WO2016056338A1 - Substrate processing device, substrate mounting table, and method for manufacturing semiconductor device - Google Patents

Substrate processing device, substrate mounting table, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2016056338A1
WO2016056338A1 PCT/JP2015/075460 JP2015075460W WO2016056338A1 WO 2016056338 A1 WO2016056338 A1 WO 2016056338A1 JP 2015075460 W JP2015075460 W JP 2015075460W WO 2016056338 A1 WO2016056338 A1 WO 2016056338A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
region
susceptor
mounting table
heating unit
Prior art date
Application number
PCT/JP2015/075460
Other languages
French (fr)
Japanese (ja)
Inventor
光徳 竹下
幸一郎 原田
保井 毅
雅則 中山
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2016056338A1 publication Critical patent/WO2016056338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Definitions

  • the present invention relates to a substrate processing apparatus, a substrate mounting table, and a method for manufacturing a semiconductor device, and more particularly to a substrate processing apparatus for heating a substrate with a heater, a substrate mounting table, and a method for manufacturing a semiconductor device.
  • oxide film with a uniform film thickness on the wafer surface prior to the formation of a circuit pattern on the wafer surface serving as a substrate.
  • the oxide film on the wafer surface is often formed by heating the wafer to about 600 ° C. in an oxidizing atmosphere such as oxygen or a mixture of oxygen and hydrogen.
  • the wafer heating method includes a hot wall method in which the entire processing chamber containing the wafer is heated by a heater to heat the wafer, and a wafer is mounted on a susceptor (substrate mounting table) with a built-in heater. There is a heated cold wall system.
  • a hot wall method in which the entire processing chamber containing the wafer is heated by a heater to heat the wafer, and a wafer is mounted on a susceptor (substrate mounting table) with a built-in heater.
  • a heated cold wall system Generally, when a plasma gas is supplied into a processing chamber in which an oxide film is formed to form a new semiconductor layer or the like on the surface of the wafer on which the oxide film is formed, a cold wall method is employed. .
  • the heater which is a heating wire built in the susceptor.
  • the temperature of the surface of the susceptor on which the wafer is placed becomes uneven, and the wafer placed on the susceptor is uniform. In some cases, it was not heated.
  • the temperature tends to be lower than that of the inner periphery of the heater, and conversely, the inner periphery of the heater tends to be hot.
  • the oxide film formed on the wafer surface becomes thicker as the temperature of the wafer is higher, so that the film thickness of the oxide film formed on the wafer surface becomes non-uniform when the temperature distribution of the wafer is non-uniform. was there.
  • Patent Document 1 discloses an invention of a film forming apparatus and a film forming method in which a reflector that reflects a heat ray emitted from a heater under a heater built in a susceptor is provided.
  • a reflector that reflects a heat ray emitted from a heater under a heater built in a susceptor is provided.
  • the heat rays leaking to the side opposite to the side on which the wafer is placed are reflected to the side on which the wafer is placed by the reflector.
  • the wafer placed on the susceptor is heated uniformly.
  • the main object of the present invention is to provide a technique capable of uniformly heating a wafer placed on a susceptor.
  • a substrate mounting table provided with a heating unit for heating the substrate; and a heating wire provided on the substrate mounting table and disposed above the first region of the heating unit to generate heat rays generated from the first region.
  • a first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion.
  • a substrate processing apparatus comprising: a mounting table cover on which the substrate having a second covering portion that transmits at a second transmittance that is higher than the transmittance.
  • (A) is an example of a sectional view of the susceptor according to the first example of the second embodiment of the present invention cut along a vertical plane passing through the center of the top
  • (B) is the first example. It is an example of sectional drawing which cut
  • (A) is an example of a sectional view of the susceptor according to the second example of the second embodiment of the present invention cut along a vertical plane passing through the center of the top, and (B) is the second example.
  • sectional drawing which cut
  • A) is an example of a cross-sectional view of the susceptor according to the third example of the second embodiment of the present invention cut along a vertical plane passing through the center of the top
  • B) is an example of the third example. It is an example of sectional drawing which cut
  • This substrate processing apparatus is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device.
  • FIG. 1 is a cross-sectional view schematically showing a substrate processing apparatus 100 according to the present invention.
  • the substrate processing apparatus 100 includes a processing furnace 202 for plasma processing the wafer 200.
  • the processing furnace 202 is provided with a processing container 203 that constitutes a processing chamber 201.
  • the processing container 203 includes a dome-shaped upper container 210 that is a first container and a bowl-shaped lower container 211 that is a second container.
  • the processing chamber 201 is formed by covering the upper container 210 on the lower container 211.
  • the upper container 210 is made of a non-metallic material such as aluminum oxide (Al 2 O 3 ) or quartz (SiO 2 ), for example, and the lower container 211 is made of aluminum (Al), for example.
  • a gate valve 244 is provided on the lower side wall of the lower container 211.
  • the gate valve 244 When the gate valve 244 is open, the wafer 200 can be loaded into the processing chamber 201 via the loading / unloading port 245 using a transfer mechanism (not shown). Alternatively, the wafer 200 can be unloaded out of the processing chamber 201 via the loading / unloading port 245 using a transfer mechanism (not shown).
  • the gate valve 244 is configured to be a gate valve that maintains the airtightness in the processing chamber 201 when the gate valve 244 is closed.
  • the processing chamber 201 includes a plasma generation space 201A in which a resonance coil 212 is provided around as described later, and a substrate processing space 201B that communicates with the plasma generation space 201A and processes the wafer 200.
  • the plasma generation space 201 ⁇ / b> A is a space where plasma is generated, and is a space above the lower end (one-dot chain line) of the resonance coil 212 in the processing chamber 201.
  • the substrate processing space 201 ⁇ / b> B is a space where the wafer 200 is processed with plasma, and is a space below the lower end of the resonance coil 212.
  • a susceptor 217 In the center of the bottom side of the processing chamber 201, a susceptor 217 is disposed as a substrate placement portion on which the wafer 200 is placed.
  • the susceptor 217 is made of a non-metallic material such as aluminum nitride (AlN), ceramics, or quartz, and is configured to reduce metal contamination of a film or the like formed on the wafer 200.
  • a susceptor cover 280 for uniformly transferring heat from the susceptor 217 side to the wafer 200 is provided between the susceptor 217 and the wafer 200.
  • the susceptor cover 280 is made of a non-metallic material such as AlN, ceramics, quartz, or silicon carbide.
  • a heater 217B as a heating mechanism is integrally embedded.
  • the heater 217B is configured to be able to heat the surface of the wafer 200 from, for example, about 25 ° C. to about 700 ° C. when electric power is supplied.
  • the susceptor 217 is electrically insulated from the lower container 211.
  • An impedance adjustment electrode 217C is provided in the susceptor 217.
  • the impedance adjustment electrode 217C is grounded via an impedance variable mechanism 275 as an impedance adjustment unit.
  • the variable impedance mechanism 275 includes a coil and a variable capacitor. By controlling the inductance and resistance of the coil and the capacitance value of the variable capacitor, the impedance is changed within a range from about 0 ⁇ to the parasitic impedance value of the processing chamber 201. It is configured to be able to. Accordingly, the potential (bias voltage) of the wafer 200 can be controlled via the impedance adjustment electrode 217C and the susceptor 217.
  • the susceptor 217 is provided with a susceptor elevating mechanism 268 that elevates and lowers the susceptor.
  • the susceptor 217 is provided with a through hole 217 ⁇ / b> A, while a wafer push-up pin 266 is provided on the bottom surface of the lower container 211.
  • the through holes 217A and the wafer push-up pins 266 are provided at least at three positions at positions facing each other. When the susceptor 217 is lowered by the susceptor elevating mechanism 268, the wafer push-up pin 266 is configured to penetrate through the through-hole 217A without contacting the susceptor 217.
  • a shower head 236 is provided above the processing chamber 201, that is, above the upper container 210.
  • the shower head 236 includes a cap-shaped lid 233, a gas inlet 234, a buffer chamber 237, an opening 238, a shielding plate 240, and a gas outlet 239, and supplies reaction gas into the processing chamber 201. It is configured to be able to.
  • the buffer chamber 237 has a function as a dispersion space for dispersing the reaction gas introduced from the gas introduction port 234.
  • the gas inlet 234 has a downstream end of an oxygen-containing gas supply pipe 232A that supplies oxygen (O 2 ) gas as an oxygen-containing gas, and a hydrogen-containing gas supply that supplies hydrogen (H 2 ) gas as a hydrogen-containing gas.
  • the downstream end of the pipe 232B and an inert gas supply pipe 232C that supplies argon (Ar) gas as an inert gas are connected so as to merge.
  • the oxygen-containing gas supply pipe 232A is provided with an O 2 gas supply source 250A, a mass flow controller 252A as a flow rate control device, and a valve 253A as an on-off valve in order from the upstream side.
  • the hydrogen-containing gas supply pipe 232B is provided with an H 2 gas supply source 250B, a mass flow controller 252B as a flow rate control device, and a valve 253B as an on-off valve in order from the upstream side.
  • the inert gas supply pipe 232C is provided with an Ar gas supply source 250C, a mass flow controller 252C as a flow rate control device, and a valve 253C as an on-off valve in order from the upstream side.
  • a valve 243A is provided on the downstream side where the oxygen-containing gas supply pipe 232A, the hydrogen-containing gas supply pipe 232B, and the inert gas supply pipe 232C merge, and is connected to the upstream end of the gas inlet 234.
  • valves 253A, 253B, 253C, and 243A By opening and closing the valves 253A, 253B, 253C, and 243A, the flow rate of each gas is adjusted by the mass flow controllers 252A, 252B, and 252C, and the oxygen-containing gas is supplied via the gas supply pipes 232A, 232B, 232C, and 232 A reaction gas such as a hydrogen-containing gas or an inert gas can be supplied into the processing chamber 201.
  • a reaction gas such as a hydrogen-containing gas or an inert gas can be supplied into the processing chamber 201.
  • a gas exhaust port 235 for exhausting the reaction gas from the processing chamber 201 is provided on the side wall of the lower container 211.
  • the upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235.
  • the gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) 242 as a pressure regulator (pressure regulator), a valve 243B as an on-off valve, and a vacuum pump 246 as a vacuum exhaust device in order from the upstream side.
  • APC Auto Pressure Controller
  • a spiral resonance coil 212 is provided on the outer periphery of the processing chamber 201, that is, outside the side wall of the upper container 210 so as to surround the processing chamber 201.
  • An RF sensor 272, a high frequency power supply 273 and a frequency matching unit 274 are connected to the resonance coil 212.
  • the high frequency power supply 273 supplies high frequency power to the resonance coil 212.
  • the RF sensor 272 is provided on the output side of the high frequency power supply 273.
  • the RF sensor 272 monitors information on high-frequency traveling waves and reflected waves that are supplied.
  • the frequency matching unit 274 controls the high-frequency power source 273 so that the reflected wave is minimized based on the information on the reflected wave monitored by the RF sensor 272.
  • the resonance coil 212 forms a standing wave having a predetermined wavelength
  • the winding diameter, the winding pitch, and the number of turns are set so as to resonate in a constant wavelength mode. That is, the electrical length of the resonance coil 212 is set to a length corresponding to an integral multiple (1 times, 2 times,...) Of one wavelength at a predetermined frequency of the power supplied from the high frequency power supply 273.
  • the length of one wavelength is about 22 meters
  • the length of one wavelength is about 11 meters
  • the length of one wavelength is about 5.5 meters.
  • Both ends of the resonant coil 212 are electrically grounded, but at least one end of the resonant coil 212 is used to fine-tune the electrical length of the resonant coil during initial installation of the apparatus or when processing conditions are changed. And grounded via the movable tap 213.
  • Reference numeral 214 in FIG. 1 indicates the other fixed ground.
  • a power feeding unit is configured between the grounded ends of the resonance coil 212 by a movable tap 215.
  • the resonance coil 212 includes a ground portion that is electrically grounded at both ends and a power feeding portion that is supplied with power from the high-frequency power source 273 between the ground portions. Moreover, at least one of the ground portions is a variable ground portion that can be adjusted in position, and the power feeding portion is a variable power feeding portion that can be adjusted in position.
  • the resonance coil 212 includes a variable ground portion and a variable power supply portion, as will be described later, the resonance frequency and load impedance of the processing chamber 201 can be adjusted more easily.
  • An RF sensor 272 is installed on the output side of the high frequency power supply 273 and monitors traveling waves, reflected waves, and the like.
  • the reflected wave power monitored by the RF sensor 272 is input to the frequency matching unit 274.
  • the frequency matching unit 274 controls the frequency so that the reflected wave is minimized.
  • the resonance coil 212 to which high-frequency power is applied from the high-frequency power source 273 creates a high-frequency electric field in the plasma generation space 201 ⁇ / b> A and excites gases such as oxygen gas and hydrogen gas introduced into the processing chamber 201.
  • the excited gas that is in the form of plasma generates reactive species including the gas element and reactive species such as ions.
  • the controller 221 as the control unit gates the APC 242, the valve 243B and the vacuum pump 246 through the signal line A, the susceptor lifting mechanism 268 through the signal line B, the heater 217B and the impedance variable mechanism 275 through the signal line C, and the gate through the signal line D.
  • the valve 244 is configured to control the RF sensor 272, the high frequency power supply 273, and the frequency matching unit 274 through the signal line E, and the mass flow controllers 252A, 252B, 252C and the valves 253A, 253B, 253C, 243A through the signal line F, respectively. Has been.
  • the controller 221 is a computer that operates according to a program for controlling the above-described components, and the program can be stored in a computer-readable recording medium.
  • the recording medium is electrically connected to the substrate processing apparatus 100, and the controller 221 of the substrate processing apparatus 100 can read the program from the recording medium and execute the above-described control.
  • the substrate processing process according to this embodiment is performed by the above-described substrate processing apparatus 100 as one process of manufacturing a semiconductor device such as a flash memory.
  • the operation of each unit constituting the substrate processing apparatus 100 is controlled by the controller 221.
  • the wafer 200 is loaded into the processing chamber 201.
  • the susceptor elevating mechanism 268 lowers the susceptor 217 to the transfer position of the wafer 200 and causes the wafer push-up pins 266 to pass through the through holes 217A of the susceptor 217.
  • the wafer push-up pins 266 protrude from the surface of the susceptor 217 by a predetermined height.
  • the gate valve 244 is opened, and the wafer 200 is loaded into the processing chamber 201 from a vacuum transfer chamber (not shown) adjacent to the processing chamber 201 using a transfer mechanism not shown in the drawing.
  • the wafer 200 is supported in a horizontal posture on the wafer push-up pins 266 protruding from the surface of the susceptor 217.
  • the transfer mechanism is moved out of the processing chamber 201 and the gate valve 244 is closed to seal the processing chamber 201.
  • the susceptor elevating mechanism 268 raises the susceptor 217 so as to be at a predetermined position between the lower end of the resonance coil 212 and the upper end 245A of the carry-in / out port 245. As a result, the wafer 200 is supported on the upper surface of the heel susceptor 217.
  • the substrate carrying-in process may be performed while purging the inside of the processing chamber 201 with a soot inert gas or the like.
  • the temperature of the wafer 200 carried into the processing chamber 201 is increased.
  • the heater 217B is preheated, and the wafer 200 that has been loaded is held on the susceptor 217 in which the heater 217B is embedded, so that the wafer 200 is heated to a predetermined value within a range of 150 ° C. to 650 ° C., for example. .
  • the temperature of the wafer 200 is heated to 600 ° C.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 through the gas exhaust port 235, and the pressure in the processing chamber 201 is a predetermined value within a range of 0.1 Pa to 1000 Pa. And For example, it is adjusted to 200 Pa.
  • the vacuum pump 246 is operated until at least a substrate unloading process described later is completed.
  • a high-frequency electric field is formed in the plasma generation space 201A, and the doughnut-shaped induction plasma is excited by the electric field at a height corresponding to the electrical midpoint of the resonance coil 212 in the plasma generation space.
  • the plasma oxygen gas dissociates and generates reactive species such as oxygen active species and ions containing oxygen (O).
  • Oxygen radicals and non-accelerated ions are uniformly supplied to the surface of the wafer 200 to the wafer 200 held on the substrate mounting table 217 in the substrate processing space 201B.
  • the supplied radicals and ions react uniformly with the silicon film on the wafer 200 to modify the silicon film into a silicon oxide film with high step coverage.
  • a predetermined processing time for example, 10 to 300 seconds elapses
  • the output of power from the high frequency power supply 273 is stopped, and the plasma discharge in the processing chamber 201 is stopped. Further, the valve 253A is closed, and supply of oxygen gas into the processing chamber 201 is stopped. Thus, the plasma processing process is completed.
  • the susceptor 217 is lowered to the transfer position of the wafer 200 and the wafer 200 is supported on the wafer push-up pins 266. Then, the gate valve 244 is opened, and the wafer 200 is carried out of the processing chamber 201 using a transfer mechanism not shown in the drawing. At this time, the wafer 200 may be unloaded while purging the inside of the processing chamber 201 with an inert gas such as an argon gas. Thus, the substrate processing process according to this embodiment is completed.
  • oxygen gas is supplied to the processing chamber 201 and plasma excitation is performed to oxidize the silicon film on the wafer 200 to form a silicon oxide film.
  • both oxygen gas and hydrogen gas may be supplied.
  • nitrogen (N 2) gas or ammonia (NH 3) gas, or both nitrogen gas and ammonia gas are put into the process chamber 201.
  • the nitriding treatment may be performed by supplying the plasma and exciting these gases.
  • FIG. 2 is a schematic view showing a first example of the susceptor 217 according to the present embodiment.
  • FIG. 2A is a plan view of the top of the susceptor 217.
  • FIG. 2B is a plan view of FIG.
  • FIG. 6 is a cross-sectional view taken along line BB of the susceptor 217 shown in FIG.
  • the susceptor 217 includes a heater 217B.
  • the heater 217B heats the outer peripheral portion of the susceptor 217 and the inner peripheral portion of the susceptor 217. Includes an inner peripheral heater 217B2.
  • the impedance adjustment electrode 217C shown in FIG. 1 is not shown for the sake of simplicity.
  • a susceptor cover 280 made of, for example, quartz is provided between the susceptor 217 and the wafer 200.
  • the diameter of the susceptor cover 280 is slightly larger than the mounted wafer 200 (diameter 300 mm), as shown in FIG. This is because if the diameter of the susceptor cover 280 is larger than that of the wafer 200, the temperature of the susceptor cover 280 may become non-uniform due to heat escaping from the outer periphery of the susceptor cover 280.
  • the susceptor cover 280 has a frosted glass surface treated to relatively transmit the heat rays emitted by the heater 217B, and a black pigment such as iron oxide or carbon black is added to allow the above-mentioned heat rays to pass through. And an opaque portion 280B which is made difficult.
  • transmission part 280A frosted glass is a chemical process by hydrogen fluoride, or a physical process by sandblasting, grinding, heat processing, etc.
  • the impermeable portion 280B may be a member whitened by mixing bubbles in quartz, a ceramic member such as alumina (Al 2 O 3 ), or an opaque member such as silicon carbide (SiC) or AlN. You may comprise with a material.
  • the outer peripheral heater element wire 217B3 through which the electric power supplied to the outer peripheral heater 217B1 is conducted is overlapped with the inner peripheral heater 217B2.
  • the outer peripheral heater element wire 217B3 is also composed of a heating wire in the same manner as the outer peripheral heater element 217B1, the outer peripheral heater element wire 217B3 also generates heat when energized.
  • the portion of the susceptor 217 corresponding to the outer heater element wire 217B3 is added by the radiant heat from the inner heater 217B2 located at the lower part of the outer heater wire 217B3 and the radiant heat from the outer heater wire 217B3. Compared with the part, the amount of heat generation is large and the temperature tends to rise. Further, the heat generation amount of the other region not including the outer heater wire 217B3 is smaller than that of the region including the outer heater wire 217B3.
  • a wafer 200 placed on the susceptor cover 280 is provided by providing an opaque portion 280B having a low heat ray transmittance at a portion corresponding to the outer peripheral heater element wire 217B3 of the susceptor cover 280. In this way, excessive radiant heat from the heater 217B is not transmitted. Further, the portion corresponding to the region not including the outer peripheral heater element wire 217B3 of the susceptor cover 280 is set as the transmission portion 280A having a higher heat ray transmittance than the non-transmission portion 280B, so that the susceptor cover 280 is placed on the susceptor cover 280. The radiant heat of the heater 217B is effectively transmitted to the wafer 200.
  • the thickness of the transmission part 280A of the susceptor cover 280 is approximately 1.5 mm as an example. Further, the thickness of the non-transmissive portion 280B is approximately 0.5 to 1.0 mm as an example. As shown in FIG. 2B, the transmission part 280A is in contact with the top of the susceptor 217, but the non-transmission part 280B is not in contact with the top of the susceptor 217, and the transmission part 280A is not in contact with the top of the susceptor 217. It is provided so as to extend between the transmission parts 280B.
  • the top part of the susceptor 217 corresponding to the outer heater wire 217B3 is covered with the transmission part 280A like the other parts, and the non-transmission part 280B is provided so as to overlap the upper part.
  • the heat ray transmittance of the transmission part 280A is about 50% as an example, and the heat ray transmittance of the non-transmission part 280B is about 1% as an example.
  • the radiant heat radiated from the portion of the susceptor 217 corresponding to the region not including the outer peripheral heater element wire 217B3 is transmitted to the wafer 200 through the transmission part 280A, but the susceptor 217 corresponding to the outer peripheral heater element wire 217B3
  • the radiant heat radiated from the portion is suppressed from reaching the wafer 200 by the non-transmissive portion 280B.
  • radiation heat from a position corresponding to the outer peripheral heater element wire 217B3 that tends to generate excessive heat is prevented from reaching the wafer 200, so that the temperature of the wafer 200 placed on the susceptor cover 280 is made uniform.
  • FIG. 6 shows the effect of forming an oxide film in the first example.
  • the transmissive portion 280A corresponding to the region not including the outer peripheral heater element wire 217B3 is 1.5 mm thick, and the non-transmissive portion 280B is 0.5 mm thick (below the lower portion).
  • a susceptor cover 280 having a thickness of 1.0 mm) is used.
  • the thickness of the oxide film when the temperature of the heater 217B is set to 830 ° C. and an oxide film is formed on the wafer surface using plasma of oxygen gas. The deviation is ⁇ 1.5%.
  • the thickness deviation of the oxide film is ⁇ 4. 9%.
  • the oxide film having a uniform thickness is formed as compared with the case of using the conventional susceptor cover, the wafer 200 can be heated more uniformly than in the case of using the conventional susceptor cover. It is inferred.
  • the thickness of the non-transmission portion 280B is increased, and the outer peripheral side heater element is increased. You may make it the same thickness as the part corresponding to the area
  • the portion corresponding to the outer peripheral heater element wire 217B3 is provided so that the non-transmissive portion 280B overlaps the upper portion of the transmissive portion 280A, but the lower portion of the non-transmissive portion 280B. May provide a gap without extending the transmission part 280A.
  • the susceptor cover 280 is placed on the top of the susceptor 217.
  • the susceptor cover 280 and the susceptor 217 may be integrally formed by welding to the top of the susceptor 217 or the like. Good.
  • the outer heater element wire 217B3 also generates heat when energized. However, when the outer heater element wire 217B3 is made of a conductor having a low electrical resistance such as copper, Not as long. When the electric resistance of the outer heater wire 217B3 is low, heat is not generated by energization, and the outer heater wire 217B3 may shield the radiant heat of the inner heater 217B2 existing below the outer heater wire 217B3. Because there is.
  • the temperature distribution of the wafer 200 is made uniform by setting the portion corresponding to the outer peripheral heater element wire 217B3 of the susceptor cover 280 as the transmitting portion 280A and the other portion as the non-transmitting portion 280B.
  • FIG. 3 is a schematic view showing a second example of the susceptor 217 according to the present embodiment.
  • FIG. 3A is a plan view of the top of the susceptor 217.
  • FIG. 3B is a plan view of FIG.
  • FIG. 6 is a cross-sectional view taken along line CC of the susceptor 217 shown in FIG.
  • the susceptor cover 284 is different from the susceptor cover 280 of the first embodiment, but the other configurations are the same as those of the first embodiment.
  • the same reference numerals as in the example are attached and detailed description is omitted.
  • the susceptor cover 284 of the second embodiment is made of black quartz having a heat ray transmittance of about 1%, which is obtained by adding carbon black which is a black pigment to quartz, and shields radiant heat from the heater 217B. Yes.
  • the diameter of the susceptor cover 284 is slightly smaller than the diameter of the top of the susceptor 217, and is placed so as to substantially cover the top of the susceptor 217.
  • the thickness of the susceptor cover 284 is uniformly 1.5 mm, and the entire bottom surface is in contact with the top of the susceptor 217.
  • FIG. 6 The effect of forming an oxide film in the second embodiment is shown in FIG. As shown in FIG. 6, in the second embodiment, when the temperature of the heater 217B is 860 ° C. and the oxide film is formed on the wafer surface using the plasma of oxygen gas, the deviation of the thickness of the oxide film is as follows. The same ⁇ 1.5% as in the first embodiment.
  • the susceptor cover 284 of the second embodiment is made of disc-shaped black quartz having a thickness of 1.5 mm, the transmissive portion 280A processed into ground glass and the non-transmissive portion 280B made of black quartz are provided. Manufacture is easier than the susceptor cover 280 of the first embodiment. Therefore, in the second embodiment, it is possible to achieve the same effect as that of the first embodiment with a simpler and easier to manufacture structure than the first embodiment.
  • FIG. 4A and 4B are schematic views showing a third example of the susceptor 217 according to the present embodiment.
  • FIG. 4A is a plan view of the top of the susceptor 217.
  • FIG. 4B is a plan view of FIG.
  • FIG. 6 is a cross-sectional view taken along line DD of the susceptor 217 shown in FIG.
  • the third embodiment shown in FIG. 3 is different from the second embodiment in that the material of the susceptor cover 286 is changed to SiC, but the thickness, diameter and shape of the susceptor cover 286 are different from those of the second embodiment. Are the same. Further, since the other configuration is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are given thereto, and detailed description thereof is omitted.
  • SiC has better thermal conductivity than quartz (quartz: 1.32 W / (m ⁇ K), SiC: 230 W / (m ⁇ K)), and thermal expansion is remarkable compared to quartz.
  • the diameter of the susceptor cover 286 is slightly smaller than the diameter of the top of the susceptor 217 in order to make the susceptor cover bottom area as large as possible. It has the same diameter and thickness as the susceptor cover 284 of the embodiment.
  • FIG. 6 shows the effect of forming the oxide film in the third example.
  • the deviation of the thickness of the oxide film is as follows. The result was ⁇ 1.3%, which was better than those of the first example and the second example.
  • the susceptor cover 286 made of SiC having a good thermal conductivity prevents the susceptor 217 from being damaged.
  • the uniform temperature distribution is buffered, and as a result, an oxide film having a more uniform thickness than that of the first and second embodiments is formed on the surface of the wafer 200.
  • FIG. 5 is a schematic view showing a fourth example of the susceptor 217 according to the present embodiment.
  • FIG. 5A is a plan view of the top of the susceptor 217.
  • FIG. 5B is a plan view of FIG.
  • FIG. 7 is a cross-sectional view taken along line EE of the susceptor 217 shown in FIG.
  • the fourth embodiment shown in FIG. 5 is different from the third embodiment in that the thickness of the susceptor cover 288 is changed to 5 mm, but the material, diameter and shape of the susceptor cover 288 are different from those of the third embodiment. Are the same. Further, since the other configuration is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are given thereto, and detailed description thereof is omitted.
  • FIG. 6 shows the effect of forming an oxide film in the fourth embodiment.
  • the deviation of the thickness of the oxide film to be formed is ⁇ 1.0%, which shows a better result than the third example.
  • the effect of buffering the temperature distribution of the susceptor 217 is further increased by making the thickness of the susceptor cover 288 thicker than that of the third embodiment.
  • An oxide film having a uniform thickness is formed as compared with the embodiment.
  • the susceptor covers 280, 284, 286 and 288 on the top of the susceptor 217, the uneven temperature distribution of the susceptor 217 is buffered, and the susceptor 217 is The mounted wafer 200 can be heated uniformly.
  • the optimum configuration of the susceptor cover 280, 284, 286, 288, such as the shape, diameter, thickness, material, heat ray transmittance, and the like differs depending on the substrate processing apparatus 100. Therefore, a simulation using a computer and an actual machine are used. To be determined through experiments.
  • the susceptor covers 280, 284, 286, and 288 are separate parts from the susceptor 217.
  • the susceptor cover 280 and the susceptor covers 280, 284, 286, and 288 are integrated.
  • the tops of the susceptors 290, 292, 294, and 296 are formed.
  • the top portions of the susceptors 290, 292, 294, and 296 on which the wafer 200 is placed constitute a substrate placement portion.
  • the forms relating to the portions corresponding to the susceptor covers 280, 284, 286, and 288 in the following embodiments are also applicable when provided separately as a susceptor cover.
  • FIG. 7A is an example of a cross-sectional view of the susceptor 290 according to the first example of the present embodiment cut along a vertical plane passing through the center of the top
  • FIG. 7B is the first example. It is an example of sectional drawing which cut
  • the impedance adjustment electrode 217C shown in FIG. 1 is not shown in order to simplify the description as in FIGS.
  • FIG. 7A shows a case where the outer side heater 217B1 shown in FIG. 2 or the like has significant heat generation, and a high temperature region 217BH is generated in the outer peripheral portion of the heater 217B.
  • the thickness of that portion is made larger than that of the other portions. It is thick.
  • FIG. 7B shows a case where the heat generation of the inner peripheral heater 217B2 shown in FIG. 2 and the like is remarkable and a high temperature region 217BH is generated in the inner peripheral portion of the heater 217B.
  • the thickness of the inner peripheral portion of the susceptor 292 corresponding to the high temperature region 217BH of the heater 217B provided at the lower portion of the susceptor 290 is changed. It is thicker than the part.
  • the material of the susceptors 290 and 292 is quartz or the like that can transmit the heat rays emitted from the heater 217B.
  • the material of the susceptors 290 and 292 is quartz or the like that can transmit the heat rays emitted from the heater 217B.
  • the thickness of the susceptors 290 and 292 corresponding to the high temperature region 217BH shown in FIGS. 7A and 7B is approximately 1.5 mm thicker than the other portions.
  • the region corresponding to the outer peripheral heater element wire 217B3 described in the first embodiment may be applied as the high temperature region 217BH of the heater 217B in this embodiment. It can. The same applies to other examples in the second embodiment.
  • FIG. 8A is an example of a cross-sectional view of a susceptor 294 according to a second example of the present embodiment cut along a vertical plane passing through the center of the top
  • FIG. 8B is a second example. It is an example of sectional drawing which cut
  • FIG. 8A shows the case where the heat generation of the heater 217B is non-uniform and a plurality of high temperature regions 217BH are partially generated in the heater 217B.
  • the susceptor tops corresponding to the high temperature region 217BH of the heater 217B are thickened to buffer the uneven heat generation of the heater 217B, thereby mounting the susceptor 294 on the susceptor 294.
  • the temperature of the placed wafer 200 is made uniform.
  • FIG. 8B shows a case where a high temperature region 217BH appears on the inner peripheral portion of the heater 217B and a low temperature region 217BL having a lower temperature than the other regions appears on the outer peripheral portion of the heater 217B.
  • an opening 296A is provided in a portion of the susceptor 296 corresponding to the low temperature region 217BL, and the radiant heat from the heater 217B is By allowing the material such as quartz constituting the susceptor 296 to reach the wafer 200 without passing through, the radiant heat from the low temperature region 217BL can effectively reach the wafer 200.
  • the wafer 200 is isolated from the high temperature region 217BH of the heater 217B, and the radiant heat from the high temperature region 217BH is mitigated.
  • the temperature of the wafer 200 placed on the susceptor 296 can be made uniform.
  • the thickness of the part of the susceptor 294 corresponding to the high temperature region 217BH in the second embodiment shown in FIG. 8A is, for example, about 1.5 mm thicker than the other parts, and FIG. As an example, the raised portion 296R of the susceptor 296 of the modification of the second embodiment shown in FIG.
  • FIG. 9A is an example of a cross-sectional view of the susceptor 298 according to the third example of the present embodiment cut along a vertical plane passing through the center of the top
  • FIG. 9B is the third example. It is an example of sectional drawing which cut
  • FIG. 9A shows a case where the heat generation of the inner peripheral heater 217B2 shown in FIG. 2 and the like is remarkable and a high temperature region 217BH is generated in the inner peripheral portion of the heater 217B.
  • the wafer 200 is isolated from the high temperature region 217BH of the heater 217B by supporting the wafer 200 with a raised portion 298R provided on the outer periphery of the susceptor 298.
  • an opaque layer 298L that suppresses or shields transmission of radiant heat from the heater 217B is provided on the surface of the susceptor 298 corresponding to the high temperature region 217BH.
  • the transmittance of the radiant heat in the portion of the susceptor 298 corresponding to the high temperature region 217BH is lower than the transmittance in the portion where the non-permeable layer 298L is not provided, the uneven heat generation of the heater 217B is buffered, The temperature of the wafer 200 placed on the susceptor 298 is made uniform.
  • a high temperature region 217BH appears on the inner peripheral portion of the heater 217B, and the temperature is lower on the outer peripheral portion of the heater 217B than other regions.
  • an intermediate temperature region 217BM with moderate heat generation appears between the low temperature region 217BL and the high temperature region 217BH.
  • an opaque layer 300L that suppresses or shields transmission of radiant heat from the heater 217B is provided on the surface of the portion of the susceptor 300 corresponding to the high temperature region 217BH of the heater 217B.
  • the susceptor 300 has been subjected to a process for increasing the transmittance of a portion corresponding to the low temperature region 217BL and a processing for increasing the transmittance of the portion corresponding to the intermediate temperature region 217BM to a medium level.
  • An intermediate transmission part 300M is provided. Further, by supporting the wafer 200 with a plurality of raised portions 300R provided on the susceptor 300, the wafer 200 is isolated from the high temperature region 217BH and the radiant heat from the high temperature region 217BH is reduced.
  • the radiant heat from the high temperature region 217BH is shielded by the opaque layer 300L, and the radiant heat from the intermediate temperature region 217BM is transmitted through the intermediate transmission part 300M in a limited manner, while the radiant heat from the low temperature region 217BL is transmitted to the high transmission part. Transmits 300H with low loss. Further, the temperature of the wafer 200 placed on the susceptor 300 can be made uniform by isolating the wafer 200 from the high temperature region 217BH with the raised portion 300R.
  • the formation of the opaque layers 298L and 300L, the intermediate transmission portion 300M, and the high transmission portion 300H is performed by chemical treatment with hydrogen fluoride or physical treatment by sandblasting, heat treatment, or the like. It can be done by applying. By this treatment, the surfaces of the susceptors 298 and 300 made of quartz become ground glass, and the radiant heat from the heater 217B is hardly transmitted.
  • the surface of the susceptors 298, 300 becomes more opaque when the above-described treatment is sufficiently performed. Therefore, when forming the opaque layers 298L, 300L, the susceptors 298, 300 are increased by increasing the time required for the above-described treatment. A ground glass layer is sufficiently formed on the surface. Further, when the intermediate transmission part 300M is formed, the transmittance of the susceptors 298, 300 is adjusted by making the time required for the above-described processing shorter than when forming the non-transmission layers 298L, 300L. Furthermore, when forming the high transmission part 300H, the surface of the susceptors 298, 300 is polished by grinding so as to increase the transmittance.
  • FIG. 10 is an example of a cross-sectional view of the susceptor 302 according to the fourth example of the present embodiment cut along a vertical plane passing through the center of the top.
  • FIG. 10 shows a case where the heat generation of the inner peripheral heater 217B2 shown in FIG. 2 and the like is significant and a high temperature region 217BH is generated in the inner peripheral portion of the heater 217B.
  • the wafer 200 is isolated from the high temperature region 217BH of the heater 217B by supporting the wafer 200 with a raised portion 302R provided on the outer periphery of the susceptor 302. Further, by providing a shielding material 304 that shields radiant heat from the heater 217B on the surface of the susceptor 302 corresponding to the high temperature region 217BH, the non-uniform heat generation of the heater 217B is buffered, and the wafer placed on the susceptor 302 The temperature of 200 can be made uniform.
  • the material of the shielding material 304 can be considered as the material of the shielding material 304, and examples thereof include quartz, an aluminum oxide (Al 2 O 3 ), and yttria (Y 2 O 3 ) to which an opaque pigment such as carbon black is added.
  • the shielding material 304 may be placed on the top of the susceptor 302, it may be welded to the top of the susceptor 302 and operated as an integral member with the susceptor 302 if possible.
  • the susceptors 290, 292 are changed by changing the shape of the tops of the susceptors 290, 292, 294, 296 and the transmittance of the heat rays according to the heat generation mode of the heater 217B. , 294, 296 are buffered, and the wafer 200 placed on the susceptors 290, 292, 294, 296 can be heated uniformly.
  • top shape, thickness, height of the raised portion, heat ray transmittance, and the like of the susceptors 290, 292, 294, and 296 differ depending on the substrate processing apparatus 100, and therefore simulations using computers and actual machines were used. Determine through experiments.
  • the present invention can be applied to other processes.
  • the present invention can be applied to an apparatus for supplying a source gas and a reactive gas to form a film on a substrate, or performing a substrate process such as a heat treatment, an annealing process, an ashing process, or an etching process.
  • a substrate mounting table provided with a heating unit for heating the substrate;
  • a first covering portion that is provided on the substrate mounting table and is disposed above the first region of the heating unit and transmits heat rays generated from the first region with a first transmittance;
  • a second portion that is disposed above the second region of the heating unit that generates less heat than the region, and transmits heat rays generated from the second region with a second transmittance that is higher than the transmittance of the first covering portion.
  • a mounting table cover on which the substrate having the covering portion is mounted;
  • a substrate processing apparatus is provided.
  • the substrate processing apparatus includes an outer peripheral heater provided in an outer peripheral region of the substrate mounting table, an inner peripheral heater provided in an inner peripheral region, and power from the center of the substrate mounting table to the outer peripheral heater through the inner peripheral region.
  • a peripheral heater wire for supplying The first region is a region where the outer peripheral heater element wire is disposed.
  • Appendix 3 The substrate processing apparatus according to appendix 1, wherein The mounting table cover is made of quartz.
  • the substrate processing apparatus according to attachment 3 wherein The first covering portion is made of any of alumina, silicon carbide, and aluminum nitride.
  • Appendix 8 The substrate processing apparatus according to appendix 1, wherein The mounting table cover is made of silicon carbide.
  • Appendix 10 The substrate processing apparatus according to appendix 9, wherein The thickness of the first covering portion is smaller than the thickness of the second covering portion.
  • a substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate, A first placement portion of the substrate placement portion that is disposed above the first region of the heating unit and transmits heat rays generated from the first region with a first transmittance, and more than the first region.
  • a second mounting that is disposed above the second region of the heating unit that generates a small amount of heat and transmits heat rays generated from the second region with a second transmittance that is higher than the transmittance of the first covering portion.
  • a substrate mounting table having a portion.
  • Appendix 12 The substrate mounting table according to appendix 11, wherein The thickness of the substrate mounting part provided between the substrate and the heating unit is such that the thickness of the first mounting part is larger than the thickness of the second mounting part. It is configured.
  • the first region is a region in which the outer heater wire is disposed.
  • a substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate,
  • the thickness of the substrate mounting portion provided between the substrate and the heating unit is such that the thickness at the upper part of the first region of the heating unit is smaller in calorific value than the first region.
  • a substrate mounting table configured to be larger than the thickness of the upper part of the second region of the part.
  • a substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate, In the substrate mounting unit provided between the substrate and the heating unit, an opening is provided in an upper part of a second region that generates less heat than the first region of the heating unit. There is provided a substrate mounting table configured such that generated heat rays directly reach the substrate.
  • a substrate mounting table cover provided on a substrate mounting table provided with a heating unit for heating a substrate, wherein the cover is disposed above the first region of the heating unit, and heat rays generated from the first region are first
  • a first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion.
  • a method for manufacturing a semiconductor device or a substrate processing method is provided.
  • Appendix 19 A method for manufacturing a semiconductor device or a substrate processing method according to appendix 18, Supplying a processing gas to the substrate; Exciting the process gas.
  • a substrate mounting table cover provided on a substrate mounting table provided with a heating unit for heating a substrate, wherein the cover is disposed above the first region of the heating unit, and heat rays generated from the first region are first
  • a first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion.
  • substrate processing apparatus 200 wafer 201 processing chamber 217 susceptor 217B heater 221 controller 280, 284, 286, 288 susceptor cover 290, 292, 294, 296, 298, 300, 302 susceptor

Abstract

[Problem] To provide a technology that can evenly heat a wafer mounted on a susceptor. [Solution] Provided is a substrate processing device comprising a substrate mounting table having a heating part that heats a substrate, and a mounting table cover which is provided on the substrate mounting table and on which the substrate is mounted. The mounting table cover has: a first covering part that is disposed above a first region of the heating part and that allows heat rays generated from the first region to pass through at a first transmittance; and a second covering part that is disposed above a second region of the heating part which generates a smaller amount of heat than the first region and that allows heat rays generated from the second region to pass through at a second transmittance which is higher than the transmittance of the first covering part.

Description

基板処理装置、基板載置台および半導体装置の製造方法Substrate processing apparatus, substrate mounting table, and semiconductor device manufacturing method
 本発明は、基板処理装置、基板載置台および半導体装置の製造方法に関し、特に、ヒータにより基板を加熱する基板処理装置、基板載置台および半導体装置の製造方法に関する。 The present invention relates to a substrate processing apparatus, a substrate mounting table, and a method for manufacturing a semiconductor device, and more particularly to a substrate processing apparatus for heating a substrate with a heater, a substrate mounting table, and a method for manufacturing a semiconductor device.
 半導体装置の製造では、基板となるウエハ表面への回路パターンの形成に先立って、当該ウエハ表面に膜厚が均一な酸化被膜を形成する必要がある。ウエハ表面の酸化被膜は、多くの場合、酸素または酸素と水素との混合気等の酸化雰囲気中で、ウエハを略600℃程度に加熱することによって形成される。 In the manufacture of semiconductor devices, it is necessary to form an oxide film with a uniform film thickness on the wafer surface prior to the formation of a circuit pattern on the wafer surface serving as a substrate. The oxide film on the wafer surface is often formed by heating the wafer to about 600 ° C. in an oxidizing atmosphere such as oxygen or a mixture of oxygen and hydrogen.
 ウエハを加熱する方式には、ウエハを収めた処理室全体をヒータで加熱してウエハを熱するホットウォール方式と、ウエハをヒータが内蔵されたサセプタ(基板載置台)に載置してウエハを熱するコールドウォール方式とがある。一般には、酸化被膜の形成を行った処理室内にプラズマ化したガスを供給して酸化被膜が形成されたウエハの表面に新たな半導体層等を形成する場合には、コールドウォール方式が採用される。 The wafer heating method includes a hot wall method in which the entire processing chamber containing the wafer is heated by a heater to heat the wafer, and a wafer is mounted on a susceptor (substrate mounting table) with a built-in heater. There is a heated cold wall system. Generally, when a plasma gas is supplied into a processing chamber in which an oxide film is formed to form a new semiconductor layer or the like on the surface of the wafer on which the oxide film is formed, a cold wall method is employed. .
 しかしながら、サセプタに内蔵された電熱線であるヒータを均一に発熱させるのは容易ではなく、その結果、ウエハが載置されるサセプタ表面の温度にムラが生じ、サセプタに載置されるウエハが均一に加熱されない場合があった。例えば、ヒータの外周部は周囲に熱が逃げやすいのでヒータの内周部に比して低温になりやすく、その逆にヒータの内周部は高温になりやすい。ウエハ表面に形成される酸化被膜は、ウエハが高温であるほど厚くなるので、ウエハの温度分布が不均一の場合には、ウエハ表面に形成される酸化被膜の膜厚も不均一になるという問題があった。 However, it is not easy to uniformly heat the heater, which is a heating wire built in the susceptor. As a result, the temperature of the surface of the susceptor on which the wafer is placed becomes uneven, and the wafer placed on the susceptor is uniform. In some cases, it was not heated. For example, since heat easily escapes to the periphery of the outer periphery of the heater, the temperature tends to be lower than that of the inner periphery of the heater, and conversely, the inner periphery of the heater tends to be hot. The oxide film formed on the wafer surface becomes thicker as the temperature of the wafer is higher, so that the film thickness of the oxide film formed on the wafer surface becomes non-uniform when the temperature distribution of the wafer is non-uniform. was there.
 特許文献1には、サセプタに内蔵されているヒータの下方に当該ヒータが発した熱線を反射するリフレクタを設けた成膜装置および成膜方法の発明が開示されている。特許文献1に記載の成膜装置および成膜方法の発明は、ウエハが載置された側とは反対の側に漏洩していた熱線をリフレクタでウエハが載置されている側に反射することにより、サセプタに載置されたウエハが均一に加熱されるようにしている。 Patent Document 1 discloses an invention of a film forming apparatus and a film forming method in which a reflector that reflects a heat ray emitted from a heater under a heater built in a susceptor is provided. In the invention of the film forming apparatus and the film forming method described in Patent Document 1, the heat rays leaking to the side opposite to the side on which the wafer is placed are reflected to the side on which the wafer is placed by the reflector. Thus, the wafer placed on the susceptor is heated uniformly.
特開2012-69689号公報JP 2012-69689 A
 しかしながら、特許文献1に記載の成膜装置および成膜方法の発明は、リフレクタで反射された熱線がヒータで遮蔽されるので、サセプタに載置されたウエハへリフレクタで反射された熱線が効果的に届かず、ウエハが均一に加熱され難いという問題点があった。 However, in the invention of the film forming apparatus and the film forming method described in Patent Document 1, since the heat rays reflected by the reflector are shielded by the heater, the heat rays reflected by the reflector to the wafer placed on the susceptor are effective. However, it is difficult to heat the wafer uniformly.
 本発明の主な目的は、サセプタに載置されたウエハを均一に加熱できる技術を提供することである。 The main object of the present invention is to provide a technique capable of uniformly heating a wafer placed on a susceptor.
 本発明によれば、
 基板を加熱する加熱部を備えた基板載置台と、前記基板載置台上に設けられており、前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる第1被覆部と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2被覆部と、を有する前記基板が載置される載置台カバーと、を備える基板処理装置が提供される。
According to the present invention,
A substrate mounting table provided with a heating unit for heating the substrate; and a heating wire provided on the substrate mounting table and disposed above the first region of the heating unit to generate heat rays generated from the first region. A first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion. There is provided a substrate processing apparatus comprising: a mounting table cover on which the substrate having a second covering portion that transmits at a second transmittance that is higher than the transmittance.
 本発明によれば、基板載置台であるサセプタに載置された基板であるウエハを均一に加熱できる技術が提供される。 According to the present invention, there is provided a technique capable of uniformly heating a wafer that is a substrate placed on a susceptor that is a substrate placement table.
本発明に係る基板処理装置の概略を示す断面図である。It is sectional drawing which shows the outline of the substrate processing apparatus which concerns on this invention. 本発明の第1の実施の形態に係るサセプタの第1の実施例を示す概略図であり、(A)はサセプタの頂部を俯瞰した平面図であり、(B)は図2(A)に示されるサセプタのB-B線に沿った断面図である。It is the schematic which shows the 1st Example of the susceptor which concerns on the 1st Embodiment of this invention, (A) is the top view which looked down at the top part of a susceptor, (B) is FIG. 2 (A). It is sectional drawing along the BB line of the susceptor shown. 本発明の第1の実施の形態に係るサセプタの第2の実施例を示す概略図であり、(A)はサセプタの頂部を俯瞰した平面図であり、(B)は図3(A)に示されるサセプタのC-C線に沿った断面図である。It is the schematic which shows the 2nd Example of the susceptor which concerns on the 1st Embodiment of this invention, (A) is the top view which looked down at the top part of a susceptor, (B) is FIG. 3 (A). It is sectional drawing along CC line of the susceptor shown. 本発明の第1の実施の形態に係るサセプタの第3の実施例を示す概略図であり、(A)はサセプタの頂部を俯瞰した平面図であり、(B)は図4(A)に示されるサセプタのD-D線に沿った断面図である。It is the schematic which shows the 3rd Example of the susceptor which concerns on the 1st Embodiment of this invention, (A) is the top view which looked down at the top part of a susceptor, (B) is FIG. 4 (A). It is sectional drawing along the DD line of the susceptor shown. 本発明の第1の実施の形態に係るサセプタの第4の実施例を示す概略図であり、(A)はサセプタの頂部を俯瞰した平面図であり、(B)は図4(A)に示されるサセプタのE-E線に沿った断面図である。It is the schematic which shows the 4th Example of the susceptor based on the 1st Embodiment of this invention, (A) is the top view which looked down at the top part of a susceptor, (B) is FIG. 4 (A). It is sectional drawing along the EE line of the susceptor shown. 本発明の第1の実施の形態に係るサセプタカバーを用いた場合にウエハ表面に形成された酸化被膜の厚さの偏差を示した表である。It is the table | surface which showed the deviation of the thickness of the oxide film formed in the wafer surface when the susceptor cover which concerns on the 1st Embodiment of this invention is used. (A)は、本発明の第2の実施の形態の第1の実施例に係るサセプタを頂部の中心を通る鉛直面で切断した断面図の一例であり、(B)は第1の実施例の変形例であるサセプタを頂部の中心を通る鉛直面で切断した断面図の一例である。(A) is an example of a sectional view of the susceptor according to the first example of the second embodiment of the present invention cut along a vertical plane passing through the center of the top, and (B) is the first example. It is an example of sectional drawing which cut | disconnected the susceptor which is a modification of this in the vertical surface which passes along the center of a top part. (A)は、本発明の第2の実施の形態の第2の実施例に係るサセプタを頂部の中心を通る鉛直面で切断した断面図の一例であり、(B)は第2の実施例の変形例であるサセプタを頂部の中心を通る鉛直面で切断した断面図の一例である。(A) is an example of a sectional view of the susceptor according to the second example of the second embodiment of the present invention cut along a vertical plane passing through the center of the top, and (B) is the second example. It is an example of sectional drawing which cut | disconnected the susceptor which is a modification of this in the vertical surface which passes along the center of a top part. (A)は、本発明の第2の実施の形態の第3の実施例に係るサセプタを頂部の中心を通る鉛直面で切断した断面図の一例であり(B)は第3の実施例の変形例であるサセプタを頂部の中心を通る鉛直面で切断した断面図の一例である。(A) is an example of a cross-sectional view of the susceptor according to the third example of the second embodiment of the present invention cut along a vertical plane passing through the center of the top, and (B) is an example of the third example. It is an example of sectional drawing which cut | disconnected the susceptor which is a modification by the vertical surface which passes along the center of a top part. 本発明の第2の実施の形態の第4の実施例に係るサセプタを頂部の中心を通る鉛直面で切断した断面図の一例である。It is an example of sectional drawing which cut | disconnected the susceptor which concerns on the 4th Example of the 2nd Embodiment of this invention by the vertical surface which passes along the center of a top part.
 以下、本発明の好ましい実施の形態について図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(1)基板処理装置の構成
 まず、本発明の好ましい実施の形態で好適に使用される基板処理装置について説明する。この基板処理装置は、半導体装置の製造に使用される半導体製造装置の一例として構成されているものである。
(1) Configuration of Substrate Processing Apparatus First, a substrate processing apparatus that is preferably used in a preferred embodiment of the present invention will be described. This substrate processing apparatus is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device.
 下記の説明では、基板処理装置の一例として、基板に対し成膜処理等をおこなう装置を使用した場合について述べる。図1は、本発明に係る基板処理装置100の概略を示す断面図である。 In the following description, a case will be described in which an apparatus for performing a film forming process on a substrate is used as an example of a substrate processing apparatus. FIG. 1 is a cross-sectional view schematically showing a substrate processing apparatus 100 according to the present invention.
 基板処理装置100は、ウエハ200をプラズマ処理する処理炉202を備えている。処理炉202には、処理室201を構成する処理容器203が設けられている。処理容器203は、第1の容器であるドーム型の上側容器210と、第2の容器である碗型の下側容器211とを備えている。上側容器210が下側容器211の上に被さることにより、処理室201が形成される。上側容器210は、例えば酸化アルミニウム(Al)または石英(SiO)等の非金属材料で形成されており、下側容器211は、例えばアルミニウム(Al)で形成されている。 The substrate processing apparatus 100 includes a processing furnace 202 for plasma processing the wafer 200. The processing furnace 202 is provided with a processing container 203 that constitutes a processing chamber 201. The processing container 203 includes a dome-shaped upper container 210 that is a first container and a bowl-shaped lower container 211 that is a second container. The processing chamber 201 is formed by covering the upper container 210 on the lower container 211. The upper container 210 is made of a non-metallic material such as aluminum oxide (Al 2 O 3 ) or quartz (SiO 2 ), for example, and the lower container 211 is made of aluminum (Al), for example.
 また、下側容器211の下部側壁には、ゲートバルブ244が設けられている。ゲートバルブ244は、開いているとき、搬送機構(図示せず)を用いて、搬入出口245を介して、処理室201内へウエハ200を搬入できる。または、搬送機構(図示せず)を用いて、搬入出口245を介して、処理室201外へとウエハ200を搬出することができるように構成されている。ゲートバルブ244は、閉まっているときには、処理室201内の気密性を保持する仕切弁となるように構成されている。 Also, a gate valve 244 is provided on the lower side wall of the lower container 211. When the gate valve 244 is open, the wafer 200 can be loaded into the processing chamber 201 via the loading / unloading port 245 using a transfer mechanism (not shown). Alternatively, the wafer 200 can be unloaded out of the processing chamber 201 via the loading / unloading port 245 using a transfer mechanism (not shown). The gate valve 244 is configured to be a gate valve that maintains the airtightness in the processing chamber 201 when the gate valve 244 is closed.
 処理室201は、後述するように周囲に共振コイル212が設けられているプラズマ生成空間201Aと、プラズマ生成空間201Aに連通し、ウエハ200が処理される基板処理空間201Bと、を有する。プラズマ生成空間201Aはプラズマが生成される空間であって、処理室201の内、共振コイル212の下端(一点鎖線)より上方の空間を言う。一方、基板処理空間201Bはウエハ200がプラズマで処理される空間であって、共振コイル212の下端より下方の空間を言う。 The processing chamber 201 includes a plasma generation space 201A in which a resonance coil 212 is provided around as described later, and a substrate processing space 201B that communicates with the plasma generation space 201A and processes the wafer 200. The plasma generation space 201 </ b> A is a space where plasma is generated, and is a space above the lower end (one-dot chain line) of the resonance coil 212 in the processing chamber 201. On the other hand, the substrate processing space 201 </ b> B is a space where the wafer 200 is processed with plasma, and is a space below the lower end of the resonance coil 212.
(サセプタ) 
 処理室201の底側中央には、ウエハ200を載置する基板載置部としてのサセプタ217が配置されている。サセプタ217は例えば窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料から形成されており、ウエハ200上に形成される膜等の金属汚染を低減することができるように構成されている。また、サセプタ217とウエハ200との間には、サセプタ217側からの熱をウエハ200へ均一に伝えるためのサセプタカバー280が設けられている。サセプタカバー280は、後述するように、AlN、セラミックス、石英、炭化ケイ素等の非金属材料から形成されている。
(Susceptor)
In the center of the bottom side of the processing chamber 201, a susceptor 217 is disposed as a substrate placement portion on which the wafer 200 is placed. The susceptor 217 is made of a non-metallic material such as aluminum nitride (AlN), ceramics, or quartz, and is configured to reduce metal contamination of a film or the like formed on the wafer 200. In addition, a susceptor cover 280 for uniformly transferring heat from the susceptor 217 side to the wafer 200 is provided between the susceptor 217 and the wafer 200. As will be described later, the susceptor cover 280 is made of a non-metallic material such as AlN, ceramics, quartz, or silicon carbide.
 サセプタ217の内部には、加熱機構としてのヒータ217Bが一体的に埋め込まれている。ヒータ217Bは、電力が供給されると、ウエハ200表面を例えば25℃から700℃程度まで加熱することができるように構成されている。 In the susceptor 217, a heater 217B as a heating mechanism is integrally embedded. The heater 217B is configured to be able to heat the surface of the wafer 200 from, for example, about 25 ° C. to about 700 ° C. when electric power is supplied.
 サセプタ217は、下側容器211とは電気的に絶縁されている。サセプタ217内部にはインピーダンス調整電極217Cが装備されている。インピーダンス調整電極217Cは、インピーダンス調整部としてのインピーダンス可変機構275を介して接地されている。インピーダンス可変機構275はコイルや可変コンデンサから構成されており、コイルのインダクタンスおよび抵抗並びに可変コンデンサの容量値を制御することにより、インピーダンスを約0Ωから処理室201の寄生インピーダンス値の範囲内で変化させることができるように構成されている。これによって、インピーダンス調整電極217Cおよびサセプタ217を介して、ウエハ200の電位(バイアス電圧)を制御できる。 The susceptor 217 is electrically insulated from the lower container 211. An impedance adjustment electrode 217C is provided in the susceptor 217. The impedance adjustment electrode 217C is grounded via an impedance variable mechanism 275 as an impedance adjustment unit. The variable impedance mechanism 275 includes a coil and a variable capacitor. By controlling the inductance and resistance of the coil and the capacitance value of the variable capacitor, the impedance is changed within a range from about 0Ω to the parasitic impedance value of the processing chamber 201. It is configured to be able to. Accordingly, the potential (bias voltage) of the wafer 200 can be controlled via the impedance adjustment electrode 217C and the susceptor 217.
 サセプタ217には、サセプタを昇降させるサセプタ昇降機構268が設けられている。そしてサセプタ217には貫通孔217Aが設けられ、一方、下側容器211の底面にはウエハ突上げピン266が設けられている。貫通孔217Aとウエハ突上げピン266とは互いに対向する位置に、少なくとも各3箇所ずつ設けられている。サセプタ昇降機構268によりサセプタ217が下降させられたときには、ウエハ突上げピン266がサセプタ217とは非接触な状態で、貫通孔217Aを突き抜けるように構成されている。 The susceptor 217 is provided with a susceptor elevating mechanism 268 that elevates and lowers the susceptor. The susceptor 217 is provided with a through hole 217 </ b> A, while a wafer push-up pin 266 is provided on the bottom surface of the lower container 211. The through holes 217A and the wafer push-up pins 266 are provided at least at three positions at positions facing each other. When the susceptor 217 is lowered by the susceptor elevating mechanism 268, the wafer push-up pin 266 is configured to penetrate through the through-hole 217A without contacting the susceptor 217.
(ガス供給部) 
 処理室201の上方、つまり上側容器210の上部には、シャワーヘッド236が設けられている。シャワーヘッド236は、キャップ状の蓋体233と、ガス導入口234と、バッファ室237と、開口238と、遮蔽プレート240と、ガス吹出口239とを備え、反応ガスを処理室201内へ供給できるように構成されている。バッファ室237は、ガス導入口234より導入される反応ガスを分散する分散空間としての機能を持つ。
(Gas supply part)
A shower head 236 is provided above the processing chamber 201, that is, above the upper container 210. The shower head 236 includes a cap-shaped lid 233, a gas inlet 234, a buffer chamber 237, an opening 238, a shielding plate 240, and a gas outlet 239, and supplies reaction gas into the processing chamber 201. It is configured to be able to. The buffer chamber 237 has a function as a dispersion space for dispersing the reaction gas introduced from the gas introduction port 234.
 ガス導入口234には、酸素含有ガスとしての酸素(O)ガスを供給する酸素含有ガス供給管232Aの下流端と、水素含有ガスとしての水素(H)ガスを供給する水素含有ガス供給管232Bの下流端と、不活性ガスとしてのアルゴン(Ar)ガスを供給する不活性ガス供給管232Cと、が合流するように接続されている。酸素含有ガス供給管232Aには、上流側から順に、Oガス供給源250A、流量制御装置としてのマスフローコントローラ252A、開閉弁としてのバルブ253Aが設けられている。水素含有ガス供給管232Bには、上流側から順に、Hガス供給源250B、流量制御装置としてのマスフローコントローラ252B、開閉弁としてのバルブ253Bが設けられている。不活性ガス供給管232Cには、上流側から順に、Arガス供給源250C、流量制御装置としてのマスフローコントローラ252C、開閉弁としてのバルブ253Cが設けられている。酸素含有ガス供給管232Aと水素含有ガス供給管232Bと不活性ガス供給管232Cとが合流した下流側には、バルブ243Aが設けられ、ガス導入口234の上流端に接続されている。バルブ253A,253B,253C,243Aを開閉させることによって、マスフローコントローラ252A,252B,252Cによりそれぞれのガスの流量を調整しつつ、ガス供給管232A,232B,232C,232を介して,酸素含有ガス,水素含有ガス,不活性ガス等の反応ガスを処理室201内へ供給できるように構成されている。 The gas inlet 234 has a downstream end of an oxygen-containing gas supply pipe 232A that supplies oxygen (O 2 ) gas as an oxygen-containing gas, and a hydrogen-containing gas supply that supplies hydrogen (H 2 ) gas as a hydrogen-containing gas. The downstream end of the pipe 232B and an inert gas supply pipe 232C that supplies argon (Ar) gas as an inert gas are connected so as to merge. The oxygen-containing gas supply pipe 232A is provided with an O 2 gas supply source 250A, a mass flow controller 252A as a flow rate control device, and a valve 253A as an on-off valve in order from the upstream side. The hydrogen-containing gas supply pipe 232B is provided with an H 2 gas supply source 250B, a mass flow controller 252B as a flow rate control device, and a valve 253B as an on-off valve in order from the upstream side. The inert gas supply pipe 232C is provided with an Ar gas supply source 250C, a mass flow controller 252C as a flow rate control device, and a valve 253C as an on-off valve in order from the upstream side. A valve 243A is provided on the downstream side where the oxygen-containing gas supply pipe 232A, the hydrogen-containing gas supply pipe 232B, and the inert gas supply pipe 232C merge, and is connected to the upstream end of the gas inlet 234. By opening and closing the valves 253A, 253B, 253C, and 243A, the flow rate of each gas is adjusted by the mass flow controllers 252A, 252B, and 252C, and the oxygen-containing gas is supplied via the gas supply pipes 232A, 232B, 232C, and 232 A reaction gas such as a hydrogen-containing gas or an inert gas can be supplied into the processing chamber 201.
(排気部) 
 下側容器211の側壁には、処理室201内から反応ガスを排気するガス排気口235が設けられている。ガス排気口235には、ガス排気管231の上流端が接続されている。ガス排気管231には、上流側から順に圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)242、開閉弁としてのバルブ243B、真空排気装置としての真空ポンプ246が設けられている。
(Exhaust part)
A gas exhaust port 235 for exhausting the reaction gas from the processing chamber 201 is provided on the side wall of the lower container 211. The upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235. The gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) 242 as a pressure regulator (pressure regulator), a valve 243B as an on-off valve, and a vacuum pump 246 as a vacuum exhaust device in order from the upstream side.
(プラズマ生成部) 
 処理室201の外周部、すなわち上側容器210の側壁の外側には、処理室201を囲うように、螺旋状の共振コイル212が設けられている。共振コイル212には、RFセンサ272、高周波電源273と周波数整合器274が接続される。
(Plasma generator)
A spiral resonance coil 212 is provided on the outer periphery of the processing chamber 201, that is, outside the side wall of the upper container 210 so as to surround the processing chamber 201. An RF sensor 272, a high frequency power supply 273 and a frequency matching unit 274 are connected to the resonance coil 212.
 高周波電源273は、共振コイル212に高周波電力を供給するものである。RFセンサ272は高周波電源273の出力側に設けられている。RFセンサ272は、供給される高周波の進行波や反射波の情報をモニタするものである。周波数整合器274は、RFセンサ272でモニタされた反射波の情報に基づいて、反射波が最小となるよう、高周波電源273を制御するものである。 The high frequency power supply 273 supplies high frequency power to the resonance coil 212. The RF sensor 272 is provided on the output side of the high frequency power supply 273. The RF sensor 272 monitors information on high-frequency traveling waves and reflected waves that are supplied. The frequency matching unit 274 controls the high-frequency power source 273 so that the reflected wave is minimized based on the information on the reflected wave monitored by the RF sensor 272.
 共振コイル212は、所定の波長の定在波を形成するため、一定波長モードで共振するように巻径、巻回ピッチ、巻数が設定される。すなわち、共振コイル212の電気的長さは、高周波電源273から供給される電力の所定周波数における1波長の整数倍(1倍、2倍、…)に相当する長さに設定される。 例えば、13.56MHzの場合1波長の長さは約22メートル、27.12MHzの場合1波長の長さは、約11メートル、54.24MHzの場合1波長の長さは約5.5メートルになる。 Since the resonance coil 212 forms a standing wave having a predetermined wavelength, the winding diameter, the winding pitch, and the number of turns are set so as to resonate in a constant wavelength mode. That is, the electrical length of the resonance coil 212 is set to a length corresponding to an integral multiple (1 times, 2 times,...) Of one wavelength at a predetermined frequency of the power supplied from the high frequency power supply 273. For example, in the case of 13.56 MHz, the length of one wavelength is about 22 meters, in the case of 27.12 MHz, the length of one wavelength is about 11 meters, and in the case of 54.24 MHz, the length of one wavelength is about 5.5 meters. Become.
 共振コイル212の両端は電気的に接地されるが、共振コイル212の少なくとも一端は、装置の最初の設置の際または処理条件の変更の際に当該共振コイルの電気的長さを微調整するため、可動タップ213を介して接地される。図1中の符号214は他方の固定グランドを示す。さらに、装置の最初の設置の際または処理条件の変更の際に共振コイル212のインピーダンスを微調整するため、共振コイル212の接地された両端の間には、可動タップ215によって給電部が構成される。 Both ends of the resonant coil 212 are electrically grounded, but at least one end of the resonant coil 212 is used to fine-tune the electrical length of the resonant coil during initial installation of the apparatus or when processing conditions are changed. And grounded via the movable tap 213. Reference numeral 214 in FIG. 1 indicates the other fixed ground. Furthermore, in order to finely adjust the impedance of the resonance coil 212 when the apparatus is first installed or when the processing conditions are changed, a power feeding unit is configured between the grounded ends of the resonance coil 212 by a movable tap 215. The
 すなわち、共振コイル212は、電気的に接地されたグランド部を両端に備え且つ高周波電源273から電力供給される給電部を各グランド部の間に備えている。しかも、少なくとも一方のグランド部は、位置調整可能な可変式グランド部とされ、そして、給電部は、位置調整可能な可変式給電部とされる。共振コイル212が可変式グランド部および可変式給電部を備えている場合には、後述するように、処理室201の共振周波数および負荷インピーダンスを調整するにあたり、より一層簡便に調整することができる。 That is, the resonance coil 212 includes a ground portion that is electrically grounded at both ends and a power feeding portion that is supplied with power from the high-frequency power source 273 between the ground portions. Moreover, at least one of the ground portions is a variable ground portion that can be adjusted in position, and the power feeding portion is a variable power feeding portion that can be adjusted in position. When the resonance coil 212 includes a variable ground portion and a variable power supply portion, as will be described later, the resonance frequency and load impedance of the processing chamber 201 can be adjusted more easily.
 高周波電源273の出力側にはRFセンサ272が設置され、進行波、反射波等をモニタしている。RFセンサ272によってモニタされた反射波電力は、周波数整合器274に入力される。周波数整合器274は、反射波が最小となるよう周波数を制御する。 An RF sensor 272 is installed on the output side of the high frequency power supply 273 and monitors traveling waves, reflected waves, and the like. The reflected wave power monitored by the RF sensor 272 is input to the frequency matching unit 274. The frequency matching unit 274 controls the frequency so that the reflected wave is minimized.
 高周波電源273から高周波電力を印加された共振コイル212は、プラズマ生成空間201A内に高周波電界を形成し、処理室201内に導入された酸素ガスや水素ガス等のガスを励起する。励起されプラズマ状となったガスは当該ガス元素を含む活性種やイオン等の反応種を生成する。 The resonance coil 212 to which high-frequency power is applied from the high-frequency power source 273 creates a high-frequency electric field in the plasma generation space 201 </ b> A and excites gases such as oxygen gas and hydrogen gas introduced into the processing chamber 201. The excited gas that is in the form of plasma generates reactive species including the gas element and reactive species such as ions.
(制御部) 
 制御部としてのコントローラ221は、信号線Aを通じてAPC242、バルブ243Bおよび真空ポンプ246を、信号線Bを通じてサセプタ昇降機構268を、信号線Cを通じてヒータ217Bおよびインピーダンス可変機構275を、信号線Dを通じてゲートバルブ244を、信号線Eを通じてRFセンサ272、高周波電源273および周波数整合器274を、信号線Fを通じてマスフローコントローラ252A,252B,252Cおよびバルブ253A,253B,253C,243Aを、各々制御するように構成されている。
(Control part)
The controller 221 as the control unit gates the APC 242, the valve 243B and the vacuum pump 246 through the signal line A, the susceptor lifting mechanism 268 through the signal line B, the heater 217B and the impedance variable mechanism 275 through the signal line C, and the gate through the signal line D. The valve 244 is configured to control the RF sensor 272, the high frequency power supply 273, and the frequency matching unit 274 through the signal line E, and the mass flow controllers 252A, 252B, 252C and the valves 253A, 253B, 253C, 243A through the signal line F, respectively. Has been.
 コントローラ221は上述の各構成を制御するためのプログラムによって動作するコンピュータであり、当該プログラムはコンピュータで読み取り可能な記録媒体に格納され得る。また、当該記録媒体は、基板処理装置100に電気的に接続され、基板処理装置100のコントローラ221は当該記録媒体から当該プログラムを読み取って、上述の制御を実行することが可能である。 The controller 221 is a computer that operates according to a program for controlling the above-described components, and the program can be stored in a computer-readable recording medium. The recording medium is electrically connected to the substrate processing apparatus 100, and the controller 221 of the substrate processing apparatus 100 can read the program from the recording medium and execute the above-described control.
(2)基板処理工程 
 次に、本発明の好ましい実施の形態において好適に実施される基板処理工程について説明する。本実施形態に係る基板処理工程は、例えばフラッシュメモリ等の半導体デバイスの製造工程の一工程として、上述の基板処理装置100により実施される。なお以下の説明において、基板処理装置100を構成する各部の 動作は、コントローラ221により制御される。 
(2) Substrate processing process
Next, a description will be given of a substrate processing step that is preferably performed in a preferred embodiment of the present invention. The substrate processing process according to this embodiment is performed by the above-described substrate processing apparatus 100 as one process of manufacturing a semiconductor device such as a flash memory. In the following description, the operation of each unit constituting the substrate processing apparatus 100 is controlled by the controller 221.
(基板搬入工程) 
 まず、ウエハ200を処理室201内に搬入する。具体的には、サセプタ昇降機構268がウエハ200の搬送位置までサセプタ217を下降させて、サセプタ217の貫通孔217Aにウエハ突上げピン266を貫通させる。その結果、ウエハ突き上げピン266が、サセプタ217表面よりも所定の高さ分だけ突出した状態となる。 
(Substrate loading process)
First, the wafer 200 is loaded into the processing chamber 201. Specifically, the susceptor elevating mechanism 268 lowers the susceptor 217 to the transfer position of the wafer 200 and causes the wafer push-up pins 266 to pass through the through holes 217A of the susceptor 217. As a result, the wafer push-up pins 266 protrude from the surface of the susceptor 217 by a predetermined height.
 続いて、ゲートバルブ244を開き、図中省略の搬送機構を用いて処理室201に隣接 する真空搬送室(図示せず)から処理室201内にウエハ200を搬入する。その結果、 ウエハ200は、サセプタ217の表面から突出したウエハ突上げピン266上に水平姿 勢で支持される。処理室201内にウエハ200を搬入したら、搬送機構を処理室201 外へ退避させ、ゲートバルブ244を閉じて処理室201内を密閉する。そして、サセプ タ昇降機構268が、共振コイル212の下端と搬入出口245の上端245A の間の所定の位置となるよう、サセプタ217を上昇させる。その結果、ウエハ200は サセプタ217の上面に支持される。なお、基板搬入工程は、処理室201内を 不活性ガス等でパージしながら行ってもよい。  Subsequently, the gate valve 244 is opened, and the wafer 200 is loaded into the processing chamber 201 from a vacuum transfer chamber (not shown) adjacent to the processing chamber 201 using a transfer mechanism not shown in the drawing. As a result, the wafer 200 is supported in a horizontal posture on the wafer push-up pins 266 protruding from the surface of the susceptor 217. When the wafer 200 is loaded into the processing chamber 201, the transfer mechanism is moved out of the processing chamber 201 and the gate valve 244 is closed to seal the processing chamber 201. Then, the susceptor elevating mechanism 268 raises the susceptor 217 so as to be at a predetermined position between the lower end of the resonance coil 212 and the upper end 245A of the carry-in / out port 245. As a result, the wafer 200 is supported on the upper surface of the heel susceptor 217. Note that the substrate carrying-in process may be performed while purging the inside of the processing chamber 201 with a soot inert gas or the like.
(昇温・真空排気工程) 
 続いて、処理室201内に搬入されたウエハ200の昇温を行う。ヒータ217Bは予め加熱されており、ヒータ217Bが埋め込まれたサセプタ217上に、搬入されたウエハ200を保持することで、例えば150℃以上650℃以下の範囲内の所定値にウエハ200を加熱する。ここでは、ウエハ200の温度が600℃となるよう加熱する。また、ウエハ200の昇温を行う間、真空ポンプ246によりガス排気口235を介して処理室201内を真空排気し、処理室201内の圧力を0.1Pa以上1000Pa以下の範囲内の所定値とする。例えば200Paに調整される。真空ポンプ246は、少なくとも後述の基板搬出工程が終了するまで作動させておく。 
(Temperature raising / evacuation process)
Subsequently, the temperature of the wafer 200 carried into the processing chamber 201 is increased. The heater 217B is preheated, and the wafer 200 that has been loaded is held on the susceptor 217 in which the heater 217B is embedded, so that the wafer 200 is heated to a predetermined value within a range of 150 ° C. to 650 ° C., for example. . Here, the temperature of the wafer 200 is heated to 600 ° C. Further, while the temperature of the wafer 200 is raised, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 through the gas exhaust port 235, and the pressure in the processing chamber 201 is a predetermined value within a range of 0.1 Pa to 1000 Pa. And For example, it is adjusted to 200 Pa. The vacuum pump 246 is operated until at least a substrate unloading process described later is completed.
(反応ガス供給工程) 
 次に、反応ガスとしての酸素ガスの供給を開始する。具体的には、バルブ253Aを開け、マスフローコントローラ252Aにて流量制御しながら、バッファ室237を介して処理室201内への酸素ガスの供給を開始する。このとき、酸素ガスの流量を、例えば100sccm以上1000sccm以下の範囲内の所定値とする。また、処理室201内の圧力が、例えば1Pa以上1000Pa以下の範囲内の所定圧力となるように、APC242の開度を調整して処理室201内を排気する。このように、処理室201内を適度に排気しつつ、後述のプラズマ処理工程の終了時まで酸素ガスの供給を継続する。 
(Reactive gas supply process)
Next, supply of oxygen gas as a reaction gas is started. Specifically, the supply of oxygen gas into the processing chamber 201 via the buffer chamber 237 is started while the valve 253A is opened and the flow rate is controlled by the mass flow controller 252A. At this time, the flow rate of the oxygen gas is set to a predetermined value within a range of 100 sccm to 1000 sccm, for example. Further, the opening of the APC 242 is adjusted to exhaust the inside of the processing chamber 201 so that the pressure in the processing chamber 201 becomes a predetermined pressure within a range of 1 Pa to 1000 Pa, for example. As described above, the supply of oxygen gas is continued until the plasma processing step described later is completed while the inside of the processing chamber 201 is appropriately exhausted.
(プラズマ処理工程) 
 処理室201内の圧力が安定したら、共振コイル212に対して高周波電源273から整合器272を介して、高周波電力の印加を開始する。 
(Plasma treatment process)
When the pressure in the processing chamber 201 is stabilized, application of high frequency power to the resonance coil 212 from the high frequency power supply 273 via the matching unit 272 is started.
  これにより、プラズマ生成空間201A内に高周波電界が形成され、係る電界で、プラズマ生成空間の共振コイル212の電気的中点に相当する高さ位置にドーナツ状の誘導プラズマが励起される。プラズマ状の酸素ガスは解離し、酸素(O)を含む酸素活性種、イオン等の反応種を生成する。  As a result, a high-frequency electric field is formed in the plasma generation space 201A, and the doughnut-shaped induction plasma is excited by the electric field at a height corresponding to the electrical midpoint of the resonance coil 212 in the plasma generation space. The plasma oxygen gas dissociates and generates reactive species such as oxygen active species and ions containing oxygen (O).
 基板処理空間201Bで基板載置台217上に保持されているウエハ200には、酸素ラジカルと加速されない状態のイオンがウエハ200表面に均一に供給される。供給されたラジカル及びイオンはウエハ200上のシリコン膜と均一に反応し、シリコン膜をステップカバレッジの高いシリコン酸化膜に改質する。 Oxygen radicals and non-accelerated ions are uniformly supplied to the surface of the wafer 200 to the wafer 200 held on the substrate mounting table 217 in the substrate processing space 201B. The supplied radicals and ions react uniformly with the silicon film on the wafer 200 to modify the silicon film into a silicon oxide film with high step coverage.
 その後、所定の処理時間、例えば10秒から300秒が経過したら、高周波電源273からの電力の出力を停止して、処理室201内におけるプラズマ放電を停止する。また、バルブ253Aを閉めて、酸素ガスの処理室201内への供給を停止する。以上により、プラズマ処理工程が終了する。  Thereafter, when a predetermined processing time, for example, 10 to 300 seconds elapses, the output of power from the high frequency power supply 273 is stopped, and the plasma discharge in the processing chamber 201 is stopped. Further, the valve 253A is closed, and supply of oxygen gas into the processing chamber 201 is stopped. Thus, the plasma processing process is completed.
(真空排気工程) 
 所定の処理時間が経過して酸素ガスの供給を停止したら、ガス排気口235を介して処理室201内を真空排気する。これにより、処理室201内の酸素ガスや、酸素ガスが反応した排ガス等を処理室201外へと排気する。その後、APC242の開度を調整し、処理室201内の圧力を処理室201に隣接する真空搬送室(ウエハ200の搬出先。図示せず)と同じ圧力(例えば100Pa)に調整する。
(Evacuation process)
When the supply of oxygen gas is stopped after a predetermined processing time has elapsed, the inside of the processing chamber 201 is evacuated through the gas exhaust port 235. As a result, oxygen gas in the processing chamber 201, exhaust gas that has reacted with the oxygen gas, and the like are exhausted to the outside of the processing chamber 201. Thereafter, the opening degree of the APC 242 is adjusted, and the pressure in the processing chamber 201 is adjusted to the same pressure (for example, 100 Pa) as the vacuum transfer chamber adjacent to the processing chamber 201 (the unloading destination of the wafer 200, not shown).
(基板搬出工程) 
 処理室201内が所定の圧力となったら、サセプタ217をウエハ200の搬送位置まで下降させ、ウエハ突上げピン266上にウエハ200を支持させる。そして、ゲートバルブ244を開き、図中省略の搬送機構を用いてウエハ200を処理室201外へ搬出する。このとき、処理室201内をアルゴンガス等の不活性ガス等でパージしながらウエハ200の搬出を行ってもよい。以上により、本実施形態に係る基板処理工程を終了する。
(Substrate unloading process)
When the inside of the processing chamber 201 reaches a predetermined pressure, the susceptor 217 is lowered to the transfer position of the wafer 200 and the wafer 200 is supported on the wafer push-up pins 266. Then, the gate valve 244 is opened, and the wafer 200 is carried out of the processing chamber 201 using a transfer mechanism not shown in the drawing. At this time, the wafer 200 may be unloaded while purging the inside of the processing chamber 201 with an inert gas such as an argon gas. Thus, the substrate processing process according to this embodiment is completed.
 なお、本実施形態では、処理室201に酸素ガスを供給してプラズマ励起することにより、ウエハ200上のシリコン膜に対して酸化処理を行いシリコンの酸化被膜を形成したが、処理室201に供給されプラズマ励起されるガスとしては、酸素ガスと水素ガスを共に供給するようにしてもよい。また、シリコン膜の酸化処理による酸化被膜形成ではなく、窒化処理による窒化被膜を形成する場合には、窒素(N2)ガス若しくはアンモニア(NH3)ガス、又は窒素ガスとアンモニアガスを共に処理室201に供給して、これらのガスをプラズマ励起することにより窒化処理を行うようにしてもよい。 In this embodiment, oxygen gas is supplied to the processing chamber 201 and plasma excitation is performed to oxidize the silicon film on the wafer 200 to form a silicon oxide film. As the plasma-excited gas, both oxygen gas and hydrogen gas may be supplied. In addition, when forming a nitride film by nitridation instead of forming an oxide film by oxidation of a silicon film, nitrogen (N 2) gas or ammonia (NH 3) gas, or both nitrogen gas and ammonia gas are put into the process chamber 201. The nitriding treatment may be performed by supplying the plasma and exciting these gases.
〔第1の実施の形態〕 
 続いて基板処理装置100のサセプタ217の第1の実施の形態について図2~図5を用いて説明する。
[First Embodiment]
Next, a first embodiment of the susceptor 217 of the substrate processing apparatus 100 will be described with reference to FIGS.
(第1の実施例) 
 図2は、本実施の形態に係るサセプタ217の第1の実施例を示す概略図であり、(A)はサセプタ217の頂部を俯瞰した平面図であり、(B)は図2(A)に示されるサセプタ217のB-B線に沿った断面図である。図2(A)、(B)に示したように、サセプタ217にはヒータ217Bが内蔵されており、ヒータ217Bは、サセプタ217の外周部分を加熱する外周側ヒータ217B1およびサセプタ217の内周部分を加熱する内周側ヒータ217B2を含む。そして、外周側ヒータ217B1と内周側ヒータ217B2とに供給する電力を各々制御することにより、外周側ヒータ217B1と内周側ヒータ217B2の発熱を調整して、サセプタ217に載置されるウエハを均一に加熱するようにしている。なお、図2および後述する図3~図5において、説明を簡略化するために、図1で示したインピーダンス調整電極217Cは記載を省略している。
(First embodiment)
FIG. 2 is a schematic view showing a first example of the susceptor 217 according to the present embodiment. FIG. 2A is a plan view of the top of the susceptor 217. FIG. 2B is a plan view of FIG. FIG. 6 is a cross-sectional view taken along line BB of the susceptor 217 shown in FIG. As shown in FIGS. 2A and 2B, the susceptor 217 includes a heater 217B. The heater 217B heats the outer peripheral portion of the susceptor 217 and the inner peripheral portion of the susceptor 217. Includes an inner peripheral heater 217B2. Then, by controlling the power supplied to the outer peripheral side heater 217B1 and the inner peripheral side heater 217B2, respectively, the heat generated by the outer peripheral side heater 217B1 and the inner peripheral side heater 217B2 is adjusted, and the wafer placed on the susceptor 217 is adjusted. Heats uniformly. In FIG. 2 and FIGS. 3 to 5 described later, the impedance adjustment electrode 217C shown in FIG. 1 is not shown for the sake of simplicity.
 サセプタ217とウエハ200との間には例えば石英で構成されたサセプタカバー280が設けられている。サセプタカバー280の直径は、図2(A)に示したように、載置されているウエハ200(直径300mm)よりもやや大きい程度である。サセプタカバー280の直径をウエハ200に比して大きくすると、サセプタカバー280の外周部から逃げる熱により、サセプタカバー280の温度が不均一になるおそれがあるからである。 A susceptor cover 280 made of, for example, quartz is provided between the susceptor 217 and the wafer 200. The diameter of the susceptor cover 280 is slightly larger than the mounted wafer 200 (diameter 300 mm), as shown in FIG. This is because if the diameter of the susceptor cover 280 is larger than that of the wafer 200, the temperature of the susceptor cover 280 may become non-uniform due to heat escaping from the outer periphery of the susceptor cover 280.
 サセプタカバー280は、表面をすりガラス状に処理してヒータ217Bが発する熱線を比較的透過するようにした透過部280Aと、酸化鉄、カーボンブラック等の黒色顔料を添加して上述の熱線が透過しにくいようにした不透過部280Bとを含んでいる。なお、透過部280Aをすりガラス状にする処理は、フッ化水素による化学処理、またはサンドブラスト、研削、熱処理等による物理的な処理である。なお、不透過部280Bは、石英に気泡を混ぜて白色化した部材であっても良いし、アルミナ(Al)などのセラミック部材や、炭化ケイ素(SiC)やAlNの様な不透明な材料で構成しても良い。 The susceptor cover 280 has a frosted glass surface treated to relatively transmit the heat rays emitted by the heater 217B, and a black pigment such as iron oxide or carbon black is added to allow the above-mentioned heat rays to pass through. And an opaque portion 280B which is made difficult. In addition, the process which makes the permeation | transmission part 280A frosted glass is a chemical process by hydrogen fluoride, or a physical process by sandblasting, grinding, heat processing, etc. The impermeable portion 280B may be a member whitened by mixing bubbles in quartz, a ceramic member such as alumina (Al 2 O 3 ), or an opaque member such as silicon carbide (SiC) or AlN. You may comprise with a material.
 図2(A)に示したように、外周側ヒータ217B1に供給される電力が導通される外周側ヒータ素線217B3が内周側ヒータ217B2に重なっている。外周側ヒータ素線217B3も外周側ヒータ217B1と同様に電熱線で構成されている場合、外周側ヒータ素線217B3も通電により発熱する。外周側ヒータ素線217B3の下部に位置する内周側ヒータ217B2による輻射熱と外周側ヒータ素線217B3による輻射熱とが加わることによって、外周側ヒータ素線217B3に対応するサセプタ217の部分は、他の部分に比して発熱量が大きく高温になりやすい。また、外周側ヒータ素線217B3を含まない他の領域は、外周側ヒータ素線217B3を含む領域に比して発熱量が小さい。 As shown in FIG. 2A, the outer peripheral heater element wire 217B3 through which the electric power supplied to the outer peripheral heater 217B1 is conducted is overlapped with the inner peripheral heater 217B2. When the outer peripheral heater element wire 217B3 is also composed of a heating wire in the same manner as the outer peripheral heater element 217B1, the outer peripheral heater element wire 217B3 also generates heat when energized. The portion of the susceptor 217 corresponding to the outer heater element wire 217B3 is added by the radiant heat from the inner heater 217B2 located at the lower part of the outer heater wire 217B3 and the radiant heat from the outer heater wire 217B3. Compared with the part, the amount of heat generation is large and the temperature tends to rise. Further, the heat generation amount of the other region not including the outer heater wire 217B3 is smaller than that of the region including the outer heater wire 217B3.
 第1の実施の形態では、サセプタカバー280の外周側ヒータ素線217B3に対応する部分に、熱線の透過率が低い不透過部280Bを設けることで、サセプタカバー280上に載置されるウエハ200にヒータ217Bからの過剰な輻射熱が伝達されないようにしている。また、サセプタカバー280の外周側ヒータ素線217B3を含まない領域に対応した部分を不透過部280Bよりも熱線の透過率が高い透過部280Aとすることで、サセプタカバー280上に載置されるウエハ200に効果的にヒータ217Bの輻射熱が伝達されるようにしている。 In the first embodiment, a wafer 200 placed on the susceptor cover 280 is provided by providing an opaque portion 280B having a low heat ray transmittance at a portion corresponding to the outer peripheral heater element wire 217B3 of the susceptor cover 280. In this way, excessive radiant heat from the heater 217B is not transmitted. Further, the portion corresponding to the region not including the outer peripheral heater element wire 217B3 of the susceptor cover 280 is set as the transmission portion 280A having a higher heat ray transmittance than the non-transmission portion 280B, so that the susceptor cover 280 is placed on the susceptor cover 280. The radiant heat of the heater 217B is effectively transmitted to the wafer 200.
 サセプタカバー280の透過部280Aの厚さは一例として略1.5mmである。また、不透過部280Bの厚さは一例として略0.5~1.0mmである。図2(B)に示したように、透過部280Aはサセプタ217の頂部に接触しているが、不透過部280Bはサセプタ217の頂部に接触せず、透過部280Aがサセプタ217の頂部と不透過部280Bの間まで延伸するように設けられている。つまり、外周側ヒータ素線217B3に対応するサセプタ217の頂部は他の部分と同じく透過部280Aで覆われており、その上部に重なるように不透過部280Bが設けられる。透過部280Aの熱線の透過率は一例として略50%であり、不透過部280Bの熱線の透過率は一例として略1%である。 The thickness of the transmission part 280A of the susceptor cover 280 is approximately 1.5 mm as an example. Further, the thickness of the non-transmissive portion 280B is approximately 0.5 to 1.0 mm as an example. As shown in FIG. 2B, the transmission part 280A is in contact with the top of the susceptor 217, but the non-transmission part 280B is not in contact with the top of the susceptor 217, and the transmission part 280A is not in contact with the top of the susceptor 217. It is provided so as to extend between the transmission parts 280B. That is, the top part of the susceptor 217 corresponding to the outer heater wire 217B3 is covered with the transmission part 280A like the other parts, and the non-transmission part 280B is provided so as to overlap the upper part. The heat ray transmittance of the transmission part 280A is about 50% as an example, and the heat ray transmittance of the non-transmission part 280B is about 1% as an example.
 外周側ヒータ素線217B3を含まない領域に対応したサセプタ217の部分から放射された輻射熱は、透過部280Aを介してウエハ200に伝達されるが、外周側ヒータ素線217B3に対応するサセプタ217の部分から放射された輻射熱は、不透過部280Bによってウエハ200に到達することを抑制される。その結果、発熱が過剰になりやすい外周側ヒータ素線217B3に対応した位置からの輻射熱がウエハ200に到達することが抑制されるため、サセプタカバー280上に載置されたウエハ200の温度を均一化することができる。 The radiant heat radiated from the portion of the susceptor 217 corresponding to the region not including the outer peripheral heater element wire 217B3 is transmitted to the wafer 200 through the transmission part 280A, but the susceptor 217 corresponding to the outer peripheral heater element wire 217B3 The radiant heat radiated from the portion is suppressed from reaching the wafer 200 by the non-transmissive portion 280B. As a result, radiation heat from a position corresponding to the outer peripheral heater element wire 217B3 that tends to generate excessive heat is prevented from reaching the wafer 200, so that the temperature of the wafer 200 placed on the susceptor cover 280 is made uniform. Can be
 第1の実施例における酸化被膜の成膜の効果を図6に示す。図6に示した第1の実施例では、外周側ヒータ素線217B3を含まない領域に対応した部分の透過部280Aは厚さ1.5mm、不透過部280Bは厚さ0.5mm(その下部に位置する透過部280Aの厚さは1.0mm)としたサセプタカバー280を使用している。また、図6に示すように、第1の実施例では、ヒータ217Bの温度を830℃にして、酸素ガスのプラズマを用いてウエハ表面に酸化被膜を形成させた場合の酸化被膜の厚さの偏差は±1.5%である。また、サセプタカバー280を用いず、すりガラス状の石英製でサセプタ217の頂部全体を一様に覆うように形成された従来のサセプタカバーを用いた場合、酸化被膜の厚さの偏差は±4.9%である。第1の実施例では、従来のサセプタカバーを用いた場合よりも均一な厚さの酸化被膜が形成されているので、従来のサセプタカバーを用いた場合よりもウエハ200を均一に加熱できていることが推察される。 FIG. 6 shows the effect of forming an oxide film in the first example. In the first embodiment shown in FIG. 6, the transmissive portion 280A corresponding to the region not including the outer peripheral heater element wire 217B3 is 1.5 mm thick, and the non-transmissive portion 280B is 0.5 mm thick (below the lower portion). A susceptor cover 280 having a thickness of 1.0 mm) is used. Further, as shown in FIG. 6, in the first embodiment, the thickness of the oxide film when the temperature of the heater 217B is set to 830 ° C. and an oxide film is formed on the wafer surface using plasma of oxygen gas. The deviation is ± 1.5%. Further, when a conventional susceptor cover made of frosted quartz and formed so as to uniformly cover the entire top of the susceptor 217 is used without using the susceptor cover 280, the thickness deviation of the oxide film is ± 4. 9%. In the first embodiment, since the oxide film having a uniform thickness is formed as compared with the case of using the conventional susceptor cover, the wafer 200 can be heated more uniformly than in the case of using the conventional susceptor cover. It is inferred.
 第1の実施の形態において、外周側ヒータ素線217B3に対応する部分からの輻射熱がウエハ200に到達するのを更に抑制したい場合は、不透過部280Bの厚さを大きくし、外周側ヒータ素線217B3を含まない領域に対応した部分と同じ厚さにしてもよい。また、第1の実施の形態においては、外周側ヒータ素線217B3に対応する部分は、透過部280Aの上部に不透過部280Bが重なるように設けられているが、不透過部280Bの下部には透過部280Aを延伸させず、空隙を設けるようにしてもよい。 In the first embodiment, when it is desired to further suppress the radiant heat from the portion corresponding to the outer peripheral side heater element wire 217B3 from reaching the wafer 200, the thickness of the non-transmission portion 280B is increased, and the outer peripheral side heater element is increased. You may make it the same thickness as the part corresponding to the area | region which does not contain line 217B3. In the first embodiment, the portion corresponding to the outer peripheral heater element wire 217B3 is provided so that the non-transmissive portion 280B overlaps the upper portion of the transmissive portion 280A, but the lower portion of the non-transmissive portion 280B. May provide a gap without extending the transmission part 280A.
 なお、第1の実施例では、サセプタカバー280はサセプタ217の頂部に載置したが、サセプタ217の頂部に溶着させる等により、サセプタカバー280とサセプタ217とが一体に形成されるようにしてもよい。 In the first embodiment, the susceptor cover 280 is placed on the top of the susceptor 217. However, the susceptor cover 280 and the susceptor 217 may be integrally formed by welding to the top of the susceptor 217 or the like. Good.
 また、第1の実施例では、外周側ヒータ素線217B3も通電により発熱する場合を説明したが、外周側ヒータ素線217B3が銅等の電気抵抗が低い導電体で構成されている場合はこの限りではない。外周側ヒータ素線217B3の電気抵抗が低い場合は通電によって発熱しない上に、外周側ヒータ素線217B3の下部に存在する内周側ヒータ217B2の輻射熱を外周側ヒータ素線217B3が遮蔽する場合があるからである。 In the first embodiment, the outer heater element wire 217B3 also generates heat when energized. However, when the outer heater element wire 217B3 is made of a conductor having a low electrical resistance such as copper, Not as long. When the electric resistance of the outer heater wire 217B3 is low, heat is not generated by energization, and the outer heater wire 217B3 may shield the radiant heat of the inner heater 217B2 existing below the outer heater wire 217B3. Because there is.
 かかる場合には、サセプタカバー280の外周側ヒータ素線217B3に対応する部分を透過部280Aとし、他の部分を不透過部280Bとすることで、ウエハ200の温度分布を均一化する。 In such a case, the temperature distribution of the wafer 200 is made uniform by setting the portion corresponding to the outer peripheral heater element wire 217B3 of the susceptor cover 280 as the transmitting portion 280A and the other portion as the non-transmitting portion 280B.
(第2の実施例) 
 続いて本実施の形態の第2の実施例について説明する。図3は、本実施の形態に係るサセプタ217の第2の実施例を示す概略図であり、(A)はサセプタ217の頂部を俯瞰した平面図であり、(B)は図3(A)に示されるサセプタ217のC-C線に沿った断面図である。図3に示した第2の実施例は、サセプタカバー284が第1の実施例のサセプタカバー280と相違するものの、他の構成は第1の実施例と同一なので、それらについては第1の実施例と同一の符号を付して詳細な説明は省略する。
(Second embodiment)
Next, a second example of the present embodiment will be described. FIG. 3 is a schematic view showing a second example of the susceptor 217 according to the present embodiment. FIG. 3A is a plan view of the top of the susceptor 217. FIG. 3B is a plan view of FIG. FIG. 6 is a cross-sectional view taken along line CC of the susceptor 217 shown in FIG. In the second embodiment shown in FIG. 3, the susceptor cover 284 is different from the susceptor cover 280 of the first embodiment, but the other configurations are the same as those of the first embodiment. The same reference numerals as in the example are attached and detailed description is omitted.
 第2の実施例のサセプタカバー284は、石英に黒色顔料であるカーボンブラックを添加した熱線の透過率が略1%黒色石英で構成されており、ヒータ217Bからの輻射熱を遮蔽するようになっている。また、サセプタカバー284の直径は、サセプタ217の頂部の直径よりもやや小さい程度で、サセプタ217の頂部を略覆うように載置されている。サセプタカバー284の厚さは一様に1.5mmであり、底面の全面がサセプタ217の頂部に接触するようになっている。 The susceptor cover 284 of the second embodiment is made of black quartz having a heat ray transmittance of about 1%, which is obtained by adding carbon black which is a black pigment to quartz, and shields radiant heat from the heater 217B. Yes. The diameter of the susceptor cover 284 is slightly smaller than the diameter of the top of the susceptor 217, and is placed so as to substantially cover the top of the susceptor 217. The thickness of the susceptor cover 284 is uniformly 1.5 mm, and the entire bottom surface is in contact with the top of the susceptor 217.
 第2の実施例における酸化被膜の成膜の効果を図6に示す。図6に示すように、第2の実施例では、ヒータ217Bの温度を860℃にして、酸素ガスのプラズマを用いてウエハ表面に酸化被膜を形成させた場合の酸化被膜の厚さの偏差は第1の実施の形態と同じ±1.5%である。 The effect of forming an oxide film in the second embodiment is shown in FIG. As shown in FIG. 6, in the second embodiment, when the temperature of the heater 217B is 860 ° C. and the oxide film is formed on the wafer surface using the plasma of oxygen gas, the deviation of the thickness of the oxide film is as follows. The same ± 1.5% as in the first embodiment.
 第2の実施例のサセプタカバー284は、厚さ1.5mmの円板状の黒色石英で構成されているので、すりガラス状に加工した透過部280Aおよび黒色石英で構成された不透過部280Bを要する第1の実施例のサセプタカバー280よりも製作は容易である。したがって、第2の実施例では、第1の実施例よりも簡素かつ製作容易な構成で第1の実施例と同等の効果を奏することが可能となる。 Since the susceptor cover 284 of the second embodiment is made of disc-shaped black quartz having a thickness of 1.5 mm, the transmissive portion 280A processed into ground glass and the non-transmissive portion 280B made of black quartz are provided. Manufacture is easier than the susceptor cover 280 of the first embodiment. Therefore, in the second embodiment, it is possible to achieve the same effect as that of the first embodiment with a simpler and easier to manufacture structure than the first embodiment.
(第3の実施例)
 続いて本実施の形態の第3の実施例について説明する。図4は、本実施の形態に係るサセプタ217の第3の実施例を示す概略図であり、(A)はサセプタ217の頂部を俯瞰した平面図であり、(B)は図4(A)に示されるサセプタ217のD-D線に沿った断面図である。図3に示した第3の実施例は、サセプタカバー286の材質をSiCに変更した点が第2の実施例と異なるが、サセプタカバー286の厚さ、直径および形状は第2の実施例と同一である。また、他の構成は第1の実施例と同一なので、それらについては第1の実施例と同一の符号を付して詳細な説明は省略する。
(Third embodiment)
Next, a third example of the present embodiment will be described. 4A and 4B are schematic views showing a third example of the susceptor 217 according to the present embodiment. FIG. 4A is a plan view of the top of the susceptor 217. FIG. 4B is a plan view of FIG. FIG. 6 is a cross-sectional view taken along line DD of the susceptor 217 shown in FIG. The third embodiment shown in FIG. 3 is different from the second embodiment in that the material of the susceptor cover 286 is changed to SiC, but the thickness, diameter and shape of the susceptor cover 286 are different from those of the second embodiment. Are the same. Further, since the other configuration is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are given thereto, and detailed description thereof is omitted.
 SiCは石英に比して熱伝導率が良く(石英:1.32W/(m・K)、SiC:230W/(m・K))、石英に比して熱膨張が顕著である。サセプタカバー286の熱膨張を考慮して、サセプタカバー底面積を可能な限り広くするために、サセプタカバー286の直径は、サセプタ217の頂部の直径よりもやや小さい程度となり、結果的に第2の実施例のサセプタカバー284と同一の直径および厚さとなっている。 SiC has better thermal conductivity than quartz (quartz: 1.32 W / (m · K), SiC: 230 W / (m · K)), and thermal expansion is remarkable compared to quartz. In consideration of the thermal expansion of the susceptor cover 286, the diameter of the susceptor cover 286 is slightly smaller than the diameter of the top of the susceptor 217 in order to make the susceptor cover bottom area as large as possible. It has the same diameter and thickness as the susceptor cover 284 of the embodiment.
 第3の実施例における酸化被膜の成膜の効果を図6に示す。図6に示すように、第3の実施例では、ヒータ217Bの温度を860℃にして、酸素ガスのプラズマを用いてウエハ表面に酸化被膜を形成させた場合の酸化被膜の厚さの偏差は±1.3%であり、第1の実施例、第2の実施例よりも良好な結果を示した。 FIG. 6 shows the effect of forming the oxide film in the third example. As shown in FIG. 6, in the third embodiment, when the temperature of the heater 217B is 860 ° C. and the oxide film is formed on the wafer surface using the plasma of oxygen gas, the deviation of the thickness of the oxide film is as follows. The result was ± 1.3%, which was better than those of the first example and the second example.
 上述のように、SiCは熱伝導率が石英よりも良好なので、サセプタ217の温度分布状態が不均一であっても、熱伝導率が良好なSiCで構成されたサセプタカバー286でサセプタ217の不均一な温度分布が緩衝され、その結果、ウエハ200の表面に第1の実施例および第2の実施例の場合よりも厚さが均一な酸化被膜が形成されている。 As described above, since SiC has a thermal conductivity better than that of quartz, even if the temperature distribution state of the susceptor 217 is not uniform, the susceptor cover 286 made of SiC having a good thermal conductivity prevents the susceptor 217 from being damaged. The uniform temperature distribution is buffered, and as a result, an oxide film having a more uniform thickness than that of the first and second embodiments is formed on the surface of the wafer 200.
(第4の実施例)
 続いて本実施の形態の第4の実施例について説明する。図5は、本実施の形態に係るサセプタ217の第4の実施例を示す概略図であり、(A)はサセプタ217の頂部を俯瞰した平面図であり、(B)は図4(A)に示されるサセプタ217のE-E線に沿った断面図である。図5に示した第4の実施例は、サセプタカバー288の厚さを5mmに変更した点が第3の実施例と異なるが、サセプタカバー288の材質、直径および形状は第3の実施例と同一である。また、他の構成は第1の実施例と同一なので、それらについては第1の実施例と同一の符号を付して詳細な説明は省略する。
(Fourth embodiment)
Next, a fourth example of the present embodiment will be described. FIG. 5 is a schematic view showing a fourth example of the susceptor 217 according to the present embodiment. FIG. 5A is a plan view of the top of the susceptor 217. FIG. 5B is a plan view of FIG. FIG. 7 is a cross-sectional view taken along line EE of the susceptor 217 shown in FIG. The fourth embodiment shown in FIG. 5 is different from the third embodiment in that the thickness of the susceptor cover 288 is changed to 5 mm, but the material, diameter and shape of the susceptor cover 288 are different from those of the third embodiment. Are the same. Further, since the other configuration is the same as that of the first embodiment, the same reference numerals as those of the first embodiment are given thereto, and detailed description thereof is omitted.
 第4の実施例における酸化被膜の成膜の効果を図6に示す。図6に示すように、第4の実施例では、形成される酸化被膜の厚さの偏差は±1.0%であり、第3の実施例よりも良好な結果を示す。 FIG. 6 shows the effect of forming an oxide film in the fourth embodiment. As shown in FIG. 6, in the fourth example, the deviation of the thickness of the oxide film to be formed is ± 1.0%, which shows a better result than the third example.
 第4の実施例では、サセプタカバー288の厚さを第3の実施例よりも厚くすることでサセプタ217の温度分布を緩衝する効果がさらに顕著になり、その結果、ウエハ200の表面に第3の実施例の場合よりも厚さが均一な酸化被膜が形成されている。 In the fourth embodiment, the effect of buffering the temperature distribution of the susceptor 217 is further increased by making the thickness of the susceptor cover 288 thicker than that of the third embodiment. An oxide film having a uniform thickness is formed as compared with the embodiment.
 以上説明したように、本実施の形態によれば、サセプタ217の頂部にサセプタカバー280,284,286,288を載置することにより、サセプタ217の不均一な温度分布が緩衝され、サセプタ217に載置されたウエハ200を均一に加熱することが可能になる。 As described above, according to the present embodiment, by placing the susceptor covers 280, 284, 286 and 288 on the top of the susceptor 217, the uneven temperature distribution of the susceptor 217 is buffered, and the susceptor 217 is The mounted wafer 200 can be heated uniformly.
 なお、サセプタカバー280,284,286,288の形状、直径、厚さ、材質、熱線の透過率等は、基板処理装置100によって最適な構成が各々異なるので、コンピュータを用いたシミュレーションおよび実機を用いた実験を通じて決定する。 Note that the optimum configuration of the susceptor cover 280, 284, 286, 288, such as the shape, diameter, thickness, material, heat ray transmittance, and the like differs depending on the substrate processing apparatus 100. Therefore, a simulation using a computer and an actual machine are used. To be determined through experiments.
〔第2の実施の形態〕
 続いて基板処理装置100のサセプタ217の第2の実施の形態について図7~図10を用いて説明する。第1の実施の形態ではサセプタカバー280,284,286,288をサセプタ217とは別部品としたが、本実施の形態では、サセプタ217とサセプタカバー280,284,286,288とが一体になったようにサセプタ290,292,294,296の頂部を形成する。ウエハ200が載置されるサセプタ290,292,294,296の頂部は、それぞれ基板載置部を構成する。但し、以下の実施例における、サセプタカバー280,284,286,288に対応する部分に関する形態は、サセプタカバーとして別体で設けられた場合にも適用可能である。
[Second Embodiment]
Next, a second embodiment of the susceptor 217 of the substrate processing apparatus 100 will be described with reference to FIGS. In the first embodiment, the susceptor covers 280, 284, 286, and 288 are separate parts from the susceptor 217. However, in this embodiment, the susceptor cover 280 and the susceptor covers 280, 284, 286, and 288 are integrated. As described above, the tops of the susceptors 290, 292, 294, and 296 are formed. The top portions of the susceptors 290, 292, 294, and 296 on which the wafer 200 is placed constitute a substrate placement portion. However, the forms relating to the portions corresponding to the susceptor covers 280, 284, 286, and 288 in the following embodiments are also applicable when provided separately as a susceptor cover.
(第1の実施例)
 図7(A)は、本実施の形態の第1の実施例に係るサセプタ290を頂部の中心を通る鉛直面で切断した断面図の一例であり、図7(B)は第1の実施例の変形例であるサセプタ292を頂部の中心を通る鉛直面で切断した断面図の一例である。図7(A)、(B)は、後述する図8~10と同様に説明を簡略化するために、図1で示したインピーダンス調整電極217Cは記載を省略している。
(First embodiment)
FIG. 7A is an example of a cross-sectional view of the susceptor 290 according to the first example of the present embodiment cut along a vertical plane passing through the center of the top, and FIG. 7B is the first example. It is an example of sectional drawing which cut | disconnected the susceptor 292 which is a modification of this in the vertical surface which passes along the center of a top part. In FIGS. 7A and 7B, the impedance adjustment electrode 217C shown in FIG. 1 is not shown in order to simplify the description as in FIGS.
 図7(A)、(B)に示した第1の実施例では、ヒータ217Bの発熱が不均一で、ヒータ217Bにおいて部分的に高温領域217BHが生じている場合に、ヒータ217Bの高温領域217BHに対応するサセプタ頂部を厚くすることで、ヒータ217Bの不均一な発熱を緩衝する。 In the first embodiment shown in FIGS. 7A and 7B, when the heat generation of the heater 217B is uneven and the high temperature region 217BH is partially generated in the heater 217B, the high temperature region 217BH of the heater 217B is generated. By thickening the top of the susceptor corresponding to the above, uneven heat generation of the heater 217B is buffered.
 図7(A)は図2等に示した外周側ヒータ217B1の発熱が顕著で、ヒータ217Bの外周部に高温領域217BHが生じた場合を示している。図7(A)に示した第1の実施例では、サセプタ290の下部に設けられたヒータ217Bの高温領域217BHに対応するサセプタ290の外周部分において、その部分の厚さを他の部分よりも厚くしている。 FIG. 7A shows a case where the outer side heater 217B1 shown in FIG. 2 or the like has significant heat generation, and a high temperature region 217BH is generated in the outer peripheral portion of the heater 217B. In the first embodiment shown in FIG. 7A, in the outer peripheral portion of the susceptor 290 corresponding to the high temperature region 217BH of the heater 217B provided at the lower portion of the susceptor 290, the thickness of that portion is made larger than that of the other portions. It is thick.
 また、図7(B)は、図2等に示した内周側ヒータ217B2の発熱が顕著で、ヒータ217Bの内周部に高温領域217BHが生じた場合を示している。図7(B)に示した第1の実施例の変形例では、サセプタ290の下部に設けられたヒータ217Bの高温領域217BHに対応するサセプタ292の内周部分において、その部分の厚さを他の部分よりも厚くしている。 Further, FIG. 7B shows a case where the heat generation of the inner peripheral heater 217B2 shown in FIG. 2 and the like is remarkable and a high temperature region 217BH is generated in the inner peripheral portion of the heater 217B. In the modification of the first embodiment shown in FIG. 7B, the thickness of the inner peripheral portion of the susceptor 292 corresponding to the high temperature region 217BH of the heater 217B provided at the lower portion of the susceptor 290 is changed. It is thicker than the part.
 サセプタ290、292の材質は、ヒータ217Bが放つ熱線を透過し得る石英等である。第1の実施の形態では、ヒータ217Bが過熱している領域に対応したサセプタの部位を厚くすることにより、高温領域217BHからの熱線の透過を抑制し(すなわち熱線の透過率を低くし)、サセプタに載置されるウエハ200の温度を均一化する。 The material of the susceptors 290 and 292 is quartz or the like that can transmit the heat rays emitted from the heater 217B. In the first embodiment, by increasing the portion of the susceptor corresponding to the region where the heater 217B is overheated, transmission of heat rays from the high temperature region 217BH is suppressed (that is, the heat ray transmittance is lowered), The temperature of the wafer 200 placed on the susceptor is made uniform.
 なお、図7(A)、(B)に示した、高温領域217BHに対応するサセプタ290、292の部位の厚さは、一例として、他の部位よりも略1.5mm厚い。 Note that, as an example, the thickness of the susceptors 290 and 292 corresponding to the high temperature region 217BH shown in FIGS. 7A and 7B is approximately 1.5 mm thicker than the other portions.
 また、ヒータ217Bの高温領域217BHについては、前述の第1の実施の形態において説明した、外周側ヒータ素線217B3に対応する領域を、本実施例におけるヒータ217Bの高温領域217BHとして適用することもできる。第2の実施の形態における他の実施例についても同様である。 As for the high temperature region 217BH of the heater 217B, the region corresponding to the outer peripheral heater element wire 217B3 described in the first embodiment may be applied as the high temperature region 217BH of the heater 217B in this embodiment. it can. The same applies to other examples in the second embodiment.
(第2の実施例)
 図8(A)は、本実施の形態の第2の実施例に係るサセプタ294を頂部の中心を通る鉛直面で切断した断面図の一例であり、図8(B)は第2の実施例の変形例であるサセプタ296を頂部の中心を通る鉛直面で切断した断面図の一例である。
(Second embodiment)
FIG. 8A is an example of a cross-sectional view of a susceptor 294 according to a second example of the present embodiment cut along a vertical plane passing through the center of the top, and FIG. 8B is a second example. It is an example of sectional drawing which cut | disconnected the susceptor 296 which is a modification of this in the vertical surface which passes along the center of a top part.
 図8(A)は、ヒータ217Bの発熱が不均一で、ヒータ217Bにおいて部分的に高温領域217BHが複数生じている場合である。図8(A)に示した第2の実施例では、ヒータ217Bの高温領域217BHに対応するサセプタ頂部を各々厚くすることで、ヒータ217Bの不均一な発熱を緩衝することにより、サセプタ294に載置されたウエハ200の温度を均一化する。 FIG. 8A shows the case where the heat generation of the heater 217B is non-uniform and a plurality of high temperature regions 217BH are partially generated in the heater 217B. In the second embodiment shown in FIG. 8A, the susceptor tops corresponding to the high temperature region 217BH of the heater 217B are thickened to buffer the uneven heat generation of the heater 217B, thereby mounting the susceptor 294 on the susceptor 294. The temperature of the placed wafer 200 is made uniform.
 図8(B)は、ヒータ217Bの内周部に高温領域217BHが出現していると共に、ヒータ217Bの外周部には他の領域よりも温度が低い低温領域217BLが出現している場合である。図8(B)に示した第2の実施例の変形例では、第2の実施例とは異なり低温領域217BLに対応したサセプタ296の部位に開口部296Aを設け、ヒータ217Bからの輻射熱を、サセプタ296を構成する石英等の物質を透過させずにウエハ200に到達させることにより、低温領域217BLからの輻射熱がウエハ200に効果的に届くようにしている。また、サセプタ296に複数設けられた***部296Rでウエハ200を支えることにより、ウエハ200をヒータ217Bの高温領域217BHから隔離させ、高温領域217BHからの輻射熱を緩和している。その結果、図8(B)に示した第2の実施例の変形例では、サセプタ296に載置されたウエハ200の温度を均一化することができる。 FIG. 8B shows a case where a high temperature region 217BH appears on the inner peripheral portion of the heater 217B and a low temperature region 217BL having a lower temperature than the other regions appears on the outer peripheral portion of the heater 217B. . In the modification of the second embodiment shown in FIG. 8 (B), unlike the second embodiment, an opening 296A is provided in a portion of the susceptor 296 corresponding to the low temperature region 217BL, and the radiant heat from the heater 217B is By allowing the material such as quartz constituting the susceptor 296 to reach the wafer 200 without passing through, the radiant heat from the low temperature region 217BL can effectively reach the wafer 200. Further, by supporting the wafer 200 with a plurality of raised portions 296R provided on the susceptor 296, the wafer 200 is isolated from the high temperature region 217BH of the heater 217B, and the radiant heat from the high temperature region 217BH is mitigated. As a result, in the modification of the second embodiment shown in FIG. 8B, the temperature of the wafer 200 placed on the susceptor 296 can be made uniform.
 なお、図8(A)に示した第2の実施例における高温領域217BHに対応したサセプタ294の部位の厚さは、一例として、他の部位よりも略1.5mm厚く、図8(B)に示した第2の実施例の変形例のサセプタ296の***部296Rは、一例として、他の部位よりも略1.5mm高い。 In addition, the thickness of the part of the susceptor 294 corresponding to the high temperature region 217BH in the second embodiment shown in FIG. 8A is, for example, about 1.5 mm thicker than the other parts, and FIG. As an example, the raised portion 296R of the susceptor 296 of the modification of the second embodiment shown in FIG.
(第3の実施例)
 図9(A)は、本実施の形態の第3の実施例に係るサセプタ298を頂部の中心を通る鉛直面で切断した断面図の一例であり、図9(B)は第3の実施例の変形例であるサセプタ300を頂部の中心を通る鉛直面で切断した断面図の一例である。
(Third embodiment)
FIG. 9A is an example of a cross-sectional view of the susceptor 298 according to the third example of the present embodiment cut along a vertical plane passing through the center of the top, and FIG. 9B is the third example. It is an example of sectional drawing which cut | disconnected the susceptor 300 which is a modification of this in the vertical plane which passes along the center of a top part.
 図9(A)は、図2等に示した内周側ヒータ217B2の発熱が顕著で、ヒータ217Bの内周部に高温領域217BHが生じた場合を示している。図9(A)に示した第3の実施例では、サセプタ298の外周部に設けられた***部298Rでウエハ200を支えることにより、ウエハ200をヒータ217Bの高温領域217BHから隔離している。さらに、高温領域217BHに対応するサセプタ298の部位の表面にヒータ217Bからの輻射熱の透過を抑制又は遮蔽する不透過層298Lを設ける。これにより、高温領域217BHに対応するサセプタ298の部位における輻射熱の透過率を、不透過層298Lが設けられていない部位における透過率よりも低くするので、ヒータ217Bの不均一な発熱を緩衝し、サセプタ298に載置されたウエハ200の温度を均一化する。 FIG. 9A shows a case where the heat generation of the inner peripheral heater 217B2 shown in FIG. 2 and the like is remarkable and a high temperature region 217BH is generated in the inner peripheral portion of the heater 217B. In the third embodiment shown in FIG. 9A, the wafer 200 is isolated from the high temperature region 217BH of the heater 217B by supporting the wafer 200 with a raised portion 298R provided on the outer periphery of the susceptor 298. Further, an opaque layer 298L that suppresses or shields transmission of radiant heat from the heater 217B is provided on the surface of the susceptor 298 corresponding to the high temperature region 217BH. Thereby, since the transmittance of the radiant heat in the portion of the susceptor 298 corresponding to the high temperature region 217BH is lower than the transmittance in the portion where the non-permeable layer 298L is not provided, the uneven heat generation of the heater 217B is buffered, The temperature of the wafer 200 placed on the susceptor 298 is made uniform.
 図9(B)に示した第3の実施例の変形例では、ヒータ217Bの内周部に高温領域217BHが出現していると共に、ヒータ217Bの外周部には他の領域よりも温度が低い低温領域217BLが、低温領域217BLと高温領域217BHとの間には発熱が中庸な中温領域217BMが、各々出現している。 In the modification of the third embodiment shown in FIG. 9B, a high temperature region 217BH appears on the inner peripheral portion of the heater 217B, and the temperature is lower on the outer peripheral portion of the heater 217B than other regions. In the low temperature region 217BL, an intermediate temperature region 217BM with moderate heat generation appears between the low temperature region 217BL and the high temperature region 217BH.
 第3の実施例の変形例では、ヒータ217Bの高温領域217BHに対応するサセプタ300の部位の表面にヒータ217Bからの輻射熱の透過を抑制又は遮蔽する不透過層300Lが設けられている。また、サセプタ300には、低温領域217BLに対応した部位の透過率を高める処理が施された高透過部300Hと、中温領域217BMに対応した部位の透過率を中程度にする処理が施された中透過部300Mとが設けられている。さらに、サセプタ300に複数設けられた***部300Rでウエハ200を支えることにより、ウエハ200を高温領域217BHから隔離させ、高温領域217BHからの輻射熱を緩和している。 In the modification of the third embodiment, an opaque layer 300L that suppresses or shields transmission of radiant heat from the heater 217B is provided on the surface of the portion of the susceptor 300 corresponding to the high temperature region 217BH of the heater 217B. In addition, the susceptor 300 has been subjected to a process for increasing the transmittance of a portion corresponding to the low temperature region 217BL and a processing for increasing the transmittance of the portion corresponding to the intermediate temperature region 217BM to a medium level. An intermediate transmission part 300M is provided. Further, by supporting the wafer 200 with a plurality of raised portions 300R provided on the susceptor 300, the wafer 200 is isolated from the high temperature region 217BH and the radiant heat from the high temperature region 217BH is reduced.
 その結果、高温領域217BHからの輻射熱は不透過層300Lによって多くが遮蔽されると共に、中温領域217BMからの輻射熱は中透過部300Mを限定的に透過し、低温領域217BLからの輻射熱は高透過部300Hを低損失で透過する。さらに、***部300Rでウエハ200を高温領域217BHから隔離することにより、サセプタ300に載置されたウエハ200の温度を均一化することができる。 As a result, most of the radiant heat from the high temperature region 217BH is shielded by the opaque layer 300L, and the radiant heat from the intermediate temperature region 217BM is transmitted through the intermediate transmission part 300M in a limited manner, while the radiant heat from the low temperature region 217BL is transmitted to the high transmission part. Transmits 300H with low loss. Further, the temperature of the wafer 200 placed on the susceptor 300 can be made uniform by isolating the wafer 200 from the high temperature region 217BH with the raised portion 300R.
 なお、第3の実施例およびその変形例において、不透過層298L,300L、中透過部300Mおよび高透過部300Hの形成は、フッ化水素による化学処理、またはサンドブラスト、熱処理等による物理的な処理を施すことで行うことができる。この処理により、石英で構成されたサセプタ298、300の表面はすりガラス状になり、ヒータ217Bからの輻射熱を透過しにくくなる。 In the third embodiment and its modifications, the formation of the opaque layers 298L and 300L, the intermediate transmission portion 300M, and the high transmission portion 300H is performed by chemical treatment with hydrogen fluoride or physical treatment by sandblasting, heat treatment, or the like. It can be done by applying. By this treatment, the surfaces of the susceptors 298 and 300 made of quartz become ground glass, and the radiant heat from the heater 217B is hardly transmitted.
 上述の処理を十分に施せばサセプタ298,300の表面はより不透明になるので、不透過層298L,300Lを形成する場合には、上述の処理に要する時間を長くする等によって、サセプタ298,300の表面にすりガラス状の層を十分に形成する。また、中透過部300Mを形成する場合には、上述の処理に要する時間を不透過層298L,300Lを形成する場合よりも短くする等によって、サセプタ298,300の透過率を調整する。さらに、高透過部300Hを形成する場合には、研削によりサセプタ298,300の表面を研磨して、透過率を高めるようにする。 The surface of the susceptors 298, 300 becomes more opaque when the above-described treatment is sufficiently performed. Therefore, when forming the opaque layers 298L, 300L, the susceptors 298, 300 are increased by increasing the time required for the above-described treatment. A ground glass layer is sufficiently formed on the surface. Further, when the intermediate transmission part 300M is formed, the transmittance of the susceptors 298, 300 is adjusted by making the time required for the above-described processing shorter than when forming the non-transmission layers 298L, 300L. Furthermore, when forming the high transmission part 300H, the surface of the susceptors 298, 300 is polished by grinding so as to increase the transmittance.
(第4の実施例)
 図10は、本実施の形態の第4の実施例に係るサセプタ302を頂部の中心を通る鉛直面で切断した断面図の一例である。図10は、図2等に示した内周側ヒータ217B2の発熱が顕著で、ヒータ217Bの内周部に高温領域217BHが生じた場合を示している。
(Fourth embodiment)
FIG. 10 is an example of a cross-sectional view of the susceptor 302 according to the fourth example of the present embodiment cut along a vertical plane passing through the center of the top. FIG. 10 shows a case where the heat generation of the inner peripheral heater 217B2 shown in FIG. 2 and the like is significant and a high temperature region 217BH is generated in the inner peripheral portion of the heater 217B.
 図10に示した第4の実施例では、サセプタ302の外周部に設けられた***部302Rでウエハ200を支えることにより、ウエハ200をヒータ217Bの高温領域217BHから隔離している。さらに、高温領域217BHに対応するサセプタ302の部位の表面にヒータ217Bからの輻射熱を遮蔽する遮蔽材304を設けることで、ヒータ217Bの不均一な発熱を緩衝し、サセプタ302に載置されたウエハ200の温度を均一化することができる。 In the fourth embodiment shown in FIG. 10, the wafer 200 is isolated from the high temperature region 217BH of the heater 217B by supporting the wafer 200 with a raised portion 302R provided on the outer periphery of the susceptor 302. Further, by providing a shielding material 304 that shields radiant heat from the heater 217B on the surface of the susceptor 302 corresponding to the high temperature region 217BH, the non-uniform heat generation of the heater 217B is buffered, and the wafer placed on the susceptor 302 The temperature of 200 can be made uniform.
 遮蔽材304の材質は種々の物質が考えられるが、例えば、カーボンブラック等の不透明顔料を添加した石英、酸化アルミニウム(Al)、イットリア(Y)等である。遮蔽材304は、サセプタ302の頂部に載置してもよいが、可能であればサセプタ302の頂部に溶着し、サセプタ302と一体の部材として運用してもよい。 Various materials can be considered as the material of the shielding material 304, and examples thereof include quartz, an aluminum oxide (Al 2 O 3 ), and yttria (Y 2 O 3 ) to which an opaque pigment such as carbon black is added. Although the shielding material 304 may be placed on the top of the susceptor 302, it may be welded to the top of the susceptor 302 and operated as an integral member with the susceptor 302 if possible.
 以上説明したように、本実施の形態によれば、ヒータ217Bの発熱の態様に応じてサセプタ290,292,294,296の頂部の形状、熱線の透過率を変更することにより、サセプタ290,292,294,296の不均一な温度分布が緩衝され、サセプタ290,292,294,296に載置されたウエハ200を均一に加熱することが可能になる。 As described above, according to the present embodiment, the susceptors 290, 292 are changed by changing the shape of the tops of the susceptors 290, 292, 294, 296 and the transmittance of the heat rays according to the heat generation mode of the heater 217B. , 294, 296 are buffered, and the wafer 200 placed on the susceptors 290, 292, 294, 296 can be heated uniformly.
 なお、サセプタ290,292,294,296の頂部の形状、厚さ、***部の高さ、熱線の透過率等は、基板処理装置100によって各々異なるので、コンピュータを用いたシミュレーションおよび実機を用いた実験を通じて決定する。 Note that the top shape, thickness, height of the raised portion, heat ray transmittance, and the like of the susceptors 290, 292, 294, and 296 differ depending on the substrate processing apparatus 100, and therefore simulations using computers and actual machines were used. Determine through experiments.
 また、上述では、成膜処理について記したが、他の処理にも適用可能である。例えば、原料ガスと反応ガスを供給して、基板に膜を形成する処理や、熱処理、アニール処理や、アッシング処理、エッチング処理などの基板処理を行う装置にも適用することができる。 In the above description, the film forming process is described, but the present invention can be applied to other processes. For example, the present invention can be applied to an apparatus for supplying a source gas and a reactive gas to form a film on a substrate, or performing a substrate process such as a heat treatment, an annealing process, an ashing process, or an etching process.
(本発明の好ましい態様)
 以下に、本発明の好ましい態様について付記する。
(Preferred embodiment of the present invention)
Hereinafter, preferred embodiments of the present invention will be additionally described.
(付記1)
 本発明の好ましい一態様によれば、
 基板を加熱する加熱部を備えた基板載置台と、
 前記基板載置台上に設けられており、前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる第1被覆部と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2被覆部と、を有する前記基板が載置される載置台カバーと、
 を備える基板処理装置、が提供される。
(Appendix 1)
According to a preferred aspect of the present invention,
A substrate mounting table provided with a heating unit for heating the substrate;
A first covering portion that is provided on the substrate mounting table and is disposed above the first region of the heating unit and transmits heat rays generated from the first region with a first transmittance; A second portion that is disposed above the second region of the heating unit that generates less heat than the region, and transmits heat rays generated from the second region with a second transmittance that is higher than the transmittance of the first covering portion. A mounting table cover on which the substrate having the covering portion is mounted;
A substrate processing apparatus is provided.
(付記2)
 付記1に記載の基板処理装置であって、
 前記加熱部は、前記基板載置台の外周領域に設けられる外周ヒータと、内周領域に設けられる内周ヒータと、前記基板載置台の中心部から前記内周領域を通って前記外周ヒータに電力を供給する外周ヒータ素線を有し、
 前記第1領域は、前記外周ヒータ素線が配置される領域である。
(Appendix 2)
The substrate processing apparatus according to appendix 1, wherein
The heating unit includes an outer peripheral heater provided in an outer peripheral region of the substrate mounting table, an inner peripheral heater provided in an inner peripheral region, and power from the center of the substrate mounting table to the outer peripheral heater through the inner peripheral region. A peripheral heater wire for supplying
The first region is a region where the outer peripheral heater element wire is disposed.
(付記3)
 付記1に記載の基板処理装置であって、
 前記載置台カバーは、石英で構成されている。
(Appendix 3)
The substrate processing apparatus according to appendix 1, wherein
The mounting table cover is made of quartz.
(付記4)
 付記3に記載の基板処理装置であって、
 前記第1被覆部は、酸化鉄及び黒色顔料のいずれかが添加された石英により構成されている。
(Appendix 4)
The substrate processing apparatus according to attachment 3, wherein
The first covering portion is made of quartz to which either iron oxide or black pigment is added.
(付記5)
 付記3に記載の基板処理装置であって、
 前記第1被覆部は、気泡により白色化された不透明石英により構成されている。
(Appendix 5)
The substrate processing apparatus according to attachment 3, wherein
The first covering portion is made of opaque quartz that is whitened by bubbles.
(付記6)
 付記3に記載の基板処理装置であって、
 前記第1被覆部は、アルミナ、炭化ケイ素及び窒化アルミニウムのいずれかにより構成されている。
(Appendix 6)
The substrate processing apparatus according to attachment 3, wherein
The first covering portion is made of any of alumina, silicon carbide, and aluminum nitride.
(付記7)
 付記3に記載の基板処理装置であって、
 前記第2被覆部は表面をすりガラスに処理されている。
(Appendix 7)
The substrate processing apparatus according to attachment 3, wherein
The surface of the second covering portion is treated with ground glass.
(付記8)
 付記1に記載の基板処理装置であって、
 前記載置台カバーは、炭化ケイ素で構成されている。
(Appendix 8)
The substrate processing apparatus according to appendix 1, wherein
The mounting table cover is made of silicon carbide.
(付記9)
 付記1に記載の基板処理装置であって、
 前記第2被覆部は、前記第1被覆部よりも、前記熱線の透過率が高い材質により構成されている。
(Appendix 9)
The substrate processing apparatus according to appendix 1, wherein
The said 2nd coating | coated part is comprised with the material whose transmittance | permeability of the said heat ray is higher than the said 1st coating | coated part.
(付記10)
 付記9に記載の基板処理装置であって、
 前記第1被覆部の厚さは、前記第2被覆部の厚さよりも小さい。
(Appendix 10)
The substrate processing apparatus according to appendix 9, wherein
The thickness of the first covering portion is smaller than the thickness of the second covering portion.
(付記11)
 本発明の好ましい他の態様によれば、
 基板が載置される基板載置部と、基板を加熱する加熱部と、を備えた基板載置台であって、
 前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる前記基板載置部の第1の載置部分と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2の載置部分と、を有する基板載置台、が提供される。
(Appendix 11)
According to another preferred aspect of the invention,
A substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate,
A first placement portion of the substrate placement portion that is disposed above the first region of the heating unit and transmits heat rays generated from the first region with a first transmittance, and more than the first region. A second mounting that is disposed above the second region of the heating unit that generates a small amount of heat and transmits heat rays generated from the second region with a second transmittance that is higher than the transmittance of the first covering portion. And a substrate mounting table having a portion.
(付記12)
 付記11に記載の基板載置台であって、
 前記基板と前記加熱部との間に設けられている前記基板載置部の厚さは、前記第1の載置部分における厚さが、前記第2の載置部分における厚さよりも大きくなるように構成されている。
(Appendix 12)
The substrate mounting table according to appendix 11, wherein
The thickness of the substrate mounting part provided between the substrate and the heating unit is such that the thickness of the first mounting part is larger than the thickness of the second mounting part. It is configured.
(付記13)
 付記11に記載の基板載置台であって、
 前記基板載置部は、石英で構成されている。
(Appendix 13)
The substrate mounting table according to appendix 11, wherein
The substrate mounting portion is made of quartz.
(付記14)
 付記12に記載の基板載置台であって、
 前記第1領域の上部であって前記基板載置部と前記基板の間には、熱線の透過率が前記基板載置部よりも低い不透過部が設けられている。
(Appendix 14)
The board mounting table according to attachment 12, wherein
An impermeable portion having a heat ray transmittance lower than that of the substrate mounting portion is provided above the first region and between the substrate mounting portion and the substrate.
(付記15)
 付記11に記載の基板載置台であって、
 前記加熱部は、前記基板載置台の外周領域に設けられる外周ヒータと、内周領域に設けられる内周ヒータと、前記基板載置台の中心部から前記内周領域を通って前記外周ヒータに電力を供給する外周ヒータ素線を有し、 前記第1領域は、前記外周ヒータ素線が配置される領域である。
(Appendix 15)
The substrate mounting table according to appendix 11, wherein
The heating unit includes an outer peripheral heater provided in an outer peripheral region of the substrate mounting table, an inner peripheral heater provided in an inner peripheral region, and power from the center of the substrate mounting table to the outer peripheral heater through the inner peripheral region. The first region is a region in which the outer heater wire is disposed.
(付記16)
 本発明の好ましいさらに他の態様によれば、
 基板が載置される基板載置部と、基板を加熱する加熱部と、を備えた基板載置台であって、
 前記基板と前記加熱部との間に設けられている前記基板載置部の厚さは、前記加熱部の第1領域の上部における厚さが、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部における厚さよりも大きくなるように構成されている、基板載置台、が提供される。
(Appendix 16)
According to still another preferred aspect of the present invention,
A substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate,
The thickness of the substrate mounting portion provided between the substrate and the heating unit is such that the thickness at the upper part of the first region of the heating unit is smaller in calorific value than the first region. There is provided a substrate mounting table configured to be larger than the thickness of the upper part of the second region of the part.
(付記17)
 本発明の好ましいさらに他の態様によれば、
 基板が載置される基板載置部と、基板を加熱する加熱部と、を備えた基板載置台であって、
 前記基板と前記加熱部との間に設けられている前記基板載置部において、前記加熱部の第1領域よりも発熱量が小さい第2領域の上部に開口部を設け、前記第2領域から発生する熱線が直接前記基板に到達するように構成されている、基板載置台、が提供される。
(Appendix 17)
According to still another preferred aspect of the present invention,
A substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate,
In the substrate mounting unit provided between the substrate and the heating unit, an opening is provided in an upper part of a second region that generates less heat than the first region of the heating unit. There is provided a substrate mounting table configured such that generated heat rays directly reach the substrate.
(付記18)
 本発明の好ましいさらに他の態様によれば、
 基板を加熱する加熱部を備えた基板載置台上に設けられた基板載置台カバーであって、前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる第1被覆部と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2被覆部と、を有する基板載置台カバーに、前記基板を載置する工程と、
 前記加熱部により前記基板を加熱する工程と、
 を有する半導体装置の製造方法、又は基板処理方法が提供される。
(Appendix 18)
According to still another preferred aspect of the present invention,
A substrate mounting table cover provided on a substrate mounting table provided with a heating unit for heating a substrate, wherein the cover is disposed above the first region of the heating unit, and heat rays generated from the first region are first A first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion. A step of placing the substrate on a substrate placement table cover having a second covering portion that transmits at a second transmittance higher than the rate;
Heating the substrate by the heating unit;
A method for manufacturing a semiconductor device or a substrate processing method is provided.
(付記19)
 付記18に記載の半導体装置の製造方法又は基板処理方法であって、
 前記基板に処理ガスを供給する工程と、
 前記処理ガスを励起させる工程と、を有する。
(Appendix 19)
A method for manufacturing a semiconductor device or a substrate processing method according to appendix 18,
Supplying a processing gas to the substrate;
Exciting the process gas.
(付記20)
 本発明の好ましいさらに他の態様によれば、
 基板を加熱する加熱部を備えた基板載置台上に設けられた基板載置台カバーであって、前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる第1被覆部と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2被覆部と、を有する基板載置台カバーに、前記基板を載置する手順と、
 前記加熱部により前記基板を加熱する手順と、
 をコンピュータに実行させるプログラム、又は当該プログラムを記録したコンピュータで読み取り可能な記録媒体が提供される。
(Appendix 20)
According to still another preferred aspect of the present invention,
A substrate mounting table cover provided on a substrate mounting table provided with a heating unit for heating a substrate, wherein the cover is disposed above the first region of the heating unit, and heat rays generated from the first region are first A first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion. A procedure for placing the substrate on a substrate placement table cover having a second covering portion that transmits at a second transmittance higher than the rate;
A procedure for heating the substrate by the heating unit;
Is provided, or a computer-readable recording medium recording the program.
 以上、本発明の種々の典型的な実施の形態および実施例を説明してきたが、本発明はそれらの実施の形態および実施例に限定されない。従って、本発明の範囲は、次の特許請求の範囲によってのみ限定されるものである。 Although various typical embodiments and examples of the present invention have been described above, the present invention is not limited to these embodiments and examples. Accordingly, the scope of the invention is limited only by the following claims.
 本発明によれば、基板載置台であるサセプタに載置された基板であるウエハを均一に加熱できる技術が提供される。 According to the present invention, there is provided a technique capable of uniformly heating a wafer that is a substrate placed on a susceptor that is a substrate placement table.
100 基板処理装置
200 ウエハ
201 処理室
217 サセプタ
217B ヒータ
221 コントローラ
280,284,286,288 サセプタカバー
290,292,294,296,298,300,302 サセプタ  
100 substrate processing apparatus 200 wafer 201 processing chamber 217 susceptor 217B heater 221 controller 280, 284, 286, 288 susceptor cover 290, 292, 294, 296, 298, 300, 302 susceptor

Claims (15)

  1.  基板を加熱する加熱部を備えた基板載置台と、
     前記基板載置台上に設けられており、前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる第1被覆部と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2被覆部と、を有する前記基板が載置される載置台カバーと、
     を備える基板処理装置。
    A substrate mounting table provided with a heating unit for heating the substrate;
    A first covering portion that is provided on the substrate mounting table and is disposed above the first region of the heating unit and transmits heat rays generated from the first region with a first transmittance; A second portion that is disposed above the second region of the heating unit that generates less heat than the region, and transmits heat rays generated from the second region with a second transmittance that is higher than the transmittance of the first covering portion. A mounting table cover on which the substrate having the covering portion is mounted;
    A substrate processing apparatus comprising:
  2.  請求項1に記載の基板処理装置であって、
     前記加熱部は、前記基板載置台の外周領域に設けられる外周ヒータと、内周領域に設けられる内周ヒータと、前記基板載置台の中心部から前記内周領域を通って前記外周ヒータに電力を供給する外周ヒータ素線を有し、
     前記第1領域は、前記外周ヒータ素線が配置される領域である。
    The substrate processing apparatus according to claim 1,
    The heating unit includes an outer peripheral heater provided in an outer peripheral region of the substrate mounting table, an inner peripheral heater provided in an inner peripheral region, and power from the center of the substrate mounting table to the outer peripheral heater through the inner peripheral region. A peripheral heater wire for supplying
    The first region is a region where the outer peripheral heater element wire is disposed.
  3.  請求項1に記載の基板処理装置であって、
     前記載置台カバーは、石英で構成されている。
    The substrate processing apparatus according to claim 1,
    The mounting table cover is made of quartz.
  4.  請求項3に記載の基板処理装置であって、
     前記第1被覆部は、酸化鉄及び黒色顔料のいずれかが添加された石英により構成されている。
    The substrate processing apparatus according to claim 3, wherein
    The first covering portion is made of quartz to which either iron oxide or black pigment is added.
  5.  請求項3に記載の基板処理装置であって、
     前記第1被覆部は、気泡により白色化された不透明石英により構成されている。
    The substrate processing apparatus according to claim 3, wherein
    The first covering portion is made of opaque quartz that is whitened by bubbles.
  6.  請求項3に記載の基板処理装置であって、
     前記第1被覆部は、アルミナ、炭化ケイ素及び窒化アルミニウムのいずれかにより構成されている。
    The substrate processing apparatus according to claim 3, wherein
    The first covering portion is made of any of alumina, silicon carbide, and aluminum nitride.
  7.  請求項3に記載の基板処理装置であって、
     前記第2被覆部は表面をすりガラス状に処理されている。
    The substrate processing apparatus according to claim 3, wherein
    The surface of the second covering portion is processed into frosted glass.
  8.  請求項1に記載の基板処理装置であって、
     前記載置台カバーは、炭化ケイ素で構成されている。
    The substrate processing apparatus according to claim 1,
    The mounting table cover is made of silicon carbide.
  9.  請求項1に記載の基板処理装置であって、
     前記第2被覆部は、前記第1被覆部よりも、前記熱線の透過率が高い材質により構成されている。
    The substrate processing apparatus according to claim 1,
    The said 2nd coating | coated part is comprised with the material whose transmittance | permeability of the said heat ray is higher than the said 1st coating | coated part.
  10.  請求項9に記載の基板処理装置であって、
     前記第1被覆部の厚さは、前記第2被覆部の厚さよりも小さい。
    The substrate processing apparatus according to claim 9, comprising:
    The thickness of the first covering portion is smaller than the thickness of the second covering portion.
  11.  基板が載置される基板載置部と、基板を加熱する加熱部と、を備えた基板載置台であって、
     前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる前記基板載置部の第1の載置部分と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2の載置部分と、を有する基板載置台。
    A substrate mounting table comprising a substrate mounting unit on which a substrate is mounted and a heating unit for heating the substrate,
    A first placement portion of the substrate placement portion that is disposed above the first region of the heating unit and transmits heat rays generated from the first region with a first transmittance, and more than the first region. A second mounting that is disposed above the second region of the heating unit that generates a small amount of heat and transmits heat rays generated from the second region with a second transmittance that is higher than the transmittance of the first covering portion. A substrate mounting table having a portion.
  12.  請求項11に記載の基板載置台であって、
     前記基板と前記加熱部との間に設けられている前記基板載置部の厚さは、前記第1の載置部分における厚さが、前記第2の載置部分における厚さよりも大きくなるように構成されている。
    The substrate mounting table according to claim 11,
    The thickness of the substrate mounting part provided between the substrate and the heating unit is such that the thickness of the first mounting part is larger than the thickness of the second mounting part. It is configured.
  13.  請求項12に記載の基板載置台であって、
     前記第1領域の上部であって前記基板載置部と前記基板の間には、熱線の透過率が前記基板載置部よりも低い不透過部が設けられている。
    The substrate mounting table according to claim 12,
    An impermeable portion having a heat ray transmittance lower than that of the substrate mounting portion is provided above the first region and between the substrate mounting portion and the substrate.
  14.  請求項11に記載の基板載置台であって、
     前記加熱部は、前記基板載置台の外周領域に設けられる外周ヒータと、内周領域に設けられる内周ヒータと、前記基板載置台の中心部から前記内周領域を通って前記外周ヒータに電力を供給する外周ヒータ素線を有し、
     前記第1領域は、前記外周ヒータ素線が配置される領域である。
    The substrate mounting table according to claim 11,
    The heating unit includes an outer peripheral heater provided in an outer peripheral region of the substrate mounting table, an inner peripheral heater provided in an inner peripheral region, and power from the center of the substrate mounting table to the outer peripheral heater through the inner peripheral region. A peripheral heater wire for supplying
    The first region is a region where the outer peripheral heater element wire is disposed.
  15.  基板を加熱する加熱部を備えた基板載置台上に設けられた基板載置台カバーであって、前記加熱部の第1領域の上部に配置され、前記第1領域から発生する熱線を第1の透過率で透過させる第1被覆部と、前記第1領域よりも発熱量が小さい前記加熱部の第2領域の上部に配置され、前記第2領域から発生する熱線を前記第1被覆部の透過率よりも高い第2の透過率で透過させる第2被覆部と、を有する基板載置台カバーに、前記基板を載置する工程と、
     前記加熱部により前記基板を加熱する工程と、
     を有する半導体装置の製造方法。  
    A substrate mounting table cover provided on a substrate mounting table provided with a heating unit for heating a substrate, wherein the cover is disposed above the first region of the heating unit, and heat rays generated from the first region are first A first covering portion that transmits at a transmittance and an upper portion of the second region of the heating unit that generates less heat than the first region, and heat rays generated from the second region are transmitted through the first covering portion. A step of placing the substrate on a substrate placement table cover having a second covering portion that transmits at a second transmittance higher than the rate;
    Heating the substrate by the heating unit;
    A method for manufacturing a semiconductor device comprising:
PCT/JP2015/075460 2014-10-06 2015-09-08 Substrate processing device, substrate mounting table, and method for manufacturing semiconductor device WO2016056338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205867 2014-10-06
JP2014205867 2014-10-06

Publications (1)

Publication Number Publication Date
WO2016056338A1 true WO2016056338A1 (en) 2016-04-14

Family

ID=55652961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075460 WO2016056338A1 (en) 2014-10-06 2015-09-08 Substrate processing device, substrate mounting table, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2016056338A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053724A1 (en) * 2019-09-17 2021-03-25 株式会社Kokusai Electric Substrate processing apparatus, susceptor cover, and method for manufacturing semiconductor apparatus
WO2021193473A1 (en) * 2020-03-25 2021-09-30 株式会社Kokusai Electric Substrate processing apparatus, substrate stage cover, and method for producing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224125A (en) * 1993-01-22 1994-08-12 Toshiba Corp Semiconductor manufacturing device
JPH0963966A (en) * 1995-08-24 1997-03-07 Toshiba Microelectron Corp Vapor growth device
JP2000260720A (en) * 1999-03-12 2000-09-22 Kokusai Electric Co Ltd Apparatus for manufacturing semiconductor
JP2002146540A (en) * 2000-11-14 2002-05-22 Ebara Corp Substrate heater
JP2002334819A (en) * 2001-03-09 2002-11-22 Tokyo Electron Ltd Thermal processing unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224125A (en) * 1993-01-22 1994-08-12 Toshiba Corp Semiconductor manufacturing device
JPH0963966A (en) * 1995-08-24 1997-03-07 Toshiba Microelectron Corp Vapor growth device
JP2000260720A (en) * 1999-03-12 2000-09-22 Kokusai Electric Co Ltd Apparatus for manufacturing semiconductor
JP2002146540A (en) * 2000-11-14 2002-05-22 Ebara Corp Substrate heater
JP2002334819A (en) * 2001-03-09 2002-11-22 Tokyo Electron Ltd Thermal processing unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053724A1 (en) * 2019-09-17 2021-03-25 株式会社Kokusai Electric Substrate processing apparatus, susceptor cover, and method for manufacturing semiconductor apparatus
JPWO2021053724A1 (en) * 2019-09-17 2021-03-25
JP7270049B2 (en) 2019-09-17 2023-05-09 株式会社Kokusai Electric Substrate processing apparatus, susceptor cover, semiconductor device manufacturing method, and substrate processing method
WO2021193473A1 (en) * 2020-03-25 2021-09-30 株式会社Kokusai Electric Substrate processing apparatus, substrate stage cover, and method for producing semiconductor device
JPWO2021193473A1 (en) * 2020-03-25 2021-09-30
TWI782441B (en) * 2020-03-25 2022-11-01 日商國際電氣股份有限公司 Substrate processing apparatus, substrate stage cover, and manufacturing method of semiconductor device
JP7297149B2 (en) 2020-03-25 2023-06-23 株式会社Kokusai Electric SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PLACEMENT COVER, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM

Similar Documents

Publication Publication Date Title
US20100227478A1 (en) Substrate processing apparatus and method of manufacturing semiconductor
JP5096047B2 (en) Microwave plasma processing apparatus and microwave transmission plate
US20220005678A1 (en) Substrate processing apparatus, reflector and method of manufacturing semiconductor device
WO2016056338A1 (en) Substrate processing device, substrate mounting table, and method for manufacturing semiconductor device
JPWO2018179038A1 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
KR102501660B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, substrate processing method and program
US20220139760A1 (en) Substrate processing apparatus, susceptor cover, method of manufacturing semiconductor device and substrate processing method
CN112740376B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2011091389A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP6883620B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP6976279B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP7297149B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PLACEMENT COVER, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM
JP2009010144A (en) Substrate treating apparatus
CN216161684U (en) Base cover and substrate processing apparatus
JP2013197449A (en) Substrate processing method and substrate processing device
CN113544825B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2022168678A1 (en) Substrate treatment method and substrate treatment device
JP2009152233A (en) Semiconductor fabrication equipment
JP2023110429A (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
TW202314862A (en) Semiconductor device manufacturing method, substrate processing method, substrate processing device, and program
JP2013033979A (en) Microwave plasma processing apparatus
JP2008294104A (en) Substrate treating apparatus
JP2009059845A (en) Substrate treatment equipment
JP2006186014A (en) Semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15848946

Country of ref document: EP

Kind code of ref document: A1