WO2016070777A1 - 核电站蒸发器筒体电熔成形方法 - Google Patents

核电站蒸发器筒体电熔成形方法 Download PDF

Info

Publication number
WO2016070777A1
WO2016070777A1 PCT/CN2015/093635 CN2015093635W WO2016070777A1 WO 2016070777 A1 WO2016070777 A1 WO 2016070777A1 CN 2015093635 W CN2015093635 W CN 2015093635W WO 2016070777 A1 WO2016070777 A1 WO 2016070777A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrofusion
forming
nuclear power
heat
Prior art date
Application number
PCT/CN2015/093635
Other languages
English (en)
French (fr)
Inventor
王华明
Original Assignee
南方增材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方增材科技有限公司 filed Critical 南方增材科技有限公司
Publication of WO2016070777A1 publication Critical patent/WO2016070777A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus

Definitions

  • the invention relates to a nuclear power plant evaporator cylinder electrofusion forming method.
  • the steam generator is one of the core equipments in the primary loop system of the nuclear power plant. It is the key component of the secondary circuit cooling water that is heated by the high-pressure water in the first loop and then evaporates into steam to drive the steam turbine to achieve power generation. It is the hub for the thermal conversion of the first and second circuits.
  • the evaporator equipment is the heaviest (the typical AP1000 container has a total weight of 600 tons), and the largest size (AP1000 upper container barrel section diameter is more than 5 meters, the total container height is more than 20 meters), plus the harsh working environment and The ever-increasing safety requirements, the requirements for equipment materials and preparation processes are increasing.
  • the evaporator material is made of low-alloy high-strength steel (ASME standard SA508Gr3Cl2, RCC-M standard 18MnD5, China corresponding standard 20MnMoNi), which is prepared by segmentation forging and heat treatment based on the technical requirements of steel ingot smelting and forging process. Subsequent welding of the component materials prepared by the segmentation into a container as a whole. Taking the AP1000 as an example, the entire evaporator vessel is divided into 9-11 material members, wherein the cylinder components are divided into 6 parts (2 upper cylinder sections, 1 conical section, 3 lower cylinder sections), and each part is separately manufactured. After the whole group welding.
  • Typical materials are subjected to quenching and tempering heat treatment on a forging basis (usually subjected to one or more normalizing and tempering heat treatments in the middle to diffuse residual hydrogen, refine grains, and prepare for final heat treatment) to obtain strength and toughness.
  • forging, especially during heat treatment is prone to problems such as uneven macrostructure. The process is complicated, the chemical and mechanical properties are difficult to control, and the quality is stable. Poor sex and high scrap rate.
  • the method of forging and tailor welding of the segmented materials used in the evaporator equipment also severely breaks the continuous direction of the mechanical fibers due to the increase of the weld seam, which greatly affects the mechanical properties of the materials and the safety of the container equipment. And it is also very easy to cause manufacturing delays and increase costs.
  • the main object of the present invention is to provide an efficient, low-cost, good mechanical performance of a nuclear power plant evaporator cylinder electrofusion forming method.
  • the nuclear power plant evaporator body electrofusion forming method of the invention is a high-energy heat source formed by arc heat, electric resistance heat and electroslag heat, melting the continuously transported metal raw material wire, layer by layer on the substrate. Solidified stacked forming metal parts;
  • the electrofusion head and the substrate are connected to the two poles of the power source, and the metal raw material wire is sent to the surface of the substrate through the conveying mechanism and the electrofusion head during the forming, and an arc is generated between the raw material wire and the substrate under the deposition protection of the granular auxiliary material.
  • the molten part of the piled auxiliary material forms a molten slag pool, the electric current flows through the raw material wire material and the molten auxiliary material slag pool to form electric resistance heat and electroslag heat, and the raw material wire is made under the action of three heat composite high energy heat sources of arc heat, electric resistance heat and electroslag heat.
  • the material is melted, a local molten pool is formed on the surface of the substrate, and the raw material wire and the auxiliary material are continuously conveyed.
  • the relative movement of the electrofusion head and the substrate is controlled by a computer to realize the rapid melting of the molten pool on the substrate.
  • the cooling is solidified layer by layer, and finally the nuclear power plant evaporator cylinder is formed.
  • the formed evaporator cylinder is formed according to different nuclear power unit requirements. 3-6 meters in diameter and 2-18 meters in length, can be formed upper cylinder, or lower cylinder, or upper cylinder with tapered section, or lower cylinder with tapered section, or upper cylinder with tapered section Connect the lower cylinder.
  • the raw material wire used for forming is a low-alloy steel material specially prepared for the evaporator member, the raw material wire diameter is 2-10 mm, the C content is 0.11-0.15%, and the workpiece C content after forming is 0.05-0.10%, the workpiece The grain size is 9-10.
  • the current in the power supply parameter is 200A to 3000A
  • the voltage is 20V to 60V
  • the power source can be a direct current or an alternating current power source.
  • the electric fuse head can be connected to the positive pole or the negative pole.
  • the preheating and interlaminar temperature of the control substrate or the deposited metal is 120 to 450 ° C, and the relative movement speed of the electrofusion head and the substrate is 300 to 800 mm/min, thereby realizing rapid solidification of the molten pool, thereby obtaining crystals.
  • Fine-grained, non-macro-segregated, uniform-structured materials greatly improve the mechanical properties of the formed workpiece such as plasticity, toughness and high-temperature creep.
  • the raw material filament forms a molten pool on the surface of the lower metal layer, and the molten droplet enters the molten pool in the form of a jet and solidifies to form the two layers of metal into one body, thereby realizing layer forming and integral fusion, thereby ensuring The overall properties of the formed metal component.
  • the melting efficiency of the single electrofusion head to the raw material wire is 20-50 Kg/h, and in order to achieve rapid formation by increasing the stacking efficiency, the number of the electrofusion heads can be adjusted to 1 to 100 as needed, when multi-electrofusion When the head is arranged, the distance between adjacent electrofusion heads is 50 to 500 mm.
  • the substrate may be cylindrical or cylindrical and have a wall thickness of not less than 5 mm.
  • the (the axis) is horizontally configured to achieve layer-by-layer stacking by controlling the rotation of the substrate and the relative movement of the electrofusion head in the axial and radial directions of the substrate.
  • the substrate may be 308 stainless steel material or carbon steel or alloy steel material. When it is 308 stainless steel material, it can be used as a dissimilar material to join the composite workpiece. When it is carbon steel or alloy steel material, it can be removed in the subsequent machining.
  • the invention is free from the constraints of complex tooling, molds and special tools; forming It is a near-net-shaped blank, which requires only a small amount of finishing after production, which greatly simplifies the processing and shortens the product cycle.
  • the formed workpiece has the mechanical and chemical properties comparable to the traditional forging process, and its strength, toughness and corrosion resistance are outstanding.
  • the overall forming of the evaporator cylinder is realized, which breaks through the limitations of the traditional forging process technology, greatly improving the efficiency and saving the cost.
  • FIG. 1A is a schematic view for explaining an electrofusion forming method in a specific embodiment
  • Figure 1B is a partial enlarged view of the vicinity of the position shown in A of Figure 1A;
  • Fig. 2 is a schematic view for explaining a method of forming an evaporator cylinder in the embodiment.
  • FIG. 1A is a schematic view for explaining an electrofusion forming method in a specific embodiment
  • FIG. 1B is a partial enlarged view of a vicinity of a position shown by A in FIG. 1A. Since the drawings are schematic, the components in the drawings are schematic, and their actual shapes and dimensional relationships are not limited by the drawings.
  • the raw material wire 1 is melted and stacked on the base material 2 layer by layer (in the state shown in FIG. 1 when it is deposited on the N-th layer), thereby finally forming a desired metal member.
  • the wire feeding mechanism 5 feeds the raw material wire 1 to the surface of the substrate 2 placed on the table 21, and is covered with the granular auxiliary material conveyed by the powder feeding mechanism 4.
  • the power supply voltage causes an arc 9 between the raw material wire 1 and the substrate 2 to generate arc heat
  • the arc heat causes part of the auxiliary material 3 to melt, forming an auxiliary slag pool 8, and the current flows through the raw material wire through the electrofusion head 6.
  • the three heat sources are combined to form a high-energy heat source, and the raw material is melted.
  • the wire material forms a molten pool 11 on the surface of the substrate 2.
  • the wire feeding mechanism 5 and the powder feeding mechanism 4 continuously convey the raw material wire 1 and the auxiliary material 3.
  • the raw material wire 1 is deposited on the substrate 2 layer by layer, and finally Form the workpiece.
  • control device controls the relative movement manner of the electrofusion head 6 and the substrate 2 based on the layered slice data of the shaped workpiece (numerical simulation, mathematical model).
  • the electrode of the electrofusion head is connected positively, and the workpiece is connected to the negative for only a schematic function, or the electrofusion head is connected negatively, the workpiece is connected positively, or an AC power source is taken.
  • the composition of the excipient, the diameter of the raw material wire, the current, the relative movement speed of the substrate and the raw material wire, etc. can be appropriately adjusted. parameter.
  • the shape of the raw material yarn 1 may be a round bar shape, a belt shape, a solid core or a drug core; the diameter of the raw material wire 1 may be set to 2 to 10 mm according to the size of the formed workpiece; depending on the diameter of the wire material 1,
  • the length of the electric fuse head (electrical length) is 20 mm to 150 mm.
  • the auxiliary material 3 covers a thickness of 15 mm to 120 mm, and the use of the auxiliary material 3 includes: covering the arc 9 to prevent arc splashing; covering the molten pool 11, insulating the air, and protecting the molten pool metal from oxygen, nitrogen and hydrogen in the air. Insulting; forming heat preservation on the molten pool metal; removing impurities and alloying in the metallurgical reaction process; forming the slag pool 8 (slag shell 7) mechanically protecting the deposited metal 10 from forming well.
  • the composition of the auxiliary material 3 contains an oxide or an oxide and a halide, and the auxiliary material 3 participates in the molten pool reaction to adjust the workpiece (metal member, product) component, and thus can be added to the auxiliary material according to the composition and efficiency requirements of the metal member to be formed. Alloy powder and/or elemental metal powder reduce production costs.
  • the operation of recovering the residual excipients and removing the slag shell 7 formed by solidification of the slag pool 8 may be attached.
  • it can be in the phase of the raw silk 1 Machine removal or manual removal is started at a distance of 400 mm to 500 mm behind the movement.
  • the utilization rate of the raw material yarn is close to 100%; compared with the conventional processing technology (forging, casting, etc.), the number of manufacturing processes is small (no complicated heat treatment is required), the cycle is short, and the efficiency is high.
  • the machining allowance of the components is very small, while reducing the finishing time and saving a lot of material.
  • This example describes the overall forming process of the AP1000 nuclear electric evaporator cylinder (the upper cylinder with the tapered section and the lower cylinder) by the horizontal electrofusion forming method.
  • the inner wall of the cylinder is welded with a thickness of about 8 mm of 308 stainless steel.
  • Fig. 2 is a schematic explanatory view showing the electrofusion forming method of the present embodiment, in which a device such as a power source or an automatic wire feeder is omitted.
  • the material power parameters are as follows:
  • raw material wire 101 (C: 0.12-0.14%, other elements are consistent with SA508-3), diameter 5mm;
  • auxiliary material 301 the composition is 29.5% CaO+MgO; 30% AL2O3+MnO; 20.5% SiO2+TiO; 20% CaF2;
  • the number of electrofusion heads 34 electrofusion heads 601, the electrofusion power source is a DC power source, the electrofusion head 601 is connected to the negative pole of the power source, and the substrate 201 is connected to the positive pole of the power source (so that the processing efficiency can be greatly improved);
  • the electrofusion process parameters are: fused current 900A, fused voltage 42V, fused
  • the head 601 and the substrate 201 are relatively moved at a speed of 600 to 700 mm/min (melt moving speed).
  • the annular metal member is fabricated by a metal member electrofusion forming method, and the implementation steps are as follows:
  • the auxiliary material recovery device is started to take back the unmelted auxiliary material, expose the slag shell and remove it, so as to facilitate the next fused deposition (stacking)
  • the cooling device or the heating device is started to cool or heat the fused deposition metal, and the temperature of the substrate (the first layer refers to the substrate 201, and the other layer refers to the former layer of the deposited metal) is controlled at 200 ⁇ . 300 ° C;
  • step (4) After the completion of the second pass, repeat step (4) to complete the formation of the other fused deposition track.
  • the last pass is reached, the last end point of the adjacent fused fuse head is matched with the first start point. Good connection, to complete the first layer of fused deposition;
  • the stainless steel substrate 201 becomes a part of the evaporator cylinder, and the direct connection forming of the dissimilar materials is realized, thereby changing the manufacturing method of the conventional process for forging the 308 stainless steel on the inner wall after forging the SA508-3 cylinder.
  • the process is reduced, the work efficiency and quality are improved, and ordinary carbon steel can be removed in the subsequent machining.
  • the evaporator cylinder is divided into 6 sections (see background art), which are respectively forged and then integrally welded, and in this embodiment, since a plurality of (34) electrofusion heads are integrally formed side by side, Greatly improved the forming efficiency. In addition, it is naturally also possible to adjust the number and arrangement of the fused heads according to customer requirements, and form the segments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种核电站蒸发器筒体电熔成形方法,将电熔头(6)与基材(2)接至电源(12)两极,成形时原料丝材(1)经由输送机构(5)和电熔头(6)送至基材(2)表面,在颗粒状辅料(3)的堆积保护下,在电弧热、电阻热、电渣热三种热源作用下使原料丝材(1)熔化,在基材(2)表面形成局部熔池(11),持续输送原料丝材(1)与辅料(3),根据成形构件的分层切片数据,采用计算机控制电熔头(6)与基材(2)的相对移动,实现熔池(11)在基材上快速冷却逐层凝固堆积,最终成形核电站蒸发器筒体。该方法高效、低成本,成形后的核电站蒸发器筒体具有良好力学性能。

Description

核电站蒸发器筒体电熔成形方法 技术领域
本发明涉及一种核电站蒸发器筒体电熔成形方法。
背景技术
蒸汽发生器是核电站一回路***中核心设备之一,是二回路冷却水经一回路高压水换热后蒸发为蒸汽推动汽轮机做功实现发电的关键构件,是一、二回路热力换转的枢纽。在核电一回路***中,蒸发器设备最重(典型AP1000容器总重600吨位),尺寸最大(AP1000上部容器筒节直径5米多,容器总高20米以上),外加严苛的工作环境和愈发极致的安全要求,因此对设备材料及制备工艺要求愈来愈高。
目前蒸发器材料选用低合金高强度钢(ASME标准SA508Gr3Cl2,RCC-M标准18MnD5,中国对应标准20MnMoNi),基于钢锭冶炼和锻造工艺技术限制要求,通过分段进行锻造和热处理操作制备而成。后续通过将分段制备的构件材料组焊而成容器整体。以AP1000为例,整个蒸发器容器分为9-11个材料构件,其中筒体部件分6个部分(上筒节2个,锥形段1个,下筒节3个),各部分单独制造后再整体组焊。
典型材料在锻造基础上经受淬火回火热处理(一般中间还要经受一次甚至以上的正火回火热处理,用以扩散残氢,细化晶粒,为最终热处理作准备),可以获取强度和韧性综合性能优越的回火马氏体材料组织。此方法在生产中被广泛应用,也能够满足质量要求,但对于逐渐增大的材料部件单体的需求,锻造尤其是热处理时容易出现宏观材料相组织很不均匀等问题。工艺复杂、化学与力学性能控制难度大,也造成质量稳定 性差,废品率高。同时从该工艺最终的晶粒测度结果看,一般只在5-7级左右,对目前研发生产中所希望的通过进一步细化晶粒来提高力学性能尤其是强度和韧性综合性能的目的,该工艺有很大的瓶颈。
另外,蒸发器设备所采用的分段材料锻制并拼焊组成的方式,也因为焊缝的增加严重割裂了机械纤维的连续走向,极大的影响材料的力学性能和容器设备的安全性,并且也极易引起制造工期拖延,增加了成本。
因此,如何能够研发出蒸发器所需的细晶粒、均组织,且综合力学性能良好的材料和整体成形方法是该类新材料研发需攻克的难点和重要发展方向。
发明内容
有鉴于此,本发明的主要目的在于,提供一种高效、低成本、具有良好力学性能的核电站蒸发器筒体电熔成形方法。
为达到上述目的,本发明的核电站蒸发器筒体电熔成形方法是采用电弧热、电阻热、电渣热复合而成的高能热源,熔化连续输送的金属原料丝材,在基材上逐层凝固堆积成形制造金属构件;
将电熔头与基材接至电源两极,成形时金属原料丝材经由输送机构和电熔头送至基材表面,在颗粒状辅料的堆积保护下,原料丝材与基材间产生电弧,熔化部分堆敷辅料形成熔融渣池,电流流过原料丝材和熔融辅料渣池形成电阻热和电渣热,在电弧热、电阻热、电渣热三种热复合高能热源作用下使原料丝材熔化,在基材表面形成局部熔池,持续输送原料丝材与辅料,根据成形构件的分层切片数据,采用计算机控制电熔头与基材的相对移动,实现熔池在基材上快速冷却逐层凝固堆积,最终成形核电站蒸发器筒体。
在本发明中,根据不同核电机组要求,成形的蒸发器筒体 直径3-6米,长度2-18米,可以是成形上部筒体,或下部筒体,或上部筒体连锥形段,或下部筒体连锥形段,或上部筒体连锥形段连下部筒体。
在本发明中,成形所用原料丝材是为蒸发器构件而特殊制备的低合金钢材料,原料丝材直径2-10mm,C含量0.11-0.15%,成形后工件C含量0.05-0.10%,工件晶粒度9-10级。
在本发明中,电源参数中的电流为200A~3000A,电压为20V~60V,电源可以是直流或交流电源,在使用直流电源时,电熔头可接正极或负极。
在本发明中,控制基材或堆积金属预热与层间温度为120~450℃,电熔头与基材的相对移动速度为300~800mm/min,实现熔池的快速凝固,从而获得晶粒细密、无宏观偏析、组织均匀的材料,极大的改善成形工件的塑性、韧性和高温蠕变等力学性能。
在本发明中,在逐层成形的过程中,原料丝在下层金属表面形成熔池,熔滴以射流形态进入熔池后凝固使两层金属形成一体,实现分层成形,整体融合,保证了成形金属构件的整体性能。
在本发明中,单个电熔头对原料丝材熔化效率为20~50Kg/h,另外为提高堆积效率实现快速成形,电熔头的数量可以按需要调整为1~100个,当多电熔头排布时,相邻电熔头间距为50~500mm。
在本发明中,所述基材可以为圆筒状或圆柱状,壁厚不小于5mm。(其轴线)水平配置,通过控制基材的转动以及电熔头在基材轴向和径向上的相对移动实现逐层堆积。基材可以是308不锈钢材料或者是碳钢或合金钢材料,当为308不锈钢材料时,可作为异种材料连接合成工件,为碳钢或合金钢材料时可在后续机加工中去除。
本发明摆脱了复杂的工装、模具和专用工具的约束;成形 即为近净形坯件,生产后只需少量精加工,大大简化加工工序,缩短产品周期;所成形工件具有媲美传统锻造工艺的力学和化学性能,强度、韧性、耐蚀等性能均十分突出;同时实现了蒸发器筒体的整体成形,突破了传统锻造工艺技术的局限,大大提高了效率,节省了成本。
附图说明
图1A为用于说明具体实施方式中的电熔成形方法的示意图;
图1B为图1A中A所示位置附近的局部放大图;
图2为用于说明实施例中的蒸发器筒体成形方法的示意图。
具体实施方式
下面参照附图对本发明的具体实施方式进行说明。图1A为用于说明具体实施方式中的电熔成形方法的示意图;图1B为图1A中A所示位置附近的局部放大图。由于是原理图,因而,图中部件是示意性的,其实际形状与尺寸关系等不受图示限制。
该成形方法是将原料丝材1熔化而逐层(图1中所示为堆积至第N层时的状态)堆积在基础材2上,从而最终形成所需的金属构件。
具体实施工序为:
A.送丝机构5将原料丝材1送至放置于工作台21上的基材2的表面,其上覆盖由送粉机构4输送的颗粒状辅料。
B.启动电源12,电源电压使原料丝材1与基材2间形成电弧9产生电弧热,电弧热使部分辅料3熔融,形成辅料渣池8,电流经由电熔头6流过原料丝材1形成电阻热,并通过熔融渣池8形成电渣热,三种热源复合而成高能热源,熔化原料 丝材,在基材2表面形成熔池11。
C.控制电熔头6与基材2的相对移动和基材2的温度,实现熔池11与基材换热凝固沉积。
D.送丝机构5与送粉机构4持续输送原料丝材1和辅料3,在辅料3覆盖熔池11和基材2的状态下,原料丝材1逐层堆积在基材2上,最终成形工件。
其中,控制装置(计算机)根据成形工件的(数值模拟、数学模型)分层切片数据控制电熔头6与基材2的相对移动方式。
在本发明图示中电熔头电极接正,工件接负只作示意作用,也可以电熔头接负,工件接正,或采取交流电源。
在本发明中,为了保证形成良好的高能热源,尤其是为了产生充分的电渣热,可以适当地调节辅料的成分、原料丝材的直径、电流、基材与原料丝材的相对移动速度等参数。
在本发明中,原料丝1的形态可以是圆棒状、带状,实芯或者药芯的;原料丝1的直径可以根据成形工件的尺寸设定为2~10mm;根据丝材1直径不同,伸出电熔头的长度(通电长度)为20mm~150mm。
在本发明中,辅料3覆盖厚度为15mm~120mm,使用辅料3的作用包括:覆盖电弧9,防止电弧飞溅;覆盖熔池11,隔绝空气,使熔池金属免受空气中氧、氮、氢等的侵害;对熔池金属形成保温;冶金反应过程中去除杂质、掺入合金;形成的渣池8(渣壳7)以机械方式保护沉积金属10良好成形等。
辅料3的成分包含氧化物或者氧化物与卤化物,由于辅料3参与熔池反应,调整工件(金属构件、产品)成分,因而根据所要形成的金属构件的成分和效率要求,可以在辅料中添加合金粉末以及/或者单质金属粉末,降低生产成本。
另外,在C工序中,可以附带回收残余辅料以及去除渣池8凝固而形成的渣壳7的操作。去除时,可以在原料丝1的相 对移动后方400mm~500mm处开始机器去除或人工去除作业。
采用本实施方式的电熔成形方法,原料丝利用率接近100%;相比现有的加工技术(锻造、铸造等),制造工序少(不需要复杂的热处理),周期短,效率高,金属构件的机械加工余量非常小,同时减少了精加工时间及节约了大量的材料。
【实施例】
本实例描述通过卧式电熔成形方法制作AP1000核电蒸发器筒体(上筒体连锥形段连下筒体)的整体成形过程,传统工艺中该筒体内壁堆焊厚度约8mm的308不锈钢层,蒸发器筒体壁厚约150mm,所使用的设备包括:
(1)回转支撑台;
(2)电熔电源;
(3)电熔头;
(4)自动送丝装置;
(5)辅料自动输送与辅料自动回收装置;
(6)加热装置;
(7)冷却装置;
(8)基材;
(9)中央控制装置。
图2为用于表示本实施例的电熔成形方法的示意性说明图,图中省略了电源、自动送丝装置等装置。材料电源参数如下:
1)原料丝材101(C:0.12-0.14%,其它元素与SA508-3一致)、直径5mm;
2)特殊研制的辅料301,成分为29.5%CaO+MgO;30%AL2O3+MnO;20.5%SiO2+TiO;20%CaF2;
3)电熔头数量:34个电熔头601,电熔电源为直流电源,采用电熔头601接电源负极,基材201接电源正极(如此接,能够大大提高加工效率);
4)电熔工艺参数为:电熔电流900A,电熔电压42V,电熔 头601与基材201相对移动速度600~700mm/min(熔池移动速度)。
采用金属构件电熔成形方法制作环形金属构件,其实施步骤如下:
(1)将圆筒形的基材201的轴线水平配置,并支撑在回转支撑台上,将34个电熔头以约500mm的间距(中央控制装置确定精确位置和移动)平均横向布置在基材201的上方,且调整好每个电熔头与基材201表面(外周面)的距离,并选取电熔的起点;
(2)将原料丝材101与辅料送至基材201表面,启动电源,导入高能热源,熔化原料丝材及辅料,同时转动基材201,开始每个电熔头第一层第一道(每一层由轴向排列的多道构成)的电熔沉积;
(3)当电熔头601与电熔起点之间形成一段距离后,开始启动辅料回收装置将其未熔化的辅料收回,露出渣壳并将其清除,以便于下一道的电熔沉积(堆积);随后启动冷却装置或加热装置对电熔沉积金属进行冷却或加热,将其基体(第一层时是指基材201,其他层时是指前一层堆积金属)的温度控制在200~300℃;
(4)当基材201转动一圈完成第一道电熔沉积时,在控制装置的控制下,所有电熔头601同时往左直线移动3/4熔道宽度距离,同时调整各电熔头601尤其是通过中央控制调整编号18-22五个电熔头与基材201的表面之间的距离,以保证电熔的稳定性,之后开始第一层第二道的电熔沉积成形,此过程中要保证其左右圈道间搭接良好;
(5)当第二道完成后,重复步骤(4)再完成其它的电熔沉积道的成形,当达到最后一道时,其相邻电熔头的最后一道结束点与第一道起点要搭接良好,以至完成第一层的电熔沉积;
(6)当完成第一层的电熔沉积后,所有电熔头自动提升一 层沉积厚度(即层后)之高度,开始第二层的第一道电熔沉积,第一层电熔头的结束点即为第二层第一道的开始点,连续沉积;
(7)当第二层第一道电熔沉积完成后,所有电熔头同时往右直线移动3/4熔道距离,同时各电熔头自动调整其与基材之间的距离,以保证电熔的稳定性,开始第二层第二道的电熔沉积,使其左右圈道间搭接良好;
(8)当完成第二层第二道电熔沉积完成时,重复步骤(7),再完成其它的电熔沉积道,当达到最后一道时,其相邻电熔头的最后一道结束点与第一道起点要搭接良好,以至完成第二层的电熔沉积;
(9)重复步骤(6)至步骤(8),再完成其它电熔沉积层,此过程中,相邻电熔沉积层电熔头的移动方向可以相反,最终连续电熔沉积形成整个金属构件。
电熔成形后,不锈钢基材201成为了蒸发器筒体的一部分,实现了异种材料直接连接成形,从而改变了传统工艺在锻造SA508-3筒体后再在其内壁堆焊308不锈钢的制造方式,减少了工艺工序,提高了工作效率和质量,也可用普通碳钢在后续机加工中去除。
按照传统锻造工艺,蒸发器筒体分为6段(见背景技术),分别锻制再整体组焊而成,而本实施例由于是多个(34个)电熔头并排排布整体成形,极大的提高了成形效率。另外,自然也可以根据客户要求调整电熔头数量和排布,分段成形。

Claims (7)

  1. 一种核电站蒸发器筒体电熔成形方法,其特征在于:
    该方法是采用电弧热、电阻热、电渣热复合而成的高能热源,熔化连续输送的金属原料丝材,在基材上逐层凝固堆积成形制造金属构件;
    将电熔头与基材接至电源两极,成形时金属原料丝材经由输送机构和电熔头送至基材表面,在颗粒状辅料的堆积保护下,原料丝材与基材间产生电弧,熔化部分堆敷辅料形成熔融渣池,电流流过原料丝材和熔融辅料渣池形成电阻热和电渣热,在电弧热、电阻热、电渣热三种热复合高能热源作用下使原料丝材熔化,在基材表面形成局部熔池,持续输送原料丝材与辅料,根据成形构件的分层切片数据,采用计算机控制电熔头与基材的相对移动,实现熔池在基材上快速冷却逐层凝固堆积,最终成形核电站蒸发器筒体。
  2. 根据权利要求1所述的核电站蒸发器筒体电熔成形方法,其特征在于:
    根据核电机组类型不同,成形的蒸发器筒体直径为3-6m,长度2-18m。
  3. 根据权利要求1所述的核电站蒸发器筒体电熔成形方法,其特征在于:
    原料丝材按照ASME中SA508Gr3Cl2材料标准或RCC-M中18MnD5材料标准或其他对应标准制备,丝材直径3-10mm,C含量0.11-0.15%,成形后工件C含量0.05-0.10%,工件晶粒度9-10级。
  4. 根据权利要求1所述的核电站蒸发器筒体电熔成形方法,其特征在于:
    根据丝材直径不同,电源参数中的电流为200A~3000A,电压为20V~60V,电源是直流或交流电源,在使用直流电源时,电熔头接正极或负极。
  5. 根据权利要求1所述的核电站蒸发器筒体电熔成形方法,其特征在于:
    根据成形工件要求,对基材或堆积金属进行加热或冷却,控制基材或堆积金属层的表面温度为120~450℃。
  6. 根据权利要求1所述的核电站蒸发器筒体电熔成形方法,其特征在于:
    根据蒸发器成形构件尺寸和效率要求,电熔头的数量设定为1~100个,多电熔头排布时,相邻电熔头间距为50~500mm。
  7. 根据权利要求1所述的核电站蒸发器筒体电熔成形方法,其特征在于:
    所述基材为成形工件提供工装支撑,形状为圆筒状或圆柱状,壁厚不小于5mm。基材材料可以是308不锈钢或其它普通碳钢或合金钢,当为308不锈钢时,工件成形后基材作为成形工件一部分予以保留,当为其它普通碳钢或合金钢时,可在后续机加工中去除。
PCT/CN2015/093635 2014-11-04 2015-11-03 核电站蒸发器筒体电熔成形方法 WO2016070777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410617496.7 2014-11-04
CN201410617496.7A CN104526169B (zh) 2014-11-04 2014-11-04 核电站蒸发器筒体电熔成形方法

Publications (1)

Publication Number Publication Date
WO2016070777A1 true WO2016070777A1 (zh) 2016-05-12

Family

ID=52841897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093635 WO2016070777A1 (zh) 2014-11-04 2015-11-03 核电站蒸发器筒体电熔成形方法

Country Status (2)

Country Link
CN (1) CN104526169B (zh)
WO (1) WO2016070777A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526171B (zh) * 2014-11-04 2016-10-12 南方增材科技有限公司 金属构件电熔成形方法
CN104526115B (zh) * 2014-11-04 2017-01-18 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
CN104526169B (zh) * 2014-11-04 2016-08-17 南方增材科技有限公司 核电站蒸发器筒体电熔成形方法
CN106271141A (zh) * 2016-08-31 2017-01-04 南方增材科技有限公司 核电常规岛低压转子电熔成形方法
CN106466766A (zh) * 2016-08-31 2017-03-01 南方增材科技有限公司 核电站稳压器筒体电熔成形方法
CN106378540A (zh) * 2016-08-31 2017-02-08 南方增材科技有限公司 核电站蒸发器筒体电熔成形方法
CN106271142A (zh) * 2016-08-31 2017-01-04 南方增材科技有限公司 超超临界高中压转子电熔成形方法
CN106466753A (zh) * 2016-08-31 2017-03-01 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
CN106271143A (zh) * 2016-08-31 2017-01-04 南方增材科技有限公司 Cap1400主蒸汽管贯穿件电熔成形方法
CN106466765A (zh) * 2016-08-31 2017-03-01 南方增材科技有限公司 超超临界低压转子的电熔成形方法
CN112792433B (zh) * 2021-01-15 2022-04-12 南方增材科技有限公司 高韧性低合金钢构件的制备方法及高韧性低合金钢构件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545792A1 (fr) * 1991-11-29 1993-06-09 Chpo Ardel S.A. Procédé de soudage/rechargement à l'arc et dispositif de mise en oeuvre
CN1511670A (zh) * 2002-12-31 2004-07-14 江门市威霖贸易有限公司 平行双丝或单丝加金属粉末的埋弧焊方法
CN103009015A (zh) * 2013-01-13 2013-04-03 邯郸市永固冶金备件有限公司 双金属复合耐磨冶金轧辊的制造方法
CN104526169A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站蒸发器筒体电熔成形方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1027504A (en) * 1962-02-05 1966-04-27 Union Carbide Corp Improvements in and relating to electric welding
CN2590713Y (zh) * 2002-12-05 2003-12-10 上海气焊机厂 全自动辊子堆焊机
CN101244488A (zh) * 2008-03-27 2008-08-20 新蒲建设集团有限公司 钢筋镦粗电渣压力焊施工方法
CN102873437B (zh) * 2012-09-29 2015-04-22 南京工程学院 一种可控制减少埋弧焊焊缝金属氧化夹杂物的焊接装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545792A1 (fr) * 1991-11-29 1993-06-09 Chpo Ardel S.A. Procédé de soudage/rechargement à l'arc et dispositif de mise en oeuvre
CN1511670A (zh) * 2002-12-31 2004-07-14 江门市威霖贸易有限公司 平行双丝或单丝加金属粉末的埋弧焊方法
CN103009015A (zh) * 2013-01-13 2013-04-03 邯郸市永固冶金备件有限公司 双金属复合耐磨冶金轧辊的制造方法
CN104526169A (zh) * 2014-11-04 2015-04-22 南方增材科技有限公司 核电站蒸发器筒体电熔成形方法

Also Published As

Publication number Publication date
CN104526169A (zh) 2015-04-22
CN104526169B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2016070777A1 (zh) 核电站蒸发器筒体电熔成形方法
WO2016070776A1 (zh) 核电站压力容器筒体电熔成形方法
WO2016070779A1 (zh) 核电站稳压器筒体电熔成形方法
WO2016070778A1 (zh) 金属构件电熔成形方法
WO2016070780A1 (zh) 一种金属构件埋弧堆焊成形方法
CN104526167B (zh) 加氢反应器筒体电熔成形方法
CN104526168B (zh) 一种电熔成形超低碳超细晶合金钢材料
CN104526113B (zh) 超超临界低压转子的电熔成形方法
CN104526172B (zh) 核电常规岛低压转子电熔成形方法
CN104651834B (zh) Cap1400主蒸汽管贯穿件电熔成形方法
CN111168263A (zh) 旁路热丝熔化极等离子弧梯度材料增材制造的装置与方法
CN104526170B (zh) 超超临界高中压转子电熔成形方法
CN102240860A (zh) 梯度材料模具制造方法及设备
CN106466766A (zh) 核电站稳压器筒体电熔成形方法
CN101053899A (zh) 大型轴类制品立式铸造与修复装置及使用方法
CN108188542A (zh) 金属构件丝极电熔增材制造方法及金属构件
CN108067706A (zh) 金属构件的增材制造设备
CN112008198B (zh) 一种铝合金电弧增材制造质量控制***及方法
CN110523980B (zh) 一种三通管件的电熔增材制造方法
CN106466753A (zh) 核电站压力容器筒体电熔成形方法
CN106378540A (zh) 核电站蒸发器筒体电熔成形方法
CN207858031U (zh) 金属构件的增材制造设备
CN106624400A (zh) 加氢反应器筒体电熔成形方法
CN211420274U (zh) 金属电渣重熔用结晶器以及电渣重熔装置
CN106271141A (zh) 核电常规岛低压转子电熔成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 22.09.17)

122 Ep: pct application non-entry in european phase

Ref document number: 15858023

Country of ref document: EP

Kind code of ref document: A1