WO2016067409A1 - ターボファンおよび空気調和装置用室内機 - Google Patents

ターボファンおよび空気調和装置用室内機 Download PDF

Info

Publication number
WO2016067409A1
WO2016067409A1 PCT/JP2014/078892 JP2014078892W WO2016067409A1 WO 2016067409 A1 WO2016067409 A1 WO 2016067409A1 JP 2014078892 W JP2014078892 W JP 2014078892W WO 2016067409 A1 WO2016067409 A1 WO 2016067409A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavy
blade
protrusion
turbofan
protrusions
Prior art date
Application number
PCT/JP2014/078892
Other languages
English (en)
French (fr)
Inventor
誠治 中島
佐藤 芳樹
圭介 大石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14905027.0A priority Critical patent/EP3214317B1/en
Priority to JP2016556119A priority patent/JP6218160B2/ja
Priority to PCT/JP2014/078892 priority patent/WO2016067409A1/ja
Priority to US15/507,013 priority patent/US10400605B2/en
Priority to CN201480082913.0A priority patent/CN107076164B/zh
Publication of WO2016067409A1 publication Critical patent/WO2016067409A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag

Definitions

  • the present invention relates to an indoor unit for a turbo fan and an air conditioner.
  • Patent Document 1 there is a structure disclosed in Patent Document 1 as a technique for realizing low noise of the turbofan.
  • the centrifugal blower disclosed in Patent Document 1 includes an impeller composed of a main plate, a shroud, and a plurality of vanes, a casing containing the impeller, and a suction bell mouth attached to the casing.
  • a flat plate having the same thickness as the thickness of the blade and a triangular shape is integrally formed at the front edge of the blade.
  • One side of the flat plate is brought into close contact with the shroud of the front edge of the blade.
  • the front end of the blade made of a three-dimensional blade in the R direction side protrudes stepwise toward the inner peripheral side of the impeller. Edge corners are formed. The leading edge corner is intended to suppress the peeling of the airflow sucked into the impeller through the suction port and the bell mouth from the suction surface of the blade when it is blown out to the outer peripheral side by the blade. Aims to reduce the noise of the blower.
  • Japanese Patent Laying-Open No. 2005-307868 (5th page, FIG. 1) Japanese Patent Laying-Open No. 2005-155510 (9th page, 38th paragraph, 18th page, FIG. 5)
  • Patent Document 1 has a problem that a sufficient noise reduction effect cannot be obtained because the flow on the main plate side of the blade cannot be controlled.
  • the front edge corner portion protruding toward the inner peripheral side of the impeller has a discontinuous stepped shape, so that flow disturbance occurs and a sufficient noise reduction effect is obtained. There was a problem that it could not be obtained.
  • the present invention has been made in view of the above, and an object thereof is to provide a low noise turbofan.
  • a turbofan of the present invention is provided between a boss rotating around an axis, a main plate connected to the boss, a shroud having a suction port, and the main plate and the shroud.
  • Each of the plurality of wings includes a wavy protrusion including a plurality of protrusions at a front edge thereof, and the plurality of protrusions are arranged at a smaller pitch toward the main plate side.
  • an indoor unit for an air conditioner of the present invention for achieving the same object includes the above-described turbo fan of the present invention.
  • a low noise turbofan can be provided.
  • FIG. 1 is a perspective view of a turbo fan according to a first embodiment of the present invention. It is a side view of the turbo fan of Embodiment 1 of the present invention. It is a figure which shows the blade
  • FIG. 5 is a partial cross-sectional view taken along line VV of FIG. 2 for the turbo fans according to the second and third embodiments of the present invention.
  • FIG. 6 is a partial cross-sectional view taken along line VI-VI in FIG. 2 for a turbo fan according to a third embodiment of the present invention.
  • turbo fan centrrifugal fan
  • the turbo fan of the present invention is implemented as a turbo fan mounted in an indoor unit for an air conditioner
  • the same reference numerals indicate the same or corresponding parts.
  • blade shall be attached
  • a turbo fan having seven blades is shown.
  • the turbo fan illustrated as such is merely an example of the present invention, and the present invention is also applicable to a turbo fan having other than seven blades. The effect is obtained.
  • FIG. 1 is a perspective view of a turbo fan according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the turbo fan according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a blade of the turbo fan according to the first embodiment of the present invention.
  • a turbo fan 100 As shown in FIGS. 1 to 3, a turbo fan 100 according to the first embodiment includes a boss 1 that rotates around an axis O, a main plate 2 that is connected to the boss 1, and a suction port for sucking air. And a plurality of blades 4 disposed between the main plate 2 and the shroud 3.
  • a wavy protrusion 41a is formed on the front edge 41 of each wing 4.
  • the wavy protrusion 41a is configured by a plurality of protrusions 42 being connected.
  • the formation mode of the plurality of protrusions 42 will be described using the pitch P.
  • the distance in the direction along the front edge 41 of the blade 4 and the distance from the valley 421 of the protrusion 42 to the valley 421 of the adjacent protrusion 42 is defined as a pitch P.
  • the distance in the direction along the front edge 41 of the wing 4 and the interval between the valleys 421 on both sides sandwiching the peak 422 of the protrusion 42 is defined as a pitch P.
  • the pitch P of the protrusions 42 is set to be smaller as the pitch P of the protrusions 42 located on the main plate 2 side. That is, when the number of protrusions 42 on the leading edge 41 of the blade 4 is n and the pitches P1, P2,..., Pn are sequentially set from the pitch of the protrusions 42 on the shroud 3, P1> P2>. > Pn.
  • FIG. 4 is a schematic diagram of the internal flow of the turbofan according to the first embodiment of the present invention.
  • the axial flow that flows from the suction port 31 of the shroud 3 is bent in the radial direction before flowing into the blade 4.
  • This bending from the axial flow to the radial flow causes the flow to become unstable.
  • the separation vortex 5 may be generated.
  • the size of the separation vortex 5 is large because of the large bending of the airflow on the shroud 3 side of the blade 4, and the size of the separation vortex 5 is small because of the small bending of the airflow on the main plate 2 side.
  • a corrugated protrusion 41a in which a plurality of protrusions 42 formed so as to become smaller as the pitch P of the protrusions 42 located on the main plate 2 side is provided is provided for such a separation vortex 5. Therefore, the pitch P of the projections 42 is adapted to the size of the vortex, the separation vortex 5 can be subdivided 51 effectively, and the fluctuation of the vortex as a noise source can be reduced, thereby realizing low noise and low power consumption. be able to.
  • the length T of the projection 42 of the leading edge 41 of the blade 4 is preferably in the range of 0.2 ⁇ (T / P) ⁇ 0.8.
  • the length T of the protrusion 42 of the leading edge 41 of the wing 4 is a distance from the peak 422 of the protrusion 42 in the normal direction with respect to the leading edge 41 of the wing 4.
  • the number of the protrusions 42 constituting the wave-like protrusion 41a of the leading edge 41 of the wing 4 is three is shown, but the number may be any number of two or more. Good.
  • a low noise turbofan can be provided.
  • FIG. 5 is a partial cross-sectional view of the turbo fan according to the second embodiment of the present invention, taken along line VV in FIG.
  • the second embodiment is the same as the first embodiment described above except for the contents described below.
  • the wavy protrusion 141 a at the front edge of the blade 104 is locally curved outward in the radial direction viewed from the axis O.
  • the wavy protrusion 141a at the front edge of the blade 104 is locally curved toward the front in the rotation direction R of the fan.
  • the wavy protrusion 141a is radially outward so as to deviate from the extending direction of the blade thickness center line C of the blade 104 when the wavy protrusion 41a is not curved (toward the front in the rotational direction R). It is curved.
  • the entire wing 104 does not extend radially outward as the front part of the wing, or the entire wing 104 does not extend forward in the rotational direction R.
  • the wing 104 extends such that the leading edge is positioned radially inward on the main plate 2 rather than the trailing edge, and in such a wing 104, the wavy projection
  • the portion 141a is locally curved as described above.
  • the internal flow of the turbofan is such that the axial flow from the suction port 31 is gradually bent in the radial direction inside the fan to become a radial flow, and therefore when flowing into the blades 104.
  • the actual inflow angle A of the inflow flow FR is smaller than the inflow angle A of the two-dimensional design inflow FD considering only the radial flow from the beginning.
  • reference symbol F1 indicates a rotational flow component
  • reference symbol F2 indicates a radial flow component (the same applies to FIG. 6).
  • a and the curved angle of the wavy projection 141a at the leading edge of the wing 104 are matched, and the flow smoothly flows into the wing 104.
  • FIG. 5 is a partial cross-sectional view of the turbo fan according to the third embodiment of the present invention, taken along line VV in FIG.
  • FIG. 6 is a partial cross-sectional view taken along the line VI-VI in FIG. 2 for the turbo fan according to the third embodiment of the present invention.
  • this Embodiment 3 shall be the same as that of Embodiment 1 mentioned above except the content demonstrated below.
  • the cross section taken along line VI-VI in FIG. 2 shown in FIG. 6 is the cross section of the wavy projection 241a at the leading edge of the blade 204 on the main plate 2 side, compared to the cross section taken along line VV in FIG. Is shown.
  • the local bending amount of the wave-like projection 241a at the front edge of the blade 204 in FIG. 6 in the fan rotation direction is the local curve amount of the wave-like projection 241a at the front edge of the blade 204 in FIG. It is configured to be small with respect to the amount of bending. That is, in the turbo fan of the third embodiment, as shown in FIGS. 5 and 6, the amount of local bending of the wavy protrusion 241 a at the front edge of the blade 204 in the rotational direction of the fan is equal to the shroud 3. The larger the side.
  • the flow inside the turbo fan 100 is directed to the blades 104 because the axial flow from the suction port 31 is gradually bent in the radial direction inside the fan to become a radial flow.
  • the inflow angle A of the actual inflow flow FR at the time of inflow becomes smaller than the inflow angle A of the inflow flow FD of the two-dimensional design considering only the radial flow from the beginning.
  • the ratio of the axial flow to the radial flow is larger on the shroud side, the degree that the inflow angle A is smaller becomes stronger on the shroud side.
  • the configuration is such that the amount of local bending in the rotational direction of the fan of the wavy projection 241a at the leading edge of the blade 204 becomes larger toward the shroud side.
  • the inflow angle at the time of inflow and the angle of the wavy projection 241a at the front edge of the wing 204 are better matched, and the flow smoothly flows into the wing 204.
  • production of the peeling vortex 5 can be reduced further and the fluctuation
  • Embodiment 4 FIG. Next, Embodiment 4 of the present invention will be described with reference to FIG.
  • the fourth embodiment is the same as any of the first to third embodiments described above except for the contents described below.
  • FIG. 7 is a diagram showing the thickness distribution of the wavy projections at the leading edge of the blade of the turbofan according to the fourth embodiment of the present invention.
  • it is a figure which shows thickness distribution in the cross section in alignment with the front edge part of a wing
  • the thickness of the valley 421 of each protrusion of the wavelike protrusion of the blade of the turbofan according to the fourth embodiment is smaller than the thickness of the peak 422 of each protrusion of the wavelike protrusion. That is, the thickness of the wavy projection (front edge) is relatively small in the valley 421 of each projection and thick in the crest 422 of each projection.
  • This configuration has the following advantages. As described with reference to FIG. 4, when the separation vortex 5 is subdivided by the wavy projection, a subdivided vortex is generated from the peak 422 of each projection toward the valley 421 of the projection. By making the wing thickness distribution thin in the projection valley 421 and thick in the projection peak 422, a gradient from the projection peak 422 to the projection valley 421 is created, and the separation vortex 5 is subdivided. Promoted. Therefore, the separation vortex 5 can be further subdivided more effectively, and the fluctuation of the vortex that becomes a noise source can be reduced, so that low noise and low power consumption can be realized.
  • FIG. 8 is a view in the same manner as FIG. 3 for the blades of the turbofan according to the fifth embodiment of the present invention.
  • the fifth embodiment is the same as any one of the first to fourth embodiments described above except for the contents described below.
  • the turbo fan of the fifth embodiment has stepped portions 343 extending substantially perpendicular to the flow on both surfaces of the blades downstream of the wavy projection 41a of the leading edge 41 of the blades 304. Is provided.
  • the stepped portion 343 is formed such that the thickness of the blade on the leading edge side of the stepped portion 343 is larger than the thickness of the blade on the trailing edge side of the stepped portion 343.
  • the wavy projection 41a related to the first embodiment, but as described above, the fifth embodiment can be implemented as a combination with any of the first to fourth embodiments. Therefore, the wavy projection may be in the form shown in FIGS.
  • This configuration has the following advantages.
  • By attaching the step 343 to the downstream side of the wavy projection on the leading edge of the wing the vortex is subdivided by the wavy projection on the leading edge of the wing, the flow is stabilized, and the airflow passes through the step 343 By doing so, it is possible to effectively exhibit only the reduction of the development of the boundary layer on the blade surface without generating new turbulence by the stepped portion 343. This also makes it possible to reduce noise and power consumption by reducing fluctuations in the vortex as a noise source.
  • step-difference part 343 has shown the example of 1 step
  • this Embodiment 5 is not limited to this, A level
  • FIG. 9 is a schematic diagram of an air conditioner indoor unit according to Embodiment 6 of the present invention.
  • the air conditioner indoor unit 500 includes a case 551 embedded in the ceiling of a space to be air-conditioned.
  • a grill-type inlet 553 and a plurality of outlets 555 are provided in the lower part of the case 551.
  • a turbo fan and a known heat exchanger are accommodated.
  • This turbo fan is the turbo fan according to any one of Embodiments 1 to 5 of the present invention described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

 ターボファン100は、軸心Oまわりに回転するボス1と、そのボス1と接続される主板2と、吸い込み口31を有するシュラウド3と、主板2およびシュラウド3の間に配設される複数の翼4、104,204とを備えており、波状突起部41a、141a、241aが、翼4、104,204の前縁部41に設けられており、波状突起部41a、141a、241aは、複数の突起42を含んでおり、複数の突起42のピッチは、主板2側ほど小さくなるように形成されている。

Description

ターボファンおよび空気調和装置用室内機
 本発明は、ターボファンおよび空気調和装置用室内機に関するものである。
 ターボファンの低騒音の実現を図る技術としては、例えば、特許文献1に開示された構造がある。特許文献1に開示の遠心送風機は、主板、シュラウドおよび複数の羽根板からなる羽根車と、羽根車を内包するケーシングと、ケーシングに取り付けられた吸い込みベルマウスとを備える。羽根板の前縁部には、その厚みが羽根板の厚みと同一でかつ三角形状を持った平板が一体に形成されている。平板の一辺は、羽根板の前縁部のシュラウド寄りに密着させられている。このような構成により、吸い込みベルマウスの下流側の流れが、羽根板に速くかつスムーズに流入するようになり、流入する流れに乱れが少なくなり、騒音を低減することを目的としている。
 また、例えば、特許文献2に開示された遠心送風機では、三次元翼からなるブレードのR方向側の端部(前縁部)に、羽根車の内周側に向かって階段状に突出する前縁角部が形成されている。前縁角部は、吸入口及びベルマウスを通じて羽根車内に吸入された気流がブレードによって外周側に吹き出される際に、ブレードの負圧面から剥離するのを抑える効果を企図しており、それにより、送風機の騒音を小さくすることを目指している。
特開2005-307868号公報(第5頁、図1) 特開2005-155510号公報(第9頁、第38段落、第18頁、図5)
 上記の特許文献1に示す技術では、翼の主板側の流れが制御できないため、十分な騒音低減効果が得られないという問題があった。また、上記の特許文献2に示す技術では、羽根車の内周側に向かって突出する前縁角部が不連続な階段状であるため、流れの乱れが発生し、十分な騒音低減効果が得られないという問題があった。
 本発明は、上記に鑑みてなされたものであり、低騒音なターボファンを提供することを目的とする。
 上述した目的を達成するための本発明のターボファンは、軸心まわりに回転するボスと、前記ボスと接続される主板と、吸い込み口を有するシュラウドと、上記主板および上記シュラウドの間に設けられる複数の翼とを備え、前記複数の翼のそれぞれは、その前縁部に、複数の突起を含む波状突起部を含んでおり、前記複数の突起は、前記主板側ほど小さいピッチで配置されている。
 さらに、同目的を達成するための本発明の空気調和装置用室内機は、上述した本発明のターボファンを備える。
 本発明によれば、低騒音なターボファンを提供することができる。
本発明の実施の形態1のターボファンの斜視図である。 本発明の実施の形態1のターボファンの側面図である。 本発明の実施の形態1のターボファンの翼を示す図である。 本発明の実施の形態1のターボファンの内部の流れの概略図である。 本発明の実施の形態2および3のターボファンについての、図2のV-V線による部分断面図である。 本発明の実施の形態3のターボファンについての、図2のVI-VI線による部分断面図である。 本発明の実施の形態4のターボファンの翼の前縁部の波状突起の肉厚分布を示す図である。 本発明の実施の形態5のターボファンの翼についての、図3と同態様の図である。 本発明の実施の形態6の空気調和装置用室内機の概略図である。
 以下、本発明のターボファン(遠心ファン)を、空気調和装置用室内機に搭載されるターボファンとして実施した場合の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。また、複数枚の翼に関する符号は、代表の1枚の翼にのみ付すものとする。また、図面には、7枚の翼を有するターボファンを示すが、そのように図示されたターボファンは、あくまでも本発明の一例であり、7枚以外の翼を有するターボファンにおいても、本発明の効果は得られる。
 実施の形態1.
 図1は、本発明の実施の形態1のターボファンの斜視図である。図2は、本発明の実施の形態1のターボファンの側面図である。図3は、本発明の実施の形態1のターボファンの翼を示す図である。
 図1~図3に示されるように、本実施の形態1のターボファン100は、軸心Oまわりに回転するボス1と、ボス1と連結される主板2と、空気を吸い込むための吸い込み口31を有するシュラウド3と、主板2およびシュラウド3の間に配設される複数枚の翼4とを備えている。
 それぞれの翼4の前縁部41には、波状突起部41aが形成されている。波状突起部41aは、複数の突起42が連なることで構成されている。
 複数の突起42の形成態様について、ピッチPを用いて説明する。翼4の前縁部41に沿う方向での距離であって、突起42の谷部421から隣接する突起42の谷部421までの距離をピッチPとする。言い換えると、翼4の前縁部41に沿う方向での距離であって、突起42の山部422を挟む両側の谷部421の間隔を、ピッチPとする。
 突起42のピッチPは、主板2側に位置する突起42のピッチPほど小さくなるように設定されている。すなわち、翼4の前縁部41の突起42の個数をn個とし、シュラウド3側の突起42のピッチから順にピッチP1、P2、・・・、Pnとしたとき、P1>P2>・・・>Pnとなるように構成されている。
 上記のように構成された波状突起部41aより得られる効果について、図4を用いて説明する。図4は、本発明の実施の形態1のターボファンの内部の流れの概略図である。図4に示すように、ターボファン100の内部の流れFでは、シュラウド3の吸い込み口31から流入した軸方向流れが、翼4に流入する前に半径方向へ曲げられる。この軸方向流れから半径方向流れへの曲がりは、流れを不安定にさせる要因となる。さらに、不安定な流れが翼4へ流入することにより、剥離渦5が発生する可能性がある。また、翼4のシュラウド3側では気流の曲がりが大きいために剥離渦5のサイズは大きくなり、主板2側では気流の曲がりが小さいために剥離渦5のサイズは小さくなる。
 このような剥離渦5に対して、本実施の形態1では、主板2側に位置する突起42のピッチPほど小さくなるように形成された複数の突起42が連なる波状突起部41aが設けられているので、突起42のピッチPが渦のサイズに適合し、剥離渦5を効果的に細分化51でき、騒音源となる渦の変動を低減できることにより低騒音化および低消費電力化を実現することができる。
 なお、翼4の前縁部41の突起42の長さTについては、0.2≦(T/P)≦0.8の範囲とするのが望ましい。ここで、翼4の前縁部41の突起42の長さTは、翼4の前縁部41に対して法線方向の突起42の山部422との距離である。
 0.2>(T/P)では、突起42の長さTが短いことに起因し剥離渦5の十分な細分化ができない恐れがあり、(T/P)>0.8では、突起42の長さTが長いことに起因し突起表面の摩擦による損失が増加する恐れがある。これに対し、0.2≦(T/P)≦0.8の範囲とすることで、突起表面の摩擦による損失の増加を軽減しつつ、剥離渦5をより効率的に細分化でき、騒音源となる渦の変動を低減できることにより、低騒音化および低消費電力化を実現することが可能となる。
 なお、図面においては、翼4の前縁部41の波状突起部41aを構成する突起42の個数が、3個の場合の例を示しているが、2個以上の任意の個数であってもよい。
 このように、本実施の形態1によれば、低騒音なターボファンを提供することができる。
 実施の形態2.
 次に、本発明の実施の形態2について、図5を用いて説明する。図5は、本発明の実施の形態2のターボファンについての、図2のV-V線による部分断面図である。なお、本実施の形態2は、以下に説明する内容を除いては、上述した実施の形態1と同様であるものとする。
 図5に示されるように、本実施の形態2のターボファンは、翼104の前縁部の波状突起部141aが、軸心Oでみた径方向外側に、局所的に湾曲している。別言すれば、翼104の前縁部の波状突起部141aが、ファンの回転方向Rの前方に向けて、局所的に湾曲している。また、波状突起部141aは、波状突起部41aが湾曲していないとした場合の翼104の翼厚中心線Cの延長方向から逸れるように径方向外側に(回転方向Rの前方に向けて)湾曲している。すなわち、翼104の全体が、翼の前部ほど径方向外側に向かって延びているわけではなく、あるいは、翼104の全体が、回転方向Rの前方に向けて延びているわけではない。全体的にみると、翼104は、後縁部のよりも前縁部の方が主板2上において径方向内側に位置しているように、延びており、そのような翼104において、波状突起部141aが、上記のように局所的に湾曲している。
 図5に示されるように、ターボファンの内部の流れは、吸い込み口31からの軸方向流れがファン内部で半径方向へ徐々に曲げられて半径方向流れとなるため、翼104へ流入する際の実際の流入流れFRの流入角度Aは、はじめから半径方向流れのみを考慮した二次元設計の流入流れFDの流入角度Aよりも小さくなる。なお、図中、参照符号F1は、回転方向流れ成分を示し、参照符号F2は、半径方向流れ成分を示すものとする(図6も同様)。
 上記に対し、本実施の形態2では、翼104の前縁部の波状突起部141aをファンの回転方向Rの前方に向けて局所的に湾曲させることにより、翼104へ流入する際の流入角度Aと、翼104の前縁部の波状突起部141aの湾曲角度とが適合し、流れが滑らかに翼104へ流入する。これにより、剥離渦5の発生を低減でき、騒音源となる渦の変動を低減できることにより、低騒音化および低消費電力化を実現することが可能となる。
 実施の形態3.
 次に、本発明の実施の形態3について、図5および図6を用いて説明する。図5は、本発明の実施の形態3のターボファンについての、図2のV-V線による部分断面図である。また、図6は、本発明の実施の形態3のターボファンについての、図2のVI-VI線による部分断面図である。なお、本実施の形態3は、以下に説明する内容を除いては、上述した実施の形態1と同様であるものとする。
 図6に示す、図2でのVI-VI線断面は、図5に示す、図2でのV-V線断面よりも、主板2側における翼204の前縁部の波状突起部241aの断面を示している。図6における翼204の前縁部の波状突起部241aのファン回転方向への局所的な湾曲量は、図5における翼204の前縁部の波状突起部241aのファン回転方向への局所的な湾曲量に対して小さく構成されている。すなわち、本実施の形態3のターボファンでは、図5および図6に示されるように、翼204の前縁部の波状突起部241aのファンの回転方向への局所的な湾曲量は、シュラウド3側ほど大きくなっている。
 このような構成により、次のような利点が得られている。図5および図6に示されるように、ターボファン100の内部の流れは、吸い込み口31からの軸方向流れがファン内部で半径方向へ徐々に曲げられて半径方向流れとなるため、翼104へ流入する際の実際の流入流れFRの流入角度Aは、はじめから半径方向流れのみを考慮した二次元設計の流入流れFDの流入角度Aよりも小さくなる。一方、シュラウド側ほど半径方向流れに対する軸流方向流れの比率が大きいため、シュラウド側ほど流入角度Aが小さくなる度合いが強くなる。
 したがって、本実施の形態3のように翼204の前縁部の波状突起部241aのファンの回転方向への局所的な湾曲量を、シュラウド側ほど大きくなるように構成することにより、翼204へ流入する際の流入角度と翼204の前縁部の波状突起部241aの角度がより一層良く適合し、流れが滑らかに翼204へ流入する。これにより、剥離渦5の発生をより一層低減でき、騒音源となる渦の変動を低減できることにより、低騒音化および低消費電力化を実現することが可能となる。
 実施の形態4.
 次に、本発明の実施の形態4について、図7を用いて説明する。なお、本実施の形態4は、以下に説明する内容を除いては、上述した実施の形態1~3の何れかと同様であるものとする。
 図7は、本発明の実施の形態4のターボファンの翼の前縁部の波状突起の肉厚分布を示す図である。より詳細には、翼の前縁部に沿う断面での肉厚分布を示す図である。図7に示されるように、本実施の形態4のターボファンの翼の波状突起部の各突起の谷部421の厚みは、波状突起部の各突起の山部422の厚みよりも小さい。すなわち、波状突起部(前縁部)の肉厚は、相対的な関係で、各突起の谷部421では薄く、各突起の山部422では厚くなっている。
 このような構成により、次のような利点が得られている。図4を用いて説明したように、剥離渦5が波状突起部により細分化されるとき、各突起の山部422を起点に突起の谷部421に向かって細分化された渦が発生するが、翼の肉厚分布を突起の谷部421では薄く、突起の山部422では厚くすることにより、突起の山部422から突起の谷部421へ向かう勾配ができ、剥離渦5の細分化が促進される。従って、剥離渦5をより一層効果的に細分化でき、騒音源となる渦の変動を低減できることにより、低騒音化および低消費電力化を実現することが可能となる。
 実施の形態5.
 次に、本発明の実施の形態5について、図8を用いて説明する。図8は、本発明の実施の形態5のターボファンの翼についての、図3と同態様の図である。なお、本実施の形態5は、以下に説明する内容を除いては、上述した実施の形態1~4の何れかと同様であるものとする。
 図8に示されるように、本実施の形態5のターボファンは、翼304の前縁部41の波状突起部41aの下流側の翼両面上に、流れと略垂直方向に延びる段差部343が設けられている。段差部343は、その段差部343よりも前縁側の翼の肉厚が、その段差部343よりも後縁側の翼の肉厚よりも大きくなるように、形成されている。
 なお、図8では、実施の形態1に関する波状突起部41aを例示しているが、上記のように本実施の形態5は、実施の形態1~4の何れかとの組み合わせとして実施することができるので、波状突起部は、図5~図7に示した態様であってもよい。
 このような構成により、次のような利点が得られている。流れと略垂直方向に延びる段差部343を設けたことにより、翼面での境界層の発達を低減できる効果と、段差部343により新たな乱れを生成してしまう影響とがある。段差部343を翼の前縁部の波状突起部の下流側に付設することで、翼の前縁部の波状突起部により渦を細分化し流れが安定化した上で気流が段差部343を通過するようにしたことにより、段差部343による新たな乱れの生成を伴うことなく、翼面での境界層の発達の低減のみを効果的に発揮させることができる。これによっても、騒音源となる渦の変動を低減できることにより、低騒音化および低消費電力化を実現することが可能となる。
 なお、図8では、段差部343は1段の例を示しているが、本実施の形態5は、これに限定されず、段差部は2段以上であってもよい。
 実施の形態6.
 次に、本発明の実施の形態6について、図9を用いて説明する。図9は、本発明の実施の形態6の空気調和装置用室内機の概略図である。
 本実施の形態6の空気調和装置用室内機500は、空調対象の空間の天井に埋設されたケース551を備えている。ケース551の下部には、グリルタイプの吸入口553と、複数の吹出口555が設けられている。ケース551内には、ターボファンと、図示しない公知の熱交換器とが収容されている。そして、このターボファンは、上述した本発明の実施の形態1~5の何れかのターボファンである。
 本実施の形態6によれば、低騒音な空気調和装置用室内機を提供することができる。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 1 ボス、2 主板、3 シュラウド、4、104,204 翼、31 吸い込み口、41 前縁部、41a、141a、241a 波状突起部、42 突起、100 ターボファン、343 段差部、421 谷部、422 山部、500 空気調和装置用室内機。

Claims (6)

  1.  軸心まわりに回転するボスと、
     前記ボスと接続される主板と、
     吸い込み口を有するシュラウドと、
     上記主板および上記シュラウドの間に設けられる複数の翼とを備え、
     前記複数の翼のそれぞれは、その前縁部に、複数の突起を含む波状突起部を含んでおり、
     前記複数の突起は、前記主板側ほど小さいピッチで配置されている、
    ターボファン。
  2.  前記波状突起部は、ファンの回転方向の前方に向けて局所的に湾曲している、
    請求項1のターボファン。
  3.  前記波状突起部における、ファンの回転方向の前方に向けた局所的な湾曲量は、シュラウド側ほど大きい、
    請求項2のターボファン。
  4.  前記波状突起部の前記突起それぞれの谷部の厚みは、前記波状突起部の前記突起それぞれの山部の厚みよりも小さい、
    請求項1~3の何れか一項のターボファン。
  5.  前記翼は、前記前縁部の前記波状突起部の下流側に、段差部を有する、
    請求項1~4の何れか一項のターボファン。
  6.  請求項1~5の何れか一項のターボファンを備えた、空気調和装置用室内機。
PCT/JP2014/078892 2014-10-30 2014-10-30 ターボファンおよび空気調和装置用室内機 WO2016067409A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14905027.0A EP3214317B1 (en) 2014-10-30 2014-10-30 Turbofan, and indoor unit for air conditioning device
JP2016556119A JP6218160B2 (ja) 2014-10-30 2014-10-30 ターボファンおよび空気調和装置用室内機
PCT/JP2014/078892 WO2016067409A1 (ja) 2014-10-30 2014-10-30 ターボファンおよび空気調和装置用室内機
US15/507,013 US10400605B2 (en) 2014-10-30 2014-10-30 Turbofan and indoor unit for air conditioning apparatus
CN201480082913.0A CN107076164B (zh) 2014-10-30 2014-10-30 涡轮风扇和空气调节装置用室内机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078892 WO2016067409A1 (ja) 2014-10-30 2014-10-30 ターボファンおよび空気調和装置用室内機

Publications (1)

Publication Number Publication Date
WO2016067409A1 true WO2016067409A1 (ja) 2016-05-06

Family

ID=55856794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078892 WO2016067409A1 (ja) 2014-10-30 2014-10-30 ターボファンおよび空気調和装置用室内機

Country Status (5)

Country Link
US (1) US10400605B2 (ja)
EP (1) EP3214317B1 (ja)
JP (1) JP6218160B2 (ja)
CN (1) CN107076164B (ja)
WO (1) WO2016067409A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695509B1 (ja) * 2018-12-13 2020-05-20 三菱電機株式会社 遠心ファン及び空気調和機
WO2021250800A1 (ja) * 2020-06-10 2021-12-16 三菱電機株式会社 遠心ファンおよび回転電機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324052A1 (en) * 2016-11-18 2018-05-23 Sogefi Air & Cooling (SAS) Impeller for a fluid pump
WO2018151013A1 (ja) * 2017-02-20 2018-08-23 株式会社デンソー 遠心送風機
KR102537524B1 (ko) 2018-07-06 2023-05-30 엘지전자 주식회사
CN211525179U (zh) * 2019-12-09 2020-09-18 中山宜必思科技有限公司 一种后向离心叶轮及应用其的风机
KR20220151219A (ko) 2020-03-10 2022-11-14 에베엠-펩스트 물핑겐 게엠베하 운트 코. 카게 팬 및 팬 블레이드

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232295A (ja) * 2002-02-08 2003-08-22 Sharp Corp 遠心ファンおよびその遠心ファンを備えた加熱調理器
JP2005351141A (ja) * 2004-06-09 2005-12-22 Calsonic Kansei Corp 送風機
WO2012140690A1 (ja) * 2011-04-12 2012-10-18 三菱電機株式会社 ターボファン、および空気調和機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227198A (ja) 1988-07-18 1990-01-29 Matsushita Refrig Co Ltd 遠心送風機の羽根車
JPH0318693A (ja) 1989-06-15 1991-01-28 Tokyo Sanko Gosei Jushi Kogyo Kk エンジンの冷却ファン装置
JP3907983B2 (ja) * 2000-09-05 2007-04-18 エルジー エレクトロニクス インコーポレイティド 空気調和機用ターボファン
JP4218253B2 (ja) 2001-05-10 2009-02-04 パナソニック株式会社 空気調和機の貫流ファン
JP2003336599A (ja) 2002-05-17 2003-11-28 Calsonic Kansei Corp シロッコファン
JP4432474B2 (ja) 2003-11-27 2010-03-17 ダイキン工業株式会社 遠心送風機の羽根車及びそれを備えた遠心送風機
JP2005307868A (ja) 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd 遠心送風機
JP3953085B1 (ja) * 2006-03-08 2007-08-01 ダイキン工業株式会社 遠心送風機用羽根車のブレード、ブレード支持回転体、遠心送風機用羽根車、及び遠心送風機用羽根車の製造方法
JP4973249B2 (ja) * 2006-03-31 2012-07-11 ダイキン工業株式会社 多翼ファン
JP4396775B2 (ja) * 2007-11-26 2010-01-13 ダイキン工業株式会社 遠心ファン
JP4994421B2 (ja) * 2009-05-08 2012-08-08 三菱電機株式会社 遠心ファン及び空気調和機
JP5143173B2 (ja) * 2010-03-29 2013-02-13 三菱電機株式会社 ターボファン及びこれを装備した空気調和機の室内機
CN102251986A (zh) * 2011-08-26 2011-11-23 吉林大学 一种仿生离心风机叶片及其叶轮
EP2607713B1 (de) * 2011-12-21 2017-11-08 Grundfos Holding A/S Laufrad
JP5988776B2 (ja) * 2012-08-29 2016-09-07 三菱電機株式会社 遠心送風機及びこの遠心送風機を備えた空気調和機
WO2014061094A1 (ja) * 2012-10-16 2014-04-24 三菱電機株式会社 ターボファンおよび空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232295A (ja) * 2002-02-08 2003-08-22 Sharp Corp 遠心ファンおよびその遠心ファンを備えた加熱調理器
JP2005351141A (ja) * 2004-06-09 2005-12-22 Calsonic Kansei Corp 送風機
WO2012140690A1 (ja) * 2011-04-12 2012-10-18 三菱電機株式会社 ターボファン、および空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214317A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695509B1 (ja) * 2018-12-13 2020-05-20 三菱電機株式会社 遠心ファン及び空気調和機
US11674520B2 (en) 2018-12-13 2023-06-13 Mitsubishi Electric Corporation Centrifugal fan and air-conditioning apparatus
WO2021250800A1 (ja) * 2020-06-10 2021-12-16 三菱電機株式会社 遠心ファンおよび回転電機

Also Published As

Publication number Publication date
EP3214317A1 (en) 2017-09-06
EP3214317B1 (en) 2021-12-08
CN107076164A (zh) 2017-08-18
US20170275997A1 (en) 2017-09-28
US10400605B2 (en) 2019-09-03
JP6218160B2 (ja) 2017-10-25
CN107076164B (zh) 2019-05-28
JPWO2016067409A1 (ja) 2017-04-27
EP3214317A4 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6218160B2 (ja) ターボファンおよび空気調和装置用室内機
US9885364B2 (en) Fan, molding die, and fluid feeder
WO2009139422A1 (ja) 遠心送風機
WO2009087985A1 (ja) プロペラファン
JP5430754B2 (ja) 軸流送風機
JP4374897B2 (ja) 軸流ファン
WO2014162552A1 (ja) プロペラファン、送風装置及び室外機
JP5066835B2 (ja) 遠心ファン及びこれを用いた空気調和機
JP6377172B2 (ja) プロペラファン、プロペラファン装置および空気調和装置用室外機
JP2009203897A (ja) 多翼送風機
JP5418538B2 (ja) 送風機
JP5515222B2 (ja) 送風機の羽根車
JP6078945B2 (ja) 遠心送風機
JP2008223741A (ja) 遠心送風機
JP6444528B2 (ja) 軸流ファン、及び、その軸流ファンを有する空気調和装置
JP6739656B2 (ja) 羽根車、送風機、及び空気調和装置
JP5230814B2 (ja) 送風機及びその送風機を備えた空気調和機
JP4775867B1 (ja) ファン、成型用金型および流体送り装置
CN216430052U (zh) 一种轴流叶轮、轴流风机及空调器
JP4906011B2 (ja) ファン、成型用金型および流体送り装置
WO2016113900A1 (ja) 送風機およびそれを用いた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507013

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014905027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014905027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE