WO2016070713A1 - 钙钛矿量子点材料以及其制备方法 - Google Patents

钙钛矿量子点材料以及其制备方法 Download PDF

Info

Publication number
WO2016070713A1
WO2016070713A1 PCT/CN2015/092497 CN2015092497W WO2016070713A1 WO 2016070713 A1 WO2016070713 A1 WO 2016070713A1 CN 2015092497 W CN2015092497 W CN 2015092497W WO 2016070713 A1 WO2016070713 A1 WO 2016070713A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
organic
quantum dot
solution
inorganic metal
Prior art date
Application number
PCT/CN2015/092497
Other languages
English (en)
French (fr)
Inventor
钟海政
张峰
吴显刚
黄海龙
牛玉玮
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to EP15856222.3A priority Critical patent/EP3216842B1/en
Priority to PL15856222T priority patent/PL3216842T3/pl
Publication of WO2016070713A1 publication Critical patent/WO2016070713A1/zh
Priority to US15/584,042 priority patent/US10633584B2/en
Priority to US16/824,631 priority patent/US10731075B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/08Simple coacervation, i.e. addition of highly hydrophilic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7492Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/75Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth containing antimony
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/75Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth containing antimony
    • C09K11/755Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of materials, and in particular, the present invention relates to hybrid perovskite quantum dot materials and methods for their preparation.
  • the chemical formula of the ideal inorganic perovskite is ABX 3 , wherein the central metal cation B forms an coordination octahedral structure with the anion X, and A is located in the gap of the octahedron to balance the charge of the BX 3 anion.
  • a layered perovskite structure occurs when several layers of octahedral layers are extracted from a three-dimensional structure in one direction, or several layers of octahedral layers are replaced with other components.
  • the organic-inorganic hybrid perovskite material replaces the A-site atom in the inorganic perovskite with an organic amine, and is filled in each octahedral gap.
  • Each octahedron is extended into a network structure through a common apex connection, and the organic amine passes through the amine.
  • Hydrogen forms hydrogen bonds with halogen ions and enters the inorganic layer space.
  • the organic chains interact with van der Waals forces to form a hybrid structure in which organic and inorganic layers are alternately arranged.
  • the organic-inorganic hybrid perovskite material combines the advantages of organic materials and inorganic materials on a molecular scale, and has not only good thermal stability, mechanical properties and electromagnetic properties of inorganic components, but also easy processing into films with organic components.
  • Etc. The quantum well structure formed by the alternating inorganic layer and organic amine of the organic-inorganic hybrid perovskite material has a large exciton binding energy under the dual action of quantum confinement effect and dielectric confinement effect.
  • Unique photoelectric characteristics such as high carrier mobility, strong room temperature photoluminescence, and narrower half-peak width, high purity of luminescent color.
  • the control of the luminescence properties of the hybrid perovskite material can be achieved by controlling the organic component and the inorganic component, so the hybrid perovskite material is in a field effect transistor, a solar cell, an electroluminescence, a display, etc.
  • the field has unique application value. Based on the unique properties and applications of the above hybrid perovskite materials, the research of such materials has attracted wide attention of researchers in recent years.
  • organic-inorganic hybrid perovskite material When the size of the organic-inorganic hybrid perovskite material is reduced to the nanometer level, since the quantum dot size is small and the surface has a ligand, it is easily dispersed in a common solvent, facilitating the processing application of the hybrid perovskite material. So can pass A variety of methods are used in the field of optoelectronics; and, due to the quantum confinement effect of quantum dots themselves, organic-inorganic hybrid perovskite quantum dots exhibit superior properties over bulk materials, such as stronger luminescence, higher The quantum yield, and the wavelength of the luminescence can be controlled by controlling the size of the nanoparticles.
  • organic-inorganic hybrid perovskite quantum dots Compared with inorganic quantum dot materials, organic-inorganic hybrid perovskite quantum dots have a narrower half-width and higher purity of luminescent color, which has great advantages in high-performance display devices.
  • Hybrid perovskite materials can also be used as potential materials for obtaining lasers.
  • its layered self-assembled structure provides unique nonlinear optical properties for use in nonlinear optics. Therefore, organic-inorganic hybrid perovskite quantum dot materials play an important role in the field of hybrid perovskite materials.
  • the emission wavelength of the particles was 526 nm, and the fluorescence quantum yield reached 20%.
  • the quantum yield of the hybrid perovskite quantum dot material is still low, and the dispersion of the quantum dot in solution needs to be further improved.
  • related reports based on hybrid perovskite quantum dot materials are still concentrated in CH 3 NH 3 PbBr 3 quantum dots, and their emission wavelengths are concentrated at 520-530 nm, and the wavelength adjustment range is narrow.
  • the perovskite quantum dot material exhibits photoluminescence properties at room temperature and has excellent photoelectric properties, the quantum yield of perovskite quantum dot materials is still low, and it is difficult to effectively disperse in a solvent and Keep its structure intact. This has become a bottleneck limiting the development of perovskite quantum dot materials. Therefore, it is particularly important to increase the fluorescence quantum yield of the perovskite material and to obtain a good dispersion of the perovskite solution.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the invention provides a hybrid perovskite quantum dot material.
  • the quantum dot material comprises: a core formed by R 1 NH 3 AB 3 or (R 2 NH 3 ) 2 AB 4 , R 1 is a methyl group, and R 2 is an organic molecule a group, A is at least one selected from the group consisting of Ge, Sn, Pb, Sb, Bi, Cu or Mn, B is at least one selected from the group consisting of Cl, Br and I, and A and B constitute a coordination octahedral structure, R 1 NH 3 or R 2 NH 3 is filled in the gap of the coordination octahedral structure; and a surface ligand formed on the surface of the inner core, the surface ligand being an organic acid or an organic amine .
  • the ligand in the quantum dot material, is divergently wrapped around the surface of the core.
  • the growth of the core in a three-dimensional direction can be restricted, thereby maintaining the size of the quantum dot material at the nanometer level.
  • R 2 is a long-chain organic molecular group.
  • an organic hybrid group can be provided for the quantum dot material, thereby improving the quantum well structure of the quantum dot, thereby improving the performance of the quantum dot material.
  • the surface ligand is an organic acid or a long chain organic amine.
  • an organic acid or an organic amine can be adsorbed on the surface of the inner core by van der Waals force, thereby achieving the purpose of limiting the size of the quantum dot material.
  • the organic acid comprises a saturated alkyl acid or an unsaturated alkyl acid having a carbon number of at least 3.
  • the organic acid can be coated on the surface of the core of the quantum dot material to limit the growth of the core in three dimensions, thereby maintaining the size of the quantum dot material at the nanometer level.
  • the long-chain organic amine has a molecular formula of RNH2, wherein R is a saturated linear alkyl group or a saturated branched alkyl group, or is unsaturated An alkyl group or an unsaturated branched alkyl group.
  • R is a saturated linear alkyl group or a saturated branched alkyl group, or is unsaturated An alkyl group or an unsaturated branched alkyl group.
  • the long-chain organic amine is an alkylamine or an aromatic amine of 4 to 24 carbon atoms.
  • An object of the present invention is to provide a high fluorescence quantum yield hybrid perovskite quantum dot material having high fluorescence quantum yield and suitable for various hybrid perovskite quantum dots.
  • the illuminating wavelength can cover the entire visible light region.
  • the high fluorescence quantum yield hybrid perovskite quantum dot material proposed by the invention comprises a core and a surface ligand, and the surface ligand is scattered on the surface of the core; the core has the structural formula R 1 NH 3 AB 3 or (R 2 NH 3 ) 2 AB 4 , wherein A and B form a coordination octahedral structure, and R 1 NH 3 or R 2 NH 3 is filled in a coordination octahedral space composed of A and B, and R 1 is a methyl group , R 2 is a long-chain organic molecular group, A is any one of metals Ge, Sn, Pb, Sb, Bi, Cu or Mn, and B is any one of Cl, Br,
  • the above hybrid perovskite quantum dot material wherein the organic acid is a saturated alkyl acid of the formula C n H 2n+1 COOH, n ⁇ 2, or a formula of C n H 2n-1 COOH, n ⁇ 2 unsaturated alkyl acid.
  • the above hybrid perovskite quantum dot material, wherein the long-chain organic amine has the formula RNH 2 , wherein R is a saturated linear alkyl group or a saturated branched alkyl group, or is an unsaturated linear chain. An alkyl group or an unsaturated branched alkyl group.
  • the invention provides a method of making a hybrid perovskite quantum dot material.
  • the method comprises: (1) dissolving an inorganic metal halide and an organic ammonium halide salt in a first solvent to obtain a precursor solution, wherein the inorganic metal is halogenated in the precursor solution And the organic ammonium halide salt are both present in a free form in a molecular form; and (2) dropping the precursor solution into a second solvent, wherein the inorganic metal halide and the organic ammonium halide salt are in the first solvent
  • the solubility in the inorganic metal halide and the organic ammonium halide salt in the second solvent is such that the inorganic metal halide and the organic ammonium halide salt self-assemble, thereby the inorganic metal halide
  • An inorganic metal cation forms a coordination octahedral structure with a halogen anion of the organic ammonium halide salt
  • the first solvent comprises at least one selected from the group consisting of N,N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, N-methylpyrrolidone, and acetone.
  • the disolvent includes at least one selected from the group consisting of toluene, chloroform, n-hexane, cyclohexane, ethyl acetate, and diethyl ether.
  • the solubility of the inorganic metal halide and the organic ammonium halide salt in the first solvent can be made different from the solubility of the inorganic metal halide and the organic ammonium halide salt in the second solvent, thereby promoting the inorganic metal
  • the self-assembly of the halide and the organic ammonium halide salt facilitates the preparation of the hybrid perovskite quantum dot material and provides the quantum dot material with a high fluorescence quantum yield.
  • the first solvent is miscible with the second solvent.
  • the precursor solution containing the first solvent can be easily added to the second solvent to complete the self-assembly of the inorganic metal halide and the organic amine halide salt, thereby improving the efficiency of preparing the quantum dot material by the method. And the effect.
  • the organic acid comprises a saturated alkyl acid or an unsaturated alkyl acid having a carbon number of at least 3; and the long-chain organic amine has a molecular formula of RNH 2 , wherein R is a saturated linear chain An alkyl group or a saturated branched alkyl group, either an unsaturated linear alkyl group or an unsaturated branched alkyl group. Therefore, an organic amine having a suitable structure can be selected as a long-chain organic amine surface ligand according to different inorganic metal halides, thereby further preparing the hybrid perovskite quantum dot material and making the quantum dot material higher. Fluorescence quantum yield.
  • the long chain in the long-chain organic amine is an alkyl group or an aromatic group having 4 to 24 carbon atoms. Therefore, an organic amine having a suitable structure can be selected as a long-chain organic amine surface ligand according to different inorganic metal halides, thereby further preparing the hybrid perovskite quantum dot material and making the quantum dot material higher. Fluorescence quantum yield.
  • the precursor solution is obtained by the following steps: (a) mixing the inorganic metal halide with an organic ammonium halide salt by a molar ratio of 1: (0.1 to 3), adding the long a chain organic amine, the molar ratio of the long-chain organic amine to the inorganic metal halide is (0.1 to 3): 1, wherein the inorganic metal halide is selected from the group consisting of Ge, Sn, Pb, Sb, Bi, At least one of Cu and a halide of Mn, the halide comprising at least one selected from the group consisting of chloride, bromide, and iodide; (b) adding the organic acid to the mixed solution obtained in the step (a) The molar ratio of the organic acid to the inorganic metal halide is (0-20): 1, and the first solvent is added, and the molar ratio of the first solvent to the inorganic metal halide is (20 ⁇ ) 1000): 1; and (c) ultrason
  • the organic ammonium halide salt is obtained by dissolving an organic amine in absolute ethanol, formulating a 40% by volume solution of the organic amine, and stirring uniformly in an ice water bath. And adding a hydrohalic acid to the solution while stirring, the molar ratio of the organic amine to the hydrohalic acid is 1: (1 to 3), and stirring is continued for 2 hours in an ice water bath environment, using a rotary evaporator Evaporation at 50 ° C, -0.1 MPa pressure, removing the solvent to obtain the organic ammonium halide salt powder, rinsing the organic ammonium halide salt powder three times with diethyl ether, filtering and taking the filter residue, using a vacuum drying oven at 50 ° C, -0.1 Drying at MPa for 4 hours gives the organic ammonium halide salt, wherein the hydrohalic acid comprises at least one selected from the group consisting of HCl, HBr and HI, the organic amine having the formula
  • the step (2) further comprises: (2-1) dropping the precursor solution dropwise into the second solvent while stirring, at a dropping rate of 10 ⁇ L to 1 mL/min, The volume ratio of the precursor solution to the second solvent added is 1: (0.0001 to 10), stirring is continued for 2 hours to obtain a suspension solution; (2-2) the suspension solution is subjected to centrifugation The centrifuge rotates at 7500 rpm for 4 minutes. After centrifugation, the supernatant contains the hybrid perovskite quantum dot material; and (2-3) the supernatant is distilled and evaporated to dryness.
  • the solid was dried at 70 ° C for 8 hours under a pressure of -0.1 MPa to obtain the hybrid perovskite quantum dot material.
  • the inorganic metal halide and the inorganic metal halide can be added by adding a second solvent.
  • the organic ammonium halide salt self-assembles, and thus the hybrid perovskite quantum dot material can be easily obtained.
  • the hybrid perovskite quantum dot material prepared by the method of the invention is prepared by the principle that both the inorganic metal halide and the organic amine halide salt are dissolved in the first solvent, and they are all present in a free state in a molecular form in the first solvent.
  • the precursor solution is dropped into the second solvent, since the organic amine halide salt and the inorganic metal halide have different solubility in the first solvent and the second solvent, they rapidly self-assemble, the inorganic metal cation and the halogen.
  • the anion forms a coordination octahedron, and the organic amine cation enters the space between adjacent octahedrons to form a hybrid perovskite structure; at the same time, due to the presence of ligands such as oleic acid and long-chain amine in the solution, these ligands are coated
  • ligands such as oleic acid and long-chain amine in the solution
  • these ligands are coated
  • the resulting particle surface limits the growth of the particles in three dimensions, limits the particle size to the nanometer scale, and ultimately forms a hybrid perovskite quantum dot.
  • the hybrid perovskite quantum dots with different emission wavelengths can be prepared by adjusting the ratio of the inorganic halide salt/long-chain organic amine; by adjusting the type and proportion of the first solvent and the second solvent, Preparing different components of the hybrid perovskite fluorescent quantum dots; in the preparation method of the present invention, the surface ligand may be added to the first solvent or may be added to the second solvent; the organic-inorganic compound prepared by the method of the invention
  • the surface of the hybrid perovskite fluorescent quantum dot is coated with an organic ligand, which can be stably dispersed in the second solvent, facilitates the processing and utilization of the hybrid perovskite quantum dots, and can obtain the hybrid perovskite by removing the organic solvent by distillation. Quantum dot material.
  • the invention provides a method of making the hybrid perovskite quantum dot material described above.
  • the method comprises: (1) dissolving an organic amine in absolute ethanol, formulating a solution having a volume percentage of 40%, stirring for 10 minutes until uniform, and stirring in an ice water bath environment A hydrohalic acid is added to the solution, and the molar ratio of the organic amine to the hydrohalic acid is 1: (1 to 3), and stirring is continued for 2 hours in an ice water bath environment to obtain a clear solution, which is rotated at 50 ° C by a rotary evaporator.
  • an organic ammonium halide salt the organic amine being a saturated alkylamine of the formula C n H 2n+1 NH 2 , n ⁇ 1, having the formula C n H 2n-1 NH 2 , n ⁇ 2
  • An unsaturated alkylamine or an aromatic amine (2) mixing the inorganic metal halide with the organic ammonium halide salt powder by a molar ratio of 1: (0.1 to 3), adding a long-chain organic amine, wherein the long-chain organic amine is As described above, the molar ratio of the long-chain organic amine to the inorganic metal halide is 1: (0.1 to 3), and then added to the front.
  • the organic acid is described, wherein the molar ratio of the organic acid to the inorganic metal halide is 1: (0-20), and the first solvent is further added, and the molar ratio of the first solvent to the inorganic metal halide is 1: (20) ⁇ 1000), after sonication, ultrasonic treatment, after ultrasonic treatment for 5 minutes, a clear mixture was obtained, and the sonicated transparent mixture was filtered with a polytetrafluoroethylene filter having a pore size of 0.2 ⁇ m, and the filtrate obtained by filtration was taken as a precursor solution;
  • the inorganic metal halide described in the step is any one of metal halides of Ge, Sn, Pb, Sb, Bi, Cu, and Mn; wherein the first solvent is N, N- Any one of dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile or acetone; (3) the second solvent is rapidly stirred on a magnetic stirrer, and the precursor
  • An organic-inorganic hybrid perovskite material suspension solution wherein the second solution
  • the agent is any one of toluene, chloroform, n-hexane, cyclohexane, ethyl acetate or diethyl ether, optionally, the first solvent is miscible with the second solvent; (4) the above step (3)
  • the suspension of the organic-inorganic hybrid perovskite material is centrifuged, the centrifuge is rotated at 7500 rpm for 4 minutes, and after centrifugation, the lower layer is precipitated as a hybrid perovskite nanosheet or nanorod, supernatant Is a hybrid perovskite quantum dot solution; (5) distilling the hybrid perovskite quantum dot solution of step (4) to remove the organic solvent, leaving the remaining solid in a vacuum drying oven -0.1 Mpa, 70 ° C After drying for 8 hours, the hybrid perovskite quantum dot material was obtained. Thereby, the preparation of the hybrid pe
  • the invention provides a hybrid perovskite quantum dot material prepared in accordance with the methods previously described herein.
  • the quantum dots have all of the features and advantages of the quantum dots prepared by the methods described above, and are not described herein.
  • the invention provides a method of making a perovskite quantum dot material.
  • the method comprises: (1) dissolving an inorganic metal halide and an organic ammonium halide salt or a cerium halide in a first solvent to obtain a precursor solution in which the precursor solution is Said inorganic metal halide, organic ammonium halide salt and cerium halide are all present in a dispersed form; (2) adding said precursor solution to a second solvent to form an emulsion system, wherein said first solvent and A surface ligand is added in advance to at least one of the second solvent, the surface ligand is an organic acid or a long-chain organic amine, and the first solvent is immiscible with the second solvent, the emulsion
  • the system comprises a micelle formed by the surface ligand, the precursor solution is encapsulated in the micelle, and the micelle is dispersed in the second solvent; (3) the demulsifier is added to
  • Inorganic metal halide inorganic gold a cation forms a coordination octahedral structure with a halogen anion in the organic ammonium halide salt or a ruthenium halide, the organic amine cation of the organic ammonium halide salt entering a gap of the coordination octahedral structure to obtain the a perovskite quantum dot material
  • the inorganic metal halide is at least one selected from the group consisting of halides of Ge, Sn, Pb, Sb, Bi, Cu or Mn
  • the halide comprising a salt selected from the group consisting of chloride and bromine
  • the first solvent is at least one selected from the group consisting of N,N-dimethylformamide, acetonitrile, N-methylpyrrolidone, and dimethyl sulfoxide.
  • the second solvent is selected from the group consisting of 1- At least one of octadecene, n-hexane, cyclohexane, and n-heptane, and a surface ligand, the surface ligand, is previously added to at least one of the first solvent and the second solvent It is an organic acid or a long-chain organic amine. Thereby, the perovskite quantum dot material can be easily obtained.
  • the organic acid comprises a saturated alkyl acid or an unsaturated alkyl acid having a carbon number of at least 3, and the long-chain organic amine has a molecular formula of RNH2, wherein R is A saturated linear alkyl group or a saturated branched alkyl group is either an unsaturated linear alkyl group or an unsaturated branched alkyl group.
  • R is A saturated linear alkyl group or a saturated branched alkyl group is either an unsaturated linear alkyl group or an unsaturated branched alkyl group.
  • the long-chain organic amine is an alkylamine or an aromatic amine of 4 to 24 carbon atoms.
  • the above organic acid can be used as a surface ligand, and the performance of the quantum dot material prepared by the method can be improved.
  • the precursor solution is obtained by mixing the inorganic metal halide with the organic ammonium halide salt or the halide salt of hydrazine by a molar ratio of 1: (0.1 to 3).
  • the molar ratio of the long-chain organic amine to the inorganic metal halide is (0.1-3): 1 adding the organic acid, the organic acid and the inorganic metal halide a molar ratio of (0 to 20): 1, adding the first solvent, the molar ratio of the first solvent to the inorganic metal halide is (20 to 1000): 1, in order to form a mixed solution,
  • the mixed solution was sonicated, and the sonicated mixture was filtered with a polytetrafluoroethylene filter having a pore size of 0.2 ⁇ m, and the filtrate was retained to obtain the precursor solution.
  • a precursor solution can be obtained, and the perovskite quantum dot material can be easily obtained by a subsequent
  • the organic amine halide salt is obtained by dissolving an organic amine in absolute ethanol, formulating a 40% by volume solution of the organic amine, stirring uniformly, in an ice water bath. And adding a hydrohalic acid to the solution while stirring, the molar ratio of the organic amine to the hydrohalic acid is 1: (1 to 3), and stirring is continued for 2 hours in an ice water bath environment, using a rotary evaporator Evaporation at 50 ° C, -0.1 MPa pressure, removing the solvent to obtain the organic ammonium halide salt powder, rinsing the organic ammonium halide salt powder three times with diethyl ether, filtering and taking the filter residue, using a vacuum drying oven at 50 ° C, -0.1 Drying at MPa for 4 hours gives the organic ammonium halide salt, wherein the hydrohalic acid comprises at least one selected from the group consisting of HCl, HBr, and HI, and the organic amine is at
  • the step (2) further comprises: dropping the precursor solution dropwise into the second solvent while stirring, at a dropping rate of 10 ⁇ L to 1 mL/min, and adding the precursor
  • the volume ratio of the solution to the second solvent was 1: (0.0001 to 10), and stirring was continued for 2 hours to obtain the emulsion system.
  • the step (3) further comprises: adding a demulsifier to the emulsion system, adding a volume ratio of the demulsifier to the second solvent: 1: (1-10), adding The emulsion system of the demulsifier is centrifuged, the centrifuge speed is 7500 rpm, and the time is 4 minutes, and the supernatant is obtained to obtain a hybrid perovskite quantum dot solution for the hybrid perovskite quantum dots.
  • the solution is washed and dried in a vacuum to obtain the hybrid perovskite quantum dot material, wherein the demulsifier is any one selected from the group consisting of acetone, methanol, isopropanol, n-butanol or t-butanol. At least one.
  • the demulsifier is any one selected from the group consisting of acetone, methanol, isopropanol, n-butanol or t-butanol. At least one.
  • the invention provides a semiconductor device.
  • the device contains the hybrid perovskite quantum dot material described above.
  • the quantum dot material can be used to provide the semiconductor device with quantum dots having a reasonable structure and good performance, thereby improving the use effect of the semiconductor device.
  • the semiconductor device comprises an electroluminescent device, a solar cell, a display device, and a nonlinear optical device.
  • the quantum dot material according to the embodiment of the present invention can be applied to the corresponding position of the above device and the corresponding function can be exerted, thereby further improving the use effect of the device.
  • FIG. 1 shows a schematic structural view of a hybrid perovskite quantum dot material according to an embodiment of the present invention
  • Embodiment 3 is a digital photograph of a quantum dot solution according to Embodiment 3 of the present invention under a fluorescent lamp and an ultraviolet lamp;
  • Figure 5 shows a scanning electron micrograph of a lower layer precipitate according to Example 3 of the present invention
  • Figure 6 shows a transmission electron micrograph of a quantum dot according to Embodiment 3 of the present invention.
  • Embodiment 7 is a digital photograph of a quantum dot solution according to Embodiment 5 of the present invention under a fluorescent lamp and an ultraviolet lamp;
  • Figure 8 shows an emission spectrum of a quantum dot according to Embodiment 5 of the present invention.
  • Figure 9 shows an emission spectrum of a quantum dot according to Embodiment 8 of the present invention.
  • Figure 10 is a block diagram showing the structure of an electroluminescent device according to Embodiment 10 of the present invention.
  • FIG. 11 shows a flow chart of a method of preparing a hybrid perovskite quantum dot material in accordance with one embodiment of the present invention
  • FIG. 12 shows a flow chart of a method of preparing a hybrid perovskite quantum dot material in accordance with yet another embodiment of the present invention
  • FIG. 13 shows a flow of a method of preparing a hybrid perovskite quantum dot material according to another embodiment of the present invention.
  • the invention provides a hybrid perovskite quantum dot material.
  • the quantum dot material is composed of a surface ligand 1 and a core 2.
  • the core 2 is formed of R 1 NH 3 AB 3 or (R 2 NH 3 ) 2 AB 4 .
  • A is a central metal cation
  • B is a halogen anion.
  • the central cation A and the halogen anion B constitute a regular octahedron 3, and in the gap of the regular octahedron 3, contain an organic amine 4, that is, R 1 NH 3 or R 2 NH 3 .
  • each of the regular octahedrons 3 in the core 2 is extended by a common apex connection, and the organic amine 4 forms a hydrogen bond with the halogen anion B through the hydrogen atom of the amine and enters the gap of the regular octahedron 3 to form an alternate arrangement of organic and inorganic impurities.
  • the structure further combines the advantages of the inorganic material and the organic material from a molecular scale, and the quantum dot material has a high fluorescence quantum yield, thereby improving the photoelectric performance and the range of use of the quantum dot material according to the embodiment of the present invention. .
  • A is at least one selected from the group consisting of Ge, Sn, Pb, Sb, Bi, Cu or Mn
  • B is at least one selected from the group consisting of Cl, Br and I
  • R 1 is a methyl group
  • R 2 is a long-chain organic molecular group.
  • R 2 is an alkyl group or an aromatic group having not less than 2 carbon atoms.
  • a surface ligand 1 is formed on the surface of the core 2.
  • the surface ligand 1 is an organic acid or a long-chain organic amine, and the surface ligand 1 is dispersed in the surface of the core 2 in a divergent manner.
  • the surface ligand 1 can function to limit the growth of the core 2 in three dimensions, and the size of the quantum dot material can be maintained at the nanometer level.
  • the organic acid forming the surface ligand 1 may be a saturated alkyl acid or an unsaturated alkyl acid having a carbon number of at least 3.
  • the organic acid may be of the formula C n H a saturated alkyl acid of 2n+1 COOH (n ⁇ 2), or an unsaturated alkyl acid of the formula C n H 2n-1 COOH (n ⁇ 2);
  • a long-chain organic amine formula forming surface ligand 1 may Is RNH2, wherein R is a saturated linear alkyl group or a saturated branched alkyl group, or an unsaturated linear alkyl group or an unsaturated branched alkyl group, more specifically, R may be An alkyl group or an aromatic group having 4 to 24 carbon atoms.
  • the surface ligand 1 can be formed by the above organic acid or long-chain organic amine, and the stability of the quantum dot material can be ensured while limiting the size of the quantum dot material, thereby improving the performance of
  • the quantum dot material has a particle diameter of 3 to 4 nm. Further, the inventors passed the integrating sphere quantum yield tester (C9920-02, Hamamatsu photon) and according to the methods described in the specification provided by the instrument manufacturer, the quantum dot materials prepared according to Examples 1 to 13 of the present invention. The fluorescence quantum yield was tested. The quantum dot material according to the embodiment of the present invention has a fluorescence quantum yield of not less than 60%, which is higher than that of a general hybrid perovskite quantum dot material.
  • the quantum dot material can be stably dispersed in various organic solvents such as toluene, chloroform, n-hexane, cyclohexane, ethyl acetate, etc., and the quantum dot powder and the solution have good stability. Fluorescence can be kept for a long time without quenching. Moreover, different metal elements, halogens, and surface ligands can be selected, and quantum dots having different emission wavelengths can be prepared by designing components and structures forming the quantum dot material, and the emission wavelength can cover the entire visible light region, thereby The quantum dots have great advantages in the application of high color gamut white LEDs.
  • hybrid perovskite quantum dots with different emission wavelengths can be prepared; by adjusting the type and ratio of the first solvent and the second solvent, different components can be prepared.
  • Hybrid perovskite fluorescent quantum dots can be prepared.
  • the quantum dot material according to the embodiment of the present invention has a narrow half-width and a high purity of the luminescent color, which can meet the needs of practical applications, and has broad application prospects in the fields of high-performance display devices, lasers, and nonlinear optics.
  • the invention provides a method of making a hybrid perovskite quantum dot material. According to an embodiment of the present invention, referring to FIG. 11, the method includes:
  • an inorganic metal halide and an organic ammonium halide salt are dissolved in a first solvent to obtain a precursor solution.
  • the first solvent includes at least one selected from the group consisting of N,N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, N-methylpyrrolidone, and acetone.
  • the inorganic metal halide and the organic ammonium halide salt are present in a dispersed form in the first solvent.
  • the description "dispersed form” specifically means that the inorganic metal halide and the organic amine halide salt do not undergo a coordination reaction, are dispersed in a solution in a free state, and are not coordinated to form any crystal or compound.
  • the inorganic metal halide and the organic ammonium halide salt can be dissolved in the solution by selecting an appropriate first solvent, and the metal cation does not coordinate with the halogen anion to obtain both the inorganic metal halide and the organic ammonium halide salt.
  • a precursor solution in the form of a free dispersion A precursor solution in the form of a free dispersion.
  • the precursor solution can be obtained by the following steps:
  • a metal selected from the group consisting of Ge, Sn, Pb, Sb, Bi, Cu, and Mn forms a metal halide with a halogen of chlorine, bromine, and iodine, and
  • the metal halide is mixed with the organic ammonium halide salt by a molar ratio of 1: (0.1 to 3).
  • a long-chain organic amine as a surface ligand is added to the mixture of the metal halide and the organic ammonium halide salt, and the molar ratio of the added long-chain organic amine to the inorganic metal halide is 1: (0.1 to 3).
  • the long-chain organic amine may have a molecular formula of RNH2, wherein R is a saturated linear alkyl group or a saturated branched alkyl group, or an unsaturated linear alkyl group or not A saturated branched alkyl group.
  • R may be an alkyl or aryl group containing from 4 to 24 carbon atoms.
  • the above organic ammonium halide salt is prepared in the following manner: an organic amine is dissolved in absolute ethanol to prepare a 40% by volume solution of the organic amine, and the mixture is uniformly stirred in an ice water bath.
  • the hydrohalic acid was added to the solution while stirring.
  • the hydrohalic acid comprises at least one selected from the group consisting of HCl, HBr and HI
  • the organic amine is a saturated alkylamine of the formula C n H 2n+1 NH 2 , n ⁇ 1 and a formula of C n H 2n- 1 NH 2 , n ⁇ 2 unsaturated alkylamine or aromatic amine.
  • the molar ratio of organic amine to hydrohalic acid is 1: (1-3).
  • the above mixture of the organic amine and the hydrohalic acid can be continuously stirred in an ice water bath environment for 2 hours, and then evaporated to remove the solvent by a rotary evaporator at 50 ° C and a pressure of -0.1 MPa.
  • the powder was washed three times with diethyl ether, filtered and filtered, and dried under vacuum at 50 ° C and -0.1 MPa for 4 hours to obtain an organic ammonium halide salt.
  • an organic acid as a surface ligand is added to a mixture of an inorganic metal halide containing a long-chain organic amine ligand and an organic ammonium halide salt, and the organic acid to be added is
  • the molar ratio of the inorganic metal halide is (0 to 20): 1, in order to obtain a mixture solution containing an organic acid ligand.
  • the organic acid surface ligand may be a saturated alkyl acid or an unsaturated alkyl acid having at least 3 carbon atoms.
  • the organic acid may be a saturated alkyl acid of the formula C n H 2n+1 COOH (n ⁇ 2), or a formula of C n H 2n-1 COOH (n ⁇ 2) of an unsaturated alkyl acid.
  • a first solvent is added to the above mixture solution, and the molar ratio of the first solvent to the inorganic metal halide is (20 to 1000):1.
  • the organic acid to be added and the inorganic metal halide may further have a molar ratio of 1: (0 to 20), and the molar amount of the first solvent and the inorganic metal halide added.
  • the ratio can also be 1: (20 to 1000).
  • the mixture solution to which the first solvent is added is subjected to sonication, and then the mixture is filtered with a polytetrafluoroethylene filter having a pore size of 0.2 ⁇ m, and the filtrate is retained to obtain a precursor. Body solution.
  • the precursor solution is dropped into the second solvent to self-assemble the inorganic metal halide in the precursor solution and the organic ammonium halide salt, thereby obtaining an embodiment according to the present invention.
  • Hybrid perovskite quantum dot material includes at least one selected from the group consisting of toluene, chloroform, n-hexane, cyclohexane, ethyl acetate, and diethyl ether.
  • the second solvent is miscible with the first solvent.
  • a solvent miscible with the first solvent can be selected as the second solvent to complete the preparation of the quantum dot material.
  • the term "miscible" specifically means that when the first solvent is mixed with the second, the mixed solution does not undergo delamination.
  • an appropriate organic substance as the second solvent can be selected so that the solubility of the inorganic metal halide and the organic ammonium halide salt in the first solvent is different from the solubility of the inorganic metal halide and the organic ammonium halide salt in the second solvent.
  • the inorganic metal cation of the inorganic metal halide forms a coordination octahedral structure with the halogen anion of the organic ammonium halide salt, while the organic amine cation of the organic ammonium halide salt enters the gap of the coordination octahedral structure.
  • the quantum dot material can also be obtained by the following steps:
  • the precursor solution is added to the second solvent.
  • the precursor solution was dropwise added to the second solvent while stirring at a dropping rate of 10 ⁇ L to 1 mL/min.
  • the volume ratio of the precursor solution to the second solvent added is 1: (0.0001 to 10).
  • stirring was continued for 2 hours to obtain a suspension solution.
  • the precursor solution can be slowly added to the second solvent, and the coordination reaction of the inorganic metal cation of the inorganic metal halide with the halogen anion of the organic ammonium halide salt is slowly performed to ensure self-assembly to form a complete eight. Face structure.
  • the above solution is subjected to centrifugation.
  • the centrifuge speed during centrifugation may be 7500 rpm for 4 minutes.
  • the hybrid perovskite quantum dot material is distributed in the supernatant.
  • the lower layer precipitate after centrifugation is a hybrid perovskite nanosheet or nanorod.
  • the above supernatant liquid is subjected to distillation drying to obtain a quantum dot material according to an embodiment of the present invention.
  • the above supernatant liquid is distilled, and after the liquid solvent is evaporated to dryness, the remaining solid is dried under a pressure of -0.1 MPa at 70 ° C for 8 hours to obtain a hybrid perovskite quantum dot. material.
  • a quantum dot material having a high purity can be easily obtained.
  • the powdery quantum dot material can be obtained by drying while maintaining the stable presence of the quantum dot material without agglomeration.
  • the preparation principle of the prepared hybrid perovskite quantum dot material proposed by the present invention is that both the inorganic metal halide and the organic amine halide salt can be dissolved in the first solvent, and They are present in dispersed form in the first solvent to form a precursor solution.
  • the precursor solution is dropped into the second solvent, since the organic amine halide salt and the inorganic metal halide have different solubility in the first solvent and the second solvent, they rapidly self-assemble, the inorganic metal cation and the halogen.
  • the anion forms a coordination octahedron, and the organic amine cation enters the space between adjacent octahedrons to form a hybrid perovskite structure; at the same time, due to the presence of ligands such as organic acids and long-chain amines in the solution, these ligands are coated
  • the surface of the regular octahedral particles formed limits the growth of the particles in three dimensions, limits the particle size to the nanometer level, and ultimately forms a hybrid perovskite quantum dot.
  • hybrid perovskite quantum dots with different emission wavelengths can be prepared by adjusting the ratio of inorganic metal halides and long-chain organic amines; by adjusting the types and proportions of the first solvent and the second solvent
  • Different components of the hybrid perovskite fluorescent quantum dots can be prepared; in the preparation method of the invention, the surface ligand can be added to the first solvent or to the second solvent; the hybrid prepared by the method of the invention
  • the surface of the perovskite fluorescent quantum dot is coated with an organic ligand, which can be stably dispersed in the second solvent, facilitating the hybrid perovskite quantum dots.
  • the processing is utilized, and the hybrid perovskite quantum dot material can be obtained by removing the organic solvent by distillation.
  • the organic-inorganic hybrid perovskite fluorescent quantum dot material prepared by the above method has the following advantages:
  • the method for preparing hybrid perovskite quantum dot material by using the method of the invention can simultaneously obtain hybrid perovskite quantum dot powder and disperse in various organic A quantum dot solution in a solvent.
  • the above method can prepare ultra-small particle size hybrid perovskite quantum dots, and the quantum dot has high luminous intensity, and the fluorescence quantum yield can reach 60%, far exceeding the similar materials obtained by the existing preparation methods.
  • the fluorescent quantum yield hybrid perovskite quantum dot material prepared by the method of the invention can be stably dispersed in various organic solvents such as toluene, chloroform, n-hexane, cyclohexane, ethyl acetate, etc., quantum dot powder Both the solution and the solution have good stability, and the fluorescence can be kept for a long time without quenching, which lays a good foundation for the application of the hybrid perovskite quantum dot material.
  • the above preparation method is versatile and can be applied to the preparation of a plurality of hybrid perovskite quantum dots.
  • quantum dots having different emission wavelengths can be prepared.
  • the illuminating wavelength can cover the entire visible light region, and has great advantages in the application of high color gamut white LED.
  • the hybrid perovskite quantum dots prepared by the invention can obtain a trans electroluminescent device with good performance by full solution processing.
  • the hybridized perovskite quantum dots prepared by the invention have narrow half-peak width and high purity of luminescent color, which can meet the needs of practical applications, and have broad application prospects in the fields of high-performance display devices, lasers, and nonlinear optics.
  • the hybrid perovskite nanosheets or nanorods can also be obtained simultaneously.
  • the invention provides a method of preparing a hybrid perovskite quantum dot material as previously described herein. According to an embodiment of the invention, the method comprises the steps of:
  • the organic amine may be a saturated alkylamine of the formula C n H 2n+1 NH 2 , n ⁇ 1, a formula of C n H 2n-1 NH 2 , n ⁇ 2 Unsaturated alkylamine or aromatic amine.
  • the long-chain organic amine may have a molecular formula of RNH 2 , R is a saturated linear alkyl group or an unsaturated linear alkyl group, or an unsaturated linear alkyl group. Or an unsaturated branched alkyl group.
  • the long-chain group in the above long-chain organic amine may be an alkyl group or an aromatic group having 6 to 10 carbon atoms.
  • an organic acid is further added, and the molar ratio of the organic acid to the inorganic metal halide is 1: (0 to 20).
  • the organic acid is a saturated alkyl acid or an unsaturated alkyl acid having a carbon number of at least 3, and, according to an embodiment of the present invention, the organic acid may be of the formula C n H 2n+1 COOH (n ⁇ 2) a saturated alkyl acid, or an unsaturated alkyl acid of the formula C n H 2n-1 COOH (n ⁇ 2).
  • the first solvent is further added, the molar ratio of the first solvent to the inorganic metal halide is 1: (20-1000), and after mixing, ultrasonic treatment is performed, and after ultrasonic treatment for 5 minutes, a transparent mixture is obtained, and the pore diameter is 0.2 ⁇ m.
  • the PTFE filter filter is used to filter the sonicated transparent mixture, and the filtrate obtained by filtration is used as a precursor solution; in this step, the inorganic metal halides are metals Ge, Sn, Pb, Sb, Bi, Cu and Mn.
  • any one of the halide salts comprising at least one of chloride, bromide and iodide; wherein the first solvent is N,N-dimethylformamide, dimethyl sulfoxide, Any of tetrahydrofuran, acetonitrile or acetone.
  • the second solvent is rapidly stirred on a magnetic stirrer, and the precursor solution is dropped into the second solvent by a micro-injector while stirring, and the dropping speed is 10 ⁇ L to 1 mL/min, and the mixture is added thereto.
  • the volume ratio of the whole solution to the second solvent is 1: (0.0001 ⁇ 10), and the stirring is continued for 2 hours to obtain a suspension solution of the organic-inorganic hybrid perovskite material; wherein the second solvent is toluene, chloroform, and hexa Any of alkane, cyclohexane, ethyl acetate or diethyl ether;
  • the organic-inorganic hybrid perovskite material suspension solution of the above step (3) is centrifuged, the centrifuge speed is 7500 rpm, and the time is 4 minutes. After centrifugation, the lower layer is precipitated as a hybrid perovskite nanosheet. a layer or nanorod, the supernatant is a hybrid perovskite quantum dot solution;
  • the hybrid perovskite quantum dot material previously described in the present invention can be easily obtained by the above method, and the quantum dot material obtained by the method has all the features and advantages of the quantum dot material described above, and is no longer Narration.
  • the invention provides a hybrid perovskite quantum dot material.
  • the hybrid perovskite quantum dot material is prepared by the method previously described herein.
  • the hybrid perovskite quantum dot material has all of the features and advantages of the hybrid perovskite quantum dot material prepared by the method described above, and will not be described herein.
  • the invention provides a method of making a perovskite quantum dot material. According to an embodiment of the invention, the method comprises:
  • An inorganic metal halide and an organic ammonium halide salt or a phosphonium halide are dissolved in a first solvent to obtain a precursor solution.
  • the inorganic metal halide and the organic ammonium halide salt or the cerium halide have a good solubility in the first solvent, and therefore the above substances are present in a dispersed form in the first solvent.
  • an inorganic halide salt is mixed with the above-mentioned organic ammonium halide salt powder or a halide of Cs, and the molar ratio of the inorganic halide salt to the above-mentioned organic ammonium halide salt powder or Cs halide is 1: (0.1 to 3).
  • a long-chain organic amine is added as a surface ligand, and the molar ratio of the long-chain organic amine to the inorganic halide salt is 1: (0.1 to 3).
  • the long-chain organic amine has the formula RNH 2 , wherein R may be a saturated or unsaturated linear alkyl group or a saturated or unsaturated branched alkyl group.
  • R group in the above long chain organic amine may be an alkyl group having 4 to 24 carbon atoms or an aromatic group.
  • the organic acid is used as a surface ligand, and the molar ratio of the organic acid to the inorganic halide salt may be (0 to 100): (1 to 10).
  • the above organic acid organic acid may be a saturated alkyl acid of the formula C n H 2n+1 COOH, n ⁇ 2, or a formula of C n H 2n-1 COOH, n ⁇ 2 Unsaturated alkyl acid.
  • a first solvent is added to the above mixture containing an organic acid and a long-chain organic amine.
  • the molar ratio of the added first solvent to the inorganic halide salt may be (200 to 1000): (1 to 10).
  • the inorganic halide salt in the step is any one of halide salts of metal Ge, Sn, Pb, Sb, Bi, Cu, Mn; the first solvent is selected from N, N- At least one of dimethylformamide, acetonitrile, N-methylpyrrolidone, and dimethyl sulfoxide.
  • the organic ammonium halide salt added in the step is prepared according to the following steps: dissolving the organic amine in absolute ethanol, stirring until the organic amine is uniformly mixed with the absolute ethanol, and formulating the volume percentage to 40.
  • a hydrohalic acid was added to the above solution while stirring, and the molar ratio of the hydrohalic acid to the organic amine in the home was (1 to 3):1.
  • the mixture containing the hydrohalic acid was continuously stirred for 2 hours in an ice water bath to obtain a clear solution, which was evaporated by a rotary evaporator at 50 ° C under a pressure of -0.1 MPa to remove the solvent to obtain a crystalline powder of an organic amine halide salt.
  • the crystal powder was washed several times with diethyl ether, filtered, and dried in a vacuum drying oven at 50 ° C and -0.1 MPa for 4 hours to obtain an organic ammonium halide salt powder.
  • the precursor solution obtained in the step (1) is added to the second solvent to form an emulsion system.
  • the above emulsion system is obtained by the following steps:
  • the second solvent is placed on a magnetic stirrer for rapid stirring, and the above is carried out while stirring The precursor solution was dropwise added to the second solvent.
  • the second solvent is at least one selected from the group consisting of 1-octadecene (ODE), n-hexane, cyclohexane and n-heptane, and the second solvent selected in the step and the step (1)
  • the first solvent is immiscible.
  • the term "immiscible" specifically means that when the first solvent is mixed with the second solvent, the mixed solution is delaminated.
  • the emulsion system can be easily formed by selecting two immiscible solvents as the first solvent and the second solvent, respectively.
  • the dropping rate of the dropwise addition precursor solution is from 10 ⁇ L to 1 mL/min, and the volume ratio of the precursor solution to the second solvent is 1: (0.0001 to 10).
  • a slow, small amount of dripping facilitates the formation of an emulsion system, and thus, the dropwise addition of the precursor solution can be accomplished using a micro-injector. After the precursor solution was added, the mixed solution was continuously stirred for 2 hours to obtain a perovskite material emulsion system.
  • a demulsifier is added to the above emulsion system to self-assemble the inorganic metal halide with the organic ammonium halide salt or the cerium halide salt to obtain a perovskite quantum dot material.
  • a demulsifier is added to the perovskite material emulsion system, and the volume ratio of the demulsifier to the second solvent is 1: (1 to 10). Then, the emulsion system to which the demulsifier was added was centrifuged, and the centrifuge was rotated at 7,500 rpm for 4 minutes. After centrifugation, the supernatant is retained to obtain a perovskite quantum dot solution.
  • the perovskite quantum dot solution is washed to remove the organic solvent.
  • the solution after removing the organic solvent was vacuum dried, and the obtained powder was a perovskite quantum dot powder material.
  • the demulsifier may be at least one selected from the group consisting of acetone, methanol, isopropanol, n-butanol, and t-butanol.
  • the amount of the demulsifier added in this step it is possible to obtain products such as nanorods and nanosheets while obtaining the quantum dot powder material.
  • the volume ratio of the amount of the demulsifier to the second solvent is 1: (5 to 10)
  • a solution containing the nanorods and the quantum dot material can be obtained.
  • Quantum dot powder materials and nanorod materials can be obtained separately by post-centrifugation separation.
  • the volume ratio of the amount of the demulsifier to the second solvent is 1: (1 to 5)
  • a solution containing the nanosheet, the nanorod, and the quantum dot material can be obtained.
  • a plurality of perovskite materials having different morphologies can be prepared while obtaining the quantum dot material.
  • the inorganic metal halide, the organic amine halide salt or the cerium halide can be dissolved in the first solvent, and they are in the first solvent. All exist in a decentralized form. In other words, the inorganic metal halide, the organic amine halide salt or the cerium halide does not undergo a coordination reaction in the first solvent to form a crystal nucleus or a compound.
  • the precursor solution When the precursor solution is dropped into the second solvent, since the first solvent contained in the precursor solution is immiscible with the second solvent, and organically added as a surface ligand in the first solvent and the second solvent in advance Amines and organic acids are amphiphilic, so the above The amine and the organic acid can encapsulate the precursor solution containing the first solvent to form a micelle.
  • the precursor solution is encapsulated in the micelle and dispersed in the second solvent in the form of small droplets to form an emulsion system; after the addition of the demulsifier, the equilibrium emulsion system is destroyed, and the precursor in the small droplets diffuses to the second In the solvent, self-assembly occurs rapidly, forming a perovskite nucleus, and at the same time, due to hydrogen bonding between the unbroken micelles and the perovskite nuclei in the emulsion, the micelles adsorb on the surface of the nucleus as a surface ligand. Limiting the further growth of the nucleus ultimately controls the particle size at the nanometer level.
  • the perovskite quantum dot material prepared by the method has the features and advantages possessed by the perovskite quantum dot material described above, and will not be described herein.
  • the invention provides a semiconductor device.
  • the semiconductor device comprises the perovskite quantum dot material according to any of the embodiments described above. Since the semiconductor device contains the above quantum dot material, the semiconductor device has all the features and advantages of the quantum dot material described above, and will not be described herein. Thus, by preparing the above quantum dot material at the corresponding position of the semiconductor device, the use effect of the device can be improved.
  • the semiconductor device may be an electroluminescent device, a solar cell, a display device, and a nonlinear optical device.
  • CH 3 NH 3 PbI 3 quantum dots are prepared by using oleic acid and 2-ethylhexylamine as surface ligands, and the specific steps are as follows:
  • a 10 mL mass fraction of a 30% methylamine ethanol solution (purity >99.9%) was weighed using a 10 mL pipette, placed in a 100 mL round bottom flask, and stirred for 10 minutes until homogeneous.
  • 5 mL of hydriodic acid having a mass fraction of 57% was added to the above solution while stirring, and stirring was continued for 2 hours in an ice water bath to obtain a clear solution.
  • the solvent was removed under reduced pressure at 50 ° C under a pressure of -0.1 MPa by a rotary evaporator.
  • the toluene in the above step (3) was placed on a magnetic stirrer and rapidly stirred.
  • the precursor solution was aspirated by a micro-injector, and dropped into a rapidly stirred n-hexane dropwise, and a drop (a drop of about 10 ⁇ L) was dropped every 30 seconds. It was monitored by UV light while dropping, until 300 ⁇ L of the precursor solution was added. It was observed that the solution of the obtained CH 3 NH 3 PbI 3 quantum dots was tan, and the solution emitted dim red light under an ultraviolet lamp.
  • the luminescence of the quantum dot was measured by a fluorescence spectrometer in the near-infrared region, and the luminescence peak position was 726 nm.
  • Figure 2 is a fluorescence spectrum of the obtained CH 3 NH 3 PbI 3 quantum dots.
  • the obtained quantum dot emission wavelength is 740 nm
  • 2-ethylhexylamine is added in an amount of 20 ⁇ L
  • the obtained quantum dot emission wavelength is 700 nm. That is, different inorganic metal halide/long-chain organic amine ratios can produce hybrid perovskite quantum dots with different emission wavelengths.
  • CH 3 NH 3 PbCl 3 quantum dots are prepared by using butyric acid and octadecylamine as surface ligands, and the specific steps are as follows:
  • the product in the flask was washed three times with anhydrous diethyl ether, suction filtered, and dried in a vacuum drying oven at 50 ° C under a pressure of -0.1 MPa for 4 hours to obtain methylamine chloride powder;
  • the precursor solution was aspirated by a micro-injector, and dropped into the rapidly stirred chloroform in the step (3) dropwise, and a drop (a drop of about 10 ⁇ L) was dropped every 30 seconds, and while being added dropwise, it was monitored with an ultraviolet lamp until 1 mL was added.
  • Precursor solution It was observed that the chloroform solution of the obtained CH 3 NH 3 PbCl 3 quantum dots was light blue, and emitted purple light under irradiation with an ultraviolet lamp. Using a fluorescence spectrometer, the luminescence of the quantum dot is in the violet region, and the luminescence peak position is 406 nm;
  • the light blue quantum dot solution obtained in the step (4) is transferred to a distillation flask, and the organic solvent is removed by a vacuum distillation apparatus, and the remaining solid is dried in a vacuum drying oven for 8 hours to obtain a crystalline powder of a quantum dot, and the obtained CH 3 is obtained.
  • the NH 3 PbCl 3 quantum dot powder is white.
  • CH 3 NH 3 PbBr 3 quantum dots are prepared by using propionic acid and n-hexylamine as surface ligands, and the specific steps are as follows:
  • the precursor solution was aspirated with a micro-injector, and dropped into the rapidly stirred toluene in the step (3) dropwise, and a drop (a drop of about 10 ⁇ L) was dropped every 30 seconds, and while being added dropwise, it was monitored with an ultraviolet lamp until 1 mL was added.
  • Precursor solution It can be observed that brownish yellow turbidity appears in the toluene solution and is green under the ultraviolet light;
  • the quantum dot solution obtained in the step (4) was transferred to a centrifuge tube, and centrifuged at 7500 rpm for 10 min.
  • the upper layer of the centrifuge tube was observed to be a bright green solution, the lower layer was a dark yellow precipitate, and the supernatant was aspirated by a dropper to obtain CH 3 .
  • a solution of NH 3 PbBr 3 quantum dots. 3 is a photograph of the obtained CH 3 NH 3 PbBr 3 quantum dot solution under a fluorescent lamp and an ultraviolet lamp;
  • FIG. 4 is an absorption emission spectrum of the obtained quantum dot, and the luminescent peak of the quantum dot is 515 nm.
  • the lower layer is precipitated as a hybrid perovskite nanosheet or nanorod, and
  • FIG. 5 is a scanning electron micrograph of the lower layer precipitate;
  • the bright green supernatant obtained in the step (4) is transferred to a distillation flask, and the organic solvent is removed by a vacuum distillation apparatus, and the remaining solid is dried in a vacuum drying oven for 8 hours to obtain a crystalline powder of quantum dots, and the obtained CH 3 NH is obtained.
  • 3 PbBr 3 quantum dot powder is yellow-green.
  • Figure 6 is a transmission electron micrograph of the obtained quantum dots.
  • step (2) of the present embodiment if the surface ligand (n-hexylamine, propionic acid) is not added to the first solvent, and the surface ligand is added to the second solvent described in the step (3), the same can be obtained.
  • Hybrid perovskite quantum dot material if the surface ligand (n-hexylamine, propionic acid) is not added to the first solvent, and the surface ligand is added to the second solvent described in the step (3), the same can be obtained.
  • Hybrid perovskite quantum dot material if the surface ligand (n-hexylamine, propionic acid) is not added to the first solvent, and the surface ligand is added to the second solvent described in the step (3), the same can be obtained.
  • (C 2 H 5 NH 3 ) 2 GeI 4 quantum dots are prepared by using n-octylamine as a surface ligand, and the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, and dropped dropwise into the rapidly stirred diethyl ether of the step (3), and a drop (a drop of about 10 ⁇ L) was dropped every 5 seconds until 2 mL of the precursor solution was added. It can be observed that there is turbidity in the solution.
  • the solution obtained in the step (4) was transferred to a centrifuge tube, centrifuged at 7000 rpm for 4 minutes, and the supernatant liquid was aspirated with a dropper to obtain an ink black solution which was illuminated in the infrared region.
  • CH 3 NH 3 PbCl x Br 3-x (0 ⁇ x ⁇ 3) quantum dots are prepared by using oleylamine and n-hexylamine as surface ligands, and the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, and dropped dropwise into the rapidly stirred chloroform of the step (3), and a drop (a drop of about 10 ⁇ L) was dropped every 10 s until 1 mL of the precursor solution was added. It can be observed that the solution gradually becomes cloudy and green particles are formed;
  • the turbid solution obtained in the step (4) was transferred to a centrifuge tube, centrifuged at 7500 rpm for 10 min, the supernatant was light blue, and the precipitate was cyan. The supernatant was blue under UV light.
  • Figure 7 is a photograph of the obtained quantum dot solution under daylight and ultraviolet light;
  • Figure 8 is an emission spectrum of the obtained quantum dot.
  • CH 3 NH 3 PbI X Br 3-X (0 ⁇ x ⁇ 3) quantum dots are prepared by using oleic acid and n-octylamine as surface ligands, and the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, and dropped into the rapidly stirred cyclohexane described in the step (3), and a drop (a drop of about 10 ⁇ L) was dropped every 5 seconds. After dropping 100 ⁇ L, stirring was continued for 5 min, again. 100 ⁇ L was added dropwise and cycled until 1 mL of the precursor solution was added. A solution of the resulting CH 3 NH 3 PbI X Br 3-X quantum dots was observed to be black-red. The deep red light is emitted under the ultraviolet lamp, and the luminescence peak is 650 nm measured by a spectrometer;
  • the black red quantum dot solution obtained in the step (4) is transferred to a distillation flask, and the organic solvent is removed by a vacuum distillation apparatus to obtain a crystalline powder of a quantum dot, and the obtained CH 3 NH 3 PbI X Br 3-X quantum dot is black red. powder;
  • the quantum dot powder obtained in the step (5) is redissolved in toluene, an appropriate amount of PMMA is weighed, and a quantum dot in a cyclohexane solution is added to make the mass fraction of PMMA in the solution 5%.
  • the mixed solution was spread evenly on a watch glass and placed in a fume hood. After the cyclohexane was completely evaporated, the formed PMMA film was peeled off from the watch glass to obtain a composite film of quantum dots and PMMA, and the film was dark red in color.
  • CH 3 NH 3 SnI 3 quantum dots are prepared by using caproic acid and dodecylamine as surface ligands, and the specific steps are as follows:
  • the preparation method of methyl iodide is the same as that described in the step (1) of the first embodiment;
  • the cyclohexane which has been depleted of oxygen in the step (4) is placed on a magnetic stirrer and rapidly stirred.
  • the precursor solution is aspirated by a micro-injector, and dropped into the rapidly stirred cyclohexane dropwise, and a drop is dropped every 30 seconds. (A drop of about 10 ⁇ L) until 100 ⁇ L of the precursor solution was added. A solution of the obtained CH 3 NH 3 SnI 3 quantum dots was observed to be black.
  • (C 6 H 5 NH 3 ) 2 PbI 4 quantum dots are prepared by using oleic acid as a surface ligand, and the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, and dropped into the rapidly stirred chloroform described in the step (3) dropwise, and a drop was dropped every 5 seconds until 0.5 mL of the precursor solution was added. It was observed that the chloroform solution of the obtained (C 6 H 5 NH 3 ) 2 PbI 4 quantum dot was pale yellow. The luminescent peak position of the quantum dot was 530 nm, and FIG. 9 is an emission spectrum of the obtained quantum dot.
  • CH 3 NH 3 CuBr 3 quantum dots are prepared by using tannic acid as a surface ligand, and the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, and dropped dropwise into the rapidly stirred toluene of the step (3), and a drop was dropped every 5 seconds until 0.5 mL of the precursor solution was added. It was observed that the toluene solution of the obtained CH 3 NH 3 CuBr 3 quantum dots was dark purple.
  • (C 6 H 5 NH 3 ) 2 BiCl 4 quantum dots are prepared by using valeric acid and 3-vinylhexylamine as surface ligands, and the specific steps are as follows:
  • the preparation method of the phenethylamine iodide salt is the same as that described in the step (1) of the embodiment 8;
  • the precursor solution was aspirated by a micro-injector, and dropped dropwise into the rapidly stirred cyclohexane of the step (3), and a drop was dropped every 5 seconds until 0.5 mL of the precursor solution was added. It was observed that the solution of the obtained (C 6 H 5 NH 3 ) 2 BiCl 4 quantum dot was colorless.
  • CH 3 NH 3 MnI 3 quantum dots are prepared by using octanoic acid and hexadecylamine as surface ligands, and the specific steps are as follows:
  • the preparation method of methyl iodide is the same as that described in the step (1) of the first embodiment;
  • the precursor solution was aspirated by a micro-injector, and dropped dropwise into the rapidly stirred cyclohexane of the step (3), and a drop was dropped every 5 seconds until 0.5 mL of the precursor solution was added. It was observed that the solution of the obtained CH 3 NH 3 MnI 3 quantum dots was purple-black.
  • CH 3 NH 3 SbCl 3 quantum dots are prepared by using butylamine as a surface ligand, and the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, and dropped dropwise into the rapidly stirred n-hexane of the step (3), and a drop was dropped every 5 seconds until 0.5 mL of the precursor solution was added. It was observed that the resulting solution of CH 3 NH 3 SbCl 3 quantum dots was colorless.
  • 4-amino-1-butene iodide salt is prepared in the same manner as in the step (1) of Example 4, the ethylamine in the step (1) is replaced with 4-amino-1-butene;
  • the solution of 2 CH 3 NH 3 ) 2 SnI 4 quantum dots is red.
  • a trans electroluminescent device is constructed based on the prepared CH 3 NH 3 PbBr 3 quantum dots, and the specific steps are as follows:
  • the ITO (Indium Tin Oxide) conductive glass was cut into a square substrate of 2.5*2.5 cm 2 , rinsed with deionized water, and then ultrasonically placed in acetone and isopropanol for 15 min, so that the cleaned ITO conductive glass was mixed. Alternate in propanol;
  • the treated ITO conductive glass is taken out and placed on the carousel turntable. Pipette the TIPD isopropanol solution with a micro-injector, drop it onto the surface of the ITO, make the solution evenly cover the surface of the ITO, then spin-coat it at 2000 rpm for 30 s, and then spin-coat the quantum dot and hole transport layer (poly-TPD).
  • the spin coating method of the quantum dot and hole transport layer is the same as above. After each spin coating, the ITO was placed on a hot stage and annealed at 70 ° C for 15 min;
  • FIG. 10 is a schematic structural view of the electroluminescent device constructed. Apply voltage to both ends of the electrode and observe The device emits a bright green light, and as the voltage increases, the luminous intensity gradually increases.
  • CsPbBr3 quantum dots are prepared by using n-octylamine as a surface ligand, and the specific steps are as follows.
  • step (1) prepared bismuth oleate precursor solution, 0.2mL N, N-dimethylformamide, placed in magnetic stirring Quickly stir on the machine for the next step;
  • the lead bromide solution was aspirated by a micro-injector, and dropped into the rapidly stirred solution of the step (3) dropwise, and a drop (a drop of about 10 ⁇ L) was dropped every 10 seconds until the precursor solution was added. 8 mL of acetone solvent was added by a dropper, and it was observed that the solution gradually became cloudy, and yellow-green particles were formed;
  • the turbid solution obtained in the step (4) was transferred to a centrifuge tube, centrifuged at 7000 rpm for 10 min, and the supernatant was colorless, and the precipitate was yellow-green. The precipitate was blue under the illumination of a UV lamp. The n-hexane was dissolved and precipitated to obtain a quantum dot solution.
  • n-hexylamine is used as a surface ligand, and N,N-dimethylformamide is used as a first solvent, and n-hexane is used as a second solvent to prepare CH 3 NH 3 PbBr 3 quantum dots.
  • the specific steps are as follows:
  • the precursor solution was aspirated by a micro-injector, dropped into the rapidly stirred n-hexane of the step (3), and monitored by an ultraviolet lamp while dropping until all of the precursor solution was added.
  • CHONH 3 PbI 3 nanosheets are prepared by using n-octylamine as a surface ligand, using dimethyl sulfoxide as the first solvent and n-hexane as the second solvent.
  • the specific steps are as follows:
  • brominated formamide is the same as methyl bromide
  • the precursor solution was aspirated by a micro-injector, dropped into the rapidly stirred n-hexane of the step (3), and monitored by an ultraviolet lamp while dropping until all of the precursor solution was added.
  • oleylamine is used as a surface ligand
  • dimethyl sulfoxide is used as a first solvent
  • n-heptane is used as a second solvent to prepare a CH 3 CHONH 3 PbCl 3 nanowire.
  • chlorinated acetamide is the same as methylamine chloride
  • the precursor solution was aspirated by a micro-injector, dropped into the rapidly stirred n-heptane of step (3), and monitored by UV light while dropping until all of the precursor solution was added.
  • phenethylamine is used as a surface ligand
  • N-methylpyrrolidone is used as a first solvent
  • n-heptane is used as a second solvent to prepare CH 3 NH 3 PbCl 3 quantum dots.
  • the precursor solution was aspirated by a micro-injector, dropped into the rapidly stirred n-heptane of step (3), and monitored by UV light while dropping until all of the precursor solution was added.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. Further, in the description of the present invention, the meaning of "a plurality" is two or more unless otherwise specified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Luminescent Compositions (AREA)

Abstract

提出了一种杂化钙钛矿量子点材料,该量子点材料包括内核以及表面配体,其中,内核是由R1NH3AB3或(R2NH3)2AB4形成的,R1为甲基,R2为有机分子基团,A为选自Ge、Sn、Pb、Sb、Bi、Cu或Mn的至少之一,B为选自Cl、Br和I的至少之一,A和B构成配位八面体结构,R1NH3或R2NH3填充在所述配位八面体结构的间隙中;表面配体为有机酸或有机胺。该量子点材料具有较高的荧光量子产率。

Description

钙钛矿量子点材料以及其制备方法
优先权信息
本申请请求2014年11月4日向中国国家知识产权局提交的、专利申请号为201410612348.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及材料领域,具体地,本发明涉及杂化钙钛矿量子点材料以及其制备方法。
背景技术
理想无机钙钛矿的化学通式为ABX3,其中,中心金属阳离子B与阴离子X形成配位八面体结构,A位于八面体的间隙中,起到平衡BX3阴离子电荷的作用。对于典型的三维钙钛矿结构,当从三维结构中沿着某一方向抽出几层八面体层,或者用其他成分取代几层八面体层时,则会出现层状钙钛矿结构。有机-无机杂化钙钛矿材料是用有机胺取代无机钙钛矿中的A位原子,填充在各个八面体间隙中,各个八面体通过共顶点连接伸展成网络结构,有机胺通过胺上的氢与卤素离子形成氢键,进入无机层空间,有机链之间通过范德华力相互作用,从而形成了有机无机层交替排布的杂化结构。对于杂化钙钛矿结构,有机胺填充在无机八面体间隙中需要满足容忍因子t的限制:(RA+RX)=t√2(RB+RX),RA为A原子的半径、RB、RX分别为相应元素原子半径。容忍因子在0.8≤t≤0.9范围内时会形成三维钙钛矿结构,因此,A、B、X的原子半径决定了有机胺链能否进入到间隙中。对于卤化铅、卤化锡为无机层的杂化钙钛矿结构,能够形成三维结构的多为短链胺,常见的有CH3NH3MX3(M=Pb、Sn)、NH2CH=NH2SnI3
有机-无机杂化钙钛矿材料从分子尺度上结合了有机材料和无机材料的优点,不仅具有无机组分良好的热稳定性、机械性能以及电磁特性,而且具备有机组分的易加工成膜等优点。有机-无机杂化钙钛矿材料独特的无机层和有机胺交替堆积形成的量子阱结构使其在量子约束效应和介电约束效应的双重作用下,具有较大的激子结合能,表现出了独特的光电特性,如高的载流子迁移率,强的室温光致发光,且具有较窄的半峰宽,发光色纯度高的特点。此外,还可以通过对有机组分和无机组分进行调控,实现该杂化钙钛矿材料发光特性的控制,因此该杂化钙钛矿材料在场效应晶体管、太阳能电池、电致发光、显示等领域具有独特的应用价值。基于以上杂化钙钛矿材料的独特性质和应用,近年来该类材料的研究已引起研究者的广泛关注。
当有机-无机杂化钙钛矿材料的尺寸降低到纳米级别时,由于量子点尺寸很小且表面有配体存在,很容易分散于常见溶剂中,便于杂化钙钛矿材料的加工应用,因此能通过 多种方法应用于光电领域中;并且,由于量子点自身的量子限域效应,有机-无机杂化钙钛矿量子点展现出比块体材料更优异的性质,如更强的发光,更高的量子产率,并且可以通过控制纳米颗粒的尺寸对其发光波长进行调控。与无机量子点材料相比,有机-无机杂化钙钛矿量子点的半峰宽更窄,发光色纯度更高,在高性能显示器件中有很大优势。杂化钙钛矿材料还可作为获得激光的潜在材料。另外,其层层自组装结构使其具备独特的非线性光学特性,可应用于非线性光学器件中。因此,有机-无机杂化钙钛矿量子点材料在杂化钙钛矿材料领域具有重要地位。
目前对于有机-无机杂化钙钛矿量子点的制备方法报导较少。之前制备杂化钙钛矿量子点多采用模板法。2012年Akihiro Kojima等人在Chemistry Letters上报道利用多孔氧化铝模板合成了CH3NH3PbBr3纳米结构。该方法将前驱体溶液注入到多孔氧化铝模板纳米级别的孔径中,利用孔径限制了CH3NH3PbBr3颗粒的生长,得到了发光波长在523nm的CH3NH3PbBr3量子点。虽然该方法成功制备了CH3NH3PbBr3量子点,但是该材料是嵌在氧化铝模板中的,不适合未来的加工和器件应用。2014年Luciana C.Schmidt在Journal of American Chemistry Society上首次报道了非模板法合成CH3NH3PbBr3纳米颗粒。该方法利用ODE(1-十八烯)做溶剂,在80℃的反应环境下,加入甲胺溴盐、长链有机胺溴盐、溴化铅等原料,将原料均匀分散在在溶液中,最后加入丙酮,利用共沉淀法得到了CH3NH3PbBr3颗粒,该颗粒发光波长在526nm,荧光量子产率达到了20%。然而,该方法杂化钙钛矿量子点材料的量子产率仍较低,并且该量子点在溶液中的分散性还有待进一步提高。目前基于杂化钙钛矿量子点材料的相关报导仍集中在CH3NH3PbBr3量子点,其发光波长集中在520-530nm,波长调节范围很窄。
因此,尽管钙钛矿量子点材料在室温下会表现出光致发光性质并具有优异的光电性质,但目前钙钛矿量子点材料的量子产率仍很低,而且很难有效分散于溶剂中并保持其结构不被破坏。这成为了限制钙钛矿量子点材料发展的瓶颈。因此,提高钙钛矿材料的荧光量子产率和获得良好分散性的钙钛矿溶液显得尤为重要。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
在本发明的一个方面,本发明提出了一种杂化钙钛矿量子点材料。根据本发明的实施例,该量子点材料包括:内核,所述内核是由R1NH3AB3或(R2NH3)2AB4形成的,R1为甲基,R2为有机分子基团,A为选自Ge、Sn、Pb、Sb、Bi、Cu或Mn的至少之一,B为选自Cl、Br和I的至少之一,A和B构成配位八面体结构,R1NH3或R2NH3填充在所述配位八面体结构的间隙中;以及表面配体,所述表面配体形成在所述内 核的表面,所述表面配体为有机酸或有机胺。由此,可以为该钙钛矿量子点材料提供合理的结构,进而可以使该量子点材料具有更加优良的性能。
根据本发明的实施例,在该量子点材料中,所述配体呈发散状包裹在所述内核表面。由此,可以限制所述内核沿三维方向的生长,进而将该量子点材料的尺寸保持在纳米级别。
根据本发明的实施例,在该量子点材料中,R2为长链有机分子基团。由此,可以为该量子点材料提供有机杂化基团,进而改善该量子点的量子阱结构,从而提高该量子点材料的性能。
根据本发明的实施例,在该量子点材料中,所述表面配体为有机酸或长链有机胺。由此,可以通过范德华力使有机酸或有机胺吸附在所述内核表面,进而达到限制量子点材料尺寸的目的。
根据本发明的实施例,在该量子点材料中,所述有机酸包括碳原子数为至少为3的饱和烷基酸或不饱和烷基酸。由此,可以利用该有机酸包裹在量子点材料内核的表面,从而限制所述内核沿三维方向的生长,进而将该量子点材料的尺寸保持在纳米级别。
根据本发明的实施例,在该量子点材料中,所述长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。由此,可以利用该长链有机胺包裹在量子点材料内核的表面,通过长链结构限制所述内核沿三维方向的生长,进而将该量子点材料的尺寸保持在纳米级别。
根据本发明的实施例,在该量子点材料中,所述长链有机胺为4~24个碳原子的烷基胺或芳香胺。由此,可以在限制内核沿三维方向生长的同时,保证该量子点材料的稳定性不受影响,进而提高该量子点材料的性能。
本发明的一个目的是提出一种高荧光量子产率杂化钙钛矿量子点材料,该杂化钙钛矿量子点材料具有高荧光量子产率,适用于多种杂化钙钛矿量子点,发光波长可覆盖整个可见光区。本发明提出的高荧光量子产率杂化钙钛矿量子点材料,包括内核和表面配体,表面配体呈发散状包裹在内核表面;所述的内核的结构式为R1NH3AB3或(R2NH3)2AB4,其中,A和B构成配位八面体结构,R1NH3或R2NH3填充在A和B构成的配位八面体间隙中,R1为甲基,R2为长链有机分子基团,A为金属Ge、Sn、Pb、Sb、Bi、Cu或Mn中的任何一种,B为Cl、Br、I中的任何一种;所述的表面配体为有机酸或长链有机胺。上述杂化钙钛矿量子点材料,其中所述的有机酸是 通式为CnH2n+1COOH、n≥2的饱和烷基酸,或通式为CnH2n-1COOH、n≥2的不饱和烷基酸。上述杂化钙钛矿量子点材料,其中所述的长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。
在本发明的另一方面,本发明提出了一种制备杂化钙钛矿量子点材料的方法。根据本发明的实施例,该方法包括:(1)将无机金属卤化物和有机铵卤盐溶解在第一溶剂中,以便获得前驱体溶液,在所述前驱体溶液中,所述无机金属卤化物和有机铵卤盐均以分子形式的游离态存在;以及(2)将所述前驱体溶液滴入第二溶剂中,其中,所述无机金属卤化物和有机铵卤盐在所述第一溶剂中的溶解度不同于所述无机金属卤化物和有机铵卤盐在所述第二溶剂中的溶解度,以便所述无机金属卤化物和有机铵卤盐发生自组装,从而所述无机金属卤化物的无机金属阳离子与所述有机铵卤盐的卤素阴离子形成配位八面体结构,所述有机铵卤盐的有机胺阳离子进入所述配位八面体结构的间隙中,以便获得所述杂化钙钛矿量子点材料,其中,在所述第一溶剂和所述第二溶剂的至少之一中预先添加有表面配体,所述表面配体为有机酸或长链有机胺。由此,可以简便地制备该杂化钙钛矿量子点材料,并且使该量子点材料具有较高的荧光量子产率。
根据本发明的实施例,所述第一溶剂包括选自N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、乙腈、N-甲基吡咯烷酮以及丙酮的至少一种,所述第二溶剂包括选自甲苯、氯仿、正己烷、环己烷、乙酸乙酯以及***的至少一种。由此,可以使无机金属卤化物和有机铵卤盐在所述第一溶剂中的溶解度不同于所述无机金属卤化物和有机铵卤盐在所述第二溶剂中的溶解度,进而促进无机金属卤化物和有机铵卤盐的自组装,进而简便地制备该杂化钙钛矿量子点材料,并且使该量子点材料具有较高的荧光量子产率。
根据本发明的实施例,所述第一溶剂与所述第二溶剂混溶。由此,可以简便地通过将含有第一溶剂的前驱体溶液添加到第二溶剂中,以便完成无机金属卤化物以及有机胺卤盐的自组装,进而可以提高利用该方法制备量子点材料的效率以及效果。
根据本发明的实施例,所述有机酸包括碳原子数为至少3的饱和烷基酸或不饱和烷基酸;以及所述长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。由此可以根据不同的无机金属卤化物选择具有适当结构的有机胺作为长链有机胺表面配体,进而可以简便地制备该杂化钙钛矿量子点材料,并且使该量子点材料具有较高的荧光 量子产率。
根据本发明的实施例,所述长链有机胺中所述长链为含有4~24个碳原子的烷基或芳香基。由此可以根据不同的无机金属卤化物选择具有适当结构的有机胺作为长链有机胺表面配体,进而可以简便地制备该杂化钙钛矿量子点材料,并且使该量子点材料具有较高的荧光量子产率。
根据本发明的实施例,所述前驱体溶液是通过下列步骤获得的:(a)将所述无机金属卤化物与有机铵卤盐按摩尔比1:(0.1~3)混合,加入所述长链有机胺,所述长链有机胺与所述无机金属卤化物的摩尔比为(0.1~3):1,其中,所述无机金属卤化物为选自Ge、Sn、Pb、Sb、Bi、Cu以及Mn的卤化物的至少一种,所述卤化物包括选自氯化物、溴化物以及碘化物的至少一种;(b)在步骤(a)中得到的混合溶液中加入所述有机酸,所述有机酸与所述无机金属卤化物的摩尔比为(0~20):1,加入所述第一溶剂,所述第一溶剂与所述无机金属卤化物的摩尔比为(20~1000):1;以及(c)对步骤(b)得到的混合溶液进行超声处理,用孔径为0.2μm的聚四氟乙烯滤头对经过所述超声处理的混合液进行过滤,保留滤液以便获得所述前驱体溶液。由此,可以简便地制备前驱体溶液,进而可以提高该方法的制备效率。
根据本发明的实施例,所述有机铵卤盐是通过下列步骤获得的:将有机胺溶解于无水乙醇,配制所述有机胺的体积百分比为40%的溶液,搅拌均匀,在冰水浴下,边搅拌边向所述溶液中加入氢卤酸,所述有机胺与所述氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,用旋转蒸发仪在50摄氏度、-0.1MPa压力下蒸发,除去溶剂,得到所述有机铵卤盐粉末,用***冲洗所述有机铵卤盐粉末三次,过滤并取滤渣,用真空干燥箱在50摄氏度、-0.1MPa压力下干燥4小时,得到所述有机铵卤盐,其中,所述氢卤酸包括选自HCl、HBr以及HI的至少一种,所述有机胺是通式为CnH2n+1NH2、n≥1的饱和烷基胺以及通式为CnH2n-1NH2、n≥2的不饱和烷基胺或芳香胺。由此,可以简便地制备有机铵卤盐,进而可以提高该方法的制备效率。
根据本发明的实施例,步骤(2)进一步包括:(2-1)边搅拌边将所述前驱体溶液逐滴滴入到所述第二溶剂中,滴入速度为10μL~1mL/min,加入的所述前驱体溶液与所述第二溶剂的体积比为1:(0.0001~10),持续搅拌2小时,以便获得悬浊溶液;(2-2)将所述悬浊溶液进行离心处理,离心机转速为7500rpm,时间为4分钟,离心后,上层清液中含有所述杂化钙钛矿量子点材料;以及(2-3)将所述上层清液进行蒸馏,蒸干后剩余固体在-0.1Mpa压力下、70摄氏度下干燥8小时,以便获得所述杂化钙钛矿量子点材料。由此,可以通过加入第二溶剂,使无机金属卤化物和 有机铵卤盐自组装,进而可以简便地获得杂化钙钛矿量子点材料。
本发明方法制备的杂化钙钛矿量子点材料,其制备原理为:无机金属卤化物和有机胺卤盐均可溶解于第一溶剂中,它们在第一溶剂都以分子形式的游离态存在。当将前驱体溶液滴入第二溶剂中时,由于有机胺卤盐与无机金属卤化物在第一溶剂和第二溶剂中具有不同的溶解度,它们会很快发生自组装,无机金属阳离子与卤素阴离子形成配位八面体,有机胺阳离子进入相邻八面体间的空隙中,形成杂化钙钛矿结构;同时,由于溶液中存在油酸、长链胺等配体,这些配体会包覆在所形成的颗粒表面,限制了颗粒沿三维方向的生长,将颗粒尺寸限制在纳米级别,并最终形成杂化钙钛矿量子点。本发明所述的制备方法中,通过调节无机卤化物盐/长链有机胺比例可以制备出不同发光波长的杂化钙钛矿量子点;通过调节第一溶剂、第二溶剂的种类和比例可以制备出不同组分的杂化钙钛矿荧光量子点;本发明所述的制备方法中,表面配体可加入第一溶剂,也可加入第二溶剂中;本发明方法制备出的有机-无机杂化钙钛矿荧光量子点表面包覆有机配体,可稳定分散在第二溶剂中,方便了杂化钙钛矿量子点的加工利用,并且可以通过蒸馏去除有机溶剂获得杂化钙钛矿量子点材料。
在本发明的又一方面,本发明提出了一种制备前面描述的杂化钙钛矿量子点材料的方法。根据本发明的实施例,该方法包括:(1)将有机胺溶解于无水乙醇中,配制成体积百分比为40%的溶液,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入氢卤酸,所述有机胺与氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,得到澄清溶液,用旋转蒸发仪在50℃、-0.1MPa压力下蒸发,除去溶剂,得到有机铵卤盐的结晶粉末,用***冲洗有机铵卤盐的结晶粉末三次,过滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到有机铵卤盐粉末,所述的有机胺是通式为CnH2n+1NH2、n≥1的饱和烷基胺、通式为CnH2n-1NH2、n≥2的不饱和烷基胺或芳香胺;(2)将无机金属卤化物与所述有机铵卤盐粉末按摩尔比1:(0.1~3)混合,加入长链有机胺,所述长链有机胺为前面描述的,所述长链有机胺与无机金属卤化物的摩尔比为1:(0.1~3),再加入前面描述的有机酸,所述有机酸与无机金属卤化物的摩尔比为1:(0~20),再加入第一溶剂,所述第一溶剂与无机金属卤化物的摩尔比为1:(20~1000),混合后进行超声处理,超声处理5分钟后,得到透明混合液,用孔径为0.2μm的聚四氟乙烯滤头对经过超声处理的透明混合液进行过滤,取过滤得到的滤液作为前驱体溶液;该步骤中所述的无机金属卤化物为金属Ge、Sn、Pb、Sb、Bi、Cu以及Mn的卤化物盐中的任何一种;其中所述第一溶 剂为N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、乙腈或丙酮中的任何一种;(3)将第二溶剂置于磁力搅拌器上快速搅拌,边搅拌边用微量进样器将上述前驱体溶液逐滴滴入到第二溶剂中,滴入速度为10μL~1mL/min,加入的体积比为:前驱体溶液:第二溶剂=1:(0.0001~10),持续搅拌2小时,得到有机-无机杂化钙钛矿材料悬浊溶液;其中所述第二溶剂为甲苯、氯仿、正己烷、环己烷、乙酸乙酯或***中的任何一种,任选地,所述第一溶剂与所述第二溶剂混溶;(4)将上述步骤(3)的有机-无机杂化钙钛矿材料悬浊溶液进行离心分离,离心机转速为7500rpm,时间为4分钟,离心后,下层沉淀为杂化钙钛矿纳米片层或纳米棒,上清液为杂化钙钛矿量子点溶液;(5)将步骤(4)的杂化钙钛矿量子点溶液进行蒸馏,除去有机溶剂,将留下的固体在真空干燥箱-0.1Mpa、70℃下干燥8小时,得到所述杂化钙钛矿量子点材料。由此,可以简便地完成杂化钙钛矿量子点材料的制备,进而可以提高利用该方法制备量子点材料的效率。
在本发明的又一方面,本发明提出了一种杂化钙钛矿量子点材料,该量子点材料是根据本发明前面描述的方法制备的。由此,该量子点具有利用前面描述的方法制备的量子点的全部特征以及优点,在此不再赘述。
在本发明的又一方面,本发明提出了一种制备钙钛矿量子点材料的方法。根据本发明的实施例,该方法包括:(1)将无机金属卤化物和有机铵卤盐或者铯的卤化物溶解在第一溶剂中,以便获得前驱体溶液,在所述前驱体溶液中所述无机金属卤化物、有机铵卤盐以及铯的卤化物均以分散形式存在;(2)将所述前驱体溶液加入到第二溶剂中,以便形成乳液体系,其中,所述第一溶剂和所述第二溶剂的至少之一中预先添加有表面配体,所述表面配体为有机酸或长链有机胺,并且所述第一溶剂与所述第二溶剂不混溶,所述乳液体系中包含所述表面配体形成的胶束,所述前驱体溶液被包裹在所述胶束中,并且所述胶束分散在所述第二溶剂中;(3)将破乳剂加入到所述乳液体系中,以便所述胶束中的所述前驱体溶液扩散至所述第二溶剂中,使所述无机金属卤化物与所述有机铵卤盐或者铯的卤化物发生自组装,所述无机金属卤化物的无机金属阳离子与所述有机铵卤盐或者铯的卤化物中的卤素阴离子形成配位八面体结构,所述有机铵卤盐的有机胺阳离子进入所述配位八面体结构的间隙中,以便获得所述钙钛矿量子点材料,其中,所述无机金属卤化物为选自Ge、Sn、Pb、Sb、Bi、Cu或者Mn的卤化物的至少一种,所述卤化物包括选自氯化物、溴化物以及碘化物的至少一种,所述第一溶剂为所述第一溶剂为选自N,N-二甲基甲酰胺、乙腈、N-甲基吡咯烷酮以及二甲基亚砜的至少一种,所述第二溶剂为选自1- 十八烯、正己烷、环己烷以及正庚烷的至少一种,并且,在所述第一溶剂和所述第二溶剂的至少之一中预先添加有表面配体,所述表面配体为有机酸或长链有机胺。由此,可以简便地获得钙钛矿量子点材料。
根据本发明的实施例,在该方法中,所述有机酸包括碳原子数至少为3的饱和烷基酸或不饱和烷基酸,所述长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。由此,可以由上述有机酸作为表面配体,进而可以提高利用该方法制备的量子点材料的性能。
根据本发明的实施例,在该方法中,所述长链有机胺为4~24个碳原子的烷基胺或芳香胺。由此,可以由上述有机酸作为表面配体,进而可以提高利用该方法制备的量子点材料的性能。
根据本发明的实施例,所述前驱体溶液是通过下列步骤获得的:将所述无机金属卤化物与所述有机铵卤盐或者铯的卤化物盐按摩尔比1:(0.1~3)混合,加入所述长链有机胺,所述长链有机胺与无机金属卤化物的摩尔比为(0.1~3):1,加入所述有机酸,所述有机酸与所述无机金属卤化物的摩尔比为(0~20):1,加入所述第一溶剂,所述第一溶剂与所述无机金属卤化物的摩尔比为(20~1000):1,以便形成混合溶液,对所述混合溶液进行超声处理,用孔径为0.2μm的聚四氟乙烯滤头对经过所述超声处理的所述混合液进行过滤,保留滤液以便获得所述前驱体溶液。由此,可以获得前驱体溶液,进而可以通过后续步骤简便地获得钙钛矿量子点材料。
根据本发明的实施例,所述有机胺卤盐是通过下列步骤获得的:将有机胺溶解于无水乙醇,配制所述有机胺的体积百分比为40%的溶液,搅拌均匀,在冰水浴下,边搅拌边向所述溶液中加入氢卤酸,所述有机胺与所述氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,用旋转蒸发仪在50摄氏度、-0.1MPa压力下蒸发,除去溶剂,得到所述有机铵卤盐粉末,用***冲洗所述有机铵卤盐粉末三次,过滤并取滤渣,用真空干燥箱在50摄氏度、-0.1MPa压力下干燥4小时,得到所述有机铵卤盐,其中,所述氢卤酸包括选自HCl、HBr以及HI的至少一种,所述有机胺为甲胺、甲酰胺以及乙酰胺的至少一种。由此,可以简便地获得有机胺卤盐,进而可以提高该方法制备钙钛矿量子点材料的效率以及效果。
根据本发明的实施例,步骤(2)进一步包括:边搅拌边将所述前驱体溶液逐滴滴入所述第二溶剂中,滴入速度为10μL~1mL/min,加入的所述前驱体溶液与所述第二溶剂的体积比为1:(0.0001~10),持续搅拌2小时,以便获得所述乳液体系。由此,可以获得乳液体系,进而可以提高该方法制备钙钛矿量子点材料的效率以及 效果。
根据本发明的实施例,步骤(3)进一步包括:在所述乳液体系中加入破乳剂,加入的所述破乳剂与所述第二溶剂的体积比为1:(1-10),对加入了所述破乳剂的所述乳液体系进行离心分离,离心机转速为7500rpm,时间为4分钟,获取上清液以便获得杂化钙钛矿量子点溶液,对所述杂化钙钛矿量子点溶液进行清洗,真空干燥,以便得到所述杂化钙钛矿量子点材料,其中,所述破乳剂为选自丙酮、甲醇、异丙醇、正丁醇或或者叔丁醇中的任何一种至少之一。由此,可以通过添加破乳剂,简便地通过自组装过程获得杂化钙钛矿量子点材料,进而可以提高该方法制备钙钛矿量子点材料的效率以及效果。
在本发明的又一方面,本发明提出了一种半导体器件。根据本发明的实施例,该器件含有前面描述的杂化钙钛矿量子点材料。由此,可以由该量子点材料为该半导体器件提供具有合理结构以及良好性能的量子点,进而提高该半导体器件的使用效果。
根据本发明的实施例,所述半导体器件包括电致发光器件、太阳能电池、显示器件以及非线性光学器件。由此,可以将根据本发明实施例的量子点材料运用到上述器件的相应位置并发挥相应功能,进而可以进一步提高该器件的使用效果。
附图说明
图1显示了根据本发明一个实施例的杂化钙钛矿量子点材料的结构示意图;
图2显示了根据本发明实施例1的量子点的发射光谱;
图3显示了根据本发明实施例3的量子点溶液在日光灯以及紫外灯下的数码照片;
图4显示了根据本发明实施例3的量子点的吸收光谱以及发射光谱;
图5显示了根据本发明实施例3的下层沉淀扫描电子显微镜照片;
图6显示了根据本发明实施例3的量子点的透射电子显微镜照片;
图7显示了根据本发明实施例5的量子点溶液在日光灯以及紫外灯下的数码照片;
图8显示了根据本发明实施例5的量子点的发射光谱;
图9显示了根据本发明实施例8的量子点的发射光谱;
图10显示了根据本发明实施例10的电致发光器件结构示意图;
图11显示了根据本发明一个实施例的制备杂化钙钛矿量子点材料的方法的流程图;
图12显示了根据本发明又一个实施例的制备杂化钙钛矿量子点材料的方法的流程图;以及
图13显示了根据本发明另一个实施例的制备杂化钙钛矿量子点材料的方法的流程 图。
附图标记说明:
1:表面配体
2:内核
3:正八面体
4:有机胺
5:Al电极
6:空穴传输层
7:量子点发光层
8:二异丙氧基双乙酰丙酮钛层
9:氧化铟锡层
10:玻璃衬底
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的一个方面,本发明提出了一种杂化钙钛矿量子点材料。根据本发明的实施例,参考图1,该量子点材料由表面配体1以及内核2构成。具体地,根据本发明的实施例,内核2是由R1NH3AB3或(R2NH3)2AB4形成的。其中,A为中心金属阳离子,B为卤素阴离子。中心阳离子A以及卤素阴离子B构成正八面体3,并且在正八面体3的间隙中,含有有机胺4,即R1NH3或R2NH3。并且,表面配体1通过范德华力吸附在内核2的表面。由此,内核2中的每个正八面体3通过共同顶点连接伸展,有机胺4通过胺的氢原子与卤素阴离子B构成氢键进而进入正八面体3的间隙中,形成有机无机交替排布的杂化结构,进而从分子尺度上结合了无机材料以及有机材料的优点,并且该量子点材料具有较高的荧光量子产率,从而提高了根据本发明实施例的量子点材料的光电性能以及使用范围。
根据本发明的实施例,A为选自Ge、Sn、Pb、Sb、Bi、Cu或Mn的至少之一,B为选自Cl、Br和I的至少之一,R1为甲基,R2为长链有机分子基团。具体地,根据本发明的实施例,R2为含有碳原子数不低于2个的烷基或芳香基。由此,可以根 据实际形成该量子点材料的金属元素以及卤素以及构成内核2的正八面体3中的间隙大小,选择适当的含有R1或者R2基团的有机胺4进行填充,进而可以增强根据本发明实施例的量子点材料的稳定性,并且可以通过对形成该量子点的组分进行选择,实现对该量子点发光波长的调节。
根据本发明的实施例,在内核2的表面,形成有表面配体1。根据本发明的实施例,表面配体1为有机酸或长链有机胺,并且表面配体1呈发散状包裹在内核2的表面。由此,可以通过表面配体1起到限制内核2沿三维方向生长的作用,进而将该量子点材料的尺寸保持在纳米级别。
具体地,形成表面配体1的有机酸可以为碳原子数至少为3的饱和烷基酸或不饱和烷基酸,根据本发明的一些实施例,该有机酸可以是通式为CnH2n+1COOH(n≥2)的饱和烷基酸,或通式为CnH2n-1COOH(n≥2)的不饱和烷基酸;形成表面配体1的长链有机胺分子式可以为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团,更具体地,R可以为含有4~24个碳原子的烷基或芳香基。由此,可以通过上述有机酸或长链有机胺形成表面配体1,在起到限制该量子点材料的尺寸的同时,保证该量子点材料的稳定性,进而提高该量子点材料的性能。
此外,根据本发明的实施例,该量子点材料具有3~4nm的粒径。此外,发明人通过积分球量子产率测试仪器(C9920-02,滨松光子),并根据仪器制造商提供的说明书所记载的方法,对根据本发明实施例1~13所制备的量子点材料的荧光量子产率进行了测试。上述根据本发明实施例的量子点材料的并且,其荧光量子产率可达到不低于60%,高于一般的杂化钙钛矿量子点材料。并且,根据本发明的实施例,该量子点材料还可以稳定分散在甲苯、氯仿、正己烷、环己烷、乙酸乙酯等多种有机溶剂中,量子点粉末和溶液都具有良好的稳定性,荧光可保持长时间不淬灭。并且,可以选择不同的金属元素、卤素以及表面配体,通过对形成该量子点材料的组分和结构进行设计,制备出具有不同发光波长的量子点,发光波长可覆盖整个可见光区域,进而使得该量子点在高色域白光LED的应用中具有很大优势。例如,通过调节无机金属卤化物以及长链有机胺的比例可以制备出不同发光波长的杂化钙钛矿量子点;通过调节第一溶剂、第二溶剂的种类和比例可以制备出不同组分的杂化钙钛矿荧光量子点。此外,根据本发明的实施例的量子点材料具有较窄的半峰宽,发光色纯度高,可以满足实际应用的需要,在高性能显示器件、激光、非线性光学等领域有广阔应用前景。
在本发明的另一方面,本发明提出了一种制备杂化钙钛矿量子点材料的方法。根据 本发明的实施例,参考图11,该方法包括:
S100:获得前躯体溶液
根据本发明的实施例,在该步骤中,将无机金属卤化物以及有机铵卤盐溶解在第一溶剂中,以便获得前驱体溶液。具体地,根据本发明的实施例,第一溶剂包括选自N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、乙腈、N-甲基吡咯烷酮以及丙酮的至少一种。无机金属卤化物以及有机铵卤盐在第一溶剂中,均以分散形式存在。需要说明的是,在本发明中,描述方式“分散形式”特指无机金属卤化物以及有机胺卤盐未发生配位反应,以游离态分散在溶液中,而未配位形成任何晶体或者化合物。由此,可以通过选择适当的第一溶剂,将无机金属卤化物以及有机铵卤盐溶解在溶液中,并且金属阳离子不与卤素阴离子发生配位,以便得到无机金属卤化物以及有机铵卤盐均以游离态的分散形式存在的前驱体溶液。
此外,根据本发明的实施例,参考图12,前驱体溶液可以通过下列步骤获得:
S110:金属卤化物与有机铵卤盐混合
根据本发明的实施例,在该步骤中,将选自Ge、Sn、Pb、Sb、Bi、Cu以及Mn的一种金属与氯、溴、碘中的一种卤素形成金属卤化物,并将该金属卤化物与有机铵卤盐按摩尔比1:(0.1~3)混合。然后,在金属卤化物与有机铵卤盐的混合物中加入作为表面配体的长链有机胺,加入的长链有机胺与无机金属卤化物的摩尔比为1:(0.1~3)。其中,根据本发明的实施例,长链有机胺的分子式可以为RNH2,其中R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。任选地,根据本发明的一个实施例,R可以为包含4~24个碳原子的烷基或芳香基。
根据本发明的实施例,上述有机铵卤盐是按照下面的方式制备的:将有机胺溶解于无水乙醇中,配制有机胺的体积百分比为40%的溶液,搅拌均匀后,在冰水浴下,边搅拌边向所述溶液中加入氢卤酸。其中,氢卤酸包括选自HCl、HBr以及HI的至少一种,有机胺是通式为CnH2n+1NH2、n≥1的饱和烷基胺以及通式为CnH2n-1NH2、n≥2的不饱和烷基胺或芳香胺。根据本发明的实施例,有机胺与氢卤酸的摩尔比为1:(1~3)。具体地,根据本发明的实施例,上述有机胺以及氢卤酸的混合物可以在冰水浴环境下持续搅拌2小时,然后用旋转蒸发仪在50摄氏度、-0.1MPa压力下蒸干除去溶剂,得到的粉末用***冲洗三次,过滤并取滤渣,用真空干燥箱在50摄氏度、-0.1MPa压力下干燥4小时,得到有机铵卤盐。
S120:加入第一溶剂
根据本发明的一个实施例,在该步骤中,首先向含有长链有机胺配体的无机金属卤 化物以及有机铵卤盐的混合物中加入作为表面配体的有机酸,所加入的有机酸与无机金属卤化物的摩尔比为(0~20):1,以便获得含有有机酸配体的混合物溶液。其中,有机酸表面配体可以为碳原子数至少为3个的饱和烷基酸或不饱和烷基酸。具体地,根据本发明的一个实施例,该有机酸可以为通式为CnH2n+1COOH(n≥2)的饱和烷基酸,或通式为CnH2n-1COOH(n≥2)的不饱和烷基酸。然后,向上述混合物溶液中加入第一溶剂,第一溶剂与无机金属卤化物的摩尔比为(20~1000):1。
根据本发明的另一个实施例,在该步骤中,所加入的有机酸与无机金属卤化物还可以具有1:(0~20)的摩尔比,加入的第一溶剂与无机金属卤化物的摩尔比还可以为为1:(20~1000)。由此,可以通过调节上述比例,制备具有不同组分的量子点材料,进而可以扩展利用该方法制备的量子点材料的种类。
S130:超声
根据本发明的实施例,在该步骤中,对加入了第一溶剂的混合物溶液进行超声处理,随后用孔径为0.2μm的聚四氟乙烯滤头对混合液进行过滤,保留滤液,以便获得前驱体溶液。
S200:获得量子点
根据本发明的实施例,在该步骤中,将前驱体溶液滴入第二溶剂中,以便前驱体溶液中的无机金属卤化物与有机铵卤盐进行自组装,进而获得根据本发明实施例的杂化钙钛矿量子点材料。具体地,第二溶剂包括选自甲苯、氯仿、正己烷、环己烷、乙酸乙酯以及***的至少一种。任选地,根据本发明的一些实施例,第二溶剂与第一溶剂混溶。换句话说,可以选择与第一溶剂混溶的溶剂作为第二溶剂,以便完成量子点材料的制备。需要说明的是,在本发明中,术语“混溶”特指当将第一溶剂与第二混合时,混合溶液不出现分层现象。由此,可以选择适当的上述有机物作为第二溶剂,以便使无机金属卤化物和有机铵卤盐在第一溶剂中的溶解度不同于无机金属卤化物和有机铵卤盐在第二溶剂中的溶解度,从而使无机金属卤化物的无机金属阳离子与有机铵卤盐的卤素阴离子形成配位八面体结构,同时有机铵卤盐的有机胺阳离子进入所述配位八面体结构的间隙中。由此,可以实现无需借助模板制备具有较高荧光量子产率以及光电特性可调节的杂化钙钛矿量子点材料,进而简化了量子点材料的制备过程。
根据本发明的实施例,参考图13,形成前驱体溶液后,量子点材料还可以通过下列步骤获得:
S210:加入第二溶剂
根据本发明的实施例,将前驱体溶液加入到第二溶剂中。具体地,以10μL~1mL/min的滴入速度,边搅拌边将前驱体溶液逐滴滴入到上述第二溶剂中。在该步骤中,加入的前驱体溶液与第二溶剂的体积比为1:(0.0001~10)。滴加完成后,持续搅拌2小时,以便获得悬浊溶液。由此,可以缓慢地将前驱体溶液加入到第二溶剂中,并保证无机金属卤化物的无机金属阳离子与有机铵卤盐的卤素阴离子的配位反应缓慢进行,以便保证自组装形成完整的八面体结构。
S220:离心
在该步骤中,将所述上述溶液进行离心处理。具体地,根据本发明的实施例,离心过程中离心机转速可以为7500rpm,时间为4分钟。离心后,该杂化钙钛矿量子点材料分布在上层清液中。并且,发明人发现,离心后的下层沉淀为杂化钙钛矿纳米片层或者纳米棒。由此,可以简便地将含有量子点材料的溶液与其余副产物进行分离,进而可以降低利用该方法制备的量子点材料中的杂质含量。
S230:蒸馏干燥
在该步骤中,将上述上层清液进行蒸馏干燥,以便获得根据本发明实施例的量子点材料。具体地,根据本发明的实施例,对上述上层清液进行蒸馏,待液体溶剂蒸干后,剩余固体在-0.1Mpa压力下、70摄氏度中干燥8小时,以便获得杂化钙钛矿量子点材料。由此,可以简便地得到纯度较高的量子点材料。并且,利用根据本发明实施例的方法,可以通过干燥获得粉末状量子点材料,同时保持量子点材料稳定存在而不发生团聚。
综上所述,在本发明的第二方面,本发明提出的制备杂化钙钛矿量子点材料的制备原理为:无机金属卤化物和有机胺卤盐均可溶解于第一溶剂中,并且它们在第一溶剂都以分散形式存在,形成前驱体溶液。当将前驱体溶液滴入第二溶剂中时,由于有机胺卤盐与无机金属卤化物在第一溶剂和第二溶剂中具有不同的溶解度,它们会很快发生自组装,无机金属阳离子与卤素阴离子形成配位八面体,有机胺阳离子进入相邻八面体间的空隙中,形成杂化钙钛矿结构;同时,由于溶液中存在有机酸、长链胺等配体,这些配体会包覆在所形成的正八面体颗粒表面,限制了颗粒沿三维方向的生长,将颗粒尺寸限制在纳米级别,并最终形成杂化钙钛矿量子点。
本发明所述的制备方法中,通过调节无机金属卤化物以及长链有机胺的比例可以制备出不同发光波长的杂化钙钛矿量子点;通过调节第一溶剂、第二溶剂的种类和比例可以制备出不同组分的杂化钙钛矿荧光量子点;本发明所述的制备方法中,表面配体可加入第一溶剂,也可加入第二溶剂中;本发明方法制备出的杂化钙钛矿荧光量子点表面包覆有机配体,可稳定分散在第二溶剂中,方便了杂化钙钛矿量子点 的加工利用,并且可以通过蒸馏去除有机溶剂获得杂化钙钛矿量子点材料。
因此,利用上述方法制备的有机-无机杂化钙钛矿荧光量子点材料具备以下优点:
1、用本发明提出的方法制备杂化钙钛矿量子点材料,无需模板,无需加热,反应迅速,成本低廉,操作简单,可以同时得到杂化钙钛矿量子点粉末和分散于多种有机溶剂中的量子点溶液。
2、上述方法可以制备出超小粒径的杂化钙钛矿量子点,且该量子点发光强度高,荧光量子产率可达60%,远远超出现有制备方法所获得的同类材料。
3、本发明提出的方法制备的荧光量子产率杂化钙钛矿量子点材料,可以稳定分散在甲苯、氯仿、正己烷、环己烷、乙酸乙酯等多种有机溶剂中,量子点粉末和溶液都具有良好的稳定性,荧光可保持长时间不淬灭,为杂化钙钛矿量子点材料的应用奠定良好基础。
4、上述制备方法具有通用性,可适用于多种杂化钙钛矿量子点的制备,通过对杂化钙钛矿材料的组分和结构进行设计,可以制备出具有不同发光波长的量子点,发光波长可覆盖整个可见光区域,在高色域白光LED的应用中具有很大优势。
5、本发明制备出的杂化钙钛矿量子点,通过全溶液加工,可获得性能良好的反式电致发光器件。
6、通过本发明制备出的杂化钙钛矿量子点半峰宽窄,发光色纯度高,可以满足实际应用的需要,在高性能显示器件、激光、非线性光学等领域有广阔应用前景。
7、通过本发明方法在获得杂化钙钛矿量子点的同时,还可同时获得杂化钙钛矿纳米片层或纳米棒。
在本发明的又一方面,本发明提出了制备本发明前面描述的杂化钙钛矿量子点材料的方法。根据本发明的实施例,该方法包括以下步骤:
(1)将有机胺溶解于无水乙醇中,配制成体积百分比为40%的溶液,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入氢卤酸,有机胺与氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,得到澄清溶液,用旋转蒸发仪在50℃、-0.1MPa压力下蒸发,除去溶剂,得到有机铵卤盐的结晶粉末,用***冲洗有机铵卤盐的结晶粉末三次,过滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到有机铵卤盐粉末。其中,根据本发明的实施例,有机胺可以为通式为CnH2n+1NH2、n≥1的饱和烷基胺、通式为CnH2n-1NH2、n≥2的不饱和烷基胺或芳香胺。
(2)将无机金属卤化物与上述有机铵卤盐粉末按摩尔比1:(0.1~3)混合,加 入长链有机胺,长链有机胺与无机金属卤化物的摩尔比为1:(0.1~3)。其中,根据本发明的实施例,上述长链有机胺的分子式可以为RNH2,R为饱和直链烷基基团或者不饱和直链烷基基团,或者为不饱和直链烷基基团或不饱和支链烷基基团。具体地,根据本发明的一些实施例,上述长链有机胺中的长链基团可以为含有6~10个碳原子的烷基或者芳香基。此后,再加入有机酸,有机酸与无机金属卤化物的摩尔比为1:(0~20)。其中,有机酸为碳原子数至少为3的饱和烷基酸或者不饱和烷基酸,并且,根据本发明的实施例,该有机酸可以是通式为CnH2n+1COOH(n≥2)的饱和烷基酸,或通式为CnH2n-1COOH(n≥2)的不饱和烷基酸。然后,再加入第一溶剂,第一溶剂与无机金属卤化物的摩尔比为1:(20~1000),混合后进行超声处理,超声处理5分钟后,得到透明混合液,用孔径为0.2μm的聚四氟乙烯滤头对经过超声处理的透明混合液进行过滤,取过滤得到的滤液作为前驱体溶液;该步骤中无机金属卤化物为金属Ge、Sn、Pb、Sb、Bi、Cu以及Mn的卤化物盐中的任何一种,上述卤化物包括氯化物、溴化物以及碘化物的至少之一;其中所述第一溶剂为N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、乙腈或丙酮中的任何一种。
(3)将第二溶剂置于磁力搅拌器上快速搅拌,边搅拌边用微量进样器将上述前驱体溶液逐滴滴入到第二溶剂中,滴入速度为10μL~1mL/min,加入的全区提溶液与第二溶剂的体积比为1:(0.0001~10),持续搅拌2小时,得到有机-无机杂化钙钛矿材料悬浊溶液;其中第二溶剂为甲苯、氯仿、正己烷、环己烷、乙酸乙酯或***中的任何一种;
(4)将上述步骤(3)的有机-无机杂化钙钛矿材料悬浊溶液进行离心分离,离心机转速为7500rpm,时间为4分钟,离心后,下层沉淀为杂化钙钛矿纳米片层或纳米棒,上清液为杂化钙钛矿量子点溶液;
(5)将步骤(4)的杂化钙钛矿量子点溶液进行蒸馏,除去有机溶剂,将留下的固体在真空干燥箱-0.1Mpa、70℃下干燥8小时,得到所述杂化钙钛矿量子点材料。
由此,可以通过上述方法简便地获得本发明前面描述的杂化钙钛矿量子点材料,并且利用该方法获得的量子点材料具有前面描述的量子点材料的全部特征以及优点,在此不再赘述。
在本发明的又一方面,本发明提出了一种杂化钙钛矿量子点材料。根据本发明的实施例,该杂化钙钛矿量子点材料是通过本发明前面描述的方法制备的。由此,该杂化钙钛矿量子点材料具有前面描述的方法制备的杂化钙钛矿量子点材料的全部特征以及优点,在此不再赘述。
在本发明的另一方面,本发明提出了一种制备钙钛矿量子点材料的方法。根据本发明的实施例,该方法包括:
(1)将无机金属卤化物和有机铵卤盐或者铯的卤化物溶解在第一溶剂中,以便获得前驱体溶液。其中,无机金属卤化物以及有机铵卤盐或者铯的卤化物在第一溶剂中均具有较好的溶解度,因此上述物质在第一溶剂中均以分散形式存在。
具体地,根据本发明的实施例,将无机卤化物盐与上述有机铵卤盐粉末或Cs的卤化物混合,无机卤化物盐与上述有机铵卤盐粉末或Cs的卤化物的摩尔比1:(0.1~3)。然后,加入长链有机胺作为表面配体,长链有机胺与无机卤化物盐的摩尔比为1:(0.1~3)。其中,长链有机胺的分子式为RNH2,其中,R可以为饱和或者不饱和的直链烷基基团,也可以为饱和或者不饱和的支链烷基基团。任选地,上述长链有机胺中R基团可以为碳数为4~24的烷基或者芳香基。此后,在上述含有长链有机胺的无机卤化物盐与上述有机铵卤盐粉末或Cs的卤化物混合的混合物中,加入有机酸。其中,有机酸作为表面配体,并且有机酸与无机卤化物盐的摩尔比可以为(0~100):(1~10)。根据本发明的实施例,上述有机酸有机酸可以是通式为CnH2n+1COOH、n≥2的饱和烷基酸,或通式为CnH2n-1COOH、n≥2的不饱和烷基酸。最后,向上述含有有机酸以及长链有机胺的混合物中加入第一溶剂。加入的第一溶剂与无机卤化物盐的摩尔比可以为(200~1000):(1~10)。混合后对上述混合物进行超声处理,超声处理5分钟后,得到透明混合液,用孔径为0.2μm的聚四氟乙烯滤头对经过超声处理的透明混合液进行过滤,保留取过滤得到的滤液,以便获得前驱体溶液。根据本发明的实施例,该步骤中的无机卤化物盐为金属Ge、Sn、Pb、Sb、Bi、Cu、Mn的卤化物盐中的任何一种;第一溶剂为选自N,N-二甲基甲酰胺、乙腈、N-甲基吡咯烷酮以及二甲基亚砜的至少一种。
根据本发明的实施例,该步骤中加入的有机铵卤盐是按照下列步骤制备的:将有机胺溶解于无水乙醇中,搅拌至有机胺与无水乙醇混合均匀,配制成体积百分比为40%的溶液,其中,有机胺是甲胺、甲酰胺、乙酰胺的任何一种。在冰水浴环境下,边搅拌边向上述溶液中加入氢卤酸,家进入的氢卤酸与有机胺的摩尔比为(1~3):1。含有氢卤酸的混合物在冰水浴环境下持续搅拌2小时,得到澄清溶液,用旋转蒸发仪在50℃、-0.1MPa压力下蒸发,除去溶剂,得到有机胺卤盐的结晶粉末。结晶粉末用***冲洗数次,过滤后在真空干燥箱中,在50摄氏度、-0.1MPa的压力下干燥4小时,得到有机铵卤盐粉末。
(2)在该步骤中,将步骤(1)中获得的前驱体溶液加入到第二溶剂中,以便形成乳液体系。具体地,上述乳液体系是通过下列步骤获得的:
根据本发明的实施例,将第二溶剂置于磁力搅拌器上快速搅拌,边搅拌边将上述 前驱体溶液逐滴滴入到第二溶剂中。其中,第二溶剂为选自1-十八烯(ODE)、正己烷、环己烷以及正庚烷的至少一种,并且,在该步骤中选择的第二溶剂与步骤(1)中的第一溶剂不混溶。需要说明的是,在本发明中,术语“不混溶”特指当将第一溶剂与第二溶剂进行混合时,混合溶液出现分层现象。由此,可以通过选用两种不混溶的溶剂分别作为第一溶剂以及第二溶剂,简便地形成乳液体系。
此外,根据本发明的实施例,滴入前驱体溶液的滴入速度为10μL~1mL/min,加入前驱体溶液与第二溶剂的体积比为1:(0.0001~10)。根据本发明的实施例,缓慢、少量的滴入有利于乳液体系的形成,因此,可以采用微量进样器完成前驱体溶液的滴加。加入前驱体溶液后,混合溶液持续搅拌2小时,得到钙钛矿材料乳液体系。
(3)将破乳剂加入到上述乳液体系中,以便无机金属卤化物与有机铵卤盐或者铯的卤化物盐发生自组装,进而获得钙钛矿量子点材料。具体地,根据本发明的实施例,在钙钛矿材料乳液体系中加入破乳剂,破乳剂的加入量与第二溶剂的体积比为1:(1~10)。然后,对加入了破乳剂的乳液体系进行离心分离,离心机转速为7500rpm,时间为4分钟。离心后,保留上层清液,以便获得钙钛矿量子点溶液。最后,对钙钛矿量子点溶液进行清洗,除去有机溶剂。除去有机溶剂后的溶液进行真空干燥,得到的粉末为钙钛矿量子点粉末材料。其中,根据本发明的实施例,破乳剂可以为为选自丙酮、甲醇、异丙醇、正丁醇以及叔丁醇的至少之一。由此,可以利用该方法直接得到纯净的量子点粉末,并且粉末中的量子点材料稳定存在,不会发生团聚,进而便于将该量子点材料应用于更加广泛的领域内。
此外,通过调节在该步骤中加入的破乳剂的量,可以在得到量子点粉末材料的同时,获得纳米棒以及纳米片等产物。根据本发明的实施例,当破乳剂的加入量与第二溶剂的体积比为1:(5~10)时,可以得到含有纳米棒以及量子点材料的溶液。通过后期离心分离,可以分别得到量子点粉末材料以及纳米棒材料。当破乳剂的加入量与第二溶剂的体积比为1:(1~5)时,可以得到含有纳米片、纳米棒以及量子点材料的溶液。由此,可以在获得量子点材料的同时,制备多种具有不同形貌的钙钛矿材料。
为了方便理解,下面对利用该方法制备钙钛矿量子点材料的原理进行说明:无机金属卤化物、有机胺卤盐或者铯的卤化物均可以溶解于第一溶剂中,它们在第一溶剂都以分散形式存在。换句话说,无机金属卤化物、有机胺卤盐或者铯的卤化物在第一溶剂中不会发生配位反应而形成晶核或者化合物。当将前驱体溶液滴入第二溶剂中时,由于前驱体溶液中含有的第一溶剂与第二溶剂不混溶,并且预先添加在第一溶剂以及第二溶剂中作为表面配体的的有机胺和有机酸具有两亲性,因此上述有 机胺以及有机酸可以将含有第一溶剂的前驱体溶液包裹起来,形成胶束。前驱体溶液被包裹在胶束中,以小液滴的形式分散在第二溶剂中,形成乳液体系;加入破乳剂后,平衡的乳液体系被破坏,小液滴中的前驱体扩散至第二溶剂中,迅速发生自组装,形成钙钛矿晶核,同时由于乳液中未被破坏的胶束和钙钛矿晶核之间的氢键作用,胶束吸附在晶核表面作为表面配体,限制晶核的进一步长大,最终将颗粒尺寸控制在纳米级别。
此外,利用该方法制备的钙钛矿量子点材料具有前面描述的钙钛矿量子点材料具备的特征以及优点,在此不再赘述。
在本发明的又一方面,本发明提出了一种半导体器件。根据本发明的实施例,该半导体器件包含前面描述的根据本发明任一项实施例的钙钛矿量子点材料。由于该半导体器件中含有上述量子点材料,因此该半导体器件具有前面描述的量子点材料具有的全部特征以及优点,在此不再赘述。由此,通过将上述量子点材料制备在该半导体器件的相应位置,进而可以提高该器件的使用效果。
根据本发明的实施例,该半导体器件可以为电致发光器件、太阳能电池、显示器件以及非线性光学器件。由此,可以发挥前面描述的量子点材料的特征以及优点,并将其运用到上述器件中,进而可以提高上述器件的使用效果。
需要说明的是,在本发明的各个方面中所描述的特征和效果可以互相适用,在此不再赘述。
下面通过具体实施例对本发明进行说明,需要说明的是,下面的具体实施例仅仅是用于说明的目的,而不以任何方式限制本发明的范围,另外,如无特殊说明,未具体记载条件或者步骤的方法均为常规方法,所采用的试剂和材料均可从商业途径获得。
实施例1
本实施例以油酸、2-乙基己胺为表面配体,制备CH3NH3PbI3量子点,具体步骤为:
(1)碘化甲胺的制备
用10mL移液管量取5mL质量分数为30%的甲胺乙醇溶液(纯度>99.9%),置于100mL圆底烧瓶中,搅拌10分钟至均匀。在冰水浴环境下,边搅拌边向上述溶液中加入质量分数为57%的氢碘酸5mL,在冰水浴环境下持续搅拌2小时,得到澄清溶液。用旋转蒸发仪在50℃、-0.1MPa压力下减压蒸馏,除去溶剂。将旋蒸后留在圆底烧瓶内的产物用无水***洗涤三次,抽滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时, 得到碘化甲胺粉末;
(2)反应前躯体溶液的制备
取一10mL同位素瓶,加入0.2mmol碘化甲胺、0.2mmol碘化铅,用微量进样器加入2-乙基己胺40μL,用滴管加入油酸1mL,丙酮10mL,超声处理5min,得澄清透明棕黄色溶液,用孔径为0.2μm的聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)前驱体溶液与第二溶剂的除氧处理
另取一10mL同位素瓶,加入10mL甲苯,分别用带针头的氮气将前驱体溶液和正己烷中的空气排尽,将前驱体溶液和甲苯转移至手套箱中,以进行下一步操作;
(4)前驱体溶液与第二溶剂的混合
将上述步骤(3)中的甲苯置于磁力搅拌器上快速搅拌,用微量进样器吸取前驱体溶液,逐滴滴入到快速搅拌的正己烷中,隔30s滴入一滴(一滴约10μL),边滴加边用紫外灯监测,直至加入300μL的前驱体溶液。可观察到所得CH3NH3PbI3量子点的溶液为棕褐色,在紫外灯下溶液发出昏暗的枚红色光。用荧光光谱仪测试该量子点的发光在近红外区,发光峰位置为726nm。图2为所得CH3NH3PbI3量子点的荧光光谱图。
本实施例中如果加入2-乙基己胺为60μL,所得量子点发光波长为740nm,如果加入2-乙基己胺为20μL,所得量子点发光波长为700nm。即不同的无机金属卤化物/长链有机胺比例可制备出不同发光波长的杂化钙钛矿量子点。
实施例2
本实施例以丁酸、十八胺为表面配体制备CH3NH3PbCl3量子点,具体步骤为:
(1)氯化甲胺的制备
用10mL移液管量取5mL质量分数为30%的甲胺乙醇溶液(纯度>99.9%),置于100mL圆底烧瓶中,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入质量分数为37%的浓盐酸5mL,在冰水浴环境下持续搅拌2小时,得到澄清溶液,用旋转蒸发仪在50℃、-0.1MPa压力下蒸发,除去溶剂,将留在圆底烧瓶内的产物用无水***冲洗三次,抽滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到氯化甲胺粉末;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol氯化甲胺、0.2mmol氯化铅,0.4mmol十八胺,用滴管加入丁酸1mL,二甲基亚砜10mL,超声处理5分钟,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL氯仿,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的氯仿中,隔30s滴入一滴(一滴约10μL),边滴加边用紫外灯监测,直至加入1mL的前驱体溶液。可观察到所得CH3NH3PbCl3量子点的氯仿溶液为浅蓝色,在紫外灯照射下发出紫色光。用荧光光谱仪该量子点的发光在紫光区,发光峰位置为406nm;
(5)量子点粉末的获得
将步骤(4)所得的浅蓝色量子点溶液转移至蒸馏瓶中,用减压蒸馏装置除去有机溶剂,留下的固体在真空干燥箱中干燥8h,得到量子点的结晶粉末,所得CH3NH3PbCl3量子点粉末为白色。
实施例3
本实施例以丙酸、正己胺为表面配体制备CH3NH3PbBr3量子点,具体步骤为:
(1)溴化甲胺的制备
用10mL移液管量取5mL质量分数为30%的甲胺乙醇溶液(纯度>99.9%),置于100mL圆底烧瓶中,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入质量分数为49%的氢溴酸5mL,在冰水浴环境下持续搅拌2小时,得到澄清溶液。用旋转蒸发仪在50℃、-0.1MPa压力下减压蒸馏,除去溶剂,将留在圆底烧瓶内的产物用无水***洗涤三次,抽滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到溴化甲胺粉末;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol溴化甲胺、0.2mmol溴化铅,再加入正己胺0.4mmol,用滴管加入丙酸1mL,N,N-二甲基甲酰胺10mL,进行超声处理,超声处理5分钟后,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL甲苯,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的甲苯中,隔30s滴入一滴(一滴约10μL),边滴加边用紫外灯监测,直至加入1mL的前驱体溶液。 可观察到甲苯溶液中有棕黄色浑浊出现,在紫外灯下为绿色;
(5)量子点溶液后处理
将步骤(4)所得量子点溶液转移至离心管中,用7500rpm离心10min,可观察到离心管上层为亮绿色溶液,下层为深黄色沉淀,用滴管将上清液吸出,即得到CH3NH3PbBr3量子点的溶液。图3为所得CH3NH3PbBr3量子点溶液在日光灯及紫外灯下的照片;图4为所得量子点的吸收发射光谱,该量子点的发光峰为515nm。下层沉淀为杂化钙钛矿纳米片或纳米棒,图5为下层沉淀的扫描电子显微镜照片;
(6)量子点粉末的获得
将步骤(4)所得亮绿色上清液转移至蒸馏瓶中,用减压蒸馏装置除去有机溶剂,留下的固体在真空干燥箱中烘干8h,得到量子点的结晶粉末,所得CH3NH3PbBr3量子点粉末为黄绿色。图6为所得量子点的透射电子显微镜照片。
本实施例所述步骤(2)中,若不在第一溶剂中加入表面配体(正己胺、丙酸),而将表面配体加入步骤(3)所述的第二溶剂中,同样可获得杂化钙钛矿量子点材料。
实施例4
本实施例以正辛胺为表面配体,制备(C2H5NH3)2GeI4量子点,具体步骤为:
(1)乙胺碘盐的制备
用10mL移液管量取5mL乙胺(纯度>99.9%),用无水乙醇稀释成体积百分比为40%的溶液,置于100mL圆底烧瓶中,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入质量分数为49%的氢碘酸5mL,在冰水浴环境下持续搅拌2小时,得到澄清溶液。用旋转蒸发仪在50℃、-0.1MPa压力下减压蒸馏,除去溶剂,将留在圆底烧瓶内的产物用无水***洗涤三次,抽滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到乙胺碘盐粉末;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol乙胺碘盐、0.2mmol碘化锗,用微量进样器加入正辛胺40μL,用滴管加入乙腈10mL,超声处理5min,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL***,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的***中,隔5s滴入一滴(一滴约10μL),直至加入2mL的前驱体溶液。可观察到溶液中有浑浊出 现;
(5)离心获得澄清溶液
将步骤(4)所得的溶液转移至离心管中,7000rpm离心4min,用滴管将上层清液吸出,所得为墨黑色溶液,该溶液发光在红外区。
实施例5
本实施例以油胺、正己胺为表面配体,制备CH3NH3PbClxBr3-x(0≤x≤3)量子点,具体步骤为:
(1)氯化甲胺的制备
氯化甲胺的制备方法同实施例2步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol氯化甲胺、0.2mmol溴化铅,用微量进样器加入正己胺40μL,用滴管加入油胺1mL,N,N-二甲基甲酰胺10mL,超声处理5min,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL氯仿,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的氯仿中,隔10s滴入一滴(一滴约10μL),直至加入1mL的前驱体溶液。可观察到溶液逐渐变浑浊,有绿色颗粒生成;
(5)离心
将步骤(4)所得的浑浊溶液转移至离心管中,7500rpm离心10min,上层清液为浅蓝色,沉淀为青色。上清液在紫外灯照射下呈蓝色。图7为所得量子点溶液在日光及紫外灯下的照片;图8为所得量子点的发射光谱。
实施例6
本实施例以油酸、正辛胺为表面配体,制备CH3NH3PbIXBr3-X(0≤x≤3)量子点,具体步骤为:
(1)溴化甲胺的制备
溴化甲胺的制备方法同实施例3步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol溴化甲胺、0.2mmol碘化铅,用微量进样器加 入正辛胺40μL,用滴管加入油酸1mL,四氢呋喃(THF)10mL,超声处理5min,得澄清透明浅黄色溶液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加10mL环己烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的环己烷中,隔5s滴入一滴(一滴约10μL),滴入100μL后,继续搅拌5min,再次滴入100μL,如此循环,直至加入1mL的前驱体溶液。可观察到所得CH3NH3PbIXBr3-X量子点的溶液为黑红色。在紫外灯下发出深红色光,用光谱仪测得发光峰为650nm;
(5)量子点粉末的获得
将步骤(4)所得的黑红色量子点溶液转移至蒸馏瓶中,用减压蒸馏装置出去有机溶剂,得到量子点的结晶粉末,所得CH3NH3PbIXBr3-X量子点为黑红色粉末;
(6)量子点粉末的封装
将步骤(5)所得的量子点粉末重新溶解于甲苯中,称量适量PMMA,加入量子点的环己烷溶液中,使PMMA在溶液中的质量分数为5%。将混合溶液均匀铺展在表面皿上,放入通风橱中。待环己烷挥发完全后,将成型的PMMA薄膜从表面皿上揭下,得到量子点与PMMA的复合薄膜,该薄膜颜色为深红色。
实施例7
本实施例以己酸、十二胺为表面配体,制备CH3NH3SnI3量子点,具体步骤为:
(1)碘化甲胺的制备
碘化甲胺的制备方法同实施例1步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol碘化甲胺、0.2mmol碘化锡,用微量进样器加入十二胺40μL,用滴管加入己酸1mL,N,N-二甲基甲酰胺10mL,进行超声处理,超声处理5分钟后,得澄清透明溶液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL环己烷,以进行下一步操作;
(4)前驱体溶液和第二溶剂的除氧处理
分别用橡胶塞将盛有前驱体溶液和第二溶剂的同位素瓶塞好,用带针头的氮气排尽 前驱体溶液及第二溶剂中的氧气,然后将前驱体溶液和第二溶剂转移至手套箱中;
(5)量子点溶液的制备
将步骤(4)中已除尽氧气的环己烷置于磁力搅拌器上快速搅拌,用微量进样器吸取前驱体溶液,逐滴滴入快速搅拌的环己烷中,隔30s滴入一滴(一滴约10μL),直至加入100μL的前驱体溶液。可观察到所得CH3NH3SnI3量子点的溶液为黑色。
实施例8
本实施例以油酸为表面配体,制备(C6H5NH3)2PbI4量子点,具体步骤为:
(1)苯乙胺碘盐的制备
用10mL移液管量取5mL苯乙胺,置于100ml圆底烧瓶中,再加入7.5mL无水乙醇,稀释成体积分数为40%的苯乙胺乙醇溶液。搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入质量分数为57%的氢碘酸4mL,在冰水浴环境下持续搅拌2小时,得到澄清溶液,用旋转蒸发仪在50℃、-0.1MPa压力下蒸发,除去溶剂,得到苯乙胺碘盐的结晶粉末,用***冲洗甲胺溴盐的结晶粉末三次,抽滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到浅黄色的苯乙胺碘盐粉末;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol苯乙胺碘盐、0.2mmol碘化铅,用滴管加入油酸1mL,N,N-二甲基甲酰胺10mL,超声处理5min,得澄清透明无色混合液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL氯仿,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的氯仿中,隔5s滴入一滴,直至加入0.5mL的前驱体溶液。可观察到所得(C6H5NH3)2PbI4量子点的氯仿溶液为浅黄色。该量子点的发光峰位置为530nm,附图9为所得量子点的发射光谱。
实施例9
本实施例以癸酸为表面配体,制备CH3NH3CuBr3量子点,具体步骤为:
(1)溴化甲胺的制备
溴化甲胺的制备方法同实施例3步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol溴化甲胺、0.2mmol溴化铜,用滴管加入癸酸 1mL,N,N-二甲基甲酰胺10mL,超声处理5min,得澄清透明无色混合液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL甲苯,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的甲苯中,隔5s滴入一滴,直至加入0.5mL的前驱体溶液。可观察到所得CH3NH3CuBr3量子点的甲苯溶液为深紫色。
实施例10
本实施例以戊酸、3-乙烯基己胺为表面配体,制备(C6H5NH3)2BiCl4量子点,具体步骤为:
(1)苯乙胺碘盐的制备
苯乙胺碘盐的制备方法同实施例8步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol苯乙胺碘盐、0.2mmol氯化铋,用滴管加入戊酸1mL,3-乙烯基己胺40μL,DMSO 10mL,超声处理5min,得澄清透明无色混合液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL环己烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的环己烷中,隔5s滴入一滴,直至加入0.5mL的前驱体溶液。可观察到所得(C6H5NH3)2BiCl4量子点的溶液为无色。
实施例11
本实施例以辛酸、十六胺为表面配体,制备CH3NH3MnI3量子点,具体步骤为:
(1)碘化甲胺的制备
碘化甲胺的制备方法同实施例1步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol碘化甲胺、0.2mmol碘化锰,用滴管加入辛酸 1mL,十六胺40μL,丙酮10mL,超声处理5min,得澄清透明无色混合液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL环己烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的环己烷中,隔5s滴入一滴,直至加入0.5mL的前驱体溶液。可观察到所得CH3NH3MnI3量子点的溶液为紫黑色。
实施例12
本实施例以丁胺为表面配体,制备CH3NH3SbCl3量子点,具体步骤为:
(1)氯化甲胺的制备
氯化甲胺的制备方法同实施例2步骤(1)中所述;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol氯化甲胺、0.2mmol氯化锑,用滴管加入辛胺40μL,丙酮10mL,超声处理5min,得澄清透明无色混合液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL正己烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的正己烷中,隔5s滴入一滴,直至加入0.5mL的前驱体溶液。可观察到所得CH3NH3SbCl3量子点的溶液为无色。
实施例13
本实施例以2-丁基十四胺为表面配体,制备(CH2=CHCH2CH3NH3)2SnI4量子点,具体步骤为:
(1)4-氨基-1-丁烯碘盐的制备
4-氨基-1-丁烯碘盐的制备方法同实施例4步骤(1)中所述,将步骤(1)中的乙胺换为4-氨基-1-丁烯;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol 4-氨基-1-丁烯碘盐、0.2mmol碘化锡,用滴管加入2-丁基十四胺40μL,THF 10mL,超声处理5min,得澄清透明浅红色混合液,用0.2μm聚四氟乙烯滤头对经过超声波处理的混合液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL氯仿,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的氯仿中,隔5s滴入一滴,直至加入0.5mL前驱体溶液,可观察到所得(CH2=CHCH2CH3NH3)2SnI4量子点的溶液为红色。
实施例14
本实施例以所制备CH3NH3PbBr3量子点为基础,构造反式电致发光器件,具体步骤为:
(1)ITO导电玻璃衬底的准备
将ITO(氧化铟锡)导电玻璃切割成2.5*2.5cm2的方形基底,用去离子水冲洗,之后依次放入到丙酮、异丙醇中超声15min,将清洗好的ITO导电玻璃泡在异丙醇中备用;
(2)旋涂液的配制
将二异丙氧基双乙酰丙酮钛(TIPD)溶于异丙醇中,配制成质量分数为25%的电子传输层材料的旋涂液;将制备好的杂化钙钛矿量子点溶于甲苯中,控制浓度为10mg/ml,配制成量子点层的旋涂液;将聚[双(4-苯基)(4-丁基苯基)胺](poly-TPD)粉末溶于氯苯溶液中,配制成质量分数为10%的空穴传输层材料的旋涂液。以上溶液分别用0.22μm滤头过滤,将滤液转移至样品瓶中备用;
(3)旋涂
将处理好的ITO导电玻璃取出,置于匀胶机转盘上。用微量进样器吸取TIPD异丙醇溶液,滴到ITO表面,使溶液在ITO表面均匀覆盖一层,然后用2000rpm旋涂30s,再依次旋涂量子点及空穴传输层(poly-TPD),量子点及空穴传输层的旋涂方法同上。每次旋涂完后,将ITO置于热台上,70℃退火15min;
(4)蒸镀电极
用真空镀膜仪在poly-TPD空穴传输层上蒸镀一层AL电极,蒸镀AL电极的厚度为100nm,附图10为所构建电致发光器件的结构示意图。在电极两端加电压,可观察到 器件发出明亮的绿光,随电压增大,发光强度逐渐增强。
实施例15
本实施例以正辛胺为表面配体,制备CsPbBr3量子点,具体步骤为
(1)油酸铯的制备
取一100mL三口烧瓶,加入2.5mmmol碳酸铯,用量筒加入十八烯30ml,用滴管加入油酸2.5mL,加热至120℃,真空下反应1h,再升温至150℃至碳酸铯溶解完全至棕褐色,取澄清反应液作为反应前驱体溶液;
(2)溴化铅溶液的制备
另取一5mL同位素瓶,加入0.38mmol溴化铅,用滴管加入N,N-二甲基甲酰胺0.6mL,进行超声处理,超声处理5分钟后,得澄清透明无色溶液。
(3)第二溶剂的准备
取一30mL同位素瓶,加入10mL正己烷,2mL油酸,0.5mL正辛胺,0.4mL步骤(1)制备的油酸铯前驱体液,0.2mLN,N-二甲基甲酰胺,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点溶液的制备
用微量进样器吸取溴化铅溶液,逐滴滴入到步骤(3)所述快速搅拌的溶液中,隔10s滴入一滴(一滴约10μL),直至加完前驱体溶液。用滴管加入8mL丙酮溶剂,观察到溶液逐渐变浑浊,有黄绿色颗粒生成;
(5)离心
将步骤(4)所得的浑浊溶液转移至离心管中,7000rpm离心10min,上层清液为无色,沉淀为黄绿色。沉淀在紫外灯照射下呈蓝色。正己烷溶解沉淀得到量子点溶液。
实施例16
本实施例以正己胺为表面配体,采用N,N-二甲基甲酰胺作为第一溶剂,采用正己烷作为第二溶剂制备CH3NH3PbBr3量子点,具体步骤为:
(1)溴化甲胺的制备
用10mL移液管量取5mL质量分数为30%的甲胺乙醇溶液(纯度>99.9%),置于100mL圆底烧瓶中,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入质量分数为49%的氢溴酸5mL,在冰水浴环境下持续搅拌2小时,得到澄清溶液。用旋转蒸发仪在50℃、-0.1MPa压力下减压蒸馏,除去溶剂,将留在圆底烧瓶内的产物用无水***洗涤三次,抽滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到溴化甲胺粉末;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol溴化甲胺、0.2mmol溴化铅,再加入正己胺0.4mmol,用滴管加入丙酸1mL,N,N-二甲基甲酰胺1mL,进行超声处理,超声处理5分钟后,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL正己烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点乳液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的正己烷中,,边滴加边用紫外灯监测,直至加入全部前驱体溶液。
(5)破乳
在步骤(4)所得溶液中加入叔丁醇5mL,并转移至离心管中,用7500rpm离心10min,倒掉上清液,沉淀即为CH3NH3PbBr3量子点。
实施例17
本实施例以正辛胺为表面配体,采用二甲基亚砜作为第一溶剂,采用正己烷作为第二溶剂制备CHONH3PbI3纳米片,具体步骤为:
(1)溴化甲酰胺的制备
溴化甲酰胺的制备方法同溴化甲胺;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol溴化甲酰胺、0.2mmol碘化铅,再加入正辛胺0.4mmol,用滴管加入丙酸1mL,二甲基亚砜1mL,进行超声处理,超声处理5分钟后,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL正己烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点乳液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的正己烷中,,边滴加边用紫外灯监测,直至加入全部前驱体溶液。
(5)破乳
在步骤(4)所得溶液中加入甲醇10mL,持续搅拌30min,再转移至离心管中,用7500rpm离心10min,倒掉上清液,沉淀即为CHONH3PbI3纳米片。
实施例18
本实施例以油胺为表面配体,采用二甲基亚砜作为第一溶剂,采用正庚烷作为第二溶剂制备CH3CHONH3PbCl3纳米线,具体步骤为:
(1)氯化乙酰胺的制备
氯化乙酰胺的制备方法同氯化甲胺;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol氯化乙酰胺、0.2mmol氯化铅,再加入油胺0.4mmol,用滴管加入丙酸1mL,二甲基亚砜1mL,进行超声处理,超声处理5分钟后,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL正庚烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点乳液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的正庚烷中,边滴加边用紫外灯监测,直至加入全部前驱体溶液。
(5)破乳
在步骤(4)所得溶液中加入正丁醇7mL,并转移至离心管中,用7500rpm离心10min,倒掉上清液,沉淀即为CH3CHONH3PbCl3纳米线。
实施例19
本实施例以苯乙胺为表面配体,采用N-甲基吡咯烷酮作为第一溶剂,采用正庚烷作为第二溶剂制备CH3NH3PbCl3量子点,具体步骤为:
(1)溴化甲胺的制备
溴化甲胺的制备方法同上;
(2)反应前驱体溶液的制备
取一10mL同位素瓶,加入0.2mmol溴化甲胺、0.2mmol氯化铅,再加入苯乙胺0.4mmol,用滴管加入丙酸1mL,N-甲基吡咯烷酮1mL,进行超声处理,超声处理5分钟后,得澄清透明无色溶液,用0.2μm聚四氟乙烯滤头对经过超声处理的溶液进行过滤,取澄清滤液作为反应前驱体溶液;
(3)第二溶剂的准备
另取一10mL同位素瓶,加入10mL正庚烷,置于磁力搅拌器上快速搅拌,以进行下一步操作;
(4)量子点乳液的制备
用微量进样器吸取前驱体溶液,逐滴滴入到步骤(3)所述快速搅拌的正庚烷中,边滴加边用紫外灯监测,直至加入全部前驱体溶液。
(5)破乳
在步骤(4)所得溶液中加入正丁醇7mL,并转移至离心管中,用7500rpm离心10min,倒掉上清液,沉淀即为CH3NH3PbCl3量子点。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。

Claims (26)

  1. 一种杂化钙钛矿量子点材料,其特征在于,包括:
    内核,所述内核是由R1NH3AB3或(R2NH3)2AB4形成的,R1为甲基,R2为有机分子基团,A为选自Ge、Sn、Pb、Sb、Bi、Cu或Mn的至少之一,B为选自Cl、Br和I的至少之一,A和B构成配位八面体结构,R1NH3或R2NH3填充在所述配位八面体结构的间隙中;以及
    表面配体,所述表面配体形成在所述内核的表面,所述表面配体为有机酸或有机胺。
  2. 根据权利要求1所述的杂化钙钛矿量子点材料,其特征在于,所述表面配体呈发散状包裹在所述内核表面。
  3. 根据权利要求1所述的杂化钙钛矿量子点材料,其特征在于,R2为长链有机分子基团。
  4. 根据权利要求1所述的杂化钙钛矿量子点材料,其特征在于,所述表面配体为有机酸或长链有机胺。
  5. 根据权利要求4所述的杂化钙钛矿量子点材料,其特征在于,所述有机酸包括碳原子数至少为3的饱和烷基酸或不饱和烷基酸。
  6. 根据权利要求4所述的杂化钙钛矿量子点材料,其特征在于,所述长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。
  7. 根据权利要求4所述的杂化钙钛矿量子点材料,其特征在于,所述长链有机胺为4~24个碳原子的烷基胺或芳香胺。
  8. 一种制备杂化钙钛矿量子点材料的方法,其特征在于,包括:
    (1)将无机金属卤化物和有机铵卤盐溶解在第一溶剂中,以便获得前驱体溶液,在所述前驱体溶液中,所述无机金属卤化物和有机铵卤盐均以分散形式存在;以及
    (2)将所述前驱体溶液滴入第二溶剂中,其中,所述无机金属卤化物和有机铵卤盐在所述第一溶剂中的溶解度不同于所述无机金属卤化物和有机铵卤盐在所述第二溶剂中的溶解度,以便所述无机金属卤化物和有机铵卤盐发生自组装,从而所述无机金属卤化物的无机金属阳离子与所述有机铵卤盐的卤素阴离子形成配位八面体结构,所述有机铵卤盐的有机胺阳离子进入所述配位八面体结构的间隙中,以便获得所述杂化钙钛矿量子点材料,
    其中,在所述第一溶剂和所述第二溶剂的至少之一中预先添加有表面配体,所述表面配体为有机酸或长链有机胺。
  9. 根据权利要求8所述的方法,其特征在于,所述第一溶剂包括选自N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、乙腈、N-甲基吡咯烷酮以及丙酮的至少一种,
    所述第二溶剂包括选自甲苯、氯仿、正己烷、环己烷、乙酸乙酯以及***的至少一种。
  10. 根据权利要求8所述的方法,其特征在于,所述第一溶剂与所述第二溶剂混溶。
  11. 根据权利要求8所述的方法,其特征在于,所述有机酸包括碳原子数为至少3的饱和烷基酸或不饱和烷基酸;以及
    所述长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。
  12. 根据权利要求8所述的方法,其特征在于,所述长链有机胺为4~24个碳原子的烷基胺或芳香胺。
  13. 根据权利要求8所述的方法,其特征在于,所述前驱体溶液是通过下列步骤获得的:
    (a)将所述无机金属卤化物与有机铵卤盐按摩尔比1:(0.1~3)混合,加入所述长链有机胺,所述长链有机胺与所述无机金属卤化物的摩尔比为1:(0.1~3),
    其中,所述无机金属卤化物为选自Ge、Sn、Pb、Sb、Bi、Cu以及Mn的卤化物的至少一种,所述卤化物包括选自氯化物、溴化物以及碘化物的至少一种;
    (b)在步骤(a)中得到的混合溶液中加入所述有机酸,所述有机酸与所述无机金属卤化物的摩尔比为(0~20):1,加入所述第一溶剂,所述第一溶剂与所述无机金属卤化物的摩尔比为(20~1000):1;以及
    (c)对步骤(b)得到的混合溶液进行超声处理,用孔径为0.2μm的聚四氟乙烯滤头对经过所述超声处理的混合液进行过滤,保留滤液以便获得所述前驱体溶液。
  14. 根据权利要求13所述的方法,其特征在于,所述有机铵卤盐是通过下列步骤获得的:
    将有机胺溶解于无水乙醇,配制所述有机胺的体积百分比为40%的溶液,搅拌均匀,在冰水浴下,边搅拌边向所述溶液中加入氢卤酸,所述有机胺与所述氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,用旋转蒸发仪在50摄氏度、-0.1MPa压力下蒸发,除去溶剂,得到所述有机铵卤盐粉末,用***冲洗所述有机铵卤盐粉末三次,过滤并取滤渣,用真空干燥箱在50摄氏度、-0.1MPa压力下干燥4小时,得到所述有机铵卤盐,
    其中,所述氢卤酸包括选自HCl、HBr以及HI的至少一种,所述有机胺是通式为CnH2n+1NH2、n≥1的饱和烷基胺以及通式为CnH2n-1NH2、n≥2的不饱和烷基胺或芳香胺。
  15. 根据权利要求8所述的方法,其特征在于,步骤(2)进一步包括:
    (2-1)边搅拌边将所述前驱体溶液逐滴滴入到所述第二溶剂中,滴入速度为10μL~1mL/min,加入的所述前驱体溶液与所述第二溶剂的体积比为1:(0.0001~10),持续搅拌2小时,以便获得悬浊溶液;
    (2-2)将所述悬浊溶液进行离心处理,离心机转速为7500rpm,时间为4分钟,离心后,上层清液中含有所述杂化钙钛矿量子点材料;以及
    (2-3)将所述上层清液进行蒸馏,蒸干后剩余固体在-0.1Mpa压力下、70摄氏度下干燥8小时,以便获得所述杂化钙钛矿量子点材料。
  16. 一种制备权利要求1~7任一项所述的杂化钙钛矿量子点材料的方法,其特征在于,包括:
    (1)将有机胺溶解于无水乙醇中,配制成体积百分比为40%的溶液,搅拌10分钟至均匀,在冰水浴环境下,边搅拌边向上述溶液中加入氢卤酸,所述有机胺与氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,得到澄清溶液,用旋转蒸发仪在50℃、-0.1MPa压力下蒸发,除去溶剂,得到有机铵卤盐的结晶粉末,用***冲洗有机铵卤盐的结晶粉末三次,过滤,于真空干燥箱中50℃、-0.1MPa压力下干燥4小时,得到有机铵卤盐粉末,所述的有机胺是通式为CnH2n+1NH2、n≥1的饱和烷基胺、通式为CnH2n-1NH2、n≥2的不饱和烷基胺或芳香胺;
    (2)将无机金属卤化物与所述有机铵卤盐粉末按摩尔比1:(0.1~3)混合,加入长链有机胺,所述长链有机胺为权利要求4~7任一项所述的,所述长链有机胺与无机金属卤化物的摩尔比为1:(0.1~3),再加入如权利要求5所述的有机酸,所述有机酸与无机金属卤化物的摩尔比为1:(0~20),再加入第一溶剂,所述第一溶剂与无机金属卤化物的摩尔比为1:(20~1000),混合后进行超声处理,超声处理5分钟后,得到透明混合液,用孔径为0.2μm的聚四氟乙烯滤头对经过超声处理的透明混合液进行过滤,取过滤得到的滤液作为前驱体溶液;该步骤中所述的无机金属卤化物为金属Ge、Sn、Pb、Sb、Bi、Cu以及Mn的卤化物盐中的任何一种;其中所述第一溶剂为N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃、乙腈或丙酮中的任何一种;
    (3)将第二溶剂置于磁力搅拌器上快速搅拌,边搅拌边用微量进样器将上述前驱体溶液逐滴滴入到第二溶剂中,滴入速度为10μL~1mL/min,加入的体积比为:前驱体溶液:第二溶剂=1:(0.0001~10),持续搅拌2小时,得到有机-无机杂化钙钛矿材料悬浊溶液;其中所述第二溶剂为甲苯、氯仿、正己烷、环己烷、乙酸乙酯或***中的任何一种,
    任选地,所述第一溶剂与所述第二溶剂混溶;
    (4)将上述步骤(3)的有机-无机杂化钙钛矿材料悬浊溶液进行离心分离,离心机转速为7500rpm,时间为4分钟,离心后,下层沉淀为杂化钙钛矿纳米片层或纳米棒,上清液为杂化钙钛矿量子点溶液;
    (5)将步骤(4)的杂化钙钛矿量子点溶液进行蒸馏,除去有机溶剂,将留下的固体在真空干燥箱-0.1Mpa、70℃下干燥8小时,得到所述杂化钙钛矿量子点材料。
  17. 一种杂化钙钛矿量子点材料,其特征在于,是根据权利要求8~15任一项所述的方法制备的。
  18. 一种制备钙钛矿量子点材料的方法,其特征在于,包括:
    (1)将无机金属卤化物和有机铵卤盐或者铯的卤化物溶解在第一溶剂中,以便获得前驱体溶液,在所述前驱体溶液中所述无机金属卤化物、有机铵卤盐以及铯的卤化物均以分散形式存在;
    (2)将所述前驱体溶液加入到第二溶剂中,以便形成乳液体系,其中,所述第一溶剂和所述第二溶剂的至少之一中预先添加有表面配体,所述表面配体为有机酸或长链有机胺,并且所述第一溶剂与所述第二溶剂不混溶,所述乳液体系中包含所述表面配体形成的胶束,所述前驱体溶液被包裹在所述胶束中,并且所述胶束分散在所述第二溶剂中;以及
    (3)将破乳剂加入到所述乳液体系中,以便所述胶束中的所述前驱体溶液扩散至所述第二溶剂中,使所述无机金属卤化物与所述有机铵卤盐或者铯的卤化物发生自组装,所述无机金属卤化物的无机金属阳离子与所述有机铵卤盐或者铯的卤化物中的卤素阴离子形成配位八面体结构,所述有机铵卤盐的有机胺阳离子进入所述配位八面体结构的间隙中,以便获得所述钙钛矿量子点材料,其中,所述无机金属卤化物为选自Ge、Sn、Pb、Sb、Bi、Cu或者Mn的卤化物的至少一种,所述卤化物包括选自氯化物、溴化物以及碘化物的至少一种,所述第一溶剂为选自N,N-二甲基甲酰胺、乙腈、N-甲基吡咯烷酮以及二甲基亚砜的至少一种,所述第二溶剂为选自1-十八烯、正己烷、环己烷以及正庚烷的至少一种,并且,在所述第一溶剂和所述第二溶剂的至少之一中预先添加有表面配体,所述表面配体为有机酸或长链有机胺。
  19. 根据权利要求18所述的方法,其特征在于,所述有机酸包括碳原子数至少为3的饱和烷基酸或不饱和烷基酸,所述长链有机胺的分子式为RNH2,其中,R为饱和直链烷基基团或饱和支链烷基基团,或为不饱和直链烷基基团或不饱和支链烷基基团。
  20. 根据权利要求18所述的方法,其特征在于,所述长链有机胺为4~24个碳原子的烷基胺或芳香胺。
  21. 根据权利要求18所述的方法,其特征在于,所述前驱体溶液是通过下列步骤获得的:将所述无机金属卤化物与所述有机铵卤盐或者铯的卤化物盐按摩尔比1:(0.1~3)混合,加入所述长链有机胺,所述长链有机胺与无机金属卤化物的摩尔比为(0.1~3):1,加入所述有机酸,所述有机酸与所述无机金属卤化物的摩尔比为(0~20):1,加入所述第一溶剂,所述第一溶剂与所述无机金属卤化物的摩尔比为(20~1000):1,以便形成混合溶液,对所述混合溶液进行超声处理,用孔径为0.2μm的聚四氟乙烯滤头对经过所述超声处理的所述混合液进行过滤,保留滤液以便获得所述前驱体溶液。
  22. 根据权利要求18所述的方法,其特征在于,所述有机胺卤盐是通过下列步骤获得的:将有机胺溶解于无水乙醇,配制所述有机胺的体积百分比为40%的溶液,搅拌均匀,在冰水浴下,边搅拌边向所述溶液中加入氢卤酸,所述有机胺与所述氢卤酸的摩尔比为1:(1~3),在冰水浴环境下持续搅拌2小时,用旋转蒸发仪在50 摄氏度、-0.1MPa压力下蒸发,除去溶剂,得到所述有机铵卤盐粉末,用***冲洗所述有机铵卤盐粉末三次,过滤并取滤渣,用真空干燥箱在50摄氏度、-0.1MPa压力下干燥4小时,得到所述有机铵卤盐,其中,所述氢卤酸包括选自HCl、HBr以及HI的至少一种,所述有机胺为甲胺、甲酰胺以及乙酰胺的至少一种。
  23. 根据权利要求18所述的方法,其特征在于,步骤(2)进一步包括:边搅拌边将所述前驱体溶液逐滴滴入所述第二溶剂中,滴入速度为10μL~1mL/min,加入的所述前驱体溶液与所述第二溶剂的体积比为1:(0.0001~10),持续搅拌2小时,以便获得所述乳液体系。
  24. 根据权利要求18所述的方法,其特征在于,步骤(3)进一步包括:在所述乳液体系中加入破乳剂,加入的所述破乳剂与所述第二溶剂的体积比为1:(1-10),对加入了所述破乳剂的所述乳液体系进行离心分离,离心机转速为7500rpm,时间为4分钟,获取上清液以便获得钙钛矿量子点溶液,对所述钙钛矿量子点溶液进行清洗,真空干燥,以便得到所述钙钛矿量子点材料,其中,所述破乳剂为选自丙酮、甲醇、异丙醇、正丁醇以及叔丁醇的至少之一。
  25. 一种半导体器件,其特征在于,含有权利要求1~7以及权利要求17中任一项所述的杂化钙钛矿量子点材料。
  26. 根据权利要求25所述的半导体器件,其特征在于,所述半导体器件包括电致发光器件、太阳能电池、显示器件以及非线性光学器件。
PCT/CN2015/092497 2014-11-04 2015-10-22 钙钛矿量子点材料以及其制备方法 WO2016070713A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15856222.3A EP3216842B1 (en) 2014-11-04 2015-10-22 Preparation method for perovskite quantum dot and perovskite quantum dot obtained by the method
PL15856222T PL3216842T3 (pl) 2014-11-04 2015-10-22 Sposób wytwarzania kropki kwantowej z perowskitu i kropka kwantowa z perowskitu otrzymana za pomocą tego sposobu
US15/584,042 US10633584B2 (en) 2014-11-04 2017-05-02 Method for making a perovskite quantum dot material
US16/824,631 US10731075B2 (en) 2014-11-04 2020-03-19 Perovskite quantum dot material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410612348.6 2014-11-04
CN201410612348.6A CN104388089B (zh) 2014-11-04 2014-11-04 一种杂化钙钛矿量子点材料的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/584,042 Continuation US10633584B2 (en) 2014-11-04 2017-05-02 Method for making a perovskite quantum dot material

Publications (1)

Publication Number Publication Date
WO2016070713A1 true WO2016070713A1 (zh) 2016-05-12

Family

ID=52606053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092497 WO2016070713A1 (zh) 2014-11-04 2015-10-22 钙钛矿量子点材料以及其制备方法

Country Status (5)

Country Link
US (2) US10633584B2 (zh)
EP (1) EP3216842B1 (zh)
CN (1) CN104388089B (zh)
PL (1) PL3216842T3 (zh)
WO (1) WO2016070713A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623606B (zh) * 2017-02-15 2018-05-11 聚和國際股份有限公司 無機鈣鈦礦量子點配方及其製備方法
WO2018101535A1 (ko) * 2016-11-29 2018-06-07 울산과학기술원 표면이 부동태화된 양자점, 및 양자점 표면의 부동태화 방법
CN108250754A (zh) * 2016-12-28 2018-07-06 东京应化工业株式会社 含硅树脂组合物、含硅树脂薄膜、二氧化硅薄膜、发光显示元件面板以及发光显示装置
US20190010393A1 (en) * 2016-08-12 2019-01-10 Boe Technology Group Co., Ltd. Method of preparing luminescent nano-sheet, luminescent nano-sheet material, luminescent nano-sheet film, back light, and liquid crystal display apparatus
CN110010785A (zh) * 2019-04-15 2019-07-12 郑州大学 一种基于无机非铅锑基钙钛矿量子点的黄光led及其制备方法
JP2020041151A (ja) * 2016-08-11 2020-03-19 アファンタマ アクチェンゲゼルシャフト 発光性結晶及びその製造
CN111192964A (zh) * 2020-01-22 2020-05-22 苏州大学 一种钙钛矿量子点太阳能电池及其制备方法
EP3595018A4 (en) * 2017-03-08 2020-11-04 Kao Corporation LIGHT ABSORPTION LAYER, ELEMENT FOR PHOTOELECTRIC CONVERSION AND SOLAR CELL
CN111924875A (zh) * 2020-07-02 2020-11-13 无锡极电光能科技有限公司 钙钛矿CsPbI3量子点及其制备方法
TWI717527B (zh) * 2016-06-24 2021-02-01 日商住友化學股份有限公司 組成物
CN113856767A (zh) * 2021-09-26 2021-12-31 武汉理工大学 S型异质结的Bismuthene/CsPbBr3量子点复合材料及其制备方法和应用
CN114873635A (zh) * 2022-05-09 2022-08-09 复旦大学 一种可控锑掺杂高光效蓝光钙钛矿纳米片及其制备方法
CN116004226A (zh) * 2021-10-21 2023-04-25 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 复合钙钛矿量子点材料、钙钛矿量子点组合物及其制备方法和应用
TWI814965B (zh) * 2019-12-17 2023-09-11 財團法人工業技術研究院 鈣鈦礦前驅物溶液及鈣鈦礦吸收層的製造方法

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089B (zh) * 2014-11-04 2017-06-06 深圳Tcl新技术有限公司 一种杂化钙钛矿量子点材料的制备方法
KR101643052B1 (ko) 2014-11-06 2016-07-27 포항공과대학교 산학협력단 파장변환입자, 파장변환입자의 제조방법, 및 파장변환입자를 포함하는 발광 소자
WO2016072806A2 (ko) 2014-11-06 2016-05-12 포항공과대학교 산학협력단 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
WO2016072810A1 (ko) 2014-11-06 2016-05-12 포항공과대학교 산학협력단 엑시톤 버퍼층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
JP6829682B2 (ja) 2014-11-06 2021-02-10 エスエヌ ディスプレイ カンパニー リミテッド ペロブスカイト発光素子用の発光層及びその製造方法とこれを利用したペロブスカイト発光素子
NL2015885A (en) 2014-12-23 2016-09-22 Asml Netherlands Bv Lithographic patterning process and resists to use therein.
CN104861958B (zh) * 2015-05-14 2017-02-15 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
EP3098870A1 (en) * 2015-05-29 2016-11-30 Consejo Superior De Investigaciones Cientificas Nanostructured perovskite
CN105185918A (zh) * 2015-08-27 2015-12-23 Tcl集团股份有限公司 量子点发光层、其制备方法及qled
CN108028288B (zh) * 2015-09-28 2020-03-17 京瓷株式会社 光电转换装置
CN106816520A (zh) * 2015-11-30 2017-06-09 隆达电子股份有限公司 波长转换材料及其应用
CN105331362B (zh) * 2015-12-07 2017-08-04 南京理工大学 一种室温大产率无机卤素钙钛矿荧光量子点的制备方法
CN105349140B (zh) * 2015-12-08 2017-06-16 重庆大学 基于CsPbBr3‑xIx‑ZnS钙钛矿量子点异质结的制备方法及其产品
CN105489777B (zh) * 2015-12-22 2017-10-20 成都新柯力化工科技有限公司 一种微胶囊结构的钙钛光伏材料及其制备方法
CN105895803B (zh) * 2016-01-26 2018-06-01 南京工业大学 一种钙钛矿光电器件、制备方法及一种钙钛矿材料
CN105733574B (zh) * 2016-01-31 2018-06-12 南京理工大学 一种低温溶液法制备钙钛矿量子点的方法
US20170217785A1 (en) * 2016-02-02 2017-08-03 The Regents Of The University Of California Inorganic halide perovskite nanowires and methods of fabrication thereof
CN105679944B (zh) * 2016-02-06 2018-11-06 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的太阳能电池及其制备方法
CN105609652B (zh) * 2016-02-06 2018-04-20 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的发光二极管的制备方法
CN105679966B (zh) * 2016-02-06 2018-04-06 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的晶体管的制备方法
KR102592690B1 (ko) 2016-03-10 2023-10-23 삼성전자주식회사 나노결정 및 그 제조방법
CN105870338B (zh) * 2016-04-05 2018-08-07 南昌航空大学 一种含铜的有机无机钙钛矿量子点太阳能电池的制备方法
CN105789465B (zh) * 2016-04-05 2018-11-13 南昌航空大学 一种含锑的有机无机钙钛矿量子点电致发光二极管的制备方法
CN105895817B (zh) * 2016-04-11 2017-09-01 郑州大学 以Ni(Mg)O作为空穴提供层的钙钛矿绿光LED及制备方法
US10711952B2 (en) 2016-05-13 2020-07-14 King Abdullah University Of Science And Technology Multifunctional light, data device, or combination and systems
CN106024999B (zh) * 2016-05-27 2019-05-07 南京理工大学 一种提高钙钛矿led发光效率的量子点表面纯化法
TWI575287B (zh) * 2016-06-22 2017-03-21 友達光電股份有限公司 顯示面板及顯示模組
CN106087242B (zh) * 2016-07-29 2020-12-04 华东理工大学 一种钙钛矿量子点复合纤维膜、制备方法及其用于荧光检测的应用
US11898744B2 (en) 2016-09-13 2024-02-13 Sic Technology Co. Ltd Quantum structure thin film and quantum structure light-emitting module including the same
DE112017004597B4 (de) * 2016-09-13 2022-06-30 Efun Technology Co., Ltd. Licht-emittierendes Modul mit Quantenstruktur
CN106433619B (zh) * 2016-09-27 2017-06-30 华中科技大学 一种Bi基钙钛矿量子点材料的制备方法
US10796901B2 (en) 2016-09-29 2020-10-06 Nanoco Technologies Ltd. Shelling of halide perovskite nanoparticles for the prevention of anion exchange
KR20180040038A (ko) * 2016-10-11 2018-04-19 삼성전자주식회사 양자점 발광 소자 및 이를 포함하는 광학 장치
CN107068870A (zh) * 2016-11-14 2017-08-18 天津市职业大学 一种钙钛矿型光吸收材料复合溶胶及其制备方法
CN106745204B (zh) * 2016-11-28 2018-10-12 湖北大学 一种绿色环保CsPbX3钙钛矿量子点的合成方法
CN106784391A (zh) * 2016-12-06 2017-05-31 广东昭信光电科技有限公司 量子点发光器件及其制备方法、液晶显示装置
CN106590626A (zh) * 2016-12-06 2017-04-26 广东昭信光电科技有限公司 一种阳离子掺杂的钙钛矿型量子点及其制备方法
CN106634962A (zh) * 2016-12-21 2017-05-10 电子科技大学 一种聚合物修饰的钙钛矿颗粒的制备方法
CN106783922A (zh) 2016-12-26 2017-05-31 武汉华星光电技术有限公司 Oled显示器
CN106910828B (zh) * 2017-01-12 2019-10-11 华南师范大学 一种具有双层钙钛矿薄膜结构的太阳能电池及其制备方法
CN106905953A (zh) * 2017-02-14 2017-06-30 成都新柯力化工科技有限公司 一种低成本钙钛矿量子点显示材料及制备方法
CN106929010A (zh) * 2017-03-20 2017-07-07 重庆纳鼎光电科技有限公司 一种球形甲脒基钙钛矿FAPbBr3量子点的制备方法和产品
CN107123706B (zh) * 2017-04-07 2019-05-03 湖南大学 一种CVD构建CsPbBr3纳米片电致发光器件的方法
CN106970476A (zh) * 2017-05-15 2017-07-21 山东师范大学 杂化钙钛矿纳米材料在制备全光自旋电子器件中的应用
JP6332522B1 (ja) 2017-05-17 2018-05-30 住友化学株式会社 組成物、および組成物の製造方法
CN107011890B (zh) * 2017-05-25 2019-03-05 华中科技大学 提高铋基钙钛矿纳米材料荧光产率和稳定性的方法及产物
CN107267140B (zh) * 2017-07-06 2019-12-20 西安交通大学 基于共轭配体的钙钛矿量子点及其制备方法和应用
CN109256495B (zh) * 2017-07-14 2020-05-05 Tcl科技集团股份有限公司 一种卤素钝化钙钛矿量子点及其制备方法和qled器件
CN107325004A (zh) * 2017-08-01 2017-11-07 苏州协鑫纳米科技有限公司 钙钛矿晶体及其制备方法
WO2019080753A1 (en) * 2017-10-26 2019-05-02 The University Of Hong Kong OPTOELECTRONIC DEVICES IN PERVSKITE MODIFIED BY A LIGAND
CN108057590B (zh) * 2017-11-16 2020-08-28 昆山协鑫光电材料有限公司 喷涂液、钙钛矿层及其制备方法、钙钛矿电池
CN108034419B (zh) * 2017-12-11 2020-01-03 东南大学 一种水溶性全无机钙钛矿量子点及其制备方法
WO2019128995A1 (zh) * 2017-12-26 2019-07-04 北京理工大学 一种铵盐、钙钛矿材料和应用
CN108033977A (zh) * 2018-01-17 2018-05-15 上海科技大学 一种有机锡卤化合物发光材料的制备及应用
TWI773726B (zh) * 2018-01-18 2022-08-11 達興材料股份有限公司 螢光物質及其製法
WO2019150989A1 (ja) * 2018-01-31 2019-08-08 ソニー株式会社 光電変換素子および撮像装置
CN108319077A (zh) * 2018-02-08 2018-07-24 深圳市华星光电技术有限公司 量子点增强膜及其制备方法、量子点背光模组及显示装置
JP7093098B2 (ja) * 2018-02-14 2022-06-29 国立大学法人山形大学 Ledの製造方法
CN108409582A (zh) * 2018-03-19 2018-08-17 西北大学 一种钙钛矿薄膜的制备方法
CN108690601A (zh) * 2018-05-03 2018-10-23 内蒙古师范大学 一种有机-无机杂化钙钛矿量子点及薄膜的制备方法
CN108922966A (zh) * 2018-06-19 2018-11-30 信利半导体有限公司 一种有机薄膜晶体管及其制备方法
CN109004048A (zh) * 2018-07-25 2018-12-14 合肥工业大学 一种铯铅溴无机钙钛矿量子点薄膜的制备方法及基于其的光伏器件
CN109142297A (zh) * 2018-08-27 2019-01-04 杭州北芯传感科技有限公司 一种水分测试试纸条及其制备方法
US20210340021A1 (en) * 2018-09-06 2021-11-04 King Abdullah University Of Science And Technology Method for making inorganic perovskite nanocrystals film and applications
CN109134265B (zh) * 2018-09-07 2021-03-30 南京邮电大学 一种有机-无机杂化钙钛矿纳米线的制备方法
CN111153778A (zh) * 2018-11-08 2020-05-15 杭州纤纳光电科技有限公司 ***的纯化方法及利用***提高含氮有机物纯度的方法
CN109279648B (zh) * 2018-11-27 2020-12-04 重庆大学 一种2-己基癸酸修饰的全无机钙钛矿量子点材料的制备方法
CN109321036B (zh) * 2018-11-30 2021-08-20 苏州星烁纳米科技有限公司 喷墨打印用钙钛矿量子点墨水及其制备方法
US20220306936A1 (en) * 2018-12-12 2022-09-29 The Trustees Of Princeton University Surface engineered organic-inorganic hybrid perovskite nanocrystals and applications thereof
CN109742237B (zh) * 2018-12-21 2022-09-20 南京理工大学 一种基于功能型APbBr3钙钛矿纳米管的小型光探测器
CN109755393B (zh) * 2019-01-16 2023-06-02 济南大学 一种锑碘杂化钙钛矿的溶液法制备与应用
US11905444B2 (en) 2019-02-01 2024-02-20 The University Of Queensland Quantum dots and processes for preparation thereof
CN113784925B (zh) * 2019-03-01 2023-11-03 住友化学株式会社 化合物、组合物、薄膜、层叠结构体、发光装置、显示器及化合物的制造方法
CN110028955B (zh) * 2019-05-20 2022-06-07 南京工业大学 无金属钙钛矿量子点DABCO-NH4X3(X=Cl,Br,I)的制备方法
CN110164947B (zh) * 2019-06-12 2021-03-26 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板
CN110129039A (zh) * 2019-06-13 2019-08-16 北京工业大学 一种钙钛矿结构RNH3PbBr3纳米晶荧光材料的制备方法
CN110364625A (zh) * 2019-06-18 2019-10-22 北京大学深圳研究生院 一种用于弱光探测的钙钛矿量子点光电晶体管及制备方法
CN110227532B (zh) * 2019-06-28 2023-07-14 中国计量大学 一种溴化铅铯量子点/氮化碳纳米片光催化剂的制备方法
CN110387223B (zh) * 2019-07-11 2020-07-03 浙江大学 一种羟卤铅矿/铅卤钙钛矿复合微纳米材料及其制备方法
CN110511738B (zh) * 2019-09-17 2022-11-15 华东理工大学 一种提高钙钛矿量子点稳定性的二硬脂酸铝包覆方法
CN110867532A (zh) * 2019-11-22 2020-03-06 苏州大学 基于表面配体控制的钙钛矿发光二极管器件及其制备方法
US11367859B2 (en) 2020-01-10 2022-06-21 Sharp Kabushiki Kaisha Chiral perovskite quantum dots for circularly polarized QLEDs and method of making the same
CN111244281B (zh) * 2020-01-14 2022-10-25 陕西师范大学 一种非金属有机钙钛矿低电压辐射探测器及其制备方法
CN111233031B (zh) * 2020-01-19 2022-08-02 国家纳米科学中心 一种钙钛矿量子点及其制备方法
JPWO2021166908A1 (zh) * 2020-02-21 2021-08-26
CN111349437B (zh) * 2020-04-21 2023-01-31 陕西科技大学 一种基于蓖麻油作绿色溶剂的钙钛矿量子点及其制备方法
CN111607389B (zh) * 2020-07-08 2023-01-31 大连工业大学 一种基于油溶性碳量子点的离子凝胶材料及其制备方法
CN112151681B (zh) * 2020-09-25 2022-05-31 东北师范大学 一种PbS量子点光吸收层的制备方法及其应用和太阳能电池
CN112103406B (zh) * 2020-10-20 2023-04-18 合肥福纳科技有限公司 一种量子点发光器件及其制备方法
WO2022120659A1 (zh) * 2020-12-09 2022-06-16 深圳先进技术研究院 一种非配体辅助的钙钛矿掺杂多发射材料及其制备方法
CN112680953A (zh) * 2020-12-17 2021-04-20 陕西科技大学 一种基于钙钛矿量子点的抗菌织物及其制备方法
CN112820825A (zh) * 2021-01-13 2021-05-18 福州大学 一种基于无铅钙钛矿人工突触器件的制备方法
CN113105893A (zh) * 2021-04-14 2021-07-13 南京邮电大学 一种色温可调的钙钛矿量子片组合物及其制备方法与应用
CN113634457B (zh) * 2021-08-10 2022-06-07 湖南大学 一种MicroLED面板覆膜装置及使用方法
CN113683513B (zh) * 2021-09-18 2022-07-26 厦门大学 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法
CN114085665B (zh) * 2021-10-29 2023-11-14 中国科学院深圳先进技术研究院 钙钛矿团簇溶液及其制备方法、光电器件
CN114058067B (zh) * 2021-11-23 2022-07-12 南昌大学 一种制备钙钛矿量子点-聚合物多孔复合材料的方法
WO2023109973A1 (zh) * 2021-12-13 2023-06-22 南开大学 钙钛矿金属卤化物零维量子点复合材料及其制备方法、及有机胺盐的应用
CN114133141B (zh) * 2021-12-28 2022-12-06 海南大学 一种钙钛矿量子点微晶玻璃及其制备方法
CN114349998A (zh) * 2021-12-30 2022-04-15 宁波东旭成新材料科技有限公司 一种高稳定性量子点膜合成方法
CN114540024A (zh) * 2022-02-22 2022-05-27 江苏烨湫传感科技有限公司 一种具有气敏性能的钙钛矿量子点材料及其应用
CN114716323B (zh) * 2022-03-10 2023-06-09 吉林大学 一种金属卤化物微纳阵列、制备方法及光学膜应用
CN114602402B (zh) * 2022-03-17 2024-01-23 南开大学 量子点气相纯化装置及方法
CN114716324B (zh) * 2022-04-26 2023-07-28 福州大学 有机无机杂化金属卤化物钙钛矿化合物、制备方法及应用
CN115418224B (zh) * 2022-07-31 2024-05-24 南京邮电大学 一种二价金属离子有机溶液高效掺杂蓝光发光材料的方法
CN116676082A (zh) * 2023-05-29 2023-09-01 吉林大学 极性配体重构量子点表面并实现高性能蓝光LEDs的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080176749A1 (en) * 2005-08-01 2008-07-24 Amit Goyal High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods
US20140060643A1 (en) * 2012-09-05 2014-03-06 Lane W. Martin Light Absorbing Oxide Materials for Photovoltaic and Photocatalytic Applications and Devices
CN104327827A (zh) * 2014-11-03 2015-02-04 南昌航空大学 钙钛矿量子点纳米晶的制备及其在量子点太阳电池中的应用
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882548A (en) * 1997-05-08 1999-03-16 International Business Machines Corporation Luminescent organic-inorganic perovskites with a divalent rare earth metal halide framework
US6429318B1 (en) * 2000-02-07 2002-08-06 International Business Machines Corporaiton Layered organic-inorganic perovskites having metal-deficient inorganic frameworks
JP3529733B2 (ja) * 2000-12-15 2004-05-24 独立行政法人 科学技術振興機構 有機無機層状ペロブスカイト型重合化合物
JP3714918B2 (ja) * 2001-07-31 2005-11-09 独立行政法人科学技術振興機構 放射線検出装置
JP2006170827A (ja) * 2004-12-16 2006-06-29 Japan Science & Technology Agency 放射線検出用シンチレーター
JP2008227330A (ja) * 2007-03-15 2008-09-25 Canon Inc 発光素子
CN104019922B (zh) * 2014-04-29 2016-11-23 北京理工大学 一种将有机-无机杂化钙钛矿材料用于温度探测

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080176749A1 (en) * 2005-08-01 2008-07-24 Amit Goyal High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods
US20140060643A1 (en) * 2012-09-05 2014-03-06 Lane W. Martin Light Absorbing Oxide Materials for Photovoltaic and Photocatalytic Applications and Devices
CN104327827A (zh) * 2014-11-03 2015-02-04 南昌航空大学 钙钛矿量子点纳米晶的制备及其在量子点太阳电池中的应用
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216842A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717527B (zh) * 2016-06-24 2021-02-01 日商住友化學股份有限公司 組成物
JP2020041151A (ja) * 2016-08-11 2020-03-19 アファンタマ アクチェンゲゼルシャフト 発光性結晶及びその製造
US20190010393A1 (en) * 2016-08-12 2019-01-10 Boe Technology Group Co., Ltd. Method of preparing luminescent nano-sheet, luminescent nano-sheet material, luminescent nano-sheet film, back light, and liquid crystal display apparatus
US11091693B2 (en) 2016-08-12 2021-08-17 Boe Technology Group Co., Ltd. Method of preparing luminescent nano-sheet, luminescent nano-sheet material, luminescent nano-sheet film, back light, and liquid crystal display apparatus
US10421902B2 (en) 2016-08-12 2019-09-24 Boe Technology Group Co., Ltd. Method of preparing luminescent nano-sheet, luminescent nano-sheet material, luminescent nano-sheet film, back light, and liquid crystal display apparatus
US11214733B2 (en) 2016-11-29 2022-01-04 Unist(Ulsan National Institute Of Science And Technology) Surface-passivated quantum dots and method for passivating surface of quantum dots
KR101878340B1 (ko) * 2016-11-29 2018-07-13 울산과학기술원 표면이 부동태화된 양자점, 및 양자점 표면의 부동태화 방법
KR20180060440A (ko) * 2016-11-29 2018-06-07 울산과학기술원 표면이 부동태화된 양자점, 및 양자점 표면의 부동태화 방법
WO2018101535A1 (ko) * 2016-11-29 2018-06-07 울산과학기술원 표면이 부동태화된 양자점, 및 양자점 표면의 부동태화 방법
CN108250754A (zh) * 2016-12-28 2018-07-06 东京应化工业株式会社 含硅树脂组合物、含硅树脂薄膜、二氧化硅薄膜、发光显示元件面板以及发光显示装置
TWI623606B (zh) * 2017-02-15 2018-05-11 聚和國際股份有限公司 無機鈣鈦礦量子點配方及其製備方法
EP3595018A4 (en) * 2017-03-08 2020-11-04 Kao Corporation LIGHT ABSORPTION LAYER, ELEMENT FOR PHOTOELECTRIC CONVERSION AND SOLAR CELL
CN110010785A (zh) * 2019-04-15 2019-07-12 郑州大学 一种基于无机非铅锑基钙钛矿量子点的黄光led及其制备方法
TWI814965B (zh) * 2019-12-17 2023-09-11 財團法人工業技術研究院 鈣鈦礦前驅物溶液及鈣鈦礦吸收層的製造方法
CN111192964A (zh) * 2020-01-22 2020-05-22 苏州大学 一种钙钛矿量子点太阳能电池及其制备方法
CN111192964B (zh) * 2020-01-22 2022-05-17 苏州大学 一种钙钛矿量子点太阳能电池及其制备方法
CN111924875A (zh) * 2020-07-02 2020-11-13 无锡极电光能科技有限公司 钙钛矿CsPbI3量子点及其制备方法
CN111924875B (zh) * 2020-07-02 2023-09-22 无锡极电光能科技有限公司 钙钛矿CsPbI3量子点及其制备方法
CN113856767A (zh) * 2021-09-26 2021-12-31 武汉理工大学 S型异质结的Bismuthene/CsPbBr3量子点复合材料及其制备方法和应用
CN113856767B (zh) * 2021-09-26 2023-11-17 武汉理工大学 S型异质结的Bismuthene/CsPbBr3量子点复合材料及其制备方法和应用
CN116004226A (zh) * 2021-10-21 2023-04-25 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 复合钙钛矿量子点材料、钙钛矿量子点组合物及其制备方法和应用
CN116004226B (zh) * 2021-10-21 2023-12-15 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 复合钙钛矿量子点材料、钙钛矿量子点组合物及其制备方法和应用
CN114873635A (zh) * 2022-05-09 2022-08-09 复旦大学 一种可控锑掺杂高光效蓝光钙钛矿纳米片及其制备方法

Also Published As

Publication number Publication date
US20170233645A1 (en) 2017-08-17
CN104388089B (zh) 2017-06-06
EP3216842B1 (en) 2020-05-06
EP3216842A1 (en) 2017-09-13
US10731075B2 (en) 2020-08-04
PL3216842T3 (pl) 2020-09-21
EP3216842A4 (en) 2019-02-27
CN104388089A (zh) 2015-03-04
US10633584B2 (en) 2020-04-28
US20200216754A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2016070713A1 (zh) 钙钛矿量子点材料以及其制备方法
Zhang et al. Color-switchable electroluminescence of carbon dot light-emitting diodes
US10822542B2 (en) Perovskite/polymer composite luminescent material, preparation method and use
Zhao et al. Low‐dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties
Lesnyak et al. Colloidal semiconductor nanocrystals: the aqueous approach
Parveen et al. Precise tuning of the thickness and optical properties of highly stable 2D organometal halide perovskite nanosheets through a solvothermal process and their applications as a white LED and a fast photodetector
KR101140309B1 (ko) 양자점 다층 박막을 포함한 전기발광소자
US10519365B2 (en) Luminescent hybrid nanomaterials with aggregation induced emission
Hoang et al. Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness
Xin et al. Highly emissive and color-tunable perovskite cross-linkers for luminescent polymer networks
Pandiyarajan et al. Enhanced ultraviolet fluorescence in surface modified ZnO nanostructures: Effect of PANI
Yu et al. Ultrastable laurionite spontaneously encapsulates reduced-dimensional lead halide perovskites
US20190361308A1 (en) Electrochromic structure and preparation method therefor
Yuan et al. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications
CN107502335B (zh) 高荧光效率核壳结构无镉量子点及其制备方法和用途
Zhang et al. Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method
Lee et al. High quantum efficiency and stability of biohybrid quantum dots nanojunctions in bacteriophage-constructed perovskite
Vedi et al. Growth optimization of single-phase novel colloidal perovskite Cs 3 Bi 2 I 9 nanocrystals and Cs 3 Bi 2 I 9@ SiO 2 core–shell nanocomposites for bio-medical application
Zvyagina et al. Surfactant-Assisted Lateral Self-Assembly of One-Dimensional Supramolecular Aggregates of Lutetium Double-Decker Phthalocyaninates
EP4332197A1 (en) Light emitting device and display device including the same
Lesnyak et al. Aqueous based colloidal quantum dots for optoelectronics
CN110964509A (zh) 一种电子装置、球形量子点及其合成方法
Zhang et al. High Color Purity CsPbBr3 Nanocrystals Prepared by a Heterogeneous Reaction System
Liu et al. Photoluminescence modulation of silicon nanoparticles via highly ordered arrangement with phospholipid membranes
Chauhan et al. Quantum Dots and Nanoparticles in Light-Emitting Diodes and Displays Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015856222

Country of ref document: EP