WO2016071979A1 - 無線通信システム、基地局装置および端末装置 - Google Patents

無線通信システム、基地局装置および端末装置 Download PDF

Info

Publication number
WO2016071979A1
WO2016071979A1 PCT/JP2014/079377 JP2014079377W WO2016071979A1 WO 2016071979 A1 WO2016071979 A1 WO 2016071979A1 JP 2014079377 W JP2014079377 W JP 2014079377W WO 2016071979 A1 WO2016071979 A1 WO 2016071979A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data signal
station apparatus
transmission
band
Prior art date
Application number
PCT/JP2014/079377
Other languages
English (en)
French (fr)
Inventor
田中 良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2014/079377 priority Critical patent/WO2016071979A1/ja
Priority to EP14905321.7A priority patent/EP3217699A4/en
Priority to KR1020177011203A priority patent/KR101880873B1/ko
Priority to JP2016557390A priority patent/JP6358338B2/ja
Priority to CN201480083102.2A priority patent/CN107079299A/zh
Publication of WO2016071979A1 publication Critical patent/WO2016071979A1/ja
Priority to US15/497,610 priority patent/US20170230975A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to a wireless communication system, a base station device, and a terminal device.
  • next-generation wireless communication technologies have been discussed in order to further increase the speed and capacity of wireless communication in wireless communication systems such as mobile phone systems.
  • LTE Long Term Evolution
  • communication is performed using a carrier in a frequency band that requires a license (LC: Licensed Band Carrier) and a carrier in a frequency band that does not require a license (UC: Unlicensed Band Carrier).
  • LC Licensed Band Carrier
  • UC Unlicensed Band Carrier
  • the base station apparatus of the LTE system performs data communication in synchronization with a predetermined subframe timing, there is a case where a gap time is generated between the detection of an empty channel and the start of data communication. .
  • other base station apparatuses and access points perform data communication regardless of the subframe timing. For this reason, the base station apparatus may not be able to start data communication during the gap time as a result of using the detected empty channel by another base station apparatus or access point. Therefore, a technique has been proposed in which an empty channel is secured by transmitting a dummy signal during the gap time.
  • the dummy signal is transmitted without performing data communication during the gap time, and thus the throughput may be reduced.
  • an object of the present invention is to provide a radio communication system, a base station apparatus, and a terminal apparatus that can improve a decrease in throughput.
  • a wireless communication system disclosed in the present application synchronizes a first band dedicated to the own system and a second band shared by the own system and another wireless communication system with a subframe of the first band.
  • Wireless communication when the wireless communication system detects an empty state of the second band, it starts transmission of a data signal having a subframe length in the second band even during the subframe period, and at a subsequent subframe boundary.
  • a base station apparatus that transmits, in the first band, timing information indicating timing at which transmission of the data signal is started, together with control information for decoding the data signal.
  • the wireless communication system holds the data signal transmitted in the second band, and decodes data from the held data signal using the timing information and the control information transmitted in the first band.
  • a terminal device A terminal device.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram of an example of a functional configuration of the base station apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the terminal device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of an operation in which the base station apparatus according to the first embodiment transmits a data signal using UC.
  • FIG. 5 is a schematic diagram illustrating an example of a process in which the base station apparatus according to the first embodiment outputs a dummy signal.
  • FIG. 6 is a flowchart illustrating an example of a flow of processing executed by the wireless communication system according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram of an example of a functional configuration of the base station apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of
  • FIG. 7 is a diagram illustrating an example of downlink transmission performed by the wireless communication system according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of an operation in which the base station apparatus according to the third embodiment transmits a data signal using UC.
  • FIG. 9 is a flowchart illustrating an example of a flow of processing executed by the wireless communication system according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of the eNB.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to the first embodiment.
  • the wireless communication system 100 includes a base station device 110A, a base station device 110B, an access point 120, and a terminal device 101.
  • Cell 111A is a cell formed by base station apparatus 110A.
  • the cell 111B is a cell formed by the base station device 110B.
  • the terminal device 101 is located in the cell 111A and performs wireless communication with the base station device 110A.
  • the base station device 110A and the terminal device 101 perform LTE wireless communication.
  • the base station apparatus 110A is, for example, an LTE eNB (evolved Node B).
  • the terminal device 101 is, for example, an LTE UE (User Equipment: user terminal).
  • the base station device 110A and the terminal device 101 may be described as an LTE system.
  • the base station device 110A and the terminal device 101 perform wireless communication with each other using the dedicated first band of the own system and the second band shared by the own system and other wireless communication systems.
  • the first band is, for example, a LC of 2 GHz band (Licensed band Carrier: licensed band carrier).
  • the second band is, for example, a 5 GHz band UC (Unlicensed band Carrier).
  • the second band is, for example, a band used also in a wireless LAN (Local Area Network) system. Further, the second band may be a band shared with, for example, another (other vendor's) LTE system different from the wireless communication system 100.
  • a wireless LAN Local Area Network
  • the second band may be a band shared with, for example, another (other vendor's) LTE system different from the wireless communication system 100.
  • the first band is used for PCC (Primary Component Carrier) and the second band is used for SCC (Secondary Component Carrier).
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • the access point 120 is a router that is located in the cell 111 ⁇ / b> A and performs wireless communication with the terminal device 101. For example, the access point 120 communicates with the terminal device 101 using the second band such as Wi-Fi (registered trademark).
  • Wi-Fi registered trademark
  • the base station device 110B is a base station provided by an operator different from the base station device 110A.
  • the base station device 110B performs wireless communication with the terminal device 101 using the LC and UC in the same manner as the base station device 110A.
  • the base station device 110A and the base station device 110B perform the same function, and the base station devices 110A and 110B are referred to as the base station device 110.
  • the base station apparatus 110 transmits data using the first band and the second band when performing data transmission on the data channel of the LTE system.
  • the data channel in the LTE system is, for example, PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the base station apparatus 110 transmits data in synchronization with the subframe period. For example, the base station apparatus 110 starts transmission of a data signal at the subframe timing that is the head of the subframe period. In this case, when performing data communication with the base station apparatus 110, the terminal apparatus 101 acquires data by decoding the received data signal according to the subframe timing of the base station apparatus 110.
  • a period from a subframe timing to the next subframe timing is referred to as a subframe period.
  • One subframe period includes 0th to 13th symbol periods.
  • the time interval which the base station apparatus 110 and the terminal device 101 synchronize in order to perform data communication may be another name.
  • the base station apparatus 110 performs carrier sense (CS) and detects UC free resources. Specifically, when a busy channel is available, the base station apparatus 110 stands by until a DIFS (Distributed coordination function Interframe Space) and a random Backoff period elapse. Then, when a free channel is not used when the DIFS and the Backoff period have elapsed, the base station apparatus 110 detects the channel as a free resource.
  • CS carrier sense
  • the base station apparatus 110 transmits a DL assignment (DL assignment) indicating that DL (Down Link) transmission is performed from the base station apparatus 110 through the LC.
  • This DL assignment is control information for decoding the data signal output by the UC, such as PRB (Physical Resource Block) position and other frequency scheduling information, channel coding, AMC (Adaptive Modulation and Coding) control, etc. Information is stored.
  • the DL assignment is transmitted using PDCCH (Physical Downlink Control Channel) for a period of up to 3 symbols from the beginning of the subframe, or EPDCCH (Enhanced Physical Downlink Control Channel) set at an arbitrary location in the subframe.
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the base station apparatus 110 generates a data signal whose data length is the same as the subframe period, and outputs the generated data signal in UC in synchronization with the subframe timing.
  • the DL assignment is also referred to as, for example, DL assign or DL grant, and uses PDCCH in the first three symbols of the subframe or EPDCCH set in an arbitrary position of the subframe. Information to be transmitted.
  • the UC is used not only by the base station apparatus 110A but also by the base station apparatus 110B and the access point 120 synchronized with subframe timings different from the base station apparatus 110A. For this reason, the base station apparatus 110A may intercept the vacant channel by the base station apparatus 110B or the access point 120 between the time when the busy channel is vacated and the next subframe timing. However, if the base station apparatus 110A transmits a dummy signal for securing an available channel from the time when the channel is available until the subframe timing, data cannot be transmitted, and the throughput is reduced.
  • the base station apparatus 110 detects the vacant state of the UC, that is, when the UC is free even after the DIFS and the Backoff period have elapsed since the UC was free, , UC starts data signal transmission.
  • the base station apparatus 110 generates timing information indicating the timing at which transmission of a data signal is started in the UC. For example, the base station apparatus 110 generates timing information in which the number of a symbol that has started transmission of a data signal by the UC is stored. Then, base station apparatus 110 transmits timing information by LC together with control information for decoding the data signal.
  • the base station apparatus 110 when the base station apparatus 110 detects a UC free resource, the base station apparatus 110 immediately transmits a data signal using the UC. In addition, the base station apparatus 110 generates timing information indicating a symbol for transmitting a data signal by UC. Then, the base station apparatus 110 transmits the timing information together with the DL assignment in the LC in the subframe period next to the subframe period in which the data signal is transmitted in the UC.
  • the base station apparatus 110 transmits the data signal by UC without synchronizing with the subframe timing
  • the terminal apparatus 101 that is the transmission destination of the data signal does not know the head position of the data signal. Cannot decrypt correctly.
  • the base station apparatus 110 according to the present embodiment transmits timing information indicating the timing at which data signal transmission is started in the UC.
  • the terminal device 101 holds the data signal received by the UC in a predetermined buffer.
  • the terminal apparatus 101 identifies the start position of the data signal from the timing information received in the subframe period subsequent to the subframe period in which the base station apparatus 110 transmitted the data signal by UC, and uses the control information. Data signal demodulation and data decoding are performed.
  • the base station apparatus 110 transmits a data signal using the UC regardless of the subframe timing. And the base station apparatus 110 transmits the timing information which shows the timing which transmitted the data signal by UC by LC with DL assignment.
  • the terminal apparatus 101 holds the data signal received by the UC in a buffer, and decodes the data signal by using the timing information and the DL assignment received by the LC. For this reason, the radio communication system 100 can perform data communication during the period from when a UC idle channel is detected until the next subframe timing, so that throughput can be improved.
  • FIG. 2 is a diagram of an example of a functional configuration of the base station apparatus according to the first embodiment.
  • the base station apparatus 110 according to the first embodiment can be realized by, for example, the base station apparatus 110 illustrated in FIG.
  • the base station apparatus 110 shown in FIG. 2 includes antennas 501, 502, a licensed band receiving unit 503, an unlicensed band receiving unit 508, and a MAC (Media Access Control) / RLC (Radio Link Control) processing unit 513. Have.
  • the base station apparatus 110 includes a radio resource control unit (RRC) 514, a carrier sense unit 515, a MAC control unit 516, a packet generation unit 517, and a MAC scheduling unit 518.
  • RRC radio resource control unit
  • the base station apparatus 110 includes a licensed band transmission unit 519, an unlicensed band transmission unit 525, and antennas 531 and 532.
  • Each of the antennas 501 and 502 receives a signal wirelessly transmitted from another wireless communication device. Then, antennas 501 and 502 output the received signals to licensed band receiving unit 503 and unlicensed band receiving unit 508, respectively.
  • the base station apparatus 110 may have one antenna that combines the functions of the antennas 501 and 502.
  • the licensed band receiving unit 503 performs a licensed band (LC) reception process.
  • the licensed band receiving unit 503 includes a wireless processing unit 504, an FFT processing unit 505, a demodulation unit 506, and a decoding unit 507.
  • the wireless processing unit 504 performs wireless processing on the signal output from the antenna 501.
  • the wireless processing of the wireless processing unit 504 includes, for example, frequency conversion from a high frequency band to a baseband.
  • the wireless processing unit 504 outputs the signal subjected to the wireless processing to the FFT processing unit 505.
  • the FFT processing unit 505 performs FFT (Fast Fourier Transform) processing of the signal output from the wireless processing unit 504. As a result, the signal is converted from the time domain to the frequency domain.
  • the FFT processing unit 505 outputs the signal subjected to the FFT processing to the demodulation unit 506.
  • the demodulator 506 demodulates the signal output from the FFT processor 505.
  • Demodulation section 506 outputs a signal obtained by demodulation to decoding section 507.
  • the decoding unit 507 decodes the signal output from the demodulation unit 506. Then, the decoding unit 507 outputs the data obtained by the decoding to the MAC / RLC processing unit 513.
  • the unlicensed band receiving unit 508 performs unlicensed band reception processing.
  • the unlicensed band receiving unit 508 includes a wireless processing unit 509, an FFT processing unit 510, a demodulation unit 511, and a decoding unit 512.
  • the wireless processing unit 509 performs wireless processing on the signal output from the antenna 502.
  • the wireless processing of the wireless processing unit 509 includes, for example, frequency conversion from a high frequency band to a baseband.
  • the wireless processing unit 509 outputs the signal subjected to the wireless processing to the FFT processing unit 510.
  • the FFT processing unit 510 performs FFT processing on the signal output from the wireless processing unit 509. As a result, the signal is converted from the time domain to the frequency domain.
  • the FFT processing unit 510 outputs the signal subjected to the FFT processing to the demodulation unit 511 and the carrier sense unit 515.
  • the demodulator 511 demodulates the signal output from the FFT processor 510.
  • Demodulation section 511 outputs a signal obtained by demodulation to decoding section 512.
  • the decoding unit 512 decodes the signal output from the demodulation unit 511. Then, the decoding unit 512 outputs the data obtained by the decoding to the MAC / RLC processing unit 513.
  • the MAC / RLC processing unit 513 performs each process of the MAC layer and the RLC layer based on the data output from the decoding unit 507.
  • the MAC / RLC processing unit 513 outputs data obtained by processing of each layer.
  • the signal output from the MAC / RLC processing unit 513 is input to, for example, a higher layer processing unit of the base station apparatus 110. Further, the MAC / RLC processing unit 513 outputs control information such as an RTS signal detection result included in the data obtained by the processing of each layer to the radio resource control unit 514.
  • the radio resource control unit 514 performs radio resource control based on the control information output from the MAC / RLC processing unit 513. This radio resource control is processing of an RRC (Radio Resource Control) layer.
  • the radio resource control unit 514 outputs control information based on radio resource control to the MAC control unit 516.
  • RRC Radio Resource Control
  • the carrier sense unit 515 performs carrier sense based on an unlicensed band (UC) signal output from the FFT processing unit 510. Then, carrier sense section 515 outputs carrier sense result information indicating the result of carrier sense to MAC control section 516.
  • UC unlicensed band
  • the MAC control unit 516 controls the MAC layer based on the control information output from the radio resource control unit 514 and the carrier sense result information output from the carrier sense unit 515. Then, the MAC control unit 516 outputs the individual control information and the RTS signal to the terminal device 101 based on the control of the MAC layer to the multiplexing unit 522.
  • the individual control information is, for example, PDCCH (Physical Downlink Control Channel: physical downlink control channel).
  • the MAC control unit 516 outputs a DMRS (Data Demodulation Reference Signal) based on the control of the MAC layer, a dummy signal, an RTS signal, and the like to the multiplexing unit 528. Also, the MAC control unit 516 outputs control information based on the control of the MAC layer to the MAC scheduling unit 518.
  • DMRS Data Demodulation Reference Signal
  • the packet generation unit 517 generates a packet including user data output from the upper layer of the base station apparatus 110. Then, the packet generation unit 517 outputs the generated packet to the MAC scheduling unit 518.
  • the MAC scheduling unit 518 performs scheduling of the MAC layer of the packet output from the packet generation unit 517 based on the control information output from the MAC control unit 516. Then, MAC scheduling section 518 outputs the packet to licensed band transmission section 519 and unlicensed band transmission section 525 based on the scheduling result. For example, the MAC scheduling unit 518 performs scheduling so that data signals are transmitted in units of subframes. That is, the MAC scheduling unit performs packet scheduling so that the length of the data signal transmitted by the LC matches the subframe period.
  • the licensed band transmission unit 519 performs a licensed band transmission process.
  • the licensed band transmission unit 519 includes an encoding unit 520, a modulation unit 521, a multiplexing unit 522, an IFFT (Inverse Fast Fourier Transform) processing unit 523, and a radio processing unit 524.
  • IFFT Inverse Fast Fourier Transform
  • the encoding unit 520 encodes the packet output from the MAC scheduling unit 518. Then, encoding section 520 outputs the encoded packet to modulation section 521. Modulation section 521 performs modulation based on the packet output from encoding section 520. Modulation section 521 then outputs the signal obtained by the modulation to multiplexing section 522.
  • the multiplexing unit 522 multiplexes the individual control information and RTS signal output from the MAC control unit 516 and the signal output from the modulation unit 521. Then, multiplexing section 522 outputs the signal obtained by multiplexing to IFFT processing section 523.
  • the IFFT processing unit 523 performs IFFT processing on the signal output from the multiplexing unit 522. As a result, the signal is converted from the frequency domain to the time domain.
  • the IFFT processing unit 523 outputs the signal subjected to the IFFT processing to the wireless processing unit 524.
  • the wireless processing unit 524 performs wireless processing on the signal output from the IFFT processing unit 523.
  • the wireless processing of the wireless processing unit 524 includes, for example, frequency conversion from a baseband band to a high frequency band.
  • the wireless processing unit 524 outputs a signal subjected to wireless processing to the antenna 531.
  • the unlicensed band transmission unit 525 performs unlicensed band transmission processing.
  • the unlicensed band transmission unit 525 includes an encoding unit 526, a modulation unit 527, a multiplexing unit 528, an IFFT processing unit 529, and a wireless processing unit 530.
  • the encoding unit 526 encodes the packet output from the MAC scheduling unit 518. Then, the encoding unit 526 outputs the encoded packet to the modulation unit 527.
  • the modulation unit 527 performs modulation based on the packet output from the encoding unit 526. Modulation section 527 outputs the signal obtained by the modulation to multiplexing section 528.
  • the multiplexing unit 528 multiplexes the individual control information and RTS signal output from the MAC control unit 516 and the signal output from the modulation unit 527. Then, multiplexing section 528 outputs the signal obtained by multiplexing to IFFT processing section 529.
  • the IFFT processing unit 529 performs an IFFT process on the signal output from the multiplexing unit 528. As a result, the signal is converted from the frequency domain to the time domain. IFFT processing unit 529 outputs the signal subjected to IFFT processing to radio processing unit 530.
  • the wireless processing unit 530 performs wireless processing on the signal output from the IFFT processing unit 529.
  • the wireless processing of the wireless processing unit 530 includes, for example, frequency conversion from a baseband band to a high frequency band.
  • the wireless processing unit 530 outputs a signal subjected to wireless processing to the antenna 532.
  • the antenna 531 wirelessly transmits the signal output from the wireless processing unit 524 to another wireless communication device.
  • the antenna 532 wirelessly transmits the signal output from the wireless processing unit 530 to another wireless communication device.
  • the MAC control unit 516 executes the following processing. First, when there is data to be transmitted and the carrier sense result information indicating that a UC free channel has been detected from the carrier sense unit 515, the MAC control unit 516 has passed the DIFS and the Backoff period. Wait until In addition, when the MAC control unit 516 acquires carrier sense result information indicating that a free channel of the UC has been detected from the carrier sense unit 515 after the DIFS and the Backoff period have elapsed, the MAC control unit 516 transmits a data signal using the UC. Start.
  • the MAC control unit 516 instructs the MAC scheduling unit 518 to output a packet to the unlicensed band transmission unit 525.
  • the MAC scheduling unit 518 outputs a packet to be transmitted via the UC to the unlicensed band transmission unit 525.
  • the base station apparatus 110 starts transmitting a data signal on the UC as soon as a UC free channel is detected.
  • the MAC control unit 516 generates timing information indicating the timing at which transmission of the data signal is started by the UC, and outputs the timing information to the multiplexing unit 522 together with the DL assignment.
  • the licensed band transmission unit 519 outputs DL assignment and timing information by LC in synchronization with the subframe timing.
  • the base station apparatus 110 starts data transmission even in the middle of the subframe period, and transmits timing information indicating the timing at which the data transmission is started via the LC. For this reason, the base station apparatus 110 can improve the throughput.
  • the timing information only needs to include sufficient information for decoding the data signal.
  • the timing information may include a time at which transmission of the data signal is started, and may include a symbol number at which transmission of the data signal is started.
  • the base station apparatus 110 indicates the timing at which transmission of the data signal is started with the symbol number, the data amount of the timing information can be reduced and communication resources can be used effectively.
  • the timing at which the channel is released is generally not synchronized with the symbol of base station apparatus 110. For this reason, when the symbol number is used as timing information, if the timing at which the vacancy is detected is in the middle of the symbol, it is unclear from which position of the symbol the data signal was transmitted, and therefore it is difficult to decode the data signal. It becomes.
  • the MAC control unit 516 executes the following processing when the symbol number is used as timing information. First, when the timing at which the carrier sense unit 515 detects a UC free channel is in the middle of a symbol, the MAC control unit 516 outputs a dummy signal to the multiplexing unit 528 until the next symbol period starts. As a result, since the unlicensed band transmission unit 525 outputs a dummy signal in UC from the time when the UC vacant channel is detected until the next symbol period starts, the vacant channel is transmitted to other base station apparatuses. Reservations can be made.
  • the MAC control unit 516 instructs the MAC scheduling unit 518 to output a data signal from a symbol period subsequent to the symbol period in which the carrier sense unit 515 detects a UC free channel.
  • the MAC scheduling unit 518 performs packet scheduling so that a data signal having a subframe length is output from the head of the symbol period next to the symbol period in which the UC free channel is detected.
  • the MAC control unit 516 specifies the number of the symbol period next to the symbol period in which the carrier sense unit 515 detects the UC free channel, and generates timing information indicating the number of the specified symbol period. Then, the MAC control unit 516 outputs the generated timing information to the multiplexing unit 522 together with the DL assignment transmitted in the subframe period subsequent to the subframe period in which the carrier sense unit 515 detects the UC free channel. As a result, the licensed band transmission unit 519 transmits the DL assignment and timing information in the subframe period subsequent to the subframe period in which the carrier sense unit 515 detects a UC free channel.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the terminal device according to the first embodiment.
  • the terminal device 101 according to the first embodiment can be realized by, for example, the terminal device 101 illustrated in FIG.
  • the terminal device 101 includes an antenna 600, a licensed band reception unit 601, an unlicensed band reception unit 607, a buffer 613, a decoding unit 614, an RTS signal detection unit 615, an RRC processing unit 616, A carrier sense unit 617.
  • the terminal device 101 includes a MAC processing unit 618, a packet generation unit 619, an encoding / modulation unit 620, a licensed band transmission unit 621, and an unlicensed band transmission unit 627.
  • the antenna 600 receives a signal wirelessly transmitted from another wireless communication device. Antenna 600 then outputs the received signal to licensed band receiving section 601 and unlicensed band receiving section 607. Further, the antenna 600 wirelessly transmits each signal output from the licensed band transmission unit 621 and the unlicensed band transmission unit 627 to another wireless communication device. Note that the terminal device 101 may have a separate antenna for each of the license band reception unit 601, the unlicensed band reception unit 607, the licensed band transmission unit 621, and the unlicensed band transmission unit 627.
  • the licensed band receiving unit 601 performs a licensed band reception process.
  • the licensed band receiving unit 601 includes a wireless processing unit 602, an FFT processing unit 603, an equalization processing unit 604, an IFFT processing unit 605, and a demodulation unit 606.
  • the wireless processing unit 602 performs wireless processing on the signal output from the antenna 600.
  • the wireless processing of the wireless processing unit 602 includes, for example, frequency conversion from a high frequency band to a baseband band.
  • the wireless processing unit 602 outputs the signal subjected to the wireless processing to the FFT processing unit 603.
  • the FFT processing unit 603 performs an FFT process on the signal output from the wireless processing unit 602. As a result, the signal is converted from the time domain to the frequency domain.
  • the FFT processing unit 603 outputs the signal subjected to the FFT processing to the equalization processing unit 604.
  • the equalization processing unit 604 performs equalization processing on the signal output from the FFT processing unit 603. Then, the equalization processing unit 604 outputs the signal subjected to the equalization process to the IFFT processing unit 605.
  • the IFFT processing unit 605 performs IFFT processing on the signal output from the equalization processing unit 604. As a result, the signal is converted from the frequency domain to the time domain.
  • IFFT processing section 605 outputs the signal subjected to IFFT processing to demodulation section 606.
  • the demodulator 606 demodulates the signal output from the IFFT processor 605. Then, demodulation section 606 outputs a signal obtained by demodulation to decoding section 614.
  • the licensed band receiving unit 601 demodulates the data signal in synchronization with the subframe timing of the base station apparatus with which the terminal apparatus 101 communicates. For example, the licensed band receiving unit 601 receives timing information, DL assignment, and the like by demodulating a data signal received from the subframe timing of the base station apparatus 110.
  • the unlicensed band receiving unit 607 performs unlicensed band reception processing.
  • the unlicensed band receiving unit 607 includes a wireless processing unit 608, an FFT processing unit 609, an equalization processing unit 610, an IFFT processing unit 611, and a demodulation unit 612.
  • the wireless processing unit 608 performs wireless processing on the signal output from the antenna 600.
  • the wireless processing of the wireless processing unit 608 includes, for example, frequency conversion from a high frequency band to a base band.
  • Radio processing section 608 outputs the radio processed signal to FFT processing section 609 and carrier sense section 617.
  • the FFT processing unit 609 performs an FFT process on the data signal. As a result, the signal is converted from the time domain to the frequency domain. Then, the FFT processing unit 609 outputs the signal subjected to the FFT processing to the equalization processing unit 610.
  • the equalization processing unit 610 performs equalization processing on the signal output from the FFT processing unit 609. Then, the equalization processing unit 610 outputs the signal subjected to the equalization process to the IFFT processing unit 611.
  • the IFFT processing unit 611 performs IFFT processing on the signal output from the equalization processing unit 610. As a result, the signal is converted from the frequency domain to the time domain.
  • IFFT processing section 611 outputs the signal subjected to IFFT processing to demodulation section 612.
  • the demodulator 612 demodulates the signal output from the IFFT processor 611.
  • Demodulation section 612 outputs a signal obtained by demodulation to buffer 613.
  • the buffer 613 is a buffer that temporarily holds a UC data signal.
  • the buffer 613 is a buffer that can hold a data signal received for at least one subframe, and is a buffer in which a data signal held in a FIFO (First In First Out) format is rewritten.
  • FIFO First In First Out
  • the decoding unit 614 decodes the signals output from the licensed band receiving unit 601 and the unlicensed band receiving unit 607. Then, the decoding unit 614 outputs data obtained by decoding.
  • the data output from the decoding unit 614 is input to, for example, the upper layer processing unit and the RTS signal detection unit 615 of the terminal device 101.
  • the data output from the decoding unit 614 includes, for example, user data.
  • the decoding unit 614 executes the following processing in order to correctly decode the data signal transmitted by the UC.
  • decoding section 614 obtains DL assignment and timing information from the signal demodulated by licensed band receiving section 601 in synchronization with the subframe timing of base station apparatus 110.
  • the decoding unit 614 specifies the timing at which the data signal is output from the acquired timing information.
  • the decoding unit 614 specifies a signal received after the specified timing among the signals stored in the buffer 613, and reads and decodes the specified signal.
  • the base station apparatus 110 transmits timing information in a subframe period subsequent to a subframe period in which transmission of a data signal is started in the UC. For this reason, the terminal apparatus 101 should just have the buffer 609 which hold
  • the embodiment is not limited to this.
  • the terminal apparatus 101 when the base station apparatus 110 transmits timing information in a subframe period up to n times after the subframe period in which the output of the data signal is started in the UC, the terminal apparatus 101 has a maximum of n subframe periods. It suffices to have a buffer 609 that holds the above signal. Further, when the timing information indicates from which symbol period of which subframe period the timing information is output, the base station apparatus 110 transmits the transmission order of the timing information in an order different from the transmission order of the data signals. May be.
  • the RTS signal detection unit 615 detects an RTS signal transmitted from another wireless communication device included in the data output from the decoding unit 614. Then, the RTS signal detection unit 615 outputs detection information indicating the detection result of the RTS signal to the RRC processing unit 616.
  • the RRC processing unit 616 performs RRC layer processing based on the RTS signal output from the RTS signal detection unit 615. Then, the RRC processing unit 616 outputs the processing result of the RRC layer to the MAC processing unit 618.
  • the carrier sense unit 617 performs carrier sense based on the signal output from the wireless processing unit 608. Then, carrier sense section 617 outputs carrier sense result information indicating the result of carrier sense to MAC processing section 618.
  • the MAC processing unit 618 performs MAC layer processing based on the processing result output from the RRC processing unit 616 and the carrier sense result information output from the carrier sense unit 617. Then, the MAC processing unit 618 outputs DMRS, a dummy signal, an RTS signal, and the like to the terminal device 101 based on the MAC layer processing to the multiplexing units 622 and 628.
  • the MAC processing unit 618 outputs radio resource allocation information based on the MAC layer processing to the frequency mapping units 624 and 630. Also, the MAC processing unit 618 outputs radio resource allocation information based on the RRC layer processing of the RRC processing unit 616 to the encoding / modulation unit 620. Further, the MAC processing unit 618 confirms the availability of radio resources with which the terminal device 101 communicates based on the carrier sense result information output from the carrier sense unit 617.
  • the packet generation unit 619 generates a packet including user data output from the upper layer of the terminal device 101. Then, the packet generation unit 619 outputs the generated packet to the encoding / modulation unit 620.
  • the encoding / modulation unit 620 encodes and modulates the packet output from the packet generation unit 619. Then, the encoding / modulation unit 620 transmits the signal obtained by the encoding and modulation to the licensed band transmission unit 621 or the unlicensed band transmission unit 627 based on the radio resource allocation information output from the MAC processing unit 618. Output.
  • the licensed band transmission unit 621 performs a licensed band transmission process.
  • the licensed band transmission unit 621 includes a multiplexing unit 622, an FFT processing unit 623, a frequency mapping unit 624, an IFFT processing unit 625, and a radio processing unit 626.
  • the multiplexing unit 622 multiplexes each signal output from the MAC processing unit 618 and the signal output from the encoding / modulation unit 620. Then, multiplexing section 622 outputs the signal obtained by multiplexing to FFT processing section 623.
  • the FFT processing unit 623 performs FFT processing on the signal output from the multiplexing unit 622. As a result, the signal is converted from the time domain to the frequency domain.
  • the FFT processing unit 623 outputs the signal subjected to the FFT processing to the frequency mapping unit 624.
  • the frequency mapping unit 624 performs frequency mapping of the signal output from the FFT processing unit 623 based on the radio resource allocation information output from the MAC processing unit 618. Then, frequency mapping section 624 outputs the frequency mapped signal to IFFT processing section 625.
  • the IFFT processing unit 625 performs IFFT processing on the signal output from the frequency mapping unit 624. As a result, the signal is converted from the frequency domain to the time domain.
  • the IFFT processing unit 625 outputs the signal subjected to the IFFT processing to the wireless processing unit 626.
  • the wireless processing unit 626 performs wireless processing on the signal output from the IFFT processing unit 625.
  • the wireless processing of the wireless processing unit 626 includes, for example, frequency conversion from a baseband band to a high frequency band.
  • the wireless processing unit 626 outputs a signal subjected to wireless processing to the antenna 600.
  • the unlicensed band transmission unit 627 performs unlicensed band transmission processing.
  • the unlicensed band transmission unit 627 includes a multiplexing unit 628, an FFT processing unit 629, a frequency mapping unit 630, an IFFT processing unit 631, and a wireless processing unit 632.
  • the multiplexing unit 628 multiplexes each signal output from the MAC processing unit 618 and the signal output from the encoding / modulation unit 620. Then, multiplexing section 628 outputs a signal obtained by multiplexing to FFT processing section 629.
  • the FFT processing unit 629 performs an FFT process on the signal output from the multiplexing unit 628. As a result, the signal is converted from the time domain to the frequency domain.
  • the FFT processing unit 629 outputs the signal subjected to the FFT processing to the frequency mapping unit 630.
  • the frequency mapping unit 630 performs frequency mapping of the signal output from the FFT processing unit 629 based on the radio resource allocation information output from the MAC processing unit 618. Then, frequency mapping section 630 outputs the frequency mapped signal to IFFT processing section 631.
  • the IFFT processing unit 631 performs IFFT processing on the signal output from the frequency mapping unit 630. As a result, the signal is converted from the frequency domain to the time domain.
  • the IFFT processing unit 631 outputs the signal subjected to the IFFT processing to the wireless processing unit 632.
  • the wireless processing unit 632 performs wireless processing on the signal output from the IFFT processing unit 631.
  • the wireless processing of the wireless processing unit 632 includes, for example, frequency conversion from a baseband band to a high frequency band.
  • the wireless processing unit 632 outputs a signal subjected to wireless processing to the antenna 600.
  • a radio transmission antenna and a radio reception antenna may be provided in the terminal device 101.
  • FIG. 4 is a diagram illustrating an example of an operation in which the base station apparatus according to the first embodiment transmits a data signal using UC.
  • the horizontal axis indicates time (t) in units of subframes.
  • data output by the base station apparatus 110 via LC and data output by the base station apparatus 110 via UC are shown.
  • UC is busy as a result of data communication performed by the UC by another LTE system such as the access point 120 or another base station apparatus from the subframe period t1 to the middle of the subframe period t2.
  • it is 1401 (Busy).
  • the base station apparatus 110 performs carrier sense and confirms a free channel of the UC.
  • the base station apparatus 110 waits for a free UC.
  • the busy state 1401 of the UC ends in the middle of the subframe period t2.
  • the base station apparatus 110 does not detect a new busy state during the backoff time 1403 after the DIFS time 1402 has elapsed since the end of the busy state 1401, the data signal having the same length as the subframe period is used. Transmission of 1404 (Data) is started.
  • the base station apparatus 110 generates timing information indicating the timing at which transmission of the data signal 1404 is started. Then, base station apparatus 110 transmits DL assignment 1405A and timing information 1405B by LC in subframe period t3 subsequent to subframe period t2 in which transmission of data signal 1404 is started. In such a case, for example, the terminal apparatus 101 decodes the data signal 1404 using the DL assignment 1405A and the timing information 1405B received in the subframe period t3.
  • the base station apparatus 110 when there is data to be continuously transmitted, the base station apparatus 110 generates a data signal 1406 storing the data, and transmits the data signal 1406 after the transmission of the data signal 1404 is finished in the subframe period t3. Start. In addition, the base station apparatus 110 generates timing information indicating the timing at which the data signal 1406 is transmitted. Base station apparatus 110 then transmits, at the beginning of subframe period t4, DL assignment 1407A and timing information 1407B indicating the timing at which data signal 1406 was transmitted by LC. In such a case, for example, the terminal apparatus 101 decodes the data signal 1406 using the DL assignment 1407A and the timing information 1407B received in the subframe period t4.
  • the base station apparatus 110 can start data communication with the UC even when the timing when the UC idle channel is detected is in the middle of the subframe period.
  • the terminal apparatus 101 transmits the data signal with the UC from the timing information transmitted in synchronization with the subframe timing.
  • the timing can be specified. For this reason, since the radio communication system 100 does not waste the gap time, the throughput of data communication can be improved.
  • the base station apparatus 110 transmits a data signal after the subframe period t2 without being synchronized with the subframe timing. Further, when the base station apparatus 110 continuously outputs (bursts) the data signal, the base station apparatus 110 does not transmit the data signal from the middle of the subframe period in which the data signal was last transmitted. Then, the base station apparatus 110 adds the timing information of the data signal transmitted last to the DL assignment in the subframe period next to the subframe period in which the burst has ended, or has the same timing as the previous timing information. Flag information to that effect is added.
  • FIG. 5 is a schematic diagram illustrating an example of a process in which the base station apparatus according to the first embodiment outputs a dummy signal.
  • the horizontal axis is time (t) in units of subframes, and the data that base station apparatus 110 outputs in LC and the data that base station apparatus 110 outputs in UC And showed.
  • the UC is in the busy state 1401
  • the busy state 1401 is in the middle of the subframe t2. finish.
  • the base station apparatus 110 does not detect a new busy state during the back-off time 1403 after the DIFS time 1402 has elapsed since the end of the busy state 1401, the transmission timing of the data signal 1404 is the symbol period. It is determined whether or not the head is reached.
  • the back-off time 1403 ends in the middle of the symbol period 1408.
  • the terminal apparatus 110 uses the symbol period number as the timing information, if the transmission of the data signal 1404 is started in the middle of the symbol period 1408, the processing resources for the terminal apparatus 101 to decode the data increase.
  • the base station apparatus 110 waits until the end of the symbol period 1408, the UC free channel is used by another base station apparatus or the like, becomes busy, and cannot be used in the next symbol period of the symbol period 1408. There is a fear.
  • the base station apparatus 110 secures a UC free channel by outputting a dummy signal 1409 after the back-off time 1403 ends and until the symbol period 1408 ends. Then, the base station apparatus 110 ends outputting the dummy signal 1409 simultaneously with the end of the symbol period 1408, and starts transmitting the data signal 1404 from the symbol period next to the symbol period 1408.
  • the base station apparatus 110 when the base station apparatus 110 detects a UC free channel in the middle of a symbol period, the base station apparatus 110 transmits a dummy signal until the end of the symbol period and transmits a data signal from the next symbol period. For this reason, the base station apparatus 110 can use communication resources effectively.
  • FIG. 6 is a flowchart illustrating an example of a flow of processing executed by the wireless communication system according to the first embodiment.
  • the flow of processing executed by the base station device 110 and the flow of processing executed by the terminal device 101 are shown.
  • the base station apparatus 110 performs carrier sense and determines whether or not there is a vacancy in the UC (step S101). Then, when there is no vacancy in the UC (step S101: No), the base station apparatus 110 executes step S101 again.
  • step S101: Yes the base station apparatus 110 checks a vacant state for a predetermined time (DIFS + backoff time) (step S102), and the backoff time end time is a symbol period. It is determined whether it is in the middle of the process (step S103). If the base station apparatus 110 is in the middle of the symbol period (step S103: Yes), the base station apparatus 110 outputs a dummy signal until the symbol period ends (step S104). On the other hand, when it is not in the middle of the symbol period (step S103: No), the base station apparatus 110 skips step S104.
  • DIFS + backoff time a predetermined time
  • step S102 backoff time end time is a symbol period. It is determined whether it is in the middle of the process (step S103). If the base station apparatus 110 is in the middle of the symbol period (step S103: Yes), the base station apparatus 110 outputs a dummy signal until the symbol period ends (step S104). On the other hand, when it is not in the middle of the symbol period (step S103
  • the base station apparatus 110 starts data transmission with the UC that has detected a free state (step S105). Subsequently, the base station apparatus 110 determines whether or not it is a subframe timing (step S106). If it is a subframe timing (step S106: Yes), the base station apparatus 110 executes the following processing. That is, the base station apparatus 110 transmits timing information indicating the timing at which transmission of the data signal is started together with the DL assignment through the LC (step S107).
  • the base station apparatus 110 determines whether or not all data has been transmitted (step S108), and if it has been transmitted (step S108: Yes), the process ends. On the other hand, when not transmitting all the data (step S108: No), the base station apparatus 110 executes step S105. Moreover, when it is not a sub-frame timing (step S106: No), the base station apparatus 110 performs step S105.
  • the terminal apparatus 101 stores the data signal transmitted by the base station apparatus 110 in step S105 in a buffer (step S109). And the terminal device 110 reads the transmission start timing of a data signal from the timing information which the base station apparatus 110 transmitted in step S107 (step S110). Thereafter, the terminal apparatus 101 reads and decodes the data signal from the buffer according to the read transmission start timing (step S111), and ends the process.
  • the base station apparatus 110 may perform the following processing when it is not necessary to align the transmission start timing of the data signal at the beginning of the symbol period. That is, when the base station apparatus 110 detects that there is a vacancy in the UC (step S101: Yes), the base station apparatus 110 executes step S102, and does not execute the processes of steps S103 and S104, but may execute step S105.
  • the wireless communication system 100 that performs wireless communication using LC and UC includes the base station device 110 and the terminal device 101.
  • the base station apparatus 110 detects the vacancy
  • the base station apparatus 110 starts transmission of the data signal by the UC, and transmits timing information indicating the timing at which the transmission of the data signal is started by the LC together with the DL assignment.
  • the terminal apparatus 101 holds the data signal transmitted by the UC in the buffer, and decodes the data from the data signal held in the buffer by using the DL assignment and timing information transmitted by the LC. For this reason, since the radio communication system 100 can perform data communication during the gap time, the throughput can be improved.
  • the wireless communication system 100 that executes the above-described processing, a function of transmitting timing information at which a data signal is transmitted by LC may be added without adding a complicated function configuration on the base station apparatus 110 side.
  • the terminal apparatus 101 includes a buffer, and may decode the data signal held in the buffer according to the timing information. For this reason, the wireless communication system 100 can improve the throughput with an easy configuration.
  • the base station apparatus 110 transmits DL assignment and timing information in a subframe period subsequent to a subframe period in which transmission of a data signal is started in the UC. Therefore, the base station apparatus 110 can reduce the buffer capacity required by the terminal apparatus 101 and reduce the circuit scale.
  • the base station apparatus 110 detects a free UC in the middle of a symbol period, the base station apparatus 110 transmits a dummy signal until the next symbol period starts. For this reason, since the base station apparatus 110 can simplify timing information, it can use a communication resource effectively.
  • the base station apparatus 110 When the base station apparatus 110 according to the first embodiment detects a UC vacancy, the base station apparatus 110 transmits a data signal even during the subframe period.
  • the base station apparatus 110 may execute the above-described process for each subband. Therefore, a form in such a case will be described below as a second embodiment.
  • the base station apparatus 110 and the terminal apparatus 101 according to the following second embodiment are realized by the same functional configuration as the functional configuration shown in FIG. Further, the processing described below is realized by, for example, processing executed by the carrier sense unit 515 and the MAC control unit 516 shown in FIG.
  • FIG. 7 is a diagram illustrating an example of downlink transmission performed by the wireless communication system according to the second embodiment.
  • the horizontal axis represents time (t) in units of subframes, and data output from the base station device 110 through LC and data output from the base station device 110 through UC. And showed.
  • the base station apparatus 110 shall share UC with another LTE system.
  • another LTE system performs wireless communication in synchronization with the subframe timing of base station apparatus 110.
  • the subband SB1 is busy 1511 by another LTE system in the subframe period t1.
  • Subband SB2 is busy 1512 by other LTE systems in subframe periods t1-t4.
  • the subband SB3 is assumed to be busy 1513 by another LTE system in the subframe period t1.
  • subband SB4 is busy 1514 by another LTE system in subframe periods t1 and t2.
  • the base station apparatus 110 when DL data is generated in the subframe period t1, the base station apparatus 110 performs carrier sense for each subband.
  • the carrier sense unit 515 shown in FIG. 2 performs carrier sense of each subband.
  • the base station apparatus 110 may include a plurality of carrier sense units 515 that perform carrier sense for each subband.
  • the busy states 1511 and 1513 of the subbands SB1 and SB3 end in the subframe period t1. Therefore, if the base station apparatus 110 does not detect a new busy state between the DIFS time 1521 and the backoff time 1531 from the beginning of the subframe period t2, the base station apparatus 110 immediately after the backoff time 1531 elapses.
  • the data signal 1541 is output in the subband SB1. If the base station apparatus 110 does not detect a new busy state between the DIFS period 1521 and the backoff time 1533 from the beginning of the subframe period t2, the base station apparatus 110 immediately after the backoff time 1533 elapses.
  • Data signal 1543 is output in subband SB3.
  • the timing at which data signal transmission is started has the same value for a plurality of signals multiplexed in the same subframe period. Therefore, the base station apparatus 110 transmits the timing signal 1545B, which has started transmission of the data signal 1541 and the data signal 1543, together with the DL assignment 1545A by LC. In such a case, the terminal apparatus 101 decodes the data signal addressed to itself using the DL assignment 1545A and the timing information 1545B.
  • the terminal apparatus 101 receives the multiplexed data signal from the subframe period t2 to the subframe period t3 and holds it in the buffer. In addition, the terminal apparatus 101 identifies the subband in which the data addressed to itself is transmitted from the DL assignment 1545 transmitted in the subframe period t3. Here, when the subband to which the data addressed to itself is transmitted is SB01, terminal apparatus 101 extracts data signal 1541 transmitted in subband SB01 from the signal held in the buffer. Then, the terminal apparatus 101 decodes the data signal 1541 using the timing information 1545B.
  • the base station apparatus 110 When transmitting the data signal continuously from the middle of the subframe period, the base station apparatus 110 according to the first embodiment continues to transmit timing information indicating the timing at which the transmission of the data signal is started within each subframe period.
  • the embodiment is not limited to this.
  • the base station apparatus 110 transmits a data signal having a data length that ends transmission before the start of the next subframe period, thereby substituting the output timing of the data signal. You may synchronize with frame timing. Therefore, a form in such a case will be described below as a third embodiment.
  • the base station apparatus 110 and the terminal apparatus 101 according to the following third embodiment are realized by the same functional configuration as the functional configuration illustrated in FIGS. 2 and 3, and description thereof is omitted. Further, the processing described below is realized, for example, by processing executed by the MAC control unit 516 shown in FIG.
  • FIG. 8 is a diagram illustrating an example of an operation in which the base station apparatus according to the third embodiment transmits a data signal using UC.
  • the horizontal axis indicates time (t) in units of subframes.
  • the horizontal axis is time (t) in units of subframes, and the data that the base station device 110 outputs in LC and the data that the base station device 110 outputs in UC And showed.
  • the UC enters the busy state 1401 and is busy during the subframe period t2.
  • State 1401 ends.
  • the base station apparatus 110 does not detect a new busy state during the back-off time 1403 after the DIFS time 1402 has elapsed since the end of the busy state 1401, the base station apparatus 110 does not wait until the next symbol period starts.
  • a dummy signal 1409 is transmitted. Then, simultaneously with the end of the symbol period, the base station apparatus 110 ends the output of the dummy signal 1409 and starts transmitting the data signal 1404.
  • the base station apparatus 110 receives DL assignment 1405A and timing information 1405B indicating timing at which transmission of the data signal 1404 is started in a subframe period t3 subsequent to the subframe period t2 at which transmission of the data signal 1404 is started. Send on LC.
  • the base station apparatus 110 transmits the data signal to be continuously transmitted in the middle of each subframe period.
  • the base station apparatus 110 must transmit timing information together with DL assignments in each subframe period while continuously transmitting data signals.
  • the base station apparatus 110 when the base station apparatus 110 continuously outputs a data signal, data having a data length that can be transmitted after the output of one of the data signals is completed until the next subframe period starts. Generate and output a signal. For example, the base station apparatus 110 generates a data signal 1410 having a transmittable data length after the transmission of the data signal 1404 ends and before the subframe period t4 starts, and transmits the data signal 1405 next to the data signal 1405. To start. In addition, the base station apparatus 110 transmits the timing information 1411B of the data signal 1410 together with the DL assignment 1411A over the LC in the subframe period t4.
  • the base station apparatus 110 can end the transmission of the data signal 1410 together with the end of the subframe period t3. As a result, the base station apparatus 110 can transmit the data signal 1413 transmitted subsequent to the data signal 1410 simultaneously with the start of the subframe period t4. That is, the base station apparatus 110 can transmit the data signal 1410 at a timing synchronized with the subframe timing. In such a case, the base station apparatus 110 omits generation and transmission of timing information after subframe timing t4. As a result, the base station apparatus 110 can reduce computing resources and communication resources.
  • the base station apparatus 110 transmits the DL assignment 1411 associated with the data signal 1413 in the subframe period t4 after transmitting the DL assignment 1411A and timing information 1411B associated with the data signal 1410. As a result, the base station apparatus 110 can perform transmission of the data signal and transmission of the DL assignment within the same subframe period after the subframe period t4.
  • the base station apparatus 110 may execute the above-described process in an arbitrary subframe period. For example, when transmitting the data signal in burst, the base station apparatus 110 may perform the above-described processing after transmitting the first data signal, after transmitting a predetermined number of data signals, or after the last data signal When the previous data signal is transmitted, the above-described processing may be performed.
  • FIG. 9 is a flowchart illustrating an example of a flow of processing executed by the wireless communication system according to the third embodiment.
  • the flow of processing executed by the base station device 110 and the flow of processing executed by the terminal device 101 are illustrated as in FIG. 6.
  • steps S201 to S211 are the same as steps S101 to S111 shown in FIG.
  • base station apparatus 110 determines whether or not all data has been transmitted (step S208). If it is determined that all data has not been transmitted, the transmission start timing of the data signal to be transmitted next is subframe. It is determined whether or not the timing coincides (step S212). Then, when the transmission start timing of the data signal to be transmitted next does not coincide with the subframe timing (step S212: No), the base station apparatus 110 executes the following processing.
  • the base station apparatus 110 generates a data signal having a data length that can be transmitted by the next subframe timing after the data signal being transmitted (step S213), and transmits the generated data signal using the UC (step S213). S205).
  • the base station apparatus 110 executes step S205.
  • the base station apparatus 110 when the base station apparatus 110 bursts a data signal, the base station apparatus 110 transmits data of one data signal and then transmits data with a data length that ends until the next subframe period starts. Output a signal. Thereafter, the base station apparatus 110 transmits the remaining data signals. Therefore, the base station apparatus 110 can synchronize the data signal output start timing with the subframe timing from any subframe period even when the output start timing of the data signal is in the middle of the subframe period. . As a result, the base station apparatus 110 can omit generation and transmission of timing information, so that it is possible to reduce computation resources and communication resources.
  • the base station apparatus 110 omits transmission of timing information in which a data signal is transmitted at subframe timing, it is possible to reduce computation resources and communication resources.
  • the base station apparatus 110 outputs a data signal having a data length at which transmission ends after transmission of any data signal and before the start of the next subframe period.
  • the data signal transmission timing was synchronized with the subframe timing.
  • the embodiment is not limited to this.
  • the base station apparatus 110 gradually reduces the offset amount between the transmission timing of the data signal and the subframe timing by making the data length of the data signal different from the subframe length, and finally synchronizes You may let them.
  • the base station apparatus 110 generates and transmits a data signal having a data length that can be transmitted after the UC free resource is detected until the next subframe timing is detected.
  • a data signal having a frame length may be transmitted.
  • the base station apparatus 110 may not be able to generate the data signal having the data length in time depending on the timing at which the UC vacant resource is detected.
  • the base station apparatus 110 detects the UC vacant resource and cannot generate the data signal having a data length that can be transmitted until the next subframe timing is detected. Processing may be executed. For example, the base station apparatus 110 may transmit a predetermined control signal and user data after detecting a UC free resource until the next subframe timing is detected.
  • each component of each illustrated apparatus is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific form of distribution and integration of each device is not limited to the illustrated one. That is, all or a part of them can be configured to be functionally or physically distributed / integrated in arbitrary units according to various loads or usage conditions.
  • each processing function performed in each device may be realized by a CPU and a program analyzed and executed by the CPU, or may be realized as hardware by wired logic.
  • the base station apparatus 110 mentioned above is realizable by LTE eNB, for example.
  • LTE eNB for example.
  • an example of the hardware configuration of the eNB that realizes the base station apparatus 110 described in the first embodiment or the third embodiment will be described with reference to FIG.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of the eNB.
  • the base station apparatus 110 can be realized by, for example, the wireless communication apparatus 550 illustrated in FIG.
  • the wireless communication device 550 includes, for example, a transmission / reception antenna 551, an amplifier 552, a multiplication unit 553, an analog / digital converter 554, a processor 555, and a memory 556.
  • the wireless communication device 550 includes a digital-analog converter 557, a multiplication unit 558, an amplifier 559, and an oscillator 560.
  • the wireless communication device 550 may include an interface that performs wired communication with an external communication device.
  • the transmission / reception antenna 551 receives a signal wirelessly transmitted from the periphery of its own device, and outputs the received signal to the amplifier 552. Further, the transmission / reception antenna 551 wirelessly transmits the signal output from the amplifier 559 to the periphery of the own device.
  • the amplifier 552 amplifies the signal output from the transmission / reception antenna 551. Then, the amplifier 552 outputs the amplified signal to the multiplier 553.
  • the multiplier 553 multiplies the signal output from the amplifier 552 by the clock signal output from the oscillator 560, thereby performing frequency conversion from the high frequency band to the baseband band. Then, the multiplier 553 outputs the frequency-converted signal to the analog / digital converter 554.
  • the analog / digital converter 554 (A / D) is an ADC (Analog / Digital Converter) that converts the signal output from the multiplier 553 from an analog signal to a digital signal.
  • the analog-digital converter 554 outputs the signal converted into the digital signal to the processor 555.
  • the processor 555 governs overall control of the wireless communication device 550.
  • the processor 555 can be realized by, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the processor 555 performs reception processing on the signal output from the analog-digital converter 554. Further, the processor 555 generates a signal to be transmitted by the own device, and performs a transmission process of outputting the generated signal to the digital / analog converter 557.
  • the memory 556 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the processor 555.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory.
  • Various programs for operating the processor 555 are stored in the auxiliary memory.
  • the program stored in the auxiliary memory is loaded into the main memory and executed by the processor 555.
  • the auxiliary memory stores, for example, various predetermined threshold values.
  • the digital-analog converter 557 is a DAC (Digital / Analog Converter) that converts a signal output from the processor 555 from a digital signal to an analog signal.
  • the digital-analog converter 557 outputs the signal converted into the analog signal to the multiplication unit 558.
  • the multiplier 558 multiplies the signal output from the digital-analog converter 557 with the clock signal output from the oscillator 560, thereby performing frequency conversion from the baseband to the high-frequency band. Then, multiplication section 558 outputs the frequency-converted signal to amplifier 559.
  • the amplifier 559 amplifies the signal output from the digital / analog converter 557. Then, the amplifier 559 outputs the amplified signal to the transmission / reception antenna 551.
  • the oscillator 560 oscillates a clock signal (continuous wave AC signal) having a predetermined frequency. Then, the oscillator 560 outputs the oscillated clock signal to the multipliers 553 and 558.
  • the antennas 501, 502, 531, and 532 shown in FIG. 2 can be realized by the transmission / reception antenna 551, for example.
  • the wireless processing units 504, 509, 524, and 530 illustrated in FIG. 2 are realized by, for example, an amplifier 552, a multiplication unit 553, an analog / digital converter 554, a digital / analog converter 557, a multiplication unit 558, an amplifier 559, and an oscillator 560. Can do.
  • the other configuration shown in FIG. 2 can be realized by the processor 555 and the memory 556, for example.
  • the terminal apparatus 101 can be realized as an LTE UE, for example. Similar to the base station apparatus 110, the terminal apparatus 101 can also be realized by the wireless communication apparatus 550 illustrated in FIG. In this case, the wireless communication device 550 may not include an interface for performing wired communication with an external communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信システム(100)は、一つの態様において、自システム専用の第1帯域と、自システムと他の無線通信システムとが共用する第2帯域とを、前記第1帯域のサブフレームに同期させて無線通信を行う。また、無線通信システム(100)は、前記第2帯域の空き状態を検出した場合は、サブフレーム期間の途中でも、前記第2帯域でサブフレーム長のデータ信号の送信を開始し、後のサブフレーム境界で、前記データ信号を復号するための制御情報とともに、前記データ信号の送信を開始したタイミングを示すタイミング情報を前記第1帯域で送信する基地局装置(110)を有する。また、無線通信システム(100)は、前記第2帯域で送信されたデータ信号を保持し、前記第1帯域で送信された前記タイミング情報と前記制御情報とを用いて、前記保持したデータ信号からデータを復号する端末装置を有する。

Description

無線通信システム、基地局装置および端末装置
 本発明は、無線通信システム、基地局装置および端末装置に関する。
 近年、携帯電話システム等の無線通信システムにおいて、無線通信の更なる高速化や大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、LTE(Long Term Evolution)と呼ばれる通信規格において、免許を要する周波数帯の搬送波(LC:Licensed Band Carrier)と、免許が不要な周波数帯の搬送波(UC:Unlicensed Band Carrier)とを用いて通信を行う技術が検討されている。
 ここで、LTEシステムの基地局装置は、所定のサブフレームタイミングと同期してデータ通信を行うため、空チャネルを検出してからデータ通信を開始するまでの間に隙間時間を生じさせる場合がある。一方で、他の基地局装置やアクセスポイントは、かかるサブフレームタイミングとは無関係にデータ通信を行う。このため、基地局装置は、隙間時間の間に、検出した空チャネルが他の基地局装置やアクセスポイントにより使用される結果、データ通信を開始できない場合がある。そこで、隙間時間の間、ダミー信号を送信することで、空チャネルを確保する技術が提案されている。
米国特許出願公開第2014/0036853号明細書
 しかしながら、上述した従来技術では、隙間時間の間、データ通信を行わずにダミー信号を送信するので、スループットが低下する場合がある。
 1つの側面では、本発明は、スループットの低下を改善できる無線通信システム、基地局装置および端末装置を提供することを目的とする。
 本願の開示する無線通信システムは、一つの態様において、自システム専用の第1帯域と、自システムと他の無線通信システムとが共用する第2帯域とを、前記第1帯域のサブフレームに同期させて無線通信を行う。また、無線通信システムは、前記第2帯域の空き状態を検出した場合は、サブフレーム期間の途中でも、前記第2帯域でサブフレーム長のデータ信号の送信を開始し、後のサブフレーム境界で、前記データ信号を復号するための制御情報とともに、前記データ信号の送信を開始したタイミングを示すタイミング情報を前記第1帯域で送信する基地局装置を有する。また、無線通信システムは、前記第2帯域で送信されたデータ信号を保持し、前記第1帯域で送信された前記タイミング情報と前記制御情報とを用いて、前記保持したデータ信号からデータを復号する端末装置を有する。
 本発明の一側面によれば、スループットの低下を改善できるという効果を奏する。
図1は、実施例1にかかる無線通信システムの一例を示す図である。 図2は、実施例1にかかる基地局装置の機能構成の一例を示す図である。 図3は、実施例1にかかる端末装置の機能構成の一例を示す図である。 図4は、実施例1に係る基地局装置がUCでデータ信号を送信する動作の一例を示す図である。 図5は、実施例1に係る基地局装置がダミー信号を出力する処理の一例を説明する図である。 図6は、実施例1に係る無線通信システムが実行する処理の流れの一例を説明するフローチャートである。 図7は、実施例2に係る無線通信システムが実行する下りリンク送信の一例を示す図である。 図8は、実施例3に係る基地局装置がUCでデータ信号を送信する動作の一例を示す図である。 図9は、実施例3に係る無線通信システムが実行する処理の流れの一例を説明するフローチャートである。 図10は、eNBのハードウェア構成の一例を示す図である。
 以下に図面を参照して、本発明にかかる無線通信システム、基地局装置および端末装置の実施の形態を詳細に説明する。なお、以下の実施例により本願の開示する無線通信システム、基地局装置および端末装置の実施の形態が限定されるものではない。
 [無線通信システムの一例]
 図1は、実施例1にかかる無線通信システムの一例を示す図である。図1に示すように、実施例1にかかる無線通信システム100は、基地局装置110A、基地局装置110Bと、アクセスポイント120と、端末装置101と、を含む。セル111Aは、基地局装置110Aが形成するセルである。セル111Bは、基地局装置110Bが形成するセルである。端末装置101は、セル111Aに在圏しており、基地局装置110Aとの間で無線通信を行う。
 基地局装置110Aおよび端末装置101は、一例としてはLTEの無線通信を行う。この場合に、基地局装置110Aは、一例としてはLTEのeNB(evolved Node B)である。端末装置101は、一例としてはLTEのUE(User Equipment:ユーザ端末)である。なお、以下の説明では、基地局装置110Aと端末装置101とをLTEシステムと記載する場合がある。
 また、基地局装置110Aおよび端末装置101は、自システムの専用の第1帯域と、自システムと他の無線通信システムとの共用の第2帯域と、を用いて互いに無線通信を行う。第1帯域は、例えば、2ギガヘルツ帯のLC(Licensed band Carrier:ライセンスドバンドキャリア:免許帯域の搬送波)である。第2帯域は、例えば、5ギガヘルツ帯のUC(Unlicensed band Carrier:アンライセンスドバンドキャリア:免許不要帯域の搬送波)である。
 なお、第2帯域は、一例としては無線LAN(Local Area Network:構内通信網)システムにおいても使用される帯域である。また、第2帯域は、例えば無線通信システム100とは異なる他の(他業者の)LTEシステムなどと共用する帯域であってもよい。
 例えば、無線通信システム100においては、第1帯域がPCC(Primary Component Carrier:プライマリコンポーネントキャリア)に用いられ、第2帯域がSCC(Secondary Component Carrier:セカンダリコンポーネントキャリア)に用いられる。
 アクセスポイント120は、セル111Aに在圏しており、端末装置101との間で無線通信を行うルータである。例えば、アクセスポイント120は、Wi-Fi(登録商標)等、第2帯域を用いて端末装置101との通信を行う。
 基地局装置110Bは、基地局装置110Aとは異なるオペレータにより提供される基地局であり、例えば、基地局装置110Aと同様に、端末装置101とLCおよびUCを用いて互いに無線通信を行う。なお、以下の説明では、基地局装置110Aと基地局装置110Bとは、同様の機能を発揮するものとし、各基地局装置110A、110Bを基地局装置110と記載する。
 基地局装置110は、LTEシステムのデータチャネルでデータ送信を行う場合、第1帯域と第2帯域とを用いて、データを送信する。なお、LTEシステムにおけるデータチャネルとは、例えば、PDSCH(Physical Downlink Shared Channel:物理下りリンク共有チャネル)である。また、他の例では、LTEシステムにおけるデータチャネルとは、PUSCH(Physical Uplink Shared Channel:物理上りリンク共有チャネル)である。
 また、基地局装置110は、サブフレーム期間と同期してデータを送信する。例えば、基地局装置110は、サブフレーム期間の先頭となるサブフレームタイミングでデータ信号の送信を開始する。かかる場合、端末装置101は、基地局装置110との間でデータ通信を行う場合は、受信したデータ信号を基地局装置110のサブフレームタイミングに従って復号することで、データを取得する。
 なお、以下の説明では、サブフレームタイミングから次のサブフレームタイミングまでの期間をサブフレーム期間と記載する。また、1つのサブフレーム期間は、0番目から13番目までのシンボル期間を有する。また、基地局装置110および端末装置101がデータ通信を行うために同期する時間間隔は、他の名称であってもよい。
 以下、基地局装置110が実行する処理の一例を説明する。例えば、基地局装置110は、キャリアセンス(CS:Carrier Sense)を行い、UCの空きリソースを検出する。具体的には、基地局装置110は、ビジー状態のチャネルが空いた場合は、DIFS(Distributed coordination function Interframe Space)と、ランダムなBackoff期間とが経過するまでの間待機する。そして、基地局装置110は、DIFSとBackoff期間とが経過した時点で、空いたチャネルが使用されなかった場合は、かかるチャネルを空きリソースとして検出する。
 続いて、基地局装置110は、基地局装置110からDL(Down Link:下りリンク)送信を行うことを示すDLアサイメント(DL assignment)をLCで送信する。かかるDLアサイメントは、UCで出力したデータ信号を復号するための制御情報として、PRB(Physical Resource Block)の位置等の周波数スケジューリングの情報、チャネル符号化、AMC(Adaptive Modulation and Coding)等の制御情報が格納される。そして、DLアサイメントは、サブフレームの先頭から最大3シンボルの期間のPDCCH(Physical Downlink Control Channel)、またはサブフレームの任意の場所に設定されるEPDCCH(Enhanced Physical Downlink Control Channel)を用いて送信される。
 また、基地局装置110は、データ長がサブフレーム期間と同じ長さのデータ信号を生成し、サブフレームタイミングと同期して、生成したデータ信号をUCで出力する。なお、DLアサイメントは、例えば、DLアサイン(DL assign)またはDLグラント(DL grant)とも呼ばれ、サブフレームの先頭3シンボル内のPDCCH、またはサブフレームの任意の場所に設定されるEPDCCHを用いて送信される情報である。
 ここで、UCは、基地局装置110Aだけではなく、基地局装置110Aとは異なるサブフレームタイミングに同期した基地局装置110Bやアクセスポイント120によっても利用される。このため、基地局装置110Aは、ビジー状態のチャネルが空いてから次のサブフレームタイミングまでの間に、空いたチャネルを基地局装置110Bやアクセスポイント120に横取りされる場合がある。しかしながら、基地局装置110Aは、チャネルが空いてからサブフレームタイミングまでの間、空いたチャネルを確保するためのダミー信号を送信した場合は、データを送信できず、スループットを低下させる。
 そこで、基地局装置110は、UCのリソースの空き状態を検出した場合、すなわち、UCが空いてからDIFSとBackoff期間とが経過してもUCが空いていた場合は、サブフレーム期間の途中でも、UCでデータ信号の送信を開始する。また、基地局装置110は、UCでデータ信号の送信を開始したタイミングを示すタイミング情報を生成する。例えば、基地局装置110は、UCでデータ信号の送信を開始したシンボルの番号が格納されたタイミング情報を生成する。そして、基地局装置110は、データ信号を復号するための制御情報とともに、タイミング情報をLCで送信する。
 例えば、基地局装置110は、UCの空きリソースを検出した場合は、UCでデータ信号をすぐに送信する。また、基地局装置110は、UCでデータ信号を送信したシンボルを示すタイミング情報を生成する。そして、基地局装置110は、UCでデータ信号を送信したサブフレーム期間の次のサブフレーム期間で、DLアサイメントとともにタイミング情報をLCで送信する。
 ここで、データ信号の送信先となる端末装置101は、基地局装置110がサブフレームタイミングと同期せずにUCでデータ信号を送信した場合は、データ信号の先頭位置が不明なので、データ信号を正しく復号できない。しかしながら、本実施例の基地局装置110は、UCでデータ信号の送信を開始したタイミングを示すタイミング情報を送信する。
 そこで、端末装置101は、UCで受信したデータ信号を所定のバッファに保持する。また、端末装置101は、基地局装置110がUCでデータ信号を送信したサブフレーム期間の次のサブフレーム期間で受信したタイミング情報から、データ信号の先頭位置を特定し、制御情報を用いて、データ信号の復調およびデータの復号を行う。
 このように、基地局装置110は、UCが空いた場合は、サブフレームタイミングとは関係なくUCでデータ信号を送信する。そして、基地局装置110は、UCでデータ信号を送信したタイミングを示すタイミング情報を、DLアサイメントとともにLCで送信する。一方、端末装置101は、UCで受信したデータ信号をバッファに保持し、LCで受信したタイミング情報とDLアサイメントとを用いて、データ信号を復号する。このため、無線通信システム100は、UCの空きチャネルが検出されてから次のサブフレームタイミングまでの間、データ通信を行うことができるので、スループットを向上させることができる。
 [基地局装置の構成例]
 次に、図2を用いて、基地局装置の一例を説明する。図2は、実施例1にかかる基地局装置の機能構成の一例を示す図である。実施例1にかかる基地局装置110は、例えば図2に示す基地局装置110により実現することができる。
 図2に示す基地局装置110は、アンテナ501、502と、ライセンスドバンド受信部503と、アンライセンスドバンド受信部508と、MAC(Media Access Control)・RLC(Radio Link Control)処理部513と、を有する。また、基地局装置110は、無線リソース制御部(RRC)514と、キャリアセンス部515と、MAC制御部516と、パケット生成部517と、MACスケジューリング部518と、を有する。また、基地局装置110は、ライセンスドバンド送信部519と、アンライセンスドバンド送信部525と、アンテナ531、532と、を有する。
 アンテナ501、502のそれぞれは、他の無線通信装置から無線送信された信号を受信する。そして、アンテナ501、502は、受信した信号をそれぞれライセンスドバンド受信部503およびアンライセンスドバンド受信部508へ出力する。なお、基地局装置110は、アンテナ501、502の機能をまとめた1つのアンテナを有してもよい。
 ライセンスドバンド受信部503は、ライセンスドバンド(LC)の受信処理を行う。例えば、ライセンスドバンド受信部503は、無線処理部504と、FFT処理部505と、復調部506と、復号部507と、を有する。
 無線処理部504は、アンテナ501から出力された信号の無線処理を行う。無線処理部504の無線処理には、例えば高周波帯からベースバンド帯への周波数変換が含まれる。無線処理部504は、無線処理を行った信号をFFT処理部505へ出力する。
 FFT処理部505は、無線処理部504から出力された信号のFFT(Fast Fourier Transform:高速フーリエ変換)処理を行う。これにより、信号が時間領域から周波数領域に変換される。FFT処理部505は、FFT処理を行った信号を復調部506へ出力する。
 復調部506は、FFT処理部505から出力された信号を復調する。そして、復調部506は、復調により得られた信号を復号部507へ出力する。復号部507は、復調部506から出力された信号を復号する。そして、復号部507は、復号により得られたデータをMAC・RLC処理部513へ出力する。
 アンライセンスドバンド受信部508は、アンライセンスドバンドの受信処理を行う。例えば、アンライセンスドバンド受信部508は、無線処理部509と、FFT処理部510と、復調部511と、復号部512と、を有する。
 無線処理部509は、アンテナ502から出力された信号の無線処理を行う。無線処理部509の無線処理には、例えば高周波帯からベースバンド帯への周波数変換が含まれる。無線処理部509は、無線処理を行った信号をFFT処理部510へ出力する。
 FFT処理部510は、無線処理部509から出力された信号のFFT処理を行う。これにより、信号が時間領域から周波数領域に変換される。FFT処理部510は、FFT処理を行った信号を復調部511およびキャリアセンス部515へ出力する。
 復調部511は、FFT処理部510から出力された信号を復調する。そして、復調部511は、復調により得られた信号を復号部512へ出力する。復号部512は、復調部511から出力された信号を復号する。そして、復号部512は、復号により得られたデータをMAC・RLC処理部513へ出力する。
 MAC・RLC処理部513は、復号部507から出力されたデータに基づくMAC層およびRLC層の各処理を行う。MAC・RLC処理部513は、各層の処理によって得られたデータを出力する。MAC・RLC処理部513から出力された信号は、例えば基地局装置110の上位層の処理部へ入力される。また、MAC・RLC処理部513は、各層の処理によって得られたデータに含まれるRTS信号検出結果などの制御情報を無線リソース制御部514へ出力する。
 無線リソース制御部514は、MAC・RLC処理部513から出力された制御情報に基づく無線リソース制御を行う。この無線リソース制御はRRC(Radio Resource Control:無線リソース制御)層の処理である。無線リソース制御部514は、無線リソース制御に基づく制御情報をMAC制御部516へ出力する。
 キャリアセンス部515は、FFT処理部510から出力されたアンライセンスドバンド(UC)の信号に基づくキャリアセンスを行う。そして、キャリアセンス部515は、キャリアセンスの結果を示すキャリアセンス結果情報をMAC制御部516へ出力する。
 MAC制御部516は、無線リソース制御部514から出力された制御情報と、キャリアセンス部515から出力されたキャリアセンス結果情報と、に基づくMAC層の制御を行う。そして、MAC制御部516は、MAC層の制御に基づく端末装置101への個別制御情報やRTS信号を多重部522へ出力する。個別制御情報は、例えばPDCCH(Physical Downlink Control Channel:物理下りリンク制御チャネル)である。
 また、MAC制御部516は、MAC層の制御に基づくDMRS(Data Demodulation Reference Signal:復調参照信号)、ダミー信号、RTS信号などを多重部528へ出力する。また、MAC制御部516は、MAC層の制御に基づく制御情報をMACスケジューリング部518へ出力する。
 パケット生成部517は、基地局装置110の上位層から出力されたユーザデータを含むパケットを生成する。そして、パケット生成部517は、生成したパケットをMACスケジューリング部518へ出力する。
 MACスケジューリング部518は、MAC制御部516から出力された制御情報に基づいて、パケット生成部517から出力されたパケットのMAC層のスケジューリングを行う。そして、MACスケジューリング部518は、スケジューリングの結果に基づいてパケットをライセンスドバンド送信部519およびアンライセンスドバンド送信部525へ出力する。例えば、MACスケジューリング部518は、サブフレーム単位でデータ信号の送信が行われるように、スケジューリングを行う。すなわち、MACスケジューリング部は、LCで送信されるデータ信号の長さがサブフレーム期間と一致するように、パケットのスケジューリングを行う。
 ライセンスドバンド送信部519は、ライセンスドバンドの送信処理を行う。例えば、ライセンスドバンド送信部519は、符号化部520と、変調部521と、多重部522と、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)処理部523と、無線処理部524と、を有する。
 符号化部520は、MACスケジューリング部518から出力されたパケットを符号化する。そして、符号化部520は、符号化したパケットを変調部521へ出力する。変調部521は、符号化部520から出力されたパケットに基づく変調を行う。そして、変調部521は、変調により得られた信号を多重部522へ出力する。
 多重部522は、MAC制御部516から出力された個別制御情報やRTS信号と、変調部521から出力された信号と、を多重化する。そして、多重部522は、多重化により得られた信号をIFFT処理部523へ出力する。
 IFFT処理部523は、多重部522から出力された信号のIFFT処理を行う。これにより、信号が周波数領域から時間領域に変換される。IFFT処理部523は、IFFT処理を行った信号を無線処理部524へ出力する。
 無線処理部524は、IFFT処理部523から出力された信号の無線処理を行う。無線処理部524の無線処理には、例えばベースバンド帯から高周波帯への周波数変換が含まれる。無線処理部524は、無線処理を行った信号をアンテナ531へ出力する。
 アンライセンスドバンド送信部525は、アンライセンスドバンドの送信処理を行う。例えば、アンライセンスドバンド送信部525は、符号化部526と、変調部527と、多重部528と、IFFT処理部529と、無線処理部530と、を有する。
 符号化部526は、MACスケジューリング部518から出力されたパケットを符号化する。そして、符号化部526は、符号化したパケットを変調部527へ出力する。変調部527は、符号化部526から出力されたパケットに基づく変調を行う。そして、変調部527は、変調により得られた信号を多重部528へ出力する。
 多重部528は、MAC制御部516から出力された個別制御情報やRTS信号と、変調部527から出力された信号と、を多重化する。そして、多重部528は、多重化により得られた信号をIFFT処理部529へ出力する。
 IFFT処理部529は、多重部528から出力された信号のIFFT処理を行う。これにより、信号が周波数領域から時間領域に変換される。IFFT処理部529は、IFFT処理を行った信号を無線処理部530へ出力する。
 無線処理部530は、IFFT処理部529から出力された信号の無線処理を行う。無線処理部530の無線処理には、例えばベースバンド帯から高周波帯への周波数変換が含まれる。無線処理部530は、無線処理を行った信号をアンテナ532へ出力する。
 アンテナ531は、無線処理部524から出力された信号を他の無線通信装置へ無線送信する。アンテナ532は、無線処理部530から出力された信号を他の無線通信装置へ無線送信する。
 ここで、MAC制御部516は、以下の処理を実行する。まず、MAC制御部516は、送信対象となるデータが存在し、かつ、キャリアセンス部515からUCの空きチャネルを検出した旨のキャリアセンス結果情報を取得した場合は、DIFSとBackoff期間とが経過するまで待機する。また、MAC制御部516は、DIFSとBackoff期間とが経過した後で、キャリアセンス部515からUCの空きチャネルを検出した旨のキャリアセンス結果情報を取得した場合は、UCでデータ信号の送信を開始する。
 具体的には、MAC制御部516は、アンライセンスドバンド送信部525にパケットを出力するようMACスケジューリング部518に指示する。かかる場合、MACスケジューリング部518は、UCを介して送信するパケットをアンライセンスドバンド送信部525に出力する。この結果、基地局装置110は、UCの空きチャネルを検出次第、UCでデータ信号の送信を開始する。
 また、MAC制御部516は、UCでデータ信号の送信を開始したタイミングを示すタイミング情報を生成し、DLアサインメントとともに多重部522に出力する。かかる場合、ライセンスドバンド送信部519は、サブフレームタイミングと同期して、DLアサインメントとタイミング情報とをLCで出力する。
 このように、基地局装置110は、UCが空き次第、サブフレーム期間の途中でもデータ送信を開始し、データ送信を開始したタイミングを示すタイミング情報をLCで送信する。このため、基地局装置110は、スループットを改善することができる。
 なお、タイミング情報には、データ信号を復号するために十分な情報が含まれていればよい。例えば、タイミング情報には、データ信号の送信を開始した時刻が含まれていてもよく、また、データ信号の送信を開始したシンボルの番号が含まれていてもよい。例えば、基地局装置110は、シンボルの番号でデータ信号の送信を開始したタイミングを示した場合は、タイミング情報のデータ量を削減し、通信リソースを有効に用いることができる。
 しかしながら、UCのあるチャネルを他の基地局装置やアクセスポイント120が使用していた場合、かかるチャネルが解放されるタイミングは、基地局装置110のシンボルとは一般的に同期しない。このため、シンボルの番号をタイミング情報とすると、UCの空きを検出したタイミングがシンボルの途中である場合、シンボルのどの位置からデータ信号が送信されたかが不明であるため、データ信号の復号処理が困難となる。
 そこで、MAC制御部516は、シンボルの番号をタイミング情報とする場合、以下の処理を実行する。まず、MAC制御部516は、キャリアセンス部515がUCの空きチャネルを検出したタイミングがシンボルの途中である場合は、次のシンボル期間が始まるまでの間、ダミー信号を多重部528に出力する。この結果、アンライセンスドバンド送信部525は、UCの空きチャネルが検出されてから次のシンボル期間が開始するまでの間、ダミー信号をUCで出力するので、他の基地局装置に対し、空きチャネルの予約を行うことができる。
 一方、MAC制御部516は、キャリアセンス部515がUCの空きチャネルを検出したシンボル期間の次のシンボル期間からデータ信号を出力するようMACスケジューリング部518に指示する。この結果、MACスケジューリング部518は、UCの空きチャネルを検出したシンボル期間の次のシンボル期間の先頭から、サブフレーム長のデータ信号がUCで出力されるように、パケットのスケジューリングを行う。
 また、MAC制御部516は、キャリアセンス部515がUCの空きチャネルを検出したシンボル期間の次のシンボル期間の番号を特定し、特定したシンボル期間の番号を示すタイミング情報を生成する。そして、MAC制御部516は、キャリアセンス部515がUCの空きチャネルを検出したサブフレーム期間の次のサブフレーム期間で送信されるDLアサインメントとともに、生成したタイミング情報を多重部522に出力する。この結果、ライセンスドバンド送信部519は、DLアサインメントとタイミング情報とを、キャリアセンス部515がUCの空きチャネルを検出したサブフレーム期間の次のサブフレーム期間で送信する。
 [端末装置の構成例]
 次に、図3を用いて、端末装置101の一例を説明する。図3は、実施例1にかかる端末装置の機能構成の一例を示す図である。実施例1にかかる端末装置101は、例えば図3に示す端末装置101により実現することができる。
 図3に示す端末装置101は、アンテナ600と、ライセンスドバンド受信部601と、アンライセンスドバンド受信部607と、バッファ613と、復号部614と、RTS信号検出部615と、RRC処理部616と、キャリアセンス部617と、を有する。また、端末装置101は、MAC処理部618と、パケット生成部619と、符号化・変調部620と、ライセンスドバンド送信部621と、アンライセンスドバンド送信部627と、を有する。
 アンテナ600は、他の無線通信装置から無線送信された信号を受信する。そして、アンテナ600は、受信した信号をライセンスドバンド受信部601およびアンライセンスドバンド受信部607へ出力する。また、アンテナ600は、ライセンスドバンド送信部621およびアンライセンスドバンド送信部627から出力された各信号を他の無線通信装置へ無線送信する。なお、端末装置101は、ライセンスバンド受信部601、アンライセンスドバンド受信部607、ライセンスドバンド送信部621、アンライセンスドバンド送信部627ごとに個別のアンテナを有していてもよい。
 ライセンスドバンド受信部601は、ライセンスドバンドの受信処理を行う。例えば、ライセンスドバンド受信部601は、無線処理部602と、FFT処理部603と、等化処理部604と、IFFT処理部605と、復調部606と、を有する。
 無線処理部602は、アンテナ600から出力された信号の無線処理を行う。無線処理部602の無線処理には、例えば高周波帯からベースバンド帯への周波数変換が含まれる。無線処理部602は、無線処理を行った信号をFFT処理部603へ出力する。
 FFT処理部603は、無線処理部602から出力された信号のFFT処理を行う。これにより、信号が時間領域から周波数領域に変換される。FFT処理部603は、FFT処理を行った信号を等化処理部604へ出力する。等化処理部604は、FFT処理部603から出力された信号の等化処理を行う。そして、等化処理部604は、等化処理を行った信号をIFFT処理部605へ出力する。
 IFFT処理部605は、等化処理部604から出力された信号のIFFT処理を行う。これにより、信号が周波数領域から時間領域に変換される。IFFT処理部605は、IFFT処理を行った信号を復調部606へ出力する。復調部606は、IFFT処理部605から出力された信号を復調する。そして、復調部606は、復調により得られた信号を復号部614へ出力する。
 なお、ライセンスドバンド受信部601は、端末装置101が通信を行う基地局装置のサブフレームタイミングと同期して、データ信号の復調を行う。例えば、ライセンスドバンド受信部601は、基地局装置110のサブフレームタイミングから受信したデータ信号を復調することで、タイミング情報やDLアサインメント等を受信する。
 アンライセンスドバンド受信部607は、アンライセンスドバンドの受信処理を行う。例えば、アンライセンスドバンド受信部607は、無線処理部608と、FFT処理部609と、等化処理部610と、IFFT処理部611と、復調部612と、を有する。
 無線処理部608は、アンテナ600から出力された信号の無線処理を行う。無線処理部608の無線処理には、例えば高周波帯からベースバンド帯への周波数変換が含まれる。無線処理部608は、無線処理を行った信号をFFT処理部609およびキャリアセンス部617へ出力する。
 FFT処理部609は、データ信号のFFT処理を行う。これにより、信号が時間領域から周波数領域に変換される。そして、FFT処理部609は、FFT処理を行った信号を等化処理部610へ出力する。等化処理部610は、FFT処理部609から出力された信号の等化処理を行う。そして、等化処理部610は、等化処理を行った信号をIFFT処理部611へ出力する。
 IFFT処理部611は、等化処理部610から出力された信号のIFFT処理を行う。これにより、信号が周波数領域から時間領域に変換される。IFFT処理部611は、IFFT処理を行った信号を復調部612へ出力する。復調部612は、IFFT処理部611から出力された信号を復調する。そして、復調部612は、復調により得られた信号をバッファ613へ出力する。
 バッファ613は、UCのデータ信号を一時的に保持するバッファである。例えば、バッファ613は、少なくとも1サブフレームの間受信したデータ信号を保持することができるバッファであり、FIFO(First In First Out)形式で保持したデータ信号が書換えられるバッファである。
 復号部614は、ライセンスドバンド受信部601およびアンライセンスドバンド受信部607から出力された信号を復号する。そして、復号部614は、復号により得られたデータを出力する。復号部614から出力されたデータは、例えば端末装置101の上位層の処理部およびRTS信号検出部615へ入力される。復号部614から出力されたデータには、例えばユーザデータが含まれる。
 ここで、復号部614は、UCで送信されたデータ信号を正確に復号するため、以下の処理を実行する。まず復号部614は、ライセンスドバンド受信部601が基地局装置110のサブフレームタイミングと同期して復調した信号から、DLアサインメントとタイミング情報とを取得する。次に、復号部614は、取得したDLアサインメントに自装置宛てのデータが送信される旨の信号が含まれる場合は、取得したタイミング情報から、データ信号が出力されたタイミングを特定する。そして、復号部614は、バッファ613に格納された信号のうち特定したタイミング以降に受信された信号を特定し、特定した信号を読み出して復号する。
 なお、基地局装置110は、UCでデータ信号の送信を開始したサブフレーム期間の次のサブフレーム期間でタイミング情報を送信する。このため、端末装置101は、最大で1サブフレーム期間分の信号を保持するバッファ609を有していればよい。しかしながら、実施例は、これに限定されるものではない。
 例えば、基地局装置110が、UCでデータ信号の出力開始したサブフレーム期間から、最大でn個後のサブフレーム期間でタイミング情報を送信する場合、端末装置101は、最大でnサブフレーム期間分の信号を保持するバッファ609を有していればよい。また、基地局装置110は、タイミング情報がどのサブフレーム期間のどのシンボル期間からデータ信号を出力したかを示す場合は、タイミング情報の送信順序を、データ信号の送信順序とは異なる順序で送信してもよい。
 RTS信号検出部615は、復号部614から出力されたデータに含まれる、他の無線通信装置から送信されたRTS信号を検出する。そして、RTS信号検出部615は、RTS信号の検出結果を示す検出情報をRRC処理部616へ出力する。
 RRC処理部616は、RTS信号検出部615から出力されたRTS信号に基づくRRC層の処理を行う。そして、RRC処理部616は、RRC層の処理結果をMAC処理部618へ出力する。
 キャリアセンス部617は、無線処理部608から出力された信号に基づくキャリアセンスを行う。そして、キャリアセンス部617は、キャリアセンスの結果を示すキャリアセンス結果情報をMAC処理部618へ出力する。
 MAC処理部618は、RRC処理部616から出力された処理結果と、キャリアセンス部617から出力されたキャリアセンス結果情報と、に基づくMAC層の処理を行う。そして、MAC処理部618は、MAC層の処理に基づく端末装置101へのDMRS、ダミー信号、RTS信号などを多重部622,628へ出力する。
 また、MAC処理部618は、MAC層の処理に基づく無線リソース割り当て情報を周波数マッピング部624,630へ出力する。また、MAC処理部618は、RRC処理部616のRRC層の処理に基づく無線リソース割り当て情報を符号化・変調部620へ出力する。また、MAC処理部618は、キャリアセンス部617から出力されたキャリアセンス結果情報に基づいて、端末装置101が通信を行う無線リソースの空きを確認する。
 パケット生成部619は、端末装置101の上位層から出力されたユーザデータを含むパケットを生成する。そして、パケット生成部619は、生成したパケットを符号化・変調部620へ出力する。
 符号化・変調部620は、パケット生成部619から出力されたパケットの符号化および変調を行う。そして、符号化・変調部620は、符号化および変調により得られた信号を、MAC処理部618から出力された無線リソース割り当て情報に基づいて、ライセンスドバンド送信部621またはアンライセンスドバンド送信部627へ出力する。
 ライセンスドバンド送信部621は、ライセンスドバンドの送信処理を行う。例えば、ライセンスドバンド送信部621は、多重部622と、FFT処理部623と、周波数マッピング部624と、IFFT処理部625と、無線処理部626と、を有する。多重部622は、MAC処理部618から出力された各信号と、符号化・変調部620から出力された信号と、を多重化する。そして、多重部622は、多重化により得られた信号をFFT処理部623へ出力する。
 FFT処理部623は、多重部622から出力された信号のFFT処理を行う。これにより、信号が時間領域から周波数領域に変換される。FFT処理部623は、FFT処理を行った信号を周波数マッピング部624へ出力する。周波数マッピング部624は、MAC処理部618から出力された無線リソース割り当て情報に基づいて、FFT処理部623から出力された信号の周波数マッピングを行う。そして、周波数マッピング部624は、周波数マッピングを行った信号をIFFT処理部625へ出力する。
 IFFT処理部625は、周波数マッピング部624から出力された信号のIFFT処理を行う。これにより、信号が周波数領域から時間領域に変換される。IFFT処理部625は、IFFT処理を行った信号を無線処理部626へ出力する。無線処理部626は、IFFT処理部625から出力された信号の無線処理を行う。無線処理部626の無線処理には、例えばベースバンド帯から高周波帯への周波数変換が含まれる。無線処理部626は、無線処理を行った信号をアンテナ600へ出力する。
 アンライセンスドバンド送信部627は、アンライセンスドバンドの送信処理を行う。例えば、アンライセンスドバンド送信部627は、多重部628と、FFT処理部629と、周波数マッピング部630と、IFFT処理部631と、無線処理部632と、を有する。多重部628は、MAC処理部618から出力された各信号と、符号化・変調部620から出力された信号と、を多重化する。そして、多重部628は、多重化により得られた信号をFFT処理部629へ出力する。
 FFT処理部629は、多重部628から出力された信号のFFT処理を行う。これにより、信号が時間領域から周波数領域に変換される。FFT処理部629は、FFT処理を行った信号を周波数マッピング部630へ出力する。周波数マッピング部630は、MAC処理部618から出力された無線リソース割り当て情報に基づいて、FFT処理部629から出力された信号の周波数マッピングを行う。そして、周波数マッピング部630は、周波数マッピングを行った信号をIFFT処理部631へ出力する。
 IFFT処理部631は、周波数マッピング部630から出力された信号のIFFT処理を行う。これにより、信号が周波数領域から時間領域に変換される。IFFT処理部631は、IFFT処理を行った信号を無線処理部632へ出力する。無線処理部632は、IFFT処理部631から出力された信号の無線処理を行う。無線処理部632の無線処理には、例えばベースバンド帯から高周波帯への周波数変換が含まれる。無線処理部632は、無線処理を行った信号をアンテナ600へ出力する。
 なお、図6に示す例では、無線送信と無線受信に同一のアンテナ600を用いる場合について説明したが、無線送信用のアンテナと無線受信用のアンテナを端末装置101に設けてもよい。
 [無線通信システムの動作例]
 次に、図4を用いて、基地局装置110がUCでデータ信号を送信する動作の一例について説明する。図4は、実施例1に係る基地局装置がUCでデータ信号を送信する動作の一例を示す図である。なお、図4において、横軸はサブフレーム単位の時間(t)を示している。また、図4においては、基地局装置110がLCで出力するデータと、基地局装置110がUCで出力するデータとを示した。
 図4に示す例では、サブフレーム期間t1からサブフレーム期間t2の途中にかけて、アクセスポイント120や他の基地局装置等、他のLTEシステムによりUCでデータ通信が行われた結果、UCがビジー状態1401(Busy)であったとする。かかる場合、基地局装置110は、例えばサブフレーム期間t1においてDLデータが発生した場合に、キャリアセンスを行い、UCの空きチャネルを確認する。しかしながら、サブフレーム期間t1からサブフレーム期間t2の途中にかけてUCがビジー状態1401であるため、基地局装置110は、UCの空きを待つ。
 ここで、サブフレーム期間t2の途中でUCのビジー状態1401が終了する。かかる場合、基地局装置110は、ビジー状態1401の終了からDIFS時間1402経過後、バックオフ時間1403の間に新たなビジー状態を検出しなかった場合は、サブフレーム期間と同じ長さのデータ信号1404(Data)の送信を開始する。
 また、基地局装置110は、データ信号1404の送信を開始したタイミングを示すタイミング情報を生成する。そして、基地局装置110は、データ信号1404の送信を開始したサブフレーム期間t2の次のサブフレーム期間t3で、DLアサインメント1405Aとタイミング情報1405BとをLCで送信する。かかる場合、例えば、端末装置101は、サブフレーム期間t3で受信したDLアサインメント1405Aとタイミング情報1405Bとを用いて、データ信号1404の復号を行う。
 また、基地局装置110は、続けて送信するデータが存在する場合は、かかるデータを格納したデータ信号1406を生成し、サブフレーム期間t3においてデータ信号1404の送信終了後からデータ信号1406の送信を開始する。また、基地局装置110は、データ信号1406を送信したタイミングを示すタイミング情報を生成する。そして、基地局装置110は、サブフレーム期間t4の先頭において、DLアサインメント1407Aとデータ信号1406を送信したタイミングを示すタイミング情報1407BとをLCで送信する。かかる場合、例えば、端末装置101は、サブフレーム期間t4で受信したDLアサインメント1407Aとタイミング情報1407Bとを用いて、データ信号1406の復号を行う。
 このように、基地局装置110は、UCの空きチャネルを検出したタイミングがサブフレーム期間の途中であっても、UCでデータ通信を開始できる。また、端末装置101は、基地局装置110がサブフレーム期間の途中からUCでデータ通信を開始しても、サブフレームタイミングと同期して送信されるタイミング情報から、UCでデータ信号が送信されたタイミングを特定できる。このため、無線通信システム100は、隙間時間を無駄にすることが無いので、データ通信のスループットを向上させることができる。
 なお、基地局装置110は、サブフレーム期間t2以降、サブフレームタイミングとは同期させずに、データ信号の送信を行う。また、基地局装置110は、データ信号を継続して出力(バースト)した際、最後にデータ信号を送信したサブフレーム期間の途中からは、データ信号を送信しない。そして、基地局装置110は、バーストが終了したサブフレーム期間の次のサブフレーム期間のDLアサインメントに、最後に送信したデータ信号のタイミング情報を付加するか、前回のタイミング情報と同じタイミングである旨のフラグ情報を付加する。
 次に、図5を用いて、基地局装置110がダミー信号を送信した後にデータ信号を送信する処理の一例について説明する。図5は、実施例1に係る基地局装置がダミー信号を出力する処理の一例を説明する図である。なお、図5に示す例では、図4と同様に、横軸をサブフレーム単位の時間(t)とし、基地局装置110がLCで出力するデータと、基地局装置110がUCで出力するデータとを示した。
 図5に示す例では、サブフレームt1からサブフレームt2の途中にかけて、他のLTEシステムによりUCでデータ通信が行われた結果、UCがビジー状態1401となり、サブフレームt2の途中でビジー状態1401が終了する。かかる場合、基地局装置110は、ビジー状態1401の終了からDIFS時間1402経過後、バックオフ時間1403の間に新たなビジー状態を検出しなかった場合は、データ信号1404の送信タイミングがシンボル期間の先頭となるか否かを判定する。
 ここで、図5に示す例では、シンボル期間1408の途中でバックオフ時間1403が終了している。ここで、端末装置110がシンボル期間の番号をタイミング情報とする場合、シンボル期間1408の途中からデータ信号1404の送信を開始すると、端末装置101がデータを復号する処理のリソースが増大してしまう。一方、基地局装置110は、シンボル期間1408の終了まで待機した場合には、UCの空きチャネルが他の基地局装置等により使用され、ビジー状態となり、シンボル期間1408の次シンボル期間で使用できなくなる恐れがある。
 そこで、基地局装置110は、バックオフ時間1403の終了後、シンボル期間1408が終了するまでの間、ダミー信号1409を出力することで、UCの空きチャネルを確保する。そして、基地局装置110は、シンボル期間1408の終了と同時に、ダミー信号1409の出力を終了し、シンボル期間1408の次のシンボル期間からデータ信号1404の送信を開始する。
 このように、基地局装置110は、シンボル期間の途中でUCの空きチャネルを検出すると、かかるシンボル期間が終了するまでの間ダミー信号を送信し、次のシンボル期間からデータ信号を送信する。このため、基地局装置110は、通信リソースを有効に利用できる。
 [無線通信システムが実行する処理の流れ]
 次に、図6を用いて、無線通信システム100が実行する処理の流れの一例を説明する。図6は、実施例1に係る無線通信システムが実行する処理の流れの一例を説明するフローチャートである。なお、図6に示す例では、基地局装置110が実行する処理の流れと、端末装置101が実行する処理の流れとを示した。
 まず、基地局装置110は、キャリアセンスを実行し、UCに空きがあるか否かを判定する(ステップS101)。そして、基地局装置110は、UCに空きがない場合は(ステップS101:No)、再度ステップS101を実行する。
 また、基地局装置110は、UCに空きがある場合は(ステップS101:Yes)、所定の時間(DIFS+バックオフ時間)の空き状態を確認し(ステップS102)、バックオフ時間終了時刻がシンボル期間の途中であるか否かを判定する(ステップS103)。そして、基地局装置110は、シンボル期間の途中である場合は(ステップS103:Yes)、シンボル期間が終了するまでダミー信号を出力する(ステップS104)。一方、基地局装置110は、シンボル期間の途中ではない場合は(ステップS103:No)、ステップS104をスキップする。
 続いて、基地局装置110は、空き状態を検出したUCでデータの送信を開始する(ステップS105)。続いて、基地局装置110は、サブフレームタイミングであるか否かを判定し(ステップS106)、サブフレームタイミングである場合は(ステップS106:Yes)、以下の処理を実行する。すなわち、基地局装置110は、データ信号の送信を開始したタイミングを示すタイミング情報をDLアサインメントとともにLCで送信する(ステップS107)。
 続いて、基地局装置110は、データを全て送信したか否かを判定し(ステップS108)、送信した場合は(ステップS108:Yes)、処理を終了する。一方、基地局装置110は、データを全て送信していない場合は(ステップS108:No)、ステップS105を実行する。また、基地局装置110は、サブフレームタイミングではない場合は(ステップS106:No)、ステップS105を実行する。
 一方、端末装置101は、ステップS105にて基地局装置110が送信したデータ信号をバッファに格納する(ステップS109)。そして、端末装置110は、ステップS107にて基地局装置110が送信したタイミング情報から、データ信号の送信開始タイミングを読出す(ステップS110)。その後、端末装置101は、読み出した送信開始タイミングに従って、バッファからデータ信号を読出して復号し(ステップS111)、処理を終了する。
 なお、図6に示す例では、データ信号の送信を開始したシンボルを示すタイミング情報を送信する例について記載したが、実施例は、これに限定されるものではない。例えば、基地局装置110は、データ信号の送信開始タイミングをシンボル期間の先頭に揃える必要がない場合は、以下の処理を行えばよい。すなわち、基地局装置110は、UCに空きがあると検出した場合(ステップS101:Yes)、ステップS102を実行し、ステップS103、S104の処理を実行せず、ステップS105を実行すればよい。
 [実施例1の効果]
 上述したように、LCとUCとを用いて無線通信を行う無線通信システム100は、基地局装置110と端末装置101とを有する。基地局装置110は、UCの空きを検出した場合は、UCでデータ信号の送信を開始し、データ信号の送信を開始したタイミングを示すタイミング情報を、DLアサインメントとともにLCで送信する。一方、端末装置101は、UCで送信されたデータ信号をバッファに保持し、LCで送信されたDLアサインメントとタイミング情報とを用いて、バッファに保持したデータ信号からデータを復号する。このため、無線通信システム100は、隙間時間の間もデータ通信を行うことができるので、スループットを改善できる。
 また、上述した処理を実行する無線通信システム100においては、基地局装置110側で複雑な機能構成を付加せずとも、データ信号を送信したタイミング情報をLCで送信する機能を付加すればよい。また、端末装置101は、バッファを備え、タイミング情報に従ってバッファに保持されたデータ信号を復号すればよい。このため、無線通信システム100は、容易な構成でスループットを改善することができる。
 また、基地局装置110は、UCでデータ信号の送信を開始したサブフレーム期間の次のサブフレーム期間で、DLアサインメントとタイミング情報とを送信する。このため、基地局装置110は、端末装置101が要するバッファの容量を削減し、回路規模の縮小を図ることができる。
 また、基地局装置110は、シンボル期間の途中でUCの空きを検出した場合は、次のシンボル期間が始まるまでダミー信号を送信する。このため、基地局装置110は、タイミング情報を簡素化できるので、通信リソースを有効に用いることができる。
 [実施例2に係る無線通信システムの動作例]
 上記実施例1の基地局装置110は、UCの空きを検出した場合に、サブフレーム期間の途中であってもデータ信号を送出した。ここで、基地局装置110は、UCが複数のサブバンドを有し、各サブバンドを他のLTEシステムと共有する場合は、サブバンドごとに上述した処理を実行してもよい。そこで、係る場合の形態につき、実施例2として以下に説明する。
 なお、以下の実施例2にかかる基地局装置110および端末装置101は、図2に示す機能構成と同一の機能構成により実現されるものとし、説明を省略する。また、以下に説明する処理については、例えば、図2に示すキャリアセンス部515、MAC制御部516が実行する処理により実現されるものとする。
 次に、図7を用いて、基地局装置110から端末装置101にデータを送信する下りリンク送信の一例を説明する。図7は、実施例2に係る無線通信システムが実行する下りリンク送信の一例を示す図である。なお、図7に示す例では、図4と同様に、横軸をサブフレーム単位の時間(t)とし、基地局装置110がLCで出力するデータと、基地局装置110がUCで出力するデータとを示した。
 また、図7に示す例では、UCのサブバンドSB1~SB4のうちのサブバンドSB1、SB3を用いてDL送信を行う場合について説明する。また、基地局装置110は、他のLTEシステムとUCを共用するものとする。また、図7に示す例では、他のLTEシステムは、基地局装置110のサブフレームタイミングと同期して無線通信を行うものとする。
 例えば、図7に示す例では、サブバンドSB1は、サブフレーム期間t1において他のLTEシステムによりビジー状態1511である。サブバンドSB2は、サブフレーム期間t1~t4において他のLTEシステムによりビジー状態1512である。サブバンドSB3は、サブフレーム期間t1において他のLTEシステムによりビジー状態1513であるとする。サブバンドSB4は、サブフレーム期間t1,t2において他のLTEシステムによりビジー状態1514であるとする。
 かかる場合、基地局装置110は、例えばサブフレーム期間t1においてDLデータが発生した場合に、サブバンドごとにキャリアセンスを実行する。具体例を説明すると、図2に示したキャリアセンス部515が、各サブバンドのキャリアセンスを行う。なお、基地局装置110は、サブバンドごとにキャリアセンスを行う複数のキャリアセンス部515を有してもよい。
 ここで、サブバンドSB1、SB3のビジー状態1511、1513は、サブフレーム期間t1で終了する。このため、基地局装置110は、サブフレーム期間t2の先頭からDIFS時間1521と、バックオフ時間1531との間に新たなビジー状態を検出しなかった場合は、バックオフ時間1531の経過後、すぐにデータ信号1541をサブバンドSB1で出力する。また、基地局装置110は、サブフレーム期間t2の先頭からDIFS期間1521と、バックオフ時間1533との間に新たなビジー状態を検出しなかった場合は、バックオフ時間1533の経過後、すぐにデータ信号1543をサブバンドSB3で出力する。
 ここで、データ信号の送信を開始するタイミングは、同じサブフレーム期間に多重している複数の信号で同一の値となる。そこで、基地局装置110は、データ信号1541とデータ信号1543の送信を開始したタイミング信号1545BをDLアサインメント1545AとともにLCで送信する。かかる場合、端末装置101は、DLアサインメント1545Aおよびタイミング情報1545Bを用いて、自装置宛てのデータ信号の復号を行う。
 例えば、端末装置101は、サブフレーム期間t2からサブフレーム期間t3にかけて、多重化されたデータ信号を受信し、バッファに保持する。また、端末装置101は、サブフレーム期間t3で送信さるDLアサインメント1545から、自装置宛てのデータが送信されたサブバンドを特定する。ここで、端末装置101は、自装置宛てのデータが送信されたサブバンドがSB01である場合、バッファに保持された信号からサブバンドSB01で送信されたデータ信号1541を取り出す。そして、端末装置101は、タイミング情報1545Bを用いて、データ信号1541の復号を行う。
 [実施例3に係る無線通信システムの動作例]
 上記実施例1の基地局装置110は、サブフレーム期間の途中から継続してデータ信号を送信する場合、各サブフレーム期間内でデータ信号の送信を開始したタイミングを示すタイミング情報を送信し続ける。しかしながら、実施例は、これに限定されるものではない。例えば、基地局装置110は、いずれかのデータ信号を出力した後で、次のサブフレーム期間が始まるまでに送信が終了するデータ長のデータ信号を送信することで、データ信号の出力タイミングをサブフレームタイミングに同期させてもよい。そこで、係る場合の形態につき、実施例3として以下に説明する。
 なお、以下の実施例3にかかる基地局装置110および端末装置101は、図2、図3に示す機能構成と同一の機能構成により実現されるものとし、説明を省略する。また、以下に説明する処理については、例えば、図2に示すMAC制御部516が実行する処理により実現されるものとする。
 まず、図8を用いて、実施例3に係る基地局装置110の動作の一例について説明する。図8は、実施例3に係る基地局装置がUCでデータ信号を送信する動作の一例を示す図である。なお、図において、横軸はサブフレーム単位の時間(t)を示している。また、図8に示す例では、図4と同様に、横軸をサブフレーム単位の時間(t)とし、基地局装置110がLCで出力するデータと、基地局装置110がUCで出力するデータとを示した。
 図8に示す例では、サブフレーム期間t1からサブフレーム期間t2の途中にかけて、他のLTEシステムよりUCでデータ通信が行われた結果、UCがビジー状態1401となり、サブフレーム期間t2の途中でビジー状態1401が終了する。かかる場合、基地局装置110は、ビジー状態1401の終了からDIFS時間1402経過後、バックオフ時間1403の間に新たなビジー状態を検出しなかった場合は、次のシンボル期間が開始するまでの間ダミー信号1409を送信する。そして、基地局装置110は、シンボル期間の終了と同時に、ダミー信号1409の出力を終了し、データ信号1404の送信を開始する。
 また、基地局装置110は、データ信号1404の送信を開始したサブフレーム期間t2の次のサブフレーム期間t3で、DLアサインメント1405Aとデータ信号1404の送信を開始したタイミングを示すタイミング情報1405BとをLCで送信する。ここで、基地局装置110は、データ信号1405の送信をサブフレーム期間t2の途中で開始した場合、継続して送信するデータ信号を各サブフレーム期間の途中で送信することとなる。この結果、基地局装置110は、データ信号を継続して送信する間、各サブフレーム期間で、DLアサインメントとともに、タイミング情報を送信しなければならない。
 そこで、基地局装置110は、データ信号を継続して出力する場合は、いずれかのデータ信号の出力が終了してから、次のサブフレーム期間が始まるまでの間に送信可能なデータ長のデータ信号を生成して出力する。例えば、基地局装置110は、データ信号1404の送信が終了した後で、サブフレーム期間t4が開始するまでの間に送信可能なデータ長のデータ信号1410を生成し、データ信号1405の次に送信を開始する。また、基地局装置110は、サブフレーム期間t4で、データ信号1410のタイミング情報1411BをDLアサインメント1411AとともにLCで送信する。
 かかる場合、基地局装置110は、データ信号1410の送信をサブフレーム期間t3の終了とともに終了させることができる。この結果、基地局装置110は、データ信号1410に続いて送信するデータ信号1413を、サブフレーム期間t4の開始と同時に送信することができる。すなわち、基地局装置110は、データ信号1410をサブフレームタイミングと同期したタイミングで送信することができる。かかる場合、基地局装置110は、サブフレームタイミングt4以降、タイミング情報の生成および送信を省略する。この結果、基地局装置110は、演算資源および通信資源を削減することができる。
 なお、基地局装置110は、データ信号1410に付随するDLアサインメント1411Aおよびタイミング情報1411Bの送信後、データ信号1413に付随するDLアサインメント1412を、サブフレーム期間t4で送信する。この結果、基地局装置110は、サブフレーム期間t4以降、データ信号の送信と、DLアサインメントの送信とを同じサブフレーム期間内で行うことができる。
 また、基地局装置110は、任意のサブフレーム期間で上述した処理を実行して良い。例えば、基地局装置110は、データ信号をバースト送信する際、最初のデータ信号を送信した後で上述した処理を行ってもよく、所定の個数のデータ信号を送信した後や、最後のデータ信号の一つ前のデータ信号を送信する際に、上述した処理を行ってもよい。
 [実施例3に係る無線通信システムが実行する処理の流れ]
 次に、図9を用いて、実施例3に係る無線通信システム100が実行する処理の流れの一例を説明する。図9は、実施例3に係る無線通信システムが実行する処理の流れの一例を説明するフローチャートである。なお、図9に示す例では、図6と同様に、基地局装置110が実行する処理の流れと、端末装置101が実行する処理の流れとを示した。また、図9に示す処理のうち、ステップS201~ステップS211は、図6に示すステップS101~ステップS111と同じ処理であるものとして、説明を省略する。
 まず、基地局装置110は、全データを送信したか否かを判定し(ステップS208)、全データを送信していないと判定した場合は、次に送信するデータ信号の送信開始タイミングがサブフレームタイミングと一致するか否かを判定する(ステップS212)。そして、基地局装置110は、次に送信するデータ信号の送信開始タイミングがサブフレームタイミングと一致しない場合は(ステップS212:No)、以下の処理を実行する。
 すなわち、基地局装置110は、送信中のデータ信号の後で次のサブフレームタイミングまでに送信可能なデータ長のデータ信号を生成し(ステップS213)、生成したデータ信号をUCで送信する(ステップS205)。一方、基地局装置110は、次に送信するデータ信号の送信開始タイミングがサブフレームタイミングと一致する場合は(ステップS212:Yes)、ステップS205を実行する。
 [実施例3の効果]
 上述したように、基地局装置110は、データ信号のバーストを行う際、いずれかのデータ信号を送信した後で、次のサブフレーム期間が開始するまでの間に送信が終了するデータ長のデータ信号を出力する。その後、基地局装置110は、残りのデータ信号を送信する。このため、基地局装置110は、データ信号の出力開始タイミングが、サブフレーム期間の途中であっても、いずれかのサブフレーム期間から、データ信号出力開始タイミングをサブフレームタイミングと同期させることができる。この結果、基地局装置110は、タイミング情報の生成および送信を省略できるので、演算資源および通信資源を削減することができる。
 また、基地局装置110は、サブフレームタイミングでデータ信号を送信したタイミング情報の送信を省略するので、演算資源および通信資源を削減することができる。
 これまで本発明の実施例について説明したが、実施例は、上述した実施例以外にも様々な異なる形態にて実施されてよいものである。そこで、以下では実施例4として本発明に含まれる他の実施例を説明する。
 [データ信号の送信タイミングを揃える処理について]
 上述した実施例4では、基地局装置110は、いずれかのデータ信号を送信した後で、次のサブフレーム期間が開始するまでの間に送信が終了するデータ長のデータ信号を出力することで、データ信号の送信タイミングをサブフレームタイミングに同期させた。しかしながら、実施形態は、これに限定されるものではない。例えば、基地局装置110は、データ信号のデータ長をサブフレーム長とは異なる長さにすることで、徐々にデータ信号の送信タイミングとサブフレームタイミングとのオフセット量を少なくし、最終的に同期させてもよい。
 ここで、基地局装置110は、UCの空きリソースを検出してから、次のサブフレームタイミングが検出されるまでの間に送信可能なデータ長のデータ信号を生成して送信し、その後、サブフレーム長のデータ信号を送信してもよい。しかしながら、UCの空きが生じるタイミングが不明なので、基地局装置110は、UCの空きリソースを検出したタイミングによっては、かかるデータ長のデータ信号の生成が間に合わない場合がある。
 そこで、基地局装置110は、UCの空きリソースを検出してから、次のサブフレームタイミングが検出されるまでの間に送信可能なデータ長のデータ信号の生成が間に合わない場合等は、以下の処理を実行してもよい。例えば、基地局装置110は、UCの空きリソースを検出してから、次のサブフレームタイミングが検出されるまでの間、所定の制御信号やユーザデータを送信してもよい。
 [機能構成について]
 上述した処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的におこなうこともできる。あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
 さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
 [ハードウェア構成について]
 上述した基地局装置110は、例えば、LTEのeNBで実現することができる。以下、図10を用いて、実施例1または実施例3に記載の基地局装置110を実現するeNBのハードウェア構成の一例について説明する。
 図10は、eNBのハードウェア構成の一例を示す図である。基地局装置110は、例えば、図10に示す無線通信装置550により実現することができる。無線通信装置550は、例えば、送受信アンテナ551と、アンプ552と、乗算部553と、アナログデジタル変換器554と、プロセッサ555と、メモリ556と、を有する。また、無線通信装置550は、デジタルアナログ変換器557と、乗算部558と、アンプ559と、発振器560と、を有する。また、無線通信装置550は、外部の通信装置との間で有線通信を行うインタフェースを備えていてもよい。
 送受信アンテナ551は、自装置の周辺から無線送信された信号を受信し、受信した信号をアンプ552へ出力する。また、送受信アンテナ551は、アンプ559から出力された信号を自装置の周辺へ無線送信する。
 アンプ552は、送受信アンテナ551から出力された信号を増幅する。そして、アンプ552は、増幅した信号を乗算部553へ出力する。乗算部553は、アンプ552から出力された信号を、発振器560から出力されたクロック信号と乗算することにより、高周波帯からベースバンド帯へ周波数変換する。そして、乗算部553は、周波数変換した信号をアナログデジタル変換器554へ出力する。
 アナログデジタル変換器554(A/D)は、乗算部553から出力された信号をアナログ信号からデジタル信号に変換するADC(Analog/Digital Converter:アナログ/デジタル変換器)である。アナログデジタル変換器554は、デジタル信号に変換した信号をプロセッサ555へ出力する。
 プロセッサ555は、無線通信装置550の全体の制御を司る。プロセッサ555は、例えばCPU(Central Processing Unit:中央処理装置)やDSP(Digital Signal Processor)などにより実現することができる。プロセッサ555は、アナログデジタル変換器554から出力された信号の受信処理を行う。また、プロセッサ555は、自装置が送信する信号を生成し、生成した信号をデジタルアナログ変換器557へ出力する送信処理を行う。
 メモリ556には、例えばメインメモリおよび補助メモリが含まれる。メインメモリは、例えばRAM(Random Access Memory)である。メインメモリは、プロセッサ555のワークエリアとして使用される。補助メモリは、例えば磁気ディスクやフラッシュメモリなどの不揮発メモリである。補助メモリには、プロセッサ555を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてプロセッサ555によって実行される。また、補助メモリには、例えば、あらかじめ定められた各種の閾値などが記憶される。
 デジタルアナログ変換器557は、プロセッサ555から出力された信号をデジタル信号からアナログ信号に変換するDAC(Digital/Analog Converter:デジタル/アナログ変換器)である。デジタルアナログ変換器557は、アナログ信号に変換した信号を乗算部558へ出力する。
 乗算部558は、デジタルアナログ変換器557から出力された信号を、発振器560から出力されたクロック信号と乗算することにより、ベースバンド帯から高周波帯へ周波数変換する。そして、乗算部558は、周波数変換した信号をアンプ559へ出力する。アンプ559はデジタルアナログ変換器557から出力された信号を増幅する。そして、アンプ559は、増幅した信号を送受信アンテナ551へ出力する。
 発振器560は、所定周波数のクロック信号(連続波の交流信号)を発振する。そして、発振器560は、発振したクロック信号を乗算部553、558へ出力する。
 図2に示したアンテナ501、502、531、532は、例えば送受信アンテナ551により実現することができる。図2に示した無線処理部504、509、524、530は、例えばアンプ552、乗算部553、アナログデジタル変換器554、デジタルアナログ変換器557、乗算部558、アンプ559および発振器560により実現することができる。図2に示したその他の構成は、例えばプロセッサ555およびメモリ556により実現することができる。
 なお、端末装置101は、例えば、LTEのUEとして実現することができる。かかる端末装置101も基地局装置110と同様に、図10に示した無線通信装置550により実現することができる。この場合に、無線通信装置550は、外部の通信装置との間で有線通信を行うインタフェースを備えていなくてもよい。
 100 無線通信システム
 101 端末装置
 110 基地局装置
 111 セル
 501,502,531,532,600 アンテナ
 503,601 ライセンスドバンド受信部
 504,509,524,530,602,608,626,632 無線処理部
 505,510,603,609,623,629 FFT処理部
 506,511,606,612 復調部
 507,512,614 復号部
 508,607 アンライセンスドバンド受信部
 513 MAC・RLC処理部
 514 無線リソース制御部
 515,617 キャリアセンス部
 516 MAC制御部
 517,619 パケット生成部
 518 MACスケジューリング部
 519,621 ライセンスドバンド送信部
 520,526 符号化部
 521,527 変調部
 522,528,622,628 多重部
 523,529,605,611,625,631 IFFT処理部
 525,627 アンライセンスドバンド送信部
 550 無線通信装置
 551 送受信アンテナ
 552,559 アンプ
 553,558 乗算部
 554 アナログデジタル変換器
 555 プロセッサ
 556 メモリ
 557 デジタルアナログ変換器
 560 発振器
 604,610 等化処理部
 613 バッファ
 615 RTS信号検出部
 616 RRC処理部
 618 MAC処理部
 620 符号化・変調部
 624,630 周波数マッピング部

Claims (11)

  1.  自システム専用の第1帯域と、自システムと他の無線通信システムとが共用する第2帯域とを用いて、無線通信を行う無線通信システムであって、
     前記第2帯域の空き状態を検出した場合は、サブフレーム期間の途中でも、前記第2帯域でサブフレーム長のデータ信号の送信を開始し、後のサブフレーム境界で、前記データ信号を復号するための制御情報とともに、前記データ信号の送信を開始したタイミングを示すタイミング情報を前記第1帯域で送信する基地局装置と、
     前記第2帯域で送信されたデータ信号を保持し、前記第1帯域で送信された前記タイミング情報と前記制御情報とを用いて、前記保持したデータ信号からデータを復号する端末装置と、
     を有することを特徴とする無線通信システム。
  2.  前記基地局装置は、前記データ信号の送信を開始したサブフレーム期間の次のサブフレーム期間で送信される前記制御情報とともに、前記タイミング情報を送信することを特徴とする請求項1に記載の無線通信システム。
  3.  前記サブフレーム期間は、複数のシンボル期間を含み、
     前記基地局装置は、前記シンボル期間の途中で前記第2帯域の空き状態を検出した場合は、次の前記シンボル期間が開始するまでの間、ダミー信号を送信することを特徴とする請求項1または2に記載の無線通信システム。
  4.  前記基地局装置は、複数の前記データ信号を継続して送信する場合は、いずれかのデータ信号を送信した後で、次のサブフレーム期間が開始するまでに送信が終了するデータ長のデータ信号を出力することを特徴とする請求項3に記載の無線通信システム。
  5.  前記基地局装置は、サブフレームの開始とともに前記データ信号を送信した場合は、当該データ信号の送信を開始したタイミングを示すタイミング情報の送信を省略することを特徴とする請求項4に記載の無線通信システム。
  6.  自システム専用の第1帯域と、自システムと他の無線通信システムとが共用する第2帯域とを用いて、無線通信を行う無線通信システムの基地局装置であって、
     前記第2帯域の空き状態を検出した場合は、サブフレーム期間の途中でも、前記第2帯域でサブフレーム長のデータ信号の送信を開始する第1の送信部と、
     前記データ信号の送信後のサブフレーム境界で、前記データを復号するための制御情報とともに、前記データ信号の送信を開始したタイミングを示すタイミング情報を前記第1帯域で送信する第2の送信部と
     を有することを特徴とする基地局装置。
  7.  前記第2の送信部は、前記データ信号の送信を開始したサブフレーム期間の次のサブフレーム期間で送信される前記制御情報とともに、前記タイミング情報を送信することを特徴とする請求項6に記載の基地局装置。
  8.  前記サブフレーム期間は、複数のシンボル期間を含み、
     前記第1の送信部は、前記シンボル期間の途中で前記第2帯域の空き状態を検出した場合は、次の前記シンボル期間が開始するまでの間、ダミー信号を送信することを特徴とする請求項6または7に記載の基地局装置。
  9.  前記第1の送信部は、複数の前記データ信号を継続して送信する場合は、いずれかのデータ信号を送信した後で、次のサブフレーム期間が開始するまでに送信が終了するデータ長のデータ信号を出力することを特徴とする請求項8に記載の基地局装置。
  10.  前記第2の送信部は、前記第1の送信部がサブフレーム期間の開始とともに前記データ信号を送信した場合は、当該データ信号の送信を開始したタイミングを示すタイミング情報の送信を省略することを特徴とする請求項9に記載の基地局装置。
  11.  自システム専用の第1帯域と、自システムと他の無線通信システムとが共用する第2帯域とを、用いて、無線通信を行う無線通信システムの端末装置であって、
     前記第2帯域の空き状態を検出した場合にサブフレーム期間の途中でも前記第2帯域でデータ信号の送信を開始する基地局装置から受信したデータ信号を、少なくとも前記サブフレーム期間分保持する保持部と、
     前記データを復号するための制御情報と、前記データ信号の送信を開始したタイミングを示すタイミング情報とを前記第1帯域で受信する受信部と、
     前記基地局装置が前記データ信号を送信した後で前記受信部が受信した制御情報と前記タイミング情報とを用いて、前記保持部が保持したデータ信号からデータを復号する復号部と
     を有することを特徴とする端末装置。 
PCT/JP2014/079377 2014-11-05 2014-11-05 無線通信システム、基地局装置および端末装置 WO2016071979A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/079377 WO2016071979A1 (ja) 2014-11-05 2014-11-05 無線通信システム、基地局装置および端末装置
EP14905321.7A EP3217699A4 (en) 2014-11-05 2014-11-05 Wireless communication system, base station apparatus and terminal apparatus
KR1020177011203A KR101880873B1 (ko) 2014-11-05 2014-11-05 무선 통신 시스템, 기지국 장치 및 단말 장치
JP2016557390A JP6358338B2 (ja) 2014-11-05 2014-11-05 無線通信システム、基地局装置および端末装置
CN201480083102.2A CN107079299A (zh) 2014-11-05 2014-11-05 无线通信***、基站装置和终端装置
US15/497,610 US20170230975A1 (en) 2014-11-05 2017-04-26 Wireless communication system, base station apparatus, and terminal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079377 WO2016071979A1 (ja) 2014-11-05 2014-11-05 無線通信システム、基地局装置および端末装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/497,610 Continuation US20170230975A1 (en) 2014-11-05 2017-04-26 Wireless communication system, base station apparatus, and terminal apparatus

Publications (1)

Publication Number Publication Date
WO2016071979A1 true WO2016071979A1 (ja) 2016-05-12

Family

ID=55908732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079377 WO2016071979A1 (ja) 2014-11-05 2014-11-05 無線通信システム、基地局装置および端末装置

Country Status (6)

Country Link
US (1) US20170230975A1 (ja)
EP (1) EP3217699A4 (ja)
JP (1) JP6358338B2 (ja)
KR (1) KR101880873B1 (ja)
CN (1) CN107079299A (ja)
WO (1) WO2016071979A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048831B1 (en) * 2013-11-11 2018-01-10 Huawei Technologies Co., Ltd. Usage method and devices for unlicensed spectrum
CN113873655A (zh) * 2015-07-23 2021-12-31 索尼公司 无线通信***中的装置和方法
US20220256372A1 (en) * 2019-01-30 2022-08-11 Beijing Xiaomi Mobile Software Co., Ltd. Downlink transmission detecting method and device, configuration information transmission method and device, and downlink transmission method and device
KR20210145896A (ko) 2020-05-25 2021-12-03 삼성디스플레이 주식회사 폴더블 디스플레이 장치, 롤러블 디스플레이 장치, 및 디스플레이 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006988A1 (en) * 2011-07-14 2013-01-17 Renesas Mobile Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
US20140036853A1 (en) * 2011-04-18 2014-02-06 Lg Electronics Inc. Signal transmission method and device in a wireless communication system
WO2014045319A1 (ja) * 2012-09-21 2014-03-27 富士通株式会社 無線通信方法、無線通信システム、無線局および無線端末

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440728B2 (en) * 2004-12-03 2008-10-21 Microsoft Corporation Use of separate control channel to mitigate interference problems in wireless networking
DE102008032006B4 (de) * 2008-07-07 2017-01-05 Siemens Healthcare Gmbh Verfahren zur Steurung der Bildaufnahme bei einer Bildaufnahmeeinrichtung, sowie eine Bildaufnahmeeinrichtung
US8078111B2 (en) * 2008-07-29 2011-12-13 Qualcomm Incorporated Methods and apparatus for using multiple frequency bands for communication
KR101491555B1 (ko) * 2008-10-10 2015-02-11 삼성전자주식회사 특징 검출을 이용하여 충돌을 검사하는 인지 무선 통신 단말기 및 인지 무선 통신 방법
WO2012040520A1 (en) * 2010-09-23 2012-03-29 Interdigital Patent Holdings, Inc. Channel access systems and methods for cognitive relaying for cellular systems
KR102164699B1 (ko) * 2010-12-06 2020-10-13 인터디지탈 패튼 홀딩스, 인크 허가 면제 스펙트럼에서의 무선 동작을 가능케 하는 방법
ES2757683T3 (es) * 2011-06-07 2020-04-29 Electronics & Telecommunications Res Inst Método para transmitir y recibir información de control de un sistema de comunicación móvil
WO2014081359A1 (en) * 2012-11-23 2014-05-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for radio resource management
CN104796920B (zh) * 2014-01-16 2019-02-12 电信科学技术研究院 数据传输方法、基站以及终端设备
US9930626B2 (en) * 2014-05-09 2018-03-27 Futurewei Technologies, Inc. Device, network, and method for communications with dynamic adaptation
CN106465133A (zh) * 2014-05-09 2017-02-22 富士通株式会社 无线通信***、基站及终端
US9392614B2 (en) * 2014-06-30 2016-07-12 Intel IP Corporation Listen before talk for cellular in unlicensed band
KR102040624B1 (ko) * 2014-08-07 2019-11-27 엘지전자 주식회사 디스커버리 신호 수신 방법 및 사용자기기와, 디스커버리 신호 전송 방법 및 기지국
CN105850205B (zh) * 2014-09-26 2020-06-16 华为技术有限公司 一种上行信号的传输方法和相关设备
US10575325B2 (en) * 2014-10-09 2020-02-25 Acer Incorporated Device and method of handling service in unlicensed cell
US10637619B2 (en) * 2014-11-03 2020-04-28 Samsung Electronics Co., Ltd. Method and apparatus for channel access for LTE on unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140036853A1 (en) * 2011-04-18 2014-02-06 Lg Electronics Inc. Signal transmission method and device in a wireless communication system
WO2013006988A1 (en) * 2011-07-14 2013-01-17 Renesas Mobile Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
WO2014045319A1 (ja) * 2012-09-21 2014-03-27 富士通株式会社 無線通信方法、無線通信システム、無線局および無線端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217699A4 *

Also Published As

Publication number Publication date
JPWO2016071979A1 (ja) 2017-08-17
EP3217699A1 (en) 2017-09-13
KR101880873B1 (ko) 2018-07-20
JP6358338B2 (ja) 2018-07-18
CN107079299A (zh) 2017-08-18
EP3217699A4 (en) 2017-09-13
US20170230975A1 (en) 2017-08-10
KR20170065582A (ko) 2017-06-13

Similar Documents

Publication Publication Date Title
JP6394793B2 (ja) 基地局、端末、無線通信システム、基地局の制御方法および端末の制御方法
JP6332442B2 (ja) 無線通信システム、基地局および端末
JP6500914B2 (ja) 無線通信システムおよび端末装置
US11716708B2 (en) Base station, terminal, and wireless communication system, for license assisted access
WO2016121006A1 (ja) 基地局,及びその非ライセンス周波数候補決定方法
JP6358338B2 (ja) 無線通信システム、基地局装置および端末装置
JP6455521B2 (ja) 無線通信システム、基地局装置、端末装置及び送信方法
WO2015125399A1 (ja) 無線通信装置、集積回路、および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177011203

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014905321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE