WO2016071251A1 - Verfahren zum betrieb eines hybrid- oder elektrofahrzeugs - Google Patents

Verfahren zum betrieb eines hybrid- oder elektrofahrzeugs Download PDF

Info

Publication number
WO2016071251A1
WO2016071251A1 PCT/EP2015/075370 EP2015075370W WO2016071251A1 WO 2016071251 A1 WO2016071251 A1 WO 2016071251A1 EP 2015075370 W EP2015075370 W EP 2015075370W WO 2016071251 A1 WO2016071251 A1 WO 2016071251A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
parameters
vehicle
state
consumption
Prior art date
Application number
PCT/EP2015/075370
Other languages
English (en)
French (fr)
Inventor
Friedrich Graf
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US15/524,350 priority Critical patent/US10343672B2/en
Priority to CN201580060130.7A priority patent/CN107074245B/zh
Publication of WO2016071251A1 publication Critical patent/WO2016071251A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/46Control modes by self learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0014Adaptive controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18066Coasting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/916Specific drive or transmission adapted for hev with plurality of drive axles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the object is achieved by a prediction of a state of charge, in which a number of different parameters consumption or fuel consumption and loading parameters (it can also be a loading operations ⁇ closed) to be processed, that is, parameters that affect the energy consumption of the vehicle.
  • a number of different parameters consumption or fuel consumption and loading parameters (it can also be a loading operations ⁇ closed) to be processed, that is, parameters that affect the energy consumption of the vehicle.
  • these are not readily detectable and correctly weighted for the driver so that it is proposed to record several consumption parameters and to use these for determining a future state of charge (ie for state of charge prediction), in turn based on this state of charge and to optimize the functions of the vehicle.
  • the prediction is based on a classification of the consumption parameters, with several consumption parameters resulting in a vector whose individual scalar entries correspond to the individual consumption parameters.
  • the vector (ie the consumption parameters) are classified as a whole, where gives an individual classification for each consumption parameter, but the consumption parameters are considered as a whole (ie as a vector) when determining the state of charge.
  • the classification is in particular a binary classification, so that a hypersurface (ie an area with a dimension that relates to the number of different consumption parameters) can be used for classification.
  • a binary classification can be implemented with a single limit per consumption parameter, whereby the limit not only defines the affiliation to one of the two resulting half-spaces, but is also suitable for determining the distance of the consumption parameters to the respective limits.
  • the classification is trainable, in particular to distinguish between consumption parameters belonging to different situations.
  • consumption parameters of a vehicle can be considered, but the same consumption parameters of several vehicles can be used for the determination. An image based on the said classification can therefore be used in common for several consumption parameters of different vehicles, thereby enabling a more robust prediction. Since the consumption parameters can also relate to charging parameters, the term "consumption and charging parameters" can be used instead of the term consumption parameters.
  • the mapping is implemented by classifying the multiple consumption parameters according to trainable class boundaries. The boundaries separate a first group of consumption parameter values from a second group of consumption parameter values, both groups being provided on either side of the class boundaries or hypersurface.
  • At least one operating parameter of a traction power component of the hybrid vehicle is set according to the determined future state of charge.
  • the control or regulation of an operating parameter is one
  • Consumption parameters include:
  • the acceleration of the vehicle in particular amplitude, mean or median acceleration and / or frequency of acceleration
  • Catalyst heating power in the case of a hybrid vehicle which relates to an electric heater of a catalytic converter of an exhaust aftertreatment
  • recuperation capacity (which may be related to the gradient ahead)
  • the performance in the internal combustion engine charging operation is particularly the power absorbed by the electric machine me chanical ⁇ power given by the generator operated as off electric power, or the power supplied by the generator operating as the electric machine to the traction battery.
  • the consumption parameters can be recorded using a current measurement.
  • This measurement may relate to instantaneous values, but preferably the measurement is recorded over a defined measuring period or as a moving average.
  • a preceding route of a navigation device is used for the detection. In doing so, we capture a goal through user input or estimate a goal based on historical data. If, for example, the same destination was frequently approached at the same time interval on a working day, then assumed this target if the vehicle is put into operation at a time that falls within this time interval.
  • the navigation device determines the route in a known manner. Instead of determining the route, based on historical data, the previously traveled at this time interval interval can be used as a basis.
  • the navigation device supplies slope and gradient data, traffic road status and / or weather data (using an up-to-date traffic or weather service) for the route, so that these data can be used when recording the consumption parameters. Therefore, the consumption parameters can be estimated for a future period on the basis of the route ahead, which supplies the navigation device Hyb ⁇ ridhuss.
  • the consumption parameters may be estimated based on traffic, road or weather conditions of the route ahead.
  • the road conditions here include, for example, gradients and gradients.
  • the step of classifying can be divided into at least two classes for each Ver ⁇ consumption parameters relevant consumption parameter values.
  • the division into classes is realized by means of class boundaries.
  • the class boundaries define a hypersurface that separates differently classified consumption parameter values.
  • the Hyper ⁇ surface can be designed as a hyperplane.
  • the values can also be mapped before the comparison to the class boundaries (nonlinear) in order to reinforce the demarcation against the class boundaries.
  • Different combinations of classes can be assigned to different states of charge. This would correspond to a one-to-one illustration. This applies in particular only to a subgroup of all combinations or classes.
  • the driver-individual behavior is used to determine the state of charge (for example as a parameter that reflects the driving style or the degree of economic driving).
  • This parameter expresses whether the driver (compared to a driver with average driving style) requires more traction and less recuperation because the braking deceleration performance exceeds that of the electric machine. This significantly affects the state of charge.
  • Such a parameter may also be represented by a portion of the recuperated energy to the total drive energy (such as for a journey).
  • different combinations are individual
  • the figure maps the recorded consumption parameter values to the respective state of charge.
  • the determination of the state of charge and the training are carried out by means of a support vector machine (SVM, for example: support vector machine).
  • SVM support vector machine
  • the consumption parameter is mapped using the SVM.
  • the consumption parameter values relate or form a Vector of the Support Vector Machine.
  • the class boundaries are represented by a hyperplane (generally a hypersurface).
  • the training of the class boundaries is carried out by adjusting the class boundaries to captured consumption parameters, the
  • Training vectors or training objects of the SVM correspond.
  • the training vectors or training objects are historical data of the vehicle itself or of other vehicles, in particular of other vehicles with comparable characteristics or of other vehicles traveling on the same route.
  • the step of mapping and / or exercising is ⁇ resulting in a calculation means within the hybrid vehicle.
  • the step of imaging in one is preferred stationary calculation device executed.
  • This calculation device can be a central or distributed calculation device.
  • the consumption parameters (recorded in the vehicle) are transmitted from the hybrid vehicle to the calculation device.
  • the foregoing estimates may also be made in the stationary computing device. In this case, values measured in the vehicle or other values on which the estimate is based, such as the distance, are transmitted to the calculation device.
  • the state of charge determined (in the calculation device) is transmitted from the calculation device to the hybrid vehicle.
  • the transmission is preferably performed via a radio link, for example via a radio link to a (zel ⁇ lenbas fortunate) cellular or mobile data radio protocol (GSM, GPRS, EDGE, UMTS, HSDPA, LTE or others) or by a wireless transmission protocol (such as a radio-based protocol class IEEE 802, for example class 802.15 or 802.11).
  • a radio link for example via a radio link to a (zel ⁇ lenbas fortunate) cellular or mobile data radio protocol (GSM, GPRS, EDGE, UMTS, HSDPA, LTE or others) or by a wireless transmission protocol (such as a radio-based protocol class IEEE 802, for example class 802.15 or 802.11).
  • the calculation device can therefore be a central server or a decentralized server variety, which is designed for the transmission and reception of data.
  • the data is preferably transmitted in encrypted form and, in particular, is not personalized.
  • the access to the calculation ⁇ device and their programming is preferably protected.
  • Data relating to only one vehicle is only transmitted to this vehicle.
  • only vehicle related data is transmitted to the computing device.
  • the mapping step is preferably performed in the stationary computing device, wherein the step of mapping form by means of a common image for several
  • Vehicles is running.
  • the classification which may also include the type of vehicle or its performance characteristics (electric drive power, powertrain equipment, traction battery capacity), classifies vehicle data representing the same situation for different vehicles into the same class.
  • the more data vehicles are represented by the same image, the more powerful the data becomes, making the statistical survey and therefore the mapping more robust.
  • the thus determined (in particular future) state of charge is taken into account in the operation of the vehicle, in particular when setting the operation of the vehicle, for example in the definition of the power, the duration and the selection of a particular operating mode.
  • the obtained by the imaging ⁇ charging state is ationsaku especially in the definition or adjust a (maximum) coasting time of the (maximum) Rekuper-, the (maximum) Rekuperationsdauer, the laser detician (particularly recuperation) of the traction battery , in the maximum power (or duration) of the electrical assistance (especially regarding a temporary "boost mode"), in the definition of the load point of an internal combustion engine (in the case of a hybrid vehicle), or a (maximum) support power in a sailing mode.
  • the Electric drive ⁇ power is not zero in a sailing mode.
  • a speed is kept substantially constant by means of electric drive (approximately with an acceleration amount of not more than 10 km / h in relation to 10 seconds).
  • an acceleration amount of not more than 10 km / h in relation to 10 seconds.
  • sailing mode in particular not more than 20%, 10%, 5% or 2% of the rated power of the electric drive are retrieved.
  • operating parameter at least one of the following parameters is set:
  • a parameter may be used which has an influence on the driving style of the driver, such as a path-force line of an accelerator pedal with controllable return ⁇ force, a display that indicates the degree of economic driving or the response characteristic of the accelerator pedal (or the implementation of the Pahrpedalbetuschist).
  • the parameter or parameters are set subject to an optimization target.
  • the optimization goal is in particular a minimized total consumption or a maximum proportion of the electrical drive energy in the total drive energy (approximately until reaching the destination or in relation to a route).
  • the optimization goal may further include a maximum lifetime, a maximum range or a maximum charging current of the
  • Be traction battery Preferably, not only one of the optimization goals is pursued; a weighted combination of these optimization goals may be provided as an overall optimization goal.
  • a weighted combination of these optimization goals for a combination of the optimization goals, for example, a "best-fit" optimization method is available, which takes the weighting into account.
  • the state of charge for example, the state of charge when reaching the destination when reaching an interim destination such as the beginning of a slope piece of the route or the renewed (predetermined or estimated start of driving), targeted deliberately kept low (about less than 80% or 60%).
  • the traction battery can be spared, for example, if a longer rest phase is pending after reaching the destination, or the charging power (which decreases with increasing state of charge) can be selectively increased, in particular to accommodate Recuperation energy.
  • the state of charge can be kept deliberately low, if at the destination or at the beginning of a
  • a high charging power is desired, which is not possible at higher state of charge (about smaller than a safety margin of ⁇ example, 40%, 30% or 20% or 10%).
  • the state of charge corresponds to the stored or retrievable energy relative to the current capacity or the rated capacity.
  • trainable class limits has been determined, allows the simple and predictive adaptation or conditioning of the powertrain and in particular the traction battery and also allows a preparation of components of the
  • Vehicle strand on future situations (recuperation phases, phases electric drive, about with high power, etc.).
  • These components are in particular the traction battery and its power electronics

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Navigation (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs mit den Schritten Erfassen mehrerer Verbrauchsparameter des Hybridfahrzeugs und Ermitteln eines Ladezustands einer Traktionsbatterie des Hybridfahrzeugs durch Abbilden der Verbrauchsparameter auf einen Ladezustandswert, wobei das Abbilden umgesetzt wird durch Klassifizieren der mehreren Verbrauchsparameter gemäß trainierbarer Klassengrenzen. Die Klassengrenzen werden anhand der erfassten Verbrauchsparameter und einem zugehörigen gemessenen Ladezustand trainiert. Schließlich wird zumindest ein Betriebsparameter einer Traktions-Leistungskomponente des Hybridfahrzeugs gemäß dem ermittelten Ladezustand eingestellt.

Description

Beschreibung
Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs Insbesondere bei Hybrid- und insbesondere Elektrofahrzeuge hängt die Reichweite und auch die Energieeffizienz maßgeblich von der Nutzung der Verbraucher ab. Selbst bei guter Ausnutzung von Segel- oder Rekuperationsphasen durch den Fahrer ergeben sich weitere Einsparpotentiale. Diese sind jedoch für den Fahrer aufgrund der Informationslage nicht erreichbar oder aufgrund ihrer Komplexität nicht ohne Weiteres erschließbar.
Es ist eine Aufgabe der Erfindung, eine Möglichkeit aufzuzeigen mit der sich die Energieeffizienz weiter erhöhen lässt.
Offenbarung der Erfindung
Diese Aufgabe wird gelöst durch das Verfahren nach Anspruch 1, wobei sich weitere Merkmale, Ausführungsformen und Eigenschaften mit den Unteransprüchen und aus der folgenden Beschreibung ergeben .
Die Aufgabe wird gelöst durch eine Prädiktion eines Ladezustands, bei der zahlreiche unterschiedliche Verbrauchsparameter oder Verbrauchs- und Ladeparameter (es können auch Ladevorgänge ein¬ geschlossen sein) verarbeitet werden, d.h. Parameter, die den Energieverbrauch des Fahrzeugs beeinflussen. Bei mehreren Verbrauchsparametern sind diese für den Fahrer nicht ohne Weiteres insgesamt erfassbar und korrekt zu gewichtet, so dass vorgeschlagen wird, mehrere Verbrauchsparameter zu erfassen und diese zur Ermittlung eines zukünftigen Ladezustands (d.h. zur Ladezustandsprädiktion) zu verwenden, um wiederum basierend auf diesem Ladezustand den Betrieb und die Funktionen des Fahrzeugs zu optimieren. Die Prädiktion basiert auf einer Klassifizierung der Verbrauchsparameter, wobei sich bei mehreren Verbrauchsparameter ein Vektor ergibt, dessen einzelne Skalareinträge den einzelnen Verbrauchsparameter entsprechen. Der Vektor (d.h. die Verbrauchsparameter) werden als Ganzes klassifiziert, wobei sich für jeden Verbrauchsparameter eine individuelle Klassifizierung ergibt, die Verbrauchsparameter bei der Ermittlung des Ladezustands jedoch als Ganzes (d.h. als Vektor) betrachtet werden. Die Klassifizierung ist insbesondere eine binäre Klassifi- zierung, so dass eine Hyperfläche (d.h. eine Fläche mit einer Dimension, die der Anzahl der unterschiedlichen Verbrauchsparameter betrifft) zur Klassifizierung verwendet werden kann. Eine binäre Klassifizierung kann mit einer einzelnen Grenze pro Verbrauchsparameter umgesetzt werden, wobei die Grenze nicht nur die Zugehörigkeit zu einem der beiden sich ergebenden Hyper- halbräume definiert sondern sich auch zur Abstandsbestimmung der Verbrauchsparameter zu den jeweiligen Grenzen eignet. Die Klassifizierung ist trainierbar, insbesondere um zwischen Verbrauchparametern zu unterscheiden, die unterschiedlichen Situationen angehören.
Es können nicht nur Verbrauchsparameter eines Fahrzeugs betrachtet werden, sondern es können die gleichen Verbrauchsparameter mehrerer Fahrzeuge zur Ermittlung herangezogen werden. Eine Abbildung, die auf der genannten Klassifizierung beruht, kann daher für mehrere Verbrauchsparameter unterschiedlicher Fahrzeuge gemeinsam verwendet werden, um dadurch eine Robustere Prädiktion zu ermöglichen. Da die Verbrauchsparameter auch Ladeparameter betreffen können, kann anstatt des Begriffs Verbrauchsparameter auch der Begriff "Verbrauchs- und Ladeparameter" verwendet werden.
Es wird daher ein Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs beschrieben, wobei zunächst mehrere Ver¬ brauchsparameter des Fahrzeugs erfasst werden. Es wird ferner ein zukünftiger Ladezustands einer Traktionsbatterie des Fahrzeugs ermittelt. Diese Ermittlung wird auch als Prädiktion oder Schätzung bezeichnet. Bei der Ermittlung wird der Verbrauchs- parameter auf einen Ladezustandswert abgebildet. Das Abbilden wird umgesetzt durch Klassifizieren der mehreren Verbrauchsparameter gemäß trainierbarer Klassengrenzen. Die Grenzen trennen eine erste Gruppe von Verbrauchsparameter-Werten von einer zweiten Gruppe von Verbrauchsparameter-Werten, wobei beide Gruppen zu beiden Seiten der Klassengrenzen bzw. der Hyperfläche vorgesehen sind. Die Klassengrenzen werden anhand der erfassten Verbrauchsparameter und einem zugehörigen gemessenen (oder anderweitig festgestellten) Ladezustand trainiert . Unter Trainieren wird ein Lernprozess verstanden, bei dem Lerndaten in Form der erfassten Verbrauchsparameter (=Ist-Verbrauchsparameter) und dem ge- messenen Ladezustand (=Ist-Ladezustand) vorgegeben werden, wobei die Klassengrenzen anhand dieser Lerndaten eingestellt bzw. modifiziert werden.
Zumindest ein Betriebsparameter einer Traktions-Leistungs- komponente des Hybridfahrzeugs wird gemäß dem ermittelten zukünftigen Ladezustand eingestellt. Mit anderen Worten ist die Steuerung oder Regelung eines Betriebsparameters einer
Traktions-Leistungskomponente abhängig von dem ermittelten, zukünftigen Ladezustand.
Als Verbrauchsparameter können Fahrzeugparameter erfasst werden, die direkt mit der Traktion bzw. mit der Fahrzeugbewegung zu tun haben, oder es können Nebenverbraucher wie Heizung oder Beleuchtung betrachtet werden. Zudem können indirekte Werte verwendet werden, die mit dem betreffenden Parameter funktionell zusammenhänge, jedoch eine andere Komponente oder physikalische Größe betreffen, beispielsweise die Batterieklemmenspannung, anhand der ein Energiemanagement der Batterie selbst erfasst werden können. Zu den Verbrauchsparametern gehören:
- die Fahrzeuggeschwindigkeit des Fahrzeugs,
- die Beschleunigung des Fahrzeugs (insbesondere Amplitude, Mittelwert oder Median von Beschleunigungen und/oder Häufigkeit von Beschleunigungsvorgängen)
- der eingelegter Gang eines Traktions-Schaltgetriebes im Falle eines Hybridfahrzeugs,
- die Batterieklemmenspannung der Traktionsbatterie oder deren Änderungsrate, die Leistung einer elektrischen
Traktionsmaschine des Hybridfahrzeugs, - die Klimatisierungsleistung (elektrische Heizung oder Kühlung) ,
- Scheibenheizungsleistung,
- Beleuchtungsleistung,
- Katalysatorheizleistung im Falle eines Hybridfahrzeugs, wobei dies eine elektrische Heizung einer Katalysatoreinrichtung einer Abgasnachbehandlung betrifft,
- eine Leistung zur Befahrung einer Steigung (wobei diese auf der vorausliegenden Strecke liegt) ,
- eine Rekuperationsleistung (wobei diese Gefälle auf der vorausliegenden Strecke betreffen kann) ,
- eine Leistung in einem temporären Kurz-Elektromodus
("Boost-Modus")
- eine Leistung eines zuschaltbaren elektrischen All- rad-Zusatzantriebs im Falle eines Hybridfahrzeugs;
- eine Leistung im verbrennungsmotorischen Ladebetrieb;
- eine Leistung, die zum Laden der Traktionsbatterie dieser zugeführt wird; und/oder
- der Fahrstil bzw. der Anteil der rekuperierten oder
rekuperierbaren Energie zur Gesamtantriebsenergie.
Die Leistung im verbrennungsmotorischen Ladebetrieb ist insbesondere die von der elektrischen Maschine aufgenommene me¬ chanische Leistung, die von der als Generator betriebene ab- gegebene elektrische Leistung, oder die von der als Generator arbeitenden elektrischen Maschine an die Traktionsbatterie gelieferte Leistung.
Die Verbrauchsparameter können anhand einer aktuellen Messung erfasst werden. Diese Messung kann Momentanwerte betreffen, bevorzugt wird jedoch die Messung über einen definierten Meßzeitraum oder als gleitender Mittelwert erfasst. Bevorzugt wird eine vorausliegende Strecke eines Navigationsgeräts für die Erfassung zugrunde gelegt. Hierbei wir ein Zielt durch Nut- zereingabe erfasst oder es wird ein Ziel anhand von historischen Daten geschätzt. Wenn etwa an einem Werktag häufig zum gleichen Uhrzeitintervall das gleiche Ziel angefahren wurde, so wird dieses Ziel angenommen, falls das Fahrzeug zu einem Zeitpunkt in Betrieb genommen wird, das in dieses Uhrzeitintervall fällt.
Anhand dieses Ziels ermittelt das Navigationsgerät in bekannter Weise die Strecke. Anstatt die Strecke zu ermitteln, kann anhand historischer Daten die bislang zu diesem Uhrzeitintervall gefahrene Strecke zu Grunde gelegt werden. Das Navigationsgerät liefert für die Strecke Gefälle- und Steigungsdaten, Verkehrs- Straßenzustands und/oder Witterungsdaten (anhand eines aktu- eilen Verkehrs- oder Wetterdienstes) , so dass diese Daten bei der Erfassung der Verbrauchsparameter herangezogen werden können. Daher können für einen zukünftigen Zeitraum auf Grundlage der vorausliegenden Strecke, die das Navigationsgerät des Hyb¬ ridfahrzeugs liefert, die Verbrauchsparameter geschätzt werden.
Insbesondere können die Verbrauchsparameter geschätzt auf Grundlage von Verkehrs-, Straßen- oder Witterungsbedingungen der vorausliegenden Strecke. Die Straßenbedingungen umfassen hierbei beispielsweise Steigungen und Gefälle.
Bei dem Schritt des Klassifizierens können für jeden Ver¬ brauchsparameter betreffende Verbrauchsparameter-Werte in mindestens zwei Klassen unterteilt sein. Die Unterteilung in Klassen wird mittels Klassengrenzen realisiert. Die Klassen- grenzen definieren eine Hyperfläche, welche unterschiedlich klassifizierte Verbrauchsparametern-Werte trennt. Die Hyper¬ fläche kann auch als Hyperebene ausgebildet sein. Die Werte können ferner zusätzlich vor der Gegenüberstellung zu den Klassengrenzen (nichtlinear) abgebildet werden, um die Ab- grenzung gegenüber den Klassengrenzen zu verstärken. Unterschiedlichen Kombinationen von Klassen können unterschiedlichen Ladezuständen zugeordnet sein. Dies entspräche einer eineindeutigen Abbildung. Dies gilt insbesondere nur für eine Untergruppe aller Kombinationen oder Klassen.
Weiter wird zum Ermitteln des Ladezustands das fahrerindividuelle Verhalten herangezogen (etwa als ein Parameter, der den Fahrstil bzw. den Grad an ökonomischer Fahrweise wiedergibt) . Dieser Parameter drückt aus, ob der Fahrer (gegenüber einem Fahrer mit durchschnittlichem Fahrstil) eher viel Traktionsleistung benötigt und weniger rekuperiert werden kann, weil die bei der Bremsverzögerung gewandelte Leistung die der elekt- rischen Maschine übersteigt. Damit wird der Ladezustand deutlich beeinflusst. Ein derartiger Parameter kann ferner durch einen Anteil der rekuperierten Energie zur der Gesamtantriebsenergie (etwa für eine Fahrtstrecke) wiedergegeben werden. Bevorzugt sind unterschiedlichen Kombinationen individuelle
Ladezustände zugeordnet, die gleich sein können oder die sich unterscheiden können. Daher kann allgemein von einer eindeutigen (nicht notwendigerweise eineindeutigen) Abbildung der Kombi¬ nationen auf Ladezustände von Klassen gesprochen werden, insbesondere da unterschiedliche Kombinationen (etwa durch
Ausgleicheffekte) zu den gleichen Ladezuständen führen können. Die Abbildung bildet die erfassten Verbrauchsparameter-Werte jeweils auf den zugehörigen Ladezustand ab. Das Ermitteln des Ladezustands und das Trainieren werden mittels einer Support Vector Machine (SVM, etwa: Stützvektormaschine) ausgeführt. Mittels der SVM wird der Verbrauchsparameter abgebildet. Die Verbrauchsparameter-Werte betreffen bzw. bilden einen Vektor der Support Vector Machine. Die Klassengrenzen werden von einer Hyperebene (allgemein von einer Hyperfläche) wiedergegeben .
Das Trainieren der Klassengrenzen wird ausgeführt durch Anpassen der Klassengrenzen an erfasste Verbrauchsparameter, die
Trainingsvektoren oder Trainingsobjekten der SVM entsprechen. Die Trainingsvektoren oder Trainingsobjekten sind historische Daten des Fahrzeugs selbst oder anderer Fahrzeuge, insbesondere anderer Fahrzeuge mit vergleichbaren Eigenschaften bzw. anderer Fahrzeuge, die die gleiche Strecke befahren.
Der Schritt des Abbildens und/oder des Trainierens wird in einer Berechnungseinrichtung innerhalb des Hybridfahrzeugs ausge¬ führt. Bevorzugt wird jedoch der Schritt des Abbildens in einer stationären Berechnungseinrichtung ausgeführt. Diese Berechnungseinrichtung kann eine zentrale oder verteilte Berechnungseinrichtung sein. Die (im Fahrzeug) erfassten Verbrauchsparameter werden von dem Hybridfahrzeug an die Be- rechnungseinrichtung übermittelt. Die vorangehend genannten Schätzungen können ebenfalls in der stationären Berechnungseinrichtung ausgeführt werden. Hierbei werden im Fahrzeug gemessene Werte oder andere Werte, die der Schätzung zugrunde liegen, etwa die Strecke) an die Berechnungseinrichtung übermittelt. Der (in der Berechnungseinrichtung) ermittelte Ladezustand wird von der Berechnungseinrichtung an das Hybridfahrzeug übermittelt.
Die Übermittlung ist wird vorzugsweise über eine Funkverbindung durchgeführt, etwa über eine Funkverbindung nach einem (zel¬ lenbasierten) Mobilfunk- oder Mobildatenfunkprotokoll (GSM, GPRS, EDGE, UMTS, HSDPA, LTE oder andere) oder nach einem drahtlosen Übermittlungsprotokoll (etwa einem funkbasierten Protokoll der Klasse IEEE 802, beispielsweise Klasse 802.15 oder 802.11) .
Die Berechnungseinrichtung kann daher ein zentraler Server oder eine dezentrale Servervielzahl sein, die zur Übermittlung und zum Empfang von Daten ausgestaltet ist. Die Daten werden vorzugsweise verschlüsselt übertragen und sind insbesondere nicht personalisiert. Ferner ist der Zugang zur Berechnungs¬ einrichtung und deren Programmierung vorzugsweise geschützt. Es werden Daten, die nur ein Fahrzeug betreffen, nur an dieses Fahrzeug übermittelt. Schließlich werden Daten, die nur Fahrzeug betreffen, nur an die Berechnungseinrichtung übermittelt. Es können jedoch geschützte Datenverbindungen zu anderen Fahrzeugen bestehen, etwa über ein Car-to-Car-Verbindungsprotokoll , sofern hierzu eine Autorisation durch den Fahrer vorliegt. Es ergeben sich Vorteile bei der Robustheit des Verfahrens, wenn Daten mehrerer Fahrzeuge gemeinsam bearbeitet werden. Der Schritt des Abbildens wird vorzugsweise in der stationären Berechnungseinrichtung ausgeführt, wobei der Schritt des Ab- bildens mittels einer gemeinsamen Abbildung für mehrere
Fahrzeuge ausgeführt wird. Durch die Klassifizierung, die auch den Fahrzeugtyp bzw. dessen Leistungsmerkmale (elektrische Antriebsleistung, Ausstattung des Antriebsstrangs, Kapazität der Traktionsbatterie) umfassen kann, werden Fahrzeugdaten, die die gleiche Situation für verschiede Fahrzeuge wiedergeben, in die gleiche Klasse klassifiziert. Dadurch ist die Mächtigkeit der Daten umso höher, je mehr Fahrzeuge Daten durch die gleiche Abbildung abbilden lassen, so dass die statistische Erhebung und somit die Abbildung robuster wird.
Der so ermittelte (insbesondere zukünftige) Ladezustand wird bei dem Betrieb des Fahrzeugs berücksichtigt, insbesondere beim Einstellen des Betriebs des Fahrzeugs, beispielsweise bei der Definition der Leistung, der Dauer und der Auswahl eines bestimmten Betriebsmodus. Der durch die Abbildung gewonnene Lade¬ zustand wird insbesondere bei der Definition bzw. beim Einstellen einer (maximalen) Coasting-Dauer, der (maximalen) Rekuper- ationsleistung, der (maximalen) Rekuperationsdauer, der La- deleistung (insbesondere beim Rekuperieren) der Traktionsbatterie, bei der Maximalleistung (oder die Dauer) der elektrischen Unterstützung (insbesondere betreffend einen temporären "Boost-Mode" ) , bei der Definition des Lastpunkts eines Verbrennungsmotors (im Falle eines Hybridfahrzeugs) , oder einer (maximalen) Unterstützungsleistung in einem Segelmodus verwendet. Während in einem Coasting-Modus die Gesamtan¬ triebsleistung null beträgt, ist die elektrische Antriebs¬ leistung in einem Segelmodus nicht null. Im Segelmodus wird eine Geschwindigkeit mittels elektrischen Antriebs im Wesentlichen konstant gehalten (etwa mit einem Beschleunigungsbetrag von nicht mehr als 10 km/h bezogen auf 10 sec) . Im Segelmodus werden insbesondere nicht mehr als 20%, 10%, 5% oder 2% der Nennleistung des elektrischen Antriebs abgerufen. Als Betriebsparameter wird zumindest einer der folgenden Parameter eingestellt:
- Aktivierungszustand einer elektrischen Traktionsmaschine und eines Verbrennungsmotors des Fahrzeugs; „
- Aufladeleistung der Traktionsbatterie;
- Klimatisierungsleistung;
- Scheibenheizungsleistung;
- Beleuchtungsleistung;
- Katalysatorheizleistung;
- Maximale Dauer einer Segel- oder Coastingphase ; und
Rekuperationsleistung .
Ferner kann als Betriebsparameter ein Parameter verwendet werden, der Einfluss auf den Fahrstil des Fahrers hat, etwa eine Weg-Kraft-Linie eines Fahrpedals mit steuerbarer Rückstell¬ kraft, eine Anzeige, die den Grad an ökonomischer Fahrweise anzeigt oder die Ansprechcharakteristik des Fahrpedals (bzw. die Umsetzung der Pahrpedalbetätigung) .
Der oder die Parameter werden unter Maßgabe eines Optimierungsziels eingestellt. Das Optimierungsziel ist insbesondere ein minimierter Gesamtverbrauch oder ein maximaler Anteil der elektrischen Antriebsenergie an der Gesamtantriebsenergie (etwa bis zum Erreichen des Ziels bzw. bezogen auf eine Strecke) . Das Optimierungsziel kann ferner eine maximale Lebensdauer, eine maximale Reichweite oder ein maximaler Ladestrom der
Traktionsbatterie sein. Bevorzugt wird nicht nur eines der Optimierungsziele verfolgt; es kann eine gewichtete Kombination dieser Optimierungsziele als Gesamtoptimierungsziel vorgesehen sein. Für eine Kombination der Optimierungsziele bietet sich etwa ein "Best-Fit"- Verfahren zur Optimierung an, das die Gewichtung berücksichtigt . So kann etwa anhand des (zukünftigen) Ladezustands, der etwa den Ladezustand beim Erreichen des Ziels, beim Erreichen eine Zwischenziels wie den Beginn eines Gefällestücks der Strecke oder beim erneuten (vorgegebenen oder geschätzten Fahrbeginn) betrifft, gezielt gering gehalten werden (etwa kleiner 80% oder 60%) . Dadurch kann die Traktionsbatterie geschont werden, etwa falls eine längere Ruhephase nach Erreichen des Fahrziels ansteht, oder die Ladeleistung (die mit zunehmendem Ladezustand abnimmt) kann gezielt erhöht werden, insbesondere zu Aufnahme von Rekuperationsenergie . Der Ladezustand kann gezielt gering gehalten werden, wenn am Fahrtziel oder zu Beginn einer
Rekuperationsstrecke (d.h. einer Gefällestrecke) eine hohe Ladeleistung erwünscht ist, die bei höherem Ladezustand nicht möglich ist (etwa kleiner als eine Sicherheitsmarge von bei¬ spielsweise 40 %, 30% oder 20 % bzw. 10%) . Der Ladezustand entspricht der gespeicherten bzw. abrufbaren Energie bezogen auf die aktuelle Kapazität oder die Nenn-Kapazität. Eine derartige Konditionierung der Traktionsbatterie basierend auf einem zukünftigen Ladezustand, der von einer Abbildung mit
trainierbaren Klassengrenzen ermittelt wurde, ermöglicht die einfache und vorausschauende Anpassung bzw. Konditionierung des Antriebsstrangs und insbesondere der Traktionsbatterie und ermöglicht ferner eine Vorbereitung von Komponenten des
Fahrzeugstrangs auf zukünftige Situationen (Rekuperations- phasen, Phasen elektrischen Antriebs, etwa mit hoher Leistung, etc. ) . Diese Komponenten sind insbesondere die Traktionsbatterie und deren Leistungselektronik

Claims

Patentansprüche
Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs mit den Schritten:
- Erfassen mehrerer Verbrauchsparameter des Hybridfahrzeugs ;
- Ermitteln eines zukünftigen Ladezustands einer
Traktionsbatterie des Fahrzeugs durch Abbilden der Ver¬ brauchsparameter auf einen Ladezustandswert, wobei das Abbilden umgesetzt wird durch Klassifizieren der mehreren Verbrauchsparameter gemäß trainierbarer Klassengrenzen;
- Trainieren der Klassengrenzen anhand der erfassten Verbrauchsparameter und einem zugehörigen gemessenen Ladezustand und
- Einstellen zumindest eines Betriebsparameters einer Traktions-Leistungskomponente des Hybridfahrzeugs gemäß des ermittelten zukünftigen Ladezustands.
Verfahren nach Anspruch 1, wobei als Verbrauchsparameter mehrere der folgenden Parameter erfasst werden:
- Fahrzeuggeschwindigkeit des Fahrzeugs;
- Beschleunigung des Fahrzeugs;
- eingelegter Gang eines Traktions-Schaltgetriebes im Falle eines Hybridfahrzeugs;
- Batterieklemmenspannung der Traktionsbatterie oder deren Änderungsrate ;
- Leistung einer elektrischen Traktionsmaschine des Hybridfahrzeugs ;
- Klimatisierungsleistung;
- Scheibenheizungsleistung;
- Beleuchtungsleistung;
- Katalysatorheizleistung im Falle eines Hybridfahrzeugs;
- Leistung zur Befahrung einer Steigung;
- Leistung eines zuschaltbaren elektrischen Allrad-Zusatzantriebs im Falle eines Hybridfahrzeugs ;
- Rekuperationsleistung;
- die verbrennungsmotorische Ladeleistung;
- der Fahrstil.
3. Verfahren nach Anspruch 2, wobei die Verbrauchsparameter anhand einer aktuellen Messung erfasst werden oder für einen zukünftigen Zeitraum auf Grundlage einer vorausliegenden Strecke eines Navigationsgeräts des Hybridfahrzeugs ge¬ schätzt werden.
4. Verfahren nach Anspruch 3, wobei die Verbrauchsparameter geschätzt werden auf Grundlage von Verkehrs-, Straßen- oder Witterungsbedingungen der vorausliegenden Strecke.
5. Verfahren nach einem der vorangehenden Ansprüche, wobei bei dem Schritt des Klassifizierens für jeden Verbrauchspa¬ rameter betreffende Verbrauchsparameter-Werte in min¬ destens zwei Klassen unterteilt sind mittels der Klas¬ sengrenzen, die eine Hyperfläche definieren, welche unterschiedlich klassifizierte Verbrauchsparametern-Werte trennt, wobei unterschiedlichen Kombinationen von Klassen unterschiedliche Ladezustände zugeordnet sind und zu erfassten Verbrauchsparameter-Werte über die Abbildung der zugehörige Ladezustand ermittelt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, wobei das Ermitteln des Ladezustands und das Trainieren eine Support Vector Machine betreffen, mittels der der Verbrauchspa¬ rameter abgebildet wird, wobei die Verbrauchsparameter- Werte einen Vektor der Support Vector Machine betreffen und die Klassengrenzen von einer Hyperebene wiedergegeben werden, und wobei ferner das Trainieren der Klassengrenzen ausgeführt wird Anpassen der Klassengrenzen an erfasste Verbrauchsparameter, die Trainingsvektoren oder Trainingsobjekten der Support Vector Machine entsprechen.
7. Verfahren nach einem der vorangehenden Ansprüche, wobei der Schritt des Abbildens in einer Berechnungseinrichtung innerhalb des Hybridfahrzeugs ausgeführt wird oder der Schritt des Abbildens in einer stationären Berechnungs¬ einrichtung ausgeführt, insbesondere in einer zentralen oder verteilten Berechnungseinrichtung, die erfassten Verbrauchsparameter von dem Hybridfahrzeug an die Berechnungseinrichtung übermittelt werden und der ermittelte Ladezustand von der Berechnungseinrichtung an das Hybridfahrzeug übermittelt werden.
Verfahren nach Anspruch 7, wobei der Schritt des Abbildens in der stationären Berechnungseinrichtung ausgeführt und in der Berechnungseinrichtung der Schritt des Abbildens mittels einer gemeinsamen Abbildung für mehrere Fahrzeuge ausgeführt wird.
Verfahren nach einem der vorangehenden Ansprüche, wobei als Betriebsparameter zumindest einer der folgenden Parameter mit unter Maßgabe eines Optimierungsziels eingestellt werden :
- Aktivierungszustand einer elektrischen Traktionsmaschine und eines Verbrennungsmotors des Fahrzeugs;
- Aufladeleistung der Traktionsbatterie;
- Klimatisierungsleistung;
- Scheibenheizungsleistung;
- Beleuchtungsleistung;
- Katalysatorheizleistung; und
- Maximale Dauer einer Segel- oder Coastingphase .
Verfahren nach Anspruch 9, wobei das Optimierungsziel ein minimierter Gesamtverbrauch, eine maximale Lebensdauer, eine maximale Reichweite oder ein maximaler Ladestrom der Traktionsbatterie oder eine gewichtete Kombination dieser Optimierungsziele ist.
PCT/EP2015/075370 2014-11-04 2015-11-02 Verfahren zum betrieb eines hybrid- oder elektrofahrzeugs WO2016071251A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/524,350 US10343672B2 (en) 2014-11-04 2015-11-02 Operation schemes for a hybrid or electric vehicle
CN201580060130.7A CN107074245B (zh) 2014-11-04 2015-11-02 用于运行混合动力车辆或者电动车辆的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014222513.2A DE102014222513B4 (de) 2014-11-04 2014-11-04 Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs
DE102014222513.2 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016071251A1 true WO2016071251A1 (de) 2016-05-12

Family

ID=54427733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/075370 WO2016071251A1 (de) 2014-11-04 2015-11-02 Verfahren zum betrieb eines hybrid- oder elektrofahrzeugs

Country Status (4)

Country Link
US (1) US10343672B2 (de)
CN (1) CN107074245B (de)
DE (1) DE102014222513B4 (de)
WO (1) WO2016071251A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343672B2 (en) 2014-11-04 2019-07-09 Continental Automotive Gmbh Operation schemes for a hybrid or electric vehicle

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038277B1 (fr) * 2015-07-02 2017-07-21 Renault Sas Procede de calcul d’une consigne de gestion de la consommation en carburant et en courant electrique d’un vehicule automobile hybride
DE102016113795A1 (de) * 2016-07-27 2018-02-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Bereitstellung zumindest eines spezifischen Fahrzeugzustandes eines Fahrzeugs
IT201600087202A1 (it) * 2016-08-25 2018-02-25 I E T S P A Metodo ed apparato di regolazione automatica di un veicolo in una condizione di prestazione prestabilita
KR101836687B1 (ko) * 2016-09-01 2018-03-08 현대자동차주식회사 하이브리드 자동차의 제어방법
US20180297483A1 (en) * 2017-04-12 2018-10-18 Proterra Inc. Systems and methods to improve performance of an electric vehicle
DE102017222547A1 (de) * 2017-12-13 2019-06-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeugs mit wenigstens zwei Antriebseinheiten
GB2576890B (en) * 2018-09-05 2021-03-03 Jaguar Land Rover Ltd Heating of an exhaust after-treatment component
DE102018009267A1 (de) * 2018-11-26 2020-05-28 Daimler Ag Verfahren zum verbrauchsoptimierten Betrieb eines Fahrzeuges
GB2583383B (en) 2019-04-26 2021-06-09 Perkins Engines Co Ltd Internal combustion engine controller
US11493355B2 (en) * 2019-05-14 2022-11-08 Bayerische Motoren Werke Aktiengesellschaft Adaptive live trip prediction solution
CN110509913B (zh) * 2019-08-29 2021-05-21 南京智慧光信息科技研究院有限公司 基于大数据和人工智能的混合动力推进方法和机器人***
DE102020206419B4 (de) 2020-05-22 2022-07-07 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Hybridfahrzeugs
CN113246958B (zh) * 2021-06-11 2022-06-14 武汉理工大学 基于td3多目标hev能量管理方法及***
DE102022205981A1 (de) 2022-06-13 2023-12-14 Volkswagen Aktiengesellschaft Verfahren zur Fahrstilklassifikation und zur Anpassung der Steuerung eines Kraftfahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008128416A1 (en) * 2007-04-19 2008-10-30 The Chinese University Of Hong Kong Energy management for hybrid electric vehicles
DE102009030784A1 (de) * 2009-06-27 2010-02-04 Daimler Ag Verfahren zum Steuern des Betriebs eines Fahrzeugs
DE102011018769A1 (de) * 2011-04-27 2012-10-31 Daimler Ag Hybridantriebssteuervorrichtung
EP2752962A1 (de) * 2011-08-31 2014-07-09 Toyota Jidosha Kabushiki Kaisha Vorrichtung zur ladungs-/entladungs-unterstützung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080249667A1 (en) * 2007-04-09 2008-10-09 Microsoft Corporation Learning and reasoning to enhance energy efficiency in transportation systems
US8825243B2 (en) 2009-09-16 2014-09-02 GM Global Technology Operations LLC Predictive energy management control scheme for a vehicle including a hybrid powertrain system
DE102010005837A1 (de) 2010-01-27 2011-07-28 Bayerische Motoren Werke Aktiengesellschaft, 80809 Verfahren zur Regelung des Ladezustands eines elektrischen Energiespeichers
CN103269933B (zh) 2010-12-22 2016-03-16 沃尔沃卡车集团 用于控制混合动力牵引组件的方法和根据该方法控制的混合动力车辆
DE102012023632A1 (de) * 2012-12-03 2014-06-05 Volkswagen Aktiengesellschaft Aktive Reichweitenbeeinflussung eines Fahrzeuges
US9346452B2 (en) * 2014-02-21 2016-05-24 Ford Global Technologies, Llc Predicting energy consumption for an electric vehicle using variations in past energy consumption
DE102014222513B4 (de) 2014-11-04 2020-02-20 Continental Automotive Gmbh Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008128416A1 (en) * 2007-04-19 2008-10-30 The Chinese University Of Hong Kong Energy management for hybrid electric vehicles
DE102009030784A1 (de) * 2009-06-27 2010-02-04 Daimler Ag Verfahren zum Steuern des Betriebs eines Fahrzeugs
DE102011018769A1 (de) * 2011-04-27 2012-10-31 Daimler Ag Hybridantriebssteuervorrichtung
EP2752962A1 (de) * 2011-08-31 2014-07-09 Toyota Jidosha Kabushiki Kaisha Vorrichtung zur ladungs-/entladungs-unterstützung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343672B2 (en) 2014-11-04 2019-07-09 Continental Automotive Gmbh Operation schemes for a hybrid or electric vehicle

Also Published As

Publication number Publication date
CN107074245B (zh) 2020-07-14
US10343672B2 (en) 2019-07-09
DE102014222513A1 (de) 2016-05-04
CN107074245A (zh) 2017-08-18
DE102014222513B4 (de) 2020-02-20
US20180290646A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2016071251A1 (de) Verfahren zum betrieb eines hybrid- oder elektrofahrzeugs
DE102015223733B4 (de) System und Verfahren zum Steuern eines Hybridfahrzeugs
DE102016108715A1 (de) Batterieladezustandssteuerung mit Informationsvorschauklassifizierung
WO2018054914A1 (de) Bestimmung des optimalen beginns der verzögerungsphase im backend
DE102015208380A1 (de) Fahrzeugenergie-Handhabungsvorrichtung
DE102014222059A1 (de) In der raumdomäne optimale elektro- und hybrid-elektrofahrzeugsteuerung mit wegvorausberechnung
DE102015208758A1 (de) Elektrofahrzeugbetrieb zum verwalten der akkumulatorkapazität
DE102021100163A1 (de) Intelligentes fahrzeugbatterieladen für batterien mit hoher kapazität
EP2857271A2 (de) Betriebsverfahren für einen Hybridantrieb, insbesondere zur Auswahl optimaler Betriebsmodi des Hybridantriebs entlang einer Fahrtroute
DE102020126883A1 (de) Schätzung, klassifizierung und anpassung von treibermodellen für die reichweitenvorhersage
DE102016108190A1 (de) Batterieladezustandssteuerung unter Verwendung von Routenvorschaudaten
DE102011086903A1 (de) Fahrzeugelektrizitätsbedarfsschätzvorrichtung, elektrizitätsinformationsverarbeitungsvorrichtung und ladesystem
DE102018216091A1 (de) Verfahren und vorrichtung zur steuerung elektrischer maschinen
DE102008042228A1 (de) Verfahren zur Einstellung einer motorischen Antriebseinrichtung in einem Kraftfahrzeug
DE102011085347A1 (de) Verfahren und Vorrichtung zum Steuern einer elektrischen Maschine eines Kraftfahrzeugs
DE102009047395A1 (de) Verfahren und Steuergerät zur Steuerung eines Hybridantriebs eines Fahrzeugs
DE102014216816A1 (de) Lebenserhaltungssystem und -verfahren für ein Batterieelektrofahrzeug
DE102018112264A1 (de) System und verfahren zum anpassen von ladezustandsparametern einer batterie
EP2989422A1 (de) Verfahren und vorrichtung zum auswählen einer route zum befahren durch ein fahrzeug
DE112017002942T5 (de) Verfahren und System zur Bewertung der Betriebsleistung von einem Fahrzeug zugeordneten Fahrerassistenzsystemen
DE102008043398A1 (de) Verfahren zum Betreiben eines Generators eines Fahrzeugs
DE102021125957A1 (de) Antriebssteuervorrichtung, verfahren und nicht-transitorisches speichermedium
WO2015110274A1 (de) Verfahren zum steuern einer geschwindigkeit eines elektrisch angetriebenen fahrzeuges
DE102015015743A1 (de) Verfahren zum Ermitteln einer Fahrtreichweite eines Kraftfahrzeugs und Kraftfahrzeug
DE102015220564A1 (de) Vorrichtung und verfahren zum steuern des betriebs des verbrennungsmotors eines fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15790512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15524350

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15790512

Country of ref document: EP

Kind code of ref document: A1