WO2016056826A1 - Photonic crystal structure and manufacturing method therefor - Google Patents

Photonic crystal structure and manufacturing method therefor Download PDF

Info

Publication number
WO2016056826A1
WO2016056826A1 PCT/KR2015/010561 KR2015010561W WO2016056826A1 WO 2016056826 A1 WO2016056826 A1 WO 2016056826A1 KR 2015010561 W KR2015010561 W KR 2015010561W WO 2016056826 A1 WO2016056826 A1 WO 2016056826A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photonic crystal
spacer
manufacturing
crystal structure
Prior art date
Application number
PCT/KR2015/010561
Other languages
French (fr)
Korean (ko)
Inventor
이승엽
서한복
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2016056826A1 publication Critical patent/WO2016056826A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to the production of large-area photonic crystals or photonic crystal structures, and more particularly, to a photonic crystal structure and a method for manufacturing the same, which can simplify the manufacturing process and improve efficiency.
  • Photonic crystals can reflect light of a specific wavelength, and the key property of photonic crystal research is the optical bandgap, the wavelength range of light that can be fully reflected.
  • This optical bandgap may vary depending on the difference in refractive index between the two materials arranged inside the photonic crystal or the period of the grating and the structure in which the materials are arranged.
  • the photonic crystal is a one-dimensional array
  • a specific optical band gap can be obtained only by having a periodic structure.
  • the photonic crystal has a two-dimensional or three-dimensional structure
  • the optical bandgap does not show a complete optical bandgap. That is, in the three-dimensional photonic crystal structure, there is no wavelength band of light having 100% reflectance in all directions, except that the silica is most densely arranged in the plane-centered cubic (FCC) crystal, [111] perpendicular to the plane.
  • the pseudo bandgap can only be seen for light transmitting in the direction.
  • the pseudo bandgap refers to a wavelength range of light that is completely reflected when only reflective light is incident on a specific direction.
  • One of the measures to compensate for the incomplete optical bandgap characteristics in the opal structure as described above is to use an inverse opal structure in which fine particles are arranged in the medium as the crystal lattice of the face center cube. Computation simulation using Maxwell's independent electromagnetic mode, in which the medium does not absorb light, shows that the optical bandgap is in all directions.
  • the refractive index ratio between the medium and the air must be at least 2.8, and such a material is made of titanium dioxide (TiO 2 ) that does not actually absorb light in the visible region.
  • TiO 2 titanium dioxide
  • the inverted opal structure has the possibility of realizing a three-dimensional optical bandgap in the visible region
  • the optical bandgap of the opal has a disadvantage in that the bandgap is not wide enough to be actually applied to an optical device.
  • a sphere has a wider bandgap when a sphere is arranged in a tetrahedral structure such as diamond carbon atoms are arranged rather than a crystal lattice structure of a face centered cube.
  • LiGA Lithographie, Galvanoformung, Abformung
  • Various methods of forming LiGA (Lithographie, Galvanoformung, Abformung) technology may be used as one of methods for forming the lattice structure of the photonic crystal.
  • LiGA technology is a method of manufacturing photonic crystals based on the etching process, which is a microfabrication technique.
  • a pattern is formed to arrange point circles in triangular alignment on the surface of a dielectric having refractive index, and then three different directions on each point source. It is made by drilling through deep x-ray lithography.
  • the areas where the three X-ray beams meet form large air cavities, which are connected to each other, and the large cavities are placed in the same lattice position as the carbon atoms in the diamond.
  • the cavity may have an optical bandgap that is about four times wider than the silicon inverted opal of the face-centered cube in a modified diamond structure rather than an exact sphere.
  • Another method is a method of manufacturing a photonic crystal of a diamond structure using the lamination method of LiGA technology. It is a method of manufacturing points or linear spaces that can actively express optoelectronic functions by stacking layers by layers instead of etching by beams.
  • the bars can be arranged side by side on a plane to form a diamond structure with four layers stacked.
  • heat is applied so that the sticks are bonded to each other in a molten state.
  • repeatedly stacking dielectric bars such that the same structure is repeated every four layers may show a wide optical bandgap such as a diamond structure.
  • the position and width of the bandgap may vary depending on the thickness of the rod, the arrangement period and the refractive index. Therefore, it is possible to manufacture a photonic crystal having a different band gap for each layer.
  • this manufacturing method has the advantage that it is relatively easy to manufacture an optical element such as a wave guide because it can design and manufacture a point and linear space that can easily propagate light.
  • the process is complicated and expensive, there are difficulties in practical use.
  • an etch method is used to create an optical crystal structure by making an interference pattern formed by light emitted from a light source to a photosensitive polymer photoresist (PR) and then selectively dissolving the polymerized or unpolymerized part. have.
  • the light from the four light sources creates an interference contrast pattern of face-centered cubic structure, and when it is projected onto the negative photoresist, photopolymerization occurs due to photosensitivity only in the bright pattern.
  • an opal structure pattern made of a polymer can be obtained.
  • the space between the polymer opals is filled with silicon or titanium dioxide (TiO 2 ) having a high refractive index, and then heat is decomposed and removed to obtain a silicon reverse opal.
  • This method can obtain a single crystal free from defects, and the process is simple and practical.
  • colloidal particles may be used.
  • crystallization through sedimentation and evaporation of colloidal fine particles which is a method that can be obtained by slowly crystallizing colloidal particles of a certain size dispersed in a medium through sedimentation or evaporation.
  • Colloidal particles are generally stabilized without being entangled with each other by an electrostatic repulsive force or a polymer adsorbed on the surface of the particles and are disordered by Brownian motion. Colloids made up of uniformly sized particles spontaneously change into regular crystal structures due to increasing entropy in the disordered array as the concentration of the particles increases.
  • the photonic crystal structure may have a hexagonal dense structure or a face centered cubic structure.
  • the present invention can simplify the providing process, and provides a highly practical photonic crystal structure and its manufacturing method.
  • the present invention provides a photonic crystal structure and a method for manufacturing the same, which can solve a defect on the surface of the photonic crystal by separating the substrate forming the channel for forming the photonic crystal and allowing the solvent remaining in the photonic crystal void to dry.
  • the present invention can enhance the bonding force between the photonic crystal lattice structure, and provides a photonic crystal structure and a method of manufacturing the same that can prevent the occurrence of defects during substrate removal.
  • the present invention can shorten the process time, and provides a photonic crystal structure and its manufacturing method which can improve the stability and reliability.
  • the present invention also provides a photonic crystal structure and a method of manufacturing the same, which can produce a large-area photonic crystal having a channel width of several to several tens of millimeters without a defect.
  • the method for manufacturing a photonic crystal structure the first substrate, the first substrate is spaced apart from the first substrate and mutually cooperatively with the first substrate to form a channel Providing an object including a second substrate and a spacer sealing a side surface between the first substrate and the second substrate; Providing a colloidal solution comprising photoreactive fine particles to the channel; Crystal structuring the photoreactive fine particles; Separating at least one of the first substrate and the second substrate; And drying the solvent remaining in the pores between the photoreactive fine particles through at least one region separated from the first substrate and the second substrate.
  • defects may occur due to the movement or adhesion of the solvent to the local portion of the photonic crystal.
  • a defect may be generated due to the movement or adhesion of the solvent, and thus a forced drying process of the solvent may be necessary.
  • at least one of the first substrate and the second substrate is separated, and the solvent remaining in the pores between the photoreactive fine particles can be quickly dried through the region of the separated substrate.
  • the object may remain stationary or rotated, and when the object is rotated, the photoreaction particles may move along the channel by centrifugal force.
  • the first substrate and the second substrate may be separated by slidingly moving in parallel along the longitudinal direction of the first substrate (or the second substrate), or rotating about one end.
  • a process of heat-treating the spacer may be added, and as the spacer is heat-treated, the structural coupling force with the first substrate and the second substrate may be adjusted.
  • the structural bonding force between the first substrate and the second substrate is controlled as the spacer is heat-treated, and the binding force of the spacer to the first substrate and the second substrate is adjusted as the spacer is heat-treated.
  • the spacer may be heated, and the adhesion of the spacer to the first substrate and the second substrate may be reduced while the spacer is heated.
  • the spacer various materials may be used in which the structural bonding force may be adjusted during the heat treatment process.
  • the spacer may be formed of a parafilm.
  • Heating temperature conditions of the spacer may be variously changed according to the material of the spacer, the characteristics of the solvent.
  • the heating temperature of the spacer may be set to a temperature range that is greater than the minimum temperature at which the adhesion by the spacer can be reduced (heating temperature at which the adhesion of the spacer starts to be lower than the unheated state) and lower than the boiling point of the solvent.
  • a process of heat treating at least one of the first substrate and the second substrate may be added, and as the first substrate and the second substrate are heat treated, The surface tension of the solvent on the first substrate and the second substrate can be adjusted.
  • the heat treatment of the substrate in the present invention can be understood as a concept including the usual heat treatment conditions such as cooling, heating, etc.
  • the present invention is not limited or limited by the heat treatment method of the substrate.
  • the first substrate and the second substrate may be heat treated under different temperature conditions.
  • the first substrate is heated or maintained at room temperature
  • the second substrate is cooled to a relatively lower temperature than the first substrate
  • the first substrate having a relatively high temperature may be separated.
  • the first substrate and the second substrate may be cooled or both heated during the heat treatment of the first substrate and the second substrate.
  • Heat treatment temperature conditions of the first substrate and the second substrate may be variously changed according to the material of the substrate and the characteristics of the solvent.
  • the first substrate may be heated to a temperature lower than the boiling point of the solvent, and the second substrate may be cooled to a temperature higher than the freezing point of the solvent.
  • the solvent remaining in the voids between the photoreactive particles may be dried through at least one of the separated regions of the first substrate and the second substrate. This may be performed while at least one of the second substrates is separated, or after at least one of the first and second substrates is separated.
  • the photonic crystal structure and the manufacturing method thereof according to the present invention it is possible to freely form a photonic crystal with a simple and practical process.
  • the present invention by separating the substrate forming the object, and allowing the solvent remaining in the gap between the photoreaction particles through the separated region of the substrate to be dried, it is possible to significantly shorten the time required for photonic crystal production And defects on the photonic crystal surface can be initialized.
  • according to the present invention can enhance the bonding strength between the photonic crystal lattice structure, it is possible to improve the stability and reliability.
  • a large-area photonic crystal having a channel width of several to several tens of millimeters can be produced without surface defects.
  • FIG. 1 is a view for explaining a method of manufacturing a photonic crystal structure according to the present invention.
  • FIGS. 2 to 6 are diagrams for explaining a step of crystallizing photoreactive fine particles after supplying a colloidal solution to a subject as a method of manufacturing a photonic crystal structure according to the present invention.
  • FIG. 7 is a view for explaining a heat treatment step of a spacer as a method of manufacturing a photonic crystal structure according to the present invention.
  • FIG. 8 is a view for explaining a heat treatment step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention.
  • FIG. 9 is a view for explaining a separation step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention.
  • FIG 10 and 11 are views for explaining a modification of the separation step of the substrate as a method of manufacturing the photonic crystal structure according to the present invention.
  • FIG. 12 is a view for explaining a photonic crystal in which a solvent is dried as a method of manufacturing a photonic crystal structure according to the present invention.
  • FIG. 1 is a view for explaining a method of manufacturing a photonic crystal structure according to the present invention.
  • Figures 2 to 6 is a method for manufacturing a photonic crystal structure according to the present invention, after supplying a colloidal solution to the object, a view for explaining the step of crystal structuring the photoreactive fine particles,
  • Figure 7 according to the present invention FIG. 8 is a view for explaining a heat treatment step of a spacer as a method of manufacturing a photonic crystal structure
  • FIG. 8 is a view for explaining a heat treatment step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention.
  • FIG. 9 is a view for explaining a separation step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention
  • Figures 10 and 11 is a method for manufacturing a photonic crystal structure according to the present invention, a modification of the separation step of a substrate It is a figure for demonstrating an example
  • FIG. 12 is a figure for demonstrating the photonic crystal in which the solvent was dried as a manufacturing method of the photonic crystal structure which concerns on this invention.
  • the first substrate 110 and the first substrate 110 are spaced apart from each other, and the channel 111 is cooperatively cooperated with the first substrate 110.
  • an object 100 is provided.
  • the object 100 may include a first substrate 110, a second substrate 120 stacked on the first substrate 110, and a side surface between the first substrate 110 and the second substrate 120. It may be configured to include a spacer 130 for sealing, the channel consisting of a limited inner space having an opening at least on one side between the first substrate 110 and the second substrate 120 111 is provided.
  • the object 100 may remain stationary or rotated, and when the object 100 is rotated, the photoreactive fine particles 10 may be caused by centrifugal force. May move along channel 111.
  • the object 100 is rotated while crystallizing the photoreactive particles 10 to be described below will be described.
  • the channel 111 is formed such that the width (W) direction is disposed along the rotation axis direction of the object 100 to be described later, and the centrifugal force acts in the longitudinal direction of the object 100 while the object 100 rotates.
  • the centrifugal force as the object 100 rotates has the same direction as a whole along the width of the channel 111.
  • the centrifugal force has the same direction as a whole along the width of the channel 111, regardless of the position along the width direction of the channel 111, the centrifugal force as the object 100 is always rotated in a constant direction (object ( 100) in the longitudinal direction).
  • the first and second substrates 110 and 120 may be formed of various materials according to required conditions and design specifications.
  • the first substrate 110 and the second substrate 120 may be formed of a common glass material, in addition to sapphire, silicon, gallium nitride, gallium arsenide, silicon carbide or zinc oxide. .
  • first coating layer may be formed on an inner surface of the first substrate 110
  • second coating layer may be formed on an inner surface of the second substrate 120.
  • the first coating layer and the second coating layer to remove the surface defects of the photonic crystal that may occur due to the fine bending of the substrate, the surface adhesion and movement of the solvent due to the polarity of the solvent and the surface characteristics of each substrate in the process of manufacturing the photonic crystal may be provided to remove defects that may occur during the drying of the solvent.
  • the first coating layer and the second coating layer may be formed of a material having hydrophobic or hydrophilic characteristics, and gas permeability.
  • the first coating layer and the second coating layer may be a polymer-based and silicon-based material having a hydrophobic surface (low surface energy) such as P or PMMA, a chemical coating material such as OTS, FOTS, or SPFPE, and a coating surface. It may be formed of a material having hydrophobicity by the nanostructure constituting.
  • the first coating layer and the second coating layer may be formed by an immersion method, a doping method, a spin coating method, a chemical vapor deposition method, a plasma treatment method, etc.
  • the present invention is not limited or limited by the formation method.
  • the spacer 130 provides a limited thickness of the photonic crystal formed between the first substrate 110 and the second substrate 120, and provides adhesion between the first substrate 110 and the second substrate 120. Provided to maintain.
  • the spacer 130 may be formed of a material having a unique characteristic according to heat so that the structural coupling force with the first substrate 110 and the second substrate 120 can be adjusted by a heat treatment process to be described later.
  • the spacer 130 may be formed of a parafilm having high elasticity and unique characteristics according to heat, and the first substrate 110 and the second substrate 120 while the spacer 130 is heated. The adhesion of the spacer 130 to the can be reduced.
  • the photoreactive fine particles 10 may be understood as fine particles capable of forming a photonic crystal structure, and the present invention is not limited or limited by the type and characteristics thereof.
  • the photoreactive fine particles 10 may include at least one of polystyrene (PS), polymethyl methacrylate, and silica fine particles.
  • PS polystyrene
  • silica fine particles silica fine particles
  • the diameter of the photoreactive fine particles 10 is selected according to the refractive index (reflective Index) and shape according to the material of each particle to select the size that can exhibit the photonic crystal characteristics of the visible region, infrared region, and ultraviolet region in the photonic crystal manufacturing Can be used.
  • the colloidal solution including the photoreactive fine particles 10 is provided in the channel 111.
  • the manner of providing the colloidal solution on the channel 111 may be variously changed according to the required conditions and design specifications.
  • the photoreactive fine particles are formed at one end (one or both ends) of the object 100 including a channel 111 having a specific thickness T, a width W, and a length L, and an opening capable of contacting the atmosphere.
  • the colloidal solution 10 When the colloidal solution 10 is in contact with the dispersed colloidal solution, the colloidal solution may be filled into the channel 111 of the object 100 by capillary force related to the hydraulic diameter of the cross section of the channel 111.
  • the colloidal solution is filled in the channel 111, when the contact of the object 100 is released from the container containing the colloidal solution, the colloidal solution inside the object 100 does not leak to the outside by capillary force, The photoreactive fine particles 10 dispersed in the solution are blocked by the surface tension and the capillary force of the solvent so that they do not flow out.
  • the solvent starts to evaporate gradually from the surface in contact with the atmosphere.
  • the volume of the colloidal solution present in the channel 111 decreases, and capillary force acts toward the contact surface with the atmosphere to compensate for this and is formed due to the surface tension with the solvent inside the object 100.
  • the curved surface moves together to the atmospheric contact surface.
  • the colloidal solution and the photoreactive fine particles 10 move.
  • the photoreactive particles 10 move to the surface in contact with the atmosphere, and the increase of the concentration of the photoreactive particles 10 and the evaporation of the solvent are appropriate for the photoreaction particles 10 which are regularly crystallized by magnetic bonding.
  • the crystals grow gradually in sequence. If the crystal is continuously grown and the solvent of the colloidal solution is completely evaporated, a photonic crystal having a specific thickness inside the channel 111 may be manufactured.
  • the photoreactive fine particles 10 having a size of 200 ⁇ 300nm may be used as the photoreactive fine particles 10.
  • the photoreactive fine particles 10 in the case of the photonic crystal formed using the photoreactive fine particles 10 of less than about 200nm, the wavelength reflection of the visible light region cannot be expected by reflecting the wavelength of the ultraviolet region, which is the region after purple, and the size of about 300nm or more is used.
  • the photoreaction fine particles 10 are preferably provided in a size of 200 to 300 nm because the reflection of the wavelength of the infrared region cannot be expected.
  • the concentration of the photoreactive fine particles 10 of the colloidal solution is preferably provided to less than 55% by weight. That is, at a concentration of about 55% by weight or more, the photoreactive fine particles 10 are self-assembled and crystallized in the colloidal solution, and are not easily filled in the channel 111 due to the high viscosity. There is a limit to increase the area of the photonic crystal formed in the.
  • a colloid supply unit (not shown) for supplying a colloidal solution to the channel 111 may be connected to the object 100.
  • the colloid supply unit may continuously inject the photoreactive particles 10 into the channel 111 of the object 100 while the photoreactive particles 10 are crystallized.
  • the solvent is evaporated from the surface in which the object 100 contacts the atmosphere, and a portion of the tip is first crystallized so that the solvent flows out to the opening of the object 100. It can form a barrier-seed to prevent it.
  • This makes it possible to prevent the colloidal solution present in the colloid supply part and the channel 111 from flowing out to the outside by the centrifugal force, which will be described later, and allow the photonic crystals to be sequentially formed from the atmospheric contact surface (opening part).
  • the width, length and thickness of the barrier-seed may be appropriately adjusted according to the rotation speed in the subsequent rotation process. In some cases, it is also possible to attach the aforementioned hydrophobic membrane to the opening of the object without forming a separate barrier seed layer.
  • the object 100 may be rotated while the photoreactive fine particles 10 are crystallized.
  • centrifugal force acts along the length direction of the object 100, and the photoreaction fine particles 10 may move along the length L direction of the object 100 by the centrifugal force.
  • the centrifugal force acting on the photoreactive fine particles 10 has the same directivity along the width of the channel 111 irrespective of the position along the width W direction of the channel 111. Defects can be prevented beforehand.
  • the centrifugal force having a constant direction along the width direction of the channel can act, so that defects due to the difference in the centrifugal force direction can be prevented.
  • the channel has a very thin thickness T compared to the width, the difference in the centrifugal force direction along the thickness direction of the channel can be ignored.
  • defects may occur due to the movement or adhesion of the solvent to a local portion of the photonic crystal.
  • a defect may be generated due to the movement or adhesion of the solvent, and thus a forced drying process of the solvent may be necessary.
  • the solvent in the voids may be removed through the opening of the channel while the object is rotated or stopped, such a drying method may take a long time to dry and have a high incidence of defects.
  • At least one of the first substrate 110 and the second substrate 120 is separated, and the solvent remaining in the voids between the photoreaction particles 10 is rapidly dried through the region of the separated substrate. I could do it.
  • the first substrate 110 and the second substrate 120 are separated.
  • the first substrate 110 in a state in which a photonic crystal is formed in the channel 111 will be described.
  • the second substrate may be separated instead of the first substrate, or both the first substrate and the second substrate may be separated.
  • first substrate 110 and the second substrate 120 are separated by slidingly moving in parallel along the longitudinal direction of the first substrate 110 (or the second substrate 120) or around one end. Can rotate and separate.
  • Separation (slide movement or rotation separation) of the first substrate 110 and the second substrate 120 may be made by a common driving source such as a motor, and each substrate may be a suction plate or any other conventional fixing means. Can be connected to the drive source.
  • a process of heat-treating the spacer 130 may be added. As the spacer 130 is heat treated, the structural coupling force between the first substrate 110 and the second substrate 120 may be adjusted.
  • the structural coupling force between the first substrate 110 and the second substrate 120 is controlled as the spacer 130 is heat-treated.
  • the spacer 130 and the first substrate are controlled.
  • the bonding force of the spacer 130 to the 110 and the second substrate 120 is controlled.
  • the spacer 130 may be heated, and the first substrate 110 and the second substrate 120 may be heated while the spacer 130 is heated. Adhesion of the spacer 130 to the can be reduced.
  • the present invention allows the structural bonding force (adhesive force) of the spacer 130 to be weakened through the heat treatment of the spacer 130 while separating the first substrate 110 and the second substrate 120.
  • the first substrate 110 and the second substrate 120 can be separated from the spacer 130 more easily and without coupling.
  • the spacer 130 various materials capable of controlling structural bonding strength during the heat treatment process may be used.
  • the spacer 130 is formed of a parafilm.
  • a process of heat-treating at least one of the first substrate 110 and the second substrate 120 may be added. have. As the first substrate 110 and the second substrate 120 are heat treated, the surface tension of the solvent on the first substrate 110 and the second substrate 120 may be adjusted.
  • the heat treatment of the substrate may be understood as a concept including common heat treatment conditions such as cooling and heating.
  • the present invention is not limited or limited by the heat treatment method of the substrate.
  • the first substrate 110 when the first substrate 110 is heated or maintained at room temperature during the heat treatment of the substrate, and the second substrate 120 is cooled to a relatively lower temperature than the first substrate 110, the relatively high Since the surface tension of the solvent with respect to the first substrate 110 having a temperature may be lowered and the surface tension of the solvent with respect to the second substrate 120 having a relatively low temperature may be increased, the second substrate 120 may be higher. Arrangement of the can be maintained more firmly, the first substrate 110 can be separated more easily.
  • Heat treatment temperature conditions of the first substrate 110 and the second substrate 120 may be variously changed according to the material of the substrate and the characteristics of the solvent.
  • the first substrate 110 may be heated to a temperature lower than the boiling point of the solvent
  • the second substrate 120 may be cooled to a temperature higher than the freezing point of the solvent.
  • the aforementioned heat treatment of the spacer 130 and the substrate may be performed by attaching a common heat source such as a coil or by supplying cold or warm air, and the present invention is not limited or limited by the heat treatment method.
  • the solvent remaining in the gap between the photoreaction particles 10 may be dried through at least one region separated from the first substrate 110 and the second substrate 120.
  • the solvent remaining in the gap between the photoreactive particles 10 is performed while separating at least one of the first substrate 110 and the second substrate 120, or the first substrate 110. And at least one of the second substrates 120 may be separated.
  • the first substrate 110 may be separated by slide movement toward the opening direction in which the first photonic crystal is formed.
  • the first substrate 110 may have the same height condition while the first substrate 110 is separated. Parallel to the photonic crystal) and be able to slide at the same speed.
  • the transfer speed of the substrate may be appropriately adjusted in consideration of ambient temperature and humidity conditions, characteristics of the driving source, evaporation rate of the solvent, and the like.
  • the first substrate 110 may be rotated based on one end and separated. After the first substrate 110 is separated, the solvent remaining in the pores between the photoreactive particles 10 may be rapidly dried through the exposed region.
  • the first substrate 110 is slid along the length direction of the first substrate 110.
  • the first substrate 110 and the second substrate 120 can be separated at the same time by slidingly moving the second substrate 120 in the direction opposite to the sliding direction.
  • the solvent remaining in the gap between the photoreaction particles 10 may be rapidly dried through the exposed area as the first substrate 110 and the second substrate 120 are separated.
  • the photonic crystal in which the solvent remaining in the pores between the photoreaction particles 10 is dried is left on the second substrate 120 through the substrate separation process as described above. Subsequently, a process of removing the second substrate 120 may be performed. In this case, since the solvent is completely dried, it may occur on the surface of the second substrate 120 and the photonic crystal when the second substrate 120 is removed. Faults can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A photonic crystal structure capable of simplifying a manufacturing process and increasing efficiency, and a manufacturing method therefor are disclosed. The method for manufacturing a photonic crystal structure comprises the steps of: providing a subject body including a first substrate, a second substrate stacked on the first substrate so as to be spaced apart from the first substrate and mutually and cooperatively forming a channel with the first substrate, and a spacer for sealing a side surface between the first substrate and the second substrate; providing a colloidal solution containing photoreactive particles to a channel; crystallizing the photoreactive particles; separating the first substrate and/or the second substrate; and drying a solvent remaining in an air pore between the photoreactive particles through a region of the separated first substrate and/or second substrate.

Description

광결정 구조 및 그 제조방법Photonic crystal structure and its manufacturing method
본 발명은 대면적 광자 결정 또는 광결정 구조의 제조에 관한 것으로서, 보다 자세하게는, 제조 공정을 간소화할 수 있으며, 효율성을 향상 시킬 수 있는 광결정 구조 및 그 제조방법에 관한 것이다.The present invention relates to the production of large-area photonic crystals or photonic crystal structures, and more particularly, to a photonic crystal structure and a method for manufacturing the same, which can simplify the manufacturing process and improve efficiency.
광결정(Photonic Crystal, PC)은 특정 파장의 빛을 반사할 수 있으며, 광결정 연구의 핵심 물성은 완전히 반사시킬 수 있는 빛의 파장 영역인 광 밴드갭이라 할 수 있다. 이 광 밴드갭은 광결정 내부에 배열된 두 물질 사이의 굴절률 차이 또는 물질이 배열된 구조와 격자의 주기에 따라 변화할 수 있다.Photonic crystals (PCs) can reflect light of a specific wavelength, and the key property of photonic crystal research is the optical bandgap, the wavelength range of light that can be fully reflected. This optical bandgap may vary depending on the difference in refractive index between the two materials arranged inside the photonic crystal or the period of the grating and the structure in which the materials are arranged.
광결정이 1차원 배열인 경우, 주기적 구조만을 가지면 특정 광 밴드갭을 얻을 수 있다. 하지만, 광결정이 2차원 또는 3차원의 구조인 경우, 각 차원에 맞는 결정 구조를 갖더라도 완전한 광 밴드갭을 구현하기가 매우 까다롭다. 예를 들어 전형적인 오팔(Opal) 구조의 경우, 3차원 광결정 구조임에도 광 밴드갭을 측정해 보면 완전한 광 밴드갭을 보이지 못한다. 즉, 3차원 광결정 구조에서는 모든 방향에 대해 반사율이 100%인 빛의 파장대가 존재하지 않으며, 다만 면심입방체(FCC) 결정에서 실리카가 가장 밀집되게 배열하고 있는 [111]평면에 수직인 [111]방향으로 투과하는 빛에 대해서만 유사 밴드갭을 보일 수 있다. 여기서 유사 밴드갭이란 특정한 방향으로 입사하는 빛에 대해서만 반사성을 보이는 경우 완전히 반사되는 빛의 파장영역대를 의미한다. When the photonic crystal is a one-dimensional array, a specific optical band gap can be obtained only by having a periodic structure. However, when the photonic crystal has a two-dimensional or three-dimensional structure, it is very difficult to realize a complete optical bandgap even if it has a crystal structure for each dimension. For example, in the case of a typical opal structure, even if it is a three-dimensional photonic crystal structure, the optical bandgap does not show a complete optical bandgap. That is, in the three-dimensional photonic crystal structure, there is no wavelength band of light having 100% reflectance in all directions, except that the silica is most densely arranged in the plane-centered cubic (FCC) crystal, [111] perpendicular to the plane. The pseudo bandgap can only be seen for light transmitting in the direction. Here, the pseudo bandgap refers to a wavelength range of light that is completely reflected when only reflective light is incident on a specific direction.
위와 같은 오팔 구조에서 불완전한 광 밴드갭 특성을 보완하기 위한 방안 중 하나로, 미립자가 면심입방체의 결정격자로 공기의 공동이 매질 속에 배열된 인버스 오팔(Inverse Opal) 구조를 활용하는 것이 있다. 매질이 빛을 흡수하지 않는 전자기 모드가 독립적인 맥스웰(Maxwell) 방정식을 이용하여 전산모사를 하면 모든 방향에 대해 광 밴드갭을 가지는 것을 확인 가능하다.One of the measures to compensate for the incomplete optical bandgap characteristics in the opal structure as described above is to use an inverse opal structure in which fine particles are arranged in the medium as the crystal lattice of the face center cube. Computation simulation using Maxwell's independent electromagnetic mode, in which the medium does not absorb light, shows that the optical bandgap is in all directions.
이와 같은 역전된 오팔 구조가 완전한 3차원 밴드갭을 갖기 위해서는 매질과 공기의 굴절률 비가 최소한 2.8이상이 되어야 하며, 이런 물질은 실제로 가시광 영역에서 빛을 흡수하지 않는 이산화티타늄(TiO2) 등을 이용하여 제조될 수 있다. 예를 들어, 실리콘을 매질로 사용하는 경우, 광결정의 반사특성을 측정한 결과 모든 방향으로 특정파장대의 빛을 거의 99%반사시킬 수 있다. In order for such an inverted opal structure to have a complete three-dimensional band gap, the refractive index ratio between the medium and the air must be at least 2.8, and such a material is made of titanium dioxide (TiO 2 ) that does not actually absorb light in the visible region. Can be prepared. For example, when silicon is used as a medium, as a result of measuring the reflection characteristics of the photonic crystal, it is possible to reflect almost 99% of light having a specific wavelength in all directions.
하지만, 역전된 오팔 구조는 가시광 영역에서 3차원 광 밴드갭을 구현할 수 있는 가능성을 갖고 있음에도 불구하고, 오팔의 광 밴드갭은 실제 광학소자로 응용되기에 밴드갭이 충분히 넓지 못하다는 단점이 있다. However, although the inverted opal structure has the possibility of realizing a three-dimensional optical bandgap in the visible region, the optical bandgap of the opal has a disadvantage in that the bandgap is not wide enough to be actually applied to an optical device.
보다 넓은 광 밴드갭을 얻기 위한 연구의 결과로 구가 면심입방체의 결정격자구조로 배열된 것보다는 다이아몬드의 탄소원자가 배열된 것과 같이 사면체 구조로 배열되는 경우, 보다 넓은 밴드갭을 갖는 것으로 알려져 있다.As a result of research to obtain a wider optical bandgap, it is known that a sphere has a wider bandgap when a sphere is arranged in a tetrahedral structure such as diamond carbon atoms are arranged rather than a crystal lattice structure of a face centered cube.
광결정의 격자구조를 다이아몬드 구조로 형성하기 위한 방안 중 하나로 다양한 LiGA(Lithographie, Galvanoformung, Abformung) 기술이 이용될 수 있다. LiGA 기술은 미세가공기술인 식각법에 바탕을 두고 광결정을 제조하는 방법으로, 굴절률을 갖는 유전체의 표면 위에 점원(point circle)들을 삼각형 정렬로 배열하도록 패턴을 만든 후, 각 점원 위에서 3개의 서로 다른 방향으로 X선 리소그래피(deep x-ray lithography)로 구멍을 내어 만든다. 세 개의 X선 빔이 마주치는 부분은 공기의 공동이 크게 형성되고, 이들은 서로 연결되어 있으며, 큰 공동은 다이아몬드에서 탄소원자와 같은 격자위치에 놓이게 된다. 이때, 공동은 정확한 구가 아닌 변형된 다이아몬드 구조로 면심입방체의 실리콘 역전 오팔에 비하여 약 4배 이상 넓은 광 밴드갭을 보일 수 있다.Various methods of forming LiGA (Lithographie, Galvanoformung, Abformung) technology may be used as one of methods for forming the lattice structure of the photonic crystal. LiGA technology is a method of manufacturing photonic crystals based on the etching process, which is a microfabrication technique. A pattern is formed to arrange point circles in triangular alignment on the surface of a dielectric having refractive index, and then three different directions on each point source. It is made by drilling through deep x-ray lithography. The areas where the three X-ray beams meet form large air cavities, which are connected to each other, and the large cavities are placed in the same lattice position as the carbon atoms in the diamond. In this case, the cavity may have an optical bandgap that is about four times wider than the silicon inverted opal of the face-centered cube in a modified diamond structure rather than an exact sphere.
또 다른 방법으로 LiGA 기술 중 적층법을 이용한 다이아몬드 구조의 광결정 제조 방법이 있다. 빔에 의한 식각이 아닌 층별로 쌓아 가면서 능동적으로 광전자기능을 발현할 수 있는 점 또는 선형공간을 한꺼번에 제조하는 방식으로, 실리콘과 같이 굴절률이 큰 유전체를 식각법을 써서 여러 개의 막대기 모양으로 만들고 일정한 간격으로 막대기를 평면 위에 나란히 배열하여 층층이 4층 구조로 쌓아 다이아몬드 구조를 만들 수 있다. 참고로, 유전체 막대기로 각 층을 쌓을 때마다 열을 가하여 막대기들이 용융상태에서 서로 접합이 되도록 한다. 또한, 일 예로 4층마다 같은 구조가 반복되도록 유전체 막대기를 반복적으로 쌓으면 다이아몬드 구조와 같은 넓은 광 밴드갭을 보일 수 있다. 여기서 밴드갭의 위치와 너비는 막대기의 굵기, 배열주기 및 굴절률에 따라 변화할 수 있다. 따라서 층별로 다른 밴드갭을 갖는 광결정의 제조가 가능하다. 또한 이 제조법은 쉽게 빛이 전파해 갈 수 있는 점 및 선형공간을 설계·제작할 수 있어서 광파 가이드와 같은 광소자의 제조가 상대적으로 용이한 장점이 있다. 그러나 공정이 복잡하고 비싸기 때문에 실용화에 어려움이 있다.Another method is a method of manufacturing a photonic crystal of a diamond structure using the lamination method of LiGA technology. It is a method of manufacturing points or linear spaces that can actively express optoelectronic functions by stacking layers by layers instead of etching by beams. The bars can be arranged side by side on a plane to form a diamond structure with four layers stacked. For reference, when each layer is stacked with a dielectric stick, heat is applied so that the sticks are bonded to each other in a molten state. Also, for example, repeatedly stacking dielectric bars such that the same structure is repeated every four layers may show a wide optical bandgap such as a diamond structure. Here, the position and width of the bandgap may vary depending on the thickness of the rod, the arrangement period and the refractive index. Therefore, it is possible to manufacture a photonic crystal having a different band gap for each layer. In addition, this manufacturing method has the advantage that it is relatively easy to manufacture an optical element such as a wave guide because it can design and manufacture a point and linear space that can easily propagate light. However, because the process is complicated and expensive, there are difficulties in practical use.
이 외의 LiGA 기술 중 광원으로부터 조사된 빛이 만나서 만드는 간섭무늬를 감광성 고분자 감광물질(Photo Resistor, PR)에 만든 후, 중합되거나 중합되지 않는 부분을 선택적으로 녹여 내어 광결정 구조를 만들 수 있는 식각법이 있다. 4개의 광원으로부터 오는 빛은 면심입방체 구조의 간섭명암무늬를 만들고, 이를 음성 포토레지스트에 투사하면 밝은 무늬부분에서만 감광에 의한 광중합이 일어난다. 현상액으로 감광되지 않은 부분을 제거하면 고분자로 이루어진 오팔 구조의 패턴을 얻을 수 있다. 참고로, 이 고분자 오팔 사이 공간을 굴절률이 큰 실리콘이나 이산화티타늄(TiO2)으로 채운 후 열을 가하여 고분자를 분해·제거하면 실리콘 역전오팔을 얻을 수 있다. 이 방법은 결함이 없는 단결정을 얻을 수 있고, 공정이 간단하여 실용성이 크다.Among other LiGA technologies, an etch method is used to create an optical crystal structure by making an interference pattern formed by light emitted from a light source to a photosensitive polymer photoresist (PR) and then selectively dissolving the polymerized or unpolymerized part. have. The light from the four light sources creates an interference contrast pattern of face-centered cubic structure, and when it is projected onto the negative photoresist, photopolymerization occurs due to photosensitivity only in the bright pattern. By removing the unsensitized part with a developer, an opal structure pattern made of a polymer can be obtained. For reference, the space between the polymer opals is filled with silicon or titanium dioxide (TiO 2 ) having a high refractive index, and then heat is decomposed and removed to obtain a silicon reverse opal. This method can obtain a single crystal free from defects, and the process is simple and practical.
LiGA 기술 외에는 대표적으로 콜로이드 미립자를 활용한 광결정 제조 방법들이 사용될 수 있다. 콜로이드 미립자의 침강과 증발을 통한 결정화가 있는데, 매질에 분산된 일정한 크기의 콜로이드 미립자를 침강이나 증발을 통해 서서히 결정화시킴으로써 얻을 수 있는 방법이다. 콜로이드 미립자는 일반적으로 정전기적 반발력 또는 미립자 표면에 흡착된 고분자에 의하여 서로 엉기지 않고 안정화되어 있으며 브라운 운동으로 무질서하게 운동하고 있다. 크기가 균일한 미립자들로 이루어진 콜로이드는 미립자의 농도가 증가할수록 무질서한 배열에서 증가하는 엔트로피에 의해 자발적으로 점차 규칙적 결정 구조로 바뀌게 된다. 이때, 미립자의 농도가 49%에 이르면 결정화가 일어나며, 55% 일 때 결정화가 완전히 일어난다. 밀집구조를 갖는 2차원 배열을 차곡차곡 쌓는다면, 광결정 구조는 육방밀집구조나 면심입방구조를 가질 수 있다.Except for LiGA technology, photonic crystal manufacturing methods utilizing colloidal particles may be used. There is crystallization through sedimentation and evaporation of colloidal fine particles, which is a method that can be obtained by slowly crystallizing colloidal particles of a certain size dispersed in a medium through sedimentation or evaporation. Colloidal particles are generally stabilized without being entangled with each other by an electrostatic repulsive force or a polymer adsorbed on the surface of the particles and are disordered by Brownian motion. Colloids made up of uniformly sized particles spontaneously change into regular crystal structures due to increasing entropy in the disordered array as the concentration of the particles increases. At this time, crystallization occurs when the concentration of the fine particles reaches 49%, and crystallization occurs completely at 55%. If the two-dimensional array having a dense structure is stacked on top of one another, the photonic crystal structure may have a hexagonal dense structure or a face centered cubic structure.
뿐만 아니라, 최근에는 제조 공정이 간단하면서도 실용성이 높은 광결정을 자유롭게 형성하기 위한 다양한 연구가 이루어지고 있다.In addition, in recent years, various studies have been made to freely form photonic crystals having a simple and practical process.
본 발명은 제공 공정을 간소화할 수 있으며, 실용성이 높은 광결정 구조 및 그 제조방법을 제공한다.The present invention can simplify the providing process, and provides a highly practical photonic crystal structure and its manufacturing method.
특히, 본 발명은 광결정을 형성하기 위한 채널을 형성하는 기판을 분리하여 광결정 공극에 잔류된 용매를 건조시킬 수 있게 함으로써, 광결정 표면에서의 결함을 해결할 수 있는 광결정 구조 및 그 제조방법을 제공한다.In particular, the present invention provides a photonic crystal structure and a method for manufacturing the same, which can solve a defect on the surface of the photonic crystal by separating the substrate forming the channel for forming the photonic crystal and allowing the solvent remaining in the photonic crystal void to dry.
또한, 본 발명은 광결정 격자 구조간 결합력을 강화할 수 있으며, 기판 제거시 결함 발생을 방지할 수 있는 광결정 구조 및 그 제조방법을 제공한다.In addition, the present invention can enhance the bonding force between the photonic crystal lattice structure, and provides a photonic crystal structure and a method of manufacturing the same that can prevent the occurrence of defects during substrate removal.
또한, 본 발명은 공정 시간을 단축할 수 있으며, 안정성 및 신뢰성을 향상 시킬 수 있는 광결정 구조 및 그 제조방법을 제공한다.In addition, the present invention can shorten the process time, and provides a photonic crystal structure and its manufacturing method which can improve the stability and reliability.
또한, 본 발명은 수~수십㎜의 매크로 스케일(macro scale)의 채널폭을 갖는 대면적 광결정을 결함없이 제조할 수 있는 광결정 구조 및 그 제조방법을 제공한다.The present invention also provides a photonic crystal structure and a method of manufacturing the same, which can produce a large-area photonic crystal having a channel width of several to several tens of millimeters without a defect.
상술한 본 발명의 목적들을 달성하기 위한 본 발명의 바람직한 실시예에 따르면, 광결정 구조를 제조하는 방법은, 제1기판, 제1기판에 이격되게 적층되며 제1기판과 함께 상호 협조적으로 채널을 형성하는 제2기판, 및 제1기판과 제2기판 사이의 측면을 밀봉하는 스페이서를 포함하는 대상체를 제공하는 단계; 광반응 미립자를 포함하는 콜로이드 용액을 채널에 제공하는 단계; 광반응 미립자를 결정 구조화하는 단계; 제1기판 및 제2기판 중 적어도 어느 하나를 분리하는 단계; 및 제1기판 및 제2기판 중 분리된 적어도 어느 하나의 영역을 통해 광반응 미립자의 사이 공극에 잔류된 용매를 건조시키는 단계;를 포함한다.According to a preferred embodiment of the present invention for achieving the above object of the present invention, the method for manufacturing a photonic crystal structure, the first substrate, the first substrate is spaced apart from the first substrate and mutually cooperatively with the first substrate to form a channel Providing an object including a second substrate and a spacer sealing a side surface between the first substrate and the second substrate; Providing a colloidal solution comprising photoreactive fine particles to the channel; Crystal structuring the photoreactive fine particles; Separating at least one of the first substrate and the second substrate; And drying the solvent remaining in the pores between the photoreactive fine particles through at least one region separated from the first substrate and the second substrate.
채널 상에 광결정이 형성되고 공극(광반응 미립자 사이 간극)에 용매가 채워져 있는 상태에서는 광결정의 국소부위에 용매의 이동이나 점착으로 인한 결함이 발생할 수 있다. 특히, 매크로 스케일을 갖는 광결정의 경우에는 용매의 이동이나 점착으로 인한 결함이 발생할 확률이 높기 때문에 용매의 강제적인 건조 공정이 필요할 수 있다. 이를 위해서, 본 발명에서는 제1기판 및 제2기판 중 적어도 어느 하나를 분리하고, 분리된 기판의 영역을 통해 광반응 미립자의 사이 공극에 잔류된 용매를 빠르게 건조할 수 있도록 하였다.In the state where the photonic crystal is formed on the channel and the solvent is filled in the voids (gap between the photoreactive fine particles), defects may occur due to the movement or adhesion of the solvent to the local portion of the photonic crystal. In particular, in the case of a photonic crystal having a macro-scale, a defect may be generated due to the movement or adhesion of the solvent, and thus a forced drying process of the solvent may be necessary. To this end, in the present invention, at least one of the first substrate and the second substrate is separated, and the solvent remaining in the pores between the photoreactive fine particles can be quickly dried through the region of the separated substrate.
참고로, 광반응 미립자가 결정 구조화되는 동안, 대상체는 정지 또는 회전 상태를 유지할 수 있으며, 대상체의 회전시에는 원심력에 의해 광반응 미립자가 채널을 따라 이동할 수 있다. 아울러, 제1기판 및 제2기판은 제1기판(또는 제2기판)의 길이 방향을 따라 평행하게 슬라이드 이동하며 분리되거나, 일단을 중심으로 회전하며 분리될 수 있다. For reference, while the photoreaction particles are crystallized, the object may remain stationary or rotated, and when the object is rotated, the photoreaction particles may move along the channel by centrifugal force. In addition, the first substrate and the second substrate may be separated by slidingly moving in parallel along the longitudinal direction of the first substrate (or the second substrate), or rotating about one end.
제1기판 및 제2기판 중 적어도 어느 하나를 분리하는 동안, 스페이서를 열처리하는 공정이 추가될 수 있으며, 스페이서는 열처리 됨에 따라 제1기판 및 제2기판과의 구조적 결합력이 조절될 수 있다.During the separation of at least one of the first substrate and the second substrate, a process of heat-treating the spacer may be added, and as the spacer is heat-treated, the structural coupling force with the first substrate and the second substrate may be adjusted.
본 발명에서 스페이서가 열처리 됨에 따라 제1기판 및 제2기판과의 구조적 결합력이 조절된다 함은, 스페이서가 열처리 됨에 따라 스페이서와 제1기판 및 제2기판에 대한 스페이서의 결합력이 조절되는 것으로 이해될 수 있다. 일 예로, 스페이서를 열처리하는 단계에서, 스페이서는 가열될 수 있고, 스페이서가 가열되는 동안 제1기판 및 제2기판에 대한 스페이서의 접착력이 감소될 수 있다.In the present invention, it is understood that the structural bonding force between the first substrate and the second substrate is controlled as the spacer is heat-treated, and the binding force of the spacer to the first substrate and the second substrate is adjusted as the spacer is heat-treated. Can be. For example, in the heat treatment of the spacer, the spacer may be heated, and the adhesion of the spacer to the first substrate and the second substrate may be reduced while the spacer is heated.
스페이서로서는 열처리 공정시 구조적 결합력이 조절될 수 있는 다양한 재질이 사용될 수 있다. 일 예로, 스페이서는 파라필름(parafilm)으로 형성될 수 있다.As the spacer, various materials may be used in which the structural bonding force may be adjusted during the heat treatment process. For example, the spacer may be formed of a parafilm.
스페이서의 가열 온도 조건은 스페이서의 재질, 용매의 특성에 따라 다양하게 변경될 수 있다. 바람직하게 스페이서의 가열 온도는 스페이서에 의한 접착력이 감소 가능한 최소온도(스페이서의 접착력이 열처리 되지 않은 상태보다 낮아지기 시작하는 가열 온도)보다 크고 용매의 끓는점보다 낮은 온도 범위로 정해질 수 있다. 경우에 따라서는 스페이서의 특성에 따라 스페이서의 냉각 또는 다른 열처리 과정을 통해 스페이서에 의한 구조적 결합력이 조절되도록 구성하는 것도 가능하다. 다르게는, 스페이서의 열처리 과정 없이 각 기판이 분리되도록 구성하는 것도 가능하다.Heating temperature conditions of the spacer may be variously changed according to the material of the spacer, the characteristics of the solvent. Preferably, the heating temperature of the spacer may be set to a temperature range that is greater than the minimum temperature at which the adhesion by the spacer can be reduced (heating temperature at which the adhesion of the spacer starts to be lower than the unheated state) and lower than the boiling point of the solvent. In some cases, it is also possible to configure the structural coupling force by the spacer through cooling or other heat treatment process of the spacer according to the characteristics of the spacer. Alternatively, it is possible to configure each substrate to be separated without the heat treatment process of the spacer.
또한, 제1기판 및 제2기판 중 적어도 어느 하나를 분리하는 동안, 제1기판 및 제2기판 중 적어도 어느 하나를 열처리하는 공정이 추가될 수 있으며, 제1기판 및 제2기판은 열처리됨에 따라 제1기판 및 제2기판에 대한 용매의 표면장력이 조절될 수 있다.In addition, while separating at least one of the first substrate and the second substrate, a process of heat treating at least one of the first substrate and the second substrate may be added, and as the first substrate and the second substrate are heat treated, The surface tension of the solvent on the first substrate and the second substrate can be adjusted.
참고로, 본 발명에서 기판의 열처리라 함은 냉각, 가열 등과 같은 통상의 열처리 조건을 포함하는 개념으로 이해될 수 있으며, 기판의 열처리 방식에 의해 본 발명이 제한되거나 한정되는 것은 아니다. 일 예로, 제1기판 및 제2기판 중 적어도 어느 하나를 열처리하는 단계에서, 제1기판 및 제2기판은 서로 다른 온도 조건으로 열처리될 수 있다. 보다 구체적인 일 예로서, 제1기판 및 제2기판 중 적어도 어느 하나를 열처리하는 단계에서, 제1기판은 가열되거나 상온으로 유지되고, 제2기판은 제1기판보다 상대적으로 낮은 온도로 냉각되고, 제1기판 및 제2기판 중 적어도 어느 하나를 분리하는 단계에서는 상대적으로 높은 온도를 갖는 제1기판이 분리될 수 있다. 경우에 따라서는, 제1기판 및 제2기판의 열처리시 제1기판 및 제2기판이 모두 냉각되거나 모두 가열되도록 구성하는 것도 가능하다.For reference, the heat treatment of the substrate in the present invention can be understood as a concept including the usual heat treatment conditions such as cooling, heating, etc., the present invention is not limited or limited by the heat treatment method of the substrate. For example, in the heat treatment of at least one of the first substrate and the second substrate, the first substrate and the second substrate may be heat treated under different temperature conditions. As a more specific example, in the heat treatment of at least one of the first substrate and the second substrate, the first substrate is heated or maintained at room temperature, the second substrate is cooled to a relatively lower temperature than the first substrate, In the separating of at least one of the first substrate and the second substrate, the first substrate having a relatively high temperature may be separated. In some cases, the first substrate and the second substrate may be cooled or both heated during the heat treatment of the first substrate and the second substrate.
제1기판 및 제2기판의 열처리 온도 조건은 기판의 재질 및 용매의 특성에 따라 다양하게 변경될 수 있다. 바람직하게 제1기판은 용매의 끓는점보다 낮은 온도로 가열될 수 있고, 제2기판은 용매의 어는점보다 높은 온도로 냉각될 수 있다.Heat treatment temperature conditions of the first substrate and the second substrate may be variously changed according to the material of the substrate and the characteristics of the solvent. Preferably, the first substrate may be heated to a temperature lower than the boiling point of the solvent, and the second substrate may be cooled to a temperature higher than the freezing point of the solvent.
제1기판 및 제2기판 중 분리된 적어도 어느 하나의 영역을 통해 광반응 미립자의 사이 공극에 잔류된 용매를 건조시킬 수 있는 바, 광반응 미립자의 사이 공극에 잔류된 용매는, 제1기판 및 제2기판 중 적어도 어느 하나를 분리하는 동안 수행되거나, 제1기판 및 제2기판 중 적어도 어느 하나가 분리된 후 수행될 수 있다.The solvent remaining in the voids between the photoreactive particles may be dried through at least one of the separated regions of the first substrate and the second substrate. This may be performed while at least one of the second substrates is separated, or after at least one of the first and second substrates is separated.
본 발명에 따른 광결정 구조 및 그 제조방법에 의하면, 제조 공정이 간단하면서도 실용성이 높은 광결정을 자유롭게 형성할 수 있다.According to the photonic crystal structure and the manufacturing method thereof according to the present invention, it is possible to freely form a photonic crystal with a simple and practical process.
특히, 본 발명에 따르면 대상체를 형성하는 기판을 분리하고, 기판이 분리된 영역을 통해 광반응 미립자의 사이 공극에 잔류된 용매가 건조될 수 있게 함으로써, 광결정 제조에 필요한 시간을 현저하게 단축할 수 있으며, 광결정 표면에서의 결함을 최초화할 수 있다.In particular, according to the present invention, by separating the substrate forming the object, and allowing the solvent remaining in the gap between the photoreaction particles through the separated region of the substrate to be dried, it is possible to significantly shorten the time required for photonic crystal production And defects on the photonic crystal surface can be initialized.
또한, 본 발명에 따르면 광결정 격자 구조간 결합력을 강화할 수 있으며, 안정성 및 신뢰성을 향상 시킬 수 있다.In addition, according to the present invention can enhance the bonding strength between the photonic crystal lattice structure, it is possible to improve the stability and reliability.
또한, 본 발명에 따르면 수~수십㎜의 매크로 스케일(macro scale)의 채널폭을 갖는 대면적 광결정을 표면 결함없이 제조할 수 있다.In addition, according to the present invention, a large-area photonic crystal having a channel width of several to several tens of millimeters can be produced without surface defects.
또한, 본 발명에 따르면 기판 분리시 스페이서의 열처리 공정을 통해 기판에 대한 스페이서의 구조적 결합력을 조절할 수 있게 함으로써, 스페이서에 대한 기판 분리를 보다 수월하게 수행할 수 있다.In addition, according to the present invention, it is possible to more easily perform the separation of the substrate to the spacer by making it possible to adjust the structural bonding strength of the spacer to the substrate through the heat treatment process of the spacer during separation of the substrate.
더욱이, 본 발명에 따르면 높은 신축성과 열에 따른 독특한 특성을 갖는 파라필름을 이용하여 스페이서를 형성함으로써, 광결정 형성시에는 구조적 안정성 및 밀봉성을 유지할 수 있고, 열처리시에는 접착력을 조절할 수 있다.Furthermore, according to the present invention, by forming a spacer using a parafilm having a high elasticity and a unique characteristic according to heat, it is possible to maintain structural stability and sealability when forming photonic crystals, and to control adhesion during heat treatment.
또한, 본 발명에 따르면 기판 분리시 기판의 열처리 공정을 통해 기판에 대한 용매의 표면장력을 조절할 수 있게 함으로써, 광결정 표면의 결함없이 기판을 보다 쉽게 분리할 수 있다.In addition, according to the present invention by controlling the surface tension of the solvent to the substrate through the heat treatment process of the substrate during substrate separation, it is possible to more easily separate the substrate without defects on the surface of the photonic crystal.
도 1은 본 발명에 따른 광결정 구조의 제조방법을 설명하기 위한 도면이다.1 is a view for explaining a method of manufacturing a photonic crystal structure according to the present invention.
도 2 내지 도 6은 본 발명에 따른 광결정 구조의 제조방법으로서, 대상체에 콜로이드 용액을 공급한 후, 광반응 미립자를 결정 구조화하는 단계를 설명하기 위한 도면이다.2 to 6 are diagrams for explaining a step of crystallizing photoreactive fine particles after supplying a colloidal solution to a subject as a method of manufacturing a photonic crystal structure according to the present invention.
도 7은 본 발명에 따른 광결정 구조의 제조방법으로서, 스페이서의 열처리 단계를 설명하기 위한 도면이다.7 is a view for explaining a heat treatment step of a spacer as a method of manufacturing a photonic crystal structure according to the present invention.
도 8은 본 발명에 따른 광결정 구조의 제조방법으로서, 기판의 열처리 단계를 설명하기 위한 도면이다.8 is a view for explaining a heat treatment step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention.
도 9는 본 발명에 따른 광결정 구조의 제조방법으로서, 기판의 분리 단계를 설명하기 위한 도면이다.9 is a view for explaining a separation step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention.
도 10 및 도 11은 본 발명에 따른 광결정 구조의 제조방법으로서, 기판의 분리 단계의 변형예를 설명하기 위한 도면이다.10 and 11 are views for explaining a modification of the separation step of the substrate as a method of manufacturing the photonic crystal structure according to the present invention.
도 12는 본 발명에 따른 광결정 구조의 제조방법으로서, 용매가 건조된 광결정을 설명하기 위한 도면이다.12 is a view for explaining a photonic crystal in which a solvent is dried as a method of manufacturing a photonic crystal structure according to the present invention.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다. 참고로, 본 설명에서 동일한 번호는 실질적으로 동일한 요소를 지칭하며, 이러한 규칙 하에서 다른 도면에 기재된 내용을 인용하여 설명할 수 있고, 당업자에게 자명하다고 판단되거나 반복되는 내용은 생략될 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited or limited by the embodiments. For reference, in the present description, the same numbers refer to substantially the same elements, and may be described by referring to the contents described in the other drawings under these rules, and the contents determined to be obvious to those skilled in the art or repeated may be omitted.
도 1은 본 발명에 따른 광결정 구조의 제조방법을 설명하기 위한 도면이다. 또한, 도 2 내지 도 6은 본 발명에 따른 광결정 구조의 제조방법으로서, 대상체에 콜로이드 용액을 공급한 후, 광반응 미립자를 결정 구조화하는 단계를 설명하기 위한 도면이고, 도 7은 본 발명에 따른 광결정 구조의 제조방법으로서, 스페이서의 열처리 단계를 설명하기 위한 도면이며, 도 8은 본 발명에 따른 광결정 구조의 제조방법으로서, 기판의 열처리 단계를 설명하기 위한 도면이다. 또한, 도 9는 본 발명에 따른 광결정 구조의 제조방법으로서, 기판의 분리 단계를 설명하기 위한 도면이고, 도 10 및 도 11은 본 발명에 따른 광결정 구조의 제조방법으로서, 기판의 분리 단계의 변형예를 설명하기 위한 도면이며, 도 12는 본 발명에 따른 광결정 구조의 제조방법으로서, 용매가 건조된 광결정을 설명하기 위한 도면이다.1 is a view for explaining a method of manufacturing a photonic crystal structure according to the present invention. In addition, Figures 2 to 6 is a method for manufacturing a photonic crystal structure according to the present invention, after supplying a colloidal solution to the object, a view for explaining the step of crystal structuring the photoreactive fine particles, Figure 7 according to the present invention FIG. 8 is a view for explaining a heat treatment step of a spacer as a method of manufacturing a photonic crystal structure, and FIG. 8 is a view for explaining a heat treatment step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention. 9 is a view for explaining a separation step of a substrate as a method of manufacturing a photonic crystal structure according to the present invention, Figures 10 and 11 is a method for manufacturing a photonic crystal structure according to the present invention, a modification of the separation step of a substrate It is a figure for demonstrating an example, and FIG. 12 is a figure for demonstrating the photonic crystal in which the solvent was dried as a manufacturing method of the photonic crystal structure which concerns on this invention.
도 1을 참조하면, 본 발명에 따른 광결정 구조의 제조방법은, 제1기판(110), 제1기판(110)에 이격되게 적층되며 제1기판(110)과 함께 상호 협조적으로 채널(111)을 형성하는 제2기판(120), 및 제1기판(110)과 제2기판(120) 사이의 측면을 밀봉하는 스페이서(130)를 포함하는 대상체(100)를 제공하는 단계; 광반응 미립자(10)를 포함하는 콜로이드 용액을 채널(111)에 제공하는 단계; 광반응 미립자(10)를 결정 구조화하는 단계; 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리하는 단계; 및 제1기판(110) 및 제2기판(120) 중 분리된 적어도 어느 하나의 영역을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매를 건조시키는 단계;를 포함한다.Referring to FIG. 1, in the method of manufacturing the photonic crystal structure according to the present invention, the first substrate 110 and the first substrate 110 are spaced apart from each other, and the channel 111 is cooperatively cooperated with the first substrate 110. Providing an object (100) comprising a second substrate (120) forming a gap and a spacer (130) for sealing a side surface between the first substrate (110) and the second substrate (120); Providing a colloidal solution comprising photoreactive fine particles 10 to a channel 111; Crystal structuring the photoreaction fine particles 10; Separating at least one of the first substrate 110 and the second substrate 120; And drying the solvent remaining in the pores between the photoreactive fine particles 10 through at least one of the separated regions of the first substrate 110 and the second substrate 120.
도 2를 참조하면, 먼저 대상체(100)를 제공한다.Referring to FIG. 2, first, an object 100 is provided.
상기 대상체(100)는 제1기판(110), 상기 제1기판(110)에 이격되게 적층되는 제2기판(120), 및 상기 제1기판(110)과 제2기판(120) 사이의 측면을 밀봉하는 스페이서(130)를 포함하여 구성될 수 있으며, 상기 제1기판(110)과 제2기판(120)의 사이에는 적어도 일측에 개구부를 갖는 제한적인 내부공간(limited inner space)으로 이루어진 채널(111)이 제공된다.The object 100 may include a first substrate 110, a second substrate 120 stacked on the first substrate 110, and a side surface between the first substrate 110 and the second substrate 120. It may be configured to include a spacer 130 for sealing, the channel consisting of a limited inner space having an opening at least on one side between the first substrate 110 and the second substrate 120 111 is provided.
참고로, 후술할 광반응 미립자(10)를 결정 구조화하는 동안, 상기 대상체(100)는 정지 또는 회전 상태를 유지할 수 있으며, 상기 대상체(100)의 회전시에는 원심력에 의해 광반응 미립자(10)가 채널(111)을 따라 이동할 수 있다. 이하에서는 후술할 광반응 미립자(10)를 결정 구조화하는 동안 대상체(100)가 회전하도록 구성된 예를 들어 설명하기로 한다.For reference, while crystallization of the photoreactive fine particles 10 to be described later, the object 100 may remain stationary or rotated, and when the object 100 is rotated, the photoreactive fine particles 10 may be caused by centrifugal force. May move along channel 111. Hereinafter, an example in which the object 100 is rotated while crystallizing the photoreactive particles 10 to be described below will be described.
바람직하게, 상기 채널(111)은 폭(W) 방향이 후술할 대상체(100)의 회전축 방향을 따라 배치되도록 형성되고, 대상체(100)가 회전하는 동안 대상체(100)의 길이 방향으로 원심력이 작용할 수 있는 바, 대상체(100)가 회전함에 따른 원심력은 채널(111)의 폭을 따라 전체적으로 동일한 방향성을 갖는다. 여기서, 상기 원심력이 채널(111)의 폭을 따라 전체적으로 동일한 방향성을 갖는다 함은, 채널(111)의 폭 방향을 따른 위치에 관계없이 대상체(100)가 회전함에 따른 원심력이 항상 일정한 방향(대상체(100)의 길이 방향)으로 작용하는 것으로 이해될 수 있다.Preferably, the channel 111 is formed such that the width (W) direction is disposed along the rotation axis direction of the object 100 to be described later, and the centrifugal force acts in the longitudinal direction of the object 100 while the object 100 rotates. As can be seen, the centrifugal force as the object 100 rotates has the same direction as a whole along the width of the channel 111. Here, the centrifugal force has the same direction as a whole along the width of the channel 111, regardless of the position along the width direction of the channel 111, the centrifugal force as the object 100 is always rotated in a constant direction (object ( 100) in the longitudinal direction).
상기 제1기판(110) 및 제2기판(120)은 요구되는 조건 및 설계 사양에 따라 다양한 재질로 형성될 수 있다. 일 예로, 상기 제1기판(110) 및 제2기판(120)은 통상의 유리 재질로 형성될 수 있으며, 이외에도 사파이어, 실리콘, 질화갈륨, 비소화갈륨, 탄화실리콘 또는 산화아연 등을 사용할 수 있다.The first and second substrates 110 and 120 may be formed of various materials according to required conditions and design specifications. For example, the first substrate 110 and the second substrate 120 may be formed of a common glass material, in addition to sapphire, silicon, gallium nitride, gallium arsenide, silicon carbide or zinc oxide. .
또한, 상기 제1기판(110)의 내면에는 제1코팅층(미도시)이 형성될 수 있고, 상기 제2기판(120)의 내면에는 제2코팅층(미도시)이 형성될 수 있다.In addition, a first coating layer (not shown) may be formed on an inner surface of the first substrate 110, and a second coating layer (not shown) may be formed on an inner surface of the second substrate 120.
상기 제1코팅층 및 제2코팅층은 광결정을 제조하는 과정에서 용매의 극성 및 각 기판의 표면 특성에 의한 기판의 미세한 휘어짐, 용매의 표면 점착 및 이동으로 인해 발생할 수 있는 광결정의 표면 결함을 제거하고, 광결정을 제조한 후 용매의 건조 과정에서 발생할 수 있는 결함을 제거하기 위해 제공될 수 있다. 특히, 매크로 스케일 단위의 대면적 광결정을 형성하기 위해서는, 기판과 광결정의 표면에서 발생할 수 있는 결함을 해결할 수 있어야 한다.The first coating layer and the second coating layer to remove the surface defects of the photonic crystal that may occur due to the fine bending of the substrate, the surface adhesion and movement of the solvent due to the polarity of the solvent and the surface characteristics of each substrate in the process of manufacturing the photonic crystal, After preparing the photonic crystal may be provided to remove defects that may occur during the drying of the solvent. In particular, in order to form a large-area photonic crystal in macroscale units, it is necessary to solve defects that may occur on the substrate and the surface of the photonic crystal.
이를 위해, 상기 제1코팅층 및 제2코팅층은 소수성 또는 친수성 특성, 및 가스투과성을 갖는 재질로 형성될 수 있다. 일 예로, 상기 제1코팅층 및 제2코팅층은 P 또는 PMMA 등의 소수성 표면을 갖는(낮은 표면 에너지를 갖는) 폴리머 계열 및 실리콘 계열의 재료, OTS, FOTS, SPFPE 등의 화학적 코팅 재료, 코팅 표면을 구성하고 있는 나노 구조물에 의한 소수성을 갖는 재료 등으로 형성될 수 있다.To this end, the first coating layer and the second coating layer may be formed of a material having hydrophobic or hydrophilic characteristics, and gas permeability. For example, the first coating layer and the second coating layer may be a polymer-based and silicon-based material having a hydrophobic surface (low surface energy) such as P or PMMA, a chemical coating material such as OTS, FOTS, or SPFPE, and a coating surface. It may be formed of a material having hydrophobicity by the nanostructure constituting.
상기 제1코팅층 및 제2코팅층은 침지법, 도핑법, 스핀 코팅법, 화학 기상 증착법, 플라즈마 처리법 등에 의해 형성될 수 있으며, 그 형성 방법에 의해 본 발명이 제한되거나 한정되는 것은 아니다.The first coating layer and the second coating layer may be formed by an immersion method, a doping method, a spin coating method, a chemical vapor deposition method, a plasma treatment method, etc. The present invention is not limited or limited by the formation method.
상기 스페이서(130)는 제1기판(110)과 제2기판(120)의 사이에 형성되는 광결정의 두께를 제한적으로 제공하고, 제1기판(110)과 제2기판(120) 간의 접착성을 유지하기 위해 제공된다.The spacer 130 provides a limited thickness of the photonic crystal formed between the first substrate 110 and the second substrate 120, and provides adhesion between the first substrate 110 and the second substrate 120. Provided to maintain.
상기 스페이서(130)는 후술할 열처리 공정에 의해 제1기판(110) 및 제2기판(120)과의 구조적 결합력이 조절될 수 있도록 열에 따른 독특한 특성을 갖는 재질로 형성될 수 있다. 일 예로, 상기 스페이서(130)로서는 높은 신축성과 열에 따른 독특한 특성을 갖는 파라필름(Parafilm)으로 형성될 수 있으며, 스페이서(130)가 가열되는 동안 제1기판(110) 및 제2기판(120)에 대한 스페이서(130)의 접착력이 감소될 수 있다.The spacer 130 may be formed of a material having a unique characteristic according to heat so that the structural coupling force with the first substrate 110 and the second substrate 120 can be adjusted by a heat treatment process to be described later. For example, the spacer 130 may be formed of a parafilm having high elasticity and unique characteristics according to heat, and the first substrate 110 and the second substrate 120 while the spacer 130 is heated. The adhesion of the spacer 130 to the can be reduced.
참고로, 본 발명에서 광반응 미립자(10)라 함은 광결정 구조를 형성할 수 있는 미립자로 이해될 수 있으며, 그 종류 및 특성에 의해 본 발명이 제한되거나 한정되는 것은 아니다. 일 예로, 광반응 미립자(10)는 폴리스티렌(PS), 폴리메틸메타크릴레이트 및 실리카 미립자 중 적어도 어느 하나를 포함하여 구성될 수 있다. 이하에서는 광반응 미립자(10)로서 실리카 미립자가 사용된 예를 들어 설명하기로 한다.For reference, in the present invention, the photoreactive fine particles 10 may be understood as fine particles capable of forming a photonic crystal structure, and the present invention is not limited or limited by the type and characteristics thereof. For example, the photoreactive fine particles 10 may include at least one of polystyrene (PS), polymethyl methacrylate, and silica fine particles. Hereinafter, an example in which silica fine particles are used as the photoreactive fine particles 10 will be described.
아울러, 광반응 미립자(10)의 직경은 각 입자의 재질에 따른 굴절률(reflective Index) 및 형상에 따라 광결정 제작시 가시광선 영역, 적외선 영역, 및 자외선 영역의 광결정 특성을 낼 수 있는 크기를 선택하여 사용할 수 있다.In addition, the diameter of the photoreactive fine particles 10 is selected according to the refractive index (reflective Index) and shape according to the material of each particle to select the size that can exhibit the photonic crystal characteristics of the visible region, infrared region, and ultraviolet region in the photonic crystal manufacturing Can be used.
다음, 도 3 및 도 4를 참조하면, 광반응 미립자(10)를 포함하는 콜로이드 용액을 채널(111)에 제공한다.Next, referring to FIGS. 3 and 4, the colloidal solution including the photoreactive fine particles 10 is provided in the channel 111.
상기 채널(111) 상에 콜로이드 용액을 제공하는 방식은 요구되는 조건 및 설계 사양에 따라 다양하게 변경될 수 있다. 일 예로, 특정 두께(T), 폭(W) 및 길이(L)를 갖는 채널(111)과 대기와 접촉할 수 있는 개구부를 포함하는 대상체(100)의 단부(일단 또는 양단)를 광반응 미립자(10)가 분산되어 있는 콜로이드 용액에 접촉시키면, 채널(111) 단면의 수력직경(Hydraulic diameter)과 관련된 모세관력에 의해 대상체(100)의 채널(111)로 콜로이드 용액이 채워질 수 있다. 상기 채널(111)에 콜로이드 용액이 가득 채워지도록 한 후, 콜로이드 용액이 담긴 용기로부터 대상체(100)의 접촉을 해제하면 대상체(100) 내부의 콜로이드 용액은 모세관력에 의해 외부로 유출되지 않고, 콜로이드 용액에 분산되어 있는 광반응 미립자(10)는 용매의 표면장력과 모세관력에 가로막혀 외부로 유출되지 않게 된다.The manner of providing the colloidal solution on the channel 111 may be variously changed according to the required conditions and design specifications. For example, the photoreactive fine particles are formed at one end (one or both ends) of the object 100 including a channel 111 having a specific thickness T, a width W, and a length L, and an opening capable of contacting the atmosphere. When the colloidal solution 10 is in contact with the dispersed colloidal solution, the colloidal solution may be filled into the channel 111 of the object 100 by capillary force related to the hydraulic diameter of the cross section of the channel 111. After the colloidal solution is filled in the channel 111, when the contact of the object 100 is released from the container containing the colloidal solution, the colloidal solution inside the object 100 does not leak to the outside by capillary force, The photoreactive fine particles 10 dispersed in the solution are blocked by the surface tension and the capillary force of the solvent so that they do not flow out.
다음, 상기 광반응 미립자(10)를 결정 구조화한다.Next, the photoreaction fine particles 10 are crystallized.
상기 대상체(100)의 개구부를 대기와 접촉시켜 건조시키면 용매가 대기와 접촉하고 있는 면으로부터 서서히 증발되기 시작한다. 용매가 증발되기 시작하면 채널(111)에 존재하는 콜로이드 용액의 부피가 감소하면서 이를 보상하기 위해 모세관력이 대기와의 접촉면 쪽으로 작용하게 되고 대상체(100)의 내부에서 용매와의 표면장력으로 인해 형성된 곡면이 대기 접촉면으로 함께 이동하게 된다.When the opening of the object 100 is brought into contact with the atmosphere and dried, the solvent starts to evaporate gradually from the surface in contact with the atmosphere. When the solvent starts to evaporate, the volume of the colloidal solution present in the channel 111 decreases, and capillary force acts toward the contact surface with the atmosphere to compensate for this and is formed due to the surface tension with the solvent inside the object 100. The curved surface moves together to the atmospheric contact surface.
따라서, 대기와 접촉하여 증발되고 있는 방향으로 모세관력이 작용하면서 콜로이드 용액과 광반응 미립자(10)가 이동하게 된다. 결과적으로 대기와 접촉하고 있는 면으로 광반응 미립자(10)가 이동하게 되고 광반응 미립자(10)의 농도 증가와 용매가 증발하며 자기 결합에 의해 규칙적으로 결정화되어 있는 광반응 미립자(10)들의 적합한 다음 위치로 이동하여 서서히 순차적으로 결정이 성장하게 된다. 결정이 지속적으로 성장하는 과정이 지속되며 콜로이드 용액의 용매가 완전히 증발하게 되면 채널(111) 내부에 특정 두께를 갖는 광결정이 제조될 수 있다.Therefore, while the capillary force acts in the direction of evaporation in contact with the atmosphere, the colloidal solution and the photoreactive fine particles 10 move. As a result, the photoreactive particles 10 move to the surface in contact with the atmosphere, and the increase of the concentration of the photoreactive particles 10 and the evaporation of the solvent are appropriate for the photoreaction particles 10 which are regularly crystallized by magnetic bonding. By moving to the next position, the crystals grow gradually in sequence. If the crystal is continuously grown and the solvent of the colloidal solution is completely evaporated, a photonic crystal having a specific thickness inside the channel 111 may be manufactured.
참고로, 상기 광반응 미립자(10)로서는 200~300nm의 크기를 갖는 광반응 미립자(10)가 사용될 수 있다. 예를 들어, 약 200nm 미만의 광반응 미립자(10)를 사용하여 형성된 광결정의 경우 보라색 이후의 영역인 자외선 영역의 파장을 반사하여 가시광선 영역의 파장 반사를 기대할 수 없고, 약 300nm 이상의 크기를 사용하여 형성된 광결정의 경우 적외선 영역의 파장을 반사하여 가시광선 영역의 파장 반사를 기대할 수 없기 때문에, 광반응 미립자(10)는 200~300nm의 크기로 제공되는 것이 바람직하다.For reference, the photoreactive fine particles 10 having a size of 200 ~ 300nm may be used as the photoreactive fine particles 10. For example, in the case of the photonic crystal formed using the photoreactive fine particles 10 of less than about 200nm, the wavelength reflection of the visible light region cannot be expected by reflecting the wavelength of the ultraviolet region, which is the region after purple, and the size of about 300nm or more is used. In the case of the photonic crystal formed, the photoreaction fine particles 10 are preferably provided in a size of 200 to 300 nm because the reflection of the wavelength of the infrared region cannot be expected.
아울러, 상기 콜로이드 용액의 광반응 미립자(10)의 농도는 55 중량% 미만으로 제공되는 것이 바람직하다. 즉, 약 55% 중량% 이상의 농도에서는 광반응 미립자(10)가 콜로이드 용액의 내에서 자기 조립하며 결정화되는 특성이 있으며 높은 점성으로 인해 채널(111)에 채워지기 쉽지 않으므로 농도를 높여 채널(111)에 형성되는 광결정의 면적을 증가시키기에 한계가 있다.In addition, the concentration of the photoreactive fine particles 10 of the colloidal solution is preferably provided to less than 55% by weight. That is, at a concentration of about 55% by weight or more, the photoreactive fine particles 10 are self-assembled and crystallized in the colloidal solution, and are not easily filled in the channel 111 due to the high viscosity. There is a limit to increase the area of the photonic crystal formed in the.
또한, 광반응 미립자(10)가 자기 조립되는 동안, 상기 대상체(100)에는 채널(111)에 추가적으로 콜로이드 용액을 공급하기 위한 콜로이드 공급부(미도시)가 연결될 수 있다. 상기 콜로이드 공급부는 광반응 미립자(10)가 결정 구조화하는 동안 대상체(100)의 채널(111)에 지속적으로 광반응 미립자(10)를 주입할 수 있다.In addition, while the photoreactive particles 10 are self-assembled, a colloid supply unit (not shown) for supplying a colloidal solution to the channel 111 may be connected to the object 100. The colloid supply unit may continuously inject the photoreactive particles 10 into the channel 111 of the object 100 while the photoreactive particles 10 are crystallized.
상기 콜로이드 공급부(300)와 채널(111)에 콜로이드 용액을 채운 상태에서 대상체(100)가 대기와 접촉한 면으로부터 용매를 증발시키며 선단 일부를 먼저 결정화시켜 대상체(100)의 개구부로 용매가 유출되는 것을 막기 위한 벽(barrier-seed)을 형성할 수 있다. 이는 후술할 원심력에 의해 콜로이드 공급부 및 채널(111)에 존재하는 콜로이드 용액이 외부로 유출되는 것을 방지할 수 있게 하고, 대기 접촉면(개구부)에서부터 광결정이 순차적으로 형성될 수 있게 한다. 참고로, 상기 벽(barrier-seed)의 폭, 길이 및 두께는 이후 회전 공정에서의 회전 속도에 따라 적절히 조절될 수 있다. 경우에 따라서는 별도의 배리어 시드층을 형성하지 않고 전술한 소수성 멤브레인을 대상체의 개구부에 부착하는 것도 가능하다.In the state where the colloidal solution is filled in the colloid supplying unit 300 and the channel 111, the solvent is evaporated from the surface in which the object 100 contacts the atmosphere, and a portion of the tip is first crystallized so that the solvent flows out to the opening of the object 100. It can form a barrier-seed to prevent it. This makes it possible to prevent the colloidal solution present in the colloid supply part and the channel 111 from flowing out to the outside by the centrifugal force, which will be described later, and allow the photonic crystals to be sequentially formed from the atmospheric contact surface (opening part). For reference, the width, length and thickness of the barrier-seed may be appropriately adjusted according to the rotation speed in the subsequent rotation process. In some cases, it is also possible to attach the aforementioned hydrophobic membrane to the opening of the object without forming a separate barrier seed layer.
도 5 및 도 6을 참조하면, 전술한 바와 같이 광반응 미립자(10)가 결정 구조화되는 동안에는 대상체(100)가 회전 상태를 유지할 수 있다.5 and 6, as described above, the object 100 may be rotated while the photoreactive fine particles 10 are crystallized.
상기 대상체(100)가 회전하게 되면, 대상체(100)의 길이 방향을 따라 원심력이 작용하며, 원심력에 의해 광반응 미립자(10)가 대상체(100)의 길이(L) 방향을 따라 이동할 수 있다. 이때, 광반응 미립자(10)에 작용하는 원심력은 채널(111)의 폭(W) 방향을 따른 위치에 관계없이 채널(111)의 폭을 따라 전체적으로 동일한 방향성을 갖기 때문에, 원심력 방향의 차이로 인한 결함을 미연에 방지할 수 있다.When the object 100 is rotated, centrifugal force acts along the length direction of the object 100, and the photoreaction fine particles 10 may move along the length L direction of the object 100 by the centrifugal force. At this time, the centrifugal force acting on the photoreactive fine particles 10 has the same directivity along the width of the channel 111 irrespective of the position along the width W direction of the channel 111. Defects can be prevented beforehand.
특히, 매크로 스케일의 광결정을 제작할 경우에는 전술한 복합체 덩어리의 부피 및 질량이 상대적으로 크기 때문에 3차원적 힘의 영향성을 크게 받아 힘의 균형이 일정하지 않은 경우 결함으로 작용할 가능성이 증가하지만, 본 발명에서는 채널의 폭 방향을 따라 일정한 방향성을 갖는 원심력이 작용할 수 있기 때문에 원심력 방향의 차이로 인한 결함을 방지할 수 있다. 참고로, 채널은 폭에 비해 매우 얇은 두께(T)를 갖기 때문에 채널의 두께 방향을 따라 원심력 방향의 차이는 무시될 수 있다.Particularly, when the macroscale photonic crystal is fabricated, since the volume and mass of the above-described composite mass are relatively large, the influence of the three-dimensional force is greatly increased, which increases the possibility of acting as a defect when the force balance is not constant. In the present invention, the centrifugal force having a constant direction along the width direction of the channel can act, so that defects due to the difference in the centrifugal force direction can be prevented. For reference, since the channel has a very thin thickness T compared to the width, the difference in the centrifugal force direction along the thickness direction of the channel can be ignored.
한편, 채널 상에 광결정이 형성되고 공극(광반응 미립자 사이 간극)에 용매가 채워져 있는 상태에서는 광결정의 국소부위에 용매의 이동이나 점착으로 인한 결함이 발생할 수 있다. 특히, 매크로 스케일을 갖는 광결정의 경우에는 용매의 이동이나 점착으로 인한 결함이 발생할 확률이 높기 때문에 용매의 강제적인 건조 공정이 필요할 수 있다. 물론, 대상체가 회전 또는 정지한 상태에서 채널의 개구부를 통해 공극 내 용매를 제거할 수도 있으나, 이와 같은 건조 방식은 건조 시간이 오래 걸릴 뿐만 아니라 결함이 발생률이 높은 문제점이 있다.On the other hand, in a state in which a photonic crystal is formed on a channel and a solvent is filled in pores (gap between photoreactive fine particles), defects may occur due to the movement or adhesion of the solvent to a local portion of the photonic crystal. In particular, in the case of a photonic crystal having a macro-scale, a defect may be generated due to the movement or adhesion of the solvent, and thus a forced drying process of the solvent may be necessary. Of course, although the solvent in the voids may be removed through the opening of the channel while the object is rotated or stopped, such a drying method may take a long time to dry and have a high incidence of defects.
이를 위해서, 본 발명에서는 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리하고, 분리된 기판의 영역을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매를 빠르게 건조할 수 있도록 하였다.To this end, in the present invention, at least one of the first substrate 110 and the second substrate 120 is separated, and the solvent remaining in the voids between the photoreaction particles 10 is rapidly dried through the region of the separated substrate. I could do it.
먼저, 상기 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리한다. 이하에서는 채널(111)에 광결정이 형성된 상태에서 제1기판(110)을 분리하는 예를 들어 설명하기로 한다. 경우에 따라서는 제1기판 대신 제2기판이 분리되거나, 제1기판 및 제2기판이 모두 분리되는 것이 가능하다.First, at least one of the first substrate 110 and the second substrate 120 is separated. Hereinafter, an example of separating the first substrate 110 in a state in which a photonic crystal is formed in the channel 111 will be described. In some cases, the second substrate may be separated instead of the first substrate, or both the first substrate and the second substrate may be separated.
참고로, 상기 제1기판(110) 및 제2기판(120)은 제1기판(110)(또는 제2기판(120))의 길이 방향을 따라 평행하게 슬라이드 이동하며 분리되거나, 일단을 중심으로 회전하며 분리될 수 있다.For reference, the first substrate 110 and the second substrate 120 are separated by slidingly moving in parallel along the longitudinal direction of the first substrate 110 (or the second substrate 120) or around one end. Can rotate and separate.
상기 제1기판(110) 및 제2기판(120)의 분리(슬라이드 이동 또는 회전 분리)는 모터와 같은 통상의 구동원에 의해 이루어질 수 있으며, 각 기판은 흡착판 또는 여타 다른 통상의 고정수단 등을 이용하여 구동원에 연결될 수 있다.Separation (slide movement or rotation separation) of the first substrate 110 and the second substrate 120 may be made by a common driving source such as a motor, and each substrate may be a suction plate or any other conventional fixing means. Can be connected to the drive source.
한편, 상기 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리하는 동안, 상기 스페이서(130)를 열처리하는 공정이 추가될 수 있다. 상기 스페이서(130)는 열처리됨에 따라 제1기판(110) 및 제2기판(120)과의 구조적 결합력이 조절될 수 있다.Meanwhile, while separating at least one of the first substrate 110 and the second substrate 120, a process of heat-treating the spacer 130 may be added. As the spacer 130 is heat treated, the structural coupling force between the first substrate 110 and the second substrate 120 may be adjusted.
본 발명에서 스페이서(130)가 열처리됨에 따라 제1기판(110) 및 제2기판(120)과의 구조적 결합력이 조절된다 함은, 스페이서(130)가 열처리됨에 따라 스페이서(130)와 제1기판(110) 및 제2기판(120)에 대한 스페이서(130)의 결합력이 조절되는 것으로 이해될 수 있다. 일 예로, 도 7을 참조하면, 상기 스페이서(130)를 열처리하는 단계에서, 스페이서(130)는 가열될 수 있고, 스페이서(130)가 가열되는 동안 제1기판(110) 및 제2기판(120)에 대한 스페이서(130)의 접착력이 감소될 수 있다.In the present invention, the structural coupling force between the first substrate 110 and the second substrate 120 is controlled as the spacer 130 is heat-treated. As the spacer 130 is heat-treated, the spacer 130 and the first substrate are controlled. It can be understood that the bonding force of the spacer 130 to the 110 and the second substrate 120 is controlled. For example, referring to FIG. 7, in the heat treatment of the spacer 130, the spacer 130 may be heated, and the first substrate 110 and the second substrate 120 may be heated while the spacer 130 is heated. Adhesion of the spacer 130 to the can be reduced.
이와 같이, 본 발명은 제1기판(110) 및 제2기판(120)을 분리하는 동안, 스페이서(130)의 열처리를 통해 스페이서(130)의 구조적 결합력(접착력)이 약해질 수 있게 함으로써, 제1기판(110) 및 제2기판(120)이 스페이서(130)로부터 보다 쉽고 결합없이 분리될 수 있게 한다.As described above, the present invention allows the structural bonding force (adhesive force) of the spacer 130 to be weakened through the heat treatment of the spacer 130 while separating the first substrate 110 and the second substrate 120. The first substrate 110 and the second substrate 120 can be separated from the spacer 130 more easily and without coupling.
상기 스페이서(130)로서는 열처리 공정시 구조적 결합력이 조절될 수 있는 다양한 재질이 사용될 수 있다. 이하에서는 스페이서(130)가 파라필름(parafilm)으로 형성된 예를 들어 설명하기로 한다.As the spacer 130, various materials capable of controlling structural bonding strength during the heat treatment process may be used. Hereinafter, an example in which the spacer 130 is formed of a parafilm will be described.
상기 스페이서(130)의 가열 온도 조건은 스페이서(130)의 재질, 용매의 특성에 따라 다양하게 변경될 수 있다. 바람직하게 스페이서(130)의 가열 온도는 스페이서(130)에 의한 접착력이 감소 가능한 최소온도보다 크고 용매의 끓는점보다 낮은 온도 범위로 정해질 수 있다. 여기서, 스페이서(130)에 의한 접착력이 감소 가능한 최소온도라 함은, 스페이서(130)의 접착력이 정상상태(열처리되지 않은 상태)보다 낮아지기 시작하는 가열 온도로 이해될 수 있다.Heating temperature conditions of the spacer 130 may be variously changed according to the material of the spacer 130, the characteristics of the solvent. Preferably, the heating temperature of the spacer 130 may be set to a temperature range larger than the minimum temperature at which the adhesion by the spacer 130 can be reduced and lower than the boiling point of the solvent. Here, the minimum temperature at which the adhesive force by the spacer 130 can be reduced may be understood as a heating temperature at which the adhesive force of the spacer 130 begins to be lower than a normal state (not heat treated).
참고로, 본 발명의 실시예에서는 스페이서(130)의 가열 과정을 통해 스페이서(130)의 구조적 결합력을 조절할 수 있도록 한 예를 들어 설명하고 있지만, 경우에 따라서는 스페이서의 특성에 따라 스페이서의 냉각 또는 다른 열처리 과정을 통해 스페이서에 의한 구조적 결합력이 조절되도록 구성하는 것도 가능하다. 다르게는, 스페이서의 열처리 과정없이 각 기판이 분리되도록 구성하는 것도 가능하다.For reference, in the embodiment of the present invention has been described with an example to control the structural coupling force of the spacer 130 through the heating process of the spacer 130, in some cases depending on the characteristics of the spacer cooling or It is also possible to configure the structural bonding force by the spacer through another heat treatment process. Alternatively, it is possible to configure each substrate to be separated without the heat treatment process of the spacer.
또한, 상기 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리하는 동안, 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 열처리하는 공정이 추가될 수 있다. 상기 제1기판(110) 및 제2기판(120)은 열처리됨에 따라 제1기판(110) 및 제2기판(120)에 대한 용매의 표면장력이 조절될 수 있다.In addition, during the separation of at least one of the first substrate 110 and the second substrate 120, a process of heat-treating at least one of the first substrate 110 and the second substrate 120 may be added. have. As the first substrate 110 and the second substrate 120 are heat treated, the surface tension of the solvent on the first substrate 110 and the second substrate 120 may be adjusted.
참고로, 본 발명에서 기판의 열처리라 함은 냉각, 가열 등과 같은 통상의 열처리 조건을 포함하는 개념으로 이해될 수 있다. 기판의 열처리 방식에 의해 본 발명이 제한되거나 한정되는 것은 아니다.For reference, in the present invention, the heat treatment of the substrate may be understood as a concept including common heat treatment conditions such as cooling and heating. The present invention is not limited or limited by the heat treatment method of the substrate.
일 예로, 도 8을 참조하면, 상기 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 열처리하는 단계에서, 제1기판(110) 및 제2기판(120)은 서로 다른 온도 조건으로 열처리될 수 있다. 이하에서는 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 열처리하는 단계에서, 제1기판(110)은 가열되거나 상온으로 유지되고, 제2기판(120)은 제1기판(110)보다 상대적으로 낮은 온도로 냉각되고, 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리하는 단계에서는 상대적으로 높은 온도를 갖는 제1기판(110)이 분리되는 예를 들어 설명하기로 한다. 경우에 따라서는, 제1기판 및 제2기판의 열처리시 제1기판 및 제2기판이 모두 냉각되거나 모두 가열되도록 구성하는 것도 가능하다.For example, referring to FIG. 8, in the heat treatment of at least one of the first substrate 110 and the second substrate 120, the first substrate 110 and the second substrate 120 have different temperatures. Condition can be heat treated. Hereinafter, in the heat treatment of at least one of the first substrate 110 and the second substrate 120, the first substrate 110 is heated or maintained at room temperature, and the second substrate 120 is a first substrate ( Cooling to a relatively lower temperature than 110, in the step of separating at least one of the first substrate 110 and the second substrate 120 is an example in which the first substrate 110 having a relatively high temperature is separated. Will be explained. In some cases, the first substrate and the second substrate may be cooled or both heated during the heat treatment of the first substrate and the second substrate.
상기와 같이, 기판의 열처리시, 제1기판(110)이 가열되거나 상온으로 유지되고, 제2기판(120)이 제1기판(110)보다 상대적으로 낮은 온도로 냉각되는 경우에는, 상대적으로 높은 온도를 갖는 제1기판(110)에 대한 용매의 표면장력이 낮아질 수 있고, 상대적으로 낮은 온도를 갖는 제2기판(120)에 대한 용매의 표면장력은 높아질 수 있기 때문에, 제2기판(120)의 배치상태는 보다 견고히 유지될 수 있고, 제1기판(110)은 보다 쉽게 분리할 수 있다.As described above, when the first substrate 110 is heated or maintained at room temperature during the heat treatment of the substrate, and the second substrate 120 is cooled to a relatively lower temperature than the first substrate 110, the relatively high Since the surface tension of the solvent with respect to the first substrate 110 having a temperature may be lowered and the surface tension of the solvent with respect to the second substrate 120 having a relatively low temperature may be increased, the second substrate 120 may be higher. Arrangement of the can be maintained more firmly, the first substrate 110 can be separated more easily.
상기 제1기판(110) 및 제2기판(120)의 열처리 온도 조건은 기판의 재질 및 용매의 특성에 따라 다양하게 변경될 수 있다. 바람직하게 제1기판(110)은 용매의 끓는점보다 낮은 온도로 가열될 수 있고, 제2기판(120)은 용매의 어는점보다 높은 온도로 냉각될 수 있다.Heat treatment temperature conditions of the first substrate 110 and the second substrate 120 may be variously changed according to the material of the substrate and the characteristics of the solvent. Preferably, the first substrate 110 may be heated to a temperature lower than the boiling point of the solvent, and the second substrate 120 may be cooled to a temperature higher than the freezing point of the solvent.
한편, 전술한 스페이서(130) 및 기판의 열처리는 코일과 같은 통상의 열원을 부착하거나 냉풍 또는 온풍을 공급함으로써 수행될 수 있으며, 열처리 방식에 의해 본 발명이 제한되거나 한정되는 것은 아니다.Meanwhile, the aforementioned heat treatment of the spacer 130 and the substrate may be performed by attaching a common heat source such as a coil or by supplying cold or warm air, and the present invention is not limited or limited by the heat treatment method.
그 후, 상기 제1기판(110) 및 제2기판(120) 중 분리된 적어도 어느 하나의 영역을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매를 건조시킬 수 있다. 참고로, 광반응 미립자(10)의 사이 공극에 잔류된 용매는, 상기 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나를 분리하는 동안 수행되거나, 상기 제1기판(110) 및 제2기판(120) 중 적어도 어느 하나가 분리된 후 수행될 수 있다.Thereafter, the solvent remaining in the gap between the photoreaction particles 10 may be dried through at least one region separated from the first substrate 110 and the second substrate 120. For reference, the solvent remaining in the gap between the photoreactive particles 10 is performed while separating at least one of the first substrate 110 and the second substrate 120, or the first substrate 110. And at least one of the second substrates 120 may be separated.
도 9를 참조하면, 전술한 바와 같이 스페이서(130)의 열처리 및 각 기판의 열처리가 함께 수행되는 상태에서, 상기 제1기판(110)을 길이 방향을 따라 슬라이드 이동시킴으로써 분리할 수 있으며, 상기 제1기판(110)이 분리됨에 따라 노출되는 영역을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매가 빠르게 건조될 수 있다.Referring to FIG. 9, in the state where the heat treatment of the spacer 130 and the heat treatment of each substrate are performed together as described above, the first substrate 110 may be separated by sliding the first substrate 110 in the longitudinal direction. As the first substrate 110 is separated, the solvent remaining in the pores between the photoreactive particles 10 may be rapidly dried through the exposed areas.
참고로, 상기 제1기판(110)은 최초 광결정이 형성되는 개구부 방향 측으로 슬라이드 이동하며 분리될 수 있는 바, 상기 제1기판(110)은 분리되는 동안 제1기판(110)은 동일한 높이 조건(광결정에 대해 평행한 상태)을 유지해야 하며, 동일한 속도로 슬라이드 이동할 수 있어야 한다. 참고로, 기판의 이송속도는 주변의 온도 및 습도 조건, 구동원의 특성, 용매의 증발 속도 등을 고려하여 적절히 조절될 수 있다.For reference, the first substrate 110 may be separated by slide movement toward the opening direction in which the first photonic crystal is formed. The first substrate 110 may have the same height condition while the first substrate 110 is separated. Parallel to the photonic crystal) and be able to slide at the same speed. For reference, the transfer speed of the substrate may be appropriately adjusted in consideration of ambient temperature and humidity conditions, characteristics of the driving source, evaporation rate of the solvent, and the like.
도 10을 참조하면, 전술한 바와 같이 스페이서(130)의 열처리 및 각 기판의 열처리가 함께 수행되는 상태에서, 상기 제1기판(110)을 일단을 기준으로 회전시켜 분리하는 것도 가능하며, 상기 제1기판(110)이 분리된 후 노출되는 영역을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매가 빠르게 건조될 수 있다.Referring to FIG. 10, in the state where the heat treatment of the spacer 130 and the heat treatment of each substrate are performed together as described above, the first substrate 110 may be rotated based on one end and separated. After the first substrate 110 is separated, the solvent remaining in the pores between the photoreactive particles 10 may be rapidly dried through the exposed region.
도 11을 참조하면, 전술한 바와 같이 스페이서(130)의 열처리 및 각 기판의 열처리가 함께 수행되는 상태에서, 상기 제1기판(110)을 길이 방향을 따라 슬라이드 이동시킴과 동시에 제1기판(110)의 슬라이딩 방향과 반대 방향으로 제2기판(120)을 슬라이드 이동시킴으로써, 제1기판(110) 및 제2기판(120)을 동시에 분리하는 것도 가능하다. 이 경우에도 마찬가지로 제1기판(110) 및 제2기판(120)이 분리됨에 따라 노출되는 영역을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매가 빠르게 건조될 수 있다.Referring to FIG. 11, in the state where the heat treatment of the spacer 130 and the heat treatment of each substrate are performed together as described above, the first substrate 110 is slid along the length direction of the first substrate 110. The first substrate 110 and the second substrate 120 can be separated at the same time by slidingly moving the second substrate 120 in the direction opposite to the sliding direction. In this case as well, the solvent remaining in the gap between the photoreaction particles 10 may be rapidly dried through the exposed area as the first substrate 110 and the second substrate 120 are separated.
도 12를 참조하면, 상기와 같은 기판 분리 공정을 통해 광반응 미립자(10)의 사이 공극에 잔류된 용매가 건조된 광결정이 제2기판(120) 상에 남아있게 된다. 추후, 제2기판(120)을 제거하는 공정이 수행될 수 있으며, 이때는 용매가 완전히 건조된 상태이기 때문에, 제2기판(120)의 제거시 제2기판(120)과 광결정의 표면에서 발생할 수 있는 결함을 방지할 수 있다.Referring to FIG. 12, the photonic crystal in which the solvent remaining in the pores between the photoreaction particles 10 is dried is left on the second substrate 120 through the substrate separation process as described above. Subsequently, a process of removing the second substrate 120 may be performed. In this case, since the solvent is completely dried, it may occur on the surface of the second substrate 120 and the photonic crystal when the second substrate 120 is removed. Faults can be prevented.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to the preferred embodiment of the present invention, those skilled in the art various modifications and variations of the present invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
본 발명에 따른 광결정 구조의 제조방법을 통해서 광을 제어하기 위한 광결정을 제조할 수 있고, 생산된 광결정은 조명이나 디스플레이와 같은 광을 제어하는 분야에서 널리 적용될 수 있다.Through the method of manufacturing a photonic crystal structure according to the present invention, it is possible to manufacture a photonic crystal for controlling light, and the produced photonic crystal may be widely applied in the field of controlling light such as an illumination or a display.

Claims (15)

  1. 광결정 구조를 제조하는 방법에 있어서,In the method of manufacturing the photonic crystal structure,
    제1기판, 상기 제1기판에 이격되게 적층되며 상기 제1기판과 함께 상호 협조적으로 채널을 형성하는 제2기판, 및 상기 제1기판과 상기 제2기판 사이의 측면을 밀봉하는 스페이서를 포함하는 대상체를 제공하는 단계;A first substrate, a second substrate stacked on the first substrate and spaced apart from each other and cooperatively forming a channel together with the first substrate, and a spacer sealing a side surface between the first substrate and the second substrate. Providing a subject;
    광반응 미립자를 포함하는 콜로이드 용액을 상기 채널에 제공하는 단계;Providing a colloidal solution comprising photoreactive fine particles to the channel;
    상기 광반응 미립자를 결정 구조화하는 단계;Crystal structuring the photoreactive fine particles;
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 단계; 및Separating at least one of the first substrate and the second substrate; And
    상기 제1기판 및 상기 제2기판 중 분리된 적어도 어느 하나의 영역을 통해 상기 광반응 미립자의 사이 공극에 잔류된 용매를 건조시키는 단계;Drying the solvent remaining in the gap between the photoreaction particles through at least one region separated from the first substrate and the second substrate;
    를 포함하는 광결정 구조의 제조방법.Method for producing a photonic crystal structure comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 동안,While separating at least one of the first substrate and the second substrate,
    상기 스페이서를 열처리하는 단계를 포함하고, 상기 스페이서는 열처리됨에 따라 상기 제1기판 및 상기 제2기판과의 구조적 결합력이 조절되는 것을 특징으로 하는 광결정 구조의 제조방법.And heat-treating the spacers, wherein the spacers are thermally bonded to control the structural bonding force between the first substrate and the second substrate.
  3. 제2항에 있어서,The method of claim 2,
    상기 스페이서를 열처리하는 단계에서,In the heat treatment of the spacer,
    상기 스페이서는 가열되고, 상기 스페이서가 가열되는 동안 상기 제1기판 및 상기 제2기판에 대한 상기 스페이서의 접착력이 감소되는 것을 특징으로 하는 광결정 구조의 제조방법.And the spacer is heated, and the adhesion of the spacer to the first substrate and the second substrate is reduced while the spacer is heated.
  4. 제3항에 있어서,The method of claim 3,
    상기 스페이서를 열처리하는 단계에서,In the heat treatment of the spacer,
    상기 스페이서의 가열 온도는, 상기 스페이서에 의한 접착력이 감소 가능한 최소온도보다 크고 상기 용매의 끓는점보다 낮은 온도인 것을 특징으로 하는 광결정 구조의 제조방법.The heating temperature of the spacer is a manufacturing method of the photonic crystal structure, characterized in that the temperature higher than the minimum temperature that can reduce the adhesive force by the spacer lower than the boiling point of the solvent.
  5. 제3항에 있어서,The method of claim 3,
    상기 스페이서는 파라필름(parafilm)으로 형성된 것을 특징으로 하는 광결정 구조의 제조방법.The spacer is a method of manufacturing a photonic crystal structure, characterized in that formed of parafilm (parafilm).
  6. 제2항에 있어서,The method of claim 2,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 동안,While separating at least one of the first substrate and the second substrate,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 열처리하는 단계를 더 포함하는 것을 특징으로 하는 광결정 구조의 제조방법.And heat treating at least one of the first substrate and the second substrate.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 열처리하는 단계에서,In the step of heat-treating at least one of the first substrate and the second substrate,
    상기 제1기판 및 상기 제2기판은 서로 다른 온도 조건으로 열처리되는 것을 특징으로 하는 광결정 구조의 제조방법.And the first substrate and the second substrate are heat treated under different temperature conditions.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 열처리하는 단계에서, 상기 제1기판은 가열되거나 상온으로 유지되고, 상기 제2기판은 상기 제1기판보다 상대적으로 낮은 온도로 냉각되며,In the heat treatment of at least one of the first substrate and the second substrate, the first substrate is heated or maintained at room temperature, the second substrate is cooled to a relatively lower temperature than the first substrate,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 단계에서는, 상대적으로 높은 온도를 갖는 상기 제1기판이 분리되는 것을 특징으로 하는 광결정 구조의 제조방법.In the separating of at least one of the first substrate and the second substrate, the method of manufacturing a photonic crystal structure, characterized in that the first substrate having a relatively high temperature is separated.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1기판은 상기 용매의 끓는점보다 낮은 온도로 가열되고,The first substrate is heated to a temperature lower than the boiling point of the solvent,
    상기 제2기판은 상기 용매의 어는점보다 높은 온도로 냉각되는 것을 특징으로 하는 광결정 구조의 제조방법.And the second substrate is cooled to a temperature higher than the freezing point of the solvent.
  10. 제1항에 있어서,The method of claim 1,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 단계에서,In the step of separating at least one of the first substrate and the second substrate,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나는 상기 제1기판의 길이 방향을 따라 슬라이드 이동하며 분리되는 것을 특징으로 하는 광결정 구조의 제조방법.At least one of the first substrate and the second substrate is a method of manufacturing a photonic crystal structure, characterized in that the slide is separated along the longitudinal direction of the first substrate.
  11. 제1항에 있어서,The method of claim 1,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 단계에서,In the step of separating at least one of the first substrate and the second substrate,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나는 일단을 중심으로 회전하며 분리되는 것을 특징으로 하는 광결정 구조의 제조방법.At least one of the first substrate and the second substrate is rotated about one end of the manufacturing method of the photonic crystal structure, characterized in that the separation.
  12. 제1항에 있어서,The method of claim 1,
    상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 단계에서,In the step of separating at least one of the first substrate and the second substrate,
    상기 제1기판 및 상기 제2기판은 서로 반대 방향으로 동시에 슬라이드 이동하며 분리 가능한 것을 특징으로 하는 광결정 구조의 제조방법.The first substrate and the second substrate is a method of manufacturing a photonic crystal structure, characterized in that the slide movement in the opposite direction at the same time can be separated.
  13. 제1항에 있어서,The method of claim 1,
    상기 제1기판 및 상기 제2기판 중 분리된 적어도 어느 하나의 영역을 통해 상기 광반응 미립자의 사이 공극에 잔류된 용매를 건조시키는 단계에서,In the step of drying the solvent remaining in the gap between the photoreaction fine particles through at least one region of the first substrate and the second substrate,
    상기 용매의 건조는, 상기 제1기판 및 상기 제2기판 중 적어도 어느 하나를 분리하는 동안 수행되거나, 상기 제1기판 및 상기 제2기판 중 적어도 어느 하나가 분리된 후 수행되는 것을 특징으로 하는 광결정 구조의 제조방법.The drying of the solvent is performed while separating at least one of the first substrate and the second substrate, or after at least one of the first substrate and the second substrate is separated. Method of manufacturing the structure.
  14. 제1항에 있어서,The method of claim 1,
    상기 광반응 미립자가 결정 구조화되는 동안, 상기 대상체는 정지 또는 회전 상태를 유지하고,While the photoreactive fine particles are crystallized, the subject remains stationary or rotated,
    상기 대상체의 회전시에는 원심력에 의해 상기 광반응 미립자가 상기 채널을 따라 이동 가능한 것을 광결정 구조의 제조방법.The method of manufacturing a photonic crystal structure that the photoreactive fine particles can move along the channel by centrifugal force when the object is rotated.
  15. 제1항 내지 제14항 중 어느 하나의 제조방법에 의해 제조된 광결정 구조.The photonic crystal structure manufactured by the manufacturing method of any one of Claims 1-14.
PCT/KR2015/010561 2014-10-10 2015-10-06 Photonic crystal structure and manufacturing method therefor WO2016056826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0136669 2014-10-10
KR1020140136669A KR101582318B1 (en) 2014-10-10 2014-10-10 Structure of photo crystal and forming method of the same

Publications (1)

Publication Number Publication Date
WO2016056826A1 true WO2016056826A1 (en) 2016-04-14

Family

ID=55165475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010561 WO2016056826A1 (en) 2014-10-10 2015-10-06 Photonic crystal structure and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101582318B1 (en)
WO (1) WO2016056826A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074233A (en) * 2004-12-27 2006-07-03 삼성전자주식회사 Photovoltaic cell and manufacturing method thereof
KR20100011184A (en) * 2008-07-24 2010-02-03 광주과학기술원 Nanoporous inorganic layer, method for fabricating the layer, photocatalyst layer including the layer, and dye-sensitized solar cell including the same
US20110272007A1 (en) * 2010-05-06 2011-11-10 Moon-Sung Kang Electrode for dye sensitized solar cell, method of manufacturing the same, and dye sensitized solar cell using the electrode
KR20120001456A (en) * 2010-06-29 2012-01-04 서강대학교산학협력단 Photoelectrode, preparing method of the same, and dye-sensitized solar cell having the same
KR20140098538A (en) * 2013-01-31 2014-08-08 서강대학교산학협력단 Method and device of forming structure of photo crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074233A (en) * 2004-12-27 2006-07-03 삼성전자주식회사 Photovoltaic cell and manufacturing method thereof
KR20100011184A (en) * 2008-07-24 2010-02-03 광주과학기술원 Nanoporous inorganic layer, method for fabricating the layer, photocatalyst layer including the layer, and dye-sensitized solar cell including the same
US20110272007A1 (en) * 2010-05-06 2011-11-10 Moon-Sung Kang Electrode for dye sensitized solar cell, method of manufacturing the same, and dye sensitized solar cell using the electrode
KR20120001456A (en) * 2010-06-29 2012-01-04 서강대학교산학협력단 Photoelectrode, preparing method of the same, and dye-sensitized solar cell having the same
KR20140098538A (en) * 2013-01-31 2014-08-08 서강대학교산학협력단 Method and device of forming structure of photo crystal

Also Published As

Publication number Publication date
KR101582318B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
Divliansky et al. Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography
Lee et al. Controlled Pixelation of Inverse Opaline Structures Towards Reflection‐Mode Displays
Lopez Materials aspects of photonic crystals
US7283716B2 (en) Strain tunable, flexible photonic crystals
US20130199995A1 (en) Porous polymer membranes, methods of making, and methods of use
Ye et al. Self-assembly of three-dimensional photonic-crystals with air-core line defects
Xiao et al. A tunable submicro-optofluidic polymer filter based on guided-mode resonance
JP2007510183A (en) Large colloidal crystals and macroporous polymers and methods for their production
Yang et al. Surface-normal Fano filters based on transferred silicon nanomembranes on glass substrates
Yang et al. Generalized fabrication of monolayer nonclose-packed colloidal crystals with tunable lattice spacing
Chang et al. Large area three‐dimensional photonic crystal membranes: single‐run fabrication and applications with embedded planar defects
Prokop et al. Air-suspended SU-8 polymer waveguide grating couplers
Wang et al. Generation of Complex Tunable Multispectral Signatures with Reconfigurable Protein‐Based, Plasmonic‐Photonic Crystal Hybrid Nanostructures
Yan et al. Individual Si Nanospheres Wrapped in a Suspended Monolayer WS2 for Electromechanically Controlled Mie‐Type Nanopixels
WO2016056826A1 (en) Photonic crystal structure and manufacturing method therefor
KR101463938B1 (en) Method and device of forming structure of photo crystal
Cristea et al. Polymer micromachining for micro-and nanophotonics
Wan et al. All-polymeric planar waveguide devices based on a gas-assisted thermal imprinting technique
Laakso et al. Three-dimensional printing of silica-glass structures with submicrometric features
Kwon et al. Highly stretchable, printable nanowire array optical polarizers
KR101585645B1 (en) Method and device of forming structure of large scale photo crystal
KR101582787B1 (en) Structure of photo crystal and forming method of the same
US20050069637A1 (en) Method for manufacturing planar optical waveguide
Gordillo Interfacing nanophotonic waveguides with the macro and the nano scales
Pisco et al. Lab on fiber by using the breath figure technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848876

Country of ref document: EP

Kind code of ref document: A1