WO2016065560A1 - Matériaux poreux et leurs systèmes et procédés de fabrication - Google Patents

Matériaux poreux et leurs systèmes et procédés de fabrication Download PDF

Info

Publication number
WO2016065560A1
WO2016065560A1 PCT/CN2014/089812 CN2014089812W WO2016065560A1 WO 2016065560 A1 WO2016065560 A1 WO 2016065560A1 CN 2014089812 W CN2014089812 W CN 2014089812W WO 2016065560 A1 WO2016065560 A1 WO 2016065560A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle template
template
porous material
substance
infiltrant
Prior art date
Application number
PCT/CN2014/089812
Other languages
English (en)
Inventor
Kechuang Lin
Yi-Jui Huang
Original Assignee
Kechuang Lin
Yi-Jui Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kechuang Lin, Yi-Jui Huang filed Critical Kechuang Lin
Priority to PCT/CN2014/089812 priority Critical patent/WO2016065560A1/fr
Priority to CN201480082484.7A priority patent/CN107849724A/zh
Publication of WO2016065560A1 publication Critical patent/WO2016065560A1/fr
Priority to US15/494,198 priority patent/US20170218532A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/12Electroforming by electrophoresis
    • C25D1/14Electroforming by electrophoresis of inorganic material
    • C25D1/16Metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • C25D13/16Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes

Definitions

  • the present disclosure relates to fabrication systems and methods for manufacturing large-dimension porous materials with high surface-area-to-volume ratios.
  • Typical metal forms may have pore sizes of 0.5 ⁇ 8 mm. It may be possible to manufacture porous blocks with a specific surface area of 14 ⁇ 3100/mm. However, the pore sizes have a large variation, for example >100%.
  • Some embodiments disclosed herein allow manufacturing high surface-area-to-volume ratio porous membranes with a surface area larger than 100 cm 2 , such as 20 cm ⁇ 20 cm.
  • the sizes of the pores can be, for example, about 100 nm ⁇ 5 mm.
  • a fabrication system capable of fabricating large-dimension high-relative-surface-area porous materials is disclosed herein.
  • the system can include: a colloidal particle template formation portion configured to fabricate a colloidal crystal template, an infiltration portion configured to infiltrate the colloidal particle template with an infiltrant substance, and a template removal portion configured to remove the colloidal crystal template from the infiltrant substance to obtain the macroporous material.
  • the particle template formation portion includes an assembly apparatus configured to allow charged particles to self assemble into an array.
  • the assembly apparatus can include: an electrophoresis tank, a DC power supply, a pump system with colloidal suspension, a reference electrode, and a working electrode, wherein an electrophoresis solution containing a suspension of template particles is disposed in the electrophoresis tank; the reference electrode and the working electrode can be vertically or horizontally arranged in the electrophoresis tank; and the working electrode provides a surface for electrophoretically fabricating the particle template.
  • the template particles are colloidal particles
  • the resulting particle template is a colloidal particle template.
  • a baking portion is further provided after the colloidal particle template formation portion, in order to dry the colloidal particle template fabricated by the colloidal particle template formation portion to thereby enhance the mechanical strength of the colloidal particle template.
  • an uneven electrical field can be employed to fabricate a large-dimension porous material.
  • the assembly apparatus can have the reference electrode and the working electrode in a manner such that an uneven electrical field is formed between the reference electrode and the working electrode. This can be achieved by setting that the reference electrode has a dimension larger or smaller than the working electrode.
  • the reference electrode of the assembly apparatus can have a shape of a rectangle or a round rod.
  • the working electrode of the assembly apparatus can be a rigid planar conductor made from a metal plate, a silicon wafer, or an indium tin oxide glass (ITO) plate.
  • the working electrode can be a flexible and movable conductive tape, or conductive carbon film or carbon tube, for example for roll by roll manufacturing.
  • the conductive tape can be, for example, an ITO tape, flexible glass with an ITO film, etc.
  • a leak-proof inlet can be arranged on a sidewall of the electrophoresis tank such that the flexible and movable conductive tape can be fed into the electrophoresis tank where it provides a surface to fabricate the colloidal particle template through an assembly process where the surface-charged particles deposit to form an array.
  • the use of the flexible and movable conductive tape as the working electrode allows for a higher automation level of such a system, and the porous materials can be manufactured roll by roll.
  • the working electrode is not needed.
  • Sol-Gel, CVD, or PVD fabrication methods can be employed without the conductive tape or substrate, and the porous material can be fabricated slice by slice.
  • the infiltration portion can be a physical vapor deposition apparatus, a chemical vapor deposition (CVD) apparatus, a Sol-Gel apparatus, or a chemical plating apparatus.
  • the infiltration portion can be an electrophoretic deposition (EPD) apparatus, which can include an EPD tank, a DC power supply, a reference electrode, and a working electrode, wherein an EPD solution can be disposed in the EPD tank; and the working electrode can be configured to carry the colloidal particle template, which further provides a surface for electrophoretic deposition of the infiltrant substance on the colloidal particle template inside the EPD tank.
  • the DC power source can have a voltage range of about 0.01 V -500 V, with an electric field range of about 0.1 -1000 V/cm. The voltage or electric field strength can be selected based on the sizes of the colloidal particles.
  • the working electrode the EPD apparatus can be a rigid planar conductor or a flexible and movable conductive tape.
  • a leak-proof inlet and a leak-proof outlet can be arranged on sidewalls of the EPD tank, which allows for leak-free feeding of the flexible and movable conductive tape into and out of the EPD tank respectively.
  • the template removal portion can be a baking apparatus that allows the removal of the colloidal particle template from the infiltrant substance by heating.
  • the template removal portion can be a chemical etching apparatus, which can include an etching tank with an etching solution disposed therein. The colloidal particle template can be removed by the etching solution to only keep the infiltrant substance.
  • the chemical etching apparatus may have a leak-proof inlet and a leak-proof outlet arranged on sidewalls of the etching tank, which allows for leak-free feeding of the flexible and movable conductive tape that carries the colloidal particle template and the infiltrant substance into and out of the etching tank respectively.
  • the system may further include an apparatus configured to separate the infiltrant substance from the flexible and movable conductive tape, so as to obtain the porous material and recycle the flexible and movable conductive tape.
  • an apparatus configured to separate the infiltrant substance from the flexible and movable conductive tape, so as to obtain the porous material and recycle the flexible and movable conductive tape.
  • a blade can be disposed between the conductive tape and the porous material, and can separate the tape and the porous material, allowing the porous material to form a roll of film at a first roller, while a second roller can be employed to recycle the conductive tape.
  • a method of using the abovementioned system to fabricate a porous material is also disclosed herein.
  • the method can include: step (1) using the colloidal particle formation portion to fabricate a colloidal particle template from a preparation of substantially uniformed (e.g. , monosize) colloidal particles (size variations less than ⁇ 20%, such as ⁇ 10%, in terms of, for example, standard deviation) ; step (2) using the infiltration portion to infiltrate material into the colloidal particle template with an infiltrant substance; and step (3) using the template removal portion to remove the template and finally obtain the intact infiltrant substance as the porous material.
  • the template is referred to as a crystal template, because the template particles (e.g. , colloidal particles) are densely packed into a crystal-like structure.
  • the method can further include using a baking portion to dry the colloidal particle template immediately after the step (1) and before the step (2) , to enhance mechanical strength of the colloidal particle template.
  • the baking temperature can be about 90 –500 °C, and can be adjusted based on the materials used.
  • the relatively humidity can be >75
  • the baking time can be about 0.5 –2 hrs.
  • the temperature range is selected based on the material used.
  • the annealing temperature can be about 90 -100°C, and the duration can be about 30 minutes.
  • the annealing temperature can be about. 450 -500 °C, and the duration can be about 1.5 hr.
  • Step (1) of the method can involve the use of the assembly apparatus as mentioned above as the particle template formation portion, in which an electrophoresis solution containing a suspension of the particles can be placed in the electrophoresis tank; the reference electrode and the working electrode can be vertically arranged in the electrophoresis tank; the reference electrode is in a shape of a round rod; the working electrode provides a surface for electrophoretically fabricating the particle template; and an electric field between the reference electrode and the working electrode is set in a range of about 0.05 V/cm –1000 V/cm.
  • the assembly apparatus in Step (1) of the method can use an ethanol solution containing a suspension of colloidal particles such as polystyrene, SiO 2 and PMMA to electrophoretically fabricate the corresponding colloidal particle templates.
  • Particle size can be in a range of about 100 nm –5 mm.
  • the pH value of the ethanol solution can be in a range of about 4 –9, and can be adjusted by adding NH 4 OH or HNO 3 .
  • organic solvents, water, or solvent mixed with water can be used instead of ethanol.
  • the working electrode of the assembly apparatus can be a rigid planar conductor selected from a metal plate, a silicon wafer, or an indium tin oxide (ITO) glass plate.
  • a metal plate selected from a metal plate, a silicon wafer, or an indium tin oxide (ITO) glass plate.
  • ITO indium tin oxide
  • the working electrode of the assembly apparatus can be a flexible and movable conductive tape, which can be static, or moves at a speed between 100 nm/sec and 10 cm/sec.
  • a leak-proof inlet can also be disposed at a sidewall of the electrophoresis tank such that the flexible and movable conductive tape can be fed into the electrophoresis tank.
  • a physical vapor deposition apparatus a chemical vapor deposition apparatus, a Sol-Gel apparatus, or a chemical plating apparatus can be used as the infiltration portion in Step (2) to infiltrate an infiltrant substance to the colloidal particle template fabricated in Step (1) .
  • infiltration in Step (2) can be achieved using the electrophoretic deposition (EPD) apparatus as mentioned above, wherein: the EPD solution containing an infiltrant substance can be disposed in the EPD tank; the working electrode carrying the colloidal particle template can be configured to provide a surface for electrophoretic deposition of the infiltrant substance on the colloidal particle template inside the EPD tank.
  • EPD electrophoretic deposition
  • the working electrode of the EPD apparatus used in Step (2) can be a rigid planar conductor, or a flexible and movable conductive tape.
  • a leak-proof inlet and a leak-proof outlet can be disposed at sidewalls of the EPD tank for leak-free feeding of the flexible and movable conductive tape into and out of the EPD tank respectively.
  • the infiltrant substance used to infiltrate the colloidal particle template by the EPD apparatus in Step (2) can be a metallic ion capable of oxidation-reduction reaction, such as Ni 2+ , a ceramic such as ZnO, or a polymer.
  • a metallic ion capable of oxidation-reduction reaction such as Ni 2+ , a ceramic such as ZnO, or a polymer.
  • Other materials such as graphite, CeO 2 , TiO 2 , Cu 2 O, RuO 2 can be used.
  • Metals such as Ru, Cu, Ti, Al, Au, Ag, Pt, etc. can be used for the oxidation-reduction reactions.
  • An ethanol solution can be used as the EPD solution.
  • the time for the reaction can be determined based on the electric field strength, for example about 10 sec -1 hr.
  • the pH value can be determined based on the recipe, for example, about 4 -9.
  • the solution can use IPA, ACE, etc. , or organic solvents alike, so long as not causing corrosions of the colloidal particles.
  • Water (H 2 O) can also be used, but the pH value may need to be adjusted, and the electric field should not be too strong (e.g. , ⁇ 2.5 V/cm) .
  • a baking apparatus can be used to thermally remove the colloidal particle template while still keep the infiltrant substance intact by heating the colloidal particle template carrying the infiltrant substance at about 500 °C for 1-24 hours.
  • the materials used can be PS or PMMA.
  • high-temperature removal can be used; for colloidal template made of inorganic materials such as SiO2 or ZnO, chemical removal (e.g. , BOE) can be used.
  • a chemical etching apparatus may be used, whereby the colloidal particle template carrying the infiltrant substance can be submerged in an etching solution (e.g. 0.01 -3M of ethyl acetate) disposed in an etching tank to chemically etch off the colloidal particle template while still keep the infiltrant substance intact.
  • an etching solution e.g. 0.01 -3M of ethyl acetate
  • a flexible and movable conductive tape carrying the colloidal particle template and the infiltrant substance can be used and be fed through the chemical etching apparatus via a leak-proof inlet and a leak-proof outlet arranged on sidewalls of the etching tank.
  • the method can further include a step of separating the infiltrant substance from the flexible and movable conductive tape after the Step (3) , to thereby obtain the porous film.
  • a separation blade can be disposed between the tape and the porous film to separate them, allowing the porous film to form a roll on the first roller, and the second roller is used to recycle the tape.
  • the methods disclosed herein can have one or more of the following advantages: 1) large-dimension highly-porous materials with large relative surface areas can be achieved.
  • the materials e.g. , porous films
  • the materials can have atomic-array-like structures, with either well-ordered closely-packed pores or randomly distributed pores.
  • nanoporous materials that having a fine-array porous structure can be achieved.
  • Such fabricated highly porous materials/films can have a pore size of about 100nm -5mm, and a grain domain of about 5 ⁇ m -5mm.
  • the grain domains can be observed under OM as areas forming periodic or quasi-periodic structures. Defects similar to grain boundaries can exist between the grain domains. The grain boundaries between the grain domains can provide a major source of mechanical strength of the porous films.
  • the methods disclosed herein can be used to fabricate a large-area macroporous thin film with a dimension of >20 cm ⁇ 20 cm, with a thickness of about 10 cm (depending on colloidal particle sizes) , for example.
  • a very high surface-area-to-volume ratio can be achieved, described as
  • S v is the specific surface area
  • d is the average pore diameter in units of mm
  • is the porous ratio.
  • a large bulk porous material with a three-dimensional (3D) structure can be manufactured. These are in contrast with the porous materials manufactured by existing approaches.
  • Current metal foams typically have a pore size of > 500 ⁇ m, and a specific surface-area of about 14 ⁇ 3100/mm, with large pore size variations (such as > 100%) .
  • the methods disclosed herein can therefore be advantageous in that the fabricated metal films can be especially suitable for catalysis and other applications where materials with large relative surface areas are needed.
  • some of the methods can be free from limitations of melting point of the metal/alloy used to make metal foams, and therefore can be applied to manufacturing any fine-array porous films using metal ions that are capable of oxidation-reduction reaction.
  • the metal composition in some of the fabricated metal films can reach a purity up to 99.99%, an advantage over metal foams produced by conventional manufacture processes where impurities often are introduced during metal melting. This favorable feature can also greatly increase the efficiency of catalytic reactions.
  • the specific areas of the porous materials (e.g. , fine-array porous films) disclosed here in can be > 10/mm in some embodiments, > 3100/mm in some embodiments, or >4100/mm in some embodiments (such as about 4108/mm, about 8217/mm, or about 41087/mm) .
  • the pores in these materials have substantially uniform sizes, such as ⁇ 20%of variation in terms of standard deviation, or ⁇ 10%of variation according to some embodiments.
  • some of the methods are flexible in that they allow the use of a variety of deposition/infiltration methods, such as electrodeposition, PVD (Physical Vapor Deposition) , CVD (Chemical Vapor Deposition) , Sol-Gel (sol-gel process) , and chemical plating (such as electroplating, electrodeposition of electro-less deposition) , to infiltrate various materials, such as metals, high molecular weight polymers, and ceramics, in the fabrication of materials with macroporous structures.
  • electrodeposition PVD (Physical Vapor Deposition)
  • CVD Chemical Vapor Deposition
  • Sol-Gel sol-gel process
  • chemical plating such as electroplating, electrodeposition of electro-less deposition
  • the large-dimension porous materials with a closely-packed periodic fine-array porous structure can have superb mechanical, acoustical, thermal, optical, electrical and chemical properties, and thus can be applied in various applications such as catalyst, dialysis membranes, heat exchange, energy storage, filtration, and tissue engineering.
  • an application system including the porous material described above, wherein the system is configured as one of a desalination apparatus, a super-fine bubble generation system, a capacitor system, or a battery system.
  • FIG. 1 illustrates an OM (Optical Microscope) image of a metal foam.
  • FIG. 2 is a flow chart of the method to fabricate a conventional porous material.
  • FIG. 3 is a schematic diagram of an embodiment of the system used to manufacture a large-dimension macroporous film using a flexible and movable conductive tape as the working electrode.
  • FIG. 4A is a top view SEM image of a fine-array porous structure.
  • FIG. 4B is a side view SEM image of the structure of FIG. 4A.
  • FIG. 4C is another side view SEM image of the structure of FIG. 4A.
  • FIG. 4D is a top view SEM image of stacked nanospheres.
  • FIG. 4E is a low resolution (200x) top view SEM image of the inverse structure, wherein the sketches show the grain boundaries forming grain domains, which can provide mechanical strengths of the porous material.
  • FIG. 4F is a magnified view (500x) of the structure in FIG. 4E.
  • FIG. 4G is a further magnified view (2500x) of the structure in FIG. 4E.
  • FIG. 1 illustrates the microstructure of a metal foam, comprising an interconnected matrix of metallic ligaments 101 with varying lengths and orientations, and individual void spaces (pores) 100 of different shapes and sizes formed between adjacent ligaments.
  • Typical metal foams may have pore sizes of 0.5-8 mm.
  • uniformity of the pore sizes is another important factor.
  • the pore sizes have variations higher that 100%.
  • a fabrication system can fabricate a porous material with more superior performances.
  • the system can include a colloidal particle template formation portion configured to fabricate a colloidal particle template; an infiltration portion configured to infiltrate the colloidal particle template with an infiltrant substance; and a template removal portion configured to remove the colloidal crystal template and keep the infiltrant substance substantially intact.
  • FIG. 2 illustrates a process flow of manufacturing a fine-array porous material according to some embodiments using the system.
  • the manufacture process may include: step (1) , surface-charged particle deposition forming an array (assembly process) , step (2) , deposition/infiltration, and step (3) , template removal.
  • the system can include portions (e.g., modules) 310, 320, 330 to respectively realize these steps.
  • a movable conductive tape can be used to transport the colloidal particle template between the waterproof inlet and outlet of each tank. Each portion can have functions as shown in FIG. 3 and as described in detail below.
  • FIG. 3 illustrates a system configured to fabricate large-area, fine-array porous films according to some embodiments.
  • the system can include an electrophoresis portion 310, a deposition/infiltration portion 320, and a colloidal particle template removal portion 330.
  • the electrophoresis portion 310 can include an electrophoresis tank 311, a power supply 312, a reference electrode 313, a working electrode 314, a magnetic stirrer 315, a leak-proof inlet 316, and an oven/RTA 319.
  • An electrophoresis solution 317 containing a monodispersed colloidal nanosphere suspension can be disposed in the electrophoresis tank 311; the leak-proof inlet 316 can be disposed at a side wall of the electrophoresis tank 311; the working electrode 314 can comprise a movable continuous conductive tape 318 configured to feed into the electrophoresis tank 311 via the leak-proof inlet 316, provide a surface for the formation of a colloidal particle template in the electrophoresis tank 311, move out of the electrophoresis tank 311 if the electrophoresis self-assembly of the colloidal particle template is complete, and transport the colloidal template through the oven/RTA 319 for drying.
  • the deposition/infiltration portion 320 can include a deposition tank 321, a power supply (not shown) , a DC power source, a reference electrode 323, a working electrode 324, a leak-proof inlet 325, and a leak-proof outlet 326.
  • An electrodeposition solution 327 can be disposed in the deposition/infiltration tank 321.
  • the leak-proof inlet 325 and the leak-proof outlet 326 can respectively be disposed at two opposite side walls of the deposition tank 321.
  • the working electrode 324 can have a electrode position suspension solution 327 disposed thereover.
  • the tape that comes from the electrophoresis portion 310 carrying the dried colloidal particle template can be fed into the deposition tank 321 via the leak-proof inlet 325.
  • a surface for formation of a fine-array porous film over the colloidal particle template can be provided in the deposition tank 321.
  • the tape Upon completion of electrodeposition of the fine-array porous film, the tape can be moved out of the electrodeposition tank 321 via the leak-proof outlet 326.
  • the colloidal particle template removal portion 330 can include an etching tank 331, a leak-proof inlet 332, and a leak-proof outlet 333.
  • An etching solution 334 can be disposed in the etching tank 331.
  • the leak-proof inlet 332 and the leak-proof outlet 333 can be respectively disposed at two opposite sidewalls of the etching tank 331.
  • the tape carrying the colloidal particle template and the fine-array porous film that comes from the deposition portion 320 can be moved into the etching tank 331 via the leak-proof inlet 332, for removal of the colloidal particle template.
  • the tape can be moved out of the etching tank 331 via the leak-proof outlet 333 if etching of the colloidal particle template is complete.
  • the fine-array porous film 335 referred to as the porous material or membrane of the claimed embodiments, can be separated from the movable continuous conductive tape after the tape comes out of the etching tank 331.
  • a separation blade (not shown) can be disposed between the conductive substrate tape 337 and the porous film 335 to separate them, allowing the porous film 335 to form a roll on a first roller (not shown) , and a second roller (not shown) is used to recycle the tape 337.
  • the apparatus as shown in FIG. 3 can be used to manufacture a Nickel film with a fine-array porous structure.
  • the process may include, for example, 1) preparation of monodispersed polystyrene (PS) colloidal suspension; 2) assembly of PS colloidal crystal template; 3) electrodeposition of Nickel; and 4) removal of PS nanosphere templates by heating or etching using ethyl acetate.
  • PS monodispersed polystyrene
  • the fine-array porous material In contrast to conventional metal foams that have relatively low specific surface areas and lack of uniformity in pore sizes, the fine-array porous material has larger specific areas, and the pores therein are also highly uniform.
  • Table 1 below compares parameters, as defined in association with Equation (1) above, of conventional metal forms with those of the fine-array porous materials disclosed herein.
  • the specific surface areas of the fine-array porous materials can be higher than 3130/mm, such as higher than 4100/mm.
  • specific surface areas of the fine-array porous materials can also be in the range of 10/mm and 3130/mm, and would still have superb properties for various applications resulting from other properties unmatched by metal forms.
  • fine-array porous materials according to some embodiments, with a specific surface area > 10/mm can have very uniform pore sizes, such as ⁇ 20%as measured by the standard deviation, or ⁇ 10%as measured by the standard deviation.
  • FIG. 4A is a top view SEM image of a fine-array porous structure.
  • FIG. 4B is a side view SEM image of the structure of FIG. 4A.
  • FIG. 4C is another side view SEM image of the structure of FIG. 4A.
  • FIG. 4D is a top view SEM image of stacked nanospheres.
  • FIG. 4E is a low resolution (200x) top view SEM image of the inverse structure, wherein the sketches show the grain boudaries forming grain domains, which can provide mechanical strengths of the porous material.
  • FIG. 4F is a magnified view (500x) of the structure in FIG. 4E.
  • FIG. 4G is a further magnified view (2500x) of the structure in FIG. 4E
  • the apparatus as shown in FIG. 3 can be used to make fine-array porous ZnO films .
  • a process can include: 1) preparation of monodispersed polystyrene (PS) colloidal suspension; 2) assembly of PS colloidal crystal template and drying of the template at about 90 -100 °Cin the ambient atmosphere, for example for about 30 minutes; 3) electrodeposition of ZnO in the Zn (NO 3 ) 2 electroplating solution with a constant electrical current (e.g. 1mA/cm 2 ) at about 70 °C; and 4) removal of PS nanosphere templates by heating in the ambient at about 500 °Cfor ⁇ 2 hours.
  • a well array prouos ZnO film with controllable periodic layers can thus be fabricated.
  • the colloidal particle template formed by the assembly process can be made of polystyrene (PS) , SiO 2 , PMMA (Poly (methyl methacrylate) ) , or any powder substance with a sphere shape, with a particle size in the range of about 100 nm –5 mm and diameter variation (e.g. , standard deviation) within about ⁇ 20%, optimally within about ⁇ 10%.
  • the particle size is about 200 nm ⁇ 40 nm; in another example, the particle size is about 300 nm ⁇ 60 nm.
  • the particles can have spherical shapes, and can be hollow or solid spheres. In some other embodiments, non-spherical shapes can be employed.
  • the solution used has a pH value in the range of 4-9, a temperature in the range of about -10 ⁇ 45 °C, a DC electrical field in the range of about 0.1 V/cm -1 kV/cm, and an electrode tip withdraw velocity in a range of about 100 nm/sec -10 cm/sec.
  • the baking temperature for the removal of colloidal crystal template can depend on the nanosphere material, and can be in a range of about ⁇ 10%of the material’s glass transition temperature.
  • the grain domain of the fine-array porous films can be in a range of about 5 ⁇ m -5 mm, and the pore size can be in the range of about 100 nm –5 mm.
  • the solution can have a density higher than the nanospheres, allowing the nanospheres to float on the solution.
  • the solution can have a density lower than that of the nanospheres, such that the nanospheres can disperse in the solution uniformly, wherein the liquid can be specified by density.
  • the assembly apparatus can have a vertical structure such that film thickness can be controlled, and the film can be dissembled from the apparatus.
  • a water purifier can employ a filter composed of a porous material of the present disclosure.
  • the filter can be a membrane, and the high surface-area-to-volume ratio of the porous membrane as described above allows contaminated water to be purified effectively.
  • a salt water desalination system can be provided employing a membrane with a high surface-area-to-volume ratio.
  • the membrane can facilitate a reverse osmosis or an ion exchange process for desalination.
  • a super-fine bubble generation system can be provided employing a membrane with a high surface-area-to-volume ratio.
  • the porous structure can facilitate bubble generation in various types of liquids.
  • a capacitor or a battery can be provided employing a porous material with a high surface-area-to-volume ratio.
  • the large surface area provided by the porous material of the present disclosure can facilitate a higher capacitance for a capacitor, or a higher rate of ion exchanges for a battery thereby improving the battery's efficiency.
  • the porous materials can be used in application areas such as vibration and sound absorption, impact protection, heat exchange, membranes, filtration, ion exchange, photonics, gas sensing, catalysis, biomedical engineering, etc.

Abstract

La présente invention concerne un matériau poreux ayant une surface spécifique supérieure à 10/mm, et des procédés et un système de fabrication d'un tel matériau poreux. Le matériau poreux comprend une pluralité de pores ayant une taille sensiblement uniforme avec une variation inférieure à environ 20 %, la taille étant supérieure à environ 100 nm et inférieure à environ 5 mm. Un système comprenant le matériau poreux peut être configuré comme étant l'un d'un système de dessalement, un système de génération de bulles super-fines, un système de condensateur ou un système de batterie.
PCT/CN2014/089812 2014-10-29 2014-10-29 Matériaux poreux et leurs systèmes et procédés de fabrication WO2016065560A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/089812 WO2016065560A1 (fr) 2014-10-29 2014-10-29 Matériaux poreux et leurs systèmes et procédés de fabrication
CN201480082484.7A CN107849724A (zh) 2014-10-29 2014-10-29 多孔材料及***及其制造方法
US15/494,198 US20170218532A1 (en) 2014-10-29 2017-04-21 Porous materials and systems and methods of fabricating thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089812 WO2016065560A1 (fr) 2014-10-29 2014-10-29 Matériaux poreux et leurs systèmes et procédés de fabrication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/494,198 Continuation US20170218532A1 (en) 2014-10-29 2017-04-21 Porous materials and systems and methods of fabricating thereof

Publications (1)

Publication Number Publication Date
WO2016065560A1 true WO2016065560A1 (fr) 2016-05-06

Family

ID=55856380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089812 WO2016065560A1 (fr) 2014-10-29 2014-10-29 Matériaux poreux et leurs systèmes et procédés de fabrication

Country Status (3)

Country Link
US (1) US20170218532A1 (fr)
CN (1) CN107849724A (fr)
WO (1) WO2016065560A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296432A4 (fr) * 2015-11-06 2018-12-19 Sanno Co., Ltd. Film mince de nickel poreux et son procédé de fabrication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022126432A1 (fr) * 2020-12-16 2022-06-23 龚仲伟 Matériau métallique et son procédé de fabrication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503382B1 (en) * 1997-06-27 2003-01-07 University Of Southampton Method of electrodepositing a porous film
US20110312080A1 (en) * 2008-08-26 2011-12-22 President And Fellows Of Harvard College Porous films by a templating co-assembly process
CN102745670A (zh) * 2012-07-30 2012-10-24 中国科学院苏州纳米技术与纳米仿生研究所 三维有序大孔复合材料的制备方法
US20130112613A1 (en) * 2011-11-04 2013-05-09 Samsung Electronics Co., Ltd. Hybrid porous structured material, membrane including the same, and method of preparing hybrid porous structure material
CN103981560A (zh) * 2014-05-29 2014-08-13 哈尔滨工业大学 一种电沉积聚酰胺酸制备三维有序多孔聚酰亚胺薄膜的方法
CN103980523A (zh) * 2014-05-29 2014-08-13 哈尔滨工业大学 一种电沉积聚酰亚胺制备三维有序多孔聚酰亚胺薄膜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706614A (en) * 1968-03-21 1972-12-19 Trw Inc Fabrication of composite material by uniting thin fiber coated polymerizable plastic sheets
GB1477060A (en) * 1974-06-05 1977-06-22 Mitsubishi Electric Corp Process for preparing insulation coated wire by electrode position
US7872563B2 (en) * 2007-04-09 2011-01-18 The Board Of Trustees Of The University Of Illinois Variably porous structures
KR101631983B1 (ko) * 2009-11-09 2016-06-21 삼성전자주식회사 반사형 컬러필터의 제조 방법
KR101199004B1 (ko) * 2011-01-06 2012-11-07 성균관대학교산학협력단 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법
US9096942B2 (en) * 2011-02-22 2015-08-04 Massachusetts Institute Of Technology Electrophoretic-deposited surfaces
FR2982084B1 (fr) * 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
CN103980528B (zh) * 2014-05-29 2016-08-17 哈尔滨工业大学 一种电沉积聚酰胺酸制备低介电聚酰亚胺薄膜的方法
CN103981559B (zh) * 2014-05-29 2016-11-02 哈尔滨工业大学 一种低介电聚醚酰亚胺薄膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503382B1 (en) * 1997-06-27 2003-01-07 University Of Southampton Method of electrodepositing a porous film
US20110312080A1 (en) * 2008-08-26 2011-12-22 President And Fellows Of Harvard College Porous films by a templating co-assembly process
US20130112613A1 (en) * 2011-11-04 2013-05-09 Samsung Electronics Co., Ltd. Hybrid porous structured material, membrane including the same, and method of preparing hybrid porous structure material
CN102745670A (zh) * 2012-07-30 2012-10-24 中国科学院苏州纳米技术与纳米仿生研究所 三维有序大孔复合材料的制备方法
CN103981560A (zh) * 2014-05-29 2014-08-13 哈尔滨工业大学 一种电沉积聚酰胺酸制备三维有序多孔聚酰亚胺薄膜的方法
CN103980523A (zh) * 2014-05-29 2014-08-13 哈尔滨工业大学 一种电沉积聚酰亚胺制备三维有序多孔聚酰亚胺薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG ANBIN: "Structure, Properties and Applications of Aluminum Foam Materials.", METALLIC FUNCTION MATERAILS., vol. 17, no. 4, 31 August 2010 (2010-08-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296432A4 (fr) * 2015-11-06 2018-12-19 Sanno Co., Ltd. Film mince de nickel poreux et son procédé de fabrication

Also Published As

Publication number Publication date
CN107849724A (zh) 2018-03-27
US20170218532A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
Besra et al. A review on fundamentals and applications of electrophoretic deposition (EPD)
Liu et al. Mesoporous TiO2 mesocrystals: remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals
Cao et al. Template-based synthesis of nanorod, nanowire, and nanotube arrays
Chen et al. Porous anodic alumina with continuously manipulated pore/cell size
US20180237927A1 (en) Method for producing three-dimensional ordered porous microstructures
US20170218532A1 (en) Porous materials and systems and methods of fabricating thereof
Wang et al. Fabrication of micro copper walls by localized electrochemical deposition through the layer by layer movement of a micro anode
CN103073056B (zh) 分级结构多孔阵列二氧化钛的制备方法
JP5419034B2 (ja) イオン伝導性材料、燃料電池用伝導性膜、膜電極接合体および燃料電池
Zichu et al. the variation of anodization conditions and the structural properties of nanoporous anodic alumina (NAA) within different acidic solutions
JPH04219326A (ja) ガラス体の製造方法および装置
TWI636159B (zh) 多孔材料及系統及其製造方法
JP5303707B2 (ja) ペロブスカイト酸化物薄膜の製造方法及びペロブスカイト酸化物薄膜
Bensebaa Nanoparticle assembling and system integration
Jin et al. Controllable fabrication and microstructure modulation of unique AAO structures based on patterned aluminum surface
Bellemare et al. Etching the oxide barrier of micrometer-scale self-organized porous anodic alumina membranes
Ono et al. Control of nano/microstructure and pit initiation sites on aluminium surface by use of self‐assembled spheres
Kao et al. Fabrication and wetting characteristics of vertically self-aligned ZnO nanorods formed by anodic aluminum oxide template
Li et al. A facile method for controllable fabrication of porous anodic aluminum oxide templates with multiple-scale structures
Gao et al. Rapid-heating-triggered in situ solid-state transformation of amorphous TiO2 nanotubes into well-defined anatase nanocrystals
CN105420784B (zh) 一种制备垂直有序铁电纳米杯阵列的方法
CN113802163B (zh) 一种氧化铝微米阶梯与纳米孔复合结构的制备方法
Shang et al. Template-based synthesis of nanorod or nanowire arrays
WO2015003567A1 (fr) Charpente poreuse et son procédé de fabrication
Nesbitt et al. Facile fabrication and formation mechanism of aluminum nanowire arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904704

Country of ref document: EP

Kind code of ref document: A1