WO2016070737A1 - 一种信道监听方法及设备 - Google Patents

一种信道监听方法及设备 Download PDF

Info

Publication number
WO2016070737A1
WO2016070737A1 PCT/CN2015/092914 CN2015092914W WO2016070737A1 WO 2016070737 A1 WO2016070737 A1 WO 2016070737A1 CN 2015092914 W CN2015092914 W CN 2015092914W WO 2016070737 A1 WO2016070737 A1 WO 2016070737A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
cca detection
idle
length
time
Prior art date
Application number
PCT/CN2015/092914
Other languages
English (en)
French (fr)
Inventor
徐伟杰
潘学明
沈祖康
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/524,256 priority Critical patent/US10045378B2/en
Priority to KR1020177013303A priority patent/KR102002102B1/ko
Priority to EP15856823.8A priority patent/EP3217756A4/en
Priority to JP2017523779A priority patent/JP2017537531A/ja
Publication of WO2016070737A1 publication Critical patent/WO2016070737A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel monitoring method and device.
  • LTE Long Term Evolution
  • U-LTE or LTE-U unlicensed LTE
  • LBT Listen Before Talk
  • the unlicensed spectrum does not have a specific application system, and can be shared by various wireless communication systems such as Bluetooth, WiFi, etc., and the shared unlicensed spectrum resources are used by multiple systems by preempting resources. Therefore, the coexistence of LTE-U deployed by different operators and wireless communication systems such as LTE-U and WiFi is a key point and difficulty in research.
  • the 3GPP requires that the wireless coexistence of LTE-U and wireless communication systems such as WiFi be guaranteed.
  • the unlicensed frequency band is used as a secondary carrier to be assisted by the primary carrier of the licensed frequency band. Listening before Talk (LBT) is the basic means of LTE-U competitive access, which is approved by almost all companies.
  • LBT Listening before Talk
  • the essence of LBT technology is still that the 802.11 system adopts the carrier sense/collision avoidance (CSMA/CA) mechanism.
  • the way in which the WiFi system preempts resources on the unlicensed spectrum includes: first, monitoring the channel, when the channel idle time reaches the inter-frame distribution distance (Distributed Inter-Frame Space, DIFS), It is judged that the current channel is an idle channel, and then each station that waits for access to the channel enters a random back-off phase to prevent multiple sites from colliding on the same resource.
  • DIFS distributed Inter-Frame Space
  • DIFS distributed Inter-Frame Space
  • each station that waits for access to the channel enters a random back-off phase to prevent multiple sites from colliding on the same resource.
  • each site cannot occupy spectrum resources for a long time. When a certain time or data transmission limit is reached, resources need to be released for other WiFi or LTE systems to seize resources.
  • the LTE base station and the terminal also need to use the LBT mechanism to compete for resources in order to ensure fair sharing of spectrum resources with other devices or systems.
  • the European ETSI standardizes two modes of LBT for 5 GHz unlicensed bands: Frame based Equipment and Load based Equipment.
  • the frame-based device mode has a fixed frame occupation duration, which includes a data transmission duration and an idle period, wherein the idle period is not less than 5% of the data transmission duration.
  • a Clear Channel Assessment (CCA) detection period (at least 20 us) for detecting whether the channel is idle.
  • the unlicensed device uses the energy detection method in the CCA detection period to judge that the channel is idle to use the channel, for example, the power of the received signal on the channel is measured during the CCA period, and if the measured signal power on the channel is greater than the first A power threshold determines that the channel is busy, otherwise the channel is determined to be idle.
  • the length of data transfer is variable.
  • the device Before the device performs data transmission on the unlicensed channel, the device needs to perform a CCA detection on the channel by means of energy detection. If it is determined that the channel is idle, the device can transmit data on the channel. Otherwise, if the channel is determined to be busy, the unlicensed device needs to use the extended CCA mode to detect the channel, and the extended CCA detection device needs to detect that the N channels are idle during the CCA period. Only when the channel is in an idle state is determined, the device can occupy the channel.
  • the value N is a value randomly generated between 1 and q, and q belongs to the range [4, 32].
  • Step 1 First, it is necessary to detect whether there is signal transmission (power detection) in the CCA detection window. If the channel is idle (for example, the power detected on the channel is lower than the set threshold), the channel can be directly occupied at this time;
  • Step 2 If it is determined that there is a signal on the channel, it is necessary to further determine whether the signal already transmitted on the channel is an LTE signal and whether it belongs to the signal of the operator. If the same operator is still in the channel, the channel can still be occupied (because LTE can support the same frequency) Networking) Otherwise, the equipment signals belonging to other operators or other systems will abandon the occupied channel, which requires detecting or parsing the signal (for example, detecting the CRS to obtain the cell ID and then determining the home operator). The detection and analysis of the signal requires a certain delay. For example, at least one column of cell-specific reference signals (CRS) needs to be detected, which results in a certain resource overhead and also increases the processing complexity of the base station. The interference between the base station signals and the detection performance are not guaranteed, thereby affecting the performance of the LBT.
  • CRS cell-specific reference signals
  • the terminal needs to contend for the uplink channel resource before transmitting the PUSCH, which means that when the base station UL schedules the grant PDCCH channel, it does not determine whether the terminal after K subframes can compete when transmitting the PUSCH channel. Get UL resources.
  • the scheduled terminal needs to compete with other non-authorized system devices for channel, and on the other hand, it needs to compete with other LTE (same cell or neighboring cell) users on the same carrier for the uplink channel. Therefore, multi-user scheduling cannot be supported, and multi-user multi-input multi-output (MU-MIMO) features cannot be supported. All of these problems can lead to a significant reduction in system efficiency.
  • LTE short cell or neighboring cell
  • the embodiment of the invention provides a channel monitoring method and device, which are used to implement a channel resource competition scheme when an LTE system operates on an unlicensed carrier.
  • the device determines a starting time point of CCA detection for performing channel monitoring before data transmission and a required CCA detection result is a length of time for the channel to be idle;
  • the device monitors the channel on the unlicensed frequency band according to the starting time point of the CCA detection and the required CCA detection result as the length of time that the channel is idle.
  • the device monitors the channel on the unlicensed band according to the starting time point of the CCA detection before the data transmission and the required CCA detection result, and the LTE system works.
  • Channel resource contention scheme when unlicensed carriers.
  • the device determines a starting time point of CCA detection for performing channel monitoring before data transmission, including:
  • the required CCA detection result is the length of time that the channel is idle; or,
  • the device determines a starting time point of CCA detection for performing channel monitoring before data transmission according to a definition of a starting time point of the CCA detection in the preset radio frame structure.
  • the device determines the required CCA detection result as the length of time that the channel is idle, including:
  • the device determines, according to a preset rule, that the required CCA detection result is the length of time that the channel is idle.
  • Each device in the adjacent manner determines the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result as the length of time for the channel to be idle, so that the carrier on the unlicensed band ensures more In the same resource contention window, the devices use the same CCA detection result to compete for channel resources for the length of the channel idle.
  • For downlink transmission multiple base stations within each carrier use the same CCA detection time, so multiple base stations When competing for resources, it is equivalent to an unlicensed device, which ensures that LTE can be co-located in an unlicensed band.
  • For uplink transmission it can ensure that LTE can support multi-user equipment uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the device determines, according to a preset rule, that the required CCA detection result is the length of time that the channel is idle, including:
  • the device uses one of the following formulas to determine the required CCA detection result as the length of time that the channel is idle:
  • T_CCA mod(T/N); or,
  • T_CCA mod(T*PLMN/N);
  • the T_CCA indicates that the required CCA detection result is the length of the channel idle time
  • T represents the absolute time
  • N represents the maximum quantized value of the preset CCA detection result as the length of the channel idle time
  • the PLMN represents the operator PLMN to which the device belongs.
  • the method further includes: the device is adjacent to the device. Signal measurement;
  • the device determines the start time point of the CCA detection for performing channel monitoring before the data is sent, and the required CCA detection result is the length of the channel idle time, specifically:
  • the device measures the signal of the neighboring device, specifically: the device performs power measurement on the signal of the neighboring device;
  • the device determines the starting time point of the CCA detection for performing channel monitoring before the data transmission and the required CCA detection result is the length of time for the channel to be idle.
  • the device is a base station or a user equipment UE.
  • the method further includes:
  • the base station sends a notification to the UE, where the required CCA detection result is the length of time that the channel is idle.
  • the base station sends a notification to the UE, including:
  • the base station sends a notification to the UE by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the method further includes:
  • the base station sends a notification to the UE, where the specific parameter is used to indicate that the UE uses the specific parameter and the preset rule to determine that the required CCA detection result is the length of time that the channel is idle.
  • the notification further carries the required time information of the CCA detection result as the effective time of the channel idle time.
  • the UE determines that the required CCA detection result is the length of time that the channel is idle, and includes:
  • the UE receives the notification sent by the base station, and obtains the required CCA detection result from the notification as the length of time that the channel is idle.
  • the UE receives the notification sent by the base station, including:
  • the UE receives the notification sent by the base station by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the UE determines that the required CCA detection result is a channel.
  • the length of idle time including:
  • the UE uses the specific parameter and the preset rule to determine the required CCA detection result as the length of time that the channel is idle.
  • the method further comprises:
  • the required CCA detection result is effective time information of a length of time that the channel is idle;
  • the UE monitors the channel on the unlicensed frequency band according to the start time point of the CCA detection and the required CCA detection result, and includes:
  • the UE monitors the channel on the unlicensed frequency band according to the start time point of the CCA detection and the required CCA detection result, which is the length of the channel idle time, and the effective time information.
  • a determining unit configured to determine a starting time point of CCA detection for performing channel monitoring before data transmission, and a required length of time for the CCA detection result to be a channel idle time;
  • the monitoring unit is configured to monitor the channel on the unlicensed frequency band according to the starting time point of the CCA detection and the required CCA detection result, and the length of the channel is idle.
  • the device monitors the channel on the unlicensed band according to the start time point of the CCA detection for channel monitoring before the data transmission and the required CCA detection result, and realizes that the LTE system works for non-authorization.
  • Channel resource contention scheme when carrier
  • the determining unit determines, when the start time point of the CCA detection for performing channel monitoring before data transmission, specifically:
  • the start time point of the CCA detection for performing channel monitoring before data transmission is determined according to the definition of the start time point of the CCA detection in the preset radio frame structure.
  • the determining unit determines that the required CCA detection result is the length of time that the channel is idle, the determining unit is specifically configured to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • Each device in the adjacent manner determines the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result as the length of time for the channel to be idle, so that the carrier on the unlicensed band ensures more In the same resource contention window, the devices use the same CCA detection result to compete for channel resources for the length of the channel idle.
  • For downlink transmission multiple base stations within each carrier use the same CCA detection time, so multiple base stations When competing for resources, it is equivalent to an unlicensed device, which ensures that LTE can be co-located in an unlicensed band.
  • For uplink transmission it can ensure that LTE can support multi-user equipment uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the determining unit determines, according to the preset rule, that the required CCA detection result is the length of time that the channel is idle, and is specifically used to:
  • T_CCA mod(T/N); or,
  • T_CCA mod(T*PLMN/N);
  • the T_CCA indicates that the required CCA detection result is the length of the channel idle time
  • T represents the absolute time
  • N represents the maximum quantized value of the preset CCA detection result as the length of the channel idle time
  • the PLMN represents the operator of the device to which the device belongs. PLMN logo.
  • the determining unit is further configured to:
  • the signal of the neighboring device is measured before determining the starting time point of the CCA detection of the channel monitoring before the data transmission and the required CCA detection result is the length of the channel idle time;
  • the determining unit determines a starting time point of the CCA detection for performing channel monitoring before the data is sent, and a time length of the required CCA detection result that the channel is idle, specifically:
  • the determining unit satisfies the pre-measurement according to the measurement result obtained by measuring the signal of the adjacent device When the condition is set, it is determined that the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result are the length of time for the channel to be idle.
  • the determining unit measures the signal of the neighboring device, specifically: the determining unit performs power measurement on the signal of the neighboring device;
  • the determining unit determines a starting time point of the CCA detection for performing channel monitoring before the data transmission and a time length of the required CCA detection result that the channel is idle.
  • the device is a base station or a user equipment UE.
  • the determining unit is further configured to:
  • a notification is sent to the UE, where the required CCA detection result is the length of time during which the channel is idle.
  • the determining unit sends a notification to the UE by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the determining unit is further configured to:
  • the notification further carries the required time information of the CCA detection result as the effective time of the channel idle time.
  • the determining unit determines that the required CCA detection result is the length of the channel idle time
  • the determining unit is specifically configured to:
  • Receiving the notification sent by the base station, and obtaining the required CCA detection result from the notification is the length of time that the channel is idle.
  • the determining unit receives the notification sent by the base station by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the determining unit determines a required CCA detection result.
  • the length of time for the channel is idle, it is specifically used to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • the determining unit is further configured to: obtain, from the notification, the required CCA detection result as effective time information of a length of time when the channel is idle;
  • the monitoring unit is configured to: monitor, according to the start time point of the CCA detection and the required CCA detection result, the length of the channel idle time, and the effective time information, to monitor the channel on the unlicensed frequency band.
  • the network side device provided by the embodiment of the present invention includes: a processor and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the channel on the unlicensed band is monitored according to the starting time point of the CCA detection and the required CCA detection result being the length of the channel idle.
  • the terminal side device provided by the embodiment of the present invention includes: a processor and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the channel on the unlicensed band is monitored according to the starting time point of the CCA detection and the required CCA detection result being the length of the channel idle.
  • FIG. 1 is a schematic diagram of an LBT scheme of a conventional frame-based device mode
  • FIG. 2 is a schematic diagram of an LBT solution of an existing load-based device mode
  • FIG. 3 is a schematic flowchart diagram of a channel monitoring method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a method for determining a starting time point of CCA detection according to an embodiment of the present disclosure
  • FIG. 5a is a schematic diagram of determining a starting time point of another CCA detection according to an embodiment of the present disclosure
  • FIG. 5b is a schematic diagram of determining a starting time point of a third CCA detection according to an embodiment of the present disclosure
  • FIG. 5c is a schematic diagram of a method for determining a starting time point of a fourth type of CCA detection according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a method for determining a starting time point of a fifth type of CCA detection according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an LBT of a time length of a channel in which multiple devices use the same required CCA detection result according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a channel monitoring device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another channel monitoring device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a third channel monitoring device according to an embodiment of the present invention.
  • the embodiment of the invention provides a channel monitoring method and device, which are used to implement a channel resource competition scheme when an LTE system operates on an unlicensed carrier.
  • each device in the adjacent manner determines the start time point of the CCA detection for performing channel monitoring before the data transmission and the required CCA detection result is the length of the channel idle time, so that the carrier is in the unlicensed frequency band. Ensure that multiple devices compete for channel resources in the same resource contention window using the same CCA detection result for the channel idle time.
  • For downlink transmission multiple base stations within each carrier use the same CCA detection time. Multiple base stations When competing for resources, it is equivalent to an unlicensed device, which ensures that LTE can be co-located in an unlicensed band.
  • For uplink transmission it can ensure that LTE can support multi-user equipment uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the embodiment of the present invention provides a multi-device coexistence in an unlicensed frequency band.
  • the method for competing for channel resources see FIG. 3, specifically includes the steps:
  • the device determines a starting time point of CCA detection for performing channel monitoring before data transmission and a required CCA detection result is a length of time for the channel to be idle.
  • the device monitors the channel on the unlicensed frequency band based on the start time point of the CCA detection determined by the step S101 and the required CCA detection result, and further, the channel may be determined based on the monitoring result. it's usable or not.
  • the determining the starting time point of the CCA detection for performing channel monitoring before the data is sent includes one of the following methods:
  • Manner 1 The device determines the current CCA according to the maximum data transmission duration (that is, the maximum duration required for the preset data transmission) and the previous CCA detection time window (specifically, according to the end time point of the previous CCA detection). The starting time point of the test;
  • Manner 2 The device determines the starting time point of the current CCA detection according to the definition of the starting time point of the CCA detection in the preset radio frame structure.
  • the definition of the start time point of the CCA detection in the preset radio frame structure for example, the start time point of the CCA detection is defined in the preset radio frame structure, or the end time point of the CCA detection is defined.
  • the device may determine the start time point of the CCA detection according to the end time point of the CCA detection and the required CCA detection result as the length of the channel idle time. However, at this time, it is necessary to first determine the required CCA detection result as the length of time that the channel is idle.
  • the required CCA detection result is the length of time that the channel is idle, and is different from the actual occupied time of the CCA detection according to the required CCA detection result. length.
  • the CCA detection result of the detection period is that the channel is idle, and it can be determined that the channel is idle and can be occupied.
  • the CCA detection period used by the device in the actual CCA detection process is more than 10, as shown in Figure 2.
  • the CCA detection result of two CCA detection periods is that the channel is busy, so the actual completion of the 12 CCA detection during CCA detection period. That is to say, the length of time taken by each device to perform CCA detection according to the required CCA detection result in the actual CCA detection process may be different, and the required CCA detection result is that the channel is idle. The length of time, but for each device, the required CCA detection result is the same length of time for the channel to be idle. Therefore, in the embodiment of the present invention, on the carrier of the unlicensed frequency band, multiple devices use the same CCA detection result in the same resource contention window to perform channel competition resources for the length of the channel idle.
  • LTE can support multi-user uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the CCA detection in the embodiment of the present invention detects that the channel is idle within an agreed time period, and may adopt an energy detection manner. For example, in the 20 us time period, if the received signal power on the channel is greater than the first power threshold, it is determined that the channel is busy, otherwise the channel is determined to be idle.
  • the CCA detection result required for channel monitoring before data transmission determined by the device in the embodiment of the present invention is the length of the channel idle time, which may be the length of time of a continuous period of time, or may be Is the cumulative length of time for multiple time periods.
  • T_CCA The CCA detection result required for the channel monitoring before the device determines the data transmission is the length of time that the channel is idle (hereinafter may be represented by T_CCA), and specifically includes one of the following methods:
  • the length of time that the CCA detection result is the channel idle time from the specific master device may be a specific time value, for example, 80 microseconds, or a quantized time.
  • the value, for example, 20 microseconds is one unit, and the quantized time value is 8, indicating 80 microseconds, or a random number N of the number of CCA detection periods (20 microseconds) in which the detection channel in the LBT extended CCA mode is idle;
  • the specific master device may be, for example, a master base station or other master node.
  • Manner 2 According to the predetermined T_CCA generation rule, combined with relevant input parameters (such as absolute time, maximum quantized value of T_CCA, and operator's PLMN (Public Land Mobile Network)), the CCA detection result is generated as a channel. The length of time that is idle.
  • relevant input parameters such as absolute time, maximum quantized value of T_CCA, and operator's PLMN (Public Land Mobile Network)
  • the device can determine whether to adopt the method of the present invention based on the measurement results of neighboring neighboring cells.
  • the device can determine whether to adopt the method of the present invention based on the measurement results of neighboring neighboring cells.
  • the method further includes: the device measuring the signal of the neighboring device; Correspondingly, the device determines the start time point of the CCA detection for performing channel monitoring before the data is sent, and the required CCA detection result is the length of time for the channel to be idle. Specifically, the device performs the signal according to the neighboring device. When the measured measurement result satisfies the preset condition, it is determined that the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result are the length of time for the channel to be idle.
  • the unlicensed LTE device detects that there are other LTE devices that belong to the same carrier, and the measured signal power of the other LTE devices is greater than the first threshold (Threshold 1), the neighboring LTE devices are illustrated.
  • the method provided by the embodiment of the present invention is adopted.
  • the unlicensed LTE device detects that there are other LTE devices that belong to the same carrier as the device, but the measured signal power of other LTE devices is less than the second threshold (Threshold 2) or the unlicensed LTE device does not detect the surrounding.
  • the unlicensed LTE device may select the method provided by the embodiment of the present invention, or may adopt an existing LBT mode: that is, the unlicensed LTE device independently selects the CCA detection.
  • the starting time point and the self-generated CCA detection result required before transmitting data according to the specification requirements is the length of time that the channel is idle.
  • Threshold 1 and Threshold 2 may be the same value or different values. When different values are used, the relationship between Threshold 1 and Threshold 2 is not limited. Preferably, Threshold 1 is greater than Threshold 2.
  • Embodiment 1 The device determines a starting time point of CCA detection for performing channel monitoring before the current data transmission according to the maximum channel occupation duration and the previous CCA detection time window.
  • the device operator can set the maximum transmission duration after the device obtains the channel for each competition according to the specifications of the relevant unlicensed frequency band, that is, the maximum channel occupation time, for example, the maximum channel occupation time is 10 ms.
  • the method for determining the starting time point of the CCA detection in this embodiment is: accumulating one maximum channel occupation time at the time point when the previous CCA detection time window ends, and the obtained time point is the starting time point of the CCA detection.
  • each CCA detection time window may be different, and may be composed of one or more CCA slots, as shown in FIG. 4, and used to determine the CCA detection start time point from the time axis.
  • the size of each CCA detection window is randomly variable, and its size is equal to the length of time that the CCA detection result required by the device for the current CCA detection is the channel idle time (not the length of time that the CCA detection result used for the actual detection is the channel idle time). ). That is, the required CCA detection result is the length of the channel idle time, and the current CCA detection time window size is used to determine the starting time point of the next CCA detection.
  • the CCA detection is started from the beginning of the occupied channel until the end of the maximum data transmission duration.
  • the starting time point of the first CCA detection is the same, and the newly opened device needs to be set to be consistent with the previously working device at the starting time point of the CCA detection by a certain synchronization means. For example, synchronization of the start time point of CCA detection between devices is achieved by means of backhaul link synchronization.
  • LTE base station 1, LTE base station 2, and LTE base station 3 coexist with one WIFI node (WIFI node 1).
  • the LTE base station 3) adds a maximum data transmission duration as the current CCA detection start time point at the time point when the previous CCA detection ends.
  • the current CCA detection start time point is not directly related to the actual time taken by the last data transmission. Therefore, each time the device transmits data, the transmission time can be determined according to the actual traffic load without having to occupy the maximum data transmission duration.
  • the LTE base station (BS) 2 and the LTE BS 3 are relatively close to the WIFI node 1, and cannot be transmitted because of interference from the WIFI node 1 before the second transmission of data, and the LTE BS1 is far away from the WIFI node 1 It can be transmitted normally without interference from WIFI node 1.
  • the shaded portion in Fig. 4 indicates the signal frame, that is, the time actually occupied by the data transmission.
  • Embodiment 2 The device determines a CCA detection start time point according to a radio frame structure.
  • the device follows a predefined or pre-configured radio frame structure when operating in an unlicensed band, and the radio frame structure has a definition of a starting time point for CCA detection.
  • a manner of determining a CCA detection start time point includes: predefining a starting time point of CCA detection in a radio frame structure, for example, a data transmission subframe in a radio frame structure (corresponding to LTE, Before the data transmission subframe may be a downlink subframe or an uplink subframe, a CCA detection window (CW) is configured, and a start time point of the CCA detection window may be used as a starting time point of the CCA detection.
  • a starting time point of CCA detection in a radio frame structure for example, a data transmission subframe in a radio frame structure (corresponding to LTE, Before the data transmission subframe may be a downlink subframe or an uplink subframe, a CCA detection window (CW) is configured, and a start time point of the CCA detection window may be used as a starting time point of the CCA detection.
  • CW start time point of the CCA detection window
  • the manner of determining the starting time point of the CCA detection shown in FIG. 5a may result in a consequence that the device has a certain time gap between the channel and the data transmission subframe based on the CCA detection, so as to ensure that the channel is in the The time slot is not preempted by other devices.
  • the device that preempts the channel can transmit some placeholder signals or send data in advance. For example, if the time slot is insufficient to carry a complete subframe, the data can be transmitted in the form of a non-complete subframe. .
  • another way to determine the CCA detection start time point is: the CCA detection window configured in the radio frame, the end time of the CCA detection window as the end time of the CCA detection, and the device generates or learns based on the advance.
  • the CCA detection result required for channel monitoring before the data transmission is the length of the channel idle time, and the starting time point of the CCA detection is estimated.
  • the determined CCA detection shown in FIG. 5a and FIG. 5b above The two modes of the starting time point respectively correspond to the manner of determining the starting time point of the CCA detection shown in FIG. 5c and FIG. 5d, and details are not described herein again.
  • Embodiments 1 and 2 multiple unlicensed devices belonging to the same carrier can determine the starting time point of the same CCA detection, but in order to avoid mutual interference between multiple unauthorized devices, multiple non- The number of correct CCA detections of the authorized device also needs to be consistent. Therefore, the method of the following embodiments 3, 4, and 5 needs to further obtain the length of time that the CCA detection result required for channel monitoring before data transmission is the channel idle.
  • Embodiment 3 The length of time that a plurality of LTE base stations or UEs obtain the required CCA detection result from the master base station or the master node as the channel is idle.
  • the length of time for the channel to be idle is T_CCA.
  • the master base station or the master node (for example, a unit that specifically generates the T_CCA module) generates T_CCA in advance, and the T_CCA may be a specific time value. It may also be a quantized time value, or a random number N of the number of CCA detection periods in which the detection channel is idle in the LBT extended CCA mode.
  • the master base station or the master node distributes the pre-generated T_CCA in advance to the controlled plurality of base stations or UE devices.
  • the same T_CCA is used, as shown in FIG. 6, which avoids conflicts between LTE devices when competing for resources.
  • the master base station or the master node may periodically generate T_CCA, for example, generate and distribute T_CCA every 20 ms.
  • the master base station or the master node pre-distributes the T_CCA to the plurality of base station devices or UEs controlled, where the amount of time required to transmit the T_CCA is required to consider the transmission of the T_CCA to the backhaul link of the controlled plurality of base stations or UE devices.
  • the delay is to ensure that multiple base station devices can receive the T_CCA when competing for resources.
  • the master base station or the master node may also carry the effective time information while transmitting the T_CCA.
  • Embodiment 4 Multiple LTE base stations or UE devices generate required CCA detection according to the same rule The result is the length of time the channel is idle.
  • the foregoing CCA detection result is that the channel idle time is T_CCA.
  • the rule (or formula) for generating T_CCA is predefined, and multiple LTE base stations or UEs use the rule to generate T_CCA, and T_CCA may be a specific time.
  • the value may also be a quantized time value, or a random number N of the number of CCA detection periods in which the detection channel in the LBT extended CCA mode is idle.
  • the T_CCA may be generated based on absolute time or further in conjunction with the operator's Public Land Mobile Network (PLMN) identity.
  • PLMN Public Land Mobile Network
  • T_CCA mod(T/N); or,
  • T_CCA mod(T*PLMN/N);
  • T_CCA indicates that the required CCA detection result is the length of the channel idle time, T represents the absolute time, and N represents the maximum quantized value of the preset CCA detection result as the length of the channel idle time; the PLMN represents the operator of the device to which the device belongs. PLMN logo.
  • T_CCA takes the downward integer value of mod(T/N) or the downward integer value of mod(T*PLMN/N).
  • multiple base stations or UEs use the same rule/formula and use the same random seed to generate T_CCA, and multiple base stations or UEs interact with the random seed or the master node to notify the multiple base stations or UEs of the random seed.
  • the specific parameter is used to instruct the UE to use the specific parameter, and a preset rule to determine that the required CCA detection result is that the channel is idle.
  • This particular parameter such as a random seed, produces the same T_CCA.
  • the base station carries and notifies the UE of the specific parameter (for example, a random seed) in the PDCCH signaling of the uplink scheduling grant, and the UE generates the T_CCA based on the specific parameter and in combination with a predefined rule.
  • the specific parameter for example, a random seed
  • T_CCA is generated based on a predefined rule and combined with a specific parameter (for example, a random seed, or a random seed and a PLMN), for example, T_CCA is generated based on the following formula, where T_Seed is a random seed.
  • T_CCA mod(T_Seed/N); or,
  • T_CCA mod(T_Seed*PLMN/N);
  • T_CCA indicates that the required CCA detection result is the length of the channel idle time
  • T represents the absolute time
  • N represents the maximum quantized value (preset constant) of the preset CCA detection result being the channel idle time length
  • PLMN indicates the said The PLMN identity of the carrier to which the device belongs.
  • T_CCA takes the downward integer value of mod(T_Seed/N) or the downward integer value of mod(T_Seed*PLMN/N).
  • Embodiment 5 The base station notifies the UE that the required CCA detection result is the length of time that the channel is idle.
  • the length of time when the CCA detection result is that the channel is idle is T_CCA.
  • the base station When the base station schedules uplink data transmission of multiple UEs, the base station generates a T_CCA in advance.
  • the base station informs the UE of the T_CCA used by the contending channel when transmitting the uplink data. For example, the base station carries and notifies the UE T_CCA in the physical downlink control channel (PDCCH) signaling of the uplink scheduling grant.
  • the specific notification information in the PDCCH signaling may be a specific time value, or a quantized time value, or a random number N of the number of CCA detection periods in which the detection channel in the LBT extended CCA mode is idle.
  • the same T_CCA of multiple uplink UEs may be notified to prevent these uplink UEs from competing for channel resources.
  • the T_CCA notified by the plurality of base stations to the respective home UEs may be the same.
  • a plurality of base stations can obtain the same T_CCA by the method described in Embodiment 3 or Embodiment 4.
  • the base station further carries the required time information of the CCA detection result as the time length of the channel idle time in the PDCCH channel, and the effective time information is the previous contention window of the uplink subframe corresponding to the PDCCH scheduling. (See the previous CCA detection window CW of the uplink subframe in Figures 5a and 5b).
  • Embodiment 6 The principle of the method for determining whether the starting time point of CCA detection for performing channel monitoring before the data transmission and the required CCA detection result are the length of time for the channel idle are provided by the embodiment of the present invention.
  • the device may determine whether to adopt the embodiment of the present invention according to the measurement result of the neighboring neighboring cells.
  • a method is provided for determining a starting time point of CCA detection for performing channel monitoring before data transmission and a required CCA detection result as a length of time for channel idle.
  • the unlicensed LTE device detects that there are other LTE devices that belong to the same carrier, and the measured signal power of the other LTE devices is greater than the threshold Threshold 1, the data is sent before the determination data is sent by using the embodiment of the present invention.
  • the method of performing the CCA detection of the channel monitoring and the required CCA detection result is the length of the channel idle time.
  • the unlicensed LTE device detects that there are other LTE devices that belong to the same carrier as the device, but the measured signal power of other LTE devices is less than the threshold Threshold 2 or the unlicensed LTE device does not detect the presence of the device and the device.
  • the unlicensed LTE device may select the start time point of the CCA detection for performing channel monitoring before the data transmission is sent according to the embodiment of the present invention, and the required CCA detection result is the channel idle time.
  • the length method may also adopt an existing LBT mode: that is, an unlicensed LTE device autonomously selects a starting time point of CCA detection and autonomously generates a CCA detection result required before transmitting data according to a specification requirement to be a channel idle time length. .
  • the method for determining the start time point of the CCA detection for performing channel monitoring before the data transmission and the time length of the required CCA detection result for the channel idle time are provided by the embodiment of the present invention, for the downlink transmission, because each operator internally
  • the multiple base stations/cells all adopt the same T_CCA, so multiple base stations/cells are equivalent to one non-authorized device when competing for resources. As shown in FIG. 6, this mode ensures that multiple carriers belong to the same carrier.
  • the base station/cell does not detect the signals of other base stations/cells within its own carrier when listening to the channel, that is, once the signal power is detected, it can be judged that it is a signal of another operator or other unlicensed system; if no signal is detected Then, multiple base station/cell detections of the same operator can simultaneously preempt the channel. This avoids the fact that multiple base stations within an operator compete for resources with each other, resulting in inability to co-frequency networking.
  • multiple users belonging to the same carrier can use the same T_CCA, so they can simultaneously send uplink data in the same subframe.
  • This allows the base station to schedule multiple uplink users to obtain uplink multi-user diversity gain or Uplink multi-user MIMO transmission, which in turn ensures efficient transmission of LTE on unlicensed carriers.
  • a channel monitoring device includes:
  • a determining unit 11 configured to determine a starting time point of CCA detection for performing channel monitoring before data transmission and a length of time required for the required CCA detection result to be channel idle;
  • the monitoring unit 12 is configured to monitor the channel on the unlicensed frequency band according to the starting time point of the CCA detection and the required CCA detection result for the length of the channel idle.
  • the device monitors the channel on the unlicensed band according to the start time point of the CCA detection for channel monitoring before the data transmission and the required CCA detection result, and realizes that the LTE system works for non-authorization.
  • Channel resource contention scheme when carrier
  • the determining unit determines, when the start time point of the CCA detection for performing channel monitoring before data transmission, specifically:
  • the start time point of the CCA detection for performing channel monitoring before data transmission is determined according to the definition of the start time point of the CCA detection in the preset radio frame structure.
  • the determining unit determines that the required CCA detection result is the length of time that the channel is idle, the determining unit is specifically configured to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • Each device in the adjacent manner determines the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result as the length of time for the channel to be idle, so that the carrier on the unlicensed band ensures more In the same resource contention window, the devices use the same CCA detection result to compete for channel resources for the length of the channel idle.
  • For downlink transmission multiple base stations within each carrier use the same CCA detection time, so multiple base stations When competing for resources Equivalent to an unlicensed device, ensuring that LTE can be co-located in an unlicensed band.
  • For uplink transmission it can ensure that LTE can support multi-user equipment uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the determining unit determines, according to the preset rule, that the required CCA detection result is the length of time that the channel is idle, and is specifically used to:
  • T_CCA mod(T/N); or,
  • T_CCA mod(T*PLMN/N);
  • the T_CCA indicates that the required CCA detection result is the length of the channel idle time
  • T represents the absolute time
  • N represents the maximum quantized value of the preset CCA detection result as the length of the channel idle time
  • the PLMN represents the operator of the device to which the device belongs. PLMN logo.
  • the determining unit is further configured to:
  • the signal of the neighboring device is measured before determining the starting time point of the CCA detection of the channel monitoring before the data transmission and the required CCA detection result is the length of the channel idle time;
  • the determining unit determines a starting time point of the CCA detection for performing channel monitoring before the data is sent, and a time length of the required CCA detection result that the channel is idle, specifically:
  • Determining when the measurement result obtained by measuring the signal of the neighboring device meets the preset condition, determining a start time point of the CCA detection for performing channel monitoring before the data transmission and a required CCA detection result is that the channel is idle. length of time.
  • the determining unit measures the signal of the neighboring device, specifically: the determining unit performs power measurement on the signal of the neighboring device;
  • the determining unit determines a starting time point of the CCA detection for performing channel monitoring before the data transmission and a time length of the required CCA detection result that the channel is idle.
  • the device is a base station or a user equipment UE.
  • the determining unit is further configured to:
  • a notification is sent to the UE, where the required CCA detection result is the length of time during which the channel is idle.
  • the determining unit sends a notification to the UE by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the determining unit is further configured to:
  • the notification further carries the required time information of the CCA detection result as the effective time of the channel idle time.
  • the determining unit determines that the required CCA detection result is the length of the channel idle time
  • the determining unit is specifically configured to:
  • Receiving the notification sent by the base station, and obtaining the required CCA detection result from the notification is the length of time that the channel is idle.
  • the determining unit receives the notification sent by the base station by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the determining unit determines that the required CCA detection result is the length of the channel idle time
  • the determining unit is specifically configured to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • the determining unit is further configured to: obtain, from the notification, the required CCA detection result as effective time information of a length of time when the channel is idle;
  • the monitoring unit is configured to: monitor, according to the start time point of the CCA detection and the required CCA detection result, the length of the channel idle time, and the effective time information, to monitor the channel on the unlicensed frequency band.
  • Each of the above units can be implemented by a physical device such as a processor.
  • the network side device when the device is a network side device, such as a base station, the network side device includes:
  • the processor 500 is configured to read a program in the memory 520 and perform the following process:
  • the channel on the unlicensed band is monitored according to the starting time point of the CCA detection and the required CCA detection result being the length of the channel idle.
  • the device monitors the channel on the unlicensed band according to the start time point of the CCA detection for channel monitoring before the data transmission and the required CCA detection result, and realizes that the LTE system works for non-authorization.
  • Channel resource contention scheme when carrier
  • the processor 500 determines, when the start time point of the CCA detection for performing channel monitoring before data transmission, specifically:
  • the start time point of the CCA detection for performing channel monitoring before data transmission is determined according to the definition of the start time point of the CCA detection in the preset radio frame structure.
  • the processor 500 determines that the required CCA detection result is the length of time that the channel is idle, it is specifically used to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • Each device in the adjacent manner determines the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result as the length of time for the channel to be idle, so that the carrier on the unlicensed band ensures more In the same resource contention window, the devices use the same CCA detection result to compete for channel resources for the length of the channel idle.
  • For downlink transmission multiple base stations within each carrier use the same CCA detection time, so multiple base stations When competing for resources Equivalent to an unlicensed device, ensuring that LTE can be co-located in an unlicensed band.
  • For uplink transmission it can ensure that LTE can support multi-user equipment uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the processor 500 determines, according to a preset rule, that the required CCA detection result is the length of time that the channel is idle, and is specifically used to:
  • T_CCA mod(T/N); or,
  • T_CCA mod(T*PLMN/N);
  • the T_CCA indicates that the required CCA detection result is the length of the channel idle time
  • T represents the absolute time
  • N represents the maximum quantized value of the preset CCA detection result as the length of the channel idle time
  • the PLMN represents the operator of the device to which the device belongs. PLMN logo.
  • the processor 500 is further configured to:
  • the signal of the neighboring device is measured before determining the starting time point of the CCA detection of the channel monitoring before the data transmission and the required CCA detection result is the length of the channel idle time;
  • the processor 500 determines a starting time point of the CCA detection for performing channel monitoring before data transmission and a required length of time for the CCA detection result to be the channel idle time, specifically:
  • the processor 500 determines that the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result are channel idle. Length of time.
  • the processor 500 measures the signals of the neighboring devices, specifically: the determining unit performs power measurement on signals of the neighboring devices;
  • the processor 500 determines that the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result are channel idle.
  • the length of time specifically:
  • the processor 500 determines the starting time point of the CCA detection for performing channel monitoring before the data transmission and the required CCA detection result as the length of time for the channel to be idle.
  • the processor 500 is further configured to:
  • a notification is sent to the UE, where the required CCA detection result is the length of time during which the channel is idle.
  • the processor 500 sends a notification to the UE by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the processor 500 is further configured to:
  • the notification further carries the required time information of the CCA detection result as the effective time of the channel idle time.
  • the transceiver 510 is configured to receive and transmit related information data under the control of the processor 500.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 510 can be a plurality of components, including a transmitter and a transceiver, provided for transmission
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the terminal-side device when the device is a terminal-side device, such as a UE, the terminal-side device includes:
  • the processor 600 is configured to read a program in the memory 620 and perform the following process:
  • the channel on the unlicensed band is monitored according to the starting time point of the CCA detection and the required CCA detection result being the length of the channel idle.
  • the device monitors the channel on the unlicensed band according to the start time point of the CCA detection for channel monitoring before the data transmission and the required CCA detection result, and realizes that the LTE system works for non-authorization.
  • Channel resource contention scheme when carrier
  • the processor 600 determines the starting time point of the CCA detection for performing channel monitoring before the data is sent, specifically for:
  • the start time point of the CCA detection for performing channel monitoring before data transmission is determined according to the definition of the start time point of the CCA detection in the preset radio frame structure.
  • the processor 600 determines that the required CCA detection result is the length of time that the channel is idle, it is specifically used to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • Each device in the adjacent manner determines the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result as the length of time for the channel to be idle, so that the carrier on the unlicensed band ensures more In the same resource contention window, the devices use the same CCA detection result to compete for channel resources for the length of the channel idle.
  • For downlink transmission multiple base stations within each carrier use the same CCA detection time, so multiple base stations When competing for resources, it is equivalent to an unlicensed device, which ensures that LTE can be co-located in an unlicensed band.
  • For uplink transmission it can ensure that LTE can support multi-user equipment uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • the processor 600 determines, according to a preset rule, that the required CCA detection result is the length of time that the channel is idle, and is specifically used to:
  • T_CCA mod(T/N); or,
  • T_CCA mod(T*PLMN/N);
  • T_CCA indicates that the required CCA detection result is the length of time that the channel is idle
  • T table The absolute time is shown, where N is the maximum quantized value of the preset CCA detection result for the length of the channel idle; PLMN indicates the PLMN identity of the operator to which the device belongs.
  • the processor 600 is further configured to:
  • the signal of the neighboring device is measured before determining the starting time point of the CCA detection of the channel monitoring before the data transmission and the required CCA detection result is the length of the channel idle time;
  • the processor 600 determines the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result as the length of time for the channel to be idle, specifically:
  • the processor 600 determines that the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result are channel idle. Length of time.
  • the processor 600 measures the signals of the neighboring devices, specifically: the determining unit performs power measurement on signals of the neighboring devices;
  • the processor 600 determines that the start time point of the CCA detection for performing channel monitoring before data transmission and the required CCA detection result are channel idle.
  • the length of time specifically:
  • the processor 600 determines the starting time point of the CCA detection for performing channel monitoring before the data transmission and the required CCA detection result as the length of time for the channel to be idle.
  • the processor 600 determines that the required CCA detection result is the length of time that the channel is idle, it is specifically used to:
  • Receiving the notification sent by the base station, and obtaining the required CCA detection result from the notification is the length of time that the channel is idle.
  • the processor 600 receives the notification sent by the base station by using the physical downlink control channel PDCCH signaling of the uplink scheduling grant.
  • the processor 600 determines that the required CCA detection result is the length of time that the channel is idle, it is specifically used to:
  • the required CCA detection result is determined as the length of time that the channel is idle.
  • the processor 600 is further configured to: obtain, from the notification, effective time information of a length of time that the required CCA detection result is that the channel is idle;
  • the processor 600 is configured to: according to the CCA detection, according to the start time point of the CCA detection and the required CCA detection result being the length of the channel idle time, when the channel on the unlicensed frequency band is monitored.
  • the start time point and the required CCA detection result are the length of time that the channel is idle, and the effective time information, and the channel on the unlicensed frequency band is monitored.
  • the transceiver 610 is configured to receive and transmit related information data under the control of the processor 600.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the technical solution provided by the embodiment of the present invention can be used for an LTE device to work in an unlicensed frequency band, and can also be used in other non-authorized systems.
  • the technical solution provided by the embodiment of the present invention provides a scheme for generating a CCA detection time when an LTE device uses an LBT mode to compete for resources when the LTE operates in an unlicensed band, and ensures that the carrier of the unlicensed band is on the carrier of the unlicensed band.
  • Multiple devices compete for resources in the same resource contention window using the same CCA detection result for the length of time that the channel is idle.
  • For downlink transmission multiple base stations/cells within each carrier adopt the same CCA detection time, so multiple base stations/cells are equivalent to one unlicensed device when competing for resources, ensuring that LTE is in an unlicensed frequency band.
  • Co-frequency group network For uplink transmission, LTE can support multi-user uplink simultaneous scheduling or MU-MIMO technology application, thereby improving system performance.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道监听方法及设备,用以实现LTE***工作于非授权载波时的信道资源竞争方案。本发明提供的所述方法包括:设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;所述设备根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。

Description

一种信道监听方法及设备
本申请要求在2014年11月5日提交中国专利局、申请号为201410637246.X、发明名称为“一种信道监听方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种信道监听方法及设备。
背景技术
随着移动数据业务量的不断增长,频谱资源越来越紧张,仅使用授权频谱资源进行网络部署和业务传输可能已经不能满足业务量需求,因此长期演进(Long Term Evolution,LTE)***可以考虑在非授权频谱资源上部署传输,可以称这种LTE***为非授权LTE(Unlicensed LTE,简称为U-LTE或者LTE-U)***,以提高用户体验和扩展覆盖。但是,目前LTE***如何在非授权频谱资源上工作还没有明确的方案。
非授权频谱上的先听后说(listen Before Talk,LBT)原理介绍如下:
非授权频谱没有规划具体的应用***,可以为多种无线通信***如蓝牙、WiFi等共享,多种***间通过抢占资源的方式使用共享的非授权频谱资源。故不同运营商部署的LTE-U之间及LTE-U与WiFi等无线通信***的共存性是研究的一个重点与难点。3GPP要求保证LTE-U与WiFi等无线通信***的公平共存,非授权频段作为辅载波由授权频段的主载波辅助实现。通话前监听(listen Before Talk,LBT)作为LTE-U竞争接入的基本手段,得到几乎所有公司的赞同。
LBT技术的本质仍然是802.11***采用载波监听/冲突避免(CSMA/CA)机制,WiFi***在非授权频谱上的抢占资源方式包括:首先,对信道进行监听,当信道空闲时间达到帧间分布距离(Distributed Inter-Frame Space,DIFS), 便判断当前信道为空闲信道,然后各个等待接入的信道的站点,便进入一个随机回退阶段,用于避免多个站点在相同的资源发生碰撞。此外,为了保证公平性,还规定每个站点不能长期占用频谱资源,到达一定时间或数据传输量上限时,需要释放资源,以供其他WiFi或LTE***抢占资源。
LTE***在非授权频段的载波上工作时,为了保证与其他设备或***公平共享频谱资源,LTE基站与终端也需要采用LBT机制竞争资源。
欧洲标准中关于在非授权频谱上的LBT的两种方法介绍如下:
欧洲的ETSI规范了5GHz的非授权频段的LBT的两种方式:基于帧的设备(Frame based Equipment)方式与基于负载的设备(Load based Equipment)方式。
参见图1,基于帧的设备方式中有固定的帧占用时长,其中包含数据传输时长与空闲时段,其中空闲时段不小于数据传输时长的5%。在固定的帧后,包含一个检测信道是否为空闲的空闲信道评估(Clear Channel Assessment,CCA)检测时段(至少为20us)。非授权设备在CCA检测时段中采用能量检测的方式判断信道为空闲才可以使用信道,例如在CCA时段上对该信道上接收到信号的功率进行测量,若测量到信道上的接收信号功率大于第一功率门限,则确定信道为忙,否则确定信道为空闲。
参见图2,对于基于负载的设备方式,数据传输的时长是可变的。设备在非授权信道上进行数据传输之前,设备需要对信道采用能量检测的方式执行一次CCA检测。若确定信道为闲,设备可以在信道上传输数据,否则,若确定信道为忙,非授权设备需采用扩展的CCA方式检测信道,扩展的CCA检测中设备需要检测N个信道为空闲的CCA时段才确定信道为空闲状态,设备才可以占用信道。数值N是在1~q之间随机产生的数值,q属于范围[4,32]。
目前,LTE***如何在非授权频谱上工作还没有明确方案,对于非授权载波,归属同一运营商的LTE基站或终端如何竞争资源还没有明确方案。
基于上述非授权载波上的竞争资源的LBT方式,LTE在非授权载波工作时,若每一个LTE基站/小区/终端独立生成各自的CCA检测时间,作为一个 竞争资源的独立个体参与在非授权载波上的资源竞争,则可能面临如下问题:
对网络侧设备而言,对于LTE运营商的每一个基站/小区,在自己的CCA检测时间计时器结束时,需要如下两步判断才可以决定是否可以竞争得到信道:
步骤一、首先需要检测CCA检测窗口内是否有信号发射(功率检测),如果信道闲(例如信道上检测到的功率低于设定门限),此时可以直接占用信道;
步骤二、但若确定信道上有信号,需要进一步判断信道上已经传输的信号是否为LTE信号以及是否属于本运营商的信号,若归属同一运营商则依然可以占用信道(因为LTE可以支持同频组网),否则属于其他运营商或为其他***的设备信号则放弃占用信道,这就需要对信号进行检测或解析(例如检测CRS获得小区ID进而判别归属运营商)。信号的检测与解析需要一定的时延,例如至少需要检测一列小区专用参考信号(Cell-specific reference signals,CRS),导致一定的资源开销,同时也会增大基站的处理复杂度,另外由于多个基站信号之间的干扰,检测性能也无法保证,由此影响LBT的性能。
从终端侧来说,按照LTE现有机制,LTE的上行链路(UL)调度授权物理下行控制信道(Physical Downlink Control Channel,PDCCH)与物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)有固定的定时关系,按照PDCCH先于PUSCH K个(K>=4)子帧传输。然而,基于非授权载波上的竞争的机制,终端在发送PUSCH前需要竞争上行信道资源,这意味着基站UL调度授权PDCCH信道时并不确定K个子帧后的终端在传输PUSCH信道时是否可以竞争得到UL资源。例如,得到调度的终端一方面需要与其他非授权***的设备竞争信道,另一方面也需要与同载波上其他LTE(同小区或邻小区的)用户竞争上行信道。因此,多用户调度无法支持、多用户多输入多输出(Multi-User Multi-Input Multi-Output,MU-MIMO)特性也无法支持。上述这些问题均可能导致***效率大大下降。
综上所述,现有技术中关于LTE工作于非授权载波时竞争信道资源没有 给出解决方案。
发明内容
本发明实施例提供了一种信道监听方法及设备,用以实现LTE***工作于非授权载波时的信道资源竞争方案。
本发明实施例提供的一种信道监听方法,包括:
设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
所述设备根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
通过该方法,设备根据数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,实现了LTE***工作于非授权载波时的信道资源竞争方案。
较佳地,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点,包括:
所述设备根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
所述设备根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
较佳地,所述设备确定所需的CCA检测结果为信道空闲的时间长度,包括:
所述设备从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
所述设备根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
相邻的每一设备采用同样的方式确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,使得在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争信道资源,对于下行传输,每一个运营商内部的多个基站均采用了相同的CCA检测时间,因此多个基站在竞争资源时等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户设备上行同时调度或MU-MIMO技术的应用,进而提升***性能。
较佳地,所述设备根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度,包括:
所述设备采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
T_CCA=mod(T/N);或者,
T_CCA=mod(T*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商PLMN标识。
较佳地,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,该方法还包括:所述设备对相邻设备的信号进行测量;
所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
所述设备当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述设备对相邻设备的信号进行测量,具体为:所述设备对相邻设备的信号进行功率测量;
所述设备当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
当相邻设备的信号功率大于预设门限值时,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述设备为基站或用户设备UE。
较佳地,当所述设备为基站时,该方法还包括:
所述基站向UE发送通知,其中携带所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述基站向UE发送通知,包括:
所述基站通过上行调度授权的物理下行控制信道PDCCH信令向UE发送通知。
较佳地,当所述设备为基站时,该方法还包括:
所述基站向UE发送通知,其中携带特定参数,所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述通知中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息。
较佳地,当所述设备为UE时,该UE确定所需的CCA检测结果为信道空闲的时间长度,包括:
该UE接收基站发送的通知,从所述通知中获取所需的CCA检测结果为信道空闲的时间长度。
较佳地,该UE接收基站发送的通知,包括:
该UE通过上行调度授权的物理下行控制信道PDCCH信令接收基站发送的通知。
较佳地,当所述设备为UE时,该UE确定所需的CCA检测结果为信道 空闲的时间长度,包括:
该UE接收基站发送的通知,从所述通知中获取特定参数;
该UE利用该特定参数以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,该方法还包括:
该UE从所述通知中获取所需的CCA检测结果为信道空闲的时间长度的生效时间信息;
该UE根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,包括:
该UE根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,以及所述生效时间信息,对非授权频段上的信道进行监听。
本发明实施例提供的一种信道监听设备,包括:
确定单元,用于确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
监听单元,用于根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
通过该设备根据数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,实现了LTE***工作于非授权载波时的信道资源竞争方案。
较佳地,所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点时,具体用于:
根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
较佳地,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
相邻的每一设备采用同样的方式确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,使得在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争信道资源,对于下行传输,每一个运营商内部的多个基站均采用了相同的CCA检测时间,因此多个基站在竞争资源时等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户设备上行同时调度或MU-MIMO技术的应用,进而提升***性能。
较佳地,所述确定单元根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
T_CCA=mod(T/N);或者,
T_CCA=mod(T*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的PLMN标识。
较佳地,所述确定单元还用于:
在确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,对相邻设备的信号进行测量;
所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
所述确定单元当根据对相邻设备的信号进行测量得到的测量结果满足预 设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元对相邻设备的信号进行测量,具体为:所述确定单元对相邻设备的信号进行功率测量;
所述确定单元当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
当相邻设备的信号功率大于预设门限值时,所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述设备为基站或用户设备UE。
较佳地,当所述设备为基站时,所述确定单元还用于:
向UE发送通知,其中携带所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元通过上行调度授权的物理下行控制信道PDCCH信令向UE发送通知。
较佳地,当所述设备为基站时,所述确定单元还用于:
向UE发送通知,其中携带特定参数,所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述通知中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息。
较佳地,当所述设备为UE时,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
接收基站发送的通知,从所述通知中获取所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元通过上行调度授权的物理下行控制信道PDCCH信令接收基站发送的通知。
较佳地,当所述设备为UE时,所述确定单元确定所需的CCA检测结果 为信道空闲的时间长度时,具体用于:
接收基站发送的通知,从所述通知中获取特定参数;
利用该特定参数以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元还用于:从所述通知中获取所需的CCA检测结果为信道空闲的时间长度的生效时间信息;
所述监听单元,具体用于:根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,以及所述生效时间信息,对非授权频段上的信道进行监听。
本发明实施例提供的网络侧设备,包括:处理器和存储器;
所述处理器,用于读取所述存储器中的程序,执行下列过程:
确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
本发明实施例提供的终端侧设备,包括:处理器和存储器;
所述处理器,用于读取所述存储器中的程序,执行下列过程:
确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有基于帧的设备方式的LBT方案示意图;
图2为现有基于负载的设备方式的LBT方案示意图;
图3为本发明实施例提供的一种信道监听方法的流程示意图;
图4为本发明实施例提供的一种CCA检测的起始时间点的确定方式示意图;
图5a为本发明实施例提供的另一种CCA检测的起始时间点的确定方式示意图;
图5b为本发明实施例提供的第三种CCA检测的起始时间点的确定方式示意图;
图5c为本发明实施例提供的第四种CCA检测的起始时间点的确定方式示意图;
图5d为本发明实施例提供的第五种CCA检测的起始时间点的确定方式示意图;
图6为本发明实施例提供的多设备采用相同的所需的CCA检测结果为信道空闲的时间长度的LBT示意图;
图7为本发明实施例提供的一种信道监听设备的结构示意图;
图8为本发明实施例提供的另一种信道监听设备的结构示意图;
图9为本发明实施例提供的第三种信道监听设备的结构示意图。
具体实施方式
本发明实施例提供了一种信道监听方法及设备,用以实现LTE***工作于非授权载波时的信道资源竞争方案。
进一步的,相邻的每一设备采用同样的方式确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,使得在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争信道资源,对于下行传输,每一个运营商内部的多个基站均采用了相同的CCA检测时间,因此多个基站 在竞争资源时等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户设备上行同时调度或MU-MIMO技术的应用,进而提升***性能。
本发明实施例中,对于任一设备(该设备可以是UE(User Equipment,用户设备,也可称终端),也可以是基站),本发明实施例提出一种在非授权频段中多设备共存时竞争信道资源的方法,参见图3,具体包括步骤:
S101:设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
S102:设备基于步骤S101确定的所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,进一步,还可以基于监听结果判断信道是否可用。
其中,确定数据发送之前进行信道监听的CCA检测的起始时间点,具体包括如下方式之一:
方式一:设备根据最大数据传输时长(即预设的数据传输所需最大时长)以及前一次的CCA检测时间窗口(具体的,可以根据前一次的CCA检测的结束时间点),确定本次CCA检测的起始时间点;
方式二:设备依据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定本次CCA检测起始时间点。
其中,预设的无线帧结构中关于CCA检测的起始时间点的定义,例如预设的无线帧结构中定义了CCA检测的起始时间点,或者定义了CCA检测的结束时间点。
当预设的无线帧结构中定义了CCA检测的结束时间点时,设备可以根据CCA检测的结束时间点以及所需的CCA检测结果为信道空闲的时间长度,确定CCA检测的起始时间点,但此时需要先确定所需的CCA检测结果为信道空闲的时间长度。
其中,所述所需的CCA检测结果为信道空闲的时间长度,区别于按照所需的CCA检测结果为信道空闲的时间长度进行CCA检测所实际占用的时间 长度。例如,参见图2,假设所需的CCA检测结果为信道空闲的时间长度,为10(即N=10)个CCA检测时段,每一CCA检测时段的时间长度为20us,即需要有10个CCA检测时段的CCA检测结果均为信道空闲,才能确定信道空闲可以占用。而设备在实际CCA检测过程中采用的CCA检测时段多于10个,如图2所示,在CCA检测过程中,有2个CCA检测时段的CCA检测结果为信道忙,所以实际完成了对12个CCA检测时段的CCA检测。也就是说,各个设备在实际的CCA检测过程中按照所需的CCA检测结果为信道空闲的时间长度进行CCA检测所占用的时间长度有可能各不相同,大于所需的CCA检测结果为信道空闲的时间长度,但对于各个设备而言,所需的CCA检测结果为信道空闲的时间长度是一样的。因此,本发明实施例中,在非授权频段的载波上,多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度进行信道竞争资源。从而,对于下行传输,每一个运营商内部的多个基站/小区均采用了相同的CCA检测时间,因此多个基站/小区在竞争资源时等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户上行同时调度或MU-MIMO技术的应用,进而提升***性能。
另外,需要说明的是,本发明实施例中所述的CCA检测为在一约定的时间段内判断信道为空闲的检测,可以采用能量检测的方式。例如20us时间段内,测量到信道上的接收信号功率大于第一功率门限,则判断信道为忙,否则判断信道为空闲。
并且,由上面结合图2的说明可知,本发明实施例中设备确定的数据发送之前进行信道监听所需的CCA检测结果为信道空闲的时间长度,可以是连续的一段时间的时间长度,也可以是多个时间段的累计时间长度。
关于设备确定数据发送之前进行信道监听所需的CCA检测结果为信道空闲的时间长度(以下可以用T_CCA表示),具体包括如下方式之一:
方式一:从特定主控设备获取CCA检测结果为信道空闲的时间长度,该时间长度可以是一个具体的时间数值,例如80微秒,也可以一个量化的时间 数值,例如20微秒为一个单位,量化的时间数值为8,表示80微秒,或是LBT扩展CCA方式中的检测信道为空闲的CCA检测时段(20微秒)个数的随机数目N;其中,所述特定主控设备,例如可以是主控基站或其他主控节点。
方式二:依据预先确定的T_CCA的产生规则,结合相关输入参数(例如绝对时间、T_CCA的最大量化数值、运营商的PLMN(Public Land Mobile Network,公共陆地移动网络))来产生CCA检测结果为信道空闲的时间长度。
较佳地,设备可以根据对周围相邻小区的测量结果,确定是否采用本发明的方法。例如:
所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,该方法还包括:所述设备对相邻设备的信号进行测量;相应地,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:所述设备当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
举例来说,若非授权LTE设备检测到周围存在与该设备归属于相同运营商的其他LTE设备,且测量得到的其他LTE设备的信号功率大于第一门限(Threshold 1),说明周围相邻LTE设备比较多,则采用本发明实施例提供的所述方法。反之,非授权LTE设备检测到周围存在与该设备归属于相同运营商的其他LTE设备,但测量得到的其他LTE设备的信号功率小于第二门限(Threshold 2)或非授权LTE设备没有检测到周围存在与该设备归属于相同运营商的其他LTE设备,则非授权LTE设备可以选择本发明实施例提供的所述方法,也可以选择采用已有的LBT方式:即非授权LTE设备自主选择CCA检测的起始时间点以及依据规范要求自主产生在发送数据之前所需的CCA检测结果为信道空闲的时间长度。
其中,Threshold 1和Threshold 2可以为同一值,也可以为不同的值,不同的值时,Threshold 1和Threshold 2的大小关系不作限定,较佳地,Threshold 1大于Threshold 2。
下面给出几个具体实施例的举例说明。
实施例1:设备根据最大信道占用时长以及前一次的CCA检测时间窗口确定本次数据发送之前进行信道监听的CCA检测的起始时间点。
设备运营商可以根据相关非授权频段的规范要求设定设备每一次竞争得到信道后的最大传输时长,也即是最大信道占用时长,例如最大信道占用时长为10ms。
本实施例中确定CCA检测的起始时间点的方法是:前一次的CCA检测时间窗口结束的时间点累加1个最大信道占用时长,得到的时间点为本次CCA检测的起始时间点。
需要说明的是:每一CCA检测时间窗口有可能不同,可以由一个或多个CCA时隙(slot)组成,如图4所示,从时间轴上看,用于确定CCA检测起始时间点的每一个CCA检测窗口大小是随机可变的,其大小等于设备进行本次CCA检测中所需的CCA检测结果为信道空闲的时间长度(不是实际检测所用的CCA检测结果为信道空闲的时间长度)。即采用所需的CCA检测结果为信道空闲的时间长度为本次CCA检测时间窗口大小,用于确定下一次CCA检测的起始时间点。
采用该方法,基站每一次传输的时间即使小于最大传输时间也需要从占用信道开始一直到最大数据传输时长结束后才开始进行CCA检测,如图4所示,这里也有一个前提,即多个设备第一次CCA检测的起始时间点相同,新开启的设备需要通过一定的同步手段与先前工作的设备在CCA检测的起始时间点设置为一致。例如,通过基于回程链路同步的方式实现设备之间的CCA检测的起始时间点的同步。
如图4所示,假设3个LTE基站(LTE基站1、LTE基站2、LTE基站3)与1个WIFI节点(WIFI节点1)共存。LTE基站(LTE基站1、LTE基站2、 LTE基站3)在前一次CCA检测结束的时间点加上一个最大数据传输时长作为本次CCA检测起始时间点。
需要说明的是,本次CCA检测起始时间点与上一次的数据传输实际占用的时间没有直接关系。所以设备每一次数据传输可以根据实际的业务负荷来确定传输时间而不必占满最大数据传输时长。图4中,LTE基站(BS)2与LTE BS 3由于距离WIFI节点1较近,在第二次传输数据前因为受到WIFI节点1的干扰而不能传输,而LTE BS1由于距离WIFI节点1较远,没有受到WIFI节点1的干扰可以正常传输。图4中的斜线部分表示信号帧,即数据传输实际占用的时间。
实施例2:设备依据无线帧结构确定CCA检测起始时间点。
本实施例中,设备在非授权频段工作时遵循一个预定义或预配置的无线帧结构,该无线帧结构中有关于CCA检测的起始时间点的定义。
如图5a所示,确定CCA检测起始时间点的一种方式包括:在无线帧结构中预定义CCA检测的起始时间点,例如,在无线帧结构中数据传输子帧(对应于LTE,该数据传输子帧可能是下行子帧,还可以是上行子帧)之前,配置一段CCA检测窗口(Contention Window,CW),CCA检测窗口的起始时间点可以作为CCA检测的起始时间点。
需要说明的是,该图5a所示的确定CCA检测起始时间点的方式可能导致一个后果是:设备基于CCA检测得到信道至数据传输子帧之间还有一定的时间空隙,为保证信道在该时间空隙中不被其他设备抢占,抢占到信道的设备可以传输一些占位信号或提前发送数据,例如该时间空隙不足以承载一个完整子帧,则可以采用一个非完整子帧的形式传输数据。
或者,参见图5b,确定CCA检测起始时间点的另外一种方式是:在无线帧中配置的CCA检测窗口,CCA检测窗口的结束时间作为CCA检测的结束时间,设备基于提前产生或获知的本次数据发送之前进行信道监听所需的CCA检测结果为信道空闲的时间长度,推算得到CCA检测的起始时间点。
如果无线帧中仅传输下行子帧,上述图5a和图5b所示的确定CCA检测 起始时间点的两种方式,分别对应图5c和图5d所示的确定CCA检测起始时间点的方式,此处不再赘述。
采用实施例1、2中的方法,归属同一个运营商的多个非授权设备可以确定相同的CCA检测的起始时间点,但为了避免多个非授权设备之间的相互干扰,多个非授权设备的正确CCA检测的次数也需要一致,因此需要结合下面的实施例3、4、5的方法进一步获得数据发送之前进行信道监听所需的CCA检测结果为信道空闲的时间长度。
实施例3:多个LTE基站或UE从主控基站或主控节点获取所需的CCA检测结果为信道空闲的时间长度。
这里为叙述方便,记前述CCA检测结果为信道空闲的时间长度为T_CCA.主控基站或主控节点(例如一个专门产生T_CCA模块的单元)预先产生T_CCA,该T_CCA可以是一个具体的时间数值,也可以是一个量化的时间数值,或是LBT扩展CCA方式中的检测信道为空闲的CCA检测时段个数的随机数目N。
主控基站或主控节点将预先产生的T_CCA提前分发给所控制的多个基站或UE设备。多个基站设备在非授权频段的载波上采用LBT方式竞争资源时,采用该相同的T_CCA,如图6所示,该方式避免LTE设备之间在竞争资源时的冲突。
主控基站或主控节点可以周期性地产生T_CCA,例如每20ms产生并分发一次T_CCA。
主控基站或主控节点预先分发T_CCA给所控制的多个基站设备或UE,这里发送T_CCA需要提前的时间量需要考虑将T_CCA传输给所控制的多个基站或UE设备的回程链路的传输时延以保证多个基站设备在竞争资源时均可以收到该T_CCA。
为保证多个基站设备对收到的T_CCA的生效时间达成理解的一致,主控基站或主控节点在发送T_CCA的同时还可以携带生效时间信息。
实施例4:多个LTE基站或UE设备依据相同规则产生所需的CCA检测 结果为信道空闲的时间长度。
这里为叙述方便,记前述CCA检测结果为信道空闲的时间长度为T_CCA.预定义产生T_CCA的规则(或公式),多个LTE基站或UE均采用该规则产生T_CCA,T_CCA可以是一个具体的时间数值,也可以一个量化的时间数值,或是LBT扩展CCA方式中的检测信道为空闲的CCA检测时段个数的随机数目N。
例如,T_CCA可以依据绝对时间,或者进一步结合运营商的公共陆上移动网络(Public Land Mobile Network,PLMN)标识产生。例如采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
T_CCA=mod(T/N);或者,
T_CCA=mod(T*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的PLMN标识。T_CCA取mod(T/N)的向下取整数值或mod(T*PLMN/N)的向下取整数值。
或者,多个基站或UE采用相同的规则/公式并采用相同的随机种子产生T_CCA,多个基站或UE交互随机种子或主控节点将该随机种子通知给多个基站或UE。
对于各个UE而言,还可以基于预定义的规则并基于基站通知的特定参数(所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度,该特定参数例如随机种子)产生相同的T_CCA。
例如,基站在上行调度授权的PDCCH信令中携带并通知UE所述特定参数(例如随机种子),UE基于该特定参数并结合预定义的规则产生T_CCA。
其中,关于基于预定义的规则并结合特定参数(例如随机种子,或者随机种子和PLMN)生成T_CCA的方式,例如基于下述的公式产生T_CCA,其中T_Seed为随机种子。
T_CCA=mod(T_Seed/N);或者,
T_CCA=mod(T_Seed*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值(预设常数);PLMN表示所述设备所属运营商的PLMN标识。T_CCA取mod(T_Seed/N)的向下取整数值或mod(T_Seed*PLMN/N)的向下取整数值。
实施例5:基站通知UE所需的CCA检测结果为信道空闲的时间长度。
这里为叙述方便,记前述CCA检测结果为信道空闲的时间长度为T_CCA.
基站在调度多个UE的上行数据传输时,基站预先产生一个T_CCA。基站通知UE发送上行数据时竞争信道采用的T_CCA,例如基站在上行调度授权的物理下行控制信道(Physical Downlink Control Channel,PDCCH)信令中携带并通知UE T_CCA。PDCCH信令中具体的通知的信息可以是一个具体的时间数值,也可以一个量化的时间数值,或是LBT扩展CCA方式中的检测信道为空闲的CCA检测时段个数的随机数目N。
若一个上行子帧中需要调度多个上行UE,则可以通知多个上行UE相同的T_CCA以避免这些上行UE相互竞争信道资源。为了避免归属于相邻不同基站的多个UE因为采用不一致的T_CCA而相互竞争资源。多个基站所通知各自归属UE的T_CCA可以是相同的。此时多个基站可以采用实施例3或实施例4中所述方法获得相同的T_CCA。
需要说明的是,这里基站在PDCCH信道中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息,该生效时间信息为该PDCCH调度所对应的上行子帧的前一竞争窗口(参见图5a和图5b中上行子帧的前一CCA检测窗口CW)。
实施例6:设备选择是否采用本发明实施例提供的确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度的方法的原则。
设备可以根据对周围相邻小区的测量结果,确定是否采用本发明实施例 提供的确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度的方法。
例如:若非授权LTE设备检测到周围存在与该设备归属于相同运营商的其他LTE设备,且测量得到的其他LTE设备的信号功率大于门限Threshold 1,则采用本发明实施例提供的确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度的方法。
反之,非授权LTE设备检测到周围存在与该设备归属于相同运营商的其他LTE设备,但测量得到的其他LTE设备的信号功率小于门限Threshold 2或非授权LTE设备没有检测到周围存在与该设备归属于相同运营商的其他LTE设备,则非授权LTE设备可以选择本发明实施例提供的确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度的方法,也可以选择采用已有的LBT方式:即非授权LTE设备自主选择CCA检测的起始时间点以及依据规范要求自主产生在发送数据之前所需的CCA检测结果为信道空闲的时间长度。
采用本发明实施例提供的确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度的方法,对于下行传输而言,由于每一个运营商内部的多个基站/小区均采用了相同的T_CCA,因此多个基站/小区在竞争资源时等价于一个非授权设备,如图6所示,则该方式保证了归属同一个运营商的多个基站/小区在监听信道时不会检测到自己运营商内部的其他基站/小区的信号,即一旦检测到信号功率,即可判断是其他运营商或其他非授权***的信号;若检测不到信号,则同一运营商的多个基站/小区检测可以同时抢占信道。这就避免了一个运营商内部的多个基站相互竞争资源,导致不能同频组网。
对于上行传输而言,归属同一个运营商的多个用户由于采用了相同的T_CCA,因此可以在同一个子帧同时发送上行数据,这使得基站可以调度多个上行用户进而获得上行多用户分集增益或上行多用户MIMO传输,进而可以保证LTE在非授权载波的高效传输。
与上述方法相对应地,参见图7,本发明实施例提供的一种信道监听设备,包括:
确定单元11,用于确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
监听单元12,用于根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
通过该设备根据数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,实现了LTE***工作于非授权载波时的信道资源竞争方案。
较佳地,所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点时,具体用于:
根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
较佳地,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
相邻的每一设备采用同样的方式确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,使得在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争信道资源,对于下行传输,每一个运营商内部的多个基站均采用了相同的CCA检测时间,因此多个基站在竞争资源时 等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户设备上行同时调度或MU-MIMO技术的应用,进而提升***性能。
较佳地,所述确定单元根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
T_CCA=mod(T/N);或者,
T_CCA=mod(T*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的PLMN标识。
较佳地,所述确定单元还用于:
在确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,对相邻设备的信号进行测量;
所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
所述确定单元当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元对相邻设备的信号进行测量,具体为:所述确定单元对相邻设备的信号进行功率测量;
所述确定单元当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
当相邻设备的信号功率大于预设门限值时,所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述设备为基站或用户设备UE。
较佳地,当所述设备为基站时,所述确定单元还用于:
向UE发送通知,其中携带所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元通过上行调度授权的物理下行控制信道PDCCH信令向UE发送通知。
较佳地,当所述设备为基站时,所述确定单元还用于:
向UE发送通知,其中携带特定参数,所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述通知中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息。
较佳地,当所述设备为UE时,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
接收基站发送的通知,从所述通知中获取所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元通过上行调度授权的物理下行控制信道PDCCH信令接收基站发送的通知。
较佳地,当所述设备为UE时,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
接收基站发送的通知,从所述通知中获取特定参数;
利用该特定参数以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述确定单元还用于:从所述通知中获取所需的CCA检测结果为信道空闲的时间长度的生效时间信息;
所述监听单元,具体用于:根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,以及所述生效时间信息,对非授权频段上的信道进行监听。
以上各个单元,均可以由处理器等实体装置实现。
参见图8,当所述设备为网络侧设备,例如基站时,该网络侧设备包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
通过该设备根据数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,实现了LTE***工作于非授权载波时的信道资源竞争方案。
较佳地,所述处理器500确定数据发送之前进行信道监听的CCA检测的起始时间点时,具体用于:
根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
较佳地,所述处理器500确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
相邻的每一设备采用同样的方式确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,使得在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争信道资源,对于下行传输,每一个运营商内部的多个基站均采用了相同的CCA检测时间,因此多个基站在竞争资源时 等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户设备上行同时调度或MU-MIMO技术的应用,进而提升***性能。
较佳地,所述处理器500根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
T_CCA=mod(T/N);或者,
T_CCA=mod(T*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的PLMN标识。
较佳地,所述处理器500还用于:
在确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,对相邻设备的信号进行测量;
所述处理器500确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
所述处理器500当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述处理器500对相邻设备的信号进行测量,具体为:所述确定单元对相邻设备的信号进行功率测量;
所述处理器500当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
当相邻设备的信号功率大于预设门限值时,所述处理器500确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,处理器500还用于:
向UE发送通知,其中携带所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述处理器500通过上行调度授权的物理下行控制信道PDCCH信令向UE发送通知。
较佳地,处理器500还用于:
向UE发送通知,其中携带特定参数,所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述通知中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息。
收发机510,用于在处理器500的控制下接收和发送相关的信息数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传
输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
参见图9,当所述设备为终端侧设备,例如UE时,该终端侧设备包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
通过该设备根据数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,实现了LTE***工作于非授权载波时的信道资源竞争方案。
较佳地,所述处理器600确定数据发送之前进行信道监听的CCA检测的起始时间点时,具体用于:
根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
较佳地,所述处理器600确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
相邻的每一设备采用同样的方式确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,使得在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争信道资源,对于下行传输,每一个运营商内部的多个基站均采用了相同的CCA检测时间,因此多个基站在竞争资源时等价于一个非授权设备,保证了LTE在非授权频段上可同频组网。对于上行传输又可以保证LTE可以支持多用户设备上行同时调度或MU-MIMO技术的应用,进而提升***性能。
较佳地,所述处理器600根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
T_CCA=mod(T/N);或者,
T_CCA=mod(T*PLMN/N);
其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表 示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的PLMN标识。
较佳地,所述处理器600还用于:
在确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,对相邻设备的信号进行测量;
所述处理器600确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
所述处理器600当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述处理器600对相邻设备的信号进行测量,具体为:所述确定单元对相邻设备的信号进行功率测量;
所述处理器600当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
当相邻设备的信号功率大于预设门限值时,所述处理器600确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述处理器600确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
接收基站发送的通知,从所述通知中获取所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述处理器600通过上行调度授权的物理下行控制信道PDCCH信令接收基站发送的通知。
较佳地,所述处理器600确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
接收基站发送的通知,从所述通知中获取特定参数;
利用该特定参数以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
较佳地,所述处理器600还用于:从所述通知中获取所需的CCA检测结果为信道空闲的时间长度的生效时间信息;
所述处理器600根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听时,具体用于:根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,以及所述生效时间信息,对非授权频段上的信道进行监听。
收发机610,用于在处理器600的控制下接收和发送相关的信息数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
需要说明的是,本发明实施例提供的技术方案可以用于LTE设备在非授权频段上工作,也可以用于其它非授权***。
综上所述,本发明实施例提供的技术方案,提出了一种LTE在非授权频段工作时,LTE设备采用LBT方式竞争资源时产生CCA检测时间的方案,在非授权频段的载波上,确保多个设备在同一个资源竞争窗口采用相同的CCA检测结果为信道空闲的时间长度竞争资源。对于下行传输,每一个运营商内部的多个基站/小区均采用了相同的CCA检测时间,因此多个基站/小区在竞争资源时等价于一个非授权设备,保证了LTE在非授权频段上可同频组 网。对于上行传输又可以保证LTE可以支持多用户上行同时调度或MU-MIMO技术的应用,进而提升***性能。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及
其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (32)

  1. 一种信道监听方法,其特征在于,该方法包括:
    设备确定数据发送之前进行信道监听的空闲信道评估CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
    所述设备根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
  2. 根据权利要求1所述的方法,其特征在于,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点,包括:
    所述设备根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
    所述设备根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
  3. 根据权利要求1所述的方法,其特征在于,所述设备确定所需的CCA检测结果为信道空闲的时间长度,包括:
    所述设备从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
    所述设备根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
  4. 根据权利要求3所述的方法,其特征在于,所述设备根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度,包括:
    所述设备采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
    T_CCA=mod(T/N);或者,
    T_CCA=mod(T*PLMN/N);
    其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的公共陆上移动网络PLMN标识。
  5. 根据权利要求1-4任一权项所述的方法,其特征在于,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,该方法还包括:所述设备对相邻设备的信号进行测量;
    所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
    所述设备当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
  6. 根据权利要求5所述的方法,其特征在于,所述设备对相邻设备的信号进行测量,具体为:所述设备对相邻设备的信号进行功率测量;
    所述设备当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
    当相邻设备的信号功率大于预设门限值时,所述设备确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
  7. 根据权利要求1所述的方法,其特征在于,所述设备为基站或用户设备UE。
  8. 根据权利要求7所述的方法,其特征在于,当所述设备为基站时,该方法还包括:
    所述基站向UE发送通知,其中携带所需的CCA检测结果为信道空闲的时间长度。
  9. 根据权利要求8所述的方法,其特征在于,所述基站向UE发送通知, 包括:
    所述基站通过上行调度授权的物理下行控制信道PDCCH信令向UE发送通知。
  10. 根据权利要求7所述的方法,其特征在于,当所述设备为基站时,该方法还包括:
    所述基站向UE发送通知,其中携带特定参数,所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
  11. 根据权利要求8、9或10所述的方法,其特征在于,所述通知中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息。
  12. 根据权利要求7所述的方法,其特征在于,当所述设备为UE时,该UE确定所需的CCA检测结果为信道空闲的时间长度,包括:
    该UE接收基站发送的通知,从所述通知中获取所需的CCA检测结果为信道空闲的时间长度。
  13. 根据权利要求12所述的方法,其特征在于,该UE接收基站发送的通知,包括:
    该UE通过上行调度授权的物理下行控制信道PDCCH信令接收基站发送的通知。
  14. 根据权利要求7所述的方法,其特征在于,当所述设备为UE时,该UE确定所需的CCA检测结果为信道空闲的时间长度,包括:
    该UE接收基站发送的通知,从所述通知中获取特定参数;
    该UE利用该特定参数以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
  15. 根据权利要求12、13或14所述的方法,其特征在于,该方法还包括:
    该UE从所述通知中获取所需的CCA检测结果为信道空闲的时间长度的生效时间信息;
    该UE根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听,包括:
    该UE根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,以及所述生效时间信息,对非授权频段上的信道进行监听。
  16. 一种信道监听设备,其特征在于,该设备包括:
    确定单元,用于确定数据发送之前进行信道监听的空闲信道评估CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
    监听单元,用于根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
  17. 根据权利要求16所述的设备,其特征在于,所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点时,具体用于:
    根据最大数据传输时长以及前一次的CCA检测时间窗口,确定数据发送之前进行信道监听的CCA检测的起始时间点,其中所述的前一次的CCA检测时间窗口的长度为前一次所需的CCA检测结果为信道空闲的时间长度;或者,
    根据预设的无线帧结构中关于CCA检测的起始时间点的定义,确定数据发送之前进行信道监听的CCA检测的起始时间点。
  18. 根据权利要求16所述的设备,其特征在于,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
    从特定的主控设备处获取所需的CCA检测结果为信道空闲的时间长度;或者,
    根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
  19. 根据权利要求18所述的设备,其特征在于,所述确定单元根据预设规则,确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
    采用如下公式之一确定所需的CCA检测结果为信道空闲的时间长度:
    T_CCA=mod(T/N);或者,
    T_CCA=mod(T*PLMN/N);
    其中,T_CCA表示所需的CCA检测结果为信道空闲的时间长度,T表示绝对时间,N表示预设的CCA检测结果为信道空闲的时间长度的最大量化数值;PLMN表示所述设备所属运营商的公共陆上移动网络PLMN标识。
  20. 根据权利要求16-19任一权项所述的设备,其特征在于,所述确定单元还用于:
    在确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度之前,对相邻设备的信号进行测量;
    所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
    所述确定单元当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
  21. 根据权利要求20所述的设备,其特征在于,所述确定单元对相邻设备的信号进行测量,具体为:所述确定单元对相邻设备的信号进行功率测量;
    所述确定单元当根据对相邻设备的信号进行测量得到的测量结果满足预设条件时,确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,具体为:
    当相邻设备的信号功率大于预设门限值时,所述确定单元确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度。
  22. 根据权利要求16所述的设备,其特征在于,所述设备为基站或用户设备UE。
  23. 根据权利要求22所述的设备,其特征在于,当所述设备为基站时,所述确定单元还用于:
    向UE发送通知,其中携带所需的CCA检测结果为信道空闲的时间长度。
  24. 根据权利要求23所述的设备,其特征在于,所述确定单元通过上行调度授权的物理下行控制信道PDCCH信令向UE发送通知。
  25. 根据权利要求22所述的设备,其特征在于,当所述设备为基站时,所述确定单元还用于:
    向UE发送通知,其中携带特定参数,所述特定参数用于指示UE利用该特定参数,以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
  26. 根据权利要求23、24或25所述的设备,其特征在于,所述通知中还携带有所需的CCA检测结果为信道空闲的时间长度的生效时间信息。
  27. 根据权利要求22所述的设备,其特征在于,当所述设备为UE时,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
    接收基站发送的通知,从所述通知中获取所需的CCA检测结果为信道空闲的时间长度。
  28. 根据权利要求27所述的设备,其特征在于,所述确定单元通过上行调度授权的物理下行控制信道PDCCH信令接收基站发送的通知。
  29. 根据权利要求22所述的设备,其特征在于,当所述设备为UE时,所述确定单元确定所需的CCA检测结果为信道空闲的时间长度时,具体用于:
    接收基站发送的通知,从所述通知中获取特定参数;
    利用该特定参数以及预设规则,确定所需的CCA检测结果为信道空闲的时间长度。
  30. 根据权利要求27、28或29所述的设备,其特征在于,所述确定单元还用于:从所述通知中获取所需的CCA检测结果为信道空闲的时间长度的生效时间信息;
    所述监听单元,具体用于:根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,以及所述生效时间信息,对非授权频段上的信道进行监听。
  31. 一种网络侧设备,其特征在于,包括:处理器和存储器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:
    确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
    根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
  32. 一种终端侧设备,其特征在于,包括:处理器和存储器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:
    确定数据发送之前进行信道监听的CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度;
    根据所述CCA检测的起始时间点和所需的CCA检测结果为信道空闲的时间长度,对非授权频段上的信道进行监听。
PCT/CN2015/092914 2014-11-05 2015-10-27 一种信道监听方法及设备 WO2016070737A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/524,256 US10045378B2 (en) 2014-11-05 2015-10-27 Channel monitoring method and device
KR1020177013303A KR102002102B1 (ko) 2014-11-05 2015-10-27 채널 모니터링 방법 및 기기
EP15856823.8A EP3217756A4 (en) 2014-11-05 2015-10-27 Channel monitoring method and device
JP2017523779A JP2017537531A (ja) 2014-11-05 2015-10-27 チャネルモニタリング方法及び機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410637246.XA CN105636231B (zh) 2014-11-05 2014-11-05 一种信道监听方法及设备
CN201410637246.X 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016070737A1 true WO2016070737A1 (zh) 2016-05-12

Family

ID=55908561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092914 WO2016070737A1 (zh) 2014-11-05 2015-10-27 一种信道监听方法及设备

Country Status (6)

Country Link
US (1) US10045378B2 (zh)
EP (1) EP3217756A4 (zh)
JP (1) JP2017537531A (zh)
KR (1) KR102002102B1 (zh)
CN (1) CN105636231B (zh)
WO (1) WO2016070737A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019048055A1 (en) * 2017-09-08 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) CONTROL OF ACCESS POINTS IN WIRELESS NETWORKS

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145757A1 (en) * 2015-01-28 2023-03-08 Interdigital Patent Holdings, Inc. Triggering aperiodic sounding reference signals
CN107534902B (zh) 2015-06-26 2020-04-28 华为技术有限公司 一种双信道并行收发方法及装置
CN106257953B (zh) * 2015-12-23 2020-06-23 北京智谷技术服务有限公司 空闲信道评估方法、信息接收方法、及其装置
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US10873888B2 (en) * 2016-07-04 2020-12-22 Lg Electronics Inc. Method for configuring synchronization for mobile relay node in next generation wireless communication system and device for same
CN107734710B (zh) * 2016-08-11 2023-05-05 中兴通讯股份有限公司 一种数据传输的方法及装置
CN107734560B (zh) * 2016-08-12 2023-09-15 中兴通讯股份有限公司 信号传输方法、通信设备及通信***
US11606817B2 (en) * 2016-08-22 2023-03-14 Apple Inc. Devices and methods for ELAA multi-carrier LBT
CN109792662B (zh) * 2016-10-31 2020-08-14 华为技术有限公司 一种频谱资源的指示方法、装置及***
CN106851839B (zh) * 2017-03-14 2020-06-12 北京佰才邦技术有限公司 帧结构确定方法和基站
US10750462B2 (en) * 2017-06-07 2020-08-18 Samsung Electronics Co., Ltd. Methods and systems for D2D operation in unlicensed spectrum
CN109451818A (zh) * 2018-03-30 2019-03-08 北京小米移动软件有限公司 数据发送方法及装置
CN111989975A (zh) 2018-04-25 2020-11-24 Oppo广东移动通信有限公司 信号传输的方法和通信设备
GB2576195B (en) * 2018-08-08 2021-11-03 Tcl Communication Ltd Transmission resource sharing
CN109328482B (zh) * 2018-09-20 2022-01-11 北京小米移动软件有限公司 控制指令传输方法、基站、终端及存储介质
CN109714807B (zh) * 2019-01-16 2021-03-23 南京航空航天大学 一种基于公共控制信道的认知无线网络接入方法
WO2021098062A1 (en) 2020-02-14 2021-05-27 Zte Corporation Method for multiplexing of services with different priority levels
CN114375065B (zh) * 2020-10-19 2024-07-19 展讯通信(上海)有限公司 下行lbt的方法、装置、设备及存储介质
CN113259877A (zh) * 2021-07-02 2021-08-13 武汉威泰科技发展有限公司 一种无线自组网广告同步方法和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090129353A1 (en) * 2007-11-16 2009-05-21 Sungkyunkwan University Foundation For Corporate Collaboration Method for recognizing available channel in ieee 802.15.4 protocol csma/ca mechanism
CN102595569A (zh) * 2011-01-14 2012-07-18 华为技术有限公司 载波侦听的方法和***
CN102595449A (zh) * 2011-01-07 2012-07-18 中兴通讯股份有限公司 一种实现大带宽载波空闲状态检测的方法和***
WO2014111309A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Radio communication in unlicensed band

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143011B2 (ja) * 2003-09-17 2008-09-03 松下電器産業株式会社 キャリアセンス多重アクセス方法、無線基地局装置及び無線端末装置
CN101394249B (zh) * 2007-09-19 2011-05-04 华为技术有限公司 传输控制方法、传输方法及装置
KR101400843B1 (ko) * 2008-01-11 2014-05-29 경희대학교 산학협력단 무선 센서 네트워크의 통신 단말기 및 그의 통신 방법
CN101873646B (zh) * 2009-04-27 2012-12-26 电信科学技术研究院 一种多载波聚合***的测量间隙的配置方法及装置
KR102000794B1 (ko) * 2010-11-05 2019-07-16 인터디지탈 패튼 홀딩스, 인크 다이나믹 스펙트럼 관리를 위한 사일런트 기간 방법 및 장치
US8830947B2 (en) * 2011-08-30 2014-09-09 Broadcom Corporation Channel sensing in uplink transmission
WO2013167557A1 (en) * 2012-05-07 2013-11-14 Nokia Siemens Networks Oy Operations on shared bands
US9220115B2 (en) * 2013-10-23 2015-12-22 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
US20150334744A1 (en) * 2014-05-15 2015-11-19 Qualcomm Incorporated Load based lte/lte-a with unlicensed spectrum
US9743363B2 (en) * 2014-06-24 2017-08-22 Qualcomm Incorporated CCA clearance in unlicensed spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090129353A1 (en) * 2007-11-16 2009-05-21 Sungkyunkwan University Foundation For Corporate Collaboration Method for recognizing available channel in ieee 802.15.4 protocol csma/ca mechanism
CN102595449A (zh) * 2011-01-07 2012-07-18 中兴通讯股份有限公司 一种实现大带宽载波空闲状态检测的方法和***
CN102595569A (zh) * 2011-01-14 2012-07-18 华为技术有限公司 载波侦听的方法和***
WO2014111309A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Radio communication in unlicensed band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217756A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019048055A1 (en) * 2017-09-08 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) CONTROL OF ACCESS POINTS IN WIRELESS NETWORKS

Also Published As

Publication number Publication date
EP3217756A4 (en) 2017-11-08
CN105636231B (zh) 2019-01-25
JP2017537531A (ja) 2017-12-14
KR20170072271A (ko) 2017-06-26
KR102002102B1 (ko) 2019-07-19
US20170339719A1 (en) 2017-11-23
CN105636231A (zh) 2016-06-01
EP3217756A1 (en) 2017-09-13
US10045378B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2016070737A1 (zh) 一种信道监听方法及设备
US10548157B2 (en) Unlicensed spectrum scheduling method and device, and user equipment UE
EP3395117B1 (en) Listen before talk channel access procedure for uplink laa
US11252576B2 (en) Method and system for dynamic optimization of a time-domain frame structure
WO2017125009A1 (zh) 一种探测参考信号的发送方法和装置
EP3222097B1 (en) Method and system for joint coordination and coexistence in unlicensed spectrum
WO2017025000A1 (zh) 前导发送方法和装置
EP3277045B1 (en) Method and device for preempting transmission resources on unlicensed carriers
JP7270541B2 (ja) 共有スペクトル上の周波数分割多重(fdm)ベースの媒体アクセスのための技法および装置
CN107006015B (zh) 使用频谱资源进行通信的方法和通信设备
JP2018525953A (ja) データ伝送方法及び装置
CN105284058B (zh) 一种网络节点及频谱资源的使用方法
WO2016070614A1 (zh) 一种信号发送方法、装置及计算机存储介质
CN106332298A (zh) 一种无线网络中的接入方法及设备
CN107079300B (zh) 使用频谱资源进行通信的方法和通信设备
WO2016169400A1 (zh) 一种信道接入方法和装置
WO2016119470A1 (zh) 一种信号发送方法和装置
WO2017035716A1 (zh) 一种频谱共享的方法及装置
US20220400514A1 (en) Controlling transmission medium access in an open spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856823

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015856823

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017523779

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15524256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177013303

Country of ref document: KR

Kind code of ref document: A