WO2016067843A1 - Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same - Google Patents

Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same Download PDF

Info

Publication number
WO2016067843A1
WO2016067843A1 PCT/JP2015/078238 JP2015078238W WO2016067843A1 WO 2016067843 A1 WO2016067843 A1 WO 2016067843A1 JP 2015078238 W JP2015078238 W JP 2015078238W WO 2016067843 A1 WO2016067843 A1 WO 2016067843A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
binder composition
Prior art date
Application number
PCT/JP2015/078238
Other languages
French (fr)
Japanese (ja)
Inventor
真明 衣川
俊充 田中
有紀 太田
俊相 趙
奥野 壮敏
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016556462A priority Critical patent/JPWO2016067843A1/en
Priority to CN201580059082.XA priority patent/CN107112541A/en
Publication of WO2016067843A1 publication Critical patent/WO2016067843A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a negative electrode of a lithium ion secondary battery, a slurry composition for a negative electrode of a lithium ion secondary battery using the binder composition, a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are frequently used as secondary batteries used for the power sources of these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
  • Lithium ion secondary batteries have a positive electrode and a negative electrode installed via a separator, and lithium such as LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)). It has a structure in which a salt is stored in a container together with an electrolytic solution in which a salt is dissolved in an organic liquid such as ethylene carbonate.
  • the negative electrode and the positive electrode are usually an electrode slurry obtained by dissolving or dispersing a binder and a thickener in water and mixing this with an active material and, if necessary, a conductivity-imparting agent (hereinafter simply referred to as a slurry). Is applied to the current collector, and water is dried to form a mixed layer. More specifically, for example, the negative electrode is made of a carbonaceous material that can store and release lithium ions, which is an active material, and acetylene black, which is a conductivity-imparting agent, if necessary. They are bound together by a binder for battery electrodes.
  • LiCoO 2 that is an active material, and if necessary, the same conductivity-imparting agent as that for the negative electrode were bonded to a current collector such as aluminum using a binder for a secondary battery electrode. Is.
  • diene rubbers such as styrene-butadiene rubber and acrylics such as polyacrylic acid have been used as binders for aqueous media (for example, Patent Documents 1 and 2).
  • the thickener include methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropoxycellulose, carboxymethylcellulose sodium salt (CMC-Na), sodium polyacrylate, etc.
  • CMC-Na is often used.
  • diene rubbers such as styrene-butadiene rubber have low adhesion to metal collectors such as copper, and there is a problem that the amount used cannot be reduced to increase the adhesion between the collector and the electrode material. . Therefore, recently, demands for extending the usage time of mobile terminals and shortening the charging time have increased, and it has become an obstacle especially as the urgent need is to increase the battery capacity and improve the charging speed (rate characteristics). Yes.
  • Battery capacity is strongly influenced by the amount of active material, and rate characteristics are affected by the ease of electron movement.
  • it is effective to suppress the amount of binder and thickener, but if the amount of binder and thickener is decreased, the binding of the active material is impaired. So there is a limit to weight loss.
  • the binder and thickener are non-conductive and prevent the movement of electrons. Therefore, if an attempt is made to improve the rate characteristics by increasing the conductivity-imparting agent, the amount of active material used is limited accordingly, and therefore it is difficult to improve the battery capacity. Thus, it has been difficult to achieve both high battery capacity and improved rate characteristics.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to achieve both high battery capacity and improved rate characteristics without impairing the binding properties of the negative electrode binder.
  • the present inventors have used a copolymer obtained by polymerizing a specific monomer as a salt that can be dissolved in a solvent, as a binder for a negative electrode slurry.
  • the present invention has been completed by finding that the above-mentioned object is achieved and further studying based on this finding.
  • the binder composition for a negative electrode of a lithium ion secondary battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) is an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid. It contains a neutralized salt of a polymer.
  • the present invention it is possible to obtain a binder composition for a negative electrode of a lithium ion secondary battery having excellent binding properties, and further using it, the resistance of the lithium ion secondary electrode can be reduced, and the battery It is possible to achieve both higher capacity and improved rate characteristics.
  • the binder composition for a negative electrode of a lithium ion secondary battery of the present embodiment is a binder composition for a negative electrode of a lithium ion secondary battery (hereinafter also simply referred to as a binder composition) in which an ⁇ -olefin and maleic acid are copolymerized. It contains a neutralized salt of an ⁇ -olefin-maleic acid copolymer.
  • an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and maleic acid is composed of a unit (A) based on ⁇ -olefin and a unit (B) based on maleic acid,
  • a linear random copolymer having a weight average molecular weight of 1,000 to 200,000 is preferable.
  • the unit (A) based on ⁇ -olefins is represented by the general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, hydrogen Represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or an ether group.
  • the ⁇ -olefin used in the present embodiment is a linear or branched olefin having a carbon-carbon unsaturated double bond at the ⁇ -position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are preferred.
  • Representative examples that can be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2-methyl- 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2,5 -Pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene, methyl vinyl ether, styrene and the like.
  • isobutylene is particularly preferable from the viewpoints of availability, polysynthesis, and product stability.
  • the isobutylene includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction).
  • BB fraction C4 fraction
  • These olefins may be used alone or in combination of two or more.
  • maleic anhydride maleic acid, maleic acid monoester (for example, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate, etc.), maleic acid, as the unit (B) based on maleic acids
  • Maleic anhydride derivatives such as diesters (eg dimethyl maleate, diethyl maleate, dipropyl maleate, diphenyl maleate etc.), maleic imides or N-substituted derivatives thereof (eg maleic imide, N-methylmaleimide, N N-substituted alkylmaleimides such as ethylmaleimide, N-propylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-ethyl Phenyl male N-substituted alkylphenylmaleimide such as imide, or N-substi
  • the content ratio of each structural unit in the copolymer of the present embodiment is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. Particularly, it is desirable that the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case the unit based on ⁇ -olefin, that is, —CH 2 CR 1 R 2 — A copolymer having a structure in which the units shown and units based on maleic acids are alternately repeated is obtained.
  • the mixing ratio of ⁇ -olefins and maleic acids to obtain the copolymer of the present embodiment varies depending on the composition of the target copolymer, but ⁇ -olefin having 1 to 3 times the number of moles of maleic acids.
  • Use of olefin is effective for increasing the reaction rate of maleic acids.
  • the method for producing the copolymer of the present embodiment is not particularly limited, and for example, the copolymer can be obtained by radical polymerization.
  • the polymerization catalyst used is an azo catalyst such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, or an organic peroxide catalyst such as benzoyl peroxide or dicumyl peroxide. preferable.
  • the amount of the polymerization catalyst used is required to be in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol% with respect to maleic acids.
  • As a method for adding the polymerization catalyst and the monomer they may be added all at the beginning of the polymerization, but it is desirable to add them sequentially as the polymerization proceeds.
  • the molecular weight can be appropriately adjusted mainly depending on the monomer concentration, the amount of catalyst used, and the polymerization temperature.
  • a nitrogen compound such as ammonium acetate or urea, or a mercaptan
  • the polymerization temperature is preferably in the range of 40 ° C. to 150 ° C., particularly 60 ° C. to 120 ° C. If the polymerization temperature is too high, the resulting copolymer tends to be in the form of blocks and the polymerization pressure may be significantly increased. is there.
  • the polymerization time is usually 1 to 24 hours, preferably 2 to 10 hours.
  • the amount of the polymerization solvent used is desirably adjusted so that the concentration of the obtained copolymer is 5 to 40% by weight, preferably 10 to 30% by weight.
  • the copolymer of the present embodiment usually has a weight average molecular weight of 1,000 to 500,000.
  • a more preferred weight average molecular weight is 5,000 to 450,000.
  • the weight average molecular weight of the copolymer of this embodiment is less than 1,000, the crystallinity is high and the adhesive strength between particles may be low.
  • it exceeds 500,000 the solubility in water or a solvent becomes small, and it may precipitate easily.
  • the weight average molecular weight of the copolymer of the present embodiment can be measured by, for example, a light scattering method or a viscosity method.
  • the copolymer of this embodiment has an intrinsic viscosity in the range of 0.05 to 1.5.
  • the copolymer of the present embodiment is usually obtained in the form of a powder having about 16 to 60 mesh grains.
  • the neutralized salt of the copolymer is a neutralized product in which active hydrogen of carbonyl acid generated from maleic acid reacts with a basic substance to form a salt.
  • a basic substance containing a monovalent metal and / or ammonia is used as the basic substance from the viewpoint of binding properties as a binder. Is preferably used.
  • the degree of neutralization is not particularly limited, but when used as a binder, considering the reactivity with the electrolytic solution, it is usually 0.5 to 1 mol per carboxylic acid produced from maleic acids. It is preferable to use those neutralized in the range of 1 mol, more preferably in the range of 0.6 to 1 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
  • the degree of neutralization can be determined by a method such as titration with a base, an infrared spectrum, or an NMR spectrum.
  • titration with a base can be performed.
  • the specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization.
  • the indicator for the neutralization point is not particularly limited, but an indicator such as phenylphthalein whose pH is indicated by a base can be used.
  • the amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use and the like, but usually in the maleic acid copolymer.
  • the amount is 0.1 to 2 moles per mole of maleic acid unit.
  • the amount of the basic substance containing a monovalent metal is 0.6 to 2.0 mol, preferably 0.7 to 2 mol per mol of maleic acid unit in the maleic acid copolymer. Then, a water-soluble copolymer salt with little residual alkali can be obtained.
  • the reaction of the ⁇ -olefin-maleic acid copolymer with the basic substance containing monovalent metal and / or ammonia can be carried out according to a conventional method, but is carried out in the presence of water, and the ⁇ -olefin-maleic acid is obtained.
  • a method for obtaining a neutralized copolymer as an aqueous solution is simple and preferable.
  • Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like.
  • ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable.
  • ammonia or lithium hydroxide as a binder for a lithium ion secondary battery.
  • the basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more.
  • a neutralized product of an ⁇ -olefin-maleic acid copolymer using a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected. May be prepared.
  • the ring-opening rate of the copolymer represents the hydrolysis rate of the site of maleic anhydride that polymerizes with ⁇ -olefins when maleic anhydride is used as the maleic acid.
  • a preferable ring opening rate is 60 to 100%, more preferably 70% to 100%, and still more preferably 80 to 100%. If the ring-opening rate is too low, the structural freedom of the copolymer becomes small and the stretchability becomes poor, so that the force for adhering the electrode material particles to be bonded may be small, which is not preferable. Furthermore, there is a possibility that problems such as low affinity for water and poor solubility may occur.
  • the ring-opening rate can be determined, for example, by measuring the hydrogen at the ⁇ -position of the maleic acid opened by 1H-NMR with reference to the hydrogen at the ⁇ -position of maleic anhydride.
  • the ratio of the carbonyl group derived from the carbonyl group and the ring-opened maleic anhydride can also be determined by IR measurement.
  • the neutralized salt of the copolymer means that the active hydrogen of the carbonyl acid generated by the ring opening of maleic anhydride is a basic substance as described above. It forms a salt by forming a salt.
  • the degree of neutralization in this case is not particularly limited. However, when used as a binder, in consideration of reactivity with the electrolytic solution, usually with respect to 1 mol of carbonyl acid generated by ring opening, It is preferable to use those neutralized in the range of 0.5 to 1 mol, more preferably in the range of 0.6 to 1 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
  • the degree of neutralization of the copolymer when maleic anhydride is used can be measured by the same method as described above.
  • the binder composition of the present embodiment contains polyethers, polyamines, polyvinyl alcohols, pyrrolidones, maleic acids, and the like that can impart viscosity, toughness, adhesion, and the like to the binder composition. Also good. These may be contained singly or in combination of two or more.
  • the mass reduction rate at 150 ° C. is preferably less than 7%. If the mass reduction rate is 7% or more, there is a possibility that the capacity is reduced by heat generated when charging and discharging are repeated.
  • the lithium ion secondary battery negative electrode binder composition of the present embodiment usually contains a negative electrode active material and a solvent in addition to the above-described ⁇ -olefin-maleic acid copolymer, and further contains a negative electrode active material and a solvent. It is used as a composition (hereinafter also simply referred to as a negative electrode slurry composition).
  • the lithium ion secondary battery negative electrode is formed by binding a current collector to a mixed layer containing at least the lithium ion secondary battery negative electrode binder composition of the present embodiment and the negative electrode active material.
  • This negative electrode can be formed by applying the above slurry composition for a lithium ion secondary battery negative electrode to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductivity-imparting agent, and the like can be added to the mixed layer (that is, the negative electrode slurry composition).
  • the amount of the neutralized salt of ⁇ -olefin-maleic acid copolymer used is usually 0.1 to 4 parts by weight, preferably 100 parts by weight of the negative electrode active material. Is 0.3 to 3 parts by weight, more preferably 0.5 to 2 parts by weight. If the amount of the copolymer is too small, the viscosity of the slurry for secondary battery negative electrode may be too low and the thickness of the mixed layer may be reduced. Conversely, if the amount of the copolymer is excessive, the discharge capacity may be reduced. There is sex.
  • the amount of the solvent in the negative electrode slurry composition is usually 40 to 130 parts by weight, preferably 70 to 150 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • Examples of the solvent in the negative electrode slurry composition of the present embodiment include water, alcohols such as methanol, ethanol, propanol, and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl, and the like.
  • Examples include amides such as formamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide. In these, use of water is preferable from a viewpoint of safety.
  • the organic solvent described below may be used in combination within a range of preferably 20% by weight or less of the total solvent.
  • Such an organic solvent preferably has a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol.
  • Esters such as ⁇ -butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
  • Examples of the negative electrode active material (sometimes abbreviated as active material) added to the negative electrode slurry composition of the present embodiment include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon.
  • Carbonaceous materials such as fibers; conductive polymers such as polyacene; lithium-based metals such as composite metal oxides represented by SiO x , SnO x , LiTiO x , other metal oxides, lithium metal, and lithium alloys; TiS 2 , metal compounds such as LiTiS 2 are exemplified.
  • a thickener can be further added to the negative electrode slurry composition as necessary.
  • the thickener that can be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and modified products thereof, celluloses, starches, and other polysaccharides can be used.
  • the use amount of the thickener blended in the negative electrode slurry composition as necessary is 0.1 to 4 parts by weight, preferably 0.3 to 3 parts by weight, more preferably 0 to 100 parts by weight of the negative electrode active material. .5 to 2 parts by weight. If the thickener is too small, the viscosity of the secondary battery negative electrode slurry may be too low and the thickness of the mixed layer may be reduced. Conversely, if the thickener is excessively large, the discharge capacity may be reduced. .
  • examples of the conductivity-imparting agent blended into the negative electrode slurry composition as needed include metal powder, conductive polymer, and acetylene black.
  • the amount of the conductive agent used is usually 1 to 10 parts by weight, preferably 2 to 7 parts by weight, with respect to 100 parts by weight of the negative electrode active material.
  • the current collector used for the lithium ion secondary battery negative electrode of this embodiment is not particularly limited as long as it is made of a conductive material.
  • a conductive material For example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold Metal materials such as platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
  • the method for applying the negative electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method.
  • the amount to be applied is not particularly limited, but the thickness of the mixed layer containing an active material, a conductivity-imparting agent, a binder and a thickener formed after removing the solvent or dispersion medium by a method such as drying is 0.005 to 5 mm. An amount of 0.01 to 2 mm is preferable.
  • the drying method of the solvent such as water contained in the negative electrode slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; irradiation radiation drying such as infrared rays, far infrared rays, and electron beams. Can be mentioned.
  • the drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector.
  • the pressing method include a die press and a roll press.
  • the present invention includes a lithium secondary battery including the above-described negative electrode for a lithium ion secondary battery, a positive electrode, and an electrolytic solution.
  • a positive electrode normally used for a lithium ion secondary battery is used without any particular limitation.
  • the positive electrode active material TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used.
  • the positive electrode active material is made of a conductivity-imparting agent similar to that of the negative electrode, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride.
  • a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent is used.
  • the electrolyte solution may be liquid or gel as long as it is used for a normal lithium ion secondary battery, and an electrolyte solution that functions as a battery can be appropriately selected according to the type of the negative electrode active material and the positive electrode active material. That's fine.
  • lithium salt for example, also known lithium salt is any conventionally available, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N And lower aliphatic lithium carboxylates.
  • the solvent for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane.
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc.
  • a gel electrolyte a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
  • the method for producing the lithium ion secondary battery of the present embodiment is not particularly limited, and for example, the following production method is exemplified. That is, the negative electrode and the positive electrode are overlapped via a separator such as a polypropylene porous membrane, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed.
  • the shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
  • the lithium ion secondary battery of this embodiment is a battery that achieves both high capacity and improved rate characteristics, and is useful for various applications.
  • the battery is very useful as a battery used in a portable terminal that is required to be small, thin, light, and have high performance.
  • the binder composition for a negative electrode of a lithium ion secondary battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) is an ⁇ -olefin-maleic acid copolymer obtained by copolymerizing an ⁇ -olefin and a maleic acid. It contains a neutralized salt of a polymer.
  • the degree of neutralization of the ⁇ -olefin-maleic acid copolymer with respect to the carboxylic acid generated from the maleic acid is 0.5 to 1, from the viewpoint of reactivity with the electrolytic solution. To preferred.
  • the constituent ratio of the ⁇ -olefin and the maleic acid in the ⁇ -olefin-maleic acid copolymer is 1: 1 to 1: 3.
  • reaction rate of maleic acids can be increased thereby, and the effects as described above can be obtained more reliably.
  • the maleic acid is preferably maleic anhydride. This is because it is advantageous in terms of availability, polymerization rate, and ease of molecular weight adjustment.
  • the ⁇ -olefin-maleic anhydride copolymer preferably has a ring opening rate of 60 to 100%.
  • the thickener has the advantage that it is not necessary to use a dispersant or the like.
  • a slurry composition for a negative electrode of a lithium ion secondary battery is characterized by including the binder composition, a negative electrode active material, and a solvent.
  • a lithium ion secondary battery negative electrode includes a current collector and a mixed layer containing at least the lithium ion secondary battery negative electrode binder composition and a negative electrode active material. It is characterized by becoming.
  • a lithium ion secondary battery according to still another aspect of the present invention is characterized by including the above lithium ion secondary battery negative electrode, a positive electrode, and an electrolytic solution.
  • Example 1 ⁇ Preparation of slurry for negative electrode>
  • a water-soluble ammonia-modified isobutene-maleic anhydride copolymer resin (weight average molecular weight 60000, ring opening rate 100%, neutralization degree 1 manufactured by Kuraray Co., Ltd.) was used to prepare a 10 wt% aqueous solution. Used.
  • the slurry for negative electrode is charged into a special container for 40 parts by weight of the 10 wt% aqueous solution (4 parts by weight as a solid content) with respect to 96 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) used as the negative electrode active material.
  • CGB-10 spherical graphite
  • an electrode coating slurry was prepared by adding water at the time of kneading and kneading again.
  • the composition ratio of the active material and the binder composition in the slurry was 96: 4 as a solid content.
  • the weight and thickness (active material layer thickness of about 40 ⁇ m, active material weight of about 10 mg) of the battery coated negative electrode obtained above were measured and transferred to a glove box (Miwa Seisakusho) under an argon gas atmosphere.
  • a metal lithium foil (thickness 0.2 mm, ⁇ 15 mm) was used as the positive electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC / DEC 1/1 vol%)
  • ⁇ Evaluation method charge / discharge characteristic test> With the produced coin battery, a charge / discharge test was performed using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery is placed in a constant temperature bath at 25 ° C., and charging is performed at a constant current of 0.5 mA / cm 2 with respect to the amount of active material until it reaches 2 mV with respect to the lithium potential, and further 0.02 mA with respect to the lithium potential. The constant voltage charge of 2 mV was carried out up to the current of. The capacity at this time was defined as a charging capacity (mAh / g).
  • TOSCAT3100 commercially available charge / discharge tester
  • a constant current discharge of 0.5 mA / cm 2 was performed up to 1.5 V with respect to the lithium potential, and the capacity at this time was defined as a discharge capacity (mAh / g).
  • the difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity (mAh / g), and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency (%).
  • the direct current resistance ( ⁇ ) of the coin battery a resistance value when a constant current of 0.5 mA was applied for 3 seconds before the start of charging was adopted.
  • the discharge capacity maintenance rate (%) of the coin battery was defined as the ratio of the 100th discharge capacity to the first discharge capacity using the charge / discharge conditions described above. The results are shown in Table 1 below.
  • Example 2 In order to reduce the amount of the binder composition added, a water-soluble ammonia-modified isobutene-maleic anhydride co-polymer is used as the binder composition with respect to 97 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) as the negative electrode active material.
  • CGB-10 spherical graphite
  • composition ratio of the active material and the binder composition in the slurry was 97: 3 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below.
  • a water-soluble ammonia-modified isobutene-maleic anhydride co-polymer is used as the binder composition with respect to 97 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) as the negative electrode active material.
  • CGB-10 spherical graphite
  • the composition ratio of the active material and the binder composition in the slurry was 97: 3 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, as in Example 1, the thermogravimetric measurement of the ammonia-modified isobutene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • the negative electrode active material is 95 parts by weight of natural graphite (DMGS, manufactured by BYD), and the binder composition is a water-soluble lithium-modified methyl vinyl ether-maleic anhydride copolymer resin (average molecular weight 630,000, ring opening rate 96%, Neutralization degree 0.5, Kuraray Co., Ltd.) 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and 1 part by weight of Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity imparting agent)
  • the negative electrode slurry used was prepared in the same manner as in Example 1 above.
  • the composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of lithium-modified methyl vinyl ether-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • the negative electrode active material is 95 parts by weight of natural graphite (DMGS, manufactured by BYD), and the binder composition is a water-soluble lithium-modified ethylene-maleic anhydride copolymer resin (average molecular weight average molecular weight 100,000 to 600,000, Ring ratio 96%, neutralization degree 0.5, manufactured by Kuraray Co., Ltd. 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and Super-P (manufactured by Timcal Co., Ltd.) as a conductive aid (conducting agent)
  • a negative electrode slurry using 1 part by weight of) was prepared in the same manner as in Example 1.
  • the composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of the lithium-modified ethylene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • the binder composition is a water-soluble lithium-modified styrene-maleic anhydride copolymer resin (average molecular weight average molecular weight 1,000 to 15,000, open) with respect to 95 parts by weight of natural graphite (DMGS, manufactured by BYD) as the negative electrode active material. Ring ratio 96%, neutralization degree 0.5, manufactured by Kuraray Co., Ltd. 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and Super-P (manufactured by Timcal Co., Ltd.) as a conductive aid (conducting agent) A negative electrode slurry using 1 part by weight of) was prepared in the same manner as in Example 1.
  • the composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of the lithium-modified styrene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
  • Example 1 A conventional aqueous negative electrode binder composition SBR emulsion aqueous solution (TRD2001, 48.3 wt%) and CMC-Na (cellogen BSH-6, 10 wt%) as a thickener were used in the same manner as in Example 1 above.
  • a slurry for negative electrode coating was prepared.
  • the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, the thermogravimetric measurement of CMC-Na was performed in the same manner as in Example 1. The results are shown in Table 1 below.
  • the present invention has wide industrial applicability in the technical field of secondary batteries.

Abstract

The purpose of the present invention is to achieve both an increase in the capacity of a battery and an improvement of the rate characteristics without impairing the binding property of a negative electrode binder. The present invention provides a binder composition, for a lithium ion secondary battery negative electrode, containing a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerization of an α-olefin and a maleic acid, and a lithium ion secondary battery negative electrode and a lithium ion secondary battery using the binder composition.

Description

リチウムイオン二次電池負極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池Lithium ion secondary battery negative electrode binder composition, and lithium ion secondary battery negative electrode slurry composition using the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
 本発明は、リチウムイオン二次電池負極用バインダー組成物、並びにそれを用いたリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池に関する。 The present invention relates to a binder composition for a negative electrode of a lithium ion secondary battery, a slurry composition for a negative electrode of a lithium ion secondary battery using the binder composition, a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery.
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。 In recent years, mobile terminals such as mobile phones, notebook computers, pad-type information terminal devices have been widely used. Lithium ion secondary batteries are frequently used as secondary batteries used for the power sources of these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
 リチウムイオン二次電池は、正極と負極とをセパレータを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。 Lithium ion secondary batteries have a positive electrode and a negative electrode installed via a separator, and lithium such as LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)). It has a structure in which a salt is stored in a container together with an electrolytic solution in which a salt is dissolved in an organic liquid such as ethylene carbonate.
 上記負極および正極は、通常、バインダーおよび増粘剤を水に溶解、または分散させ、これに活物質、必要に応じて導電付与剤などを混合して得られる電極用スラリー(以下、単にスラリーということがある。)を集電体に塗布して、水を乾燥することにより、混合層として結着させて形成される。より具体的には、例えば、負極は、活物質であるリチウムイオン吸蔵・放出可能な炭素質材料、および、必要に応じて導電付与剤のアセチレンブラックなどを、銅などの集電体に二次電池電極用バインダーにより相互に結着させたものである。一方、正極は、活物質であるLiCoOなど、および、必要に応じて負極と同様の導電付与剤を、アルミニウムなどの集電体に二次電池電極用バインダーを用いて相互に結着させたものである。 The negative electrode and the positive electrode are usually an electrode slurry obtained by dissolving or dispersing a binder and a thickener in water and mixing this with an active material and, if necessary, a conductivity-imparting agent (hereinafter simply referred to as a slurry). Is applied to the current collector, and water is dried to form a mixed layer. More specifically, for example, the negative electrode is made of a carbonaceous material that can store and release lithium ions, which is an active material, and acetylene black, which is a conductivity-imparting agent, if necessary. They are bound together by a binder for battery electrodes. On the other hand, for the positive electrode, LiCoO 2 that is an active material, and if necessary, the same conductivity-imparting agent as that for the negative electrode were bonded to a current collector such as aluminum using a binder for a secondary battery electrode. Is.
 これまで、水媒体用のバインダーとして、スチレン-ブタジエンゴムなどのジエン系ゴムやポリアクリル酸などのアクリル系が使用されている(例えば、特許文献1および2)。増粘剤としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロポキシセルロース、カルボキシメチルセルロース・ナトリウム塩(CMC-Na)、ポリアクリル酸ソーダなどが挙げられるが、この中でCMC-Naがよく用いられている(例えば、特許文献3)。 So far, diene rubbers such as styrene-butadiene rubber and acrylics such as polyacrylic acid have been used as binders for aqueous media (for example, Patent Documents 1 and 2). Examples of the thickener include methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropoxycellulose, carboxymethylcellulose sodium salt (CMC-Na), sodium polyacrylate, etc. Among them, CMC-Na is often used. (For example, patent document 3).
 しかしながら、スチレン-ブタジエンゴムなどのジエン系ゴムは、銅などの金属集電極との接着性が低く、集電極と電極材の密着性を高めるために使用量を下げることが出来ないという問題がある。よって、最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、電池の高容量化と充電速度(レート特性)の向上が急務となっているなか、特に障害となっている。 However, diene rubbers such as styrene-butadiene rubber have low adhesion to metal collectors such as copper, and there is a problem that the amount used cannot be reduced to increase the adhesion between the collector and the electrode material. . Therefore, recently, demands for extending the usage time of mobile terminals and shortening the charging time have increased, and it has become an obstacle especially as the urgent need is to increase the battery capacity and improve the charging speed (rate characteristics). Yes.
 電池容量は、活物質の量に強く影響され、レート特性は電子の移動の容易さに影響される。電池という限られた空間内で活物質を増加させるには、バインダーおよび増粘剤の量を抑えることが有効であるが、バインダーおよび増粘剤の量を少なくすると活物質の結着が損なわれるので減量には限りがある。また、バインダーおよび増粘剤は非導電性で電子の移動を妨げる。そのため導電付与剤を増加してレート特性の向上を図ろうとすると、それに伴って活物質使用量を制限することになるので、電池容量の向上は望みにくい。このように、これまで、電池の高容量化とレート特性の向上とを両立させることは困難であった。 Battery capacity is strongly influenced by the amount of active material, and rate characteristics are affected by the ease of electron movement. In order to increase the active material in a limited space of a battery, it is effective to suppress the amount of binder and thickener, but if the amount of binder and thickener is decreased, the binding of the active material is impaired. So there is a limit to weight loss. Also, the binder and thickener are non-conductive and prevent the movement of electrons. Therefore, if an attempt is made to improve the rate characteristics by increasing the conductivity-imparting agent, the amount of active material used is limited accordingly, and therefore it is difficult to improve the battery capacity. Thus, it has been difficult to achieve both high battery capacity and improved rate characteristics.
 本発明は上記課題事情に鑑みてなされたものであり、負極バインダーの結着性を損なうことなく、電池の高容量化とレート特性の向上とを両立させることを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to achieve both high battery capacity and improved rate characteristics without impairing the binding properties of the negative electrode binder.
特開2000-67917公報JP 2000-67917 A 特開2008-288214公報JP 2008-288214 A 特開2014-13693公報Japanese Patent Laid-Open No. 2014-13693
 本発明者らは、電極の低抵抗化を実現すべく鋭意研究した結果、負極用スラリーのバインダーとして、特定のモノマーを重合して得られる共重合体を溶媒に溶解できる塩として使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of diligent research to realize a reduction in resistance of the electrode, the present inventors have used a copolymer obtained by polymerizing a specific monomer as a salt that can be dissolved in a solvent, as a binder for a negative electrode slurry. The present invention has been completed by finding that the above-mentioned object is achieved and further studying based on this finding.
 すなわち、本発明の一局面に係るリチウムイオン二次電池負極用バインダー組成物(以下、単にバインダー組成物とも称す)は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含むことを特徴とする。 That is, the binder composition for a negative electrode of a lithium ion secondary battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) is an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid. It contains a neutralized salt of a polymer.
 本発明によれば、結着性に優れたリチウムイオン二次電池負極用バインダー組成物を得ることができ、さらにそれを用いて、リチウムイオン二次電極の低抵抗化を実現し、該電池の高容量化とレート特性の向上とを両立させることができる。 According to the present invention, it is possible to obtain a binder composition for a negative electrode of a lithium ion secondary battery having excellent binding properties, and further using it, the resistance of the lithium ion secondary electrode can be reduced, and the battery It is possible to achieve both higher capacity and improved rate characteristics.
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
 本実施形態のリチウムイオン二次電池負極用バインダー組成物は、リチウムイオン二次電池負極用バインダー組成物(以下、単にバインダー組成物とも称す)は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含むことを特徴とする。 The binder composition for a negative electrode of a lithium ion secondary battery of the present embodiment is a binder composition for a negative electrode of a lithium ion secondary battery (hereinafter also simply referred to as a binder composition) in which an α-olefin and maleic acid are copolymerized. It contains a neutralized salt of an α-olefin-maleic acid copolymer.
 本実施形態において、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体は、α-オレフィンに基づく単位(A)とマレイン酸類に基づく単位(B)とからなり、(A)および(B)の各成分は(A)/(B)=1/1~1/3(モル比)を満足する。また、重量平均分子量が1,000~200,000である線状ランダム共重合体であることが好ましい。 In this embodiment, an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and maleic acid is composed of a unit (A) based on α-olefin and a unit (B) based on maleic acid, The components (A) and (B) satisfy (A) / (B) = 1/1 to 1/3 (molar ratio). A linear random copolymer having a weight average molecular weight of 1,000 to 200,000 is preferable.
 本実施形態において、α-オレフィン類に基づく単位(A)とは一般式-CHCR-(式中、RおよびRは同じであっても互いに異なっていてもよく、水素、炭素数1~10のアルキル基、アルケニル基、アリール基、またはエーテル基を表わす)で示される構成を意味する。また、本実施形態で使用するα-オレフィンとは、α位に炭素-炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。特に、炭素数2~12とりわけ2~8のオレフィンが好ましい。使用し得る代表的な例としては、エチレン、プロピレン、n-ブチレン、イソブチレン、n-ペンテン、イソプレン、2-メチル-1-ブテン、3-メチル-1-ブテン、n-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ブテン、1,3-ペンタジエン、1,3-ヘキサジエン、2,3-ジメチルブタジエン、2,5-ペンタジエン、1,4-ヘキサジエン、2,2,4-トリメチル-1-ペンテン、メチルビニルエーテル、スチレン等が挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、イソブチレンが好ましい。ここでイソブチレンとは、イソブチレンを主成分として含む混合物、例えば、BB留分(C4留分)をも包含する。これ等のオレフィン類は単独で用いても2種以上組合せて用いても良い。 In the present embodiment, the unit (A) based on α-olefins is represented by the general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, hydrogen Represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or an ether group. The α-olefin used in the present embodiment is a linear or branched olefin having a carbon-carbon unsaturated double bond at the α-position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are preferred. Representative examples that can be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2-methyl- 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2,5 -Pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene, methyl vinyl ether, styrene and the like. Among these, isobutylene is particularly preferable from the viewpoints of availability, polysynthesis, and product stability. Here, the isobutylene includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction). These olefins may be used alone or in combination of two or more.
 本実施形態において、マレイン酸類に基づく単位(B)としては、無水マレイン酸、マレイン酸、マレイン酸モノエステル(例えば、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸フェニル等)、マレイン酸ジエステル(例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジフェニル等)等の無水マレイン酸誘導体、マレイン酸イミドまたはそのN-置換誘導体(例えば、マレイン酸イミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-n-ブチルマレイミド、N-t-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-置換アルキルマレイミドN-フエニルマレイミド、N-メチルフエニルマレイミド、N-エチルフエニルマレイミド等のN-置換アルキルフエニルマレイミド、あるいはN-メトキシフエニルマレイミド、N-エトキシフエニルマレイミド等のN-置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えばN-クロルフエニルマレイミド)、無水シトラコン酸、シトラコン酸、シトラコン酸モノエステル(例えば、シトラコン酸メチル、シトラコン酸エチル、シトラコン酸プロピル、シトラコン酸フェニル等)、シトラコン酸ジエステル(例えば、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、シトラコン酸ジフェニル等)等の無水シトラコン酸誘導体、シトラコン酸イミドまたはそのN-置換誘導体(例えば、シトラコン酸イミド、2-メチル-N-メチルマレイミド、2-メチル-N-エチルマレイミド、2-メチル-N-プロピルマレイミド、2-メチル-N-n-ブチルマレイミド、2-メチル-N-t-ブチルマレイミド、2-メチル-N-シクロヘキシルマレイミド等のN-置換アルキルマレイミド2-メチル-N-フエニルマレイミド、2-メチル-N-メチルフエニルマレイミド、2-メチル-N-エチルフエニルマレイミド等の2-メチル-N-置換アルキルフエニルマレイミド、あるいは2-メチル-N-メトキシフエニルマレイミド、2-メチル-N-エトキシフエニルマレイミド等の2-メチル-N-置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えば2-メチル-N-クロルフエニルマレイミド)が好ましく挙げられる。これらの中では、入手性、重合速度、分子量調整の容易さという観点から、無水マレイン酸の使用が好ましい。また、これらのマレイン酸類は単独で使用しても、複数を混合して使用してもよい。 In the present embodiment, maleic anhydride, maleic acid, maleic acid monoester (for example, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate, etc.), maleic acid, as the unit (B) based on maleic acids Maleic anhydride derivatives such as diesters (eg dimethyl maleate, diethyl maleate, dipropyl maleate, diphenyl maleate etc.), maleic imides or N-substituted derivatives thereof (eg maleic imide, N-methylmaleimide, N N-substituted alkylmaleimides such as ethylmaleimide, N-propylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-ethyl Phenyl male N-substituted alkylphenylmaleimide such as imide, or N-substituted alkoxyphenylmaleimide such as N-methoxyphenylmaleimide and N-ethoxyphenylmaleimide), and further halides thereof (for example, N-chlorophenyl) Maleimide), citraconic anhydride, citraconic acid, citraconic acid monoester (eg, methyl citraconic acid, ethyl citraconic acid, propyl citraconic acid, phenyl citraconic acid, etc.), citraconic acid diester (eg, dimethyl citraconic acid, diethyl citraconic acid, citraconic acid) Citraconic anhydride derivatives such as dipropyl acid, diphenyl citraconic acid, etc.), citraconic acid imide or N-substituted derivatives thereof (for example, citraconic acid imide, 2-methyl-N-methylmaleimide, 2-methyl-N-ethylmale) N-substituted alkylmaleimides such as 2-methyl-N-propylmaleimide, 2-methyl-Nn-butylmaleimide, 2-methyl-Nt-butylmaleimide, 2-methyl-N-cyclohexylmaleimide 2-methyl-N-substituted alkylphenylmaleimide such as methyl-N-phenylmaleimide, 2-methyl-N-methylphenylmaleimide, 2-methyl-N-ethylphenylmaleimide, or 2-methyl-N- 2-methyl-N-substituted alkoxyphenylmaleimides such as methoxyphenylmaleimide and 2-methyl-N-ethoxyphenylmaleimide), and further halides thereof (eg 2-methyl-N-chlorophenylmaleimide) Is preferred. Among these, use of maleic anhydride is preferable from the viewpoint of availability, polymerization rate, and ease of molecular weight adjustment. These maleic acids may be used alone or in combination.
 本実施形態の共重合体における上記各構造単位の含有割合は、(A)/(B)がモル比で1/1~1/3の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。特に、(A)/(B)のモル比にあっては1/1またはそれに近い値であることが望ましく、その場合にはα-オレフィンに基づく単位、すなわち-CHCR-で示される単位と、マレイン酸類に基づく単位が交互に繰り返された構造を有する共重合体となる。 The content ratio of each structural unit in the copolymer of the present embodiment is preferably such that (A) / (B) is in the range of 1/1 to 1/3 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. Particularly, it is desirable that the molar ratio of (A) / (B) is 1/1 or a value close thereto, in which case the unit based on α-olefin, that is, —CH 2 CR 1 R 2 — A copolymer having a structure in which the units shown and units based on maleic acids are alternately repeated is obtained.
 本実施形態の共重合体を得るための、α-オレフィン類及びマレイン酸類の仕込み混合比は目的とする共重合体の組成により変るが、マレイン酸類モル数の1~3倍モル数のα-オレフィンを用いるのがマレイン酸類の反応率を高めるために有効である。 The mixing ratio of α-olefins and maleic acids to obtain the copolymer of the present embodiment varies depending on the composition of the target copolymer, but α-olefin having 1 to 3 times the number of moles of maleic acids. Use of olefin is effective for increasing the reaction rate of maleic acids.
 本実施形態の共重合体を製造する方法については、特に限定はなく、例えば、ラジカル重合により共重合体を得ることができる。その際、使用する重合触媒としてはアゾビスイソブチロニトリル、1,1-アゾビスシクロヘキサン-1-カルボニトリル等のアゾ触媒、ベンンゾイルパーオキサイド、ジクミルパ-オキサイド等の有機過酸化物触媒が好ましい。前記重合触媒の使用量は、マレイン酸類に対し0.1~5モル%となる範囲を必要とするが、好ましくは0.5~3モル%である。重合触媒およびモノマーの添加方法として重合初期にまとめて添加しても良いが、重合の進行にあわせて遂次添加する方法が望ましい。 The method for producing the copolymer of the present embodiment is not particularly limited, and for example, the copolymer can be obtained by radical polymerization. In this case, the polymerization catalyst used is an azo catalyst such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, or an organic peroxide catalyst such as benzoyl peroxide or dicumyl peroxide. preferable. The amount of the polymerization catalyst used is required to be in the range of 0.1 to 5 mol%, preferably 0.5 to 3 mol% with respect to maleic acids. As a method for adding the polymerization catalyst and the monomer, they may be added all at the beginning of the polymerization, but it is desirable to add them sequentially as the polymerization proceeds.
 本実施形態の共重合体の製造方法において、分子量の調節は主にモノマー濃度、触媒使洋量、重合温度によって適宜行なうことができる。例えば、分子量を低下させる物質として周期律表第I、IIまたはIII族の金属の塩、水酸化物、第IV族の金属のハロゲン化物、一般式N≡、HN=、HN-もしくはHN-で示されるアミン類、酢酸アンモニウム、尿素等の窒素化合物、あるいはメルカプタン類等を、重合の初期または重合の進行中に添加することによって共重体の分子量を調節することも可能である。重合温度は40℃~150℃、特に60℃~120℃の範囲であることが好ましく、重合温度が高すぎると生成する共重合物がブロック状になり易く、また重合圧力が著しく高くなるおそれがある。重合時間は、通常1~24時間、好ましくは2~10時間である。重合溶媒の使用量は、得られる共重合物濃度が5~40重量%、好ましくは10~30重量%となる様に調節することが望ましい。 In the method for producing a copolymer of this embodiment, the molecular weight can be appropriately adjusted mainly depending on the monomer concentration, the amount of catalyst used, and the polymerization temperature. For example, as a substance for reducing the molecular weight, a metal salt of Group I, II or III of the periodic table, a hydroxide, a halide of a Group IV metal, a general formula N≡, HN =, H 2 N— or H It is also possible to adjust the molecular weight of the copolymer by adding an amine represented by 4 N-, a nitrogen compound such as ammonium acetate or urea, or a mercaptan during the polymerization or during the polymerization. The polymerization temperature is preferably in the range of 40 ° C. to 150 ° C., particularly 60 ° C. to 120 ° C. If the polymerization temperature is too high, the resulting copolymer tends to be in the form of blocks and the polymerization pressure may be significantly increased. is there. The polymerization time is usually 1 to 24 hours, preferably 2 to 10 hours. The amount of the polymerization solvent used is desirably adjusted so that the concentration of the obtained copolymer is 5 to 40% by weight, preferably 10 to 30% by weight.
 上述したように、本実施形態の共重合体は、通常、1,000~500,000の重量平均分子量を有する。より好ましい重量平均分子量は、5,000~450,000である。本実施形態の共重合体の重量平均分子量が1,000未満となると、結晶性が高く、粒子間の接着強度が小さくなるおそれがある。一方、500,000を超えると、水や溶媒への溶解度が小さくなり、容易に析出する場合がある。 As described above, the copolymer of the present embodiment usually has a weight average molecular weight of 1,000 to 500,000. A more preferred weight average molecular weight is 5,000 to 450,000. When the weight average molecular weight of the copolymer of this embodiment is less than 1,000, the crystallinity is high and the adhesive strength between particles may be low. On the other hand, when it exceeds 500,000, the solubility in water or a solvent becomes small, and it may precipitate easily.
 本実施形態の共重合体の重量平均分子量は、例えば、光散乱法や粘度法によって測定することができる。粘度法を用いて、ジメチルホルムアミド中の極限粘度(〔η〕)を測定した場合、本実施形態の共重合体は極限粘度が0.05~1.5の範囲にある。なお、本実施形態の共重合体は通常16~60メツシユ程度の粒のそろった粉末状で得られる。 The weight average molecular weight of the copolymer of the present embodiment can be measured by, for example, a light scattering method or a viscosity method. When the intrinsic viscosity ([η]) in dimethylformamide is measured using the viscosity method, the copolymer of this embodiment has an intrinsic viscosity in the range of 0.05 to 1.5. The copolymer of the present embodiment is usually obtained in the form of a powder having about 16 to 60 mesh grains.
 本実施形態において、共重合体の中和塩とは、マレイン酸類から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和物となっているものである。本実施形態で使用するα-オレフィン-マレイン酸類共重合体の中和物においては、バインダーとしての結着性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。 In this embodiment, the neutralized salt of the copolymer is a neutralized product in which active hydrogen of carbonyl acid generated from maleic acid reacts with a basic substance to form a salt. In the neutralized product of α-olefin-maleic acid copolymer used in the present embodiment, a basic substance containing a monovalent metal and / or ammonia is used as the basic substance from the viewpoint of binding properties as a binder. Is preferably used.
 中和度としては特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、通常、マレイン酸類から生成するカルボン酸1モルに対し、0.5~1モルの範囲、より好ましくは、0.6~1モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。 The degree of neutralization is not particularly limited, but when used as a binder, considering the reactivity with the electrolytic solution, it is usually 0.5 to 1 mol per carboxylic acid produced from maleic acids. It is preferable to use those neutralized in the range of 1 mol, more preferably in the range of 0.6 to 1 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
 本実施形態において、中和度は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェニールフタレインなどの指示薬を使用することが出来る。 In this embodiment, the degree of neutralization can be determined by a method such as titration with a base, an infrared spectrum, or an NMR spectrum. To measure the neutralization point simply and accurately, titration with a base can be performed. preferable. The specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization. The indicator for the neutralization point is not particularly limited, but an indicator such as phenylphthalein whose pH is indicated by a base can be used.
 本実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、マレイン酸類共重合体中のマレイン酸単位1モル当り0.1~2モルとなる量である。なお、一価の金属を含む塩基性物質の使用量を、マレイン酸共重合体中のマレイン酸単位1モル当り0.6~2.0モル、好ましくは0.7~2モルとなる量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。 In the present embodiment, the amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use and the like, but usually in the maleic acid copolymer. The amount is 0.1 to 2 moles per mole of maleic acid unit. The amount of the basic substance containing a monovalent metal is 0.6 to 2.0 mol, preferably 0.7 to 2 mol per mol of maleic acid unit in the maleic acid copolymer. Then, a water-soluble copolymer salt with little residual alkali can be obtained.
 α-オレフィン-マレイン酸類共重合体と、一価の金属を含む塩基性物質および/またはアンモニアとの反応は、常法に従って実施できるが、水の存在下に実施し、α-オレフィン-マレイン酸類共重合体の中和物を水溶液として得る方法が簡便であり、好ましい。 The reaction of the α-olefin-maleic acid copolymer with the basic substance containing monovalent metal and / or ammonia can be carried out according to a conventional method, but is carried out in the presence of water, and the α-olefin-maleic acid is obtained. A method for obtaining a neutralized copolymer as an aqueous solution is simple and preferable.
 本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、リチウムイオン二次電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、α-オレフィン-マレイン酸類共重合体の中和物を調製してもよい。 Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like. Among these, ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable. In particular, it is preferable to use ammonia or lithium hydroxide as a binder for a lithium ion secondary battery. The basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more. In addition, a neutralized product of an α-olefin-maleic acid copolymer using a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected. May be prepared.
 次に、本実施形態において、共重合体の開環率とは、マレイン酸類として無水マレイン酸を用いた場合の、α―オレフィン類と重合する無水マレイン酸類部位の加水分解率を表す。本実施形態の共重合体において、好ましい開環率は、60~100%であり、より好ましくは、70%~100%、更に好ましくは、80~100%である。開環率が低すぎると、共重合体の構造的自由度が小さくなり、伸縮性に乏しくなるため、接着する極材粒子を接着する力が小さくなるおそれがあり、好ましくない。さらに、水に対する親和性が低く、溶解性が乏しいという問題点を生じるおそれがある。開環率は、例えば、無水マレイン酸のα位に位置する水素を基準として、開環したマレイン酸のα位の水素を1H-NMRで測定して比率を求めることも出来るし、マレイン酸のカルボニル基と開環した無水マレイン酸に由来するカルボニル基をIR測定によって比率を決定することも出来る。 Next, in this embodiment, the ring-opening rate of the copolymer represents the hydrolysis rate of the site of maleic anhydride that polymerizes with α-olefins when maleic anhydride is used as the maleic acid. In the copolymer of the present embodiment, a preferable ring opening rate is 60 to 100%, more preferably 70% to 100%, and still more preferably 80 to 100%. If the ring-opening rate is too low, the structural freedom of the copolymer becomes small and the stretchability becomes poor, so that the force for adhering the electrode material particles to be bonded may be small, which is not preferable. Furthermore, there is a possibility that problems such as low affinity for water and poor solubility may occur. The ring-opening rate can be determined, for example, by measuring the hydrogen at the α-position of the maleic acid opened by 1H-NMR with reference to the hydrogen at the α-position of maleic anhydride. The ratio of the carbonyl group derived from the carbonyl group and the ring-opened maleic anhydride can also be determined by IR measurement.
 また、本実施形態において、マレイン酸類が無水マレイン酸である場合、共重合体の中和塩とは、無水マレイン酸の開環で生成したカルボニル酸の活性水素が、上述したような塩基性物質と反応し、塩を形成して中和物となっているものである。この場合の中和度としては、特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、通常、開環により生成するカルボニル酸1モルに対し、0.5~1モルの範囲、より好ましくは、0.6~1モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。なお、無水マレイン酸を用いた場合の共重合体の中和度は、上述した方法と同様の方法により測定することができる。 In this embodiment, when the maleic acid is maleic anhydride, the neutralized salt of the copolymer means that the active hydrogen of the carbonyl acid generated by the ring opening of maleic anhydride is a basic substance as described above. It forms a salt by forming a salt. The degree of neutralization in this case is not particularly limited. However, when used as a binder, in consideration of reactivity with the electrolytic solution, usually with respect to 1 mol of carbonyl acid generated by ring opening, It is preferable to use those neutralized in the range of 0.5 to 1 mol, more preferably in the range of 0.6 to 1 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition. The degree of neutralization of the copolymer when maleic anhydride is used can be measured by the same method as described above.
 さらに、本実施形態のバインダー組成物は、バインダー組成物に粘性、靱性、接着性等を付与することができるポリエーテル類、ポリアミン類、ポリビニルアルコール類、ピロリドン類、及びマレイン酸類等を含有してもよい。これらは1種単独で含有してもよいし、2種以上を組み合わせて含有してもよい。 Furthermore, the binder composition of the present embodiment contains polyethers, polyamines, polyvinyl alcohols, pyrrolidones, maleic acids, and the like that can impart viscosity, toughness, adhesion, and the like to the binder composition. Also good. These may be contained singly or in combination of two or more.
 また、本実施形態のバインダー組成物において、150℃における質量減少率は7%未満であることが好ましい。質量減少率が7%以上であると、繰り返し充放電したときに生じた熱によって容量が低下する可能性がある。 In the binder composition of the present embodiment, the mass reduction rate at 150 ° C. is preferably less than 7%. If the mass reduction rate is 7% or more, there is a possibility that the capacity is reduced by heat generated when charging and discharging are repeated.
 本実施形態のリチウムイオン二次電池負極用バインダー組成物は、通常、上述したα-オレフィン-マレイン酸類共重合体に加えて、さらに負極活物質及び溶媒を含む、リチウムイオン二次電池負極用スラリー組成物(以下、単に負極用スラリー組成物とも称する)として使用される。 The lithium ion secondary battery negative electrode binder composition of the present embodiment usually contains a negative electrode active material and a solvent in addition to the above-described α-olefin-maleic acid copolymer, and further contains a negative electrode active material and a solvent. It is used as a composition (hereinafter also simply referred to as a negative electrode slurry composition).
 また、本実施形態においてリチウムイオン二次電池負極は、集電体に、少なくとも本実施形態のリチウムイオン二次電池負極用バインダー組成物および負極活物質を含む混合層を結着させてなることを特徴とする。この負極は、上述のリチウムイオン二次電池負極用スラリー組成物を集電体に塗布してから溶媒を乾燥などの方法で除去することにより形成することができる。前記混合層(すなわち、負極用スラリー組成物)には、必要に応じてさらに増粘剤、導電付与剤などを加えることができる。 Further, in the present embodiment, the lithium ion secondary battery negative electrode is formed by binding a current collector to a mixed layer containing at least the lithium ion secondary battery negative electrode binder composition of the present embodiment and the negative electrode active material. Features. This negative electrode can be formed by applying the above slurry composition for a lithium ion secondary battery negative electrode to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductivity-imparting agent, and the like can be added to the mixed layer (that is, the negative electrode slurry composition).
 前記リチウムイオン二次電池負極用スラリー組成物において、負極活物質100重量部に対する、α-オレフィン-マレイン酸類共重合体の中和塩の使用量は、通常、0.1~4重量部、好ましくは0.3~3重量部、より好ましくは0.5~2重量部である。共重合体の量が過度に少ないと二次電池負極用スラリーの粘度が低すぎて混合層の厚みが薄くなるおそれがあり、逆に、共重合体が過度に多いと放電容量が低下する可能性がある。 In the slurry composition for a negative electrode of a lithium ion secondary battery, the amount of the neutralized salt of α-olefin-maleic acid copolymer used is usually 0.1 to 4 parts by weight, preferably 100 parts by weight of the negative electrode active material. Is 0.3 to 3 parts by weight, more preferably 0.5 to 2 parts by weight. If the amount of the copolymer is too small, the viscosity of the slurry for secondary battery negative electrode may be too low and the thickness of the mixed layer may be reduced. Conversely, if the amount of the copolymer is excessive, the discharge capacity may be reduced. There is sex.
 一方、上記負極用スラリー組成物における溶媒の量は、負極活物質100重量部に対し、通常、40~130重量部、好ましくは70~150重量部である。 On the other hand, the amount of the solvent in the negative electrode slurry composition is usually 40 to 130 parts by weight, preferably 70 to 150 parts by weight with respect to 100 parts by weight of the negative electrode active material.
 本実施形態の負極用スラリー組成物における溶媒としては、例えば、水、メタノール、エタノール、プロパノール、2-プロパノールなどのアルコール類、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類、N,N-ジメチルホルミアミド、N,N-ジメチルアセトアミドなどのアミド類、N-メチルピロリドン、N-エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などが例示される。これらの中では、安全性という観点から、水の使用が好ましい。 Examples of the solvent in the negative electrode slurry composition of the present embodiment include water, alcohols such as methanol, ethanol, propanol, and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N-dimethyl, and the like. Examples include amides such as formamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide. In these, use of water is preferable from a viewpoint of safety.
 また、本実施形態の負極用スラリー組成物の溶媒として水を使用する場合、次に記す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n-ドデカンなどの炭化水素類;2-エチル-1-ヘキサノール、1-ノナノールなどのアルコール類;γ-ブチロラクトン、乳酸メチルなどのエステル類;N-メチルピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。 Further, when water is used as the solvent for the negative electrode slurry composition of the present embodiment, the organic solvent described below may be used in combination within a range of preferably 20% by weight or less of the total solvent. Such an organic solvent preferably has a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol. Esters such as γ-butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
 本実施形態の負極用スラリー組成物に添加される負極活物質(活物質と略記する場合がある)としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiO,SnO,LiTiOで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。 Examples of the negative electrode active material (sometimes abbreviated as active material) added to the negative electrode slurry composition of the present embodiment include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon. Carbonaceous materials such as fibers; conductive polymers such as polyacene; lithium-based metals such as composite metal oxides represented by SiO x , SnO x , LiTiO x , other metal oxides, lithium metal, and lithium alloys; TiS 2 , metal compounds such as LiTiS 2 are exemplified.
 本実施形態では、前記負極用スラリー組成物に、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、特に、ポリビニルアルコールおよびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。 In the present embodiment, a thickener can be further added to the negative electrode slurry composition as necessary. The thickener that can be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and modified products thereof, celluloses, starches, and other polysaccharides can be used.
 負極用スラリー組成物に必要に応じて配合される増粘剤の使用量は、負極活物質100部に対し0.1~4重量部、好ましくは0.3~3重量部、より好ましくは0.5~2重量部である。増粘剤が過度に少ないと二次電池負極用スラリーの粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。 The use amount of the thickener blended in the negative electrode slurry composition as necessary is 0.1 to 4 parts by weight, preferably 0.3 to 3 parts by weight, more preferably 0 to 100 parts by weight of the negative electrode active material. .5 to 2 parts by weight. If the thickener is too small, the viscosity of the secondary battery negative electrode slurry may be too low and the thickness of the mixed layer may be reduced. Conversely, if the thickener is excessively large, the discharge capacity may be reduced. .
 また、負極用スラリー組成物に必要に応じて配合される導電付与剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電付与剤の使用量は、負極活物質100重量部に対し、通常、1~10重量部、好ましくは2~7重量部である。 Also, examples of the conductivity-imparting agent blended into the negative electrode slurry composition as needed include metal powder, conductive polymer, and acetylene black. The amount of the conductive agent used is usually 1 to 10 parts by weight, preferably 2 to 7 parts by weight, with respect to 100 parts by weight of the negative electrode active material.
 本実施形態のリチウムイオン二次電池負極に使用される集電体は、導電性材料からなるものであれば特に制限されないが例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The current collector used for the lithium ion secondary battery negative electrode of this embodiment is not particularly limited as long as it is made of a conductive material. For example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold Metal materials such as platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 特に、負極として銅を用いた場合に、本発明のリチウムイオン二次電池負極用スラリーの効果が最もよく現れる。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状であることが好ましい。 In particular, when copper is used as the negative electrode, the effect of the slurry for a lithium ion secondary battery negative electrode of the present invention is most apparent. The shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
 負極用スラリーを集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電付与剤、バインダーおよび増粘剤を含む混合層の厚みが0.005~5mm、好ましくは0.01~2mmとなる量が一般的である。 The method for applying the negative electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method. The amount to be applied is not particularly limited, but the thickness of the mixed layer containing an active material, a conductivity-imparting agent, a binder and a thickener formed after removing the solvent or dispersion medium by a method such as drying is 0.005 to 5 mm. An amount of 0.01 to 2 mm is preferable.
 負極用スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。 The drying method of the solvent such as water contained in the negative electrode slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; irradiation radiation drying such as infrared rays, far infrared rays, and electron beams. Can be mentioned. The drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector. Furthermore, in order to increase the density of the active material of the electrode, it is effective to press the current collector after drying. Examples of the pressing method include a die press and a roll press.
 さらに、本発明には、上記リチウムイオン二次電池負極と、正極と、電解液を備えた、リチウム二次電池も包含される。 Furthermore, the present invention includes a lithium secondary battery including the above-described negative electrode for a lithium ion secondary battery, a positive electrode, and an electrolytic solution.
 本実施形態では、正極は、リチウムイオン二次電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記負極と同様の導電付与剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。 In the present embodiment, as the positive electrode, a positive electrode normally used for a lithium ion secondary battery is used without any particular limitation. For example, as the positive electrode active material, TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used. In addition, the positive electrode active material is made of a conductivity-imparting agent similar to that of the negative electrode, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinylidene fluoride. The positive electrode slurry prepared by mixing in a solvent of 300 ° C. or lower can be applied to a positive electrode current collector such as aluminum and the solvent can be dried to obtain a positive electrode.
 また、本実施形態のリチウムイオン二次電池には、電解質を溶媒に溶解させた電解液を使用する。電解液は、通常のリチウムイオン二次電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCS0、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。 In the lithium ion secondary battery of this embodiment, an electrolytic solution in which an electrolyte is dissolved in a solvent is used. The electrolyte solution may be liquid or gel as long as it is used for a normal lithium ion secondary battery, and an electrolyte solution that functions as a battery can be appropriately selected according to the type of the negative electrode active material and the positive electrode active material. That's fine. Specific electrolytes, for example, also known lithium salt is any conventionally available, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N And lower aliphatic lithium carboxylates.
 このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。 The solvent for dissolving such an electrolyte (electrolytic solution solvent) is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as γ-butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane. Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc. Alternatively, two or more kinds can be mixed and used. When a gel electrolyte is used, a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
 本実施形態のリチウムイオン二次電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレータを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。 The method for producing the lithium ion secondary battery of the present embodiment is not particularly limited, and for example, the following production method is exemplified. That is, the negative electrode and the positive electrode are overlapped via a separator such as a polypropylene porous membrane, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed. The shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
 本実施形態のリチウムイオン二次電池は、高容量化とレート特性の向上とを両立させた電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。 The lithium ion secondary battery of this embodiment is a battery that achieves both high capacity and improved rate characteristics, and is useful for various applications. For example, the battery is very useful as a battery used in a portable terminal that is required to be small, thin, light, and have high performance.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一局面に係るリチウムイオン二次電池負極用バインダー組成物(以下、単にバインダー組成物とも称す)は、α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含むことを特徴とする。 That is, the binder composition for a negative electrode of a lithium ion secondary battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) is an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid. It contains a neutralized salt of a polymer.
 このような構成により、負極バインダーの結着性を損なうことなく、電池の高容量化とレート特性の向上とを両立させることができると考えられる。 It is considered that such a configuration can achieve both high battery capacity and improved rate characteristics without impairing the binding property of the negative electrode binder.
 さらに、前記バインダー組成物において、前記α-オレフィン-マレイン酸類共重合体の、マレイン酸類から生成するカルボン酸に対する中和度が0.5~1であることが、電解液との反応性という観点から好ましい。 Further, in the binder composition, the degree of neutralization of the α-olefin-maleic acid copolymer with respect to the carboxylic acid generated from the maleic acid is 0.5 to 1, from the viewpoint of reactivity with the electrolytic solution. To preferred.
 また、前記バインダー組成物において、前記α-オレフィン-マレイン酸類共重合体におけるα-オレフィン類とマレイン酸類との構成比が1:1~1:3であることが好ましい。 In the binder composition, it is preferable that the constituent ratio of the α-olefin and the maleic acid in the α-olefin-maleic acid copolymer is 1: 1 to 1: 3.
 それにより、マレイン酸類の反応率を高めることができると考えられ、上述したような効果をより確実に得ることができる。 It is considered that the reaction rate of maleic acids can be increased thereby, and the effects as described above can be obtained more reliably.
 また、前記バインダー組成物において、前記マレイン酸類が無水マレイン酸類であることが好ましい。入手性、重合速度、分子量調整の容易さにおいて有利であるためである。 In the binder composition, the maleic acid is preferably maleic anhydride. This is because it is advantageous in terms of availability, polymerization rate, and ease of molecular weight adjustment.
 さらに、前記バインダー組成物において、前記α-オレフィン-無水マレイン酸類共重合体の開環率が60~100%であることが好ましい。 Furthermore, in the binder composition, the α-olefin-maleic anhydride copolymer preferably has a ring opening rate of 60 to 100%.
 それによって、組成物の水溶性が向上するために、増粘し、集電箔との接着性や分子同士の結着性が高くなる。結果的に、増粘剤が分散剤などを使用する必要がなくなるという利点を有する。 Thereby, the water-solubility of the composition is improved, so that the viscosity is increased and the adhesion to the current collector foil and the binding property between molecules are increased. As a result, the thickener has the advantage that it is not necessary to use a dispersant or the like.
 また、本発明の他の局面に係るリチウムイオン二次電池負極用スラリー組成物は、上記バインダー組成物、負極活物質及び溶媒を含むことを特徴とする。 Also, a slurry composition for a negative electrode of a lithium ion secondary battery according to another aspect of the present invention is characterized by including the binder composition, a negative electrode active material, and a solvent.
 本発明のさらに他の局面に係るリチウムイオン二次電池負極は、集電体に、上記リチウムイオン二次電池負極用バインダー組成物と、負極活物質とを少なくとも含有する混合層を結着してなることを特徴とする。 A lithium ion secondary battery negative electrode according to still another aspect of the present invention includes a current collector and a mixed layer containing at least the lithium ion secondary battery negative electrode binder composition and a negative electrode active material. It is characterized by becoming.
 また、本発明のさらに他の局面に係るリチウムイオン二次電池は、上記リチウムイオン二次電池負極と、正極と、電解液とを備えることを特徴とする。 Further, a lithium ion secondary battery according to still another aspect of the present invention is characterized by including the above lithium ion secondary battery negative electrode, a positive electrode, and an electrolytic solution.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
 (実施例1)
 <負極用スラリーの作製>
 負極用バインダー組成物として、水溶性のアンモニア変性イソブテン-無水マレイン酸共重合樹脂(重量平均分子量60000、開環率100%、中和度1株式会社クラレ製)を使用し、10wt%水溶液を調整して用いた。負極用スラリーは、負極活物質として使用する球状黒鉛(CGB-10、日本黒鉛工業製)96重量部に対して、前記10wt%水溶液を40重量部(固形分として4重量部)専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練することによって得た。スラリー粘度調整のため、混練時は水を添加して再度混練することによって電極塗工用スラリーを作製した。スラリー中の活物質とバインダー組成物の組成比は固形分として、96:4であった。
(Example 1)
<Preparation of slurry for negative electrode>
As a negative electrode binder composition, a water-soluble ammonia-modified isobutene-maleic anhydride copolymer resin (weight average molecular weight 60000, ring opening rate 100%, neutralization degree 1 manufactured by Kuraray Co., Ltd.) was used to prepare a 10 wt% aqueous solution. Used. The slurry for negative electrode is charged into a special container for 40 parts by weight of the 10 wt% aqueous solution (4 parts by weight as a solid content) with respect to 96 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) used as the negative electrode active material. And kneading using a planetary stirrer (ARE-250, manufactured by Shinky Corp.). In order to adjust the viscosity of the slurry, an electrode coating slurry was prepared by adding water at the time of kneading and kneading again. The composition ratio of the active material and the binder composition in the slurry was 96: 4 as a solid content.
 <電池用負極の作製>
 上記で得られたスラリーをバーコーター(T101、松尾産業製)を用いて、集電体である銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃で30分間ホットプレート上にて一次乾燥させた。次に、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によってコイン電池用負極を作製した。
<Preparation of negative electrode for battery>
Using the bar coater (T101, made by Matsuo Sangyo), the slurry obtained above was coated on a copper foil (CST8G, made by Fukuda Metal Foil Powder Industry) as a current collector, and then hotplate at 80 ° C. for 30 minutes. It was primarily dried above. Next, the rolling process was performed using the roll press (made by Hosen). Then, after punching out as a battery electrode (φ14 mm), a coin battery negative electrode was produced by secondary drying under reduced pressure conditions at 120 ° C. for 3 hours.
 <電池の作製>
 上記で得られた電池用塗工負極の重量、厚み(活物質層厚み約40μm、活物質重量約10mg)を計測し、アルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。なお、正極としては、金属リチウム箔(厚さ0.2mm、φ15mm)を用いた。また、セパレータとしてポリプロフィレン系(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネートとジエチルカーボネートの混合溶媒系(1M-LiPF、EC/DEC=1/1vol%)を用いて注入し、コイン電池(2032タイプ)を作製した。
<Production of battery>
The weight and thickness (active material layer thickness of about 40 μm, active material weight of about 10 mg) of the battery coated negative electrode obtained above were measured and transferred to a glove box (Miwa Seisakusho) under an argon gas atmosphere. A metal lithium foil (thickness 0.2 mm, φ15 mm) was used as the positive electrode. Further, a polypropylene system (Celgard # 2400, manufactured by Polypore) is used as a separator, and the electrolyte is a mixed solvent system of lithium hexafluorophosphate (LiPF 6 ) ethylene carbonate and diethyl carbonate (1M-LiPF 6 , EC / DEC = 1/1 vol%) to prepare a coin battery (2032 type).
 <評価方法:充放電特性試験>
 作製したコイン電池で、市販の充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して2mVになるまで活物質量に対して0.5mA/cmの定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで2mVの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.5mA/cmの定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量(mAh/g)、放電容量/充電容量の百分率を充放電効率(%)とした。さらに、コイン電池の直流抵抗(Ω)は、充電開始前において0.5mAの定電流を3秒間印加した時の抵抗値を採用した。
<Evaluation method: charge / discharge characteristic test>
With the produced coin battery, a charge / discharge test was performed using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery is placed in a constant temperature bath at 25 ° C., and charging is performed at a constant current of 0.5 mA / cm 2 with respect to the amount of active material until it reaches 2 mV with respect to the lithium potential, and further 0.02 mA with respect to the lithium potential. The constant voltage charge of 2 mV was carried out up to the current of. The capacity at this time was defined as a charging capacity (mAh / g). Next, a constant current discharge of 0.5 mA / cm 2 was performed up to 1.5 V with respect to the lithium potential, and the capacity at this time was defined as a discharge capacity (mAh / g). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity (mAh / g), and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency (%). Further, as the direct current resistance (Ω) of the coin battery, a resistance value when a constant current of 0.5 mA was applied for 3 seconds before the start of charging was adopted.
 コイン電池の放電容量維持率(%)は、前記の充放電条件を用いて1回目の放電容量に対する100回目の放電容量の比率をとした。結果を下記表1に示す。 The discharge capacity maintenance rate (%) of the coin battery was defined as the ratio of the 100th discharge capacity to the first discharge capacity using the charge / discharge conditions described above. The results are shown in Table 1 below.
 <バインダー組成物の質量減少率の測定>
 熱分析計(ヤマト科学社製)を用いてアンモニア変性イソブテン-無水マレイン酸共重合樹脂の熱重量測定を行った。測定温度範囲50℃~1000℃、昇温速度20℃/分にて測定を行った結果、200℃での質量減少率は5.9%であった。結果を下記表1に示す。
<Measurement of mass reduction rate of binder composition>
Thermogravimetric measurement of the ammonia-modified isobutene-maleic anhydride copolymer resin was performed using a thermal analyzer (manufactured by Yamato Kagaku). As a result of measurement at a measurement temperature range of 50 ° C. to 1000 ° C. and a temperature increase rate of 20 ° C./min, the mass reduction rate at 200 ° C. was 5.9%. The results are shown in Table 1 below.
 (実施例2)
 バインダー組成物の添加量を低減するため、負極活物質としての球状黒鉛(CGB-10、日本黒鉛工業製)97重量部に対して、バインダー組成物として水溶性のアンモニア変性イソブテン-無水マレイン酸共重合樹脂(重量平均分子量60000,開環率100%、中和度1、株式会社クラレ製)10wt%水溶液を30重量部(固形分として3重量部)用いた負極用スラリーを上記実施例1と同様の方法によって作製した。スラリー中の活物質とバインダー組成物の組成比は固形分として、97:3であった。そして、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。結果を下記表1に示す。
(Example 2)
In order to reduce the amount of the binder composition added, a water-soluble ammonia-modified isobutene-maleic anhydride co-polymer is used as the binder composition with respect to 97 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) as the negative electrode active material. A slurry for negative electrode using 30 wt parts (3 wt parts as a solid content) of 10 wt% aqueous solution of a polymer resin (weight average molecular weight 60000, ring opening rate 100%, neutralization degree 1, Kuraray Co., Ltd.) It produced by the same method. The composition ratio of the active material and the binder composition in the slurry was 97: 3 as a solid content. And the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below.
 (実施例3)
 バインダー組成物の添加量を低減するため、負極活物質としての球状黒鉛(CGB-10、日本黒鉛工業製)97重量部に対して、バインダー組成物として水溶性のアンモニア変性イソブテン-無水マレイン酸共重合樹脂(重量平均分子量60000,開環率67%、中和度1、株式会社クラレ製)10wt%水溶液を30重量部(固形分として3重量部)用いた負極用スラリーを上記実施例1と同様の方法によって作製した。スラリー中の活物質とバインダー組成物の組成比は固形分として、97:3であった。そして、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。結果を下記表1に示す。また実施例1と同様にアンモニア変性イソブテン-無水マレイン酸共重合樹脂の熱重量測定を行った。結果を下記表1に示す。
(Example 3)
In order to reduce the amount of the binder composition added, a water-soluble ammonia-modified isobutene-maleic anhydride co-polymer is used as the binder composition with respect to 97 parts by weight of spherical graphite (CGB-10, manufactured by Nippon Graphite Industries) as the negative electrode active material. A slurry for negative electrode using 30 wt parts (3 wt parts as a solid content) of 10 wt% aqueous solution of a polymer resin (weight average molecular weight 60000, ring opening rate 67%, neutralization degree 1, Kuraray Co., Ltd.) It produced by the same method. The composition ratio of the active material and the binder composition in the slurry was 97: 3 as a solid content. And the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, as in Example 1, the thermogravimetric measurement of the ammonia-modified isobutene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
 (実施例4)
 負極活物質として天然黒鉛(DMGS、BYD製)95重量部に対して、バインダー組成物として水溶性のリチウム変性メチルビニルエーテル-無水マレイン酸共重合樹脂(平均分子量630,000、開環率96%、中和度0.5、株式会社クラレ製)10wt%水溶液を40重量部(固形分として4重量部)、および導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を1重量部用いた負極用スラリーを上記実施例1と同様の方法によって作製した。スラリー中の活物質と導電助剤とバインダー組成物の組成比は固形分として、95:1:4であった。そして、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。結果を下記表1に示す。また実施例1と同様にリチウム変性メチルビニルエーテル-無水マレイン酸共重合樹脂の熱重量測定を行った。結果を下記表1に示す。
Example 4
The negative electrode active material is 95 parts by weight of natural graphite (DMGS, manufactured by BYD), and the binder composition is a water-soluble lithium-modified methyl vinyl ether-maleic anhydride copolymer resin (average molecular weight 630,000, ring opening rate 96%, Neutralization degree 0.5, Kuraray Co., Ltd.) 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and 1 part by weight of Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity imparting agent) The negative electrode slurry used was prepared in the same manner as in Example 1 above. The composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content. And the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of lithium-modified methyl vinyl ether-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
 (実施例5)
 負極活物質として天然黒鉛(DMGS、BYD製)95重量部に対して、バインダー組成物として水溶性のリチウム変性エチレン-無水マレイン酸共重合樹脂(平均分子量平均分子量100,000~600,000、開環率96%、中和度0.5、株式会社クラレ製)10wt%水溶液を40重量部(固形分として4重量部)、および導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を1重量部用いた負極用スラリーを上記実施例1と同様の方法によって作製した。スラリー中の活物質と導電助剤とバインダー組成物の組成比は固形分として、95:1:4であった。そして、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。結果を下記表1に示す。また実施例1と同様にリチウム変性エチレン-無水マレイン酸共重合樹脂の熱重量測定を行った。結果を下記表1に示す。
(Example 5)
The negative electrode active material is 95 parts by weight of natural graphite (DMGS, manufactured by BYD), and the binder composition is a water-soluble lithium-modified ethylene-maleic anhydride copolymer resin (average molecular weight average molecular weight 100,000 to 600,000, Ring ratio 96%, neutralization degree 0.5, manufactured by Kuraray Co., Ltd. 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and Super-P (manufactured by Timcal Co., Ltd.) as a conductive aid (conducting agent) A negative electrode slurry using 1 part by weight of) was prepared in the same manner as in Example 1. The composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content. And the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of the lithium-modified ethylene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
 (実施例6)
 負極活物質として天然黒鉛(DMGS、BYD製)95重量部に対して、バインダー組成物として水溶性のリチウム変性スチレン-無水マレイン酸共重合樹脂(平均分子量平均分子量1,000~15,000、開環率96%、中和度0.5、株式会社クラレ製)10wt%水溶液を40重量部(固形分として4重量部)、および導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を1重量部用いた負極用スラリーを上記実施例1と同様の方法によって作製した。スラリー中の活物質と導電助剤とバインダー組成物の組成比は固形分として、95:1:4であった。そして、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。結果を下記表1に示す。また実施例1と同様にリチウム変性スチレン-無水マレイン酸共重合樹脂の熱重量測定を行った。結果を下記表1に示す。
(Example 6)
The binder composition is a water-soluble lithium-modified styrene-maleic anhydride copolymer resin (average molecular weight average molecular weight 1,000 to 15,000, open) with respect to 95 parts by weight of natural graphite (DMGS, manufactured by BYD) as the negative electrode active material. Ring ratio 96%, neutralization degree 0.5, manufactured by Kuraray Co., Ltd. 10 wt% aqueous solution 40 parts by weight (4 parts by weight as solid content), and Super-P (manufactured by Timcal Co., Ltd.) as a conductive aid (conducting agent) A negative electrode slurry using 1 part by weight of) was prepared in the same manner as in Example 1. The composition ratio of the active material, the conductive additive and the binder composition in the slurry was 95: 1: 4 as a solid content. And the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, in the same manner as in Example 1, thermogravimetric measurement of the lithium-modified styrene-maleic anhydride copolymer resin was performed. The results are shown in Table 1 below.
 (比較例1)
 従来の水系負極バインダー組成物であるSBR系エマルジョン水溶液(TRD2001、48.3wt%)と増粘剤としてCMC-Na(セロゲンBSH-6、10wt%)を用いて上記実施例1と同様の方法によって負極塗工用スラリーを作製した。スラリー中の活物質とバインダー組成物と増粘剤の組成比は固形分として、黒鉛粉末:SBRバインダー:CMC増粘剤=96:3:1であった。また、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。結果を下記表1に示す。また実施例1と同様にCMC-Naの熱重量測定を行った。結果を下記表1に示す。
(Comparative Example 1)
A conventional aqueous negative electrode binder composition SBR emulsion aqueous solution (TRD2001, 48.3 wt%) and CMC-Na (cellogen BSH-6, 10 wt%) as a thickener were used in the same manner as in Example 1 above. A slurry for negative electrode coating was prepared. The composition ratio of the active material, the binder composition and the thickener in the slurry was, as a solid content, graphite powder: SBR binder: CMC thickener = 96: 3: 1. Moreover, the coating negative electrode was produced by the method similar to the said Example 1, the coin battery was obtained, and the charge / discharge characteristic test was done. The results are shown in Table 1 below. Further, the thermogravimetric measurement of CMC-Na was performed in the same manner as in Example 1. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (考察)
 実施例1~6の負極用バインダー組成物は、増粘剤を添加しなくても優れた結着性を示し、負極の形成が容易であった。そして、表1から明らかなように、実施例1~6の電池では、低抵抗化、放電容量維持率の向上が実現することが示された。
(Discussion)
The binder compositions for negative electrodes of Examples 1 to 6 showed excellent binding properties even without adding a thickener, and it was easy to form negative electrodes. As is apparent from Table 1, it was shown that the batteries of Examples 1 to 6 achieve a reduction in resistance and an improvement in discharge capacity retention rate.
 これに対し、従来の負極を用いた比較例1では、抵抗が高く、電池の出力特性が低下することが疑われ、また、放電容量維持率も低くなるという結果となった。 On the other hand, in Comparative Example 1 using the conventional negative electrode, it was suspected that the resistance was high, the output characteristics of the battery were lowered, and the discharge capacity retention rate was also lowered.
 この出願は、2014年10月31日に出願された日本国特許出願特願2014-222171を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2014-222171 filed on October 31, 2014, the contents of which are included in this application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、二次電池の技術分野において、広範な産業上の利用可能性を有する。
 

 
The present invention has wide industrial applicability in the technical field of secondary batteries.


Claims (8)

  1.  α-オレフィン類とマレイン酸類とが共重合したα-オレフィン-マレイン酸類共重合体の中和塩を含む、リチウムイオン二次電池負極用バインダー組成物。 A binder composition for a negative electrode of a lithium ion secondary battery, comprising a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid.
  2.  前記α-オレフィン-マレイン酸類共重合体の、マレイン酸類から生成するカルボン酸に対する中和度が0.5~1である、請求項1に記載のリチウムイオン二次電池負極用バインダー組成物。 The binder composition for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the α-olefin-maleic acid copolymer has a neutralization degree of 0.5 to 1 with respect to the carboxylic acid produced from the maleic acid.
  3.  前記α-オレフィン-マレイン酸類共重合体における、α-オレフィン類とマレイン酸類との含有比率が1:1~1:3である、請求項1または2に記載のリチウムイオン二次電池負極用バインダー組成物。 The binder for a negative electrode of a lithium ion secondary battery according to claim 1 or 2, wherein the content ratio of the α-olefin to the maleic acid in the α-olefin-maleic acid copolymer is 1: 1 to 1: 3. Composition.
  4.  前記マレイン酸類が無水マレイン酸類である、請求項1~3のいずれかに記載のリチウムイオン二次電池負極用バインダー組成物。 The lithium ion secondary battery negative electrode binder composition according to any one of claims 1 to 3, wherein the maleic acid is maleic anhydride.
  5.  前記α-オレフィン-マレイン酸類共重合体の開環率が60~100%である、請求項4に記載のリチウムイオン二次電池負極用バインダー組成物。 The binder composition for a lithium ion secondary battery negative electrode according to claim 4, wherein the α-olefin-maleic acid copolymer has a ring opening rate of 60 to 100%.
  6.  請求項1~5のいずれかに記載のリチウムイオン二次電池負極用バインダー組成物、負極活物質及び溶媒を含む、リチウムイオン二次電池負極用スラリー組成物。 A slurry composition for a negative electrode of a lithium ion secondary battery, comprising the binder composition for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 5, a negative electrode active material, and a solvent.
  7.  集電体に、請求項1~5のいずれかに記載のリチウムイオン二次電池負極用バインダー組成物と、負極活物質とを少なくとも含有する混合層を結着してなる、リチウムイオン二次電池負極。 A lithium ion secondary battery comprising a current collector and a mixed layer containing at least the binder composition for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 5 and a negative electrode active material. Negative electrode.
  8.  請求項7に記載のリチウムイオン二次電池負極と、正極と、電解液とを備えた、リチウムイオン二次電池。

     
    The lithium ion secondary battery provided with the lithium ion secondary battery negative electrode of Claim 7, a positive electrode, and electrolyte solution.

PCT/JP2015/078238 2014-10-31 2015-10-05 Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same WO2016067843A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556462A JPWO2016067843A1 (en) 2014-10-31 2015-10-05 Lithium ion secondary battery negative electrode binder composition, and lithium ion secondary battery negative electrode slurry composition using the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
CN201580059082.XA CN107112541A (en) 2014-10-31 2015-10-05 Lithium ion secondary battery negative pole is with adhesive composition and uses its lithium ion secondary battery negative pole paste compound, lithium ion secondary battery negative pole and lithium rechargeable battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222171 2014-10-31
JP2014-222171 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067843A1 true WO2016067843A1 (en) 2016-05-06

Family

ID=55857187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078238 WO2016067843A1 (en) 2014-10-31 2015-10-05 Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same

Country Status (4)

Country Link
JP (1) JPWO2016067843A1 (en)
CN (1) CN107112541A (en)
TW (1) TWI580102B (en)
WO (1) WO2016067843A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158637A1 (en) * 2015-03-30 2016-10-06 株式会社クラレ Binder composition for nonaqueous electrolyte battery electrodes, slurry composition for nonaqueous electrolyte battery electrodes using same, negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2016189251A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189255A (en) * 2015-03-30 2016-11-04 株式会社クラレ Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189257A (en) * 2015-03-30 2016-11-04 株式会社クラレ Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189254A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189252A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189253A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189256A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2018063799A (en) * 2016-10-12 2018-04-19 株式会社クラレ Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2018101134A1 (en) * 2016-11-29 2018-06-07 株式会社クラレ Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2018131572A1 (en) * 2017-01-16 2018-07-19 株式会社クラレ Thickening stabilizer for nonaqueous electrolyte cell electrode, binder composition comprising same, slurry composition for nonaqueous electrolyte cell electrode, nonaqueous electrolyte cell electrode, and nonaqueous electrolyte cell
EP3336941A4 (en) * 2015-08-10 2019-01-02 Kuraray Co., Ltd. Nonaqueous electrolyte battery binder composition, and nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery using same
CN110785879A (en) * 2017-06-07 2020-02-11 株式会社可乐丽 Binder composition for nonaqueous electrolyte battery, aqueous binder solution for nonaqueous electrolyte battery using same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN113880976A (en) * 2021-11-18 2022-01-04 中山大学 Application of ethylene-maleic anhydride alternating copolymer and hydrolysate thereof in preparation of silicon negative electrode material
CN115513464A (en) * 2022-10-14 2022-12-23 楚能新能源股份有限公司 Water-based binder, preparation method and lithium battery containing water-based binder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524670A (en) * 2018-11-12 2019-03-26 溧阳中科海钠科技有限责任公司 A kind of anode of secondary battery slurry, anode pole piece and secondary cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426564A1 (en) * 1994-07-27 1995-01-05 Basf Ag Use of an alkali metal salt of a polymer comprising iso-butene and maleic acid in polymerised form as additive in mineral binder materials
JPH1021924A (en) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2005100661A (en) * 2003-08-28 2005-04-14 Arakawa Chem Ind Co Ltd Binder for secondary battery electrode, paste for secondary battery electrode, and secondary battery electrode
JP2006161003A (en) * 2004-12-10 2006-06-22 Daicel Chem Ind Ltd Vinyl ether/maleic anhydride-based copolymer and method for controlling open-ring ratio thereof
WO2006085416A1 (en) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. Binder resin emulsion for energy device electrode, and energy device electrode and energy device using the same
JP2009110883A (en) * 2007-10-31 2009-05-21 Mitsui Chemicals Inc Binder for electrochemical cell
JP2010009940A (en) * 2008-06-26 2010-01-14 Denso Corp Binder for secondary batter electrode, and electrode for secondary battery and nonaqueous electrolytic solution secondary battery using the binder
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426564A1 (en) * 1994-07-27 1995-01-05 Basf Ag Use of an alkali metal salt of a polymer comprising iso-butene and maleic acid in polymerised form as additive in mineral binder materials
JPH1021924A (en) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2005100661A (en) * 2003-08-28 2005-04-14 Arakawa Chem Ind Co Ltd Binder for secondary battery electrode, paste for secondary battery electrode, and secondary battery electrode
JP2006161003A (en) * 2004-12-10 2006-06-22 Daicel Chem Ind Ltd Vinyl ether/maleic anhydride-based copolymer and method for controlling open-ring ratio thereof
WO2006085416A1 (en) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. Binder resin emulsion for energy device electrode, and energy device electrode and energy device using the same
JP2009110883A (en) * 2007-10-31 2009-05-21 Mitsui Chemicals Inc Binder for electrochemical cell
JP2010009940A (en) * 2008-06-26 2010-01-14 Denso Corp Binder for secondary batter electrode, and electrode for secondary battery and nonaqueous electrolytic solution secondary battery using the binder
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189253A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
WO2016158637A1 (en) * 2015-03-30 2016-10-06 株式会社クラレ Binder composition for nonaqueous electrolyte battery electrodes, slurry composition for nonaqueous electrolyte battery electrodes using same, negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2016189255A (en) * 2015-03-30 2016-11-04 株式会社クラレ Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189257A (en) * 2015-03-30 2016-11-04 株式会社クラレ Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189254A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189252A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189251A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189256A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
US10720646B2 (en) 2015-08-10 2020-07-21 Kuraray Co., Ltd. Non aqueous electrolyte battery binder composition, and non aqueous electrolyte battery slurry composition, non aqueous electrolyte battery negative electrode, and non aqueous electrolyte battery using same
EP3336941A4 (en) * 2015-08-10 2019-01-02 Kuraray Co., Ltd. Nonaqueous electrolyte battery binder composition, and nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery using same
JP2018063799A (en) * 2016-10-12 2018-04-19 株式会社クラレ Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2018101134A1 (en) * 2016-11-29 2018-06-07 株式会社クラレ Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
CN110024191A (en) * 2016-11-29 2019-07-16 株式会社可乐丽 Nonaqueous electrolyte battery binder composition for electrode and its nonaqueous electrolyte battery slurry composition for electrode, nonaqueous electrolyte battery cathode and nonaqueous electrolyte battery as the hydrogel of raw material and is used using it
JPWO2018101134A1 (en) * 2016-11-29 2019-10-24 株式会社クラレ Non-aqueous electrolyte battery electrode binder composition, hydrogel using the same, slurry composition for non-aqueous electrolyte battery electrode using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
WO2018131572A1 (en) * 2017-01-16 2018-07-19 株式会社クラレ Thickening stabilizer for nonaqueous electrolyte cell electrode, binder composition comprising same, slurry composition for nonaqueous electrolyte cell electrode, nonaqueous electrolyte cell electrode, and nonaqueous electrolyte cell
JPWO2018131572A1 (en) * 2017-01-16 2019-11-07 株式会社クラレ Non-aqueous electrolyte battery electrode thickening stabilizer, binder composition containing the same, slurry composition for non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery
CN110785879A (en) * 2017-06-07 2020-02-11 株式会社可乐丽 Binder composition for nonaqueous electrolyte battery, aqueous binder solution for nonaqueous electrolyte battery using same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US11581543B2 (en) 2017-06-07 2023-02-14 Kuraray Co., Ltd. Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non aqueous electrolyte battery each utilizing same
CN113880976A (en) * 2021-11-18 2022-01-04 中山大学 Application of ethylene-maleic anhydride alternating copolymer and hydrolysate thereof in preparation of silicon negative electrode material
CN115513464A (en) * 2022-10-14 2022-12-23 楚能新能源股份有限公司 Water-based binder, preparation method and lithium battery containing water-based binder
CN115513464B (en) * 2022-10-14 2023-04-14 楚能新能源股份有限公司 Water-based binder, preparation method and lithium battery containing water-based binder

Also Published As

Publication number Publication date
JPWO2016067843A1 (en) 2017-08-10
CN107112541A (en) 2017-08-29
TW201633589A (en) 2016-09-16
TWI580102B (en) 2017-04-21

Similar Documents

Publication Publication Date Title
WO2016067843A1 (en) Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same
JP6138383B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
WO2018131572A1 (en) Thickening stabilizer for nonaqueous electrolyte cell electrode, binder composition comprising same, slurry composition for nonaqueous electrolyte cell electrode, nonaqueous electrolyte cell electrode, and nonaqueous electrolyte cell
JP2016189253A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
WO2018101134A1 (en) Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2018063799A (en) Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2019071233A (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP6138382B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
WO2017022844A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
JP6856972B2 (en) Lithium-ion secondary battery electrode slurry composition, lithium-ion secondary battery negative electrode and lithium-ion secondary battery
JP2017069162A (en) Binder composition for nonaqueous electrolyte secondary battery, slurry composition for nonaqueous electrolyte secondary battery arranged by use thereof, nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
JP2016189251A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189255A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2016158637A1 (en) Binder composition for nonaqueous electrolyte battery electrodes, slurry composition for nonaqueous electrolyte battery electrodes using same, negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery
TWI833722B (en) Binders for non-aqueous electrolyte batteries, aqueous binder solutions and slurry compositions using the same, electrodes for non-aqueous electrolyte batteries and non-aqueous electrolyte batteries
JP6731723B2 (en) Composition for aqueous binder solution for non-aqueous electrolyte battery, aqueous binder solution for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery, non-aqueous electrolyte battery negative electrode and non-aqueous electrolyte battery
TWI614936B (en) Slurry composition for negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using same
WO2017022842A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
JP2017033904A (en) Slurry composition for nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using the same
JP2016189252A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189254A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189256A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2018125094A (en) Binder composition for nonaqueous electrolyte battery electrode, slurry composition for nonaqueous electrolyte battery electrode arranged by use thereof, nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854929

Country of ref document: EP

Kind code of ref document: A1