WO2016068035A1 - 動力伝達ローラ - Google Patents

動力伝達ローラ Download PDF

Info

Publication number
WO2016068035A1
WO2016068035A1 PCT/JP2015/079943 JP2015079943W WO2016068035A1 WO 2016068035 A1 WO2016068035 A1 WO 2016068035A1 JP 2015079943 W JP2015079943 W JP 2015079943W WO 2016068035 A1 WO2016068035 A1 WO 2016068035A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
power transmission
shaft
receiving member
sliding member
Prior art date
Application number
PCT/JP2015/079943
Other languages
English (en)
French (fr)
Inventor
井筒 智善
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US15/522,534 priority Critical patent/US10295027B2/en
Priority to EP15855296.8A priority patent/EP3214343B1/en
Priority to CN201580058579.XA priority patent/CN107076281B/zh
Publication of WO2016068035A1 publication Critical patent/WO2016068035A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
    • F16H13/04Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • F16H13/14Means for influencing the pressure between the members for automatically varying the pressure mechanically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members

Definitions

  • the present invention relates to a power transmission roller that is interposed between a driving roller and a driven roller and transmits the rotational force of the driving roller to the driven roller by a frictional force.
  • the idler roller Ri is set to the arrow d1.
  • the idler roller Ri can be brought into contact with the driving roller D and the driven roller S1, and power can be transmitted from the driving roller D to the driven roller S1 via the idler roller Ri.
  • the idler roller Ri is moved in the direction of the arrow d2, the idler roller Ri is separated from the driving roller D and the driven roller S1, and the transmission of power can be interrupted.
  • a mechanism (cam actuator) for advancing and retracting the idler roller to uniformly contact the driving roller and the driven roller will be described with reference to FIG.
  • the cam actuator shown in the figure decelerates the rotation of the motor 1 by the planetary reduction gear R, converts the decelerated rotation into the reciprocating motion of the connecting rod 201 by the eccentric cam 3, and is supported at the end of the connecting rod 201.
  • the pulley 300 is advanced and retracted. By moving the pulley 300 back and forth, the transmission or interruption of power from the driving roller to the driven roller is controlled in accordance with various conditions such as the operating state of the engine, thereby improving fuel efficiency.
  • the connecting rod 201 is configured to be able to swing by a slight amount from the axial direction in the middle. In this way, by enabling swinging, the connecting rod 201 swings so that the contact force between the pulley 300 and each roller becomes substantially equal when the pulley 300 contacts the driving roller and the driven roller. Thus, the pulley 300 is positioned at the optimum position.
  • the cam actuator according to Patent Document 2 is configured to grip the rotation shaft of the pulley 300 (idler roller), and its swing fulcrum is located outside the pulley 300 (near the center in the length direction of the connecting rod 201). . For this reason, it is necessary to secure a space for swinging around the pulley 300, which hinders downsizing of the power transmission mechanism and impairs the freedom of system layout. Further, since the pulley 300 is positioned by the swinging of the one connecting rod 201, there is a risk of twisting around the axis of the connecting rod 201, and poor contact between the pulley 300 and the driving roller and the driven roller. There is also a problem that power transmission due to friction tends to become unstable.
  • the driving roller and the driven roller are not necessarily perfect circles, and in that case, self-excited vibration and resonance are likely to occur with these rotations. For this reason, the contact state between the driving roller and the driven roller and the pulley 300 becomes unstable (the pulley 300 jumps in small increments due to self-excited vibration or resonance), and there is a problem that power transmission cannot be stably performed. .
  • an object of the present invention is to stably perform power transmission by friction between the driving roller and the driven roller and to reduce the size of the power transmission mechanism.
  • a receiving member in the power transmission roller that is interposed between the driving roller and the driven roller and transmits the rotational force of the driving roller to the driven roller side by a frictional force, a receiving member A roller main body held by the drive roller and the driven roller, and a swing shaft fixed to the vehicle main body side, and disposed on the inner diameter side of the roller main body.
  • a swing arm provided movably, a roller bearing that rotatably supports the roller body, a shaft fixed to the swing arm, and a shaft provided coaxially with the shaft and receiving the swing arm.
  • An elastic body that biases the receiving member so that the members are separated from each other, and the roller bearing is brought into contact with both rollers at a predetermined position between the driving roller and the driven roller.
  • a pair of urging members that urge so as to balance, and a state where the urging force is inserted through the shaft and is in contact with the receiving member by the urging force of the elastic body, and the urging force and the receiving member are It is pressed in the axial direction of the shaft by a reaction force generated in a direction opposite to the urging force from the receiving member that is generated as the oscillating arm is displaced, and this pressing causes deformation to the shaft side.
  • a power transmission roller is provided that includes a sliding member that generates friction with the shaft.
  • the pair of urging members are independently expanded and contracted by the contact force, and the swinging arm is the swinging shaft. Swing around. By this swing, the swing arm is displaced to a position corresponding to the position of each roller, and the contact force between the driving roller and the power transmission roller and between the driven roller and the power transmission roller is substantially equal. In this state, power can be stably transmitted from the driving roller to the driven roller.
  • the swing shaft and roller bearing for swinging the swing arm are also disposed on the inner diameter side of the roller body.
  • the power transmission roller including the mechanism can be downsized.
  • the urging members are configured as a pair, the urging member is hardly twisted at the time of urging, and the power transmission roller can be reliably brought into contact with the driving roller and the driven roller. For this reason, power transmission by friction between the driving roller and the driven roller can be stably performed.
  • a roller bearing can be provided between the pair of urging members, and stability during rotation of the roller bearing can be ensured.
  • the shaft is provided with a sliding member
  • the roller body moves toward the driving roller and the driven roller (that is, when the receiving member moves so as to protrude from the swing arm)
  • the biasing force from the elastic body and the force acting on the receiving member are in the same direction, so that the axial pressing force hardly acts on the sliding member, and the deformation of the sliding member toward the shaft is small. For this reason, almost no frictional force acts between the sliding member and the shaft, and the roller main body can be quickly projected and brought into contact with the driving roller and the driven roller.
  • the driving roller and the driven roller are not completely perfect circles, and the self-excited vibration or resonance occurs with the rotation, the driving roller and the driven roller And the roller main body can be stably maintained, and power can be reliably transmitted from the drive roller to the driven roller.
  • an inclined surface with respect to the axial direction of the shaft is formed on the surface side of the sliding member that contacts the receiving member, and the sliding surface of the receiving member contacts the sliding member. It is preferable that an inclined surface having the same inclination angle as that of the inclined surface formed on the moving member is formed.
  • a resin material is provided on a surface of the sliding member that slides with the shaft.
  • This resin material can be formed on the sliding surface of the sliding member by coating, or the sliding member itself can be made of a resin material. Moreover, the composite material of a resin material and another raw material can also be employ
  • a cutout portion may be formed in a part of the sliding member in the circumferential direction so as to have a C-shaped cross section, or the sliding member may be divided into a plurality of sliding members divided in the circumferential direction.
  • the roller main body that contacts the driving roller and the driven roller, the swing shaft fixed to the vehicle main body, the inner diameter side of the roller main body, and swingably provided on the swing shaft.
  • a swing arm, a roller bearing that allows the roller main body to rotate, and a swing arm provided on the swing arm, the roller bearing has a contact force with both rollers at a predetermined position between the drive roller and the driven roller.
  • a power transmission roller including a pair of urging members that urge so as to be balanced and a sliding member that is inserted through the shaft of the urging member and generates friction with the shaft is configured.
  • the rough position of the power transmission roller with respect to the drive roller and the driven roller is determined.
  • the pair of biasing members independently expand and contract in accordance with the contact force between the driven roller and the power transmission roller, so that the contact force is substantially equal.
  • the power transmission roller can be positioned easily and smoothly.
  • the swing arm by arranging the swing arm on the inner diameter side of the roller body, the swing shaft and the roller bearing for swinging the swing arm are also disposed on the inner diameter side of the roller body.
  • the power transmission roller including the mechanism can be downsized.
  • the urging members are configured as a pair, the urging member is hardly twisted at the time of urging, and the power transmission roller can be reliably brought into contact with the driving roller and the driven roller. For this reason, power transmission by friction between the driving roller and the driven roller can be stably performed.
  • a roller bearing can be provided between the pair of urging members, and stability during rotation of the roller bearing can be ensured.
  • the driving roller and driven roller are not completely perfect circles, and self-excited vibration and resonance occur as they rotate. Even in this case, the contact state between the driving roller and the driven roller and the roller main body can be stably maintained, and power can be reliably transmitted from the driving roller to the driven roller.
  • FIG. 1A is a plan view showing the operation of the power transmission roller shown in FIG. 1A It is a longitudinal cross-sectional view which shows the effect
  • FIG. 6 is a plan view of a state where an eccentric cam mechanism is added to the power transmission roller, and the power transmission state
  • FIG. 4 is a plan view of a state where an eccentric cam mechanism is provided along with a power transmission roller, in a power cut state Plan view showing the arrangement of each roller
  • Embodiments of the power transmission roller 1 according to the present invention are shown in FIGS. 1A to 5.
  • the power transmission roller 1 is interposed between a driving roller D such as a crank and a driven roller S that operates auxiliary equipment such as a water pump (WP) and an idling stop generator (ISG).
  • the rotational force is transmitted to the driven roller S side by a frictional force.
  • the main component is a sliding member 9 that generates a frictional force with the shaft 6a of the member 6.
  • the functions as the driving roller D and the driven roller S are not unique to each roller such as a crank.
  • the ISG may function as the driving roller D and the crank may function as the driven roller S.
  • the roller body 2 is a bottomed cylindrical member that is in direct contact with the driving roller D and the driven roller S.
  • the contact surface of the roller body 2 with the driving roller D and the driven roller S is a knurled portion 2a for increasing the frictional force (see FIG. 2A).
  • a plurality of holes 2b are formed in the cylindrical bottom portion of the roller body 2, and the weight of the roller body 2 is reduced.
  • a bearing hole 2c is formed at the center of rotation of the roller body 2.
  • the bearing holding member 7 By inserting the bearing holding member 7 into the inner ring 5a and the bearing hole 2c of the roller bearing 5 (in this embodiment, a ball bearing), the inner ring 5a side
  • the roller main body 2 and the outer ring 5b of the roller bearing 5 are rotatable relative to each other (see FIG. 1B).
  • the roller body 2 By configuring the roller body 2 to rotate together with the inner ring 5a, the load on the roller bearing 5 is reduced, and the life of the roller bearing 5 can be extended.
  • the receiving member 8 is fitted into the outer ring 5b of the roller bearing 5.
  • the receiving member 8 is formed with a pair of through holes 8 a and 8 a at symmetrical positions around the roller bearing 5.
  • the shaft 6a of the urging member 6 is inserted into each through hole 8a, and the head side (the lower end side of the shaft 6a in FIG. 3) is swingably provided by the swing shaft 3. It is fixed to the arm 4.
  • the tip end portion of the shaft 6a (the upper end side of the shaft 6a in FIG. 3) can be protruded from the receiving member 8 while being prevented from being detached by the retaining ring 6c.
  • the coil spring 6b as an elastic body is provided coaxially with the shaft 6a.
  • the coil spring 6b corresponds to the respective contact forces of the driving roller D and the driven roller S.
  • Each of the coil springs 6b and 6b independently expands and contracts, and the swing arm 4 swings around the swing shaft 3 so that the roller body 2 is brought into contact with both the driving roller D and the driven roller S, Maintain contact.
  • the biasing member 6 By configuring the biasing member 6 as a pair, the biasing member 6 is less likely to be twisted during biasing, and the power transmission roller 1 can be reliably brought into contact with the driving roller D and the driven roller S. It becomes. For this reason, power transmission by friction between the driving roller D and the driven roller S can be stably performed.
  • the roller bearing 5 can be provided between the pair of urging members 6 and 6, and the stability of the roller bearing 5 during rotation can be ensured.
  • the shaft 6 a is provided with a sliding member 9 interposed between the coil spring 6 b and the receiving member 8.
  • An inclined surface 9 a with respect to the axial direction of the shaft 6 a is formed on the surface side of the sliding member 9 that contacts the receiving member 8.
  • an inclined surface 8 b having the same inclination angle as the inclination angle of the inclined surface 9 a formed on the sliding member 9 is formed on the surface side of the receiving member 8 that contacts the sliding member 9.
  • the sliding member When a material having flexibility such as a rubber material is used for the sliding member 9, the sliding member is produced to such an extent that a frictional force is generated between the sliding member 9 and the shaft 6 a even in a shape having no cut in the circumferential direction. 9 can be deformed, but when using a material such as a resin material or a metal material that is not easily deformed even when subjected to a biasing force from the coil spring 6b or a reaction force from the receiving member 8, a sliding member It is preferable that a notch is formed in a part of the circumferential direction 9 to have a C-shaped cross section, or a sliding member obtained by dividing the sliding member into a plurality of parts in the circumferential direction.
  • the roller bearing 5 and the urging member 6 are disposed in a plane passing through the center in the width direction of the friction surface (knurling portion 2a) of the roller body 2.
  • the oscillating shaft 3, the oscillating arm 4, the roller bearing 5, and the urging member 6 are all disposed on the inner diameter side (inside the cylinder) of the roller body 2. For this reason, size reduction of the power transmission mechanism including this power transmission roller 1 can be achieved.
  • the power transmission roller 1 is configured such that the swing shaft 3 is fixed to a cover (not shown) that covers the driving roller D and the driven roller S via the spacer 10, and the cover is fitted into a predetermined position, thereby driving the driving roller. It is arranged at a predetermined position between D and the driven roller S.
  • the power transmission roller 1 is provided with a mechanism (not shown) that can freely hold and release the biasing member 6 in a contracted state, so that the power transmission roller 1 and the driving roller can be fitted when the cover is fitted.
  • the power transmission roller 1 can be attached easily and smoothly by preventing the contact between the D and the driven roller S.
  • the power transmission roller 1 may be provided on the engine block.
  • each of the coil springs 6b and 6b of the pair of urging members 6 and 6 is caused by the contact force.
  • the swing arm 4 swings around the swing shaft 3. By this swinging, as shown in FIG. 6, the swinging arm 4 is displaced to a position corresponding to the position of each roller D, S, and between the driving roller D and the power transmission roller 1 and the driven roller S.
  • the respective contact forces with the power transmission roller 1 are substantially equal, and power can be stably transmitted from the driving roller D to the driven roller S in this state.
  • the driving roller D even when the driving roller D and the driven roller S are not completely perfect circles, and the self-excited vibration and resonance occur with the rotation, the driving roller D
  • the contact state between the driven roller S and the roller body 2 can be stably maintained, and power can be reliably transmitted from the driving roller D to the driven roller S.
  • an eccentric cam 11 that rotates around the eccentric shaft 11a can be provided in the vicinity of the roller bearing 5 of the power transmission roller 1 as shown in FIGS. 8A and 8B.
  • the eccentric shaft 11a is connected to a motor (not shown) via a speed reduction mechanism 12 such as a planetary gear mechanism.
  • a speed reduction mechanism 12 such as a planetary gear mechanism.
  • the eccentric cam 11 abuts on the roller bearing 5 and resists the urging force of the urging member 6 provided on the power transmission roller 1 (so that the urging member 6 is compressed).
  • the power transmission roller 1, the driving roller D, and the driven roller S are separated from each other (see FIG. 8B), and the power transmission from the driving roller D to the driven roller S is interrupted.
  • the transmission and cutting of power between the driving roller D and the driven roller S can be performed easily and smoothly. Even if various actuators are employed in place of the eccentric cam 11 and the roller bearing 5 is pushed by this actuator, the same effect can be obtained. It should be noted that the roller bearing 5 is not necessarily pushed directly by the eccentric cam 11 but may be pushed via a pressing member (not shown) provided on the roller bearing 5. .
  • the power transmission roller 1 according to the embodiment is merely an example, and the power transmission by friction between the driving roller D and the driven roller S is stably performed, and the power transmission mechanism is downsized. As long as the problems of the invention can be solved, it is allowed to change the shape and arrangement of each component part and to add additional parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Friction Gearing (AREA)

Abstract

 駆動ローラと従動ローラとの間の摩擦による動力伝達を安定的に行うとともに、動力伝達機構の小型化を図る。駆動ローラ(D)及び従動ローラ(S)に接触するローラ本体(2)と、車両本体側に固定される揺動軸(3)と、ローラ本体(2)の内径側に配置され、揺動軸(3)に揺動自在に設けられる揺動アーム(4)と、ローラ本体(2)を回転自在とするローラ軸受(5)と、揺動アーム(4)に設けられ、ローラ軸受を駆動ローラ(D)と従動ローラ(S)との間の所定位置に両ローラ(D、S)との当接力がバランスするように付勢する一対の付勢部材(6、6)と、付勢部材(6)のシャフト(6a)に挿通され、このシャフト(6a)との間で摩擦を生じさせる摺動部材(9)とを備えた動力伝達ローラである。

Description

動力伝達ローラ
 この発明は、駆動ローラと従動ローラとの間に介在して、駆動ローラの回転力を摩擦力によって従動ローラに伝達する動力伝達ローラに関する。
 従来、エンジンの動力伝達機構においては、エンジンのクランクと、ウォータポンプ(WP)やアイドリングストップジェネレータ(ISG)等の補機類との間の動力の伝達を、アイドラプーリを経由して架け渡した補機ベルトを介して行っていた。この場合、クランクの回転に伴って、補機類も常に回転することになるため、例えば、エンジンの暖気運転のようにWPを回転させる必要がない時にも不必要に回転することになり、ベルト損失とプーリの不必要な回転に起因する燃費の低下が問題となっていた。
 この問題を解決すべく、例えば、下記特許文献1の図1に示すように、補機ベルトを用いる代わりに、駆動ローラ(クランクシャフトプーリ4)と従動ローラ(フリクションプーリ14)との間に動力伝達用のアイドラローラ(フリクションホイール17)を介在させ、駆動ローラの回転力を、アイドラローラの摩擦力によって、従動ローラに伝達する技術が開示されている。このアイドラローラは、補機ベルトと異なり、その位置を進退させることによって、駆動ローラや従動ローラとの間の接離状態を自在に変えることができる。
 例えば、駆動ローラD(例えばクランクローラ)、従動ローラS1(例えばISGローラ)等の各ローラ(D、S1、S2、Rs)を図9に示すように配置した場合、アイドラローラRiを矢印d1の方向に移動させると、このアイドラローラRiと駆動ローラD及び従動ローラS1とを当接させて、アイドラローラRiを介して駆動ローラDから従動ローラS1に動力を伝達することができる。その一方で、アイドラローラRiを矢印d2の方向に移動させると、このアイドラローラRiと駆動ローラD及び従動ローラS1とが離間して、動力の伝達を遮断することができる。
 このアイドラローラを進退させて、駆動ローラ及び従動ローラに均等に当接させる機構(カムアクチュエータ)について、例えば、下記特許文献2の図1を用いて説明する。本図に示すカムアクチュエータは、モータ1の回転を遊星減速機Rで減速し、その減速した回転を偏心カム3によって連接棒201の往復動に変換して、この連接棒201の端部で支持されたプーリ300を進退させるようにしたものである。このプーリ300を進退させることにより、エンジンの稼働状況等の諸条件に対応して、駆動ローラから従動ローラへの動力の伝達又は遮断を制御し、燃費の向上を図っている。
 この連接棒201は、その中ほどで軸方向から若干量だけ揺動可能に構成されている。このように、揺動可能とすることにより、プーリ300が駆動ローラ及び従動ローラと当接した際に、プーリ300と各ローラとの間の当接力がほぼ等しくなるように連接棒201が揺動して、プーリ300が最適な位置に位置決めされる。
特許第4891914号公報 特許第4809341号公報
 特許文献2に係るカムアクチュエータは、プーリ300(アイドラローラ)の回転軸を掴むように構成され、その揺動支点はプーリ300の外側(連接棒201の長さ方向中央付近)に位置している。このため、プーリ300の周囲にその揺動のためのスペースを確保しておかなければならず、動力伝達機構の小型化に支障が生じ、システムレイアウトの自由度が損なわれる問題がある。また、一本の連接棒201の揺動によってプーリ300の位置決めがなされるため、連接棒201の軸周りのねじれが生じる恐れがあり、プーリ300と駆動ローラ及び従動ローラとの間の当接不良が生じ、摩擦による動力伝達が不安定になりやすい問題もある。
 また、駆動ローラ及び従動ローラは完全な真円とは限らず、その場合、これらの回転に伴って自励振動や共振が発生しやすい。このため、駆動ローラ及び従動ローラとプーリ300との接触状態が不安定となって(プーリ300が、自励振動や共振に伴って小刻みに飛び跳ねて)、動力伝達が安定的にできない問題もある。
 そこで、この発明は、駆動ローラと従動ローラとの間の摩擦による動力伝達を安定的に行うとともに、その動力伝達機構の小型化を図ることを課題とする。
 この課題を解決するために、この発明においては、駆動ローラと従動ローラとの間に介在して、前記駆動ローラの回転力を摩擦力によって前記従動ローラ側に伝達する動力伝達ローラにおいて、受け部材によって保持され、前記駆動ローラ及び前記従動ローラに対し接離自在としたローラ本体と、車両本体側に固定される揺動軸と、前記ローラ本体の内径側に配置され、前記揺動軸に揺動自在に設けられる揺動アームと、前記ローラ本体を回転自在に支持するローラ軸受と、前記揺動アームに固定されたシャフトと、このシャフトと同軸に設けられ前記揺動アームに対して前記受け部材が離間するようにこの受け部材を付勢する弾性体と、を有し、前記ローラ軸受を前記駆動ローラと前記従動ローラとの間の所定位置に両ローラとの当接力がバランスするように付勢する一対の付勢部材と、前記シャフトに挿通され、前記弾性体の付勢力によって前記受け部材に当接した状態が維持されるとともに、前記付勢力、及び前記受け部材が前記揺動アーム側に変位するのに伴って生じる前記受け部材からの前記付勢力と対向する向きに生じる反力によって前記シャフトの軸方向に押圧され、この押圧によって前記シャフト側に変形してこのシャフトとの間で摩擦を生じさせる摺動部材と、を備えたことを特徴とする動力伝達ローラを構成した。
 この構成によると、動力伝達ローラのローラ本体に、駆動ローラ又は従動ローラの少なくとも一方が当接すると、その当接力によって一対の付勢部材が独立して伸縮するとともに、揺動アームが揺動軸周りに揺動する。この揺動によって、揺動アームが各ローラの位置に対応した位置に変位して、駆動ローラと動力伝達ローラとの間、及び従動ローラと動力伝達ローラとの間のそれぞれの当接力がほぼ等しくなり、その状態で駆動ローラから従動ローラに、安定的に動力を伝達することができる。
 しかも、揺動アームをローラ本体の内径側に配置することにより、この揺動アームを揺動する揺動軸や、ローラ軸受も同様にローラ本体の内径側に配置されることになり、揺動機構を含めたこの動力伝達ローラの小型化を図ることができる。さらに、付勢部材を対で構成したことにより、付勢時における付勢部材のねじれが生じにくく、駆動ローラ及び従動ローラに対して、動力伝達ローラを確実に当接させることが可能となる。このため、駆動ローラと従動ローラとの間の摩擦による動力伝達を安定的に行うことができる。しかも、一対の付勢部材の中間にローラ軸受を設けることができ、このローラ軸受の回転時の安定性も確保することができる。
 また、シャフトに摺動部材を設けた構成を採用することにより、ローラ本体が駆動ローラ及び従動ローラに向かうように動くとき(すなわち、受け部材が揺動アームから突出するように動くとき)は、弾性体からの付勢力と受け部材に作用する力が同じ向きとなって、摺動部材に軸方向の押圧力はほとんど作用せず、この摺動部材のシャフト側への変形は小さい。このため、摺動部材とシャフトの間に摩擦力はほとんど作用せず、ローラ本体を速やかに突出させて、駆動ローラ及び従動ローラに当接させることができる。
 その一方で、ローラ本体が駆動ローラ及び従動ローラから離れるように動くとき(すなわち、受け部材が揺動アーム側に押し込まれるように動くとき)は、弾性体からの付勢力と、この付勢力と対向する向きに生じる受け部材からの反力が摺動部材に作用し、この摺動部材に、軸方向の逆向きの押圧力が作用する。この押圧力によって摺動部材がシャフト側に大きく変形し、摺動部材とシャフトとの間の摩擦力が高まる。このため、ローラ本体が駆動ローラ及び従動ローラから離れようとする力が作用した際に、ローラ本体の動きを遅延させるダンパとしての作用が発揮される。
 このように、ダンパ機能を持たせることにより、例えば、駆動ローラ及び従動ローラが完全な真円でなく、その回転に伴って自励振動や共振が発生した場合においても、この駆動ローラ及び従動ローラとローラ本体との接触状態を安定的に保つことができ、駆動ローラから従動ローラへの動力の伝達を確実に行うことができる。
 前記構成においては、前記摺動部材の前記受け部材と当接する面側に前記シャフトの軸方向に対する傾斜面が形成されるとともに、前記受け部材の前記摺動部材に当接する面側に、前記摺動部材に形成した前記傾斜面の傾斜角と同じ傾斜角の傾斜面が形成された構成とするのが好ましい。
 このように、傾斜面同士を当接させることにより、摺動部材のシャフト側への変形を促して、速やかにシャフトと摺動部材との間の摩擦力を発揮させることができ、ローラ本体が駆動ローラ及び従動ローラから離れるのを確実に防止することができる。このため、駆動ローラから従動ローラへの動力の伝達効率を一層向上することができる。この傾斜面の角度を適宜変えることにより、ダンパ力を調節することができ、ローラ本体のスムーズな動作を確保しつつ、ローラ本体の振動を確実に抑制することができる。
 前記各構成においては、前記摺動部材の前記シャフトと摺動する面に樹脂材が設けられた構成とするのが好ましい。
 このように樹脂材を設けることにより、シャフトと摺動部材との間の摩擦抵抗の安定化を図ることができ、ローラ本体をスムーズに進退させることができる。この樹脂材は、摺動部材の摺動面にコーティングにより形成したり、摺動部材自体を樹脂材で構成したりすることができる。また、樹脂材と他素材との複合材を採用することもできる。
 前記各構成においては、前記摺動部材の周方向の一部に切欠き部を形成し断面C字形としたり、摺動部材を周方向に複数に分割した分割摺動体としたりすることもできる。
 このように、切欠き部を形成したり、分割摺動体としたりすることにより、樹脂材や金属材等のように弾性体からの付勢力や受け部材からの反力を受けた際に変形しにくい素材であっても、シャフトと摺動部材との間の摩擦力をスムーズに発生させることができる。なお、切欠き部の形状や、分割摺動体の分割数は、摺動部材との間の摩擦力を発生させ得る限りにおいて適宜変更することができる。
 この発明においては、駆動ローラ及び従動ローラに接触するローラ本体と、車両本体側に固定される揺動軸と、前記ローラ本体の内径側に配置され、前記揺動軸に揺動自在に設けられる揺動アームと、前記ローラ本体を回転自在とするローラ軸受と、前記揺動アームに設けられ、前記ローラ軸受を前記駆動ローラと前記従動ローラとの間の所定位置に両ローラとの当接力がバランスするように付勢する一対の付勢部材と、前記付勢部材のシャフトに挿通され、このシャフトとの間で摩擦を生じさせる摺動部材と、を備えた動力伝達ローラを構成した。
 このように、揺動アームが揺動軸周りに揺動することによって、駆動ローラ及び従動ローラに対する動力伝達ローラの大まかな位置が決定され、さらに、その位置において、駆動ローラと動力伝達ローラとの間、及び従動ローラと動力伝達ローラとの間のそれぞれの当接力に応じて、一対の付勢部材がそれぞれ独立して伸縮することにより、それぞれの当接力がほぼ等しくなるようにしたことにより、動力伝達ローラの位置決めを容易かつスムーズに行うことができる。
 また、揺動アームをローラ本体の内径側に配置することにより、この揺動アームを揺動する揺動軸や、ローラ軸受も同様にローラ本体の内径側に配置されることになり、揺動機構を含めたこの動力伝達ローラの小型化を図ることができる。さらに、付勢部材を対で構成したことにより、付勢時における付勢部材のねじれが生じにくく、駆動ローラ及び従動ローラに対して、動力伝達ローラを確実に当接させることが可能となる。このため、駆動ローラと従動ローラとの間の摩擦による動力伝達を安定的に行うことができる。しかも、一対の付勢部材の中間にローラ軸受を設けることができ、このローラ軸受の回転時の安定性も確保することができる。
 さらに、シャフトに摺動部材を設けた構成を採用して、ダンパ機能を持たせたことにより、駆動ローラ及び従動ローラが完全な真円でなく、その回転に伴って自励振動や共振が発生した場合においても、この駆動ローラ及び従動ローラとローラ本体との接触状態を安定的に保つことができ、駆動ローラから従動ローラへの動力の伝達を確実に行うことができる。
この発明に係る動力伝達ローラの実施形態を示す正面図 図1A中のb-b線に沿う断面図 図1Aに示す動力伝達ローラの側面図 図1Aに示す動力伝達ローラの背面図 図1Aに示す動力伝達ローラの図1B中のIII-III線に沿う断面図 図1Aに示す動力伝達ローラの斜視図 図1Aに示す動力伝達ローラの分解斜視図 図1Aに示す動力伝達ローラの作用を示す平面図 図1Aに示す動力伝達ローラのダンパの作用を示す縦断面図であって、摩擦力によってダンパが機能している状態 図1Aに示す動力伝達ローラのダンパの作用を示す縦断面図であって、摩擦力が小さくダンパとしての機能が発揮されていない状態 動力伝達ローラに偏心カム機構を併設した状態の平面図であって、動力伝達状態 動力伝達ローラに偏心カム機構を併設した状態の平面図であって、動力切断状態 各ローラの配置を示す平面図
 この発明に係る動力伝達ローラ1の実施形態を図1Aから図5に示す。この動力伝達ローラ1は、クランク等の駆動ローラDと、ウォータポンプ(WP)やアイドリングストップジェネレータ(ISG)等の補機類を作動させる従動ローラSとの間に介在して、駆動ローラDの回転力を摩擦力によって従動ローラS側に伝達するためのものであり、ローラ本体2、揺動軸3、揺動アーム4、ローラ軸受5、一対の付勢部材6、6と、この付勢部材6のシャフト6aとの間で摩擦力を生じさせる摺動部材9を主要な構成としている。なお、駆動ローラD及び従動ローラSとしての機能は、クランク等の各ローラに固有のものではなく、例えば、ISGが駆動ローラD、クランクが従動ローラSとして機能することもある。
 ローラ本体2は、駆動ローラD及び従動ローラSに直接接触する有底円筒状の部材である。このローラ本体2の駆動ローラD及び従動ローラSとの接触面は、摩擦力を高めるためのローレット加工部2aとなっている(図2A参照)。また、ローラ本体2の円筒底部には複数の孔2bが形成され、このローラ本体2の軽量化が図られている。このローラ本体2の回転中心には軸受孔2cが形成されており、ローラ軸受5(この実施形態では玉軸受)の内輪5a及び軸受孔2cに軸受保持部材7を挿し込むことによって、内輪5a側に設けたローラ本体2とローラ軸受5の外輪5bとが相対回転自在となっている(図1B参照)。このように、ローラ本体2を内輪5aとともに回転させるように構成することにより、ローラ軸受5への負荷が小さくなり、その長寿命化を図ることができる。
 このローラ軸受5の外輪5bには、受け部材8が嵌め込まれている。この受け部材8には、ローラ軸受5を中心とする対称位置に、一対の貫通孔8a、8aが形成されている。各貫通孔8aには、付勢部材6のシャフト6aが挿し込まれ、その頭部側(図3において、シャフト6aの下端側)は、揺動軸3によって揺動自在に設けられた揺動アーム4に固定されている。その一方で、シャフト6aの先端部(図3において、シャフト6aの上端側)は、止め輪6cによって抜け止めされつつ受け部材8から突出自在となっている。
 弾性体としてのコイルばね6bは、シャフト6aと同軸に設けられている。このコイルばね6bは、図1Aに示すローラ本体2の上側半分に駆動ローラD又は従動ローラSの少なくとも一方が当接すると、駆動ローラD及び従動ローラSのそれぞれの当接力に対応して、一対のコイルばね6b、6bのそれぞれが独立して伸縮するとともに、揺動アーム4が揺動軸3周りに揺動し、駆動ローラDと従動ローラSの両方にローラ本体2を当接させ、当接力を保持する。
 付勢部材6を対で構成したことにより、付勢時における付勢部材6のねじれが生じにくく、駆動ローラD及び従動ローラSに対して、動力伝達ローラ1を確実に当接させることが可能となる。このため、駆動ローラDと従動ローラSとの間の摩擦による動力伝達を安定的に行うことができる。しかも、一対の付勢部材6、6の中間にローラ軸受5を設けることができ、このローラ軸受5の回転時の安定性も確保することができる。
 シャフト6aには、コイルばね6bと受け部材8に介在する摺動部材9が設けられている。この摺動部材9の受け部材8と当接する面側には、シャフト6aの軸方向に対する傾斜面9aが形成されている。その一方で、受け部材8の摺動部材9に当接する面側には、この摺動部材9に形成した傾斜面9aの傾斜角と同じ傾斜角の傾斜面8bが形成されている。
 摺動部材9に、ゴム材等の柔軟性を有する素材を用いる場合は、この実施形態のように、周方向に切れ目がない形状でもシャフト6aとの間で摩擦力を生じる程度に摺動部材9を変形させることができるが、樹脂材や金属材等のようにコイルばね6bからの付勢力や受け部材8からの反力を受けても変形が生じにくい素材を用いる場合は、摺動部材9の周方向の一部に切欠き部を形成し断面C字形としたり、摺動部材を周方向に複数に分割した分割摺動体としたりするのが好ましい。このように、切欠き部を形成したり、分割摺動体としたりすることにより、樹脂材や金属材等のようにコイルばね6bからの付勢力や受け部材8からの反力を受けても変形が生じにくい素材であっても、シャフト6aと摺動部材9との間の摩擦力を容易に発生させることができる。
 この実施形態においては、ローラ軸受5及び付勢部材6は、ローラ本体2の摩擦面(ローレット形成部2a)の幅方向中央を通る面内に配置されている。このように配置することにより、付勢部材6によってローラ軸受5を付勢した際に、その付勢力によるモーメントの発生を防止し、ローラ本体2がこのモーメントに起因して傾斜するのを防止することができる。このため、駆動ローラD及び従動ローラSに対して、動力伝達ローラ1を確実に当接させることが可能となり、駆動ローラDと従動ローラSとの間の摩擦による動力伝達を安定的に行うことができるとともに、各ローラD、Sの当接不良に起因するローラ本体2の摩耗等の不具合を防止することができる。
 揺動軸3、揺動アーム4、ローラ軸受5、及び付勢部材6は、全てローラ本体2の内径側(円筒内)に配置されている。このため、この動力伝達ローラ1を含む動力伝達機構の小型化を図ることができる。この動力伝達ローラ1は、その揺動軸3をスペーサ10を介して駆動ローラD及び従動ローラSを覆うカバー(図示せず)に固定し、このカバーを所定位置に嵌め込むことによって、駆動ローラDと従動ローラSとの間の所定位置に配置されるようになっている。この場合、動力伝達ローラ1に、付勢部材6を縮めた状態での保持及びその解除を自在に行い得る機構(図示せず)を設けることにより、カバー嵌め込み時において動力伝達ローラ1と駆動ローラD及び従動ローラSが接触するのを防止して、この動力伝達ローラ1の取付けを容易かつスムーズに行うことができる。
 上記においては、カバー側に動力伝達ローラ1を設ける構成について述べたが、エンジンブロック側に取付スペースが確保できるのであれば、このエンジンブロックに動力伝達ローラ1を設ける構成とすることもできる。
 上述したように、動力伝達ローラ1のローラ本体2に、駆動ローラD又は従動ローラSの少なくとも一方が当接すると、その当接力によって一対の付勢部材6、6のコイルばね6b、6bのそれぞれが独立して伸縮するとともに、揺動アーム4が揺動軸3周りに揺動する。この揺動によって、図6に示すように、揺動アーム4が各ローラD、Sの位置に対応した位置に変位して、駆動ローラDと動力伝達ローラ1との間、及び従動ローラSと動力伝達ローラ1との間のそれぞれの当接力がほぼ等しくなり、その状態で駆動ローラDから従動ローラSに、安定的に動力を伝達することができる。
 動力伝達ローラ1に設けた摺動部材9のダンパとしての作用について図7A、図7Bを用いて説明する。ローラ本体2(受け部材8)が駆動ローラD及び従動ローラSに向かうように動くとき(すなわち、受け部材8が揺動アーム4から突出するように動くとき)は、コイルばね6bからの付勢力Fと受け部材8に作用する力Wが同じ向きとなって(図7B参照)、摺動部材9に軸方向の押圧力はほとんど作用せず、その変形は小さいため(図7B中の矢印P参照)、摺動部材9とシャフト6aの間に摩擦力はほとんど作用しない。よって、ローラ本体2を速やかに突出させて、駆動ローラD及び従動ローラSに当接させることができる。
 その一方で、ローラ本体2(受け部材8)が駆動ローラD及び従動ローラSから離れるように動くとき(すなわち、受け部材8が揺動アーム4側に押し込まれるように動くとき)は、コイルばね6bからの付勢力Fと、この付勢力Fと対向する向きに生じる受け部材8からの反力Wが摺動部材9に作用し、この摺動部材9に、軸方向の押圧力が作用する。この押圧力によって摺動部材9が大きく変形し(図7A中の矢印P参照)、摺動部材9とシャフト6aとの間の摩擦力が高まる。よって、ローラ本体2が駆動ローラD及び従動ローラSから離れようとする力が作用した際に、ローラ本体2の動きを遅延させるダンパとしての作用が発揮される。
 このように、ダンパ機能を持たせることにより、例えば、駆動ローラD及び従動ローラSが完全な真円でなく、その回転に伴って自励振動や共振が発生した場合においても、この駆動ローラD及び従動ローラSとローラ本体2との接触状態を安定的に保つことができ、駆動ローラDから従動ローラSへの動力の伝達を確実に行うことができる。
 この動力伝達ローラ1のローラ軸受5の近傍には、図8A、図8Bに示すように、このローラ軸受5に当接可能に偏心軸11a周りに回動する偏心カム11を設けることができる。この偏心軸11aは、遊星ギア機構等の減速機構12を介してモータ(図示せず)に接続されている。偏心カム11がローラ軸受5に当接していない状態では(図8A参照)、動力伝達ローラ1は駆動ローラDと従動ローラSにそれぞれ当接し、駆動ローラDから従動ローラSへの動力伝達がなされる。その一方で、偏心カム11がローラ軸受5に当接し、動力伝達ローラ1に設けられた付勢部材6の付勢力に抗して(付勢部材6を押し縮めるように)このローラ軸受5を押し込むと、動力伝達ローラ1と駆動ローラD及び従動ローラSとがそれぞれ離間し(図8B参照)、駆動ローラDから従動ローラSへの動力伝達が遮断される。
 このように、偏心カム11を設けることにより、駆動ローラDと従動ローラSとの間の動力の伝達及び切断を、容易かつスムーズに行うことができる。偏心カム11を用いる代わりに、各種アクチュエータを採用し、このアクチュエータでローラ軸受5を押し込むようにしても、同様の作用を得ることができる。なお、偏心カム11によるローラ軸受5の押し込みは、必ずしもローラ軸受5を直接押し込むものでなくてもよく、このローラ軸受5に設けた押圧部材(図示せず)を介して押し込むようにしてもよい。
 上記実施形態に係る動力伝達ローラ1はあくまでも一例であって、駆動ローラDと従動ローラSとの間の摩擦による動力伝達を安定的に行うとともに、その動力伝達機構の小型化を図る、という本願発明の課題を解決し得る限りにおいて、各構成部品の形状や配置を変更したり、別途部品を追加したりすることも許容される。
1 動力伝達ローラ
2 ローラ本体
2a ローレット加工部
2b 孔
2c 軸受孔
3 揺動軸
4 揺動アーム
5 ローラ軸受
5a 内輪
5b 外輪
6 付勢部材
6a シャフト
6b 弾性体(コイルばね)
6c 止め輪
7 軸受保持部材
8 受け部材
8a 貫通孔
8b 傾斜面
9 摺動部材
9a 傾斜面
10 スペーサ
11 偏心カム
11a 偏心軸
12 減速機構
D 駆動ローラ
S 従動ローラ

Claims (5)

  1.  駆動ローラ(D)と従動ローラ(S)との間に介在して、前記駆動ローラ(D)の回転力を摩擦力によって前記従動ローラ(S)側に伝達する動力伝達ローラにおいて、
     受け部材(8)によって保持され、前記駆動ローラ(D)及び前記従動ローラ(S)に対し接離自在としたローラ本体(2)と、
     車両本体側に固定される揺動軸(3)と、
     前記ローラ本体(2)の内径側に配置され、前記揺動軸(3)に揺動自在に設けられる揺動アーム(4)と、
     前記ローラ本体(2)を回転自在に支持するローラ軸受(5)と、
     前記揺動アーム(4)に固定されたシャフト(6a)と、このシャフト(6a)と同軸に設けられ前記揺動アーム(4)に対して前記受け部材(8)が離間するようにこの受け部材(8)を付勢する弾性体(6b)と、を有し、前記ローラ軸受(5)を前記駆動ローラ(D)と前記従動ローラ(S)との間の所定位置に両ローラ(D、S)との当接力がバランスするように付勢する一対の付勢部材(6、6)と、
     前記シャフト(6a)に挿通され、前記弾性体(6b)の付勢力によって前記受け部材(8)に当接した状態が維持されるとともに、前記付勢力、及び前記受け部材が前記揺動アーム(4)側に変位するのに伴って生じる前記受け部材(8)からの前記付勢力と対向する向きに生じる反力によって前記シャフト(6a)の軸方向に押圧され、この押圧によって前記シャフト(6a)側に変形してこのシャフト(6a)との間で摩擦を生じさせる摺動部材(9)と、
    を備えたことを特徴とする動力伝達ローラ。
  2.  前記摺動部材(9)の前記受け部材(8)と当接する面側に前記シャフト(6a)の軸方向に対する傾斜面(9a)が形成されるとともに、前記受け部材(8)の前記摺動部材(9)に当接する面側に、前記摺動部材(9)に形成した前記傾斜面(9a)の傾斜角と同じ傾斜角の傾斜面(8b)が形成されていることを特徴とする請求項1に記載の動力伝達ローラ。
  3.  前記摺動部材(9)の前記シャフト(6a)と摺動する面に樹脂材が設けられていることを特徴とする請求項1又は2に記載の動力伝達ローラ。
  4.  前記摺動部材(9)の周方向の一部に切欠き部を形成し断面C字形とした請求項1から3のいずれか1項に記載の動力伝達ローラ。
  5.  前記摺動部材(9)を周方向に複数に分割した分割摺動体で構成した請求項1から3のいずれか1項に記載の動力伝達ローラ。
PCT/JP2015/079943 2014-10-31 2015-10-23 動力伝達ローラ WO2016068035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/522,534 US10295027B2 (en) 2014-10-31 2015-10-23 Power transmission roller assembly
EP15855296.8A EP3214343B1 (en) 2014-10-31 2015-10-23 Power transmission roller assembly
CN201580058579.XA CN107076281B (zh) 2014-10-31 2015-10-23 传动辊

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222530A JP6352148B2 (ja) 2014-10-31 2014-10-31 動力伝達ローラ
JP2014-222530 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016068035A1 true WO2016068035A1 (ja) 2016-05-06

Family

ID=55857374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079943 WO2016068035A1 (ja) 2014-10-31 2015-10-23 動力伝達ローラ

Country Status (5)

Country Link
US (1) US10295027B2 (ja)
EP (1) EP3214343B1 (ja)
JP (1) JP6352148B2 (ja)
CN (1) CN107076281B (ja)
WO (1) WO2016068035A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043638A1 (ja) * 2015-09-09 2017-03-16 Ntn株式会社 フリクションホイールアッセンブリ、及び、その製造方法
US10415676B1 (en) * 2016-10-06 2019-09-17 X Development Llc Roller traction drive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126819Y2 (ja) * 1972-05-26 1976-07-08
JPH08277896A (ja) * 1995-04-06 1996-10-22 Mitsubishi Heavy Ind Ltd トラクションドライブ装置
JPH09296859A (ja) * 1996-04-30 1997-11-18 Ntn Corp プーリユニット
JP2004044731A (ja) * 2002-07-12 2004-02-12 Nsk Ltd 摩擦ローラ式変速機
US20050181901A1 (en) * 2004-02-13 2005-08-18 Chang-Hyun Shin Double action belt tensioner

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806984A (en) * 1931-05-26 Variable speed transmission
US982104A (en) * 1908-05-08 1911-01-17 Mathurin Tarrisse Frictional gearing.
US990844A (en) * 1909-07-26 1911-05-02 Martin B Covert Frictional power-transmission mechanism.
US1870421A (en) * 1931-04-27 1932-08-09 Herbert L Prout System of friction gearing
US2031319A (en) * 1935-05-03 1936-02-18 Kahn Jacob Kesner Belt drive
DE1030132B (de) * 1955-07-06 1958-05-14 Continental Gummi Werke Ag Reibradgetriebe
JPH0437007A (ja) * 1990-05-31 1992-02-07 Matsushita Electric Ind Co Ltd ガスレーザ発振装置
JPH0674311A (ja) * 1992-08-27 1994-03-15 Ricoh Co Ltd 回転力伝達装置及びその使用方法
US5931759A (en) * 1997-05-09 1999-08-03 Nsk Ltd. Friction-roller speed changer
US6849025B2 (en) * 2001-04-09 2005-02-01 Nsk Ltd. Frictional roller transmission
US6955621B2 (en) * 2001-04-26 2005-10-18 Borgwarner Inc. Rotary actuating hydraulic tensioner
JP2004019727A (ja) * 2002-06-13 2004-01-22 Nsk Ltd 摩擦ローラ式変速機
DE10255074A1 (de) * 2002-11-26 2004-06-03 Bayerische Motoren Werke Ag Riementrieb für Hilfsaggregate einer Brennkraftmaschine
DE10255079A1 (de) * 2002-11-26 2004-06-03 Bayerische Motoren Werke Ag Einem Aggregate-Riementrieb einer Brennkraftmaschine zugeordnetes Reibradgetriebe für ein gesondertes Nebenaggregat
DE10301758A1 (de) * 2003-01-18 2004-08-12 Ina-Schaeffler Kg Reibradantrieb
DE10309063A1 (de) * 2003-03-03 2004-10-14 Bayerische Motoren Werke Ag Reibradgetriebe für ein von einem Aggregate-Riementrieb einer Brennkraftmaschine gesondert angeordnetes Nebenaggregat
ITMC20040092A1 (it) 2004-07-09 2004-10-09 So Ge Mi Spa Motoriduttore elettrico per l'azionamento di una camma ad eccentrico
ATE419482T1 (de) 2004-11-10 2009-01-15 Dayco Europe Srl Riemenantrieb mit einem reibrad
FR2884886B1 (fr) * 2005-04-21 2009-04-17 Renault Sas Dispositif d'entrainement par friction d'un accessoire de moteur a combustion interne
JP4694520B2 (ja) * 2007-03-07 2011-06-08 日産自動車株式会社 摩擦伝動変速装置
EP2246592B1 (en) * 2008-01-24 2012-08-29 Nissan Motor Co., Ltd. Friction-roller type transmission mechanism
JP2012092900A (ja) * 2010-09-30 2012-05-17 Aisin Seiki Co Ltd 流体ポンプ
JP2012193793A (ja) * 2011-03-16 2012-10-11 Nsk Ltd 摩擦ローラ式減速機及び電気自動車用駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126819Y2 (ja) * 1972-05-26 1976-07-08
JPH08277896A (ja) * 1995-04-06 1996-10-22 Mitsubishi Heavy Ind Ltd トラクションドライブ装置
JPH09296859A (ja) * 1996-04-30 1997-11-18 Ntn Corp プーリユニット
JP2004044731A (ja) * 2002-07-12 2004-02-12 Nsk Ltd 摩擦ローラ式変速機
US20050181901A1 (en) * 2004-02-13 2005-08-18 Chang-Hyun Shin Double action belt tensioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214343A4 *

Also Published As

Publication number Publication date
JP6352148B2 (ja) 2018-07-04
EP3214343B1 (en) 2018-12-12
CN107076281A (zh) 2017-08-18
US10295027B2 (en) 2019-05-21
CN107076281B (zh) 2019-06-21
EP3214343A1 (en) 2017-09-06
EP3214343A4 (en) 2017-10-11
JP2016089886A (ja) 2016-05-23
US20170314653A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
EP3572301B1 (en) Reducer of electric power steering apparatus
JPWO2016038927A1 (ja) 電動式パワーステアリング装置
TW201713880A (zh) 離心離合器
TW201643331A (zh) 離心離合器
JP2019124361A (ja) 遠心クラッチ
BRPI0614853A2 (pt) estágio de engrenagem
WO2016068035A1 (ja) 動力伝達ローラ
WO2018083908A1 (ja) 遠心クラッチ
JP2019199947A (ja) 遠心クラッチ
JP6552877B2 (ja) 動力伝達ローラ
WO2016043178A1 (ja) 動力伝達ローラ
WO2016076088A1 (ja) 動力伝達ローラ
WO2016043144A1 (ja) 動力伝達ローラ
JP2007211706A (ja) 内燃機関の可変圧縮比機構
JP2018096213A (ja) 内燃機関のバランス装置
JP2018076970A (ja) 遠心クラッチ
JP2016128699A (ja) 動力伝達ローラ
JP6510159B1 (ja) 遠心クラッチ
JP2018080647A (ja) 内燃機関のバランス装置
JP2004084953A (ja) 駆動力伝達装置
JP2018091430A (ja) 内燃機関のバランス装置
JP2015147562A (ja) 伸縮アクチュエータ
JP6182358B2 (ja) 動力伝達系のギヤ機構
JP5070689B2 (ja) 連結ピン
WO2016157281A1 (ja) ベルト式無段変速機における従動プーリ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855296

Country of ref document: EP