WO2016062889A2 - Organe réglant pour un mouvement horloger mécanique - Google Patents

Organe réglant pour un mouvement horloger mécanique Download PDF

Info

Publication number
WO2016062889A2
WO2016062889A2 PCT/EP2015/074683 EP2015074683W WO2016062889A2 WO 2016062889 A2 WO2016062889 A2 WO 2016062889A2 EP 2015074683 W EP2015074683 W EP 2015074683W WO 2016062889 A2 WO2016062889 A2 WO 2016062889A2
Authority
WO
WIPO (PCT)
Prior art keywords
regulating member
vibrating
oscillator
escape wheel
oscillation
Prior art date
Application number
PCT/EP2015/074683
Other languages
English (en)
Other versions
WO2016062889A3 (fr
Inventor
Olivier Karlen
Eric Klein
Original Assignee
Richemont International Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International Sa filed Critical Richemont International Sa
Priority to JP2017522110A priority Critical patent/JP6482660B2/ja
Priority to CN201580057573.0A priority patent/CN107003640B/zh
Priority to EP15787179.9A priority patent/EP3210082B1/fr
Publication of WO2016062889A2 publication Critical patent/WO2016062889A2/fr
Publication of WO2016062889A3 publication Critical patent/WO2016062889A3/fr

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction

Definitions

  • the present invention relates to a regulating member, or oscillator, for a mechanical watch movement comprising an escape wheel and a vibrating oscillator, in other words a resonator, including at least two vibrating members or arms, for example a blade of the type tuning fork, and an anchor portion for cooperating with the escape wheel.
  • the present invention also relates to a watch movement comprising such a regulating member.
  • This regulating member is intended to replace a conventional regulating member generally comprising a sprung balance and the associated exhaust.
  • the function of the escapement is to transmit the energy received by the gear train, itself driven by the mainspring, to the regulating member constituted by the assembly sprung balance.
  • This escapement generally comprises an independent anchor oscillating about an axis pivoted in the plate.
  • the mechanical connection between the anchor and the resonator, constituted by the plate carrying the pin which abuts against each of the horns of the anchor, is relatively complicated.
  • the sprung balance assembly requires a delicate adjustment.
  • such resonators are generally limited to oscillation frequencies of 10 Hz at most.
  • the document CH442153 describes an escapement comprising a tuning fork, acting as a primary resonator, and a vibrating blade, acting as a secondary resonator, at the end of which is fixed an anchor provided with two lifts diametrically opposite to the center of the escape wheel.
  • the oscillating blade oscillates, the amplitude of its oscillation allowing the anchor to come lightly hit the end of one of the branches of the tuning fork which oscillates in turn to its own frequency.
  • EP2574994 discloses a mechanical resonator comprising a tuning fork type oscillator cooperating with an anchor mounted to rotate and whose angular positions can lock and unlock an escape wheel.
  • This resonator has the disadvantage that the frills necessary for the so-called free operation between the members mounted on the fork leg and the organs, in this case a fork, of the anchor result in loss phases at each alternation of the oscillator. These phases are known in the watch industry under the term lost path. On the other hand, the number of parts and their setting makes the implementation of this system very delicate.
  • the high oscillation frequency of this solution makes it possible to have a better stability and precision of the operation of the oscillating member when wearing, and allows a greater Q quality factor, while reducing the adjustment needs.
  • FIG. 1 represents a view from above of a vibrating oscillator, according to one embodiment
  • FIG. 2 represents a view from above of the vibrating oscillator in cooperation with an escape wheel, according to one embodiment
  • FIGS. 3a to 3d illustrate the oscillation of the vibrating oscillator of FIG. 1 according to a first basic oscillation mode (FIG. 3a), a second mode (3b), a third mode (FIG. 3c) and a fourth mode (FIG. Figure 3d), according to one embodiment;
  • FIG. 4 shows a perspective view of the vibrating oscillator comprising weights, according to one embodiment;
  • FIG. 5 illustrates a side view of the vibrating oscillator comprising weights, according to another embodiment
  • Figure 7 shows a perspective view of the regulating member, having a second oscillator, according to another embodiment
  • Figure 8 shows a perspective view of the vibrating oscillator, according to yet another embodiment
  • FIG. 9 represents a detailed view of the teeth of the wheel
  • Figure 10 illustrates the regulating member having an on / off mechanism, according to one embodiment
  • Figure 11 shows a variant of the regulating member comprising a second oscillator
  • FIG. 12 shows another variant of the vibrating oscillator comprising a plurality of detachable elements
  • FIG. 13 represents a view from above of the vibrating oscillator, according to another exemplary variant
  • Figure 14 shows a schematic view of another variant of the vibrating member
  • Figure 15 shows the regulating member according to another embodiment
  • Figure 16 shows the regulating member, still according to another embodiment
  • Figure 17 schematically illustrates vibrating elements, according to various embodiments.
  • the regulating member comprises an escape wheel and a vibrating oscillator (or resonator), comprising at least two vibrating arms, which is coupled in one piece with an anchor portion.
  • each vibrating oscillator vibrating arm carries a member, such as a lift, in other words a pallet, adapted to cooperate with the teeth of the escape wheel.
  • Figures 1 and 2 show a top view of a regulating member 1 according to a preferred embodiment of the invention.
  • the regulating member 1 comprises an escape wheel 5 and a vibrating oscillator 3 including two arms each comprising a vibrating element 31 ', such as a vibrating blade, and a mass element 32.
  • the 3 vibrating elements of each arm are part of a single vibrating element 31 forming a tuning fork
  • the regulating member 1 also comprises a base 2 intended to be mounted on a plate or other fixed part of a watch movement, or on an intermediate frame (not shown) mounted itself on said watch movement, and on which the vibrating element 31 is fixed in the vicinity of its nodal point, via a foot 9 of limited rigidity to allow a mode tuning fork operating mode (that is, the foot can also vibrate).
  • each of the vibrating elements 31 ' has a distal end 36.
  • the mass element 32 here comprises two separate mass elements 32', each extending from the distal end 36. one of the elements 31 '.
  • the frequency of the regulating member 1 can be controlled by varying the size of the vibrating element 31 and / or the size of the mass element 32.
  • mass element 32 is meant a substantially more mass element and more rigid that the vibrating element 31. In other words, it is the mass element 32 which mainly constitutes the inertia of the vibrating oscillator 3.
  • the anchor portion 4 of the regulating member 1 comprises in this embodiment two anchor parts 4 ', each of the anchor parts 4' extending from the mass element 32 'near the distal end 36'. one of the arms 31 '.
  • Each of the anchor parts 4 ' comprises a member, here in the form of a lift 40, adapted to cooperate with the teeth 50 of the escape wheel 5.
  • the base 2, the arms 31 ', the mass elements 32' and the anchor parts 4 ' generally extend in the same reference plane P, in an arc of a circle. 12.
  • Mounting means 20 may be provided in the base 2 so as to fix the base 2 to the frame receiving the regulating member 1 by screwing 21.
  • the base 2 may however be fixed by any other appropriate means.
  • transverse "x” and longitudinal "y” are shown in the plane of the page and the z axis comes out of the page.
  • the regulating member 1 is intended to cooperate with the escape wheel 5 (shown in Figure 2).
  • the escape wheel 5 is housed in an interior space 11 delimited by its arms, or not the vibrating elements 31 ', the mass elements 32' and the anchor parts 4 '(or more generally the anchor part 4) .
  • the escape wheel 5 is pivotally mounted around the center 12 so that a toothing 50 of the escape wheel 5 comes into cooperation with the lifts 40.
  • the vibrating elements 31 ', the mass elements 32 'and the anchor parts 4' are in the same reference plane P as the escape wheel 5 and are generally concentric with the pivot axis of the wheel
  • the vibrating elements 3 are capable of oscillating in the manner of a tuning fork from their end fixed to the base 2.
  • the vibrating elements 31 ' maintain the mass elements 32' and the anchor parts 4 'also in oscillation.
  • the elements 31 ', the mass elements 32' and the anchor portions 4 ' are capable of oscillating according to a first fundamental oscillation mode, as illustrated in FIG. 3a (the displacements shown in FIGS. are not to scale).
  • the elements 31 ', the mass elements 32' and the anchor parts 4 ' move together, in a movement back and forth in the same direction in the reference plane P.
  • the movement of the elements 31', mass elements 32 'and anchor parts 4' is indicated by the arrows and their displacement is compared to their rest position by the contour lines.
  • the regulating member 1 cooperates with the escape wheel 5 and oscillates in the first mode of oscillation, the anchor parts 4 'oscillate and the lifts 40 alternately receive pulses of the teeth of the wheel of 5, so as to alternately lock and release the escape wheel 5 and maintain the periodic oscillations of the vibrating oscillator 3.
  • the regulating member 1 allows the successive escape of two teeth 50 so that the wheel exhaust 5 advances a tooth in a back and forth motion of the anchor portions 4 ', that is alternately.
  • FIGS 14a and 14b show the regulating member 1 according to another embodiment wherein the regulating member 1 comprises a vibrating element formed of two blades 31 fixed to a base 2 at their proximal end.
  • Each of the two blades 31 carries, at their distal end, a mass arm 32 comprising a tooth 40 of an anchor portion 4.
  • An escape wheel 5 is placed between the two mass arms 32 so as to cooperate with the teeth 40.
  • the vibrating elements 31 oscillate from their proximal end, driving in translation in a movement back and forth the two mass arms 32 '.
  • the teeth 40 alternately receive pulses of the teeth 50 of the escape wheel 5, so as to alternately lock and release the escape wheel 5 and maintain the periodic oscillations of the vibrating oscillator 3.
  • an exhaust system such as, for example, and without being limited to anchor, expansion, cylinder or tangential escapements, or
  • non-contact exhausts such as magnetic exhausts.
  • the regulating member 1 comprising the vibrating blade 31, the mass element 32 and the anchor 4 is manufactured in one piece.
  • the regulating member 1 may be made of the same material, preferably a non-magnetic material.
  • This material may be of non-metallic type such as from the group comprising metalloids (in particular silicon), glasses (especially quartz), borosilicate, fused silica, ceramics or even vitro ceramics.
  • the material may also be an at least partially metallic material, or comprise a crystalline or amorphous metal or metal alloy, composites comprising at least one metal element or any other material suitable for precision machining.
  • the regulating member 1 can be manufactured by a microfabrication process (additive or subtractive method), advantageously from a single substrate, such as for example a single wafer in the case of silicon (monocrystalline, polycrystalline or amorphous).
  • the escape wheel 5 may also be made of the same material as the oscillating member, possibly on the same wafer.
  • the frequency of the first mode of oscillation of the regulating member 1 as well as the duration in time of the oscillation (or damping rate of the oscillation) can be modified by changing the moment of inertia of the mass elements 32 '. A higher moment of inertia of the mass elements 32 'results in a lower oscillation frequency of the regulating member 1 and a longer oscillation time (less rapid oscillation damping).
  • the mass elements 32 ' are arranged in such a way that the center of gravity of the assembly formed by a vibrating element 31' and a mass element 32 'is substantially at the distal end 36 of the arm 31 ', that is to say at the junction between the arm 31' and the mass element 32 '.
  • FIG. 4 shows a perspective view of the regulating member 1, according to an embodiment in which at least one of the two mass elements 32 'comprises a flyweight 34.
  • the flyweight 34 makes it possible to modify the moment of rotation. inertia of the mass element 32 'without substantially increasing the bulk of the vibrating oscillator 3.
  • the weight 34 is advantageously made of a material having a higher density than that used for the rest of the vibrating oscillator 3 (and therefore mass elements 32 ').
  • the weight 34 may be made of gold or any other metal or dense alloy.
  • the weight 34 can be machined by a conventional method and assembled, by gluing, brazing, bonding, screwing or pinning.
  • FIG. side of the regulating member 1 according to a variant in which the weight 34 is manufactured by the addition of material, for example by growth of material, on the surface of at least one of the mass elements 32 '.
  • the weight 34 appears as a coating over the mass element 32 '.
  • the growth of material can be carried out over the entire surface or a portion of the surface of the mass elements 32 '.
  • the added material can be any material that can be used to grow material, for example by galvanic growth, by sintering or other additive processes applicable to microcomponents, on one or more faces of the vibrating oscillator 3.
  • FIG. side of the regulating member 1 according to a variant in which the weight 34 is manufactured by the addition of material, for example by growth of material, on the surface of at least one of the mass elements 32 '.
  • the weight 34 appears as a coating over the mass element 32 '.
  • the growth of material can be carried out over the entire surface or a portion of the surface of the mass elements 32 '.
  • the added material can
  • the oscillation frequency of the vibrating oscillator 3 can be adjusted by modifying the inertia of the mass elements 32 'and / or the weights 34. In particular, the frequency can be increased by ablation of material on at least one of the mass elements and / or at least one flyweight.
  • FIG. 12 illustrates the vibrating oscillator 3 according to a variant in which the mass elements 32 'carry a plurality of detachable elements 37 at each of their ends. Each of the detachable elements 37 can be removed from the mass element 32 'by breaking at a reduced section 37' of the detachable element 37.
  • the frequency of the regulating member can be reduced by increasing the length of the vibrating elements 31 'and / or the mass elements 32' of the regulating member, in particular by eliminating one or more of the elements 37 ".
  • the elements 37 all have the same size and the same mass.
  • detachable elements with different masses are used.
  • the detachable elements can be dimensioned into five different masses in order to correspond, respectively, to a correction of: 1 s / d, 2 s / d, 4 s / d, 8 s / d, and 16 s / day. In this way, it is possible to correct from 1 to 31 s / d by detaching a combination of appropriate elements.
  • the regulating member 1 can also oscillate according to other modes
  • FIG. 3b illustrates the vibrating oscillator 3 oscillating in a second oscillation mode, in which the vibrating elements 31 ', the mass elements 32' and the anchor portions 4 'oscillate in the reference plane P (according to FIG. directions
  • a third and fourth oscillation mode are respectively illustrated in Figures 3c and 3d, in which the two blade arms 31 ', the mass arms 32' and the anchor arms 4 'oscillate out of the reference plane P (along the "z" axis).
  • the fourth mode of oscillation FIG. 3d
  • the oscillation frequency of the different modes of oscillation depends on the geometry of the vibrating oscillator 3 and, as discussed above, can be adjusted by changing the moment of inertia of the mass element 32.
  • periodic oscillations corresponding to the first oscillation mode where the vibrating oscillator 3 oscillates in the reference plane may have a frequency ranging from about 10 Hz to 5 ⁇ 00 Hz, but preferably between 10 Hz to 400 Hz, or between 60 Hz and 5 ⁇ 00 Hz, or between 60 Hz and 200 Hz.
  • the moment of inertia of the mass element 32 is modified so that the oscillation frequency of the first oscillation mode is about At 100 Hz, the oscillation frequency of the second oscillation mode is about 128 Hz, and the oscillation frequency of the third and fourth oscillation modes is about 183.5 Hz and 205.8 Hz, respectively.
  • the time of a rest phase of the regulating member 1 is about 1 ms, and the time of a pulse phase is a little more than 1 ms.
  • the regulating member 1 comprises an on / off mechanism 60 comprising a lever 61 actuated by the pull tab 62 of a time setting mechanism and configured to stop and keep the regulating member 1 stationary, by stopping the vibrating elements 31 'and the mass elements 32' of the vibrating oscillator 3 in an unbalanced position, corresponding to one of the two extreme positions of the vibrating oscillator 3 in normal operating mode (or an eccentric position with respect to the escape wheel 5) so as to provide a self-starting function of a movement watchmaker.
  • the regulating member 1 is started in the first oscillation mode.
  • FIG. 6 shows the regulating member 1 comprising abutments 6, according to one embodiment in which each of the abutments 6 is formed integral with one of the mass elements 32 'in the plane P so as to come into position. abutting against each other when the regulating member 1 oscillates symmetrically.
  • the stops 6 thus prevent the vibrating oscillator 3d'osciller according to the second oscillation mode.
  • stops can also be configured to prevent the movement of the vibrating oscillator 3 along the "z" axis, or along the "x", "y” and “z” axes. in case of shock.
  • the regulating member 1 comprises a setting mechanism of the reference point.
  • the adjustment mechanism takes the form of an adjustment fork 8 integral with the base 2 and arranged to cooperate without play with an adjusting eccentric 80 (see FIG. 2) pivoting in the plate (or any other fixed part of the movement or frame in which the regulating member is mounted).
  • the eccentric adjustment 80 is configured to move in the reference plane P so as to cause, by
  • the vibrating oscillator 3 rotates about a pivot point shown by the number 22 in Figures 1, 2 and 8. According to the direction of movement of the eccentric adjustment 80 , the vibrating oscillator 3 can be rotated clockwise or counterclockwise so as to adjust the penetration of the lifts 40 relative to the teeth 50 of the escape wheel 5.
  • the adjustment amplitude may, for example, be of the order of approximately ⁇ 120 ⁇ .
  • the adjustment range 8 may be sufficiently flexible so as to absorb any gaps between the adjustment range 8 and the eccentric adjustment 80, and thus ensure immediate drive of the vibrating oscillator 3 in both directions of rotation.
  • the base 2 comprises stops for limiting the transverse movement in the reference plane P (see the elements 6 'in the variant of Figure 8). Such stops can be oriented on an axis perpendicular to the plane of the escape wheel. The oscillation of the vibrating oscillator 3 can be disturbed by the impulse of the teeth 50 of the escape wheel on its lifts. In one embodiment illustrated in FIG.
  • the regulating organ 1 comprises a second oscillator 7 arranged to oscillate freely, that is to say, without being disturbed by the lifts 40.
  • the second oscillator 7 can be coupled to the oscillation of the regulating organ 1 by sympathetic resonance. The second oscillator 7 thus makes it possible to reduce the disturbances due to the impact of the teeth 50 on the lifts 40.
  • the transmission and the coupling of the vibrations between the vibrating oscillator 3 which cooperates with the escape wheel 5, and the second oscillator 7 can be done by means of support materials (mechanical resonance), an ambient fluid (acoustic resonance) or by magnetic coupling.
  • the surface of the vibrating oscillator 3 can be modified (for example by nano structuration) so as to increase the displaced wave pressure and thus promote the quality synchronization.
  • the geometry of the regulating member 1 can be modified
  • the second free oscillator 7 can be mounted under a controlled atmosphere, for example in a magnetically permeable capsule (not shown), so as to improve the quality factor of the regulating member 1.
  • the configuration of the vibrating oscillator 3 of FIG. 8 is more compact.
  • the base 2 may comprise stops 6 'which prevent the transverse movements of the anchor arms 4' in the reference plane P.
  • FIG. 9a and 9b show a detail view of the teeth 50 of the escape wheel 5, according to one embodiment.
  • Each of the teeth 50 of the escape wheel 5 comprises an inclined plane of impulse 51 and an inclined plane 52.
  • Each of the lifts 40 also includes an inclined plane 41 but does not include a pulse plane, the top 42 of the lift 40 having rather a peak shape.
  • the configuration of the teeth 50 of the escape wheel 5 and the lifts 40 in this embodiment allows the lifts 40 to receive the pulses of the teeth 50, and to maintain the oscillations of the vibrating oscillator 3 while advancing the exhaust wheel 5 in one direction or the other.
  • the regulating member 1 can operate irrespective of the direction of rotation of the escape wheel 5.
  • Figure 9a shows a lift 40 in engagement with the impulse plane 51 of a tooth 50 during the phase pulse
  • Figure 9b shows a lift 40 engaged with the rest plane 52 of a tooth 50 during the rest phase.
  • the latter can be provided with elastic arms 53 ( Figure 2) so as to absorb shocks of the lifted 40 on the teeth 50.
  • the regulating member 1 may comprise heat compensation means including compensating coatings, zero thermoelastic coefficient materials, and other means similar to those used on the rockers, for example bimetallic structures, or others.
  • the vibrating oscillator 3 may comprise a coating of silicon dioxide deposited on at least a portion of its surface.
  • the thermal compensation means of a vibrating oscillator made of silicon may be one of the means described in document CH699780 of the applicant.
  • each vibrating element each mass element and / or each anchor part can be assimilated together as a single element or vibrating arm of the regulating organ.
  • the vibrating elements 31 ' have a different shape with an intermediate section bent in the other direction, which makes it possible to stiffen the blades (the lifts of the anchor part are not visible in FIG. this figure).
  • the members of the anchor portion (4, 4 ') adapted to cooperate with the teeth of the escape wheel can take different forms, just like the teeth of the escape wheel.
  • Figure 15 shows another embodiment of the regulating member 1 in which the mass element 32 allow the anchor portion 4, 40 to rotate about a single axis.
  • the mass element 32 comprises two elements 32 'extending generally in the same plane P in an arc of a circle with respect to a center 12.
  • the escape wheel 5 is disposed in the interior space 11 delimited by these mass arms 32 ', each carrying a tooth 4 of the anchor part 4.
  • the escapement wheel 5 is pivotally mounted around the center 12 so that a toothing (not shown) of the escape wheel 5 comes into effect. cooperation with the teeth 40.
  • the escape wheel 5 is in the same plane P as the wheel
  • Vibrating elements 31 are arranged in a star (here three vibrating elements 31 angularly spaced by about 120 °) and fixed at a proximal end of a base 2 having the shape of a circular arc.
  • the distal end of the vibrating elements 31 is attached to the mass element 32 via a foot 9. In operation, the oscillation of the vibrating elements 31 gives a
  • FIG. 16 represents another configuration of the regulating organ 1 in which the vibrating oscillator 3 comprises a mass element 32, the vibrating oscillator 3 constituting the time base of the regulating member 1.
  • the mass element 32 includes the anchor portion 4 and the members 40 configured to cooperate
  • the vibrating oscillator 3 is formed of three vibrating elements 31 extending radially from a center 12 in a plane P.
  • the vibrating elements 31 are angularly spaced about 120 ° from each other. other.
  • Each of the vibrating elements 31 is fixed at its proximal end (near the center 12) to a base 2 intended to be mounted on a plate or any other fixed part of a clockwork movement or on an intermediate frame mounted itself on said movement watchmaker.
  • the distal end 35 of each of the vibrating elements 31 is fixed to the mass element 32.
  • Each of the vibrating elements 31 can therefore vibrate or oscillate freely between its distal and proximal end.
  • mounting means 20 may be provided in the base 2 so as to fix the base 2 to a frame 10.
  • the frame 10 may comprise a cage as shown in Figure 12.
  • the frame 10 is intended to be mounted fixed or mobile on a watch movement (not shown).
  • the base 2 is mounted directly on the watch movement, for example on a plate or a bridge.
  • the frame 10 has the advantage of facilitating assembly, disassembly, adjustment and dedicated operations within the framework of the after-sales service of the oscillator 1.
  • the frame 10 can take the form of a cage (as in Figure 1) or a capsule.
  • the frame 10 can be mounted and adjusted on a part of the movement, for example the plate, in order to cooperate with the gear which it regulates.
  • the escape wheel is an escape wheel 5 pivotally mounted around a shaft 54, itself mounted in a bridge 21 fixed with the base 2.
  • the bridge may comprise an upper bridge 21 and a lower bridge 21 '.
  • FIG. 17 schematically illustrates various vibrating elements 31.
  • the vibrating elements 31 may be constituted so as to limit the stresses, in particular at their ends (proximal and distal). This can be done using distributed load beams (Figure 17b), multi-leaf vibrating elements ( Figures 17a and 17d), or by modifying the local section of a beam by making local openings (Figure 17b). 17e), holes for example. It is also possible to lengthen the active blade length without increasing the length of the vibrating element by producing "serpentine" type structures (FIG. 17c), which make it possible to reduce the loads in a very significant manner. Finally, it is possible to reduce the risk of breaks in the recesses by softening the sharp angles, which generally represent primers of rupture or fatigue.
  • a mass resonator M (expressed in g) and comprising several vibrating elements 31 formed of simple beams of stiffness k (expressed in mN.m / rad) and characterized by a height h and a thickness e
  • a ratio k / M between 0.1 and 1.0 and a ratio w / e between 3 and 20 give particularly satisfactory results.
  • a characteristic of the various configurations described above is that the mass element 32 is supported only by the base 2 via the vibrating element 31. In this way, the friction is considerably reduced. it is found in the case of a regulating member of the spiral balance type.
  • the regulating member of the present invention also has a novel aesthetic and can be advantageously incorporated in a watch movement of a watch in a manner to make them visible to the wearer of the watch.
  • the regulating member may be mounted above or below the motor member of the movement.
  • the escape wheel 5 may be adapted to rotate at a speed of one revolution per minute.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Handcart (AREA)

Abstract

Organe réglant (1) pour un mouvement horloger mécanique comprenant une roue d'échappement (5) et un oscillateur vibrant (3) muni d'au moins deux bras vibrants (31', 32') et une partie ancre (4, 4') solidaire desdits bras vibrants et comprenant deux organes (40) arrangés de manière à coopérer directement avec les dents de la roue d'échappement (5), de sorte à entretenir des alternances périodiques de l'oscillateur vibrant (3) et à faire avancer la roue d'échappement (5) à chaque alternance des oscillations.

Description

Organe réglant pour un mouvement horloger mécanique
Domaine technique
[0001] La présente invention concerne un organe réglant, ou oscillateur, pour un mouvement horloger mécanique comprenant une roue d'échappement et un oscillateur vibrant, autrement dit un résonateur, incluant au moins deux organes ou bras vibrants, par exemple une lame de type diapason, et une partie ancre destinée à coopérer avec la roue d'échappement. La présente invention concerne également un mouvement horloger comprenant un tel organe réglant. Cet organe réglant est destiné à remplacer un organe réglant conventionnel comprenant généralement un balancier-spiral et l'échappement associé.
Etat de la technique [0002] Dans un mouvement d'horlogerie, l'échappement a pour fonction de transmettre l'énergie reçue par le rouage, lui-même entraîné par le ressort-moteur, à l'organe réglant constitué par l'ensemble balancier-spiral. Cet échappement comprend généralement une ancre indépendante oscillant autour d'un axe pivoté dans la platine. La liaison mécanique entre l'ancre et le résonateur, constituée par le plateau portant la cheville qui vient buter contre chacune des cornes de l'ancre, est relativement compliquée. En outre, l'ensemble balancier-spiral nécessite un réglage délicat. Enfin, de tels résonateurs sont généralement limités à des fréquences d'oscillation de 10Hz au plus.
[0003] Le document CH1685665 décrit un dispositif d'échappement comprenant une ancre solidaire d'un organe vibrant où l'ancre est disposée de telle manière qu'elle oscille perpendiculairement au plan de la roue d'échappement. L'ancre est fixée par encastrement ou par soudage, à l'extrémité d'une lame vibrante encastrée par son extrémité dans un support rigide. Un diapason ou un résonateur dérivé du diapason peut être utilisé au lieu de la lame vibrante, l'une des branches portant l'ancre et l'autre branche oscillant librement tout en se synchronisant avec la première branche. [0004] Le document CH442153 décrit un échappement comprenant un diapason, jouant le rôle d'un résonateur primaire, et une lame vibrante, jouant le rôle d'un résonateur secondaire, à l'extrémité de laquelle est fixée une ancre pourvue de deux levées diamétralement opposées par rapport au centre de la roue d'échappement. Sous l'effet du choc d'une dent de la roue d'échappement contre l'une des levées, la lame oscillante oscille, l'amplitude de son oscillation permettant à l'ancre de venir frapper légèrement l'extrémité d'une des branches du diapason qui oscille à son tour à sa fréquence propre.
[0005] Le document EP2574994 décrit un résonateur mécanique comprenant un oscillateur de type diapason coopérant avec une ancre montée mobile en rotation et dont les positions angulaires permettent de verrouiller et déverrouiller une roue d'échappement. Ce résonateur présente l'inconvénient que les ébats nécessaires au fonctionnement dit libre entre les organes montés sur la branche du diapason et les organes, en l'occurrence une fourchette, de l'ancre résultent en des phases de pertes à chaque alternance de l'oscillateur. Ces phases sont connues dans le domaine horloger sous le terme de chemin perdu. D'autre part, le nombre de pièces et leur réglage rend la mise en œuvre de ce système très délicate.
Bref résumé de l'invention
[0006] La présente invention concerne un organe réglant pour un mouvement horloger mécanique comprenant une roue d'échappement et un oscillateur vibrant muni d'au moins deux bras vibrants et une partie ancre solidaire desdits bras vibrants et comprenant au moins deux organes arrangés de manière à coopérer de façon alternée avec les dents de la roue d'échappement, de sorte à entretenir des alternances périodiques de l'oscillateur vibrant et à faire avancer la roue
d'échappement à chaque alternance des oscillations. [0007] De préférence, les bras et la partie ancre sont formées en une seule pièce. Selon une forme d'exécution, l'organe réglant peut être réalisé à partir d'un procédé ou d'une combinaison de procédés de microfabrication soustractive et/ou additive, à partir d'un seul substrat d'un matériau amagnétique ou de matériaux dont la combinaison sera amagnétique. Les matériaux choisis peuvent être de type métalliques ou non métalliques, ou une combinaison des deux. Les matériaux amagnétiques métalliques peuvent comprendre des matériaux au moins partiellement métalliques tels que des alliages métalliques, des composites comprenant au moins un métal ainsi que des alliages métalliques au moins partiellement amorphes. [0008] Les matériaux amagnétiques non métalliques appropriés peuvent comprendre les verres (dont le quartz), les céramiques, les vitrocéramiques et les métalloïdes, comme par exemple le silicium, qui pourra être usiné à partir d'un wafer et d'un procédé de microfabrication approprié, comme par exemple le DRIE.
[0009] Cette solution présente notamment l'avantage par rapport à l'art antérieur d'avoir un faible encombrement et de nécessiter un nombre de pièces inférieur à celui normalement requis dans un assortiment conventionnel ou dans un organe réglant de type diapason.
[0010] De plus, la fréquence d'oscillation élevée de cette solution permet d'avoir une meilleure stabilité et précision de la marche de l'organe oscillant au porter, et permet un plus grand facteur de qualité Q., tout en réduisant les besoins de réglage.
Brève description des figures
[0011 ] Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles:
la figure 1 représente une vue de dessus d'un oscillateur vibrant, selon un mode de réalisation;
la figure 2 représente une vue de dessus de l'oscillateur vibrant en coopération avec une roue d'échappement, selon un mode de réalisation;
Les figures 3a à 3d illustrent l'oscillation de l'oscillateur vibrant de la figure 1 selon un premier mode d'oscillation fondamental (figure 3a), un second mode (3b), un troisième mode (figure 3c) et un quatrième mode (figure 3d), selon un mode de réalisation; la figure 4 montre une vue en perspective de l'oscillateur vibrant comprenant des masselottes, selon un mode de réalisation;
la figure 5 illustre une vue de côté de l'oscillateur vibrant comprenant des masselottes, selon un autre mode de réalisation;
la figure 6 montre l'oscillateur vibrant comprenant des butées, selon un mode de réalisation;
la figure 7 montre une vue en perspective de l'organe réglant, comportant un second oscillateur, selon un autre mode de réalisation;
la figure 8 montre une vue en perspective de l'oscillateur vibrant, selon encore un autre mode de réalisation;
la figure 9 représente une vue de détail des dents de la roue
d'échappement coopérant avec des organes d'une partie ancre de l'oscillateur vibrant, selon un mode de réalisation;
la figure 10 illustre l'organe réglant comportant un mécanisme marche/arrêt, selon un mode de réalisation;
la figure 11 montre une variante de l'organe réglant comportant un second oscillateur;
la figure 12 montre une autre variante de l'oscillateur vibrant comportant une pluralité d'éléments détachables;
la figure 13 représente une vue de dessus de l'oscillateur vibrant, selon une autre variante exemplaire;
la figure 14 représente une vue schématique d'une autre variante de l'organe vibrant;
La figure 15 représente l'organe réglant, selon un autre mode de réalisation;
La figure 16 représente l'organe réglant, encore selon un autre mode de réalisation;
la figure 17 illustre schématiquement des éléments vibrants, selon divers mode de réalisation. Exemple(s) de mode de réalisation de l'invention
[0012] Selon l'invention, l'organe réglant comprend une roue d'échappement et un oscillateur vibrant (ou résonateur), comportant au moins deux bras vibrants, qui est couplé en une seule pièce avec une partie ancre. Notamment chaque bras vibrant de l'oscillateur vibrant porte un organe, tel qu'une levée, autrement dit une palette, adapté pour coopérer avec les dents de la roue d'échappement. La roue
d'échappement peut alors être avantageusement disposée entre les bras vibrants et partie ancre l'oscillateur vibrant.
[0013] Les figures 1 et 2 représentent une vue de dessus d'un organe réglant 1 selon un mode de réalisation privilégié de l'invention. Ici, l'organe réglant 1 comprend une roue d'échappement 5 et un oscillateur vibrant 3 incluant deux bras comprenant chacun un élément vibrant 31', tel qu'une lame vibrante, et un élément massique 32. Dans ce mode de réalisation, les éléments vibrants 3 de chaque bras font partie d'un seul élément vibrant 31 formant un diapason, et l'organe réglant 1 comprend également une base 2 destinée à être montée sur une platine ou toute autre partie fixe d'un mouvement horloger, ou encore sur un bâti intermédiaire (non représenté) monté lui-même sur ledit mouvement horloger, et sur laquelle l'élément vibrant 31 est fixé au voisinage de son point nodal, par l'intermédiaire d'un pied 9 de rigidité limitée pour permettre un mode de fonctionnement de type diapason (c'est-à-dire que le pied peut également vibrer). Dans l'exemple illustré aux figures 1 et 2, chacun des éléments vibrants 31' a une extrémité distale 36. L'élément massique 32 comprend ici deux éléments massiques 32' séparés, chacun s'étendant à partir de l'extrémité distale 36 d'un des éléments 31'. Avantageusement, la fréquence de l'organe réglant 1 peut être contrôlée en variant la taille de l'élément vibrant 31 et/ou la taille de l'élément massique 32. Ici, par élément massique 32 on entend un élément nettement plus massique et plus rigide que l'élément vibrant 31. Autrement dit, c'est l'élément massique 32 qui constitue principalement l'inertie de l'oscillateur vibrant 3.
[0014] La partie ancre 4 de l'organe réglant 1 comprend dans ce mode de réalisation deux parties ancre 4', chacune des parties ancre 4' s'étendant de l'élément massique 32' près de l'extrémité distale 36 d'un des bras 31'. Chacune des parties ancre 4' comprend un organe, ici en forme de levée 40, adapté pour coopérer avec les dents 50 de la roue d'échappement 5. De préférence, la base 2, les bras 31', les éléments massiques 32' et les parties ancre 4' s'étendent généralement dans un même plan de référence P, en arc de cercle par rapport à un centre 12. Des moyens de montage 20 peuvent être pratiqués dans la base 2 de manière à fixer la base 2 au bâti recevant l'organe réglant 1 par vissage 21. La base 2 peut cependant être fixée par tout autre moyen approprié.
[0015] Pour la suite de la description on adoptera à titre non limitatif des orientations transversale "x" et longitudinale "y", définissant le plan de référence P dans lequel s'étend l'organe réglant 1, ainsi qu'un axe "z" perpendiculaire aux orientations longitudinale et transversale. Dans la figure 1, les orientations
transversale "x" et longitudinale "y" sont représentés dans la plan de la page et l'axe z sort de la page.
[0016] L'organe réglant 1 est destiné à coopérer avec la roue d'échappement 5 (montrée à la figure 2). De préférence, la roue d'échappement 5 vient se loger dans un espace intérieur 11 délimité par ses bras, voire pas les éléments vibrants 31', les éléments massiques 32' et les parties ancre 4' (ou plus généralement la partie ancre 4). La roue d'échappement 5 est montée pivotante autour du centre 12 de manière à ce qu'une denture 50 de la roue d'échappement 5 vienne en coopération avec les levées 40. Dans cette configuration, les éléments vibrants 31', les éléments massiques 32' et les parties ancre 4' sont dans un même plan de référence P que la roue d'échappement 5 et sont généralement concentriques avec l'axe de pivotement de la roue
d'échappement 5.
[0017] Les éléments vibrants 3 sont susceptibles d'osciller à la manière d'un diapason à partir de leur extrémité fixée à la base 2. Lorsqu'ils oscillent, les éléments vibrants 31' maintiennent les éléments massiques 32' et les parties ancre 4' également en oscillation. En particulier, les éléments 31', les éléments massiques 32' et les parties ancre 4' sont susceptibles d'osciller selon un premier mode d'oscillation fondamental, tel qu'illustré à la figure 3a (les déplacements montrés aux figures 3a à 3d ne sont pas à l'échelle). Dans le premier mode d'oscillation, les deux éléments 31', les éléments massiques 32' et les parties ancre 4' oscillent dans le plan de référence P de façon asymétrique. Autrement dit, les éléments 31', les éléments massiques 32' et les parties ancre 4' se déplacent ensemble, dans un mouvement de va-et-vient dans le même sens dans le plan de référence P. Dans la figure 3a, le mouvement des éléments 31', éléments massiques 32' et parties ancre 4' est indiqué par les flèches et leur déplacement est comparé à leur position au repos par les trais de contour. [0018] Lorsque l'organe réglant 1 coopère avec la roue d'échappement 5 et oscille dans le premier mode d'oscillation, les parties ancre 4' oscillent et les levées 40 reçoivent de façon alternée des impulsions des dents de la roue d'échappement 5, de manière à alternativement verrouiller et libérer la roue d'échappement 5 et à entretenir les oscillations périodiques de l'oscillateur vibrant 3. L'organe réglant 1 permet donc l'échappement successif de deux dents 50 de telle manière que la roue d'échappement 5 avance d'une dent dans un mouvement de va-et-vient des parties ancre 4', autrement dit par alternance.
[0019] Les figures 14a et 14 b représentent l'organe réglant 1 selon un autre mode d'exécution dans lequel l'organe réglant 1 comprend un élément vibrant formé de deux lames 31 fixé à une base 2 à leur extrémité proximale. Chacune des deux lames 31 porte, à leur extrémité distale, un bras massique 32 comprenant une dent 40 d'une partie ancre 4. Une roue d'échappement 5 est placée entre les deux bras massique 32 de manière à coopérer avec les dents 40. Les éléments vibrants 31 oscillent à partir de leur extrémité proximale, entraînant en translation dans un mouvement de va-et-vient les deux bras massique 32'. En particulier, les dents 40 reçoivent de façon alternée des impulsions des dents 50 de la roue d'échappement 5, de manière à alternativement verrouiller et libérer la roue d'échappement 5 et à entretenir les oscillations périodiques de l'oscillateur vibrant 3.
[0020] Il est possible d'équiper chaque partie ancre 4 de plus d'un organe 40 de sorte que la roue d'échappement 5 avance à une vitesse différente qu'une dent par alternance, comme l'illustré à la figure 14. Par exemple, en équipant chaque partie ancre 4 de deux organes 40 au lieu d'un, et en les répartissant de telle manière qu'un seul organe 40 sur les quatre (répartis sur deux parties d'ancre 4) coopère avec une dent 50 de la roue d'échappement 5 à chaque oscillation, nous obtenons dans une telle configuration une avance d'une demi-dent par alternance, soit une avance d'une dent pour deux alternances. [0021 ] De la même manière, la fréquence de rotation peut encore être diminuée par l'adjonction de plus de deux organes 40 par partie ancre 4. Dans une telle configuration, il est aussi aisé de modifier les fonctions des organes 40, de sorte que certains participent uniquement au dégagement de la roue 5 tandis que d'autre participent au dégagement et à l'impulsion, soit l'entretien du résonateur, obtenant ainsi un échappement dit à coups perdus, dont le rendement est généralement supérieur, comme c'est le cas des échappements à détente.
[0022] Il est aussi évident que de telles variantes d'échappement pourraient tout aussi bien s'appliquer, avec les adaptations nécessaires, à tout autre type
d'échappement que celui-ci, comme par exemple et sans être limitatif, à des échappements à ancre, à détente, à cylindre ou de type tangentiel ou des
échappements sans contact, comme des échappements magnétiques.
[0023] Dans la configuration des figures 1 et 2, les bras oscillants formés par les éléments vibrants 31' et les éléments massiques 32', jouent le rôle d'un organe de régulation, et les bras d'ancre 4' avec les levées 40 et la roue 5 jouent le rôle d'un organe d'échappement, dans un mouvement horloger conventionnel.
[0024] Dans un mode de réalisation, l'organe réglant 1 comprenant la lame vibrante 31, l'élément massique 32 et l'ancre 4 est fabriqué en une seule pièce. Par exemple, l'organe réglant 1 peut être réalisé dans un même matériau, de préférence un matériau amagnétique. Ce matériau pourra être de type non métallique tel qu'issu du groupe comprenant les métalloïdes (notamment le silicium), les verres (notamment le quartz), le borosilicate, le fused silica), les céramiques ou encore les vitro- céramiques. Le matériau pourra aussi être un matériau au moins partiellement métallique, ou comprendre un métal ou un alliage métallique cristallin ou amorphe, des composites comprenant au moins un élément métallique ou tout autre matériau adapté à un usinage de précision. L'organe réglant 1 peut être fabriqué par un procédé de microfabrication (méthode additive ou soustractive), avantageusement à partir d'un seul substrat, comme par exemple un seul wafer dans le cas du silicium (monocristallin, polycristallin ou amorphe). La roue d'échappement 5 peut également être fabriquée dans le même matériau que l'organe oscillant, possiblement sur le même wafer. [0025] La fréquence du premier mode d'oscillation de l'organe réglant 1 ainsi que la durée dans le temps de l'oscillation (ou taux d'amortissement de l'oscillation) peuvent être modifiées en changeant le moment d'inertie des éléments massiques 32'. Un moment d'inertie plus élevé des éléments massiques 32' résulte dans une fréquence d'oscillation plus basse de l'organe réglant 1 et une durée d'oscillation plus longue (amortissement moins rapide des oscillations).
[0026] Dans une variante, les éléments massiques 32' sont arrangés de manière à ce que le centre de gravité de l'ensemble formé par un élément vibrant 31' et un élément massique 32' se trouve sensiblement à l'extrémité distale 36 du bras 31', c'est-à-dire à la jonction entre le bras 31' et l'élément massique 32'.
[0027] La figure 4 montre une vue en perspective de l'organe réglant 1, selon un mode de réalisation dans lequel au moins l'un des deux éléments massiques 32' comporte une masselotte 34. La masselotte 34 permet de modifier le moment d'inertie de l'élément massique 32' sans augmenter sensiblement l'encombrement de l'oscillateur vibrant 3. La masselotte 34 est avantageusement fabriquée dans un matériau ayant une densité supérieure à celui utilisé pour le reste de l'oscillateur vibrant 3 (et donc des éléments massiques 32'). Par exemple, la masselotte 34 peut être fabriquée en or ou en tout autre métal ou alliage dense. La masselotte 34 peut être usinée par une méthode conventionnelle et assemblée, par collage, brasage, bonding, vissage ou goupillage. Il est également possible de faire croître de la matière, par exemple par croissance galvanique, par frittage ou d'autres procédés additifs applicables à des microcomposants, sur une ou plusieurs des faces de l'oscillateur vibrant 3. La figure 5 illustre une vue de côté de l'organe réglant 1, selon une variante dans laquelle la masselotte 34 est fabriquée par l'ajout de matière, par exemple par croissance de matière, à la surface d'au moins un des éléments massiques 32'. Sur la figure 5, la masselotte 34 apparaît comme un revêtement par-dessus l'élément massique 32'. La croissance de matière peut être réalisée sur toute la surface ou une portion de la surface des éléments massiques 32'. La matière ajoutée peut
comprendre l'or, un alliage d'or ou tout autre matériau permettant d'augmenter la densité de l'élément massique 32'. L'ajout de matière peut également être réalisé dans l'épaisseur d'au moins l'une des deux éléments massiques 32'. De manière alternative, l'ajout de matière peut être réalisé avec le même matériau que celui formant les éléments massiques 32' (et le reste de l'organe réglant 1). [0028] De manière plus générale, la fréquence d'oscillation de l'oscillateur vibrant 3 peut être réglée en modifiant l'inertie des éléments massiques 32' et/ou des masselottes 34. En particulier, la fréquence peut être augmentée par ablation de matière sur au moins l'un des éléments massiques et/ou d'au moins une masselotte. L'ablation de matière peut être réalisée par usinage laser, par rupture d'éléments détachables (tel que décrit dans le document CH656044) ou par tout autre procédé approprié. Si des éléments détachables sont utilisés, ils peuvent être réalisés lors de la même opération que l'opération de fabrication de l'organe réglant. La figure 12 illustre l'oscillateur vibrant 3 selon une variante dans laquelle les éléments massiques 32' portent une pluralité d'éléments détachables 37 à chacune de leur extrémités. Chacun des éléments détachables 37 peut être enlevé de l'élément massique 32' par rupture au niveau d'une section réduite 37' de l'élément détachable 37. D'autre part, la fréquence de l'organe réglant peut être réduite en augmentant la longueur des éléments vibrants 31' et/ou des éléments massiques 32' de l'organe réglant, notamment en supprimant un ou plusieurs des éléments 37".
[0029] Dans la figure 12, les éléments 37 ont tous la même taille et la même masse. Selon une variante, pour obtenir un réglage plus fin avec une plage plus grande, on utilise des éléments détachables avec des masses différentes. A titre d'exemple, les éléments détachables peuvent être dimensionnés en cinq masses différents afin de correspondre, respectivement, à une correction de : 1 s/j, 2 s/j, 4 s/j, 8 s/j, et 16 s/j. De cette façon, il est possible à corriger de 1 à 31 s/j en détachant une combinaison d'éléments appropriés.
[0030] L'organe réglant 1 peut également osciller selon d'autres modes
d'oscillations (harmoniques) que le premier mode d'oscillation décrit ci-dessus. Par exemple, la figure 3b illustre l'oscillateur vibrant 3 oscillant dans un second mode d'oscillation, dans lequel les éléments vibrants 31', les éléments massiques 32' et les parties ancre 4' oscillent dans le plan de référence P (selon les orientations
transversale "x" et longitudinale "y") de façon symétrique. Dans le second mode d'oscillation, les éléments vibrants 31', les éléments massiques 32' et les parties ancre 4' se déplacent ensembles, successivement vers le centre 12 et en s'éloignant du centre 12. On comprendra que ce mode d'oscillation n'est pas favorable à la fonction de l'ancre de l'organe réglant 1 puisque les levées 40 se resserrent vers la roue d'échappement 5 et s'en écartent successivement, ne permettant pas la régulation du pivotement de la roue d'échappement 5.
[0031 ] Un troisième et quatrième mode d'oscillation sont illustrés respectivement aux figures 3c et 3d, dans lesquels les deux bras de lame 31', les bras massiques 32' et les bras d'ancre 4' oscillent hors du plan de référence P (selon l'axe "z"). Dans le troisième mode d'oscillation (figure 3c), les éléments vibrants 31', les éléments massiques 32' et les parties ancre 4' oscillent de façon asymétrique de sorte que l'une des levées 40 monte selon l'axe "z" et l'autre levée 40 descend selon l'axe "z". Dans le quatrième mode de d'oscillation (figure 3d), les éléments vibrants 31', les éléments massiques 32' et les parties ancre 4' oscillent symétriquement de sorte que les deux levées 40 montent et descendent ensembles, selon l'axe "z".
[0032] La fréquence d'oscillation des différents modes d'oscillation dépend de la géométrie de l'oscillateur vibrant 3 et, comme discuté ci-dessus, peut être ajustée en modifiant le moment d'inertie de l'élément massique 32. Les oscillations périodiques correspondant au premier mode d'oscillation où l'oscillateur vibrant 3 oscille dans le plan de référence peuvent avoir une fréquence allant de 10 Hz environ à 5Ό00 Hz, mais de préférence sont entre 10 Hz à 400 Hz, ou encore entre 60 Hz et 5Ό00 Hz, ou encore entre 60 Hz et 200 Hz. Dans un mode de réalisation, le moment d'inertie de l'élément massique 32 est modifié de sorte que la fréquence d'oscillation du premier mode d'oscillation est d'environ 100 Hz, la fréquence d'oscillation du second mode d'oscillation est d'environ 128 Hz, et la fréquence d'oscillation du troisième et quatrième mode d'oscillation est d'environ 183.5 Hz et 205.8 Hz, respectivement. A une fréquence de 100 Hz, le temps d'une phase de repos de l'organe réglant 1 est d'environ 1 ms, et le temps d'une phase d'impulsion est d'un peu plus de 1 ms.
L'organe réglant 1 est donc très peu perturbé par les frottements ou chocs lors des contacts entre les levées 40 avec les dents 50 de la roue d'échappement 5.
[0033] Dans un mode de réalisation illustré à la figure 10, l'organe réglant 1 comporte un mécanisme marche/arrêt 60 comprenant un levier 61 actionné par la tirette 62 d'un mécanisme de mise à l'heure et configuré pour arrêter et maintenir en arrêt l'organe réglant 1, en arrêtant les éléments vibrants 31' et les éléments massiques 32' de l'oscillateur vibrant 3 dans une position de déséquilibre, correspondant à l'une des deux positions extrêmes de l'oscillateur vibrant 3 en mode de fonctionnement normal (voire une position excentrée par rapport à la roue d'échappement 5) de façon à assurer une fonction d'auto-démarrage d'un mouvement horloger. De façon préférée, l'organe réglant 1 est mis en marche dans le premier mode d'oscillation. La vibration de l'organe réglant dans l'une ou l'autre des second, troisième et quatrième modes d'oscillation peut être empêchée en bloquant la vibration de ces modes par des butées ou par d'autres moyens. Par exemple, la figure 6 montre l'organe réglant 1 comprenant des butées 6, selon une forme d'exécution dans laquelle chacune des butées 6 est formée solidaire avec l'un des éléments massiques 32' dans la plan P de manière à venir en butée l'une contre l'autre lorsque l'organe réglant 1 oscille de manière symétrique. Les butées 6 empêchent donc l'oscillateur vibrant 3d'osciller selon le second mode d'oscillation. De façon similaire, des butées (non représentées) peuvent également être configurées de manière à empêcher le mouvement de l'oscillateur vibrant 3 selon l'axe "z", ou encore selon les axes "x", "y" et "z" en cas de choc.
[0034] Encore selon une autre forme d'exécution, l'organe réglant 1 comporte un mécanisme de réglage du point de repère. Dans l'exemple des figures 1 et 2, le mécanisme de réglage prend la forme d'une fourchette de réglage 8 solidaire de la base 2 et arrangée pour coopérer sans jeu avec un excentrique de réglage 80 (voir figure 2) pivotant dans la platine (ou de tout autre partie fixe du mouvement ou du bâti dans lequel l'organe réglant est monté). L'excentrique de réglage 80 est configuré pour se déplacer dans le plan de référence P de manière à entraîner, par
l'intermédiaire de la fourchette de réglage 8, l'oscillateur vibrant 3 en rotation autour d'un point de pivotement montré par le numéro 22 sur les figures 1, 2 et 8. Selon la direction du déplacement de l'excentrique de réglage 80, l'oscillateur vibrant 3 peut être entraîné en rotation dans le sens horaire ou antihoraire de manière à régler la pénétration des levées 40 par rapport aux dents 50 de la roue d'échappement 5.
L'amplitude de réglage peut, par exemple, être de l'ordre d'environ ±120 μιη. La fourchette de réglage 8 peut être suffisamment flexible de sorte à absorber d'éventuels jeux entre la fourchette de réglage 8 et l'excentrique de réglage 80, et assurer ainsi un entraînement immédiat de l'oscillateur vibrant 3 dans les deux sens de rotation. [0035] Dans une autre variante de la forme d'exécution, la base 2 comprend des butées permettant de limiter le mouvement transversal dans le plan de référence P (voir les éléments 6' dans la variante de la figure 8). De telles butées peuvent être orientées sur un axe perpendiculaire au plan de la roue d'échappement [0036] L'oscillation de l'oscillateur vibrant 3 peut être perturbée par l'impulsion des dents 50 de la roue d'échappement sur ses levées 40. Dans un mode de réalisation illustré à la figure 7, l'organe réglant 1 comporte un second oscillateur 7 arrangé pour osciller librement, c'est-à-dire, sans être perturbé par les levées 40. Le second oscillateur 7 peut être accouplé à l'oscillation de l'organe réglant 1 par résonance sympathique. Le second oscillateur 7 permet ainsi de réduire les perturbations dues aux chocs des dents 50 sur les levées 40.
[0037] La transmission et l'accouplage des vibrations entre l'oscillateur vibrant 3 qui coopère avec la roue d'échappement 5, et le second oscillateur 7 peut se faire par l'intermédiaire de matériaux de support (résonance mécanique), d'un fluide ambiant (résonance acoustique) ou par couplage magnétique. Dans le cas d'un couplage par l'intermédiaire d'un fluide ambiant, la surface de l'oscillateur vibrant 3 peut être modifiée (par exemple par nano structuration) de manière à augmenter la pression d'ondes déplacées et ainsi favoriser la qualité de la synchronisation. De façon alternative, ou en combinaison, la géométrie de l'organe réglant 1 peut être modifiée Dans le cas d'un couplage magnétique, le second oscillateur libre 7 peut être monté sous une atmosphère contrôlé, par exemple dans une capsule magnétiquement perméable (non représentée), de manière à améliorer le facteur de qualité de l'organe réglant 1. De manière générale, le second oscillateur 7 contribue à l'amélioration du facteur de qualité de l'organe réglant 1. [0038] Une autre variante d'un tel double oscillateur est également illustrée à la figure 11. Ici le second résonateur 7 comprend un second élément vibrant 71 divisé lui aussi en deux éléments ou bras vibrants 71' et un second élément massique 72 divisé lui aussi en deux éléments massiques 72' de façon à donner une configuration équilibré quasiment en forme de « H » à l'organe réglant 1. [0039] Il va de soi que la présente invention n'est pas limitée au mode de réalisation qui vient d'être décrit et que diverses modifications et variantes simples peuvent être envisagées par l'homme de métier sans sortir du cadre de la présente invention. [0040] La figure 8 représente l'organe réglant 1 selon une autre une forme d'exécution dans laquelle la base 2 est arrangé dans l'espace intérieur 11 de l'oscillateur vibrant 3, mais dans un plan inférieur en-dessous de la roue
d'échappement 5. La configuration de l'oscillateur vibrant 3 de la figure 8 est plus compacte. Dans cette configuration, la base 2 peut comprendre des butées 6' qui empêchent les mouvements transversaux des bras d'ancre 4' dans le plan de référence P.
[0041 ] Les figures 9a et 9b représentent une vue de détail des dents 50 de la roue d'échappement 5, selon un mode de réalisation. Chacune des dents 50 de la roue d'échappement 5 comprend un plan d'impulsion 51 et un plan de repos 52 inclinés. Chacune des levées 40 comprend également un plan de repos 41 incliné mais ne comprend pas de plan d'impulsion, le sommet 42 de la levée 40 ayant plutôt une forme de pointe. La configuration des dents 50 de la roue d'échappement 5 et des levées 40 dans ce mode de réalisation permet aux levées 40 de recevoir les impulsions des dents 50, et d'entretenir les oscillations de l'oscillateur vibrant 3 tout en faisant avancer la roue d'échappement 5 dans un sens ou dans l'autre. Autrement dit, l'organe réglant 1 peut fonctionner quel que soit le sens de rotation de la roue d'échappement 5. La figure 9a montre une levée 40 en prise avec le plan d'impulsion 51 d'une dent 50 pendant la phase d'impulsion, tandis que la figure 9b montre une levée 40 en prise avec le plan de repos 52 d'une dent 50 pendant la phase de repos. [0042] De manière à limiter de possibles rebonds des levées 40 lors de l'impulsion sur les dents 50 de la roue d'échappement 5, cette dernière peut être pourvue de bras 53 élastiques (figure 2) de manière à absorber les chocs des levées 40 sur les dents 50.
[0043] L'organe réglant 1 peut comprendre des moyens de compensation thermique incluant des revêtements compensateurs, des matières à coefficient thermoélastiques nuls, et autres moyens analogues à ceux utilisés sur les balanciers, par exemple des structures bimétalliques, ou autres. Par exemple, si l'oscillateur vibrant 3 est fabriqué en silicium, il peut comprendre un revêtement en dioxyde de silicium déposé sur au moins une partie de sa surface. Alternativement, les moyens de compensation thermique d'un oscillateur vibrant en silicium peuvent être un des moyens décrits dans le document CH699780 de la demanderesse.
[0044] La géométrie de l'oscillateur vibrant 3 et notamment de ses éléments vibrants peut être modifiée de différentes manières. Par exemple, selon une variante chaque élément vibrant, chaque élément massique et/ou chaque partie ancre peuvent être assimilés ensemble comme un seul élément ou bras vibrant de l'organe réglant. Selon une autre variante exemplaire illustrée à la figure 13, les éléments vibrants 31' ont une forme différente avec une section intermédiaire courbée dans l'autre sens, ce qui permet de rigidifier les lames (les levées de la partie ancre ne sont pas visibles dans cette figure).
[0045] Par ailleurs, les organes de la partie ancre (4, 4') adaptés pour coopérer avec les dents de la roue d'échappement peuvent prendre différentes formes, tout comme les dents de la roue d'échappement.
[0046] La figure 15 représente une autre mode d'exécution de l'organe réglant 1 dans lequel l'élément massique 32 permettent à la partie ancre 4, 40 une rotation autour d'un seul axe. En particulier, l'élément massique 32 comporte deux éléments 32' s'étendant généralement dans un même plan P en arc de cercle par rapport à un centre 12. La roue d'échappement 5 est disposée dans l'espace intérieur 11 délimité par ces bras massiques 32', chacun portant une dent 4 de la partie ancre 4. Le mobile d'échappement 5 est monté pivotant autour du centre 12 de manière à ce qu'une denture (non représentée) de la roue d'échappement 5 vienne en coopération avec les dents 40. La roue d'échappement 5 est dans le même plan P que la roue
d'échappement 5, cette dernière étant concentrique avec un cercle inscrit par les bras massique 32'. Des éléments vibrants 31 (des lames ou autres) sont disposées en étoile (ici trois élément vibrants 31 angulairement espacées d'environ 120°) et fixés à une extrémité proximale d'une base 2 ayant la forme d'un arc de cercle. L'extrémité distale des éléments vibrants 31 est fixée à l'élément massique 32 par l'intermédiaire d'un pied 9. En fonctionnement, l'oscillation des éléments vibrants 31 donne un
mouvement d'oscillation dans le plan P comme indiqué par la flèche 90 dans la figue 2.
[0047] La figure 16 représente une autre configuration de l'organe réglant 1 dans lequel l'oscillateur vibrant 3 comprend un élément massique 32, l'oscillateur vibrant 3 constituant la base de temps de l'organe réglant 1. L'élément massique 32 comprend la partie ancre 4 ainsi que les organes 40 configurés de manière à coopérer
directement avec le mobile d'échappement 5 de sorte à entretenir des oscillations du premier résonateur 3 et à faire osciller le mobile d'échappement 5 à chaque alternance des oscillations. En particulier, dans cet exemple, l'oscillateur vibrant 3 est formé de trois éléments vibrants 31 s'étendant radialement à partir d'un centre 12 dans un plan P. Les éléments vibrants 31 sont espacés angulairement d'environ 120° les uns des autres. Chacun des éléments vibrants 31 est fixé à son extrémité proximale (proche du centre 12) à une base 2 destinée à être montée sur une platine ou toute autre partie fixe d'un mouvement horloger ou sur un bâti intermédiaire monté lui-même sur ledit mouvement horloger. L'extrémité distale 35 de chacun des éléments vibrants 31 est fixée à l'élément massique 32. Chacun des éléments vibrants 31 peut donc vibrer, ou osciller, librement entre son extrémité distale et proximale.
[0048] Selon une forme d'exécution, des moyens de montage 20 peuvent être prévus dans la base 2 de manière à fixer la base 2 à un bâti 10. Le bâti 10 peut comprendre une cage comme illustré à la figure 12. Le bâti 10 est destiné à être monté fixe ou mobile sur un mouvement horloger (non représenté). Alternativement, la base 2 est montée directement sur le mouvement horloger, par exemple sur une platine ou un pont.
[0049] Le bâti 10 à l'avantage de faciliter le montage, le démontage, le réglage ainsi que les opérations dédiées dans le cadre du service après-vente de l'oscillateur 1. Le bâti 10 peut prendre la forme d'une cage (comme dans la figure 1) ou d'une capsule. Le bâti 10 peut être monté et réglé sur une partie du mouvement, par exemple la platine, afin de coopérer avec le rouage dont il assure la régulation.
Toujours selon la forme d'exécution montrée à la figure 1, le mobile d'échappement est une roue d'échappement 5 montée pivotante autour d'un arbre 54, lui-même monté dans un pont 21 fixe avec la base 2. Le pont peut comprendre un pont supérieur 21 et un pont inférieur 21'.
[0050] La figure 17 illustre schématiquement différents éléments vibrants 31. Les éléments vibrants 31 peuvent être constitués de manière à limiter les contraintes, notamment à leurs extrémités (proximale et distale). On pourra pour ceci faire appel à des poutres à charges réparties (figure 17b), à des éléments vibrants multi-lames (figures 17a et 17d), ou encore en modifiant la section locale d'une poutre en procédant à des ouvertures locales (figure 17e), des perçages par exemple. On peut encore allonger la longueur active de lame sans augmenter la longueur de l'élément vibrant en réalisant des structures de type « serpentin » (figure 17c), qui permettent de réduire les charges de manière très significative. Enfin, on peut diminuer les risques de ruptures aux encastrements en adoucissant les angles vifs, qui représentent en général des amorces de rupture ou de fatigue.
[0051] D'autre part, nous connaissons des phénomènes vibratoires l'existence de nœuds le long des structures vibrantes et dont l'espacement est une fonction directe de la fréquence de résonance. Nous pouvons ainsi faire varier la section le long de la lame (figure 17b) de sorte à favoriser certaines fréquences et/ou éloigner les harmoniques et ainsi maximiser l'énergie et le facteur de qualité du résonateur. Il est évident qu'une combinaison de plusieurs des moyens cités précédemment pourra aussi être envisagée afin d'en combiner les avantages.
[0052] A titre illustratif, mais sans être limitatif, dans le cas d'un résonateur de masse M (exprimée en g) et comportant plusieurs éléments vibrants 31 formés de poutres simples de raideur k (exprimée en mN.m/rad) et caractérisés par une hauteur h et une épaisseur e, un rapport k/M compris entre 0.1 et 1.0 et un rapport h/e compris entre 3 et 20 donnent des résultats particulièrement satisfaisants.
[0053] Une caractéristique des différentes configurations décrites ci-dessus est que l'élément massique 32 est supporté seulement par la base 2 par l'intermédiaire de l'élément vibrant 31. De la sorte, on diminue de manière importante les frottements que l'on retrouve dans le cas d'un organe réglant de type balancier spiral. [0054] L'organe réglant de la présente invention possède également une esthétique inédite et il peut être avantageusement incorporé dans un mouvement horloger d'une montre d'une manière permettant de les rendre visibles au porteur de la montre. A titre d'exemple, l'organe réglant peut être monté en dessus ou en dessous de l'organe moteur du mouvement. Pour donner également une indication des secondes, la roue d'échappement 5 peut être adaptée afin qu'elle tourne à une vitesse d'un tour par minute.
Numéros de référence employés sur les figures
1 organe réglant
11 espace intérieur
12 centre
2 base
21 is
22 point de pivotement
3 oscillateur vibrant
31 élément vibrant
31' bras
32 élément massique
32' élément massique
34 masselotte
35 masselotte
36 extrémité distale d'un bras de lame
37 élément détachable
37' section réduite de élément détachable
4 partie ancre
4' partie ancre
40 organe ou levée
41 plan de repos de la levée
42 sommet de la dent
5 roue d'échappement
50 dent de la roue d'échappement
51 plan d'impulsion de la dent
52 plan de repos de la dent
53 bras de la roue d'échappement
6 butée
6' butée
60 mécanisme marche/arrêt
61 levier
62 tirette
7 second oscillateur
71 second élément vibrant
71' second élément vibrant
72 second élément massique
72' second élément massique
8 fourchette de réglage
80 excentrique de réglage
9 pied
P plan de référence

Claims

Revendications
1. Organe réglant (1) pour un mouvement horloger mécanique
comprenant une roue d'échappement (5) et un oscillateur vibrant (3) muni d'au moins deux bras vibrants (31', 32') et une partie ancre (4, 4') solidaire desdits bras vibrants et comprenant des organes (40) arrangés de manière à coopérer directement avec les dents de la roue d'échappement (5), de sorte à entretenir des alternances périodiques de l'oscillateur vibrant (3) et à faire avancer la roue d'échappement (5) à chaque alternance des oscillations.
2. lequel chaque bras vibrant (31, 31') est fixé et supporté uniquement à une base (2) destinée à être montée sur une partie fixe ou mobile du mouvement horloger.
3. L'organe réglant (1) selon la revendication 1 ou 2, dans lequel les au moins deux bras vibrants (31', 32') de l'oscillateur vibrant (3) et la partie ancre (4, 4') sont arrangés généralement concentriquement avec un centre (12) de l'oscillateur vibrant (3) coïncidant avec l'axe de pivotement de la roue d'échappement (5).
4. L'organe réglant (1) selon l'une des revendications 1 à 3, dans lequel les bras vibrants (3 , 32') et la partie ancre (4, 4') sont généralement arrangés dans un même plan de référence (P) que la roue d'échappement.
5. L'organe réglant (1) selon l'une des revendications 1 à 4,
dans lequel lesdites oscillations périodiques correspondent à un premier mode d'oscillation où l'oscillateur vibrant (3) oscille dans le plan de référence (P), de sorte que les organes (40) de la partie ancre (4) se déplacent dans le même sens pour venir successivement en prise avec les dents (50) de la roue d'échappement (5).
6. L'organe réglant (1) selon l'une des revendications 1 à 5,
dans lequel lesdites oscillations périodiques du premier mode d'oscillation ont une fréquence allant de 10 Hz environ à 5Ό00 Hz, de préférence entre 10 Hz à 400 Hz.
7. L'organe réglant (1) selon l'une des revendications 1 à 6,
comprenant en outre une ou plusieurs butées adaptées pour empêcher l'oscillateur vibrant (3) d'osciller dans un autre mode d'oscillation que le premier mode
d'oscillation, et particulièrement d'osciller hors du plan de référence (P).
8. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel chaque bras vibrant (31, 31') est composé d'au moins un barreau, de section continue ou discontinue, constante ou variable, ou la combinaison de plusieurs de ces variantes
9. L'organe réglant (1) selon l'une des revendications précédentes, caractérisé en ce que chacun desdits au moins deux bras vibrants (31', 32') de l'oscillateur vibrant (3) inclut un élément vibrant (3 ) et un élément massique (32'), et en ce que la partie ancre comprend une partie d'ancre (4') sur chaque bras vibrant.
10. L'organe réglant (1) selon la revendication 9,
dans lequel chaque élément vibrant (3 ) a une extrémité distale (36);
et dans lequel chaque élément massique (32') s'étend à partir de l'extrémité distale (36) de l'élément vibrant (3 ) correspondant.
11. L'organe réglant (1) selon la revendication 10,
dans lequel chacune des parties ancre (4') s'étend d'un des éléments massiques (32') près de l'extrémité distale (36) de l'élément vibrant (31') correspondant.
12. L'organe réglant (1) selon la revendication 11,
dans lequel le centre de gravité de l'ensemble formé par un élément vibrant (31') et un élément massique (32') d'un bras se trouve sensiblement à l'extrémité distale (36) de l'élément vibrant (31') correspondant.
13. L'organe réglant (1) selon l'une des revendications 9 à 12,
dans lequel les éléments vibrants (31) font partie d'un seul élément vibrant (31) qui est fixé au voisinage de son point nodal à la base (2).
14. L'organe réglant (1) selon la revendication 13,
dans lequel la base (2) s'étend en arc de cercle par rapport au centre (12). L'organe réglant (1) selon la revendication 12,
dans lequel la base (2) est arrangé dans un espace intérieur (11) délimité par les bras vibrants..
15. L'organe réglant (1) selon la revendication 9, dans lequel les éléments massifs (32') de chaque bras forment un seul élément massif (32).
16. L'organe réglant (1) selon l'une des revendications précédentes, étant réalisé dans un matériau amagnétique.
17. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel l'oscillateur vibrant (3) et/ou la roue d'échappement (5) sont réalisés dans un matériau non métallique comprenant les métalloïdes, les verres, les céramiques et les vitrocéramiques.
18. L'organe réglant (1) selon l'une des revendications 1 à 16, dans lequel l'oscillateur vibrant (3) et/ou la roue d'échappement (5) sont réalisés dans un matériau métallique comprenant les alliages métalliques, les composites comprenant au moins un métal et les métaux au moins partiellement amorphes.
19. L'organe réglant (1) selon l'une des revendications 1 à 17, dans lequel l'oscillateur vibrant (3) et/ou la roue d'échappement (5) sont réalisés par combinaisons de matériaux métalliques et non métalliques.
20. L'organe réglant (1) selon la revendication 16, dans lequel l'oscillateur vibrant (3) est réalisé à partir d'un seul substrat, de préférence un substrat de verre, de céramique, de vitrocéramique ou de silicium, ce dernier étant de préférence choisi sous la forme d'un wafer.
21. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel l'oscillateur vibrant (3) comprend au moins une masselotte (34) solidaire de chaque bras vibrant (3 , 32') de manière à modifier le moment d'inertie de l'organe réglant et/ou réduire son encombrement.
22. L'organe réglant (1) selon la revendication 21,
dans lequel la masselotte (34) est fabriquée dans un matériau ayant une densité supérieure à celui dans lequel sont formés les éléments massiques (32').
23. L'organe réglant (1) selon la revendication précédente, dans lequel la masselotte (34) est obtenue par méthode additive ou soustractive puis assemblée par des moyens adaptés aux matériaux choisis et tolérances requises, de préférence par collage, brasage, soudage, bonding, vissage, sertissage ou encore goupillage.
24. L'organe réglant (1) selon la revendication 21, dans lequel la masselotte
(34) est obtenue par croissance de matière sur le résonateur (3).
25. L'organe réglant (1) selon la revendication 21,
dans lequel la masselotte (34) est fabriqué en une seule pièce avec l'élément vibrant et l'élément massique (31', 32') et dans le même matériau que ceux-ci.
26. L'organe réglant (1) selon l'une des revendications précédentes, comprenant en outre un mécanisme marche/arrêt configuré pour arrêter et maintenir en arrêt l'oscillateur vibrant (3) dans une position de déséquilibre et pour assurer une fonction d'auto-démarrage de l'organe réglant (1).
27. L'organe réglant (1) selon l'une des revendications précédentes, comprenant en outre un mécanisme de réglage du point de repère (8, 80) permettant de régler la pénétration des organes (40) par rapport aux dents (50) de la roue d'échappement (5).
28. L'organe réglant (1) selon la revendication 27,
dans lequel le mécanisme de réglage du point de repère comprend une fourchette de réglage (8) arrangée pour coopérer sans jeu avec un excentrique de réglage (80) de manière à entraîner l'oscillateur vibrant (3) en rotation autour d'un point de pivotement (22).
29. L'organe réglant (1) selon l'une des revendications précédentes, comprenant en outre un second oscillateur (7) accouplé à l'oscillation de l'oscillateur vibrant (3) par résonance sympathique et oscillant à la même fréquence que l'oscillateur vibrant(3) ou à une fréquence différente, de préférence à une fréquence multiple ou fractionnelle de celle-ci.
30. L'organe réglant (1) selon la revendication 29,
dans lequel l'accouplage à l'oscillation est réalisé par résonance mécanique ou par résonance acoustique ou par couplage magnétique.
31. L'organe réglant (1) selon l'une des revendications 1 à 29,
dans lequel l'accouplage à l'oscillation est réalisé par couplage magnétique et le second oscillateur (7) est monté sous une atmosphère contrôlé.
32. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel les dents (50) de la roue d'échappement (5) et les organes (40) de la partie ancre (4) sont arrangées de manière à permettre de faire avancer la roue
d'échappement (5) dans un sens ou dans l'autre.
33. L'organe réglant (1) selon l'une des revendications 1 à 32,
dans lequel un plan d'impulsion (51) et un plan de repos (52) de chacune des dents (50) sont inclinés.
34. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel les géométries des dents (50) de la roue d'échappement (5) et les levées de la partie ancre (40) sont choisies de sorte à assurer un auto-démarrage lorsque la roue est soumise à un couple, notamment en favorisant une position instable de l'oscillateur.
35. L'organe réglant (1) selon l'une des revendications 1 à 33,
dans lequel la roue d'échappement comprend des bras (53) élastiques de manière à absorber les chocs lorsque les organes (40) de la partie ancre (4) reçoivent les impulsions des dents (50).
36. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel l'oscillateur vibrant (3) est fabriqué en silicium et comprend des moyens de thermocompensation.
37. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel la fréquence d'oscillation de l'oscillateur vibrant (3) est réglée en réduisant l'inertie d'au moins un des éléments massiques (32, 32') par ablation de matière, de préférence par ablation de l'élément massique (32, 32') et/ou d'une masselotte (34).
38. L'organe réglant (1) selon la revendication 30,
dans lequel l'ablation de matière est réalisée par rupture d'au moins un d'une pluralité d'éléments détachables, de masses identiques ou différentes, réalisés sur les éléments massiques (32, 32') lors de la même opération que l'opération de fabrication ou au cours d'une opération de réglage ultérieure de l'organe réglant.
39. L'organe réglant (1) selon l'une des revendications précédentes, dans lequel la fréquence d'oscillation de l'oscillateur vibrant (3)est réglée en modifiant la rigidité des bras (31', 32'), de préférence en modifiant leur moment quadratique et/ou la rigidité locale du matériau et/ou en augmentant la longueur des bras (3 , 32'), de préférence en augmentant la longueur de la lame vibrante (31).
40. L'organe réglant (1) selon l'une des revendications précédentes dans lequel la roue d'échappement (5) tourne à une vitesse d'un tour par minute.
41. Mouvement horloger comprenant un organe réglant (1) selon l'une des revendications précédentes.
PCT/EP2015/074683 2014-10-24 2015-10-23 Organe réglant pour un mouvement horloger mécanique WO2016062889A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017522110A JP6482660B2 (ja) 2014-10-24 2015-10-23 機械式の時計ムーブメントのための調整部材
CN201580057573.0A CN107003640B (zh) 2014-10-24 2015-10-23 用于机械钟表机芯的调节构件
EP15787179.9A EP3210082B1 (fr) 2014-10-24 2015-10-23 Organe réglant pour un mouvement horloger mécanique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1634/14 2014-10-24
CH001634/2014A CH710278B1 (fr) 2014-10-24 2014-10-24 Organe réglant pour un mouvement horloger mécanique.

Publications (2)

Publication Number Publication Date
WO2016062889A2 true WO2016062889A2 (fr) 2016-04-28
WO2016062889A3 WO2016062889A3 (fr) 2016-07-21

Family

ID=51842304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/074683 WO2016062889A2 (fr) 2014-10-24 2015-10-23 Organe réglant pour un mouvement horloger mécanique

Country Status (5)

Country Link
EP (1) EP3210082B1 (fr)
JP (1) JP6482660B2 (fr)
CN (1) CN107003640B (fr)
CH (1) CH710278B1 (fr)
WO (1) WO2016062889A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068538A1 (fr) * 2015-10-23 2017-04-27 Richemont International Sa Oscillateur pour un mouvement horloger mécanique
WO2018109584A1 (fr) * 2016-12-16 2018-06-21 Patek Philippe Sa Geneve Composant horloger a pivot flexible
EP3182213B1 (fr) 2015-12-16 2018-09-12 Société anonyme de la Manufacture d'Horlogerie Audemars Piguet & Cie Mécanisme de réglage d'une vitesse moyenne dans un mouvement d'horlogerie et mouvement d'horlogerie
EP3425458A1 (fr) * 2017-07-07 2019-01-09 ETA SA Manufacture Horlogère Suisse Pièce sécable d'oscillateur d'horlogerie
FR3071075A1 (fr) * 2017-09-14 2019-03-15 Lvmh Swiss Manufactures Sa Dispositif pour piece d'horlogerie, mouvement horloger et piece d'horlogerie comprenant un tel dispositif
NL2020384B1 (en) * 2018-02-06 2019-08-14 Flexous Mech Ip B V Mechanical watch oscillator
EP3907565A1 (fr) * 2020-05-07 2021-11-10 Patek Philippe SA Genève Procede de fabrication d'un composant horloger en silicium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH714365B1 (fr) 2017-11-24 2023-03-31 Blancpain Sa Mobile d'horlogerie à roue unidirectionnelle.
EP3561609B1 (fr) * 2018-04-23 2022-03-23 ETA SA Manufacture Horlogère Suisse Protection antichoc d'un mecanisme résonateur a guidage flexible rotatif

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH442153A (fr) * 1965-08-13 1967-03-31 Golay Bernard Sa Mouvement d'horlogerie
CH471988A (de) * 1966-10-17 1969-04-30 Straumann Inst Ag Einrichtung mit einem Klinkenrad und mindestens einem zu seinem Antrieb dienenden Schwingorgan
JPS4810473U (fr) * 1971-06-17 1973-02-05
EP2553533B2 (fr) * 2010-04-01 2019-06-19 Rolex S.A. Dispositif de blocage pour roue dentée
WO2012010408A1 (fr) * 2010-07-19 2012-01-26 Nivarox-Far S.A. Mecanisme oscillant a pivot elastique et mobile de transmission d'energie
WO2012079976A1 (fr) * 2010-12-14 2012-06-21 Chopard Technologies Sa Ancre et échappement muni d'une telle ancre
EP2557460A1 (fr) * 2011-08-12 2013-02-13 Nivarox-FAR S.A. Ancre métallique avec cornes polymères
EP2574994A1 (fr) * 2011-09-29 2013-04-03 Asgalium Unitec SA Resonateur a diapason pour mouvement horloger mecanique

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068538A1 (fr) * 2015-10-23 2017-04-27 Richemont International Sa Oscillateur pour un mouvement horloger mécanique
EP3182213B1 (fr) 2015-12-16 2018-09-12 Société anonyme de la Manufacture d'Horlogerie Audemars Piguet & Cie Mécanisme de réglage d'une vitesse moyenne dans un mouvement d'horlogerie et mouvement d'horlogerie
WO2018109584A1 (fr) * 2016-12-16 2018-06-21 Patek Philippe Sa Geneve Composant horloger a pivot flexible
US11262702B2 (en) 2017-07-07 2022-03-01 Eta Sa Manufacture Horlogere Suisse Timepiece oscillator structure with a divisible element
EP3425458A1 (fr) * 2017-07-07 2019-01-09 ETA SA Manufacture Horlogère Suisse Pièce sécable d'oscillateur d'horlogerie
JP2019015731A (ja) * 2017-07-07 2019-01-31 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス 分離可能な要素を有する計時器用発振器構造
EP3451080A1 (fr) 2017-07-07 2019-03-06 ETA SA Manufacture Horlogère Suisse Structure d'oscillateur d'horlogerie à élément sécable
FR3071075A1 (fr) * 2017-09-14 2019-03-15 Lvmh Swiss Manufactures Sa Dispositif pour piece d'horlogerie, mouvement horloger et piece d'horlogerie comprenant un tel dispositif
WO2019156552A1 (fr) 2018-02-06 2019-08-15 Flexous Mechanisms Ip B.V. Oscillateur de montre mécanique
CN111771169A (zh) * 2018-02-06 2020-10-13 柔性机制Ip私人有限公司 机械表振荡器
NL2020384B1 (en) * 2018-02-06 2019-08-14 Flexous Mech Ip B V Mechanical watch oscillator
EP3907565A1 (fr) * 2020-05-07 2021-11-10 Patek Philippe SA Genève Procede de fabrication d'un composant horloger en silicium
WO2021224804A1 (fr) * 2020-05-07 2021-11-11 Patek Philippe Sa Geneve Procédé de fabrication d'un composant horloger en silicium

Also Published As

Publication number Publication date
JP2017531806A (ja) 2017-10-26
EP3210082A2 (fr) 2017-08-30
WO2016062889A3 (fr) 2016-07-21
JP6482660B2 (ja) 2019-03-13
CH710278B1 (fr) 2024-02-15
CN107003640A (zh) 2017-08-01
EP3210082B1 (fr) 2019-06-19
CN107003640B (zh) 2019-12-20
CH710278A1 (fr) 2016-04-29

Similar Documents

Publication Publication Date Title
EP3210082B1 (fr) Organe réglant pour un mouvement horloger mécanique
EP3365734B1 (fr) Oscillateur pour un mouvement horloger mécanique
EP3254158B1 (fr) Resonateur isochrone d'horlogerie
EP1736838B1 (fr) Pièce d'horlogerie
EP3182216B1 (fr) Oscillateurs couplés d'horlogerie
EP2363762B1 (fr) Pièce d'horlogerie comportant un mouvement mécanique à haute fréquence
EP3502784B1 (fr) Résonateur horloger à guidage flexible
EP3457221A2 (fr) Oscillateur horloger a pivot flexible
EP3206091B1 (fr) Résonateur isochrone d'horlogerie
WO2015018636A2 (fr) Système régulateur pour montre mécanique
EP3338144B1 (fr) Dispositif mécanique bistable, notamment pour l'horlogerie
EP1084459A1 (fr) Procede pour transmettre des impulsions d'energie mecanique d'une source motrice a un regulateur oscillant
WO2018109583A1 (fr) Resonateur pour piece d'horlogerie comportant deux balanciers agences pour osciller dans un meme plan
EP3637196B1 (fr) Oscillateur mécanique
CH702799A2 (fr) Pièce d'horlogerie comportant un mouvement mécanique à haute fréquence.
EP3140698B1 (fr) Oscillateur mecanique a diapason pour mouvement horloger
EP3572885B1 (fr) Oscillateur mécanique d'horlogerie isochrone en toute position
EP3492996B1 (fr) Echappement d'horlogerie a lame bistable
EP3479175A1 (fr) Mouvement d'horlogerie mecanique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15787179

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2017522110

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015787179

Country of ref document: EP