receiving channels of the two service channels of the second RRU indicated by the instruction receive time resources and/or frequency resources of the first corrected reference signal.
  • the second channel of the second RRU of the second RRU indicated by the second channel joint correction instruction sends a time resource of the second correction reference signal, for example, may be indicated by the joint correction instruction with the first channel.
  • 2 of the 2 service channels of the first RRU receive the second There is an intersection between the time resources of the corrected reference signal.
  • the second channel of the second RRU of the second RRU indicated by the second channel joint correction instruction receives the time resource of the first correction reference signal, for example, may be indicated by the first channel joint correction instruction.
  • the two of the two service channels of the first RRU have an intersection between time resources for transmitting the first correction reference signal.
  • the first RRU sends a first calibration reference signal by using two of the two service channels of the first RRU according to the indication of the first channel joint correction instruction.
  • the second RRU sends, to the BBU, the receiving result of the first receiving reference signal of the two receiving channels of the second RRU.
  • the second RRU sends a second calibration reference signal by using two of the two service channels of the second RRU according to the indication of the second channel joint correction instruction.
  • the first RRU sends, to the BBU, the reception result of the second receiving channel of the first RRU for the second corrected reference signal.
  • the BBU is configured according to the first correction reference signal, the two receiving channels of the second RRU, the received result of the first corrected reference signal, the second corrected reference signal, and the two receiving channels of the first RRU.
  • the result of receiving the second corrected reference signal calculates a correction compensation coefficient of the two service channels of the first RRU and the two service channels of the second RRU.
  • the BBU may save the calculated correction compensation coefficients of the two service channels of the first RRU and the two service channels of the second RRU, and the BBU may also feed back the correction compensation coefficients of the two service channels of the first RRU.
  • the first RRU, the BBU may feed back the correction compensation coefficients of the two service channels of the second RRU to the second RRU.
  • the correction compensation coefficients of the two service channels of the first RRU may be used to perform phase compensation and/or amplitude compensation on signals received/transmitted by the two service channels of the first RRU.
  • the correction compensation coefficients of the two service channels of the second RRU may be used for phase compensation and/or amplitude compensation of signals received/transmitted by the two service channels of the second RRU.
  • the channel joint correction is performed by using the two RRUs of the first RRU and the second RRU as an example.
  • the scenario can be deduced.
  • the base station further includes an RRU 2 , and the channel joint correction may also be performed between the first RRU and the RRU 2 in a similar manner to channel joint correction with the first RRU and the second RRU.
  • the first RRU can perform channel joint correction in synchronization with multiple RRUs.
  • multiple RRUs can also perform channel joint correction in a serial manner.
  • channel joint correction mode refer to the above examples, which are not described herein.
  • the BBU of the base station sends a first channel joint correction command to the first RRU, and triggers the first RRU to send the first correction by using two of the two service channels of the first RRU. a reference signal; the BBU sends a second channel joint correction command to the second RRU, and triggers the second RRU to send a second calibration reference signal through two of the two service channels of the second RRU.
  • the BBU calculates, according to the first correction reference signal, the reception result of the reception channel of the second RRU for the first correction reference signal, the second correction reference signal, and the reception result of the reception channel of the first RRU for the second correction reference signal, Correction compensation coefficients for the two service channels of the first RRU and the two service channels of the second RRU.
  • the first RRU and the second RRU are used to transmit and receive the correction reference signal, and the first RRU and the second RRU are sent and received based on the corrected reference signal to calculate the two service channels of the first RRU and the The correction compensation coefficient of the two service channels of the second RRU, by means of the multi-RRU channel joint correction mechanism described above, even if the first RRU and the second RRU do not have a channel correction reference channel (ie, does not have a channel self-correction function), it is also beneficial to implement Channel correction between multiple RRUs.
  • the technical solution of the embodiment can solve the problem of channel joint correction of the indoor RRU for the indoor small base station scenario, and the channel joint correction can increase the antenna dimension of the joint transmission, increase the number of reuse users, and improve the spectrum efficiency.
  • the BBU and the like assist in controlling the joint correction of the execution channel, so that it is not necessary to add another additional correction auxiliary unit, and the feasibility is high. Since it can be beneficial to realize channel joint correction between RRUs without self-correction function, the cost of the self-correction channel and the required space can be saved, which is advantageous for further reducing product size and improving product competitiveness.
  • the receiving result of the X2 receiving channels for the first corrected reference signal according to the first corrected reference signal, the first The second correction reference signal and the correction compensation coefficient of the X1 service channels and/or the X2 service channels are calculated by the X1 receiving channels for the reception result of the second correction reference signal, and may include: according to the Calculating, by the first correction reference signal and the reception result of the X2 receiving channels for the first correction reference signal, an estimated channel response from the X1 transmission channels and the X2 reception channels; Calculating a channel response estimate from the X2 transmit channels and the X1 receive channels according to a second corrected reference signal and a received result of the X1 receive channels for the second corrected reference signal; Calculating the channel response estimates from the X1 transmit channels and the X2 receive channels and the channel response estimates from the X2 transmit channels and the X1 receive channels, and calculating the X1 Correction compensation coefficient for the service channel and/or the X2 service channels.
  • the channel response estimation value may be represented by the following formula:
  • Channel channel estimation value indicating a receiving channel in the kth service channel of the i-th RRU
  • ⁇ a represents the ratio of the channel response estimates of the receive channel of the a-th service channel to the transmit channel of the a-th service channel
  • ⁇ ab can be defined to represent the ⁇ value and the number of the a-th service channel.
  • the ratio of the ⁇ values of the b service channels, ie ⁇ ab ⁇ a / ⁇ b .
  • the channel response estimate from the X1 transmit channels and the X2 receive channels and from the X2 transmit channels and Calculating the channel response estimation value between the X1 receiving channels, and calculating the corrected compensation coefficients of the X1 service channels and/or the X2 service channels may include: according to the following formula, according to the X1 transmitting channels And a channel compensation estimated value between the X2 receiving channels and a channel response estimated value between the X2 transmitting channels and the X1 receiving channels, and a corrected compensation coefficient of the X2 service channels is calculated;
  • the channel response estimate from the X1 transmit channels and the X2 receive channels and from the X2 transmit channels and Calculating the channel response estimation value between the X1 receiving channels, and calculating the corrected compensation coefficients of the X1 service channels and/or the X2 service channels further includes: calculating the X1 service channels by using the following formula Compensation coefficient
  • said A correction compensation coefficient between the kth service channel of the i-th RRU and the nth service channel of the i-th RRU Said The ratio of the channel response estimates of the receive channel of the nth service channel of the i-th RRU to the transmit channel.
  • a compensation method may include performing phase compensation and/or amplitude compensation on an uplink signal to be transmitted of the kth service channel by using a 0k (a 0k indicates a kth The correction compensation coefficient between the service channel and the 0th service channel, that is, the correction compensation coefficient of the kth service channel relative to the 0th service channel).
  • the downlink signal of the kth traffic channel can also be compensated by using a 0k .
  • the above example gives a general description of the calculation of the correction compensation factor.
  • the following takes X1 and X2 equal to 2 as an example, and an example is given to calculate the correction coefficient for RRU 0 and RRU 1 .
  • an estimated channel response between the two transmit channels of the calculated RRU 0 and the two receive channels of the RRU 1 may be expressed as follows:
  • calculates the channel between the RRU obtained two transmit channels 1 and 2 of the RRU 0 receiving channel response estimates may be expressed as follows:
  • Channel channel estimation value indicating a receiving channel in the kth service channel of the i-th RRU
  • ⁇ a represents the ratio of the channel response estimates of the receive channel of the a-th service channel to the transmit channel of the a-th service channel
  • ⁇ ab can be defined to represent the ⁇ value and the number of the a-th service channel.
  • the ratio of the ⁇ values of the b service channels, ie ⁇ ab ⁇ a / ⁇ b .
  • the channel response estimation value between the two transmission channels of the RRU 1 and the two service channels of the RRU 1 may be calculated, and the correction compensation coefficients of the two service channels of the RRU 0 and the two service channels of the RRU 1 may be included.
  • said Indicates the correction compensation coefficient between the 0th service channel of RRU1 and the 0th service channel of RRU 0 .
  • said The ratio of the channel response estimates of the receive channel of the 0th service channel of the RRU 0 to the transmit channel Indicates the ratio of the channel response estimates of the receive channel of the 0th service channel of RRU 1 to the transmit channel, and so on.
  • said Re represents a correction coefficient compensation between the first RRU 1 and the RRU traffic channel 0 of 0 0 of the service channel. Said The ratio of the channel response estimates of the receive channel of the first service channel of the RRU 0 to the transmit channel.
  • said Re represents a correction coefficient between the compensation of a service channel RRU 1 and the second RRU 0 0 traffic channels, it can be used to represent the RRU reciprocity between a first service channel and a second RRU traffic channel 0 0 sexual differences. May be used to represent the difference between the reciprocity of the RRU 1 and the RRU traffic channel 0 of 0 0 of the service channel.
  • the entity in the communication system or the related device may cooperate to perform the channel joint correction method provided by the embodiment of the present invention.
  • an embodiment of the present invention further provides a multi-RRU channel joint calibration apparatus 500, which can include:
  • the sending unit 510 is configured to send, to the first RRU, a first channel joint correction command, where the first channel joint correction command is used to trigger the first RRU to send through the X1 transmit channels in the X1 service channels of the first RRU.
  • First correction reference signal ;
  • the sending unit 510 is further configured to send a second channel joint correction instruction to the second RRU, where the second channel joint correction command is used to trigger the second RRU to pass through the X2 service channels of the second RRU.
  • X2 transmit channels send a second corrected reference signal;
  • the receiving unit 520 is configured to receive a receiving result of the X2 receiving channels of the X2 service channels sent by the second RRU for the first corrected reference signal, and receive the X1 receiving channels of the X1 service channels are received for the second corrected reference signal;
  • the processing unit 530 is configured to: according to the first corrected reference signal, the received result of the X2 receive channels for the first corrected reference signal, the second corrected reference signal, and the X1 receive channels And a corrected compensation coefficient of the X1 service channels and/or the X2 service channels, where the X1 and the X2 are integers greater than 1.
  • the first channel joint correction instruction further indicates that the X1 transmit channels of the X1 service channels of the first RRU send time resources and/or frequency resources of the first corrected reference signal
  • the second channel joint correction instruction further indicates that X2 receiving channels of the X2 service channels of the second RRU receive time resources and/or frequency resources of the first corrected reference signal.
  • the second channel joint correction instruction further indicates that the X2 transmit channels of the X2 service channels of the second RRU send time resources and/or frequency resources of the second corrected reference signal
  • the first channel joint correction instruction further indicates that X1 receiving channels of the X1 service channels of the first RRU receive time resources and/or frequency resources of the second corrected reference signal.
  • the first RRU and the second RRU are RRUs that provide services for the same UE.
  • the processing unit 530 is configured to calculate, according to the first correction reference signal and the reception result of the X2 receiving channels for the first corrected reference signal, the X1 transmit channels and Channel response estimation value between the X2 receiving channels; calculating according to the second correction reference signal and the reception result of the X1 receiving channels for the second correction reference signal Channel estimation estimates from the X2 transmit channels and the X1 receive channels; based on channel response estimates from the X1 transmit channels and the X2 receive channels and from the X2 Correction compensation coefficients of the X1 service channels and/or the X2 service channels are calculated by using channel estimation values between the transmission channels and the X1 reception channels.
  • the processing unit 530 calculates the correction compensation coefficients of the X1 service channels and/or the X2 service channels, reference may be made to the related description in the foregoing embodiments, and details are not described herein again.
  • the first RRU and the second RRU are RRUs that provide services for the same UE.
  • an embodiment of the present invention further provides a communication system, including:
  • the device 610, the first RRU 620, and the second RRU 630 are remotely managed.
  • the remote management device 610 is configured to send a first channel joint correction instruction to the first RRU, where the first channel joint correction command is used to trigger the first RRU to pass the X1 transmit channels in the X1 service channels of the first RRU. Transmitting a first correction reference signal; and transmitting, to the second RRU, a second channel joint correction instruction, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU And transmitting, by the X2 transmitting channels, a second correction reference signal; receiving, by the X2 serving channels of the X2 service channels, the receiving result of the first corrected reference signal; receiving the first RRU sending The X1 receiving channels of the X1 service channels are for the receiving result of the second corrected reference signal; according to the first corrected reference signal, the X2 receiving channels are received for the first corrected reference signal As a result, the second corrected reference signal and the X1 receiving channels receive the X1 service channels and/or the X2 services for the second corrected reference signal
  • the first channel joint correction instruction further indicates that the X1 transmit channels of the X1 service channels of the first RRU send time resources and/or frequency resources of the first corrected reference signal
  • the second channel joint correction instruction further indicates that X2 receiving channels of the X2 service channels of the second RRU receive time resources and/or frequency resources of the first corrected reference signal.
  • the second channel joint correction instruction further indicates that the X2 transmit channels of the X2 service channels of the second RRU send time resources and/or frequency resources of the second corrected reference signal, where The first channel joint correction instruction further indicates that in the X1 service channels of the first RRU The X1 receive channels receive time resources and/or frequency resources of the second corrected reference signal.
  • the first RRU and the second RRU may be RRUs that provide services for the same UE.
  • the first RRU and the second RRU may or may not belong to the same base station.
  • the remote management device 610 calculates the correction compensation coefficients of the X1 service channels and/or the X2 service channels, refer to the related description in the foregoing embodiment, and details are not described herein again.
  • an embodiment of the present invention further provides a base station, including:
  • the switching device 710 is configured to send a first channel joint correction instruction to the first RRU, where the first channel joint correction command is used to trigger the first RRU to transmit through the X1 of the X1 service channels of the first RRU.
  • the channel sends a first correction reference signal, and sends a second channel joint correction instruction to the second RRU, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU Receiving a second correction reference signal by the X2 transmission channels; receiving a reception result of the X2 reception channels of the X2 service channels sent by the second RRU for the first correction reference signal; receiving the first RRU And a result of receiving the X1 receiving channels of the X1 service channels for the second corrected reference signal; according to the first corrected reference signal, the X2 receiving channels are for the first corrected reference signal Receiving, the second corrected reference signal, and the receiving result of the X1 receiving channels for the second corrected reference signal, and calculating the X1 service channels and/or
  • the first RRU and the second RRU may be RRUs that provide services for the same UE.
  • the first RRU and the second RRU may or may not belong to the same base station.
  • the switching device 710 calculates the correction compensation coefficients of the X1 service channels and/or the X2 service channels, reference may be made to the related description in the foregoing embodiments, and details are not described herein again.
  • an embodiment of the present invention further provides a channel joint correction apparatus 800, which may include a transceiver 810, a processor 830, and a memory 840.
  • the transceiver 810 is configured to send a first channel joint correction command to the first RRU, where the first channel joint correction command is used to trigger the first RRU to transmit X1 of the X1 service channels of the first RRU.
  • the channel transmits a first correction reference signal;
  • the transceiver 810 is further configured to receive a receiving result of the X2 receiving channels of the second RRU sent by the second RRU for the first corrected reference signal;
  • the transceiver 810 is further configured to send a second channel joint correction instruction to the second RRU, where the second channel joint correction instruction is used to trigger the second RRU to pass through the X2 service channels of the second RRU.
  • the X2 transmit channels transmit a second corrected reference signal.
  • the transceiver 810 is further configured to receive a receiving result of the X1 receiving channels of the X1 service channels sent by the first RRU for the second corrected reference signal.
  • the processor 830 is configured to: according to the first correction reference signal, the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels The result of receiving the second corrected reference signal calculates a correction compensation coefficient of the X1 service channels and/or the X2 service channels.
  • the processor 830 mainly controls the operation of the channel joint correction device 800, wherein the processor 830 may also be referred to as a central processing unit (CPU).
  • Memory 840 can include read only memory and random access memory and provides instructions and data to processor 830. A portion of the memory 840 may also include a non-volatile random access memory.
  • the components of the multi-RRU channel joint correction device 800 are coupled together by a bus system 850 in a specific application.
  • the bus system 850 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 850 in the figure.
  • Processor 830 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 830 or an instruction in the form of software.
  • the processor 830 may be an off-the-shelf programmable gate array (FPGA), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a general purpose processor, or other programmable logic device, a discrete gate or a transistor logic device. , separate hardware components.
  • the processor 830 can implement or perform some or all of the methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor. to make.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 840.
  • the processor 830 can read the information in the memory 840 and complete the steps of the foregoing method in combination with hardware.
  • the channel joint correction device 800 can be a remote management device (such as a network management server or a cloud computing center) or a switching device or a BBU, or the channel joint correction device 800 can be deployed in a remote management device or a switching device.
  • a remote management device such as a network management server or a cloud computing center
  • a switching device or a BBU or the channel joint correction device 800 can be deployed in a remote management device or a switching device.
  • an embodiment of the present invention further provides a base station, including:
  • Baseband unit 910 and first RRU 920 Baseband unit 910 and first RRU 920.
  • the baseband unit 910 is configured to send, to the first RRU 920, a first channel joint correction command, where the first channel joint correction command is used to trigger the first RRU to pass through the X1 transmit channels in the X1 service channels of the first RRU.
  • the first RRU and the second RRU may be RRUs that provide services for the same UE.
  • the first RRU and the second RRU may or may not belong to the same base station.
  • the baseband unit 910 calculates the correction compensation coefficients of the X1 service channels and/or the X2 service channels, refer to the related description in the foregoing embodiment, and details are not described herein again.
  • an embodiment of the present invention further provides a base station, including:
  • Switching device 1010 baseband unit 1020, and first RRU 1030.
  • the switching device 1010 is configured to send a first channel joint correction to the first RRU 1030.
  • the first channel joint correction instruction is configured to trigger the first RRU to send the first correction reference signal through the X1 transmission channels in the X1 service channels of the first RRU; and send the second channel joint correction to the second RRU.
  • An instruction, wherein the second channel joint correction command is used to trigger the second RRU to send a second correction reference signal through X2 transmission channels in the X2 service channels of the second RRU; and receive the second RRU And receiving, by the X2 receiving channels of the X2 service channels, a result of receiving the first corrected reference signal; and receiving X1 receiving channels of the X1 service channels sent by the first RRU for the Receiving a result of receiving the reference signal;
  • the baseband unit 1020 is configured to: according to the first correction reference signal, the reception result of the X2 receiving channels for the first correction reference signal, the second correction reference signal, and the X1 receiving channels And obtaining, by the receiving result of the second correction reference signal, a correction compensation coefficient of the X1 service channels and/or the X2 service channels, where the X1 and the X2 are integers greater than 1.
  • the first RRU and the second RRU may be RRUs that provide services for the same UE.
  • the first RRU and the second RRU may or may not belong to the same base station.
  • the baseband unit 1020 calculates the correction compensation coefficients of the X1 service channels and/or the X2 service channels, refer to the related description in the foregoing embodiment, and details are not described herein again.
  • an RRU 1100 can include:
  • the processor 1110, the X1 service channels 1120, the X1 power adjustment circuits 1130, the X1 compensation circuits 1140, and the X1 antennas 1150 are connected to the compensation circuit 1140 through the power adjustment circuit 1130, and the antenna 1150 is connected to the power adjustment circuit 1130 through the compensation circuit 1140.
  • the X1 service channels 1120 are in one-to-one correspondence with the X1 power adjustment circuits 1130, the X1 service channels 1120 are in one-to-one correspondence with the X1 compensation circuits 1140, and the X1 service channels 1120 are in one-to-one correspondence with the X1 antennas 1150.
  • the processor 1110 is configured to: send, by using the X1 transmit channels of the X1 service channels of the RRU, a first corrected reference signal; and receive the X2 receive channels of the X2 service channels sent by the second RRU for the first correction. a result of receiving the reference signal; obtaining a reception result of the X1 reception channels of the X1 service channels of the RRU for the second correction reference signal, wherein the second correction reference signal Transmitting by the second RRU through X2 transmit channels of the X2 service channels of the second RRU; receiving, according to the first corrected reference signal, the X2 receive channels for the first corrected reference signal As a result, the second correction reference signal and the reception result of the X1 reception channels for the second correction reference signal, the correction compensation coefficients of the X1 service channels and/or the X2 service channels are calculated.
  • the compensation circuit 1040 is configured to perform phase compensation or amplitude compensation on the signals transmitted and received by the corresponding service channel based on the correction compensation coefficient of the service channel.
  • the X1 and the X2 are integers greater than or equal to 1.
  • the processor 1110 calculates a specific implementation manner of the correction compensation coefficient of the X1 service channels and/or the X2 service channels, and may refer to the correlation in the foregoing embodiment. description.
  • the RRU 1100 and the second RRU may be RRUs that provide services for the same UE.
  • the RRU 1100 and the second RRU may or may not belong to the same base station.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. in.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通道联合校正方法和装置及***,一种通道联合校正方法包括向第一RRU发送第一通道联合校正指令,向第二RRU发送第二通道联合校正指令,接收第二RRU发送的X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收第一RRU发送的X1个业务通道中的X1个接收通道针对第二校正参考信号的接收结果;根据第一校正参考信号、X2个接收通道针对第一校正参考信号的接收结果、第二校正参考信号和X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。本发明实施例提供技术方案有利于让没有通道自校正功能的RRU之间实现通道校正。

Description

通道联合校正的方法和相关装置及*** 技术领域
本发明涉及通信技术领域,尤其涉及了通道联合校正的方法和相关装置及相关***。
背景技术
在室内通信场景,室内小基站的间距一般很小(30m之内),在一个区域内如果各个小基站都配置为独立小区,则小区间干扰严重。配置为单频网方式虽然可以消除独立小区间的干扰,但是频谱利用率低。
多用户波束赋形(MU-BF,Multi-User Beam forming)是一种频谱利用率提高的手段,受限于现有产品约束难以应用。这是因为受限于体积原因,现有单个小基站一般只有两根发射天线,空间自由度有限,难以找到合适的多用户权值。研究发现,将多个小基站联合起来进行发射可以增加发射天线数,提高空间自由度,从而找到多个正交的权值,进而可实现多用户空间复用,提高频谱利用率。
基站用于收发信号的远程射频单元(RRU,Remote Radio Unit)中每个射频通道由独立的硬件组成,这使得每个射频通道的上行、下行引入的通道响应不同,影响到下行波束赋型的性能。因此需要通过通道校正的手段对每个射频通道的上下行通道进行校正,以使RRU中各射频通道的上下行通道响应的比值相同,以尽量保证下行波束赋型的准确性。
本发明的发明人通过研究和实践发现,虽然目前已有了一些多RRU通道校正的方法,但在目前已有的多RRU之间的通道校正方法中,通常需要两个步骤完成,首先需借助每个RRU中的专用校正参考通道来完成各RRU内部的通道自校正,而后在进行RRU之间的通道校正,这种现有通道校正机制使得对于没有校正参考通道的RRU(即不具备通道自校正功能的RRU),就无法完成多RRU之间的通道校正。
发明内容
本发明实施例提供通道联合校正的方法和相关装置及***,以期让没有通 道自校正功能的RRU之间实现通道校正。
本发明实施例第一方面提供一种通道联合校正方法,包括:
向第一RRU发送第一通道联合校正指令,其中,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
其中,所述X1为大于1的整数。所述X2为大于1的整数。
例如所述X1可等于7、17、2、3、4、5、6、8、12、16、19、32、50或其他值。
例如所述X2可等于9、11、2、3、4、5、6、8、12、15、21、30、50或其他值。
其中,一个业务通道包括一个发射通道和一个接收通道,一个业务通道包括的一个发射通道和一个接收通道共享同一天线。其中,业务通道是可用于进行业务信号收发的通道。不同的业务通道可对应不同天线。
其中,所述X1个业务通道可为所述第一RRU的部分或全部业务通道。
其中,所述X2个业务通道可为所述第二RRU的部分或全部业务通道。
例如所述第一RRU和/或所述第二RRU不具备自校正功能。
第一RRU和第一RRU例如可为同一或不同小基站的RRU。
其中,校正补偿系数可用于对业务通道的接收通道和发射通道之间信道响应的不一致性进行补偿。
可以看出,本发明一些实施例的方案中,通道联合校正装置向第一RRU 发送第一通道联合校正指令,触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,触发所述第二RRU通过第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号。由于通道联合校正装置利用第一RRU和第二RRU的业务信道来收发校正参考信号,基于第一RRU和第二RRU的业务信道收发的校正参考信号,来计算得到第一RRU的业务通道和/或第二RRU的业务通道的校正补偿系数,借助上述多RRU通道联合校正机制中,即使第一RRU和第二RRU没有信道校正参考通道(即不具备通道自校正功能),也可以实现第一RRU和第二RRU之间的通道校正。可见,本申请实施例提供的一些技术方案具有更强的通道校正普适性。
可以理解,通道联合校正方法的各个步骤可以统一由一个执行主体来执行完成,当然,通道联合校正方法的各个步骤也可以分别由至少两个设备协同执行完成。
例如可由交换设备或基带单元BBU或远程管理设备向第一RRU发送第一通道联合校正指令。例如可由交换设备或BBU或远程管理设备向所述第二RRU发送第二通道联合校正指令。
例如可由交换设备或BBU或远程管理设备接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对第一校正参考信号的接收结果。例如可由交换设备或BBU或远程管理设备接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对第二校正参考信号的接收结果。
例如可由交换设备或BBU或远程管理设备根据第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
可以理解,由于本实施方案中,通道联合校正的相关步骤的执行主体可较为灵活多变,这样有利于扩展通道校正的应用场景和应用范围,有利于改善因部分部件处理性能有限的而限制通道校正的情况。
本发明实施例第二方面还提供一种通道联合校正装置,所述通道联合校正 装置可用于执行本发明实施例提供的任意一种通道联合校正方法。例如所述通道联合校正装置可包括:
发送单元,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;
所述发送单元还用于,向第二RRU发送第二通道联合校正指令,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;
接收单元,用于接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
处理单元,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
本发明实施例第三方面还提供一种通信***,包括:远程管理设备、第一远程射频单元RRU和第二RRU。其中,所述通信***中的各实体可配合执行本发明实施例提供的通道联合校正方法。
例如远程管理设备,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所 述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
其中,本申请的各实施例方案提及的基站例如可以是室内小基站或其他类型的基站。
本发明实施例第四方面还提供一种基站,包括:交换设备和第一远程射频单元RRU。其中,所述基站中的各实体可配合执行本发明实施例提供的通道联合校正方法。
例如所述交换设备,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
本发明实施例第五方面还提供一种基站,包括:基带单元和第一远程射频单元RRU。其中,所述基站中的各实体可配合执行本发明实施例提供的通道联合校正方法。
例如所述基带单元,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信 号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
本发明实施例第六方面还提供一种基站,包括:交换设备、基带单元和第一RRU。其中,所述基站中的各实体可配合执行本发明实施例提供的通道联合校正方法。
例如所述交换设备,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
所述基带单元,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,其中,所述X1和所述X2为大于1的整数。
本发明实施例第七方面还提供一种通道联合校正装置,可包括:收发器和处理器。
收发器,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;
所述收发器还用于,向第二RRU发送第二通道联合校正指令,所述第二通 道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;
所述收发器还用于,用于接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
处理器,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
其中,通道联合校正装置例如可以是基带单元、远程管理设备或基站中的交换设备等。
在本发明一些可能的实施方式中,例如所述第一RRU和所述第二RRU是为同一UE提供服务的RRU。可以理解的是,将为同一UE提供服务的RRU划分为一个RRU簇,如果是同一个RRU簇内的RRU之间进行校正,即通过适度的限制相互校正的RRU数量,这样有利于在一定程度上降低校正复杂度。
在本发明一些可能的实施方式中,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个发射通道发送所述第一校正参考信号的时间资源和/或频率资源,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个接收通道接收所述第一校正参考信号的时间资源和/或频率资源。
在本发明一些可能的实施方式中,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个发射通道发送所述第二校正参考信号的时间资源和/或频率资源,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个接收通道接收所述第二校正参考信号的时间资源和/或频率资源。
可以理解的是,若通过通道联合校正指令来明示收发校正参考信号的时间资源,这样有利于提高信号收发双发的时间协同性,有利于避免接收方在无效 时间资源也进行信号接收。
可以理解,通过通道联合校正指令来明示收发校正参考信号的频率资源,这样有利于提高信号收发双发的频率资源协同性,有利于避免接收方在无效频率资源也进行信号接收。
在本发明一些可能的实施方式中,第一通道联合校正指令携带有第一校正参考信号。在本发明一些可能的实施方式中,第二通道联合校正指令携带有第二校正参考信号。
本发明的一些可能实施方式中,根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,包括:根据所述第一校正参考信号和所述X2个接收通道针对所述第一校正参考信号的接收结果,计算得到从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值;根据所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值;根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
本发明的一些可能的实施方式中,所述信道响应估计值通过如下公式进行表示:
Figure PCTCN2016087858-appb-000001
其中,
Figure PCTCN2016087858-appb-000002
表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道中的发射通道之间的信道响应估计值;
其中,
Figure PCTCN2016087858-appb-000003
表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道之中的发射通道之间的空口部分的信道响应估 计值;
其中,
Figure PCTCN2016087858-appb-000004
表示第i个RRU的第k个业务通道中的接收通道的信道响应估计值,所述
Figure PCTCN2016087858-appb-000005
表示第j个RRU的第m个业务通道中的发射通道的信道响应估计值。
本发明的一些可能的实施方式中,根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,可包括:通过如下公式,根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X2个业务通道的校正补偿系数;
Figure PCTCN2016087858-appb-000006
其中,所述
Figure PCTCN2016087858-appb-000007
表示第i个RRU的第k个业务通道与第j个RRU的第m个业务通道之间的校正补偿系数;
其中,所述
Figure PCTCN2016087858-appb-000008
表示第i个RRU的第k个业务通道的接收通道与发射通道的信道响应估计值的比值,所述
Figure PCTCN2016087858-appb-000009
表示第j个RRU的第m个业务通道的接收通道与发射通道的信道响应估计值的比值。
本发明的一些可能的实施方式中,根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X2个业务通道的校正补偿系数,还可包括:通过如下公式计算得到所述X1个业务通道的校正补偿系数;
Figure PCTCN2016087858-appb-000010
其中,所述
Figure PCTCN2016087858-appb-000011
表示第i个RRU的第k个业务通道与第i个RRU的第n个业务通道之间的校正补偿系数;所述
Figure PCTCN2016087858-appb-000012
表示第i个RRU的第n个业务通道的接收通道与发射通道的信道响应估计值的比值。
此外,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储了执行通道联合校正方法的程序代码。所述程序代码包括用于执行通道联合校正方法的指令。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-a为本发明实施例提供的基站和远程管理设备的网络架构示意图;
图1-b~图1-c为本发明实施例提供的基站的两种架构示意图;
图2为本发明实施例提供的一种通道联合校正方法的流程示意图;
图3为本发明的实施例提供的另一种通道联合校正方法的流程示意图;
图4为本发明的实施例提供的另一种通道联合校正方法的流程示意图;
图5为本发明实施例提供的一种通道联合校正装置的示意图;
图6为本发明实施例提供的一种通信***的示意图;
图7为本发明实施例提供的一种基站的示意图;
图8为本发明实施例提供的另一种通道联合校正装置的示意图;
图9为本发明实施例提供的另一种基站的示意图;
图10为本发明实施例提供的另一种基站的示意图;
图11为本发明实施例提供的一种RRU的示意图。
具体实施方式
本发明实施例提供通道联合校正方法和相关装置,可让没有通道自校正功能的RRU之间实现通道校正。
本发明说明书、权利要求书和附图中出现的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、***、产品或者设备没有限定于已列出的步骤或者单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或者设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用 于区别不同的对象,而并非用于描述特定的顺序。
参见图1-a~图1-c,图1-a~图1-c为本发明实施例提供的基站的几种架构示意图。基站包括基带单元(BBU,Base Band Unit)和若干个RRU。图1-b中示出BBU和RRU通过交换设备(例如集线器(rHub,remote Hub)互联。本发明实施例中的交换设备是用于连接BBU和RRU的交换设备。室内小基站中的RRU也可称之为微RRU(pRRU,pico Remote Radio Unit)。参见图1-a,基站还可能与远程管理设备连接,远程管理设备也可参与(主导或协助)多RRU通道联合校正过程,远程管理设备可能是网管服务器、云计算中心或其它可对基站进行远程管理的设备。
其中,本发明实施例的技术方案可基于上述图1-a~图1-c举例的架构或其变形架构来具体实施。
下面先针对单一执行主体执行通道联合校正方法进行举例。这个单一执行主体可能是交换设备(例如rHub)、基带单元(BBU)或者远程管理设备等等,此处统一称之为通道联合校正装置。
如图2举例所示,本发明的一个实施例提供的一种多RRU通道联合校正方法可包括:
S201、通道联合校正装置向第一RRU发送第一通道联合校正指令。
所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号。第一RRU为不具备自校正功能的RRU。
S202、通道联合校正装置向第二RRU发送第二通道联合校正指令。
所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号。第二RRU为不具备自校正功能的RRU。
其中,一个业务通道包括一个发射通道和一个接收通道,一个业务通道包括的一个发射通道和一个接收通道共享同一天线。其中,业务通道是可用于进行业务信号收发的通道。不同的业务通道可对应不同天线。
其中,第一RRU和第二RRU可以是属于同一基站的,也可能归属于不同的基站。例如第一RRU和第二RRU是为同一个UE服务的,也就是可针对为同一个UE服务的若个干RRU进行通道联合校正。
S203、通道联合校正装置接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果。
S204、通道联合校正装置接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果。
S205、通道联合校正装置根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
其中,所述X1个业务通道的校正补偿系数可用于对所述X1个业务通道收发的信号进行校正补偿。所述X2个业务通道的校正补偿系数可用于对所述X2个业务通道收发的信号进行校正补偿。
其中,所述X1为大于1的整数。所述X2为大于1的整数。
例如所述X1可等于7、17、2、3、4、5、6、8、12、16、19、32、50或其他值。
例如所述X2可等于9、11、2、3、4、5、6、8、12、15、21、30、50或其他值。
其中,所述X1个业务通道可为所述第一RRU的部分或全部业务通道。
其中,所述X2个业务通道可为所述第二RRU的部分或全部业务通道。
需要说明的是,上述举例中主要是以步骤S201~S205由同一设备执行来进行描述的,当然这些步骤也可以由多个设备协同执行。例如步骤201~205均可由交换设备(例如rHub)、基带单元(BBU,Base Band Unit)或者远程管理设备执行。或步骤201~204可由交换设备(例如rHub)执行,而步骤205可由基带单元BBU或远程管理设备执行,当然多个设备协同执行的方式并不限于上述举例。
可以理解,由于本实施方案中,通道联合校正的相关步骤的执行主体可较 为灵活多变,这样有利于扩展通道校正的应用场景和应用范围,有利于改善因部分部件处理性能有限的而限制通道校正的情况。
其中,本申请各实施例中提及的交换设备是位于基站中的用于交换BBU和RRU之间数据的设备,具体例如可以是集线器(rHub)等。本申请各实施例中提及的远程管理设备通过网络与基站连接的,远程管理设备能够对进行远程管理的设备,远程管理设备例如可为网管服务器、云计算中心或其它可对基站进行远程管理的设备。
可选的,所述第一通道联合校正指令携带有所述第一校正参考信号。也就是说,例如可通过第一通道联合校正指令来将所述第一校正参考信号传递给第一RRU,当然可也通过其他指令将第一校正参考信号传递给第一RRU,或者第一RRU可预存第一校正参考信号。
可选的,所述第二通道联合校正指令携带有所述第二校正参考信号。也就是说,例如可通过第二通道联合校正指令来将所述第二校正参考信号传递给第二RRU,当然可也通过其他指令将第二校正参考信号传递给第二RRU,或者第二RRU可预存第二校正参考信号。
此外,第一校正参考信号也可不携带在第一通道联合校正指令中,而可独立于第一通道联合校正指令发送。第二校正参考信号也可不携带在第二通道联合校正指令中,而可独立于第二通道联合校正指令发送。
可选的,第一通道联合校正指令还可携带第一RRU的标识(第一RRU的标识例如可包括第一RRU编号和小区编号,也就是说,例如可以通过相应小区编号+RRU编号来标识第一RRU。此外,第一通道联合校正指令还可携带所述X1个业务通道所对应天线的编号。也就是说,可通过在第一通道联合校正指令携带所述X1个业务通道所对应天线的编号,来指示由第一RRU的所述X1个业务通道来进行校正参考信号的收/发。
可选的,第二通道联合校正指令还可携带第二RRU的标识(第二RRU的标识例如可包括第二RRU编号和小区编号,也就是说,例如可以通过相应小区编号+RRU编号来标识第二RRU。此外,第二通道联合校正指令还可携带所述X2个业务通道所对应天线的编号,也就是说,可通过在第二通道联合校正指令携 带所述X2个业务通道所对应天线的编号,来指示由第二RRU的所述X2个业务通道来进行校正参考信号的收/发。
举例来说,小区编号的取值范围例如可为0~503。RRU编号的取值范围例如可为0~95。
可选的,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个发射通道发送所述第一校正参考信号的时间资源和/或频率资源,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个接收通道接收所述第一校正参考信号的时间资源和/或频率资源。也就是说,利用所述第一通道联合校正指令和所述第二通道联合校正指令可动态的约定第一RRU和第二RRU收发第一校正参考信号的时间资源和/或频率资源,这样有利于使第一RRU和第二RRU收发第一校正参考信号的时间资源和/或频率资源准确匹配。当然,第一RRU和第二RRU也可以按照默认的时间资源和/或频率资源来收发第一校正参考信号,这种情况下也就无需通过通道联合校正指令来约定双方了。
可选的,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个发射通道发送所述第二校正参考信号的时间资源和/或频率资源,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个接收通道接收所述第二校正参考信号的时间资源和/或频率资源。也就是说,利用所述第一通道联合校正指令和所述第二通道联合校正指令可动态的约定第一RRU和第二RRU收发第二校正参考信号的时间资源和/或频率资源,这样有利于使第一RRU和第二RRU收发第一校正参考信号的时间资源和/或频率资源准确匹配。当然,第一RRU和第二RRU也可以按照默认的时间资源和/或频率资源来收发第一校正参考信号,这种情况下也就无需通过通道联合校正指令来约定双方了。
可选的,收/发校正参考信号(如第一校正参考信号或第二校正参考信号等)的时间资源例如可通过无线帧号、子帧号和传输符号号等共同确定。例如可以通过在通道联合校正指令中携带无线帧号、子帧号和传输符号号,来指示收/发校正参考信号的时间资源。无线帧号的取值范围例如可为0~1023。子帧 号的取值范围例如可以为0~9,传输符号号的取值范围例如可为0~13。对于不同通信***,无线帧号、子帧号和传输符号号的取值范围可能不尽相同,上述范围仅为举例。
可选的,收/发校正参考信号(如第一校正参考信号或第二校正参考信号等)的频率资源例如可通过子载波号或资源块编号来确定。也就是说,例如可以通过在通道联合校正指令中携带子载波号或资源块编号,来指示收/发校正参考信号的频率资源。
可以理解的是,若通过通道联合校正指令来明示收发校正参考信号的时间资源,这样有利于提高信号收发双发的时间协同性,有利于避免接收方在无效时间资源也进行信号接收。
可以理解的是,若通过通道联合校正指令来明示收发校正参考信号的频率资源,这样有利于提高信号收发双发的频率资源协同性,有利于避免接收方在无效频率资源也进行信号接收。
本申请各实施例中提及的第一校正参考信号可为已知参考信号序列或基于预设规则得到的参考信号序列。本申请各实施例中提及的第二校正参考信号可为已知参考信号序列或基于预设规则得到的参考信号序列。第一校正参考信号和第二校正参考信号可以相同或不同。
可选的,在本发明的一些可能的实施方式之中,所述第一RRU和所述第二RRU可以是为同一UE服务的RRU。也就是说,可以针对为同一UE服务的各RRU之间进行通道校正,为不同UE服务的RRU之间可不进行通道校正,即为不同UE服务的RRU之间可以相互独立的通道校正。具体例如,可将为同一UE服务的RRU划归到同一RRU簇,RRU簇内的各RRU之间进行通道校正,而不同RRU簇之间独立的进行通道校正。当然,RRU簇的划分方式也可以不局限于以UE为粒度,也可以参考其他参数进行簇划分,例如可将位置相邻的若干个RRU划分为同一RRU簇,也可以将位置相邻的且与参考RRU(例如第0个RRU)交互信号的信噪比大于阈值的RRU划分为同一RRU簇。然而,无论是采用何种机制划分RRU簇,RRU簇内的各RRU之间进行通道校正,而不同RRU簇的之间独立进行通道校正。
可以理解的是,如果是同一个RRU簇内的RRU之间进行校正,也就是通过适度的限制相互校正的RRU数量,因此,这样有利于在一定程度上降低校正的复杂度。
可以看出,本实施例的方案中,通道联合校正装置向第一RRU发送第一通道联合校正指令,触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,触发所述第二RRU通过第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号。由于通道联合校正装置利用第一RRU和第二RRU的业务信道来收发校正参考信号,基于第一RRU和第二RRU的业务信道收发的校正参考信号,来计算得到第一RRU的业务通道和/或第二RRU的业务通道的校正补偿系数,借助上述多RRU通道联合校正机制中,即使第一RRU和第二RRU没有信道校正参考通道(即不具备通道自校正功能),也可以实现第一RRU和第二RRU之间的通道校正。
进一步的,本实施例的技术方案可针对室内小基站场景,可解决室内RRU的通道联合校正问题,通过通道联合校正可增加联合发射的天线维度、增加复用用户数和提高频谱效率等。
下面针对一些具体的产品形态进行举例说明。
请参见图3,图3为本发明的另一个实施例所提供的一种通道联合校正方法的流程示意图。其中,图3所示的通道联合校正方法可以在如1-a举例所示架构的基站中具体实施。本实施例中主要X1和X2均等于2为例,X1和X2等于其他值的情况可以此类推。如图3举例所示,本发明的另一个实施例提供的一种通道联合校正方法可包括:
301、交换设备(如rHub)向第一RRU发送第一通道联合校正指令。
其中,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的2个业务通道中的2个发射通道发送第一校正参考信号。所述第一RRU为不具备自校正功能的RRU。
相应的,第一RRU接收第一通道联合校正指令。
其中,第一通道联合校正指令可携带第一校正参考信号。
进一步的,第一通道联合校正指令还可以携带第一RRU的标识(第一RRU的标识例如可包括小区编号,也就是说,例如可以通过相应小区编号+RRU编号来标识第一RRU。此外,第一通道联合校正指令还可携带第一RRU的2个业务通道所对应天线的编号。也就是说,可通过在第一通道联合校正指令携带第一RRU的2个业务通道所对应天线的编号,来指示由第一RRU的2个业务通道来进行校正参考信号的收/发。
可选的,第一通道联合校正指令还指示出所述第一RRU的2个业务通道中的2发射通道发送第一校正参考信号的时间资源和/或频率资源。
此外,第一校正参考信号也可不携带在第一通道联合校正指令中,而可独立于第一通道联合校正指令而向第一RRU进行发送。
302、交换设备向第二RRU发送第二通道联合校正指令。
其中,所述第二通道联合校正指令用于触发第二RRU通过所述第二RRU的2个业务通道中的2个发射通道发送第二校正参考信号。所述第二RRU为不具备自校正功能的RRU。
相应的,第二RRU接收第二通道联合校正指令。
其中,第二通道联合校正指令可携带第二校正参考信号。
此外,第二校正参考信号也可不携带在第二通道联合校正指令中,而可独立于第二通道联合校正指令而向第二RRU进行发送。
进一步的,第二通道联合校正指令还可以携带第二RRU的标识(第二RRU的标识例如可包括第二RRU编号和相应小区编号,也就是说,例如可以通过相应小区编号+RRU编号来标识第二RRU。此外,第一通道联合校正指令还可携带第一RRU的2个业务通道所对应天线的编号。也就是说,可通过在第二通道联合校正指令携带第二RRU的2个业务通道所对应天线的编号,来指示由第一RRU的2个业务通道来进行校正参考信号的收/发。
可选的,第二通道联合校正指令还指示出所述第二RRU的2个业务通道中的2发射通道发送第二校正参考信号的时间资源和/或频率资源。第二通道联合校正指令还指示出所述第二RRU的2个业务通道中的2个接收通道接收第一校正参考信号的时间资源和/或频率资源。第一通道联合校正指令还指示出所述 第一RRU的2个业务通道中的2个接收通道接收第二校正参考信号的时间资源和/或频率资源。
可以理解,第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2个接收通道接收第二校正参考信号的时间资源和/或频率资源,同于第二通道联合校正指令指示出的所述第二RRU的2个业务通道中的2个发射通道发送第二校正参考信号的时间资源和/或频率资源。同理,第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2个发射通道发送第一校正参考信号的时间资源和/或频率资源,同于第二通道联合校正指令指示出的所述第二RRU的2个业务通道中的2个接收通道接收第一校正参考信号的时间资源和/或频率资源。
又例如,所述第二通道联合校正指令指示出的第二RRU的2个业务通道中的2发射通道发送第二校正参考信号的时间资源,例如可与所述第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2接收通道接收所述第二校正参考信号的时间资源之间具有交集。又例如,所述第二通道联合校正指令指示出的第二RRU的2个业务通道中的2接收通道接收第一校正参考信号的时间资源,例如可与所述第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2个发射通道发送所述第一校正参考信号的时间资源之间具有交集。
303、第一RRU根据所述第一通道联合校正指令的指示,通过所述第一RRU的2个业务通道中的2发射通道发送第一校正参考信号。
304、第二RRU向交换设备发送第二RRU的2个接收通道针对所述第一校正参考信号的接收结果。交换设备向BBU转发第二RRU的2个接收通道针对所述第一校正参考信号的接收结果。
305、第二RRU根据所述第二通道联合校正指令的指示,通过所述第二RRU的2个业务通道中的2发射通道发送第二校正参考信号。
306、第一RRU向交换设备发送所述第一RRU的2个接收通道针对所述第二校正参考信号的接收结果。交换设备向BBU转发第一RRU的2个接收通道针对所述第二校正参考信号的接收结果。
307、BBU向远程管理设备转发第二校正参考信号和第一RRU的2个接收通道针对所述第二校正参考信号的接收结果。BBU向远程管理设备转发第一校正参考信号和第二RRU的2个接收通道针对所述第一校正参考信号的接收结果。
308、远程管理设备根据所述第一校正参考信号、第二RRU的2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号以及第一RRU的2个接收通道针对所述第二校正参考信号的接收结果,计算得到所述第一RRU的两个业务通道和所述第二RRU的两个业务通道的校正补偿系数。
远程管理设备可将计算得到的所述第一RRU的两个业务通道和所述第二RRU的两个业务通道的校正补偿系数反馈给BBU,BBU可将第一RRU的两个业务通道的校正补偿系数反馈给第一RRU,BBU可将第二RRU的两个业务通道的校正补偿系数反馈给第二RRU。
其中,校正补偿系数用于对业务通道的接收通道和发射通道之间信道响应的不一致性进行补偿。
例如,所述第一RRU的两个业务通道的校正补偿系数可用于对所述第一RRU的两个业务通道收/发的信号进行相位补偿和/或幅度补偿。所述第二RRU的两个业务通道的校正补偿系数可用于对所述第二RRU的两个业务通道收/发的信号进行相位补偿和/或幅度补偿。
可选的,在本发明的一些可能的实施方式之中,所述第一RRU的2个业务通道中的2发射通道所发送的第一校正参考信号可通过频分、码分或时分等方式进行区分。
可选的,在本发明的一些可能的实施方式之中,所述第二RRU的2个业务通道中的2发射通道所发送的第二校正参考信号可通过频分、码分或时分等方式进行区分。
其中,远程管理设备可参考上述实施例中的举例方式,根据第二RRU的2个接收通道针对第一校正参考信号的接收结果、第一校正参考信号、所述第二校正参考信号以及所述第一RRU的2个接收通道针对所述第二校正参考信号的接收结果,计算得到所述第一RRU的2个业务通道和所述第二RRU的2个业务通道的校正补偿系数。
可以理解,本实施例中主要以第一RRU和第二RRU这两个RRU进行通道联合校正为例的,对于更多RRU的场景,可以此类推。例如基站还包括RRU2,那么第一RRU与RRU2之间亦可按照与第一RRU和第二RRU进行通道联合校正的类似方式来进行通道联合校正。
其中,第一RRU可以与多个RRU同步进行通道联合校正,当然多个RRU之间也可串行的进行通道联合校正,具体通道联合校正方式可参考上述举例,此处不在一一赘述。
可以看出,本实施例的方案中,基站的交换设备(rHub)向第一RRU发送第一通道联合校正指令,触发第一RRU通过所述第一RRU的2个业务通道中的2发射通道发送第一校正参考信号;交换设备向所述第二RRU发送第二通道联合校正指令,触发所述第二RRU通过第二RRU的2个业务通道中的2发射通道发送第二校正参考信号。远程管理设备根据第一校正参考信号、第二RRU的接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号以及第一RRU的接收通道针对所述第二校正参考信号的接收结果,计算得到第一RRU的2个业务通道和所述第二RRU的2个业务通道的校正补偿系数。其中,由于是利用第一RRU和第二RRU的业务信道来收发校正参考信号,基于第一RRU和第二RRU的业务信道收发的校正参考信号,来计算得到第一RRU的2个业务通道和所述第二RRU的2个业务通道的校正补偿系数,借助上述多RRU通道联合校正机制中,即使第一RRU和第二RRU没有信道校正参考通道(即不具备通道自校正功能),也有利于实现多RRU之间的通道校正。
进一步的,本实施例的技术方案可针对室内小基站场景,可解决室内RRU的通道联合校正问题,通过通道联合校正可增加联合发射的天线维度、增加复用用户数和提高频谱效率等。交换设备等协助控制执行通道联合校正,使得不需要新增其他的校正辅助单元,可行性高。由于可有利于实现不具备自校正功能的RRU之间的通道联合校正,可节省自校正通道成本和其所需空间,有利于进一步缩小产品尺寸,提高产品竞争力。
可以理解,本实施例中是以由远程管理设备来计算校正补偿系数为例进行说明的,当然也可直接由BBU来计算校正补偿系数,如果由BBU来计算校正补 偿系数,那么远程管理设备变得不再需要了,与远程管理设备交互信息的相关步骤也变得不需要了。
可以理解,本实施例中是以X1和X2均等于2为例进行说明的,当然X1和X2等于其他值的情况可以此类推。
请参见图4,图4为本发明的另一个实施例提供的一种通道联合校正方法的流程示意图。图4所示的通道联合校正方法可以在如1-c举例所示架构的基站中具体实施。本实施例中主要X1和X2均等于2为例,X1和X2等于其他值的情况可以此类推。如图4-b举例所示,本发明的一个实施例提供的一种通道联合校正方法可包括:
401、BBU向第一RRU发送第一通道联合校正指令。
其中,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的2个业务通道中的2个发射通道发送第一校正参考信号。所述第一RRU为不具备自校正功能的RRU。
相应的,第一RRU接收第一通道联合校正指令。
其中,第一通道联合校正指令可携带第一校正参考信号。
此外,第一校正参考信号也可不携带在第一通道联合校正指令中,而可独立于第一通道联合校正指令而向第一RRU进行发送。
进一步的,第一通道联合校正指令还可以携带第一RRU的标识(第一RRU的标识例如可包括小区编号,也就是说,例如可以通过相应小区编号+RRU编号来标识第一RRU。此外,第一通道联合校正指令还可携带第一RRU的2个业务通道所对应天线的编号。也就是说,可通过在第一通道联合校正指令携带第一RRU的2个业务通道所对应天线的编号,来指示由第一RRU的2个业务通道来进行校正参考信号的收/发。
可选的,第一通道联合校正指令还指示出所述第一RRU的2个业务通道中的2发射通道发送第一校正参考信号的时间资源和/或频率资源。
402、BBU向第二RRU发送第二通道联合校正指令。
其中,所述第二通道联合校正指令用于触发第二RRU通过所述第二RRU的2个业务通道中的2个发射通道发送第二校正参考信号。所述第二RRU为不具 备自校正功能的RRU。
相应的,第二RRU接收第二通道联合校正指令。
其中,第二通道联合校正指令可携带第二校正参考信号。
此外,第二校正参考信号也可不携带在第一通道联合校正指令中,而可独立于第二通道联合校正指令而向第二RRU进行发送。
进一步的,第二通道联合校正指令还可以携带第二RRU的标识(第二RRU的标识例如可包括第二RRU编号和相应小区编号,也就是说,例如可以通过相应小区编号+RRU编号来标识第二RRU。此外,第一通道联合校正指令还可携带第一RRU的2个业务通道所对应天线的编号。也就是说,可通过在第二通道联合校正指令携带第二RRU的2个业务通道所对应天线的编号,来指示由第一RRU的2个业务通道来进行校正参考信号的收/发。
可选的,第二通道联合校正指令还指示出所述第二RRU的2个业务通道中的2发射通道发送第二校正参考信号的时间资源和/或频率资源。第二通道联合校正指令还指示出所述第二RRU的2个业务通道中的2个接收通道接收第一校正参考信号的时间资源和/或频率资源。第一通道联合校正指令还指示出所述第一RRU的2个业务通道中的2个接收通道接收第二校正参考信号的时间资源和/或频率资源。
可以理解,第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2个接收通道接收第二校正参考信号的时间资源和/或频率资源,同于第二通道联合校正指令指示出的所述第二RRU的2个业务通道中的2个发射通道发送第二校正参考信号的时间资源和/或频率资源。同理,第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2个发射通道发送第一校正参考信号的时间资源和/或频率资源,同于第二通道联合校正指令指示出的所述第二RRU的2个业务通道中的2个接收通道接收第一校正参考信号的时间资源和/或频率资源。
又例如,所述第二通道联合校正指令指示出的第二RRU的2个业务通道中的2发射通道发送第二校正参考信号的时间资源,例如可与所述第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2接收通道接收所述第二 校正参考信号的时间资源之间具有交集。又例如,所述第二通道联合校正指令指示出的第二RRU的2个业务通道中的2接收通道接收第一校正参考信号的时间资源,例如可与所述第一通道联合校正指令指示出的所述第一RRU的2个业务通道中的2个发射通道发送所述第一校正参考信号的时间资源之间具有交集。
403、第一RRU根据所述第一通道联合校正指令的指示,通过所述第一RRU的2个业务通道中的2发射通道发送第一校正参考信号。
404、第二RRU向BBU发送第二RRU的2个接收通道针对所述第一校正参考信号的接收结果。
405、第二RRU根据所述第二通道联合校正指令的指示,通过所述第二RRU的2个业务通道中的2发射通道发送第二校正参考信号。
406、第一RRU向BBU发送所述第一RRU的2个接收通道针对所述第二校正参考信号的接收结果。
407、BBU根据所述第一校正参考信号、第二RRU的2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号以及第一RRU的2个接收通道针对所述第二校正参考信号的接收结果,计算得到所述第一RRU的两个业务通道和所述第二RRU的两个业务通道的校正补偿系数。
BBU可保存计算得到的所述第一RRU的两个业务通道和所述第二RRU的两个业务通道的校正补偿系数,BBU还可将第一RRU的两个业务通道的校正补偿系数反馈给第一RRU,BBU可将第二RRU的两个业务通道的校正补偿系数反馈给第二RRU。
其中,所述第一RRU的两个业务通道的校正补偿系数可用于对所述第一RRU的两个业务通道收/发的信号进行相位补偿和/或幅度补偿。所述第二RRU的两个业务通道的校正补偿系数可用于对所述第二RRU的两个业务通道收/发的信号进行相位补偿和/或幅度补偿。
可以理解,本实施例中主要以第一RRU和第二RRU这两个RRU进行通道联合校正为例的,对于更多RRU的场景,可以此类推。例如基站还包括RRU2,那么第一RRU与RRU2之间亦可按照与第一RRU和第二RRU进行通道联合校正 的类似方式来进行通道联合校正。
其中,第一RRU可以与多个RRU同步进行通道联合校正,当然多个RRU之间也可串行的进行通道联合校正,具体通道联合校正方式可参考上述举例,此处不在一一赘述。
可以看出,本实施例的方案中,基站的BBU向第一RRU发送第一通道联合校正指令,触发第一RRU通过所述第一RRU的2个业务通道中的2发射通道发送第一校正参考信号;BBU向所述第二RRU发送第二通道联合校正指令,触发所述第二RRU通过第二RRU的2个业务通道中的2发射通道发送第二校正参考信号。BBU根据第一校正参考信号、第二RRU的接收通道针对第一校正参考信号的接收结果、第二校正参考信号以及第一RRU的接收通道针对所述第二校正参考信号的接收结果,计算得到第一RRU的2个业务通道和所述第二RRU的2个业务通道的校正补偿系数。由于是利用第一RRU和第二RRU的业务信道来收发校正参考信号,基于第一RRU和第二RRU的业务信道收发的校正参考信号,来计算得到第一RRU的2个业务通道和所述第二RRU的2个业务通道的校正补偿系数,借助上述多RRU通道联合校正机制中,即使第一RRU和第二RRU没有信道校正参考通道(即不具备通道自校正功能),也有利于实现多RRU之间的通道校正。
进一步的,本实施例的技术方案可针对室内小基站场景,可解决室内RRU的通道联合校正问题,通过通道联合校正可增加联合发射的天线维度、增加复用用户数和提高频谱效率等。BBU等协助控制执行通道联合校正,使得不需要新增其他额外的校正辅助单元,可行性高。由于可有利于实现不具备自校正功能的RRU之间的通道联合校正,可节省自校正通道成本和其所需空间,有利于进一步缩小产品尺寸,提高产品竞争力。
可以理解,本实施例是以X1和X2均等于2为例进行说明的,当然X1和X2等于其他值的情况可以此类推。
下面对校正补偿系数的计算方式进行举例。
可选的,在本发明的一些可能的实施方式之中,所述根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第 二校正参考信号以及所述X1个接收通道针对所述第二校正参考信号的接收结果计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,可以包括:根据所述第一校正参考信号和所述X2个接收通道针对所述第一校正参考信号的接收结果,计算得到从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值;根据所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值;根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
可选的,在本发明的一些可能的实施方式之中,所述信道响应估计值可以通过如下公式进行表示:
Figure PCTCN2016087858-appb-000013
其中,
Figure PCTCN2016087858-appb-000014
表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道中的发射通道之间的信道响应估计值。
其中,
Figure PCTCN2016087858-appb-000015
表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道之中的发射通道之间的空口部分的信道响应估计值;
其中,
Figure PCTCN2016087858-appb-000016
表示第i个RRU的第k个业务通道中的接收通道的信道响应估计值,所述
Figure PCTCN2016087858-appb-000017
表示第j个RRU的第m个业务通道中的发射通道的信道响应估计值。
为简化表示,可假设μa表示第a个业务通道的接收通道与该第a个业务通道 的发射通道的信道响应估计值的比值,可定义αab表示第a个业务通道的μ值与第b个业务通道的μ值之比,即αab=μab
可选的,在本发明的一些可能的实施方式之中,所述根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,可包括:通过如下公式,根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X2个业务通道的校正补偿系数;
Figure PCTCN2016087858-appb-000018
其中,所述
Figure PCTCN2016087858-appb-000019
表示第i个RRU的第k个业务通道与第j个RRU的第m个业务通道之间的校正补偿系数;
其中,所述
Figure PCTCN2016087858-appb-000020
表示第i个RRU的第k个业务通道的接收通道与发射通道的信道响应估计值的比值,所述
Figure PCTCN2016087858-appb-000021
表示第j个RRU的第m个业务通道的接收通道与发射通道的信道响应估计值的比值。
其中,上述举例中假设下行发射和上行接收使用相同频率,空口信道具有互易性。因此
Figure PCTCN2016087858-appb-000022
利用空口信道具有互易性简化了计算过程。
可选的,在本发明的一些可能的实施方式之中,所述根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数还包括:通过如下公式计算得到所述X1个业务通道的校正补偿系数;
Figure PCTCN2016087858-appb-000023
其中,所述
Figure PCTCN2016087858-appb-000024
表示第i个RRU的第k个业务通道与第i个RRU 的第n个业务通道之间的校正补偿系数。所述
Figure PCTCN2016087858-appb-000025
表示第i个RRU的第n个业务通道的接收通道与发射通道的信道响应估计值的比值。
可选的,在本发明一些可能实施方式之中,一种补偿方法可包括:利用a0k对第k个业务通道的待发射的上行信号进行相位补偿和/或幅度补偿(a0k表示第k个业务通道与第0个业务通道之间的校正补偿系数,即表示第k个业务通道相对于第0个业务通道的校正补偿系数)。也可利用a0k对第k个业务通道的下行信号进行补偿。
上述举例给出了计算校正补偿系数的一般性描述。下面以X1和X2均等于2为例,举例介绍针对RRU0和RRU1计算校正补偿系数的方式。
可选的,在本发明一些可能的实施方式之中,计算得到的RRU0的2个发射通道与所述RRU1的2个接收通道之间的信道响应估计值可表示如下:
Figure PCTCN2016087858-appb-000026
Figure PCTCN2016087858-appb-000027
Figure PCTCN2016087858-appb-000028
Figure PCTCN2016087858-appb-000029
Figure PCTCN2016087858-appb-000030
表示从RRU1的第0个业务通道中的接收通道与RRU0的第0个业务通道中的发射通道之间的信道响应估计值。
Figure PCTCN2016087858-appb-000031
表示从RRU1的第0个业务通道中的接收通道与RRU0的第0个业务通道中的发射通道之间的空口部分的信道响应估计值。
Figure PCTCN2016087858-appb-000032
表示RRU1的第0个业务通道中的接收通道的信道响应估计值,所述
Figure PCTCN2016087858-appb-000033
表示RRU0的第0个业务通道中的发射通道的信道响应估计值,以此类推。
可选的,在本发明一些可能的实施方式之中,计算得到的RRU1的2个发射通道与所述RRU0的2个接收通道之间的信道响应估计值可表示如下:
Figure PCTCN2016087858-appb-000034
Figure PCTCN2016087858-appb-000035
Figure PCTCN2016087858-appb-000036
Figure PCTCN2016087858-appb-000037
其中,上述公式的一般性表现形式可如下:
Figure PCTCN2016087858-appb-000038
其中,
Figure PCTCN2016087858-appb-000039
表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道中的发射通道之间的信道响应估计值。
其中,
Figure PCTCN2016087858-appb-000040
表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道之中的发射通道之间的空口部分的信道响应估计值。
其中,
Figure PCTCN2016087858-appb-000041
表示第i个RRU的第k个业务通道中的接收通道的信道响应估计值,所述
Figure PCTCN2016087858-appb-000042
表示第j个RRU的第m个业务通道中的发射通道的信道响应估计值。
为简化表示,可假设μa表示第a个业务通道的接收通道与该第a个业务通道 的发射通道的信道响应估计值的比值,可定义αab表示第a个业务通道的μ值与第b个业务通道的μ值之比,即αab=μab
可选的,在本发明一些可能的实施方式之中,根据从所述RRU1的2个发射通道与所述RRU0的2个接收通道之间的信道响应估计值,和从所述RRU0的2个发射通道与所述RRU1的2个接收通道之间的信道响应估计值,计算得到所述RRU0的2个业务通道和所述RRU1的2个业务通道的校正补偿系数可包括:根据从所述RRU1的2个发射通道与所述RRU0的2个接收通道之间的信道响应估计值和从所述RRU0的2个发射通道与所述RRU1的2个接收通道之间的信道响应估计值,计算得到所述RRU0的2个业务通道和所述RRU1的2个业务通道的校正补偿系数;
Figure PCTCN2016087858-appb-000043
其中,所述
Figure PCTCN2016087858-appb-000044
表示RRU1的第0个业务通道与RRU0的第0个业务通道之间的校正补偿系数。其中,所述
Figure PCTCN2016087858-appb-000045
表示RRU0的第0个业务通道 的接收通道与发射通道的信道响应估计值的比值,所述
Figure PCTCN2016087858-appb-000046
表示RRU1的第0个业务通道的接收通道与发射通道的信道响应估计值的比值,其它情况以此类推。
可选的,在本发明一些可能实施方式之中,
Figure PCTCN2016087858-appb-000047
其中,所述
Figure PCTCN2016087858-appb-000048
表示RRU0的第1个业务通道与RRU0的第0个业务通道之间的校正补偿系数。所述
Figure PCTCN2016087858-appb-000049
表示RRU0的第1个业务通道的接收通道与发射通道的信道响应估计值的比值。
其中,所述
Figure PCTCN2016087858-appb-000050
表示RRU1的第1个业务通道与RRU0的第0个业务通道之间的校正补偿系数,可用于表示RRU1的第1个业务通道与RRU0的第0个业务通道之间的互易性差异。
Figure PCTCN2016087858-appb-000051
可用于表示RRU0的第1个业务通道与RRU0的第0个业务通道之间的互易性差异。
通过上面举例的方式,可以找到了
Figure PCTCN2016087858-appb-000052
与其他业务通道的μ值之间的关系。可令
Figure PCTCN2016087858-appb-000053
的收/发补偿系数为1。通过补偿有利于使得其它业务通道的互易性都对齐于RRU0的第0个业务通道。完成各业务通道补偿后,对于TDD***的多个RRU的上下行互易性就可以得到一定程度的保证。这样就可利用多个RRU的上行信道估计信息完成下行联合发射的权值计算,从而可增加联合发射的天线维度、增加复用用户数、提高频谱效率等。
下面还提供可执行本发明上述实施例中的通道联合校正方法的相关设备和通信***。其中,通信***或相关设备中的各实体可配合执行本发明实施例提供的通道联合校正方法。
参见图5,本发明实施例还提供了一种多RRU通道联合校正装置500,可以 包括:
发送单元510,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;
所述发送单元510还用于,向第二RRU发送第二通道联合校正指令,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;
其中,接收单元520,用于接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
处理单元530,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
可选的,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个发射通道发送所述第一校正参考信号的时间资源和/或频率资源,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个接收通道接收所述第一校正参考信号的时间资源和/或频率资源。
可选的,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个发射通道发送所述第二校正参考信号的时间资源和/或频率资源,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个接收通道接收所述第二校正参考信号的时间资源和/或频率资源。
可选的,所述第一RRU和所述第二RRU是为同一UE提供服务的RRU。
可选的,所述处理单元530具体用于,根据所述第一校正参考信号和所述X2个接收通道针对所述第一校正参考信号的接收结果,计算得到从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值;根据所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得 到从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值;根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
处理单元530计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数的方式可参考上述实施例中的相关描述,此处不再赘述。
例如所述第一RRU和所述第二RRU是为同一UE提供服务的RRU。
参见图6,本发明实施例还提供一种通信***,包括:
远程管理设备610、第一RRU 620和第二RRU 630。
远程管理设备610,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
可选的,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个发射通道发送所述第一校正参考信号的时间资源和/或频率资源,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个接收通道接收所述第一校正参考信号的时间资源和/或频率资源。
可选的,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个发射通道发送所述第二校正参考信号的时间资源和/或频率资源,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的 X1个接收通道接收所述第二校正参考信号的时间资源和/或频率资源。
可选的,第一RRU和第二RRU可以是为同一UE提供服务的RRU。第一RRU和第二RRU可属于或不属于同一基站。
远程管理设备610计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数的方式可参考上述实施例中的相关描述,此处不再赘述。
参见图7,本发明实施例还提供一种基站,包括:
交换设备710和第一RRU 720。
所述交换设备710,可用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
可选的,第一RRU和第二RRU可以是为同一UE提供服务的RRU。第一RRU和第二RRU可属于或不属于同一基站。
所述交换设备710计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数的方式可参考上述实施例中的相关描述,此处不再赘述。
参见图8,本发明实施例还提供一种通道联合校正装置800,可包括:收发器810、处理器830和存储器840。
其中,收发器810,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;
收发器810还用于接收所述第二RRU发送的所述第二RRU的X2个接收通道针对所述第一校正参考信号的接收结果;
收发器810还用于,向所述第二RRU发送第二通道联合校正指令,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号。
收发器810还用于,接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果。
处理器830,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号以及所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
处理器830主要控制通道联合校正装置800的操作,其中,处理器830还可以称为中央处理单元(CPU,Central Processing Unit)。存储器840可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器840的一部分还可以包括非易失性随机存取存储器。具体的应用中多RRU通道联合校正装置800的各个组件通过总线***850耦合在一起,其中总线***850除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***850。
上述本发明实施例揭示的方法可以应用于处理器830中,或者部分或全部步骤由处理器830实现。处理器830可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器830中的硬件的集成逻辑电路或者软件形式的指令完成。其中,上述的处理器830可以是现成可编程门阵列(FPGA)、数字信号处理器(DSP)、专用集成电路(ASIC)、通用处理器、或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。处理器830可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图的部分或全部。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完 成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。其中,该存储介质位于存储器840,例如处理器830可读取存储器840中的信息,结合其硬件完成上述方法的步骤。
其中,通道联合校正装置800可为远程管理设备(例如网管服务器或云计算中心)或交换设备或BBU,或者,通道联合校正装置800部署于远程管理设备或交换设备中。
参见图9,本发明实施例还提供一种基站,包括:
基带单元910和第一RRU 920。
基带单元910,可用于向第一RRU 920发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
可选的,第一RRU和第二RRU可以是为同一UE提供服务的RRU。第一RRU和第二RRU可属于或不属于同一基站。
所述基带单元910计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数的方式可参考上述实施例中的相关描述,此处不再赘述。
参见图10,本发明实施例还提供一种基站,包括:
交换设备1010、基带单元1020和第一RRU 1030。
其中,所述交换设备1010,用于向第一RRU 1030发送第一通道联合校正 指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
所述基带单元1020,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,其中,所述X1和所述X2为大于1的整数。
可选的,第一RRU和第二RRU可以是为同一UE提供服务的RRU。第一RRU和第二RRU可属于或不属于同一基站。
所述基带单元1020计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数的方式可参考上述实施例中的相关描述,此处不再赘述。
参见图11,本发明实施例提供一种RRU 1100可包括:
处理器1110、X1个业务通道1120、X1个功率调整电路1130、X1个补偿电路1140和X1个天线1150。其中,业务通道1120通过功率调整电路1130与补偿电路连接1140,天线1150通过补偿电路1140与功率调整电路1130连接。
其中,X1个业务通道1120与X1个功率调整电路1130一一对应,X1个业务通道1120与X1个个补偿电路1140一一对应,X1个业务通道1120与X1个天线1150一一对应。
处理器1110用于,通过所述RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;接收所述第二RRU发送的X2个业务通道中的X2个接收通道针对第一校正参考信号的接收结果;得到所述RRU的X1个业务通道中的X1个接收通道针对第二校正参考信号的接收结果,其中,所述第二校正参考信号 由所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号以及所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
补偿电路1040,用于基于业务通道的校正补偿系数对相应业务通道的收发的信号进行相位补偿或幅度补偿。
所述X1和所述X2为大于或等于1的整数
可选的,在本发明一些可能的实施方式中,处理器1110计算所述X1个业务通道和/或所述X2个业务通道的校正补偿系数的具体实现方式,可参考上述实施例中的相关描述。
RRU 1100和第二RRU可以是为同一UE提供服务的RRU。RRU 1100和第二RRU可属于或不属于同一基站。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,其中,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种通道联合校正方法,其特征在于,包括:
    向第一远程射频单元(RRU)发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;
    向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;
    接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述向第一远程射频单元发送第一通道联合校正指令包括:基带单元(BBU)向第一远程射频单元发送第一通道联合校正指令;
    所述向第二RRU发送第二通道联合校正指令包括:所述BBU向第二RRU发送第二通道联合校正指令;
    所述接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果包括:所述BBU接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    所述根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述 第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数包括:所述BBU根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
  3. 根据权利要求1所述的方法,其特征在于,所述向第一远程射频单元发送第一通道联合校正指令包括:交换设备向第一远程射频单元发送第一通道联合校正指令;
    所述向第二RRU发送第二通道联合校正指令包括:所述交换设备向第二RRU发送第二通道联合校正指令;
    所述接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果包括:所述交换设备接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    所述根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数包括:BBU根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
  4. 根据权利要求1所述的方法,其特征在于,所述向第一远程射频单元发送第一通道联合校正指令包括:BBU向第一远程射频单元发送第一通道联合校正指令;
    所述向第二RRU发送第二通道联合校正指令包括:所述BBU向第二RRU发送第二通道联合校正指令;
    所述接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果包括:所述BBU接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    所述根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数包括:远程管理设备根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
  5. 根据权利要求1所述的方法,其特征在于,所述向第一远程射频单元发送第一通道联合校正指令包括:交换设备向第一远程射频单元发送第一通道联合校正指令;
    所述向第二RRU发送第二通道联合校正指令包括:所述交换设备向第二RRU发送第二通道联合校正指令;
    所述接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果包括:所述交换设备接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    所述根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数包括:所述交换设备根据所述第一校正参考信号、所述 X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述X2个业务通道为所述第二RRU的全部业务通道,所述X1个业务通道为所述第一RRU的全部业务通道。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个发射通道发送所述第一校正参考信号的时间资源和/或频率资源,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个接收通道接收所述第一校正参考信号的时间资源和/或频率资源。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个发射通道发送所述第二校正参考信号的时间资源和/或频率资源,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个接收通道接收所述第二校正参考信号的时间资源和/或频率资源。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一通道联合校正指令携带有所述第一校正参考信号;和/或,所述第二通道联合校正指令携带有所述第二校正参考信号。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一RRU和所述第二RRU是为同一用户设备(UE)提供服务的RRU。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,
    所述根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,包括:
    根据所述第一校正参考信号和所述X2个接收通道针对所述第一校正参考信号的接收结果,计算得到从所述X1个发射通道与所述X2个接收通道之间的 信道响应估计值;
    根据所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值;
    根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
  12. 根据权利要求11所述的方法,其特征在于,所述信道响应估计值通过如下公式进行表示:
    Figure PCTCN2016087858-appb-100001
    其中,
    Figure PCTCN2016087858-appb-100002
    表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道中的发射通道之间的信道响应估计值;
    其中,
    Figure PCTCN2016087858-appb-100003
    表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道之中的发射通道之间的空口部分的信道响应估计值;
    其中,
    Figure PCTCN2016087858-appb-100004
    表示第i个RRU的第k个业务通道中的接收通道的信道响应估计值,所述
    Figure PCTCN2016087858-appb-100005
    表示第j个RRU的第m个业务通道中的发射通道的信道响应估计值。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述第一RRU和/或所述第二RRU不具备自校正功能。
  14. 一种通道联合校正装置,其特征在于,包括:
    发送单元,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;
    所述发送单元还用于,向第二RRU发送第二通道联合校正指令,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;
    接收单元,用于接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    处理单元,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
  15. 根据权利要求14所述的装置,其特征在于,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个发射通道发送所述第一校正参考信号的时间资源和/或频率资源,其中,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个接收通道接收所述第一校正参考信号的时间资源和/或频率资源。
  16. 根据权利要求14至15任一项所述的装置,其特征在于,所述第二通道联合校正指令还指示出所述第二RRU的X2个业务通道中的X2个发射通道发送所述第二校正参考信号的时间资源和/或频率资源,所述第一通道联合校正指令还指示出所述第一RRU的X1个业务通道中的X1个接收通道接收所述第二校正参考信号的时间资源和/或频率资源。
  17. 根据权利要求14至16任一项所述的装置,其特征在于,所述第一RRU和所述第二RRU是为同一UE提供服务的RRU。
  18. 根据权利要求14至17任一项所述的装置,其特征在于,
    所述处理单元具体用于,根据所述第一校正参考信号和所述X2个接收通道针对所述第一校正参考信号的接收结果,计算得到从所述X1个发射通道与 所述X2个接收通道之间的信道响应估计值;根据所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值;根据从所述X1个发射通道与所述X2个接收通道之间的信道响应估计值和从所述X2个发射通道与所述X1个接收通道之间的信道响应估计值,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数。
  19. 根据权利要求18所述的装置,其特征在于,所述信道响应估计值通过如下公式进行表示:
    Figure PCTCN2016087858-appb-100006
    其中,
    Figure PCTCN2016087858-appb-100007
    表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道中的发射通道之间的信道响应估计值;
    其中,
    Figure PCTCN2016087858-appb-100008
    表示从第i个RRU的第k个业务通道中的接收通道与第j个RRU的第m个业务通道之中的发射通道之间的空口部分的信道响应估计值;
    其中,
    Figure PCTCN2016087858-appb-100009
    表示第i个RRU的第k个业务通道中的接收通道的信道响应估计值,所述
    Figure PCTCN2016087858-appb-100010
    表示第j个RRU的第m个业务通道中的发射通道的信道响应估计值。
  20. 一种通信***,其特征在于,包括:
    远程管理设备、第一远程射频单元RRU和第二RRU;
    所述远程管理设备,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正 指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
  21. 一种基站,其特征在于,包括:
    交换设备和第一远程射频单元RRU;
    所述交换设备,用于向第一RRU发送第一通道联合校正指令,其中,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
  22. 一种基站,其特征在于,包括:
    基带单元和第一远程射频单元RRU;
    所述基带单元,用于向第一RRU发送第一通道联合校正指令,其中,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校 正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,所述X1和所述X2为大于1的整数。
  23. 一种基站,其特征在于,包括:交换设备、基带单元和第一远程射频单元RRU;
    其中,所述交换设备,用于向第一RRU发送第一通道联合校正指令,所述第一通道联合校正指令用于触发第一RRU通过所述第一RRU的X1个业务通道中的X1个发射通道发送第一校正参考信号;向第二RRU发送第二通道联合校正指令,其中,所述第二通道联合校正指令用于触发所述第二RRU通过所述第二RRU的X2个业务通道中的X2个发射通道发送第二校正参考信号;接收所述第二RRU发送的所述X2个业务通道中的X2个接收通道针对所述第一校正参考信号的接收结果;接收所述第一RRU发送的所述X1个业务通道中的X1个接收通道针对所述第二校正参考信号的接收结果;
    所述基带单元,用于根据所述第一校正参考信号、所述X2个接收通道针对所述第一校正参考信号的接收结果、所述第二校正参考信号和所述X1个接收通道针对所述第二校正参考信号的接收结果,计算得到所述X1个业务通道和/或所述X2个业务通道的校正补偿系数,其中,所述X1和所述X2为大于1的整数。
PCT/CN2016/087858 2015-06-30 2016-06-30 通道联合校正的方法和相关装置及*** WO2017000895A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES16817259T ES2769069T3 (es) 2015-06-30 2016-06-30 Método de corrección conjunta de canal y dispositivo y sistema relacionados
EP16817259.1A EP3301832B1 (en) 2015-06-30 2016-06-30 Channel joint correction method, and related device and system
US15/858,983 US10320464B2 (en) 2015-06-30 2017-12-29 Joint channel correction method, related apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510373271.6 2015-06-30
CN201510373271.6A CN106330350B (zh) 2015-06-30 2015-06-30 多远程射频单元联合通道校正的方法和相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/858,983 Continuation US10320464B2 (en) 2015-06-30 2017-12-29 Joint channel correction method, related apparatus, and system

Publications (2)

Publication Number Publication Date
WO2017000895A2 true WO2017000895A2 (zh) 2017-01-05
WO2017000895A3 WO2017000895A3 (zh) 2017-02-16

Family

ID=57607881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087858 WO2017000895A2 (zh) 2015-06-30 2016-06-30 通道联合校正的方法和相关装置及***

Country Status (5)

Country Link
US (1) US10320464B2 (zh)
EP (1) EP3301832B1 (zh)
CN (1) CN106330350B (zh)
ES (1) ES2769069T3 (zh)
WO (1) WO2017000895A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121781B2 (en) 2017-11-30 2021-09-14 Huawei Technologies Co., Ltd. Calibration method and apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180049750A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 이동통신시스템에서 통신 방법 및 장치
CN107395533B (zh) * 2017-06-20 2020-06-16 上海华为技术有限公司 一种通道校正方法以及校正装置
WO2019105346A1 (zh) * 2017-11-30 2019-06-06 华为技术有限公司 一种校正方法及装置
CN111130582B (zh) * 2018-11-01 2022-02-25 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
CN111510229B (zh) * 2019-01-30 2022-12-27 华为技术有限公司 射频通道的校正方法和装置及天线和基站
CN111726172B (zh) * 2019-03-22 2021-10-26 华为技术有限公司 通道校正的方法和装置
CN114698095A (zh) * 2020-12-29 2022-07-01 上海华为技术有限公司 一种定位方法及其设备
CN116016044A (zh) * 2021-10-22 2023-04-25 上海华为技术有限公司 一种信号传输装置以及信号传输方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2494703A4 (en) * 2009-10-29 2014-09-03 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT IN A COMMUNICATION SYSTEM
JP5367843B2 (ja) * 2009-12-16 2013-12-11 株式会社東芝 無線信号処理装置及び無線装置
CN103457651B (zh) * 2012-05-31 2016-08-24 华为技术有限公司 联合通道校正方法、联合通道校正单元及基站
CN103595665B (zh) * 2012-08-14 2017-07-07 华为技术有限公司 通道校正方法、装置及无线接入***
CN102891708A (zh) 2012-09-17 2013-01-23 华为技术有限公司 收发通道响应的校正方法、装置、***及bbu
CN103716075B (zh) 2012-09-29 2016-12-21 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
CN103229471B (zh) * 2012-12-17 2016-06-15 华为技术有限公司 通道校正补偿方法、基带处理单元及***
CN103905353B (zh) * 2012-12-27 2017-10-17 华为技术有限公司 一种rru间联合通道校正的方法及设备
CN103338167B (zh) * 2012-12-31 2016-06-22 上海华为技术有限公司 远程射频单元的通道校正方法及相关设备和***
CN109348533B (zh) * 2013-05-15 2021-12-14 华为技术有限公司 一种信号调整方法及装置、小区
CN104244296B (zh) * 2013-06-13 2018-02-06 华为技术有限公司 多rru间通道校正方法及装置
CN104378775B (zh) * 2013-08-16 2018-01-05 普天信息技术研究院有限公司 Rru间通道校准的方法
CN103428125A (zh) * 2013-08-16 2013-12-04 上海华为技术有限公司 远端射频单元间的通道校正方法、相关装置及***
CN104468425B (zh) * 2013-09-13 2019-02-26 华为技术有限公司 一种远端射频单元通道校正方法、装置和***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121781B2 (en) 2017-11-30 2021-09-14 Huawei Technologies Co., Ltd. Calibration method and apparatus

Also Published As

Publication number Publication date
EP3301832A2 (en) 2018-04-04
ES2769069T3 (es) 2020-06-24
EP3301832B1 (en) 2019-12-25
US20180123666A1 (en) 2018-05-03
CN106330350A (zh) 2017-01-11
WO2017000895A3 (zh) 2017-02-16
EP3301832A4 (en) 2018-06-27
CN106330350B (zh) 2019-06-14
US10320464B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2017000895A2 (zh) 通道联合校正的方法和相关装置及***
WO2020063923A1 (zh) 信号传输方法、相关设备及***
WO2020034323A1 (en) Method and apparatus for configuration of sidelink channel resource units
CN115668852A (zh) 用于到多个传输和接收点(trp)的同时传输的方法和装置
WO2019154378A1 (zh) 准共址信息的确定方法、装置及设备
JP2023101787A (ja) サイドリンクチャネルリソースユニットの構成のための方法および装置
WO2014048209A1 (zh) 天线端口位置关系的通知和确定方法、***及装置
CN112399543B (zh) 一种功率控制参数配置方法、终端和网络侧设备
WO2021000680A1 (zh) 一种协作传输方法及通信装置
JP2022517205A (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
CN112205056A (zh) 具有波束控制和无源互调感知的上行链路-下行链路协同调度
WO2018088486A1 (ja) 無線通信システム、及び参照信号送信方法
US20190253845A1 (en) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (noma) network
EP3155734B1 (en) Method, apparatus and computer program
WO2020106336A1 (en) Apparatus and methods for sidelink power control in a wireless communications system
WO2020034320A1 (en) Method and apparatus for configuration of sidelink channel resource units
WO2013087024A1 (zh) 发射信号的方法和基站
WO2016002087A1 (ja) 通信システム、基地局及び基地局制御方法
JP2019526185A (ja) チャネル補正方法及びチャネル補正装置並びに通信システム
CN111771338A (zh) 物理上行链路共享信道(pusch)跳频分配
WO2022236657A1 (en) Method and apparatus for determining guard period location for srs antenna switching
EP4214840A1 (en) Downlink symbol-level precoding as part of multiuser miso communication
CN112399574A (zh) 一种无线通信的方法和装置以及通信设备
US20240214044A1 (en) Reduced complexity in uplink receive beamformer calculations
WO2024130657A1 (zh) 信息处理方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016817259

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817259

Country of ref document: EP

Kind code of ref document: A2