WO2016052192A1 - Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution - Google Patents

Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution Download PDF

Info

Publication number
WO2016052192A1
WO2016052192A1 PCT/JP2015/076260 JP2015076260W WO2016052192A1 WO 2016052192 A1 WO2016052192 A1 WO 2016052192A1 JP 2015076260 W JP2015076260 W JP 2015076260W WO 2016052192 A1 WO2016052192 A1 WO 2016052192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
dye
formula
photoelectric conversion
Prior art date
Application number
PCT/JP2015/076260
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 康介
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016551908A priority Critical patent/JP6300332B2/en
Publication of WO2016052192A1 publication Critical patent/WO2016052192A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, and a dye solution.
  • Photoelectric conversion elements are used in various photosensors, photocopiers, photoelectrochemical cells such as solar cells, and the like.
  • Various methods such as a method using a metal, a method using a semiconductor, a method using an organic pigment or a dye, or a combination of these have been put to practical use for this photoelectric conversion element.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to national policy considerations.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • N3, N719, N749 also referred to as black dye
  • Z907, and J2 have been developed as metal complex dyes used in dye-sensitized solar cells.
  • Patent Document 1 describes a metal complex dye having a terpyridine ligand into which a thiophene ring group is introduced and a ligand such as 1,3-diketone. It is also described that a photoelectrochemical cell using this metal complex dye has high photoelectric conversion efficiency and excellent durability.
  • Patent Document 2 discloses a ring-constituting nitrogen coordinated to a metal ion of a terminal pyridine ring as a terpyridine ligand that can be used in a metal complex dye having a donor ligand having a cyclic group substituted with a specific substituent.
  • a terpyridine ligand is described in which a thiophene ring group is bonded to the atom at the 3-position. Further, it is also described that the photoelectrochemical cell using the metal complex dye described in Patent Document 2 can achieve both reduction in performance variation and improvement in photoelectric conversion efficiency and durability.
  • Patent Document 3 discloses a terpyridine ligand in which a benzene ring group or a thiophene ring group is introduced at the 3-position with respect to a ring nitrogen atom coordinated to a metal ion of a terminal pyridine ring, three monodentate ligands, Metal complex dyes having are described. It is also described that the photoelectrochemical cell using this metal complex dye achieved high photoelectric conversion efficiency and was excellent in durability.
  • Patent Document 4 describes a metal complex dye having a tridentate ligand in which a thiophene ring is bonded to the 3-position with respect to a ring-constituting nitrogen atom coordinated to a metal ion of a terminal pyridine ring.
  • An object of the present invention is to provide a photoelectric conversion element and a dye-sensitized solar cell having excellent photoelectric conversion efficiency and durability, and a metal complex dye and a dye solution used therefor.
  • the present inventors As a metal complex dye used for a photoelectric conversion element and a dye-sensitized solar cell, the present inventors have a specific aromatic heterocyclic group or a specific condensed polycyclic aromatic hydrocarbon ring in the 4-position with respect to the coordination atom.
  • a tridentate ligand having a nitrogen-containing aromatic ring at the end bonded to the ring-constituting atom, and at least one of the three coordinating atoms is a nitrogen atom constituting the ring, and at least two atoms are It has been found that further improvement in photoelectric conversion efficiency and durability can be realized when used in combination with a specific ligand coordinated to a metal ion by an anion.
  • the present invention has been completed based on these findings.
  • a photoelectric conversion element having semiconductor fine particles carrying a metal complex dye is represented by the following formula (I):
  • Anc 1 and Anc 2 each independently represent an acidic group.
  • M represents a metal ion.
  • X I represents —CH ⁇ or —N ⁇ .
  • Ar represents a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) Represents a polycyclic ring group containing a monocyclic ring group as a condensed ring.
  • L 1 to L 3 represent a ligand. However, two of L 1 to L 3 represent anionic ligands, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting the ring.
  • L 1 to L 3 are bidentate ligands in which L 1 and L 2 are bonded to each other, or tridentate coordination in which L 1 , L 2 and L 3 are bonded to each other It is a child.
  • a H independently represents —O—, —S— or —NR A —.
  • R A represents a hydrogen atom, an alkyl group or an aryl group.
  • R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • n1 to n3 each independently represents an integer of 0 or more, and represents an integer of the number of hydrogen atoms or less when each of the polycyclic ring groups is unsubstituted. * Represents the bonding position to the ring containing X I.
  • ring D 2L represents an aromatic ring.
  • a 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom.
  • R 111 to R 143 each independently represent a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
  • ring D 2L represents an aromatic ring.
  • a 211 to A 242 each independently represents an anion of a nitrogen atom or an anion of a carbon atom.
  • R 211 to R 241 each independently represent a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
  • Ar is a monocyclic ring group represented by the formula (X-1) or a monocyclic ring group represented by the formula (X-1a) or the formula (X-3a) as a condensed ring.
  • ⁇ 5> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 4>, wherein A H is —O— or —S—.
  • ⁇ 6> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 5>, wherein M is Ru 2+ or Os 2+ .
  • ⁇ 7> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 6>, wherein the acidic group is a carboxy group or a salt thereof.
  • a dye-sensitized solar cell including the photoelectric conversion element according to any one of the above items ⁇ 1> to ⁇ 7>.
  • Anc 1 and Anc 2 each independently represent an acidic group.
  • M represents a metal ion.
  • X I represents —CH ⁇ or —N ⁇ .
  • Ar represents a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) Represents a polycyclic ring group containing a monocyclic ring group as a condensed ring.
  • L 1 to L 3 represent a ligand. However, two of L 1 to L 3 represent anionic ligands, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting the ring.
  • L 1 to L 3 are bidentate ligands in which L 1 and L 2 are bonded to each other, or tridentate coordination in which L 1 , L 2 and L 3 are bonded to each other It is a child.
  • a H independently represents —O—, —S— or —NR A —.
  • R A represents a hydrogen atom, an alkyl group or an aryl group.
  • R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • n1 to n3 each independently represents an integer of 0 or more, and represents an integer of the number of hydrogen atoms or less when each of the polycyclic ring groups is unsubstituted. * Represents the bonding position to the ring containing X I.
  • the double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
  • substituents linking groups, ligands, etc.
  • the substituents and the like may be the same or different from each other. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • the ring has the following meanings unless otherwise specified.
  • the number of ring members is not particularly limited, but is preferably 4 to 8 members, more preferably 5 or 6 members.
  • the ring may be a condensed ring. That is, the ring includes a single ring and a polycycle (condensed ring) formed by condensing a plurality of rings.
  • the number of rings forming the polycycle is not particularly limited, and for example, a total of 2 to 5 rings is preferable.
  • the ring includes an aromatic ring and an aliphatic ring.
  • the aromatic ring includes an aromatic hydrocarbon ring and an aromatic heterocycle.
  • An aromatic hydrocarbon ring refers to a hydrocarbon ring exhibiting aromaticity.
  • the aromatic hydrocarbon ring includes a monocyclic aromatic hydrocarbon ring and a polycyclic aromatic hydrocarbon ring (also referred to as a condensed polycyclic aromatic hydrocarbon ring).
  • the aromatic heterocycle refers to a heterocycle exhibiting aromaticity, and includes a monocyclic aromatic heterocycle and a polycyclic aromatic heterocycle (also referred to as a condensed polycyclic aromatic heterocycle).
  • the aromatic hydrocarbon ring group is also referred to as an aryl group or an arylene group depending on the valence, and similarly, the aromatic heterocyclic group is also referred to as a heteroaryl group or a heteroarylene group.
  • An aliphatic ring refers to a ring other than an aromatic ring, and includes an aliphatic hydrocarbon ring and an aliphatic hetero ring. Examples of the aliphatic hydrocarbon ring include a saturated hydrocarbon ring and an unsaturated hydrocarbon ring that does not exhibit aromaticity.
  • a heterocycle refers to a ring having a ring atom composed of a carbon atom and a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a selenium atom, or a phosphorus atom).
  • the display of a compound is used to mean not only the compound itself but also its salt and its ion. Moreover, it is the meaning including what changed a part of structure in the range which does not impair the target effect. Furthermore, the compounds that do not specify substitution or non-substitution include those having an arbitrary substituent as long as the intended effect is not impaired. Preferred examples of such a substituent include substituents appropriately selected from the substituent group described later. The same applies to substituents, linking groups and ligands.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention have a metal complex dye represented by the above formula (I). Thereby, the outstanding photoelectric conversion efficiency and high durability are exhibited. Therefore, according to the present invention, it is possible to provide a photoelectric conversion element and a dye-sensitized solar cell having excellent photoelectric conversion efficiency and durability, and a metal complex dye and a dye solution used therefor.
  • FIG. 1 is a cross-sectional view schematically showing an enlarged view of a circular portion in a layer in a system in which the photoelectric conversion element according to the first aspect of the present invention is applied to a battery.
  • FIG. 2 is a cross-sectional view schematically showing a dye-sensitized solar cell including the photoelectric conversion element according to the second aspect of the present invention.
  • the photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer body layer containing an electrolyte, and a counter electrode (counter electrode).
  • the photosensitive layer, the charge transfer layer, and the counter electrode are provided on the conductive support in this order.
  • the semiconductor fine particles forming the photoreceptor layer carries a metal complex dye represented by the formula (I) described later as a sensitizing dye.
  • the aspect in which the metal complex dye is supported on the surface of the semiconductor fine particle includes an aspect in which the metal complex dye is adsorbed on the surface of the semiconductor fine particle, an aspect in which the metal complex dye is deposited on the surface of the semiconductor fine particle, and an aspect in which these are mixed.
  • the adsorption includes chemical adsorption and physical adsorption, and chemical adsorption is preferable.
  • the semiconductor fine particles may carry another metal complex dye together with the metal complex dye of the formula (I) described later. It is preferable that the semiconductor fine particles carry a co-adsorbent described later together with the metal complex dye.
  • the photoreceptor layer contains an electrolyte.
  • the electrolyte contained in the photoreceptor layer may be the same as or different from the electrolyte of the charge transfer layer, but is preferably the same.
  • “the same type of electrolyte” means that the component contained in the electrolyte of the photoreceptor layer and the component contained in the electrolyte of the charge transfer layer are the same, and the content of each component is the same, and The components included in the electrolyte of the photoreceptor layer and the components included in the electrolyte of the charge transfer layer are the same, but include the aspects in which the content of each component is different.
  • the photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and a known structure relating to the photoelectric conversion element can be adopted.
  • Each of the layers constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example. Moreover, you may have layers other than said each layer if needed.
  • the dye-sensitized solar cell of the present invention uses the photoelectric conversion element of the present invention.
  • preferred embodiments of the photoelectric conversion element and the dye-sensitized solar cell of the present invention will be described.
  • a system 100 shown in FIG. 1 is an application of the photoelectric conversion element 10 according to the first aspect of the present invention to a battery application in which an operation means M (for example, an electric motor) is caused to work by an external circuit 6.
  • the photoelectric conversion element 10 includes a conductive support 1, semiconductor fine particles 22 sensitized by supporting a dye (metal complex dye) 21, and a photoreceptor layer 2 including an electrolyte between the semiconductor fine particles 22, It consists of a charge transfer layer 3 that is a hole transport layer and a counter electrode 4.
  • the light receiving electrode 5 includes the conductive support 1 and the photoreceptor layer 2, and functions as a working electrode.
  • the light incident on the photoreceptor layer 2 excites the metal complex dye 21.
  • the excited metal complex dye 21 has high energy electrons, and these electrons are transferred from the metal complex dye 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion.
  • the metal complex dye 21 is an oxidant (cation). Electrons that have reached the conductive support 1 work in the external circuit 6, reach the oxide of the metal complex dye 21 via the counter electrode 4 and the charge transfer layer 3, and reduce this oxide.
  • the system 100 functions as a solar cell.
  • the dye-sensitized solar cell 20 shown in FIG. 2 is configured by the photoelectric conversion element of the second aspect of the present invention.
  • the photoelectric conversion element used as the dye-sensitized solar cell 20 differs with respect to the photoelectric conversion element shown in FIG. 1 by the structure of the electroconductive support body 41 and the photoreceptor layer 42, and the point which has the spacer S, those photoelectric conversion elements are different.
  • the photoelectric conversion element 10 is configured in the same manner as the photoelectric conversion element 10 shown in FIG. That is, the conductive support 41 has a two-layer structure including a substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44.
  • the photoreceptor layer 42 has a two-layer structure including a semiconductor layer 45 and a light scattering layer 46 formed adjacent to the semiconductor layer 45.
  • a spacer S is provided between the conductive support 41 and the counter electrode 48.
  • reference numeral 40 denotes a light receiving electrode
  • 47 denotes a charge transfer body layer.
  • the dye-sensitized solar cell 20 functions as a solar cell when light enters the photoreceptor layer 42 as in the system 100 to which the photoelectric conversion element 10 is applied.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention are not limited to the above-described preferred embodiments, and the configurations and the like of each embodiment can be appropriately combined between the respective embodiments without departing from the gist of the present invention.
  • materials and members used for the photoelectric conversion element or the dye-sensitized solar cell can be prepared by a conventional method.
  • the metal complex dye of the present invention is represented by the following formula (I).
  • the metal complex dye of the present invention can impart high photoelectric conversion efficiency and excellent thermal stability to a photoelectric conversion element and a dye-sensitized solar cell. Therefore, the metal complex dye of the present invention is preferably used as a sensitizing dye in a dye-sensitized solar cell.
  • Anc 1 and Anc 2 each independently represent an acidic group.
  • M represents a metal ion.
  • X I represents —CH ⁇ or —N ⁇ , preferably —CH ⁇ .
  • Ar is a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) It represents a polycyclic ring group containing a monocyclic ring group represented by any formula as a condensed ring.
  • a H independently represents —O—, —S—, or —NR A —.
  • R A represents a hydrogen atom, an alkyl group or an aryl group.
  • R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • n1 to n3 are each independently an integer of 0 or more and not more than the number of hydrogen atoms when each of the polycyclic ring groups is unsubstituted. Represents an integer. * Represents the bonding position to the ring containing X I.
  • L 1 to L 3 represent ligands. However, two of L 1 to L 3 represent anionic ligands, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting the ring. Also, among the L 1 ⁇ L 3, L 1 and L 2 and is either a bidentate ligand formed by bonding together, or, L 1 and L 2 and L 3 and is 3 seat formed by binding together It is a ligand.
  • the metal complex dye may have a counter ion CI necessary for neutralizing the electric charge.
  • -Metal ion M- M is a central metal of the metal complex dye, and examples thereof include ions of each element of Groups 6 to 12 on the long periodic table.
  • metal ions include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn ions.
  • the metal ion M may be one kind of ion or two or more kinds of ions.
  • the metal ion M is preferably Os 2+ , Ru 2+ or Fe 2+ , more preferably Os 2+ or Ru 2+ , and particularly preferably Ru 2+ .
  • the valence of M may change due to an oxidation-reduction reaction with surrounding materials.
  • the metal complex dye represented by the formula (I) is a tridentate in which the three nitrogen-containing aromatic rings in the formula (I) are bonded to each other and coordinate to the metal ion M by the ring-constituting nitrogen atom of each nitrogen-containing aromatic ring.
  • This ligand is referred to as a terpyridine ligand.
  • This terpyridine-based ligand has an acidic group (also referred to as an adsorbing group) Anc 1 and Anc 2 , one for each of the two pyridine rings.
  • the terpyridine ligand has a function of supporting the metal complex dye of the present invention on the semiconductor fine particles by the acidic groups Anc 1 and Anc 2 .
  • Terpyridine-based ligand is a nitrogen atom, the 4-position of the ring-constituting carbon respect coordinating ring-constituting nitrogen atom to the metal ion M of the ring formed by the carbon atoms and X I (also referred to as ring containing X I) It has Ar as an atom.
  • the photoelectric conversion element and a dye-sensitized solar cell having a metal complex dye having a terpyridine-based ligand which Ar in the 4-position ring-constituting carbon atom of the ring is bonded containing X I is the photoelectric conversion efficiency and durability are improved .
  • X I is as described above, and examples of the ring containing X I include a pyridine ring, a pyrimidine ring, and a quinoline ring. Of these, a pyridine ring or a pyrimidine ring is preferable, and a pyridine ring is particularly preferable.
  • Ring containing two pyridine rings and X I are each, which may have an acidic group Anc 1 and Anc 2 other substituents. These rings may substituent of, substituents selected from substituent group Z R which will be described later.
  • the ring containing two pyridine rings and X I includes a single ring and a condensed ring. In the case of a condensed ring, it also includes a condensed ring with adjacent rings. For example, you may form the condensed ring which the adjacent ring couple
  • the acidic groups Anc 1 and Anc 2 possessed by the two pyridine rings are substituents having dissociable protons, and pKa is 11 or less.
  • the pKa of the acidic group is determined by J.M. Phys. Chem. A2011, 115, p. Can be determined according to the "SMD / M05-2X / 6-31G *" The method according to 6641-6645.
  • the acidic group include acid groups exhibiting acidity such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, and a boric acid group, or groups having these acid groups.
  • Examples of the group having an acid group include a group having an acid group and a linking group.
  • the linking group is not particularly limited, and examples thereof include a divalent group, and preferable examples include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, and a heteroarylene group.
  • the linking group may have as a substituent a group selected from the substituent group Z R which will be described later.
  • the acidic group having an acid group and a linking group for example, carboxymethyl, carboxyvinylene, dicarboxyvinylene, cyanocarboxyvinylene, 2-carboxy-1-propenyl, 2-carboxy-1-butenyl, carboxyphenyl and the like are preferable.
  • the acidic group is preferably a carboxy group, a phosphonyl group, a sulfo group, or a group having a carboxy group, and more preferably a carboxy group.
  • the acidic groups Anc 1 and Anc 2 may be anions that are dissociated by releasing protons, or may be salts. Although it does not specifically limit as a counter ion when an acidic group turns into a salt, For example, the example of the positive ion in the following counter ion CI is mentioned.
  • the acidic group may be esterified as described later.
  • Ar represents a monocyclic ring group represented by the following formula (X-1) or formula (X-2), or the following formula (X-1a) to formula (X-3a): Represents a polycyclic ring group containing a monocyclic ring group represented by any one of the above formulas as a condensed ring.
  • a monocyclic ring group represented by the formula (X-1), a polycyclic ring group containing a monocyclic ring group represented by the formula (X-1a) as a condensed ring, or the formula (X A polycyclic ring group containing a monocyclic ring group represented by ⁇ 3a) as a condensed ring is preferable.
  • * represents a bonding position to the ring containing X I.
  • a H independently represents —O—, —S—, or —NR A —. Preferably, it is —O— or —S—.
  • R A represents a hydrogen atom, an alkyl group or an aryl group, preferably a hydrogen atom or an alkyl group.
  • R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
  • a hydrogen atom, an alkyl group, an alkoxy group, and an alkylthio group are preferable.
  • Adjacent groups of R X1 to R X6 may be bonded to form an aliphatic ring.
  • Preferred examples of the group capable of forming such an aliphatic ring include an alkylenedioxy group (—O—R ve —O— group) in which two alkoxy groups are linked.
  • Rve represents an alkylene group, and examples thereof include ethylene and propylene.
  • the ring group represented by the formula (X-1) is preferable from the viewpoint of photoelectric conversion efficiency.
  • a polycyclic ring group containing a monocyclic ring group represented by any one of the formulas (X-1a) to (X-3a) as a condensed ring will be described.
  • Examples of such a polycyclic ring group include a ring group formed by condensing a ring group (monocycle) represented by each of the above formulas, and this monocycle. Examples thereof include a ring group formed by condensation with a different ring.
  • a H has the same meaning as A H in formula (X-1) and formula (X-2), and is preferably Is the same.
  • R Xa represents the above substituent and has the same meaning as R X1 in the above formulas (X-1) and (X-2) except that it does not contain a hydrogen atom, and the preferred ones are also the same.
  • n1 to n3 each represents an integer of 0 or more, and represents an integer equal to or less than the number of hydrogen atoms when the condensed polycyclic group containing a polycyclic ring group represented by each formula is unsubstituted.
  • n1 and n2 are preferably integers of 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1.
  • n3 is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and still more preferably 0 or 1.
  • each condensed polycyclic group has R Xa
  • the substitution position is not particularly limited.
  • it may be a monocyclic ring group represented by the above formula, or may be a ring different from this monocycle.
  • the different ring is not particularly limited as long as it is a different type of ring from the single ring represented by each of the above formulas, and examples thereof include a phosphole ring, a cyclopentadiene ring, a silole ring, and an aromatic heterocycle described later. A monocyclic thing etc. are mentioned.
  • the condensed polycyclic group is preferably an aromatic ring group.
  • a cyclic group containing a cyclic group represented by each of the above formulas as a condensed ring can be mentioned.
  • This condensed polycyclic group is bonded to a ring containing X I by a monocyclic ring group represented by any one of the formulas (X-1a) to (X-3a).
  • the bonding position at this time is a ring-constituting carbon atom indicated by * in each of the above formulas.
  • the ring other than the ring group bonded to the ring containing X I is a single ring represented by any one of the above formulas (X-1a) to (X-3a) In this case, the coupling position * in each formula is not considered.
  • the total number of rings forming the condensed polycyclic group is not particularly limited, and is preferably 2 to 5 rings, for example.
  • the condensed polycyclic aromatic hydrocarbon ring group is a ring group containing at least a monocyclic ring group (benzene ring) represented by the formula (X-3a) as a condensed ring.
  • a condensed ring examples thereof include a ring group formed by condensing a plurality of benzene rings, and a ring group formed by condensing a cyclopentadiene ring as a ring different from the benzene ring.
  • a ring group formed by condensing a plurality of benzene rings is preferable.
  • Examples of the condensed polycyclic aromatic hydrocarbon ring group include a naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, naphthacene (tetracene), chrysene ring, picene ring, pyrene ring, fluorene ring, azulene ring, benzophenanthrene ring, Each group of a fluoranthene ring is mentioned. Of these, naphthalene, phenanthrene, triphenylene and pyrene rings are preferred.
  • the condensed polycyclic aromatic heterocyclic group includes a cyclic group containing at least an aromatic heterocyclic ring as a condensed ring, and at least a monocyclic ring group represented by the formula (X-1a) or the formula (X-2a)
  • the containing ring group is preferred.
  • a ring group formed by condensing a monocyclic ring group represented by formula (X-3a) with a monocyclic ring group represented by formula (X-3a) or the above-mentioned different ring group (phosphor ring, silole ring, etc.) Is mentioned.
  • a ring group formed by condensing a monocyclic ring group represented by the formula (X-3a) and the above-mentioned different ring group (phosphor ring, silole ring, etc.) is also included.
  • the condensed polycyclic aromatic heterocyclic group include benzofuran ring, isobenzofuran ring, benzothiophene ring, benzoisothiophene ring, indazole ring, indole ring, isoindole ring, indolizine ring, carbazole ring, quinoline ring, and isoquinoline.
  • a benzofuran ring, a dibenzofuran ring, a benzothiophene ring, a dibenzothiophene ring, and a carbazole ring are preferable, and a benzofuran ring or a benzothiophene ring is more preferable.
  • the terpyridine ligand is the terpyridine compound itself, but in the present invention, the terpyridine ligand can be used as a precursor compound of the terpyridine ligand as described later. Therefore, in the present invention, the term terpyridine-based ligand includes a terpyridine-based ligand precursor compound in addition to the terpyridine-based ligand itself (the terpyridine compound). Preferable precursor compounds include ester bodies in which at least one of acidic groups Anc 1 and Anc 2 of the terpyridine ligand is esterified (also referred to as an esterified product of a terpyridine compound).
  • This esterified compound is a compound in which the acidic group is protected and can be regenerated to an acidic group by hydrolysis or the like, and is not particularly limited.
  • Examples thereof include alkyl esterified products, aryl esterified products, and heteroaryl esterified products of the above acidic group.
  • alkyl esterified products are preferable.
  • the alkyl group forming the alkyl esterified product is not particularly limited, but is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and further preferably an alkyl group having 1 to 4 carbon atoms.
  • Heteroaryl groups which form an aryl group and heteroaryl esterified to form an aryl ester, respectively, is not particularly limited, and exemplified in later-described Substituent Group Z R. These groups may have one or more substituents selected from the substituent group Z R which will be described later. Two acidic groups to be esterified, Anc 1 and Anc 2 , are preferred. In this case, the two esters may be the same or different.
  • the terpyridine ligand can be synthesized by a usual method.
  • a terpyridine ligand represented by the formula (L1-4) includes a compound represented by the formula (L1-1) and a compound represented by the formula (L1-2) Can be synthesized by hydrolyzing the ester group of the precursor compound represented by the formula (L1-3).
  • an esterified product of a carboxy group is shown as a precursor compound.
  • the precursor compound is not limited to this and may be any precursor compound obtained by esterifying any of the acidic groups.
  • the coupling reaction at this time is, for example, “Suzuki coupling reaction” or “Still coupling reaction” described in “Chemical Chemistry Course 5th Edition” edited by The Chemical Society of Japan, Maruzen Co., Ltd., Volume 13, p92-117. Etc. or according to these.
  • Hydrolysis can be carried out according to the method described in, for example, the Chemical Society of Japan, “Experimental Chemistry Course 5th Edition”, Maruzen Co., Ltd., Volume 16, p10-15.
  • the method synthesized in Examples described later can be mentioned.
  • the metal complex dye of the present invention can be synthesized using a terpyridine ligand synthesized by hydrolyzing a precursor compound.
  • an ester group is hydrolyzed according to the said method, and the metal complex dye of this invention can also be synthesize
  • Ar and X I are each the same meanings as Ar and X I in the above (I).
  • Y 1 represents a trialkyltin group, a boronic acid group, a boronic acid ester group, a halogen atom or a perfluoroalkylsulfonyloxy group.
  • Y 2 represents a halogen atom or a perfluoroalkylsulfonyloxy group when Y 1 in formula (L1-1) is a trialkyltin group, a boronic acid group or a boronic ester group.
  • Y 1 in the formula (L1-1) is a halogen atom or a perfluoroalkylsulfonyloxy group, it represents a trialkyltin group, a boronic acid group or a boronic ester group.
  • R represents an alkyl group, an aryl group, or a heteroaryl group.
  • the ligand LA include a ligand LA in a metal complex dye described later. Also included are compounds in which at least one of —COOH is a salt of a carboxy group with respect to the ligand LA in the metal complex dye described later.
  • examples of a counter cation that forms a salt of a carboxy group include positive ions described in the following charge neutralization counter ion CI.
  • examples of the esterified product of the terpyridine compound include a compound obtained by esterifying at least one of the acidic groups Anc 1 and Anc 2 with respect to the ligand LA in the metal complex dye described later.
  • the present invention is not limited to these ligands LA, salts or esterified products thereof.
  • L 1 , L 2 and L 3 each represent a ligand. These ligands, a combination of L 1 and L 2 and formed by bonding together a bidentate ligand and a monodentate ligand L 3, or with the L 1 and L 2 and L 3 are bonded to each other Is a tridentate ligand. This tridentate ligand is different from the terpyridine ligand.
  • none of these ligands L 1 to L 3 have an acidic group that is adsorbed on the surface of the semiconductor fine particles. Even if the ligands L 1 to L 3 contain a group corresponding to an acidic group, those that do not adsorb on the surface of the semiconductor fine particles are preferable.
  • At least one of the ligands L 1 to L 3 is a ligand coordinated to the metal ion M by a nitrogen atom constituting the ring.
  • two of the ligands L 1 to L 3 can be ligands coordinated to the metal ion M by a nitrogen atom constituting the ring.
  • Such a nitrogen atom includes a nitrogen atom that is a ring-constituting atom and has no hydrogen atom.
  • the nitrogen atom of a pyridine ring is mentioned.
  • Two of the ligands L 1 to L 3 are anionic ligands. That is, of the ligands L 1 to L 3 , two ligands are ligands that coordinate to the metal ion M with an anion.
  • “Is an anion” means that a hydrogen atom bonded to any hydrogen atom or coordination atom in the molecule can be dissociated and bonded to the metal ion M. Specific examples of the anion will be described later.
  • the coordinating atom serving as the anion may be a ring-constituting nitrogen atom coordinated to the metal ion M, or may be another atom such as a carbon atom.
  • the ring-constituting nitrogen atom that coordinates to the metal ion M and the coordination atom that becomes an anion may be the same or different.
  • the metal complex dye has such ligands L 1 to L 3 together with the terpyridine ligand, the thermal stability of the photoelectric conversion element or the dye-sensitized solar cell is improved and high photoelectric conversion is achieved. In addition to efficiency, it demonstrates high durability.
  • the bidentate ligand of L 1 and L 2 and the tridentate ligand of L 1 , L 2 and L 3 are represented by the following formula (DL).
  • the ligand is preferred.
  • ring D DL , ring E DL and ring F each independently represent a 5-membered or 6-membered aromatic ring.
  • R a , R a1 and R a4 each independently represent a substituent.
  • mb represents 0 or 1.
  • ma1 and ma4 each independently represents an integer of 0 to 3.
  • ma represents an integer of 0 to 4 when mb is 0, and represents an integer of 0 to 3 when mb is 1.
  • the plurality of R a , the plurality of R a1, and the plurality of R a4 may be the same or different and are bonded to each other to form a ring. May be.
  • R a and R a1 , R a and R a4 may be linked to form a ring.
  • the 5-membered or 6-membered aromatic ring in ring D DL , ring E DL and ring F includes an aromatic hydrocarbon ring and an aromatic heterocycle, and an aromatic heterocycle is preferred.
  • an aromatic heterocycle is preferred.
  • at least one of an aromatic ring and an aliphatic hydrocarbon ring may be condensed.
  • ring D DL , ring E DL and ring F are aromatic hydrocarbon rings, they are not particularly limited, and examples thereof include a benzene ring and a naphthalene ring.
  • the aromatic heterocycle is not particularly limited, and examples thereof include aromatic rings containing the above heteroatoms as ring-constituting atoms.
  • the aromatic heterocycle is preferably a non-condensed 6-membered ring, a 6-membered ring in which a 5-membered ring is condensed, a 5-membered ring in which a benzene ring is condensed, or a 6-membered ring in which a benzene ring is condensed.
  • a 6-membered ring in which an uncondensed 6-membered ring and a 5-membered ring are condensed is more preferable, and a non-condensed 6-membered ring is more preferable.
  • Examples of the aromatic heterocycle include a 6-membered ring such as a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a quinoline ring, or a quinazoline ring. Further, examples thereof include 5-membered rings such as a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, an indole ring, an indazole ring, and a triazole ring.
  • 6-membered ring such as a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a quinoline ring, or a quinazoline ring.
  • 5-membered rings
  • Ring D DL and ring E DL are preferably a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, or a benzene ring, and more preferably a pyrazole ring, a triazole ring, or a benzene ring.
  • Ring F is preferably an aromatic heterocycle containing a nitrogen atom, more preferably a pyridine ring, pyrimidine ring, pyrazine ring or triazine ring, still more preferably a pyridine ring and a pyrimidine ring, and particularly preferably a pyridine ring.
  • the ring D DL , the ring E DL and the ring F include a coordination atom that is bonded to the metal ion M.
  • coordination atom in the ring D DL is an anion.
  • mb is 1
  • any two of ring D DL , ring E DL and ring F have a coordination atom bonded to metal ion M as an anion, and the coordination atoms in ring D DL and ring E DL are An anion is preferred.
  • the coordination atom is not particularly limited, but is preferably a carbon atom, a nitrogen atom, a sulfur atom, an oxygen atom or an anion of these atoms.
  • the position (substitution position) to which R a is bonded in the ring F is not particularly limited.
  • the ring F is a 5-membered ring
  • the 3-position with respect to the ring-constituting nitrogen atom coordinated to the metal atom M is preferable.
  • the ring F is a 6-membered ring
  • the 3-position or the 4-position is preferable with respect to the ring-constituting nitrogen atom coordinated to the metal atom M, and the 4-position is more preferable.
  • the ring D DL and ring E DL each have a R a1 or R a4
  • the position R a1 or R a4 is attached in each ring D DL and ring E DL is not particularly limited.
  • R a, R a1 and R a4 include groups selected from substituent group Z R which will be described later.
  • R a is an aromatic heterocyclic group, aromatic hydrocarbon ring group, ethenyl group, ethynyl group, halogen atom, alkyl group, amino group (alkylamino group, dialkylamino group, arylamino group, diarylamino group, among others.
  • alkoxy groups alkyloxy groups, alkylthio groups, arylthio groups, silyl groups are preferred, aromatic heterocyclic groups, aromatic hydrocarbon ring groups, ethenyl groups, ethynyl
  • aromatic heterocyclic groups aromatic hydrocarbon ring groups, ethenyl groups, ethynyl
  • an alkyl group, an alkoxy group or an amino group is more preferable.
  • a group formed by combining the above groups is also preferable.
  • R a1 and R a4 are each an alkyl group, a cycloalkyl group, an alkenyl group (preferably ethenyl group), an alkynyl group (preferably ethynyl group), an aryl group, or a heterocyclic group (preferably an aromatic heterocyclic group).
  • a halogen atom, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an amino group, a cyano group, an alkylsulfonyl group and an arylsulfonyl group, a halogenated alkyl group and a halogenated aryl group are more preferable, and a halogenated alkyl group Further preferred are a halogen atom and a cyano group. A group formed by combining the above groups is also preferable. The halogenated alkyl group and the halogenated aryl group will be described later.
  • ma, ma1 and ma4 are preferably integers of 0 to 2, more preferably 1 or 2.
  • the ligand represented by the above formula (DL) is preferably represented by the following formula (DL-1) or (DL-2).
  • the ligand represented by the formula (DL-1) is a preferred tridentate ligand of L 1 , L 2 and L 3, and the coordination represented by the formula (DL-2)
  • the child is a preferred bidentate ligand of L 1 and L 2 .
  • R a2 and R a3 each independently represent a substituent having no acidic group.
  • ma2 represents 0 or 1, and 1 is preferable.
  • ma3 represents an integer of 0 to 2, and 1 or 2 is more preferable.
  • X1 and X2 each independently represent CR a5 or a nitrogen atom.
  • R a5 represents a hydrogen atom or a substituent. This substituent is synonymous with Ra in Formula (DL), and its preferable range is also the same.
  • the ring containing X1 and X2 (also referred to as ring F) has the same meaning as ring F in formula (DL), and the preferred range is also the same.
  • R a1, R a4, ma1 and ma4 has the same meaning as R a1, R a4, ma1 and ma4 in the formula (DL), and the preferred range is also the same.
  • the substituent represented by R a2 and R a3 has the same meaning as R a in the above formula (DL), and the preferred range is also the same.
  • the plurality of R a1 , R a3 and R a4 may be the same or different, and may be bonded to each other to form a ring.
  • Ring D and ring E each independently represent a 5-membered or 6-membered aromatic ring.
  • aromatic ring examples include the rings mentioned in the ring DD L and ring E DL in the above formula (DL), and preferred aromatic rings are the same as those mentioned in the ring D DL and ring E DL.
  • the bond between D 1 and D 2 in ring D and ring E and the carbon atom bonded to the F ring may be a single bond or a double bond.
  • D 1 and D 2 each independently represents an anion of a carbon atom or an anion of a nitrogen atom.
  • Ring D and ring E are more preferably a pyrazole ring, a triazole ring or a benzene ring.
  • the bidentate ligand represented by the formula (DL-2) is preferably a bidentate ligand represented by any one of the following formulas (2L-1) to (2L-4).
  • * represents a coordination position (bonding position) with the metal ion M.
  • Ring D 2L represents an aromatic ring.
  • a 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom.
  • R 111 to R 143 each independently represents a hydrogen atom or a substituent having no acidic group.
  • a 111 to A 141 are an anion of a carbon atom or an anion of a nitrogen atom in which a hydrogen atom bonded to a nitrogen atom or a carbon atom constituting the ring D 2L is dissociated.
  • the ring D 2L is an aromatic hydrocarbon ring, an aromatic heterocycle containing oxygen, an aromatic heterocycle containing sulfur, or an aromatic heterocycle containing nitrogen Is mentioned.
  • Examples of the aromatic hydrocarbon ring include a benzene ring and a naphthalene ring, and a benzene ring is preferable, and a benzene ring substituted with a halogen atom, a halogenated alkyl group, or a halogenated aryl group is more preferable.
  • the halogenated alkyl group is an alkyl group substituted with a halogen atom, and a fluorinated alkyl group (for example, a trifluoromethyl group) is preferable.
  • the halogenated aryl group is preferably a phenyl group substituted with 1 to 5 halogen atoms.
  • the aromatic heterocycle containing oxygen is preferably a furan ring
  • the aromatic heterocycle containing sulfur is preferably a thiophene ring.
  • the aromatic heterocycle containing nitrogen a pyrrole ring, a pyrazole ring, an imidazole ring and a triazole ring are preferable.
  • Ring D 2L is, for example, each ring in which one of the ring constituent atoms of a benzene ring, thiophene ring or furan ring is an anion, or the following formulas (a-1) to (a-5), (a-1a) , (A-2a), (a-1b) and each ring represented by (a-4a) are preferred.
  • Rd represents a substituent having no acidic group.
  • b1 represents an integer of 0 to 2
  • b2 represents an integer of 0 to 3
  • b3 represents 0 or 1.
  • a plurality of Rd may be the same or different.
  • a plurality of Rd's may be bonded to each other to form a ring.
  • the Rd for example, include groups selected from Substituent group Z R which will be described later.
  • Rd and b1 to b3 are synonymous with Rd and b1 to b3 in the above formulas (a-1) to (a-5), and preferred ranges are also the same.
  • b4 represents an integer of 0 to 4
  • b5 represents an integer of 0 to 5.
  • Rd represents not only a benzene ring but also a pyrrole ring.
  • Rd is preferably a linear or branched alkyl group, cycloalkyl group, alkenyl group, fluoroalkyl group, aryl group, halogen atom, alkoxycarbonyl group, cycloalkoxycarbonyl group, cyano group, alkylsulfonyl group, arylsulfonyl A group and a group formed by combining these groups. More preferably, it is a linear or branched alkyl group, cycloalkyl group, alkenyl group, aryl group or a group formed by a combination thereof, and more preferably a linear or branched halogenated alkyl group or a halogenated aryl group. .
  • the substituent represented by R 111 to R 143 has the same meaning as R a in the above formula (DL), and the preferred range is also the same. At least one of R 111 to R 114 , at least one of R 121 to R 123 , at least one of R 131 to R 133 , and at least one of R 141 to R 143 are preferably substituents, and one Or it is more preferable that two are substituents.
  • the tridentate ligand represented by the formula (DL-1) is preferably a tridentate ligand represented by any one of the following formulas (3L-1) to (3L-4).
  • a 211 to A 242 each independently represents an anion of a nitrogen atom (also referred to as a nitrogen anion) or an anion of a carbon atom (also referred to as a carbon anion).
  • R 211 to R 241 each independently represents a hydrogen atom or a substituent having no acidic group.
  • a 211 to A 242 have the same meanings as A 111 to A 141 in the above formulas (2L-1) to (2L-4), respectively.
  • Ring D 2L in formulas (3L-1) to (3L-4) has the same meaning as ring D 2L in formulas (2L-1) to (2L-4), and the preferred range is also the same.
  • Ring D 2L is more preferably an aromatic ring containing any one of A 211 to A 242 and a carbon atom or two carbon atoms. At this time, in each formula, two rings D2L may be the same or different.
  • the substituents represented by R 211 to R 241 each have the same meaning as R a in the above formula (DL), and the preferred range is also the same.
  • At least one of R 211 to R 213 , at least one of R 221 and R 222 , at least one of R 231 and R 232 , and R 241 are preferably substituents.
  • the preferable ligand is a ligand in which an atom coordinated to the metal ion M is a nitrogen anion or a carbon anion and the partial structure has the following formula (SA).
  • R DA1 represents an aryl group or a heteroaryl group
  • R DA2 represents an alkyl group, an aryl group, or a heteroaryl group.
  • R DA1 and R DA2 may be bonded to each other to form a ring.
  • LL represents an ethenyl group, an ethynyl group, an arylene group, or a heteroarylene group.
  • a represents an integer of 0 to 5, and when a is 2 or more, a plurality of LLs may be the same or different.
  • the group represented by the formula (SA) is preferably substituted with an aromatic hydrocarbon ring coordinated to the metal ion M or an aromatic heterocycle containing nitrogen, and the aromatic heterocycle containing a nitrogen atom More preferably, it is substituted.
  • at least one of R DA1 and R DA2 is preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
  • Alkyl group, an aryl group, a heteroaryl group may have a substituent, and examples of such substituents include groups selected from Substituent group Z R which will be described later.
  • a phenyl group, a naphthyl group, etc. are mentioned, A phenyl group is preferable.
  • a furanyl group and a thienyl group are preferable.
  • LL may form a condensed ring structure together with an aromatic hydrocarbon ring or a nitrogen-containing aromatic heterocycle containing a ligand coordination atom.
  • LL may be an ethenyl group, and this ethenyl group may be bonded to a nitrogen-containing aromatic heterocycle containing a ligand coordination atom to form a quinoline ring.
  • the arylene group in LL include a phenylene group and a naphthylene group, and the heteroarylene group is preferably a divalent 5- or 6-membered ring containing an oxygen atom, a sulfur atom, or a nitrogen atom as a ring-constituting atom.
  • hetero ring of the heteroarylene group examples include a furan ring, a thiophene ring, a pyrrole ring, and a pyridine ring, and a furan ring and a thiophene ring are preferable.
  • Ethenyl group in LL, arylene group, heteroarylene group may have a substituent group, include groups selected from Substituent group Z R which will be described later as the substituent.
  • a is 0, or a is 1 and LL is an ethenyl group, ethynyl group, phenylene group or heteroarylene group, and a is 0 or a is 1 and phenylene.
  • a heteroarylene group more preferably a is 0, or a is 1, a phenylene group, a divalent furan ring group, or a divalent thiophene ring group, and a is 0. It is particularly preferred.
  • R DA1 and R DA2 are bonded to each other to form a ring.
  • the ring to be formed is preferably a 5- or 6-membered ring, and more preferably bonded when R DA1 and R DA2 are both aryl groups.
  • the ring formed by combining R DA1 and R DA2 with each other is preferably the following ring.
  • R DA3 and R DA4 each independently represents an alkyl group.
  • the ring may have a substituent group, include groups selected from Substituent group Z R which will be described later examples of the substituent.
  • the ligand represented by the above formula (DL) is disclosed in US Patent Application Publication No. 2010 / 0258175A1, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. 2011, 50, p. It can be synthesized by the method described in 2054-2058, the method described in the references cited in this document, or a method according to these methods.
  • ligand represented by the above formula (DL) are shown below.
  • dye mentioned later as this ligand LD is also mentioned.
  • the present invention is not limited to these ligands.
  • Me represents methyl
  • * represents a bonding position at which the rings or the pyridine ring and the substituent R 201 are bonded to each other.
  • the ligand L 3 used in combination with the bidentate ligand of L 1 and L 2 is not particularly limited as long as it is a monodentate ligand.
  • Ligand L 3 is preferably an anion.
  • acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate group, trithiocarbonate group, acyl group, thiocyanate group, A group or atom selected from the group consisting of an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, an alkylthio group, an arylthio group, an alkoxy group, an aryloxy group and a halogen atom, or an anion thereof is preferred.
  • the ligand L 3 When the ligand L 3 includes an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, or the like, they may or may not have a substituent. Moreover, when an aryl group, a heterocyclic group, a cycloalkyl group, etc. are included, they may or may not have a substituent, and may be monocyclic or condensed.
  • the ligand L 3 is preferably a cyanate group, an isocyanate group, a thiocyanate group and an isothiocyanate group or anions thereof, and more preferably an isocyanate group (isocyanate anion) or an isothiocyanate (NCS) group (isothiocyanate anion).
  • An isothiocyanate group (isothiocyanate anion) is particularly preferred.
  • the metal complex dye may have a counter ion necessary to neutralize its charge. In general, whether a metal complex dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
  • the metal complex dye may be dissociated and have a negative charge because the substituent has a dissociable group. In this case, the entire charge of the metal complex dye is electrically neutralized by CI.
  • the counter ion CI is a positive counter ion
  • the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetraalkylphosphonium ion, alkyltriphenylphosphonium ion). Etc.), alkali metal ions (Li ion, Na ion, K ion, etc.), alkaline earth metal ions, metal complex ions or protons.
  • inorganic or organic ammonium ions tetraethylammonium ion, tetrabutylammonium ion, tetrahexylammonium ion, tetraoctylammonium ion, tetradecylammonium ion, etc.
  • alkali metal ions alkali metal ions, and protons are preferable.
  • the counter ion CI may be an inorganic anion or an organic anion.
  • hydroxide ion, halogen anion for example, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted or unsubstituted alkylcarboxylate ion acetate ion, trifluoroacetate ion, etc.
  • Substituted or unsubstituted arylcarboxylate ions (benzoate ions, etc.), substituted or unsubstituted alkylsulfonate ions (methanesulfonate ions, trifluoromethanesulfonate ions, etc.), substituted or unsubstituted arylsulfonate ions (for example, p-toluenesulfonate ion, p-chlor
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
  • Examples of the metal complex dye represented by the formula (I) include a method described in JP2013-084594A, a method described in Japanese Patent No. 4298799, US Patent Application Publication No. 2013 / 0018189A1, and US Patent Application Publication. No. 2012 / 0073660A1, U.S. Patent Application Publication No. 2012 / 0111410A1, and U.S. Patent Application Publication No. 2010 / 0258175A1, Angew. Chem. Int. Ed. 2011, 50, p. It can be synthesized by the method described in 2054-2058, the method described in the reference cited in this document, the above-mentioned patent document relating to solar cells, a known method, or a method analogous thereto.
  • the metal complex dye represented by the formula (I) has excellent absorption characteristics in the long wavelength region.
  • the maximum absorption wavelength in the solution of the metal complex dye is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • metal complex dyes represented by the formula (I) are shown.
  • metal complex dyes in which at least one of —COOH is a salt of a carboxy group are also exemplified.
  • examples of the counter cation that forms a salt of a carboxy group include positive ions described in the above CI.
  • the present invention is not limited to these metal complex dyes. These metal complex dyes may be any of these isomers or a mixture of these isomers when optical isomers and geometric isomers are present.
  • the following specific examples are specific examples of the terpyridine ligand and the ligands L 1 to L 3 regardless of the specific combination of the terpyridine ligand and the ligands L 1 to L 3 in each specific example. Are also shown independently.
  • Me represents methyl
  • D-1 to D-10 represent the numbers of the metal complex dyes synthesized in the examples described later.
  • substituents include substituents selected from the following substituent group.
  • the alkyl group is used to include a straight-chain alkyl group and a branched alkyl group.
  • an alkyl group is not described separately from a cycloalkyl group (when simply described as an alkyl group), and unless otherwise specified, an alkyl group is a linear alkyl group or a branched alkyl group And cycloalkyl group.
  • Substituent group Z R is a substituent group which does not contain the acidic group. In the present specification, when simply not listed only as substituents, it is intended to refer to the substituent group Z R. Moreover, when only each group, for example, an alkyl group, is described (for example, R X1 ), preferred ranges and specific examples in the corresponding group of the substituent group Z R are applied.
  • the group contained in the substituent group Z R including the following groups or, by combining a plurality of groups of the following groups.
  • An alkyl group preferably having 1 to 20 carbon atoms such as methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, 1-ethylpentyl, decyl, benzyl, 2-ethoxyethyl, 1 -Carboxymethyl or trifluoromethyl
  • alkenyl groups preferably having 2 to 20 carbon atoms, eg vinyl, allyl, butenyl or oleyl
  • alkynyl groups preferably having 2 to 20 carbon atoms, eg ethynyl, butynyl or Phenylethynyl
  • a cycloalkyl group preferably having 3 to 20 carbon atoms, such as cyclopropy
  • the heterocyclic ring includes an aromatic ring and an aliphatic group.
  • Aromatic heterocyclic groups include the following groups (eg, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl or 2-oxazolyl), An alkoxy group (preferably having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropyloxy, hexylo Si or benzyloxy), an alkenyloxy group (preferably having 2 to 20 carbon atoms such as vinyloxy or allyloxy), an alkynyloxy group (preferably having 2 to 20 carbon atoms such as 2-propynyloxy or 4-butynyloxy)
  • a cycloalkyloxy group preferably having 3 to 20 carbon atoms, for example, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or 4-methylcyclohexyloxy
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms, such as ethoxycarbonyl or 2-ethylhexyloxycarbonyl
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms, such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl or Cyclohexyloxycarbonyl
  • aryloxycarbonyl group preferably having 6 to 20 carbon atoms, for example, phenyloxycarbonyl or naphthyloxycarbonyl
  • amino group preferably having 0 to 20 carbon atoms, alkylamino group, alkenylamino group, Including alkynylamino group, cycloalkylamino group, cycloalkenylamino group, arylamino group, heterocyclic amino group, such as amino, N, N-dimethylamino, N, N-diethylamino, N Ethylamino, N-
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino or benzoylamino), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide group having 0 to 20 carbon atoms)
  • a sulfonamide group preferably an alkyl, cycloalkyl or aryl sulfonamide group having 0 to 20 carbon atoms
  • an alkylthio group preferably having 1 to 20 carbon atoms, for example, methylthio, ethylthio , Isopropylthio, hexylthi
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy is preferable, for example, trimethylsilyl, triethylsilyl, triisopropylsilyl, triphenylsilyl, diethylbenzylsilyl or dimethylphenylsilyl.
  • a silyloxy group (preferably a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy or dimethylphenylsilyloxy ), A hydroxy group, a cyano group, a nitro group, and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom).
  • Group selected from substituent group Z R is more preferably an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an alkoxy group, cycloalkoxy group, aryloxy group, alkylthio group, cycloalkylthio group, an arylthio Group, alkoxycarbonyl group, cycloalkoxycarbonyl group, amino group, acylamino group, cyano group or halogen atom, particularly preferably alkyl group, alkenyl group, heterocyclic group, alkoxy group, alkylthio group, alkoxycarbonyl group, amino group An acylamino group or a cyano group.
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group and the like when included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the conductive support is not particularly limited as long as it has conductivity and can support the photoreceptor layer 2 and the like.
  • the conductive support has a conductive support 1 made of a conductive material, for example, a metal, or a glass or plastic substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44.
  • a conductive support 41 is preferred.
  • the conductive support 41 in which a conductive metal oxide is coated on the surface of the substrate 44 to form a transparent conductive film 43 is more preferable.
  • the substrate 44 made of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534.
  • ceramic Japanese Patent Laid-Open No. 2005-135902
  • conductive resin Japanese Patent Laid-Open No. 2001-160425
  • tin oxide As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable.
  • the coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the substrate 44.
  • light is preferably incident from the substrate 44 side.
  • Conductive supports 1 and 41 are preferably substantially transparent. “Substantially transparent” means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more. .
  • the thickness of the conductive supports 1 and 41 is not particularly limited, but is preferably 0.05 ⁇ m to 10 mm, more preferably 0.1 ⁇ m to 5 mm, and particularly preferably 0.3 ⁇ m to 4 mm. .
  • the thickness of the transparent conductive film 43 is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m. .
  • the conductive supports 1 and 41 may have a light management function on the surface.
  • a light management function on the surface.
  • an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated may be provided on the surface, as described in JP-A-2002-260746.
  • the light guide function may be provided.
  • Photoreceptor layer Other configurations are not particularly limited as long as the photoreceptor layer includes the semiconductor fine particles 22 on which the dye 21 is supported and an electrolyte.
  • the photoreceptor layer 2 and the photoreceptor layer 42 are used.
  • the semiconductor fine particles 22 are preferably fine particles of a metal chalcogenide (eg, oxide, sulfide, selenide, etc.) or a compound having a perovskite crystal structure.
  • a metal chalcogenide eg, oxide, sulfide, selenide, etc.
  • the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxide, cadmium sulfide, and cadmium selenide.
  • Preferred examples of the compound having a perovskite crystal structure include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods can be used alone or mixed with titania fine particles.
  • the particle diameters of the semiconductor fine particles 22 are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion in terms of the average particle diameter when the projected area is converted into a circle. Is preferred.
  • Examples of a method for coating the semiconductor fine particles 22 on the conductive support 1 or 41 include a wet method, a dry method, and other methods.
  • the semiconductor fine particles 22 preferably have a large surface area so that a large amount of the dye 21 can be adsorbed.
  • the surface area thereof is preferably 10 times or more, more preferably 100 times or more the projected area.
  • it is about 5000 times.
  • the diffusion distance of the generated electrons increases, the loss due to charge recombination also increases.
  • the preferred thickness of the semiconductor layer 45 is not uniquely determined depending on the use of the photoelectric conversion element, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness is more preferably 1 to 50 ⁇ m, further preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles 22 are preferably applied to the conductive support 1 or 41 and then baked at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours to bring the particles into close contact with each other.
  • the film forming temperature is preferably 60 to 600 ° C. when glass is used as the material of the conductive support 1 or the substrate 44.
  • the coating amount of the semiconductor fine particles 22 per 1 m 2 of the surface area of the conductive support 1 or 41 is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • a short-circuit prevention layer In order to prevent contact between the light receiving electrode 5 or 40 and the counter electrode 4 or 48, it is preferable to use a spacer S (see FIG. 2) or a separator.
  • At least one metal complex dye represented by the above formula (I) is used as a sensitizing dye.
  • the metal complex dye represented by the formula (I) is as described above.
  • examples of the dye that can be used in combination with the metal complex dye of the above formula (I) include a Ru complex dye, a squarylium cyanine dye, an organic dye, a porphyrin dye, and a phthalocyanine dye.
  • Ru complex dye examples include Ru complex dyes described in JP-A-7-500630 (especially synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). Dyes), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 on the third line to the 29th line from the bottom of page 20), JP, Ru complex dyes described in JP 2001-59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in JP 2001-6760 A (particularly, dyes described in paragraphs 0093 to 0102) ), Ru complex dyes described in JP-A No. 2001-253894 (particularly dyes described in paragraph Nos.
  • Ru complex dyes described in JP-A No. 2003-212851 particularly paragraph No. 0005 Described
  • Ru complex dyes described in International Publication No. 2007/91525 especially dyes described in [0067]
  • Ru complex dyes described in Japanese Patent Application Laid-Open No. 2001-291534 particularly, paragraphs 0120 to 0144
  • Ru complex dyes described in JP2012-012570 especially dyes described in paragraphs 0095 to 0103
  • Ru metal complex dyes described in JP2013-084594A especially And dyes described in paragraphs 0072 to 0081
  • Ru complex dyes described in International Publication No. 2013/088888 particularly, dyes described in [0286] to [0293]
  • International Publication Nos. 2013/47615 Ru complex dyes described in the above (especially dyes described in [0078] to [0082]).
  • squarylium cyanine dyes described in JP-A No. 11-214730 particularly dyes described in paragraphs 0036 to 0047
  • squarylium cyanine dyes described in JP-A No. 2012-144688 in particular, And dyes described in paragraphs 0039 to 0046 and 0054 to 0060
  • squarylium cyanine dyes described in JP 2012-84503 A in particular, dyes described in paragraphs 0066 to 0076 and the like.
  • organic dyes described in JP-A No. 2004-063274 particularly dyes described in paragraph Nos. 0017 to 0021
  • organic dyes described in JP-A No. 2005-123033 particularly paragraph numbers.
  • porphyrin dyes examples include Angew. Chem. Int. Ed. 49, p. 1-5 (2010), and the like.
  • phthalocyanine dye examples include Angew. Chem. Int. Ed. 46, p. 8358 (2007) and the like.
  • the dye that can be used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.1 to 10 mmol per 1 m 2 of the surface area of the conductive support 1 or 41. is there.
  • the amount of the dye 21 adsorbed on the semiconductor fine particles 22 is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles 22. By using such a dye amount, the sensitizing effect in the semiconductor fine particles 22 can be sufficiently obtained.
  • the ratio of the mass of the metal complex dye represented by the formula (I) / the mass of the other dye is 95/5 to 10/90. Is preferred, 95/5 to 50/50 is more preferred, 95/5 to 60/40 is more preferred, 95/5 to 65/35 is particularly preferred, and 95/5 to 70/30 is most preferred.
  • the surface of the semiconductor fine particles 22 may be treated with an amine compound.
  • Preferable amine compounds include pyridine compounds (for example, 4-t-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
  • a coadsorbent in the present invention, it is preferable to use a coadsorbent together with the metal complex dye represented by the formula (I) or a dye used in combination as necessary.
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably, a carboxy group or a salt thereof) is preferable, and examples thereof include a compound having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid, and chenodeoxycholic acid, and more preferred is deoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • the acidic group is synonymous with the acidic groups Anc 1 and Anc 2 in the above formula (I), and the preferred range is also the same.
  • R A1 is preferably a carboxy group, a sulfo group, or an alkyl group substituted by a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2. More preferred is CONHCH 2 CH 2 SO 3 H.
  • R A2 examples include a group selected from the above substituent group Z R. Of these, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group or an arylaminocarbonyloxy group is preferable, and an alkyl group, a hydroxy group or an acyloxy group is more preferable.
  • nA is preferably 2 to 4.
  • the co-adsorbent has an effect of suppressing inefficient association of the metal complex dye by adsorbing to the semiconductor fine particles 22 and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of the co-adsorbent used is not particularly limited, but from the viewpoint of effectively expressing the above action, it is preferably 1 to 200 mol, more preferably 10 to 150 mol, relative to 1 mol of the metal complex dye. Particularly preferred is 20 to 50 mol.
  • the light scattering layer is different from the semiconductor layer in that it has a function of scattering incident light.
  • the light scattering layer 46 preferably contains rod-like or plate-like metal oxide particles. Examples of the metal oxide particles used in the light scattering layer 46 include the metal chalcogenide (oxide) particles.
  • the thickness of the light scattering layer is preferably 10 to 50% of the thickness of the photoreceptor layer 42.
  • the light scattering layer 46 is preferably a light scattering layer described in JP-A No. 2002-289274, and the description of JP-A No. 2002-289274 is preferably incorporated in the present specification as it is.
  • the charge transfer body layers 3 and 47 used in the photoelectric conversion element of the present invention are layers having a function of replenishing electrons to the oxidant of the dye 21 and are provided between the light receiving electrode 5 or 40 and the counter electrode 4 or 48. It is done.
  • the charge transfer layer 3 and 47 contains an electrolyte.
  • “the charge transfer layer contains an electrolyte” means to include both modes of the mode in which the charge transfer layer is made of only an electrolyte and the mode containing an electrolyte and a substance other than the electrolyte.
  • the charge transfer layer 3 and 47 may be solid, liquid, gel, or a mixed state thereof.
  • Electrolytes examples include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, a molten salt containing a redox couple, and a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which a redox couple is dissolved in an organic solvent. .
  • a liquid electrolyte is preferable at the point of photoelectric conversion efficiency.
  • iodine and iodide As an oxidation-reduction pair, for example, iodine and iodide (iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable)
  • iodine and iodide iodide salt, ionic liquid is preferable
  • lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • a combination of an alkyl viologen eg, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzene e
  • the cobalt complex is preferably a complex represented by the formula (CC) described in paragraphs 0144 to 0156 of JP2014-82189A, and described in paragraphs 0144 to 0156 of JP2014-82189A. It is preferably incorporated in the present specification as it is.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the organic solvent used for the liquid electrolyte and the gel electrolyte is not particularly limited, but an aprotic polar solvent (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3 -Methyloxazolidinone etc.) are preferred.
  • the organic solvent used for the liquid electrolyte is preferably a nitrile compound, an ether compound, an ester compound, more preferably a nitrile compound, and particularly preferably acetonitrile or methoxypropionitrile.
  • Molten salts include ionic liquids containing imidazolium or triazolium cations, ionic liquids containing oxazolium cations, ionic liquids containing pyridinium cations, ionic liquids containing guanidinium cations, and these A combination is preferred. Moreover, you may combine a specific anion with respect to these cations. Additives may be added to these molten salts.
  • the molten salt may have a liquid crystalline substituent.
  • the molten salt of a quaternary ammonium salt can also be used as the molten salt.
  • molten salts other than these for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
  • the amount of the polymer added is 1 to 50% by mass.
  • ⁇ -butyrolactone may be included in the electrolytic solution, thereby increasing the diffusion efficiency of iodide ions and improving the photoelectric conversion efficiency.
  • polymer (polymer matrix) used for the gel electrolyte matrix examples include polyacrylonitrile and polyvinylidene fluoride.
  • the electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter).
  • the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • a method of confining a polymer matrix, a crosslinkable polymer compound or monomer, a crosslinking agent, an electrolyte, and a solvent in the polymer may be used.
  • the polymer matrix is preferably a polymer having a nitrogen-containing heterocycle in the main chain or side chain repeating unit, a cross-linked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or a polymer having a ureido structure.
  • Molecules compounds containing liquid crystal compounds, polymers having an ether bond, polyvinylidene fluoride, methacrylates, acrylates, thermosetting resins, crosslinked polysiloxanes, polyvinyl alcohol (PVA), inclusion compounds such as polyalkylene glycols and dextrins, Examples include systems to which oxygen-containing or sulfur-containing polymers are added, natural polymers, and the like.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex of a cation moiety and iodine in one polymer, and the like may be added to these.
  • a system containing a crosslinked polymer obtained by reacting a bifunctional or higher functional isocyanate group with a functional group such as a hydroxy group, an amino group, or a carboxy group may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, a solvent having a specific dielectric constant, and the like.
  • the liquid electrolyte solution may be held in the solid electrolyte membrane or the pores.
  • a preferred method for holding the liquid electrolyte solution is a method using a cloth-like solid such as a conductive polymer film, a fibrous solid, or a filter.
  • electrolytes include aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea compounds, amide compounds, and pyrimidines. It may contain a compound or a nitrogen-free heterocycle.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. It is preferable to adjust the water content (content ratio) of the electrolytic solution to 0 to 0.1% by mass.
  • Iodine can also be used as an inclusion compound of iodine and cyclodextrin. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C and Si, triarylamine, etc. And aromatic amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • the redox couple becomes an electron carrier, it is preferably contained at a certain concentration.
  • a preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit in this case is not particularly limited, but is usually about 5 mol / L.
  • the counter electrodes 4 and 48 preferably function as positive electrodes of the dye-sensitized solar cell.
  • the counter electrodes 4 and 48 can usually have the same configuration as that of the conductive support 1 or 41, but the substrate 44 is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrodes 4 and 48 a structure having a high current collecting effect is preferable.
  • At least one of the conductive support 1 or 41 and the counter electrode 4 or 48 must be substantially transparent.
  • the conductive support 1 or 41 is preferably transparent, and sunlight is preferably incident from the conductive support 1 or 41 side.
  • the counter electrodes 4 and 48 have a property of reflecting light.
  • a glass or plastic on which a metal or a conductive oxide is deposited is preferable, and a glass on which platinum is deposited is particularly preferable.
  • the present invention includes, for example, Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can be applied to the photoelectric conversion element and the dye-sensitized solar cell described in the publication.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention are preferably produced using a dye solution (the dye solution of the present invention) containing the metal complex dye of the present invention and a solvent.
  • the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used examples include, but are not limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, and a mixed solvent of two or more of these are more preferable.
  • a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable.
  • it is a mixed solvent of an alcohol solvent and an amide solvent, a mixed solvent of an alcohol solvent and a hydrocarbon solvent, a mixed solvent of an alcohol solvent and a nitrile solvent, and particularly preferably a mixed solvent of an alcohol solvent and an amide solvent, an alcohol solvent and a nitrile solvent.
  • It is a mixed solvent.
  • the mixed solvent is preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the above formula (CA) is preferable.
  • the dye solution of the present invention is a dye solution in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when producing a photoelectric conversion element or a dye-sensitized solar cell. Is preferred.
  • the dye solution of the present invention preferably contains 0.001 to 0.1% by mass of the metal complex dye of the present invention. The amount of coadsorbent used is as described above.
  • the water content of the dye solution is preferably adjusted.
  • the water content is preferably adjusted to 0 to 0.1% by mass.
  • the photoreceptor layer is preferably prepared by supporting the metal complex dye represented by the formula (I) or a dye containing the same on the surface of the semiconductor fine particles using the dye solution. That is, the photoreceptor layer is preferably formed by applying the above dye solution (including a dip method) to semiconductor fine particles provided on a conductive support, and drying or curing.
  • the photoelectric conversion element or the dye-sensitized solar cell of the present invention can be obtained by further providing (assembling) the charge transfer body layer, the counter electrode, and the like on the light-receiving electrode provided with the photoreceptor layer thus produced.
  • the dye-sensitized solar cell is manufactured by connecting the external circuit 6 to the conductive support 1 and the counter electrode 4 of the photoelectric conversion element manufactured as described above.
  • Example 1 Synthesis of metal complex dye
  • the metal complex dyes D-1 to D-10 synthesized in this example are shown below.
  • a metal complex dye (D-1) was synthesized according to the following scheme.
  • the metal complex dyes (D-2) to (D-10) were synthesized in the same manner as in the synthesis of the metal complex dye (D-1).
  • the synthesized metal complex dyes (D-1) to (D-10) were confirmed from the data shown in Table 1 below.
  • Example 2 (Production of dye-sensitized solar cell) Using each of the metal complex dyes (D-1) to (D-10) synthesized in Example 1 or the following comparative compounds (C-1) to (C-3), the dye-sensitized solar cell 20 shown in FIG. (5 mm ⁇ 5 mm scale) was manufactured. Manufacture was performed according to the following procedure. The following performance of each of the produced dye-sensitized solar cells 20 was evaluated. The results are shown in Table 2.
  • a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44, thickness 4 mm) to produce a conductive support 41.
  • titania paste “18NR-T” (manufactured by DyeSol) was screen printed on the SnO 2 conductive film and dried at 120 ° C.
  • the titania paste “18NR-T” was screen-printed again and dried at 120 ° C. for 1 hour. Thereafter, the dried titania paste was baked in air at 500 ° C. to form a semiconductor layer 45 (layer thickness: 10 ⁇ m).
  • a titania paste “18NR-AO” manufactured by DyeSol was screen-printed on the semiconductor layer 45 and dried at 120 ° C. for 1 hour. Thereafter, the dried titania paste was baked at 500 ° C., and a light scattering layer 46 (layer thickness: 5 ⁇ m) was formed on the semiconductor layer 45. In this way, the photoreceptor layer 42 (light receiving surface area: 5 mm ⁇ 5 mm, layer thickness: 15 ⁇ m, metal complex dye not supported) is formed on the SnO 2 conductive film, and the metal complex dye is not supported.
  • a light receiving electrode precursor was prepared.
  • each of the metal complex dyes (D-1) to (D-10) synthesized in Example 1 was supported on the photoreceptor layer 42 not supporting the metal complex dye as follows. First, each of the metal complex dyes is dissolved in a 1: 1 (volume ratio) mixed solvent of t-butanol and acetonitrile so as to have a concentration of 2 ⁇ 10 ⁇ 4 mol / L, and the coadsorbent is further dissolved therein. 30 mol of deoxycholic acid was added to 1 mol of the above metal complex dye to prepare each dye solution. Next, the photoelectrode precursor was immersed in each dye solution at 25 ° C. for 45 hours, pulled up from the dye solution, and then dried. In this manner, each of the light receiving electrodes 40 in which each metal complex dye was supported on the light receiving electrode precursor was produced.
  • a 1 (volume ratio) mixed solvent of t-butanol and acetonitrile so as to have a concentration of 2 ⁇ 10 ⁇ 4 mol / L
  • a platinum electrode (Pt thin film thickness: 100 nm) having the same shape and size as the conductive support 41 was prepared.
  • an electrolytic solution iodine 0.1M (mol / L), lithium iodide 0.1M, 4-t-butylpyridine 0.5M and 1,2-dimethyl-3-propylimidazolium iodide 0.6M were used.
  • a liquid electrolyte was prepared by dissolving in acetonitrile.
  • a spacer S “Surlin” (trade name, manufactured by DuPont) having a shape matched to the size of the photoreceptor layer 42 was prepared.
  • Each of the light-receiving electrodes 40 and the counter electrode 48 manufactured as described above are thermocompression-bonded so as to face each other via the spacer S, and then the electrolyte solution injection port is interposed between the photoreceptor layer 42 and the counter electrode 48.
  • the charge transfer layer 47 was formed by filling the liquid electrolyte.
  • the outer periphery of the battery thus prepared and the electrolyte injection port were sealed and cured using Resin XNR-5516 (manufactured by Nagase Chemtech), and each dye-sensitized solar cell (sample numbers 1 to 10) was sealed. Manufactured.
  • Example numbers c1 to c3 were manufactured in the same manner as the dye-sensitized solar cells.
  • the metal complex dye (C-1) is the compound “A-4” described in Patent Document 1.
  • the metal complex dye (C-2) is the compound “D-9” described in Patent Document 2.
  • the metal complex dye (C-3) is a compound described in paragraph [0042] of Patent Document 1.
  • the photoelectric conversion efficiency was measured as described above. The measured photoelectric conversion efficiency was evaluated. Evaluation was based on the photoelectric conversion efficiency (S c2 ) of the dye-sensitized solar cell (sample number c2). In the evaluation criteria for the photoelectric conversion efficiency, “A” and “B” are acceptable levels of this test, and preferably “A”. On the other hand, “C” has insufficient photoelectric conversion efficiency and does not reach the pass level (required level) of the present invention. (Evaluation criteria for photoelectric conversion efficiency) The photoelectric conversion efficiency is relative to the photoelectric conversion efficiency (S c2 ). A: More than 1.1 times B: More than 1.0 times, 1.1 times or less C: 1.0 times or less
  • Thermal degradation ratio is relative to thermal degradation ratio (S R c1 ) A: Less than 0.9 times B: 0.9 times or more and less than 1.0 times C: 1.0 times or more
  • the metal complex dye of the present invention could be suitably used as a sensitizing dye of the photoelectric conversion element and dye-sensitized solar cell of the present invention.
  • the dye solution of the present invention containing the metal complex dye of the present invention and a solvent could be suitably used for the preparation of semiconductor fine particles carrying (DL) the metal complex dye of the present invention.
  • sample number c1 a metal complex dye having no ligands L 1 , L 2 and L 3 was used. In this photoelectric conversion element and the dye-sensitized solar cell, the photoelectric conversion efficiency and durability did not reach acceptable levels. Moreover, in sample number c2, the metal complex dye which does not have the said terpyridine type ligand was used. In this photoelectric conversion element and the dye-sensitized solar cell, the photoelectric conversion efficiency did not reach the acceptable level. Further, in sample number c3, a metal complex dye having only one anionic ligand (NCS) among L 1 to L 3 was used. In this photoelectric conversion element and the dye-sensitized solar cell, both the photoelectric conversion efficiency and the durability did not reach acceptable levels.
  • NCS anionic ligand

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

A photoelectric conversion element which comprises a conductive supporting body, a photosensitive body layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, and wherein the photosensitive body layer comprises semiconductor fine particles on which a metal complex dye represented by formula (I) is supported; a dye-sensitized solar cell; a metal complex dye represented by formula (I); and a dye solution. In formula (I), each of Anc1 and Anc2 represents an acidic group; M represents a metal ion; XI represents -CH= or -N=; Ar represents a monocyclic group represented by formula (X-1) or formula (X-2) or a polycyclic group that contains, as a fused ring, a monocyclic group represented by one of formulae (X-1a)-(X-3a); each of L1-L3 represents a ligand, and two of the L1-L3 moieties are anionic ligands and at least one of the L1-L3 moieties represents a ligand which is coordinated to M at a nitrogen atom constituting the ring; and among the L1-L3 moieties, L1 and L2 combine together and form a bidentate ligand or L1-L3 combine together and form a tridentate ligand. In formulae (X-1)-(X-3a), AH represents -O-, -S- or -NRA-; RA represents a hydrogen atom or a specific substituent; each of RX1-RX6 and RXa represents a specific substituent or the like; each of n1-n3 represents an integer of 0 or more but not more than the number of hydrogen atoms in cases where the above-mentioned polycyclic group is not substituted; and * represents the bonding position to the ring containing XI.

Description

光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
 本発明は、光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液に関する。 The present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, and a dye solution.
 光電変換素子は、各種の光センサー、複写機、太陽電池等の光電気化学電池等に用いられている。この光電変換素子には、金属を用いた方式、半導体を用いた方式、有機顔料や色素を用いた方式、または、これらを組み合わせた方式等の様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。そのなかでも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。 Photoelectric conversion elements are used in various photosensors, photocopiers, photoelectrochemical cells such as solar cells, and the like. Various methods such as a method using a metal, a method using a semiconductor, a method using an organic pigment or a dye, or a combination of these have been put to practical use for this photoelectric conversion element. In particular, a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy. Among them, silicon-based solar cells have been researched and developed for a long time, and are spreading due to national policy considerations. However, since silicon is an inorganic material, there is a limit to improving throughput and cost.
 そこで、金属錯体色素を用いた光電気化学電池(色素増感太陽電池ともいう)の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。 Therefore, research on photoelectrochemical cells (also called dye-sensitized solar cells) using metal complex dyes has been vigorously conducted. In particular, it was the research results of Graetzel, etc., Lausanne University of Technology, Switzerland. They adopted a structure in which a dye composed of a ruthenium complex was fixed on the surface of a porous titanium oxide film, realizing photoelectric conversion efficiency comparable to that of amorphous silicon. As a result, dye-sensitized solar cells that can be manufactured without using an expensive vacuum apparatus have attracted attention from researchers all over the world.
 Graetzel等の報告の後、色素増感太陽電池に使用される金属錯体色素として、N3、N719、N749(ブラックダイともいう)、Z907、J2と呼ばれる色素等が開発されている。 After the report of Graetzel et al., Dyes called N3, N719, N749 (also referred to as black dye), Z907, and J2 have been developed as metal complex dyes used in dye-sensitized solar cells.
 これらの色素以外にも、特に光電変換素子および色素増感太陽電池の光電変換効率または耐久性を向上させうる金属錯体色素の開発が進められている。
 例えば、特許文献1には、チオフェン環基を導入したターピリジン配位子と、1,3-ジケトン等の配位子とを持つ金属錯体色素が記載されている。また、この金属錯体色素を用いた光電気化学電池が、光電変換効率が高く、耐久性に優れていたことも記載されている。
 特許文献2には、特定の置換基で置換された環状の基を持つドナー配位子を有する金属錯体色素に用いうるターピリジン配位子として、末端ピリジン環の金属イオンに配位する環構成窒素原子に対して3位にチオフェン環基が結合したターピリジン配位子が記載されている。また、特許文献2に記載の金属錯体色素を用いた光電気化学電池が、性能のバラツキの低減と、光電変換効率および耐久性の向上とを両立できたことも記載されている。
 特許文献3には、末端ピリジン環の金属イオンに配位する環構成窒素原子に対して3位にベンゼン環基またはチオフェン環基を導入したターピリジン配位子と3個の単座の配位子とを有する金属錯体色素が記載されている。また、この金属錯体色素を用いた光電気化学電池が、高光電変換効率を達成し、しかも耐久性に優れていたことも記載されている。
 特許文献4には、末端ピリジン環の金属イオンに配位する環構成窒素原子に対して3位にチオフェン環が結合した3座の配位子を有する金属錯体色素が記載されている。
In addition to these dyes, metal complex dyes that can improve the photoelectric conversion efficiency or durability of photoelectric conversion elements and dye-sensitized solar cells are being developed.
For example, Patent Document 1 describes a metal complex dye having a terpyridine ligand into which a thiophene ring group is introduced and a ligand such as 1,3-diketone. It is also described that a photoelectrochemical cell using this metal complex dye has high photoelectric conversion efficiency and excellent durability.
Patent Document 2 discloses a ring-constituting nitrogen coordinated to a metal ion of a terminal pyridine ring as a terpyridine ligand that can be used in a metal complex dye having a donor ligand having a cyclic group substituted with a specific substituent. A terpyridine ligand is described in which a thiophene ring group is bonded to the atom at the 3-position. Further, it is also described that the photoelectrochemical cell using the metal complex dye described in Patent Document 2 can achieve both reduction in performance variation and improvement in photoelectric conversion efficiency and durability.
Patent Document 3 discloses a terpyridine ligand in which a benzene ring group or a thiophene ring group is introduced at the 3-position with respect to a ring nitrogen atom coordinated to a metal ion of a terminal pyridine ring, three monodentate ligands, Metal complex dyes having are described. It is also described that the photoelectrochemical cell using this metal complex dye achieved high photoelectric conversion efficiency and was excellent in durability.
Patent Document 4 describes a metal complex dye having a tridentate ligand in which a thiophene ring is bonded to the 3-position with respect to a ring-constituting nitrogen atom coordinated to a metal ion of a terminal pyridine ring.
特開2012-36237号公報JP 2012-36237 A 特開2013-229285号公報JP 2013-229285 A 特開2013-67773号公報JP 2013-67773 A 米国特許出願公開第2012/0247561号明細書US Patent Application Publication No. 2012/0247561
 しかし、近年、光電変換素子および色素増感太陽電池の研究、開発が盛んに行われ、要求性能がより高くなっている。特に光電変換効率および耐久性のさらなる改善、向上が望まれている。 However, in recent years, research and development of photoelectric conversion elements and dye-sensitized solar cells have been actively performed, and the required performance has become higher. In particular, further improvement and improvement in photoelectric conversion efficiency and durability are desired.
 本発明は、優れた光電変換効率および耐久性を有する光電変換素子および色素増感太陽電池、ならびに、これらに用いられる金属錯体色素および色素溶液を提供することを課題とする。 An object of the present invention is to provide a photoelectric conversion element and a dye-sensitized solar cell having excellent photoelectric conversion efficiency and durability, and a metal complex dye and a dye solution used therefor.
 本発明者らは、光電変換素子および色素増感太陽電池に用いられる金属錯体色素として、特定の芳香族ヘテロ環基または特定の縮合多環芳香族炭化水素環が配位原子に対して4位の環構成原子に結合した含窒素芳香環を端部に持つ3座の配位子と、3つの配位原子のうち、少なくとも1つが環を構成する窒素原子であり、かつ少なくとも2つの原子がアニオンで金属イオンに配位する特定の配位子とを組み合わせて用いると、光電変換効率および耐久性のさらなる向上を実現できることを見出した。本発明はこれらの知見に基づいて完成された。 As a metal complex dye used for a photoelectric conversion element and a dye-sensitized solar cell, the present inventors have a specific aromatic heterocyclic group or a specific condensed polycyclic aromatic hydrocarbon ring in the 4-position with respect to the coordination atom. A tridentate ligand having a nitrogen-containing aromatic ring at the end bonded to the ring-constituting atom, and at least one of the three coordinating atoms is a nitrogen atom constituting the ring, and at least two atoms are It has been found that further improvement in photoelectric conversion efficiency and durability can be realized when used in combination with a specific ligand coordinated to a metal ion by an anion. The present invention has been completed based on these findings.
 すなわち、本発明の課題は、以下の手段によって達成された。
<1>導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
That is, the subject of this invention was achieved by the following means.
<1> A photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer is represented by the following formula (I): A photoelectric conversion element having semiconductor fine particles carrying a metal complex dye.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、AncおよびAncは各々独立に酸性基を表す。
 Mは金属イオンを表す。
 Xは、-CH=または-N=を表す。
 Arは、下記式(X-1)もしくは式(X-2)で表される単環の環基、または、下記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基を表す。
 L~Lは配位子を表す。ただし、L~Lのうちの2つがアニオン性配位子を表し、L~Lのうちの少なくとも1つが環を構成する窒素原子でMに配位する配位子を表す。L~Lのうち、LとLとが互いに結合してなる2座配位子であるか、または、LとLとLとが互いに結合してなる3座配位子である。
In the formula, Anc 1 and Anc 2 each independently represent an acidic group.
M represents a metal ion.
X I represents —CH═ or —N═.
Ar represents a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) Represents a polycyclic ring group containing a monocyclic ring group as a condensed ring.
L 1 to L 3 represent a ligand. However, two of L 1 to L 3 represent anionic ligands, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting the ring. L 1 to L 3 are bidentate ligands in which L 1 and L 2 are bonded to each other, or tridentate coordination in which L 1 , L 2 and L 3 are bonded to each other It is a child.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、Aは、各々独立に、-O-、-S-または-NR-を表す。Rは水素原子、アルキル基またはアリール基を表す。
 RX1~RX6は、各々独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。RXaは、各々独立に、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。n1~n3は、各々独立に、0以上の整数であり、かつ上記各多環の環基が無置換であるときの水素原子数以下の整数を表す。
 *は、Xを含む環との結合位置を表す。
In the formula, A H independently represents —O—, —S— or —NR A —. R A represents a hydrogen atom, an alkyl group or an aryl group.
R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. n1 to n3 each independently represents an integer of 0 or more, and represents an integer of the number of hydrogen atoms or less when each of the polycyclic ring groups is unsubstituted.
* Represents the bonding position to the ring containing X I.
<2>上記2座配位子が、下記式(2L-1)~(2L-4)のいずれかの式で表される<1>に記載の光電変換素子。 <2> The photoelectric conversion element according to <1>, wherein the bidentate ligand is represented by any one of the following formulas (2L-1) to (2L-4).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、環D2Lは芳香族環を表す。A111~A141は各々独立に窒素原子のアニオンまたは炭素原子のアニオンを表す。R111~R143は各々独立に水素原子、または、酸性基を有しない置換基を表す。*は金属イオンMへの配位位置を表す。 In the formula, ring D 2L represents an aromatic ring. A 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom. R 111 to R 143 each independently represent a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
<3>上記3座配位子が、下記式(3L-1)~(3L-4)のいずれかの式で表される<1>に記載の光電変換素子。 <3> The photoelectric conversion device according to <1>, wherein the tridentate ligand is represented by any one of the following formulas (3L-1) to (3L-4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、環D2Lは芳香族環を表す。A211~A242は各々独立に窒素原子のアニオンまたは炭素原子のアニオンを表す。R211~R241は各々独立に水素原子、または、酸性基を有しない置換基を表す。*は金属イオンMへの配位位置を表す。 In the formula, ring D 2L represents an aromatic ring. A 211 to A 242 each independently represents an anion of a nitrogen atom or an anion of a carbon atom. R 211 to R 241 each independently represent a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
<4>Arが、式(X-1)で表される単環の環基、または、式(X-1a)もしくは式(X-3a)で表される単環の環基を縮合環として含む多環の環基である<1>~<3>のいずれか1つに記載の光電変換素子。
<5>Aが、-O-または-S-である<1>~<4>のいずれか1つに記載の光電変換素子。
<6>Mが、Ru2+またはOs2+である<1>~<5>のいずれか1つに記載の光電変換素子。
<7>酸性基が、カルボキシ基またはその塩である<1>~<6>のいずれか1つに記載の光電変換素子。
<8>上記<1>~<7>のいずれか1つに記載の光電変換素子を備えた色素増感太陽電池。
<9>下記式(I)で表される金属錯体色素。
<4> Ar is a monocyclic ring group represented by the formula (X-1) or a monocyclic ring group represented by the formula (X-1a) or the formula (X-3a) as a condensed ring. The photoelectric conversion device according to any one of <1> to <3>, which is a polycyclic ring group.
<5> The photoelectric conversion element according to any one of <1> to <4>, wherein A H is —O— or —S—.
<6> The photoelectric conversion element according to any one of <1> to <5>, wherein M is Ru 2+ or Os 2+ .
<7> The photoelectric conversion element according to any one of <1> to <6>, wherein the acidic group is a carboxy group or a salt thereof.
<8> A dye-sensitized solar cell including the photoelectric conversion element according to any one of the above items <1> to <7>.
<9> A metal complex dye represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、AncおよびAncは各々独立に酸性基を表す。
 Mは金属イオンを表す。
 Xは、-CH=または-N=を表す。
 Arは、下記式(X-1)もしくは式(X-2)で表される単環の環基、または、下記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基を表す。
 L~Lは配位子を表す。ただし、L~Lのうちの2つがアニオン性配位子を表し、L~Lのうちの少なくとも1つが環を構成する窒素原子でMに配位する配位子を表す。L~Lのうち、LとLとが互いに結合してなる2座配位子であるか、または、LとLとLとが互いに結合してなる3座配位子である。
In the formula, Anc 1 and Anc 2 each independently represent an acidic group.
M represents a metal ion.
X I represents —CH═ or —N═.
Ar represents a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) Represents a polycyclic ring group containing a monocyclic ring group as a condensed ring.
L 1 to L 3 represent a ligand. However, two of L 1 to L 3 represent anionic ligands, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting the ring. L 1 to L 3 are bidentate ligands in which L 1 and L 2 are bonded to each other, or tridentate coordination in which L 1 , L 2 and L 3 are bonded to each other It is a child.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、Aは、各々独立に、-O-、-S-または-NR-を表す。Rは水素原子、アルキル基またはアリール基を表す。
 RX1~RX6は、各々独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。RXaは、各々独立に、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。n1~n3は、各々独立に、0以上の整数であり、かつ上記各多環の環基が無置換であるときの水素原子数以下の整数を表す。
 *は、Xを含む環との結合位置を表す。
In the formula, A H independently represents —O—, —S— or —NR A —. R A represents a hydrogen atom, an alkyl group or an aryl group.
R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. n1 to n3 each independently represents an integer of 0 or more, and represents an integer of the number of hydrogen atoms or less when each of the polycyclic ring groups is unsubstituted.
* Represents the bonding position to the ring containing X I.
<10>上記<9>に記載の金属錯体色素と溶媒とを含有する色素溶液。 <10> A dye solution containing the metal complex dye described in <9> and a solvent.
 本明細書において、特段の断りがない限り、二重結合については、分子内にE型およびZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。
 特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数あるとき、または複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。
In the present specification, unless otherwise specified, the double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
When there are a plurality of substituents, linking groups, ligands, etc. (hereinafter referred to as substituents, etc.) indicated by a specific code, or when simultaneously defining a plurality of substituents, etc., unless otherwise specified, The substituents and the like may be the same or different from each other. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
 また、本発明において、環とは、特段の断りがない限り、以下の意味を持つ。このことは、環基についても同様である。
 本発明において、環の員環数は、特に限定されないが、4~8員が好ましく、5または6員がより好ましい。また、環は、縮合環であってもよい。すなわち、環は、単環と、複数の環が縮環してなる多環(縮合環)とを包含する。多環を形成する環数(縮環数)は、特に限定されず、例えば、合計で2~5環であることが好ましい。
In the present invention, the ring has the following meanings unless otherwise specified. The same applies to the cyclic group.
In the present invention, the number of ring members is not particularly limited, but is preferably 4 to 8 members, more preferably 5 or 6 members. The ring may be a condensed ring. That is, the ring includes a single ring and a polycycle (condensed ring) formed by condensing a plurality of rings. The number of rings forming the polycycle (the number of condensed rings) is not particularly limited, and for example, a total of 2 to 5 rings is preferable.
 本発明において、環は、芳香族環および脂肪族環を包含する。
 芳香族環は、芳香族炭化水素環および芳香族ヘテロ環を含む。芳香族炭化水素環は、芳香族性を示す炭化水素環をいう。芳香族炭化水素環は、単環の芳香族炭化水素環および多環の芳香族炭化水素環(縮合多環芳香族炭化水素環ともいう)を含む。芳香族ヘテロ環は芳香族性を示すヘテロ環をいい、単環の芳香族ヘテロ環および多環の芳香族ヘテロ環(縮合多環芳香族ヘテロ環ともいう)を含む。芳香族炭化水素環基は価数によりアリール基またはアリーレン基ともいい、同様に芳香族ヘテロ環基はヘテロアリール基またはヘテロアリーレン基ともいう。
 脂肪族環は、芳香族環以外の環をいい、脂肪族炭化水素環および脂肪族ヘテロ環を含む。脂肪族炭化水素環としては、飽和炭化水素環、および、芳香族性を示さない不飽和炭化水素環が挙げられる。例えば、単環の飽和炭化水素環(シクロアルカン)、多環の飽和炭化水素環、単環の不飽和炭化水素環(シクロアルケン、シクロアルキン)および多環の不飽和炭化水素環等が挙げられる。
 また、芳香族ヘテロ環および脂肪族ヘテロ環を合わせてヘテロ環ということがある。ヘテロ環は、炭素原子とヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子、ケイ素原子、セレン原子またはリン原子)とを環構成原子とする環をいう。
In the present invention, the ring includes an aromatic ring and an aliphatic ring.
The aromatic ring includes an aromatic hydrocarbon ring and an aromatic heterocycle. An aromatic hydrocarbon ring refers to a hydrocarbon ring exhibiting aromaticity. The aromatic hydrocarbon ring includes a monocyclic aromatic hydrocarbon ring and a polycyclic aromatic hydrocarbon ring (also referred to as a condensed polycyclic aromatic hydrocarbon ring). The aromatic heterocycle refers to a heterocycle exhibiting aromaticity, and includes a monocyclic aromatic heterocycle and a polycyclic aromatic heterocycle (also referred to as a condensed polycyclic aromatic heterocycle). The aromatic hydrocarbon ring group is also referred to as an aryl group or an arylene group depending on the valence, and similarly, the aromatic heterocyclic group is also referred to as a heteroaryl group or a heteroarylene group.
An aliphatic ring refers to a ring other than an aromatic ring, and includes an aliphatic hydrocarbon ring and an aliphatic hetero ring. Examples of the aliphatic hydrocarbon ring include a saturated hydrocarbon ring and an unsaturated hydrocarbon ring that does not exhibit aromaticity. For example, monocyclic saturated hydrocarbon ring (cycloalkane), polycyclic saturated hydrocarbon ring, monocyclic unsaturated hydrocarbon ring (cycloalkene, cycloalkyne), polycyclic unsaturated hydrocarbon ring and the like can be mentioned. .
An aromatic heterocycle and an aliphatic heterocycle may be collectively referred to as a heterocycle. A heterocycle refers to a ring having a ring atom composed of a carbon atom and a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a selenium atom, or a phosphorus atom).
 本明細書において、化合物(錯体、色素を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的とする効果を損なわない範囲で、構造の一部を変化させたものを含む意味である。さらに、置換または無置換を明記していない化合物については、目的とする効果を損なわない範囲で、任意の置換基を有するものを含む。このような置換基としては、後述する置換基群から適宜に選ばれる置換基が好ましく挙げられる。このことは、置換基、連結基および配位子についても同様である。 In this specification, the display of a compound (including a complex and a dye) is used to mean not only the compound itself but also its salt and its ion. Moreover, it is the meaning including what changed a part of structure in the range which does not impair the target effect. Furthermore, the compounds that do not specify substitution or non-substitution include those having an arbitrary substituent as long as the intended effect is not impaired. Preferred examples of such a substituent include substituents appropriately selected from the substituent group described later. The same applies to substituents, linking groups and ligands.
 また、本明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。 In addition, in this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明の光電変換素子および色素増感太陽電池は、上記式(I)で表される金属錯体色素を有する。これにより、優れた光電変換効率と高い耐久性とを発揮する。よって、本発明により、優れた光電変換効率および耐久性を有する光電変換素子および色素増感太陽電池、ならびに、これらに用いられる金属錯体色素および色素溶液を提供できる。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The photoelectric conversion element and the dye-sensitized solar cell of the present invention have a metal complex dye represented by the above formula (I). Thereby, the outstanding photoelectric conversion efficiency and high durability are exhibited. Therefore, according to the present invention, it is possible to provide a photoelectric conversion element and a dye-sensitized solar cell having excellent photoelectric conversion efficiency and durability, and a metal complex dye and a dye solution used therefor.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の第1態様の光電変換素子を、電池用途に応用したシステムにおいて、層中の円部分の拡大図も含めて、模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing an enlarged view of a circular portion in a layer in a system in which the photoelectric conversion element according to the first aspect of the present invention is applied to a battery. 図2は、本発明の第2態様の光電変換素子からなる色素増感太陽電池を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing a dye-sensitized solar cell including the photoelectric conversion element according to the second aspect of the present invention.
[光電変換素子および色素増感太陽電池]
 本発明の光電変換素子は、導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極(対向電極)とを有する。感光体層と電荷移動体層と対極とがこの順で導電性支持体上に設けられている。
[Photoelectric conversion element and dye-sensitized solar cell]
The photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer body layer containing an electrolyte, and a counter electrode (counter electrode). The photosensitive layer, the charge transfer layer, and the counter electrode are provided on the conductive support in this order.
 本発明の光電変換素子において、その感光体層を形成する半導体微粒子の少なくとも一部は、増感色素として後述する式(I)で表される金属錯体色素を担持している。ここで、金属錯体色素が半導体微粒子の表面に担持される態様は、半導体微粒子の表面に吸着する態様、半導体微粒子の表面に堆積する態様、および、これらが混在した態様等を包含する。吸着は、化学吸着と物理吸着とを含み、化学吸着が好ましい。
 半導体微粒子は、後述する式(I)の金属錯体色素と併せて、他の金属錯体色素を担持していてもよい。
 半導体微粒子は、上記金属錯体色素とともに後述する共吸着剤を担持していることが好ましい。
In the photoelectric conversion element of the present invention, at least a part of the semiconductor fine particles forming the photoreceptor layer carries a metal complex dye represented by the formula (I) described later as a sensitizing dye. Here, the aspect in which the metal complex dye is supported on the surface of the semiconductor fine particle includes an aspect in which the metal complex dye is adsorbed on the surface of the semiconductor fine particle, an aspect in which the metal complex dye is deposited on the surface of the semiconductor fine particle, and an aspect in which these are mixed. The adsorption includes chemical adsorption and physical adsorption, and chemical adsorption is preferable.
The semiconductor fine particles may carry another metal complex dye together with the metal complex dye of the formula (I) described later.
It is preferable that the semiconductor fine particles carry a co-adsorbent described later together with the metal complex dye.
 また、感光体層は電解質を含む。感光体層に含まれる電解質は、電荷移動体層が有する電解質と同種でも異種であってもよいが、同種であることが好ましい。ここで、「電解質が同種」とは、感光体層の電解質に含まれる成分と電荷移動体層の電解質に含まれる成分が同じであり、且つ、各成分の含有量も同じである態様、および、感光体層の電解質に含まれる成分と電荷移動体層の電解質に含まれる成分が同じであるが、各成分の含有量が異なる態様、の両態様を含む意味である。 The photoreceptor layer contains an electrolyte. The electrolyte contained in the photoreceptor layer may be the same as or different from the electrolyte of the charge transfer layer, but is preferably the same. Here, “the same type of electrolyte” means that the component contained in the electrolyte of the photoreceptor layer and the component contained in the electrolyte of the charge transfer layer are the same, and the content of each component is the same, and The components included in the electrolyte of the photoreceptor layer and the components included in the electrolyte of the charge transfer layer are the same, but include the aspects in which the content of each component is different.
 本発明の光電変換素子は、本発明で規定する構成以外の構成は特に限定されず、光電変換素子に関する公知の構成を採用できる。本発明の光電変換素子を構成する上記各層は、目的に応じて設計され、例えば、単層に形成されても、複層に形成されてもよい。また、必要により上記各層以外の層を有してもよい。 The photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and a known structure relating to the photoelectric conversion element can be adopted. Each of the layers constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example. Moreover, you may have layers other than said each layer if needed.
 本発明の色素増感太陽電池は、本発明の光電変換素子を用いてなる。
 以下、本発明の光電変換素子および色素増感太陽電池の好ましい実施形態について説明する。
The dye-sensitized solar cell of the present invention uses the photoelectric conversion element of the present invention.
Hereinafter, preferred embodiments of the photoelectric conversion element and the dye-sensitized solar cell of the present invention will be described.
 図1に示されるシステム100は、本発明の第1態様の光電変換素子10を、外部回路6で動作手段M(例えば電動モーター)に仕事をさせる電池用途に応用したものである。
 光電変換素子10は、導電性支持体1と、色素(金属錯体色素)21が担持されることにより増感された半導体微粒子22、および、半導体微粒子22間に電解質を含む感光体層2と、正孔輸送層である電荷移動体層3と、対極4とからなる。
 光電変換素子10において、受光電極5は、導電性支持体1および感光体層2を有し、作用電極として機能する。
A system 100 shown in FIG. 1 is an application of the photoelectric conversion element 10 according to the first aspect of the present invention to a battery application in which an operation means M (for example, an electric motor) is caused to work by an external circuit 6.
The photoelectric conversion element 10 includes a conductive support 1, semiconductor fine particles 22 sensitized by supporting a dye (metal complex dye) 21, and a photoreceptor layer 2 including an electrolyte between the semiconductor fine particles 22, It consists of a charge transfer layer 3 that is a hole transport layer and a counter electrode 4.
In the photoelectric conversion element 10, the light receiving electrode 5 includes the conductive support 1 and the photoreceptor layer 2, and functions as a working electrode.
 光電変換素子10を応用したシステム100において、感光体層2に入射した光は、金属錯体色素21を励起する。励起された金属錯体色素21はエネルギーの高い電子を有しており、この電子が金属錯体色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき金属錯体色素21は酸化体(カチオン)となっている。導電性支持体1に到達した電子が外部回路6で仕事をしながら、対極4、電荷移動体層3を経由して金属錯体色素21の酸化体に到達し、この酸化体を還元することで、システム100が太陽電池として機能する。 In the system 100 to which the photoelectric conversion element 10 is applied, the light incident on the photoreceptor layer 2 excites the metal complex dye 21. The excited metal complex dye 21 has high energy electrons, and these electrons are transferred from the metal complex dye 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion. At this time, the metal complex dye 21 is an oxidant (cation). Electrons that have reached the conductive support 1 work in the external circuit 6, reach the oxide of the metal complex dye 21 via the counter electrode 4 and the charge transfer layer 3, and reduce this oxide. The system 100 functions as a solar cell.
 図2に示される色素増感太陽電池20は、本発明の第2態様の光電変換素子により構成されている。
 色素増感太陽電池20となる光電変換素子は、図1に示す光電変換素子に対して、導電性支持体41および感光体層42の構成、および、スペーサーSを有する点で異なるが、それらの点以外は図1に示す光電変換素子10と同様に構成されている。すなわち、導電性支持体41は、基板44と、基板44の表面に成膜された透明導電膜43とからなる2層構造を有している。また、感光体層42は、半導体層45と、半導体層45に隣接して成膜された光散乱層46とからなる2層構造を有している。導電性支持体41と対極48との間にはスペーサーSが設けられている。色素増感太陽電池20において、40は受光電極であり、47は電荷移動体層である。
The dye-sensitized solar cell 20 shown in FIG. 2 is configured by the photoelectric conversion element of the second aspect of the present invention.
Although the photoelectric conversion element used as the dye-sensitized solar cell 20 differs with respect to the photoelectric conversion element shown in FIG. 1 by the structure of the electroconductive support body 41 and the photoreceptor layer 42, and the point which has the spacer S, those photoelectric conversion elements are different. Except for this point, the photoelectric conversion element 10 is configured in the same manner as the photoelectric conversion element 10 shown in FIG. That is, the conductive support 41 has a two-layer structure including a substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44. The photoreceptor layer 42 has a two-layer structure including a semiconductor layer 45 and a light scattering layer 46 formed adjacent to the semiconductor layer 45. A spacer S is provided between the conductive support 41 and the counter electrode 48. In the dye-sensitized solar cell 20, reference numeral 40 denotes a light receiving electrode, and 47 denotes a charge transfer body layer.
 色素増感太陽電池20は、光電変換素子10を応用したシステム100と同様に、感光体層42に光が入射することにより、太陽電池として機能する。 The dye-sensitized solar cell 20 functions as a solar cell when light enters the photoreceptor layer 42 as in the system 100 to which the photoelectric conversion element 10 is applied.
 本発明の光電変換素子および色素増感太陽電池は、上記の好ましい態様に限定されず、各態様の構成等は、本発明の趣旨を逸脱しない範囲で、各態様間で適宜組み合わせることができる。 The photoelectric conversion element and the dye-sensitized solar cell of the present invention are not limited to the above-described preferred embodiments, and the configurations and the like of each embodiment can be appropriately combined between the respective embodiments without departing from the gist of the present invention.
 本発明において、光電変換素子または色素増感太陽電池に用いられる材料および各部材は常法により調製することができる。例えば、米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2001-185244号公報、特開2001-210390号公報、特開2003-217688号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。 In the present invention, materials and members used for the photoelectric conversion element or the dye-sensitized solar cell can be prepared by a conventional method. For example, US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat. No. 5,084,365, US Pat. No. 5,350,644, U.S. Pat. No. 5,463,057, U.S. Pat. No. 5,525,440, JP-A-7-249790, JP-A 2001-185244, JP-A 2001-210390, JP Reference can be made to JP2003-217688A, JP2004220974A, and JP2008-135197A.
<式(I)で表される金属錯体色素>
 本発明の金属錯体色素は、下記式(I)で表される。本発明の金属錯体色素は、光電変換素子および色素増感太陽電池に、高い光電変換効率と優れた熱安定性とを付与できる。したがって、本発明の金属錯体色素は増感色素として色素増感太陽電池に好ましく用いられる。
<Metal Complex Dye Represented by Formula (I)>
The metal complex dye of the present invention is represented by the following formula (I). The metal complex dye of the present invention can impart high photoelectric conversion efficiency and excellent thermal stability to a photoelectric conversion element and a dye-sensitized solar cell. Therefore, the metal complex dye of the present invention is preferably used as a sensitizing dye in a dye-sensitized solar cell.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(I)において、AncおよびAncは各々独立に酸性基を表す。
 Mは金属イオンを表す。
 Xは、-CH=または-N=を表し、-CH=が好ましい。
In formula (I), Anc 1 and Anc 2 each independently represent an acidic group.
M represents a metal ion.
X I represents —CH═ or —N═, preferably —CH═.
 式(I)において、Arは、下記式(X-1)もしくは式(X-2)で表される単環の環基、または、下記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基を表す。 In the formula (I), Ar is a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) It represents a polycyclic ring group containing a monocyclic ring group represented by any formula as a condensed ring.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(X-1)、式(X-2)、式(X-1a)および式(X-2a)において、Aは、各々独立に、-O-、-S-または-NR-を表す。Rは水素原子、アルキル基またはアリール基を表す。
 上記各式において、RX1~RX6は、各々独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。RXaは、各々独立に、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。
 式(X-1a)~式(X-3a)において、n1~n3は、各々独立に、0以上の整数であり、かつ上記各多環の環基が無置換であるときの水素原子数以下の整数を表す。
 *は、Xを含む環との結合位置を表す。
In Formula (X-1), Formula (X-2), Formula (X-1a), and Formula (X-2a), A H independently represents —O—, —S—, or —NR A —. To express. R A represents a hydrogen atom, an alkyl group or an aryl group.
In the above formulas, R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group.
In the formulas (X-1a) to (X-3a), n1 to n3 are each independently an integer of 0 or more and not more than the number of hydrogen atoms when each of the polycyclic ring groups is unsubstituted. Represents an integer.
* Represents the bonding position to the ring containing X I.
 式(I)において、L~Lは配位子を表す。
 ただし、L~Lのうちの2つがアニオン性配位子を表し、L~Lのうちの少なくとも1つが環を構成する窒素原子でMに配位する配位子を表す。また、L~Lのうち、LとLとが互いに結合してなる2座配位子であるか、または、LとLとLとが互いに結合してなる3座配位子である。
In the formula (I), L 1 to L 3 represent ligands.
However, two of L 1 to L 3 represent anionic ligands, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting the ring. Also, among the L 1 ~ L 3, L 1 and L 2 and is either a bidentate ligand formed by bonding together, or, L 1 and L 2 and L 3 and is 3 seat formed by binding together It is a ligand.
 金属錯体色素は電荷を中和させるために必要な対イオンCIを有していてもよい。 The metal complex dye may have a counter ion CI necessary for neutralizing the electric charge.
- 金属イオンM -
 Mは、金属錯体色素の中心金属であり、長周期律表上6~12族の各元素のイオンが挙げられる。このような金属イオンとしては、例えば、Ru、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、MnおよびZnの各イオンが挙げられる。金属イオンMは、1種のイオンであっても2種以上のイオンであってもよい。
 本発明においては、金属イオンMは、Os2+、Ru2+またはFe2+が好ましく、Os2+またはRu2+がより好ましく、なかでもRu2+が特に好ましい。
 光電変換素子中に組み込まれた状態においては、Mの価数は、周囲の材料との酸化還元反応により変化することがある。
-Metal ion M-
M is a central metal of the metal complex dye, and examples thereof include ions of each element of Groups 6 to 12 on the long periodic table. Examples of such metal ions include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn ions. The metal ion M may be one kind of ion or two or more kinds of ions.
In the present invention, the metal ion M is preferably Os 2+ , Ru 2+ or Fe 2+ , more preferably Os 2+ or Ru 2+ , and particularly preferably Ru 2+ .
In the state incorporated in the photoelectric conversion element, the valence of M may change due to an oxidation-reduction reaction with surrounding materials.
- ターピリジン系配位子 -
 式(I)で表される金属錯体色素は、式(I)中の3つの含窒素芳香環が互いに結合し、各含窒素芳香環の環構成窒素原子で金属イオンMに配位する3座配位子を有する。この配位子をターピリジン系配位子という。
 このターピリジン系配位子は、酸性基(吸着基ともいう)AncおよびAncを、2つのピリジン環それぞれに1つずつ有する。ターピリジン系配位子は、この酸性基AncおよびAncにより、本発明の金属錯体色素を半導体微粒子に担持させる機能を有する。
-Terpyridine ligand-
The metal complex dye represented by the formula (I) is a tridentate in which the three nitrogen-containing aromatic rings in the formula (I) are bonded to each other and coordinate to the metal ion M by the ring-constituting nitrogen atom of each nitrogen-containing aromatic ring. Has a ligand. This ligand is referred to as a terpyridine ligand.
This terpyridine-based ligand has an acidic group (also referred to as an adsorbing group) Anc 1 and Anc 2 , one for each of the two pyridine rings. The terpyridine ligand has a function of supporting the metal complex dye of the present invention on the semiconductor fine particles by the acidic groups Anc 1 and Anc 2 .
 ターピリジン系配位子は、窒素原子、炭素原子およびXにより形成される環(Xを含む環ともいう)の金属イオンMに配位する環構成窒素原子に対して4位の環構成炭素原子にArを有している。Xを含む環の4位の環構成炭素原子にArが結合したターピリジン系配位子を持つ金属錯体色素を有する光電変換素子および色素増感太陽電池は、光電変換効率および耐久性が向上する。 Terpyridine-based ligand is a nitrogen atom, the 4-position of the ring-constituting carbon respect coordinating ring-constituting nitrogen atom to the metal ion M of the ring formed by the carbon atoms and X I (also referred to as ring containing X I) It has Ar as an atom. The photoelectric conversion element and a dye-sensitized solar cell having a metal complex dye having a terpyridine-based ligand which Ar in the 4-position ring-constituting carbon atom of the ring is bonded containing X I is the photoelectric conversion efficiency and durability are improved .
 Xは、上記した通りであり、Xを含む環としては、ピリジン環、ピリミジン環またはキノリン環が挙げられる。なかでも、ピリジン環またはピリミジン環であることが好ましく、ピリジン環であることが特に好ましい。 X I is as described above, and examples of the ring containing X I include a pyridine ring, a pyrimidine ring, and a quinoline ring. Of these, a pyridine ring or a pyrimidine ring is preferable, and a pyridine ring is particularly preferable.
 2つのピリジン環およびXを含む環は、それぞれ、酸性基AncおよびAnc以外の置換基を有していてもよい。これらの環が有していてもよい置換基としては、後述する置換基群Zから選ばれる置換基が挙げられる。
 式(I)において、2つのピリジン環およびXを含む環は、単環および縮合環を包含し、縮合環である場合は互いに隣接する環との縮合環をも含む。例えば、上記置換基を介して隣接する環が互いに結合した縮合環を形成してもよい。このような縮合環としては、例えば、1,10-フェナントロリン環が挙げられる。
Ring containing two pyridine rings and X I are each, which may have an acidic group Anc 1 and Anc 2 other substituents. These rings may substituent of, substituents selected from substituent group Z R which will be described later.
In the formula (I), the ring containing two pyridine rings and X I includes a single ring and a condensed ring. In the case of a condensed ring, it also includes a condensed ring with adjacent rings. For example, you may form the condensed ring which the adjacent ring couple | bonded together through the said substituent. Examples of such a condensed ring include a 1,10-phenanthroline ring.
 2つのピリジン環が有する酸性基AncおよびAncとは、解離性のプロトンを有する置換基であり、pKaが11以下の置換基である。酸性基のpKaは、J.Phys.Chem.A2011,115,p.6641-6645に記載の「SMD/M05-2X/6-31G」方法に従って求めることができる。酸性基としては、例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基等の酸性を示す酸基、または、これらの酸基を有する基が挙げられる。酸基を有する基は、酸基と連結基とを有する基が挙げられる。連結基は、特に限定されないが、2価の基が挙げられ、好ましくは、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基等が挙げられる。この連結基は後述する置換基群Zから選ばれる基を置換基として有していてもよい。酸基と連結基とを有する酸性基としては、例えば、カルボキシメチル、カルボキシビニレン、ジカルボキシビニレン、シアノカルボキシビニレン、2-カルボキシ-1-プロペニル、2-カルボキシ-1-ブテニル、カルボキシフェニル等を好ましく挙げることができる。
 酸性基としては、好ましくは、カルボキシ基、ホスホニル基、スルホ基、またはカルボキシ基を有する基であり、より好ましくはカルボキシ基である。
The acidic groups Anc 1 and Anc 2 possessed by the two pyridine rings are substituents having dissociable protons, and pKa is 11 or less. The pKa of the acidic group is determined by J.M. Phys. Chem. A2011, 115, p. Can be determined according to the "SMD / M05-2X / 6-31G *" The method according to 6641-6645. Examples of the acidic group include acid groups exhibiting acidity such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, and a boric acid group, or groups having these acid groups. Examples of the group having an acid group include a group having an acid group and a linking group. The linking group is not particularly limited, and examples thereof include a divalent group, and preferable examples include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, and a heteroarylene group. The linking group may have as a substituent a group selected from the substituent group Z R which will be described later. As the acidic group having an acid group and a linking group, for example, carboxymethyl, carboxyvinylene, dicarboxyvinylene, cyanocarboxyvinylene, 2-carboxy-1-propenyl, 2-carboxy-1-butenyl, carboxyphenyl and the like are preferable. Can be mentioned.
The acidic group is preferably a carboxy group, a phosphonyl group, a sulfo group, or a group having a carboxy group, and more preferably a carboxy group.
 酸性基AncおよびAncは、式(I)で表される金属錯体色素に組み込まれたときに、プロトンを放出して解離したアニオンとなっていてもよく、塩となっていてもよい。酸性基が塩となるときの対イオンとしては、特に限定されないが、例えば、下記対イオンCIにおける正のイオンの例が挙げられる。また、酸性基は、後述するようにエステル化されていてもよい。 When incorporated into the metal complex dye represented by the formula (I), the acidic groups Anc 1 and Anc 2 may be anions that are dissociated by releasing protons, or may be salts. Although it does not specifically limit as a counter ion when an acidic group turns into a salt, For example, the example of the positive ion in the following counter ion CI is mentioned. The acidic group may be esterified as described later.
 ターピリジン系配位子において、Arは、下記式(X-1)もしくは式(X-2)で表される単環の環基、または、下記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基を表す。なかでも、式(X-1)で表される単環の環基、式(X-1a)で表される単環の環基を縮合環として含む多環の環基、または、式(X-3a)で表される単環の環基を縮合環として含む多環の環基が好ましい。
 各式中、*はXを含む環との結合位置を表す。
In the terpyridine ligand, Ar represents a monocyclic ring group represented by the following formula (X-1) or formula (X-2), or the following formula (X-1a) to formula (X-3a): Represents a polycyclic ring group containing a monocyclic ring group represented by any one of the above formulas as a condensed ring. Among them, a monocyclic ring group represented by the formula (X-1), a polycyclic ring group containing a monocyclic ring group represented by the formula (X-1a) as a condensed ring, or the formula (X A polycyclic ring group containing a monocyclic ring group represented by −3a) as a condensed ring is preferable.
In the formulas, * represents a bonding position to the ring containing X I.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(X-1)または式(X-2)で表される環基(単環)について説明する。 The ring group (monocycle) represented by formula (X-1) or formula (X-2) will be described.
 式(X-1)および式(X-2)において、Aは、各々独立に、-O-、-S-または-NR-を表す。好ましくは、-O-または-S-である。ここで、Rは、水素原子、アルキル基またはアリール基を表し、水素原子またはアルキル基が好ましい。
 これらの環基は、各式中に*で示された環構成炭素原子がXを含む環と結合する。
In Formula (X-1) and Formula (X-2), A H independently represents —O—, —S—, or —NR A —. Preferably, it is —O— or —S—. Here, R A represents a hydrogen atom, an alkyl group or an aryl group, preferably a hydrogen atom or an alkyl group.
These ring group, ring-constituting carbon atom designated * in the formula is bound to the ring containing X I.
 RX1~RX6は、各々独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。なかでも、水素原子、アルキル基、アルコキシ基、アルキルチオ基が好ましい。
 RX1~RX6のうち隣接する基同士が結合して脂肪族環を形成してもよい。このような脂肪族環を形成しうる基として、2つのアルコキシ基が連結したアルキレンジオキシ基(-O-Rve-O-基)が好ましく挙げられる。ここで、Rveはアルキレン基を表し、例えば、エチレン、プロピレンが挙げられる。
R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. Of these, a hydrogen atom, an alkyl group, an alkoxy group, and an alkylthio group are preferable.
Adjacent groups of R X1 to R X6 may be bonded to form an aliphatic ring. Preferred examples of the group capable of forming such an aliphatic ring include an alkylenedioxy group (—O—R ve —O— group) in which two alkoxy groups are linked. Here, Rve represents an alkylene group, and examples thereof include ethylene and propylene.
 上記各式で表される環基のなかでも、光電変換効率の点で、式(X-1)で表される環基が好ましい。 Among the ring groups represented by the above formulas, the ring group represented by the formula (X-1) is preferable from the viewpoint of photoelectric conversion efficiency.
 上記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基について説明する。
 このような多環の環基(縮合多環基ということがある)としては、上記各式で表される環基(単環)が縮環してなる環基、および、この単環と別異の環とが縮合してなる環基等が挙げられる。
A polycyclic ring group containing a monocyclic ring group represented by any one of the formulas (X-1a) to (X-3a) as a condensed ring will be described.
Examples of such a polycyclic ring group (sometimes referred to as a condensed polycyclic group) include a ring group formed by condensing a ring group (monocycle) represented by each of the above formulas, and this monocycle. Examples thereof include a ring group formed by condensation with a different ring.
 単環の環基を表す式(X-1a)~式(X-3a)において、Aは、上記式(X-1)および式(X-2)のAと同義であり、好ましいものも同じである。
 RXaは、上記置換基を表し、水素原子を含まないこと以外は上記式(X-1)および式(X-2)のRX1と同義であり、好ましいものも同じである。
 n1~n3は、それぞれ、0以上の整数であり、かつ各式で表される多環の環基を含む縮合多環基が無置換であるときの水素原子数以下の整数を表す。具体的には、n1およびn2は、0~3の整数であることが好ましく、0~2の整数であることがより好ましく、0または1であることがさらに好ましい。n3は、0~5の整数であることが好ましく、0~3の整数であることがより好ましく、0または1であることがさらに好ましい。
In formulas (X-1a) to (X-3a) representing monocyclic ring groups, A H has the same meaning as A H in formula (X-1) and formula (X-2), and is preferably Is the same.
R Xa represents the above substituent and has the same meaning as R X1 in the above formulas (X-1) and (X-2) except that it does not contain a hydrogen atom, and the preferred ones are also the same.
n1 to n3 each represents an integer of 0 or more, and represents an integer equal to or less than the number of hydrogen atoms when the condensed polycyclic group containing a polycyclic ring group represented by each formula is unsubstituted. Specifically, n1 and n2 are preferably integers of 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1. n3 is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and still more preferably 0 or 1.
 各縮合多環基がRXaを有する場合、置換位置は、特に限定されない。
 例えば、上記式で表される単環の環基であってもよく、この単環と別異の環であってもよい。
When each condensed polycyclic group has R Xa , the substitution position is not particularly limited.
For example, it may be a monocyclic ring group represented by the above formula, or may be a ring different from this monocycle.
 上記別異の環としては、上記各式で表される単環と異なる種類の環であれば特に限定されず、例えば、ホスホール環、シクロペンタジエン環、シロール環または後述する芳香族ヘテロ環のうち単環のもの等が挙げられる。 The different ring is not particularly limited as long as it is a different type of ring from the single ring represented by each of the above formulas, and examples thereof include a phosphole ring, a cyclopentadiene ring, a silole ring, and an aromatic heterocycle described later. A monocyclic thing etc. are mentioned.
 縮合多環基としては、芳香族環基であることが好ましい。例えば、縮合多環芳香族炭化水素環または縮合多環芳香族ヘテロ環のうち、上記各式で表される環基を縮合環として含む環基が挙げられる。この縮合多環基は、上記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基により、Xを含む環に結合する。このときの結合位置は、上記各式に*で示された環構成炭素原子である。縮合多環基の縮合環として、Xを含む環に結合する環基以外の環が上記式(X-1a)~式(X-3a)のいずれかの式で表される単環である場合、各式中の結合位置*は考慮しないこととする。縮合多環基を形成する総環数は、特に限定されず、例えば2~5環であることが好ましい。 The condensed polycyclic group is preferably an aromatic ring group. For example, among the condensed polycyclic aromatic hydrocarbon ring or the condensed polycyclic aromatic heterocycle, a cyclic group containing a cyclic group represented by each of the above formulas as a condensed ring can be mentioned. This condensed polycyclic group is bonded to a ring containing X I by a monocyclic ring group represented by any one of the formulas (X-1a) to (X-3a). The bonding position at this time is a ring-constituting carbon atom indicated by * in each of the above formulas. As the condensed ring of the condensed polycyclic group, the ring other than the ring group bonded to the ring containing X I is a single ring represented by any one of the above formulas (X-1a) to (X-3a) In this case, the coupling position * in each formula is not considered. The total number of rings forming the condensed polycyclic group is not particularly limited, and is preferably 2 to 5 rings, for example.
 縮合多環芳香族炭化水素環基は、縮合環として、式(X-3a)で表される単環の環基(ベンゼン環)を少なくとも含む環基である。例えば、ベンゼン環同士が複数縮環してなる環基、ベンゼン環と別異の環としてのシクロペンタジエン環が縮環してなる環基が挙げられる。好ましくはベンゼン環が複数縮環してなる環基である。
 縮合多環芳香族炭化水素環基としては、例えば、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ナフタセン(テトラセン)、クリセン環、ピセン環、ピレン環、フルオレン環、アズレン環、ベンゾフェナントレン環、フルオランテン環の各基が挙げられる。なかでも、ナフタレン環、フェナントレン環、トリフェニレン環およびピレン環の各基が好ましい。
The condensed polycyclic aromatic hydrocarbon ring group is a ring group containing at least a monocyclic ring group (benzene ring) represented by the formula (X-3a) as a condensed ring. Examples thereof include a ring group formed by condensing a plurality of benzene rings, and a ring group formed by condensing a cyclopentadiene ring as a ring different from the benzene ring. A ring group formed by condensing a plurality of benzene rings is preferable.
Examples of the condensed polycyclic aromatic hydrocarbon ring group include a naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, naphthacene (tetracene), chrysene ring, picene ring, pyrene ring, fluorene ring, azulene ring, benzophenanthrene ring, Each group of a fluoranthene ring is mentioned. Of these, naphthalene, phenanthrene, triphenylene and pyrene rings are preferred.
 縮合多環芳香族ヘテロ環基は、縮合環として芳香族ヘテロ環を少なくとも含む環基が挙げられ、式(X-1a)または式(X-2a)で表される単環の環基を少なくとも含む環基が好ましい。例えば、式(X-1a)もしくは式(X-2a)で表される単環の環基同士が複数縮環してなる環基、または、式(X-1a)もしくは式(X-2a)で表される単環の環基と、式(X-3a)で表される単環の環基もしくは上記別異の環基(ホスホール環またはシロール環等)とが縮環してなる環基が挙げられる。また、式(X-3a)で表される単環の環基と上記別異の環基(ホスホール環またはシロール環等)とが縮環してなる環基も挙げられる。
 縮合多環芳香族ヘテロ環基としては、例えば、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、ベンゾイソチオフェン環、インダゾール環、インドール環、イソインドール環、インドリジン環、カルバゾール環、キノリン環、イソキノリン環、ベンゾオキサゾール環、ベンゾイソオキサゾール環、ベンゾチアゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ジベンゾフラン環、ジベンゾチオフェン環、チエノピリジン環、シラフルオレン環(ジベンゾシロール環)、チエノ[3,2-b]チオフェン環、チエノ[3,4-b]チオフェン環、トリチオフェン環、シクロペンタジチオフェン環、ベンゾジチオフェン環、ジチエノピロール環、ジチエノフラン環、ジチエノシロール環、チオフェン環-シロール環-チオフェン環の3環縮合環の各基が挙げられる。なかでも、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環が好ましく、ベンゾフラン環またはベンゾチオフェン環がより好ましい。
The condensed polycyclic aromatic heterocyclic group includes a cyclic group containing at least an aromatic heterocyclic ring as a condensed ring, and at least a monocyclic ring group represented by the formula (X-1a) or the formula (X-2a) The containing ring group is preferred. For example, a ring group formed by condensing a plurality of monocyclic ring groups represented by the formula (X-1a) or (X-2a), or the formula (X-1a) or the formula (X-2a) A ring group formed by condensing a monocyclic ring group represented by formula (X-3a) with a monocyclic ring group represented by formula (X-3a) or the above-mentioned different ring group (phosphor ring, silole ring, etc.) Is mentioned. Further, a ring group formed by condensing a monocyclic ring group represented by the formula (X-3a) and the above-mentioned different ring group (phosphor ring, silole ring, etc.) is also included.
Examples of the condensed polycyclic aromatic heterocyclic group include benzofuran ring, isobenzofuran ring, benzothiophene ring, benzoisothiophene ring, indazole ring, indole ring, isoindole ring, indolizine ring, carbazole ring, quinoline ring, and isoquinoline. Ring, benzoxazole ring, benzoisoxazole ring, benzothiazole ring, benzoisothiazole ring, benzimidazole ring, dibenzofuran ring, dibenzothiophene ring, thienopyridine ring, silafluorene ring (dibenzosilole ring), thieno [3,2-b ] Thiophene ring, thieno [3,4-b] thiophene ring, trithiophene ring, cyclopentadithiophene ring, benzodithiophene ring, dithienopyrrole ring, dithienofuran ring, dithienosilole ring, thiophene ring-silole ring-thio Each group of 3 rings fused rings E down ring. Of these, a benzofuran ring, a dibenzofuran ring, a benzothiophene ring, a dibenzothiophene ring, and a carbazole ring are preferable, and a benzofuran ring or a benzothiophene ring is more preferable.
 上記ターピリジン系配位子は、ターピリジン化合物そのものであるが、本発明においては、ターピリジン系配位子を、後述するようにターピリジン系配位子の前駆体化合物として用いることもできる。したがって、本発明において、ターピリジン系配位子というときは、ターピリジン系配位子そのもの(上記ターピリジン化合物)に加えて、ターピリジン系配位子の前駆体化合物をも包含する。好ましい前駆体化合物としては、ターピリジン系配位子の酸性基AncおよびAncの少なくとも1つがエステル化されたエステル体(ターピリジン化合物のエステル化物ともいう)が挙げられる。
 このエステル化物は、上記酸性基が保護された化合物であって、加水分解等により酸性基に再生できるエステルであり、特に限定されない。例えば、上記酸性基のアルキルエステル化物、アリールエステル化物、ヘテロアリールエステル化物等が挙げられる。これらのなかでも、アルキルエステル化物が好ましい。アルキルエステル化物を形成するアルキル基は、特に限定されないが、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~4のアルキル基がさらに好ましい。アリールエステル化物を形成するアリール基およびヘテロアリールエステル化物を形成するヘテロアリール基は、それぞれ、特に限定されず、後述する置換基群Zで例示したものが挙げられる。これらの基は、後述する置換基群Zより選択される1種以上の置換基を有していてもよい。
 エステル化される酸性基は、AncおよびAncの2つが好ましい。この場合、2つのエステルは同じでも異なっていてもよい。
The terpyridine ligand is the terpyridine compound itself, but in the present invention, the terpyridine ligand can be used as a precursor compound of the terpyridine ligand as described later. Therefore, in the present invention, the term terpyridine-based ligand includes a terpyridine-based ligand precursor compound in addition to the terpyridine-based ligand itself (the terpyridine compound). Preferable precursor compounds include ester bodies in which at least one of acidic groups Anc 1 and Anc 2 of the terpyridine ligand is esterified (also referred to as an esterified product of a terpyridine compound).
This esterified compound is a compound in which the acidic group is protected and can be regenerated to an acidic group by hydrolysis or the like, and is not particularly limited. Examples thereof include alkyl esterified products, aryl esterified products, and heteroaryl esterified products of the above acidic group. Among these, alkyl esterified products are preferable. The alkyl group forming the alkyl esterified product is not particularly limited, but is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and further preferably an alkyl group having 1 to 4 carbon atoms. Heteroaryl groups which form an aryl group and heteroaryl esterified to form an aryl ester, respectively, is not particularly limited, and exemplified in later-described Substituent Group Z R. These groups may have one or more substituents selected from the substituent group Z R which will be described later.
Two acidic groups to be esterified, Anc 1 and Anc 2 , are preferred. In this case, the two esters may be the same or different.
 ターピリジン系配位子は、通常の方法によって合成することができる。例えば、式(L1-4)で表されるターピリジン系配位子は、下記スキームに示すように、式(L1-1)で表される化合物と式(L1-2)で表される化合物とをカップリング反応させ、式(L1-3)で表される前駆体化合物のエステル基を加水分解することにより、合成することができる。この合成方法においては、前駆体化合物としてカルボキシ基のエステル化物を示しているが、本発明においては、これに限定されず、上記酸性基のいずれかをエステル化した前駆体化合物であればよい。
 このときのカップリング反応は、例えば、日本化学会編、「実験化学講座 第5版」、丸善株式会社、13巻、p92-117に記載の「鈴木カップリング反応」や「Stilleカップリング反応」等またはこれらに準じて、行うことができる。また、加水分解は、例えば、日本化学会編、「実験化学講座 第5版」、丸善株式会社、16巻、p10-15に記載の方法に準じて、行うことができる。例えば、後述する実施例で合成した方法が挙げられる。
 本発明においては、前駆体化合物を加水分解して合成したターピリジン系配位子を用いて、本発明の金属錯体色素を合成することができる。また、後述する実施例1のように、前駆体化合物を用いて金属錯体色素化した後に、上記方法に準じてエステル基を加水分解して、本発明の金属錯体色素を合成することもできる。
The terpyridine ligand can be synthesized by a usual method. For example, as shown in the following scheme, a terpyridine ligand represented by the formula (L1-4) includes a compound represented by the formula (L1-1) and a compound represented by the formula (L1-2) Can be synthesized by hydrolyzing the ester group of the precursor compound represented by the formula (L1-3). In this synthesis method, an esterified product of a carboxy group is shown as a precursor compound. However, in the present invention, the precursor compound is not limited to this and may be any precursor compound obtained by esterifying any of the acidic groups.
The coupling reaction at this time is, for example, “Suzuki coupling reaction” or “Still coupling reaction” described in “Chemical Chemistry Course 5th Edition” edited by The Chemical Society of Japan, Maruzen Co., Ltd., Volume 13, p92-117. Etc. or according to these. Hydrolysis can be carried out according to the method described in, for example, the Chemical Society of Japan, “Experimental Chemistry Course 5th Edition”, Maruzen Co., Ltd., Volume 16, p10-15. For example, the method synthesized in Examples described later can be mentioned.
In the present invention, the metal complex dye of the present invention can be synthesized using a terpyridine ligand synthesized by hydrolyzing a precursor compound. Moreover, after converting into a metal complex dye using a precursor compound like Example 1 mentioned later, an ester group is hydrolyzed according to the said method, and the metal complex dye of this invention can also be synthesize | combined.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、ArおよびXは、それぞれ、上記(I)のArおよびXと同義である。Yは、トリアルキルスズ基、ボロン酸基、ボロン酸エステル基、ハロゲン原子またはパーフルオロアルキルスルホニルオキシ基を表す。
 式(L1-2)において、Yは、式(L1-1)のYがトリアルキルスズ基、ボロン酸基またはボロン酸エステル基の場合、ハロゲン原子またはパーフルオロアルキルスルホニルオキシ基を表す。また、式(L1-1)のYがハロゲン原子またはパーフルオロアルキルスルホニルオキシ基の場合、トリアルキルスズ基、ボロン酸基またはボロン酸エステル基を示す。
 式(L1-2)および式(L1-3)において、Rはアルキル基、アリール基、またはヘテロアリール基を示す。
In the formula, Ar and X I are each the same meanings as Ar and X I in the above (I). Y 1 represents a trialkyltin group, a boronic acid group, a boronic acid ester group, a halogen atom or a perfluoroalkylsulfonyloxy group.
In formula (L1-2), Y 2 represents a halogen atom or a perfluoroalkylsulfonyloxy group when Y 1 in formula (L1-1) is a trialkyltin group, a boronic acid group or a boronic ester group. In the case where Y 1 in the formula (L1-1) is a halogen atom or a perfluoroalkylsulfonyloxy group, it represents a trialkyltin group, a boronic acid group or a boronic ester group.
In Formula (L1-2) and Formula (L1-3), R represents an alkyl group, an aryl group, or a heteroaryl group.
 配位子LAの具体例として、後述する金属錯体色素における配位子LA等が挙げられる。また、後述する金属錯体色素における配位子LAに対して、-COOHの少なくとも1つをカルボキシ基の塩とした化合物も挙げられる。この化合物において、カルボキシ基の塩を形成する対カチオンとしては、下記電荷中和対イオンCIで説明する正のイオンが挙げられる。さらに、ターピリジン化合物のエステル化物の例として、後述する金属錯体色素における配位子LAに対して、酸性基AncおよびAncの少なくとも1つをエステル化した化合物を挙げることができる。本発明はこれら配位子LA、その塩またはエステル化物に限定されない。 Specific examples of the ligand LA include a ligand LA in a metal complex dye described later. Also included are compounds in which at least one of —COOH is a salt of a carboxy group with respect to the ligand LA in the metal complex dye described later. In this compound, examples of a counter cation that forms a salt of a carboxy group include positive ions described in the following charge neutralization counter ion CI. Furthermore, examples of the esterified product of the terpyridine compound include a compound obtained by esterifying at least one of the acidic groups Anc 1 and Anc 2 with respect to the ligand LA in the metal complex dye described later. The present invention is not limited to these ligands LA, salts or esterified products thereof.
- 配位子L、LおよびL -
 式(I)において、L、LおよびLはそれぞれ配位子を表す。
 これらの配位子は、LとLとが互いに結合してなる2座配位子および単座配位子Lの組み合わせ、または、LとLとLとが互いに結合してなる3座配位子である。この3座配位子は上記ターピリジン系配位子とは異なる。
-Ligands L 1 , L 2 and L 3-
In the formula (I), L 1 , L 2 and L 3 each represent a ligand.
These ligands, a combination of L 1 and L 2 and formed by bonding together a bidentate ligand and a monodentate ligand L 3, or with the L 1 and L 2 and L 3 are bonded to each other Is a tridentate ligand. This tridentate ligand is different from the terpyridine ligand.
 これらの配位子L~Lは、いずれも、半導体微粒子の表面に吸着する酸性基を有しないことが好ましい。なお、配位子L~Lに、酸性基に相当する基を含んだとしても、半導体微粒子表面に吸着しないものが好ましい。 It is preferable that none of these ligands L 1 to L 3 have an acidic group that is adsorbed on the surface of the semiconductor fine particles. Even if the ligands L 1 to L 3 contain a group corresponding to an acidic group, those that do not adsorb on the surface of the semiconductor fine particles are preferable.
 配位子L~Lのうち、少なくとも1つが、環を構成する窒素原子で金属イオンMに配位する配位子である。本発明においては、配位子L~Lのうち、2つを、環を構成する窒素原子で金属イオンMに配位する配位子とすることもできる。このような窒素原子は、環構成原子であって水素原子を持たない窒素原子が挙げられる。例えば、ピリジン環の窒素原子が挙げられる。 At least one of the ligands L 1 to L 3 is a ligand coordinated to the metal ion M by a nitrogen atom constituting the ring. In the present invention, two of the ligands L 1 to L 3 can be ligands coordinated to the metal ion M by a nitrogen atom constituting the ring. Such a nitrogen atom includes a nitrogen atom that is a ring-constituting atom and has no hydrogen atom. For example, the nitrogen atom of a pyridine ring is mentioned.
 また、配位子L~Lのうちの2つがアニオン性配位子である。すなわち、配位子L~Lのうち、2つの配位子が、アニオンで金属イオンMに配位する配位子である。「アニオンである」とは、分子内のいずれかの水素原子または配位原子に結合する水素原子が解離して金属イオンMと結合しうることを意味する。アニオンの具体例は後述する。
 ここで、アニオンとなる配位原子は、上記金属イオンMに配位する環構成窒素原子でもよく、他の原子、例えば炭素原子でもよい。本発明においては、金属イオンMに配位する環構成窒素原子と、アニオンとなる配位原子とは、同一でも異なってもよい。
 金属錯体色素が、このような配位子L~Lを上記ターピリジン系配位子とともに有していると、光電変換素子または色素増感太陽電池の熱安定性が改善し、高い光電変換効率に加え、高い耐久性を発揮する。
Two of the ligands L 1 to L 3 are anionic ligands. That is, of the ligands L 1 to L 3 , two ligands are ligands that coordinate to the metal ion M with an anion. “Is an anion” means that a hydrogen atom bonded to any hydrogen atom or coordination atom in the molecule can be dissociated and bonded to the metal ion M. Specific examples of the anion will be described later.
Here, the coordinating atom serving as the anion may be a ring-constituting nitrogen atom coordinated to the metal ion M, or may be another atom such as a carbon atom. In the present invention, the ring-constituting nitrogen atom that coordinates to the metal ion M and the coordination atom that becomes an anion may be the same or different.
When the metal complex dye has such ligands L 1 to L 3 together with the terpyridine ligand, the thermal stability of the photoelectric conversion element or the dye-sensitized solar cell is improved and high photoelectric conversion is achieved. In addition to efficiency, it demonstrates high durability.
 配位子L~Lのうち、LとLとの2座配位子、および、LとLとLとの3座配位子は、下記式(DL)で表される配位子が好ましい。 Among the ligands L 1 to L 3, the bidentate ligand of L 1 and L 2 and the tridentate ligand of L 1 , L 2 and L 3 are represented by the following formula (DL). The ligand is preferred.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、環DDL、環EDLおよび環Fは、各々独立に、5員環もしくは6員環の芳香族環を表す。R、Ra1およびRa4は、各々独立に、置換基を表す。mbは0または1を表す。
 ma1およびma4は各々独立に0~3の整数を表す。maはmbが0のとき、0~4の整数を表し、mbが1のとき、0~3の整数を表す。
 ここで、ma、ma1およびma4の各々が2以上の整数であるとき、複数のR、複数のRa1および複数のRa4は同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、RとRa1、RとRa4が連結して環を形成してもよい。
In the formula, ring D DL , ring E DL and ring F each independently represent a 5-membered or 6-membered aromatic ring. R a , R a1 and R a4 each independently represent a substituent. mb represents 0 or 1.
ma1 and ma4 each independently represents an integer of 0 to 3. ma represents an integer of 0 to 4 when mb is 0, and represents an integer of 0 to 3 when mb is 1.
Here, when each of ma, ma1, and ma4 is an integer of 2 or more, the plurality of R a , the plurality of R a1, and the plurality of R a4 may be the same or different and are bonded to each other to form a ring. May be. R a and R a1 , R a and R a4 may be linked to form a ring.
 環DDL、環EDLおよび環Fにおける5員環もしくは6員環の芳香族環は、芳香族炭化水素環および芳香族ヘテロ環を含み、芳香族ヘテロ環が好ましい。環DDL、環EDLおよび環Fの各環は、芳香族環および脂肪族炭化水素環の少なくとも1つが縮環していてもよい。
 環DDL、環EDLおよび環Fが芳香族炭化水素環である場合、特に限定されないが、ベンゼン環、ナフタレン環等が挙げられる。
 芳香族ヘテロ環は、特に限定されないが、環構成原子として上記ヘテロ原子を含む芳香環が挙げられる。本発明において、芳香族ヘテロ環は、非縮環の6員環、5員環が縮環した6員環、ベンゼン環が縮環した5員環またはベンゼン環が縮環した6員環が好ましく、非縮環の6員環、5員環が縮環した6員環がより好ましく、非縮環の6員環がさらに好ましい。
The 5-membered or 6-membered aromatic ring in ring D DL , ring E DL and ring F includes an aromatic hydrocarbon ring and an aromatic heterocycle, and an aromatic heterocycle is preferred. In each of the ring D DL , the ring E DL and the ring F, at least one of an aromatic ring and an aliphatic hydrocarbon ring may be condensed.
When ring D DL , ring E DL and ring F are aromatic hydrocarbon rings, they are not particularly limited, and examples thereof include a benzene ring and a naphthalene ring.
The aromatic heterocycle is not particularly limited, and examples thereof include aromatic rings containing the above heteroatoms as ring-constituting atoms. In the present invention, the aromatic heterocycle is preferably a non-condensed 6-membered ring, a 6-membered ring in which a 5-membered ring is condensed, a 5-membered ring in which a benzene ring is condensed, or a 6-membered ring in which a benzene ring is condensed. Further, a 6-membered ring in which an uncondensed 6-membered ring and a 5-membered ring are condensed is more preferable, and a non-condensed 6-membered ring is more preferable.
 芳香族ヘテロ環としては、例えば、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環またはキナゾリン環の各6員環が挙げられる。また、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、インドール環、インダゾール環、トリアゾール環等の各5員環が挙げられる。
 環DDLおよび環EDLは、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、またはベンゼン環が好ましく、ピラゾール環、トリアゾール環、またはベンゼン環がより好ましい。
 環Fは、窒素原子を含む芳香族ヘテロ環が好ましく、ピリジン環、ピリミジン環、ピラジン環またはトリアジン環がより好ましく、ピリジン環およびピリミジン環がさらに好ましく、ピリジン環が特に好ましい。
Examples of the aromatic heterocycle include a 6-membered ring such as a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a quinoline ring, or a quinazoline ring. Further, examples thereof include 5-membered rings such as a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, an indole ring, an indazole ring, and a triazole ring.
Ring D DL and ring E DL are preferably a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, or a benzene ring, and more preferably a pyrazole ring, a triazole ring, or a benzene ring.
Ring F is preferably an aromatic heterocycle containing a nitrogen atom, more preferably a pyridine ring, pyrimidine ring, pyrazine ring or triazine ring, still more preferably a pyridine ring and a pyrimidine ring, and particularly preferably a pyridine ring.
 ここで、環DDL、環EDLおよび環Fは、金属イオンMと結合する配位原子を含む。mbが0のとき、環DDLおよび環Fのいずれか1つは、金属イオンMと結合する配位原子がアニオンであり、環DDL中の配位原子がアニオンであることが好ましい。mbが1のとき、環DDL、環EDLおよび環Fのいずれか2つは、金属イオンMと結合する配位原子がアニオンであり、環DDLおよび環EDL中の配位原子がアニオンであることが好ましい。この配位原子としては、特に限定されないが、炭素原子、窒素原子、硫黄原子、酸素原子またはこれら原子のアニオンが好ましい。
 金属イオンMとアニオンで結合する基としては、特に限定されないが、-CO イオン、-Oイオン、=C-イオン(例えば、芳香環の炭素イオン)、-Sイオン、>Nイオン、-NSO-イオン(1価の基で示せば、-NSOで、Rは置換基を表す)が挙げられる。
 このうち、環を構成する原子としては、=C-イオンのような炭素アニオン、>Nイオンのような窒素アニオンが好ましく挙げられる。
Here, the ring D DL , the ring E DL and the ring F include a coordination atom that is bonded to the metal ion M. When mb is 0, any one of ring D DL and ring F are coordinating atoms anions to bind metal ions M, it is preferred coordination atom in the ring D DL is an anion. When mb is 1, any two of ring D DL , ring E DL and ring F have a coordination atom bonded to metal ion M as an anion, and the coordination atoms in ring D DL and ring E DL are An anion is preferred. The coordination atom is not particularly limited, but is preferably a carbon atom, a nitrogen atom, a sulfur atom, an oxygen atom or an anion of these atoms.
Examples of the group capable of binding with a metal ion M and the anion is not particularly limited, -CO 2 - ions, -O - ion, = C - - ions (e.g., an aromatic ring carbon ions), - S - ion,> N - ions, -N - (if Shimese a monovalent group, -N - with SO 2 R y, R y represents a substituent) ions - SO 2 and the like.
Among them, the atoms constituting the ring, = C - - carbanion such as an ion,> N - nitrogen anions such as ions are preferred.
 環FがRを有する場合、環FにおいてRが結合する位置(置換位置)は特に限定されない。環Fが5員環である場合、金属原子Mに配位する環構成窒素原子に対して3位が好ましい。環Fが6員環である場合、金属原子Mに配位する環構成窒素原子に対して、3位または4位が好ましく、4位がより好ましい。
 また、環DDLおよび環EDLがそれぞれRa1またはRa4を有する場合、環DDLおよび環EDLそれぞれにおいてRa1またはRa4が結合する位置は特に限定されない。
When the ring F has R a , the position (substitution position) to which R a is bonded in the ring F is not particularly limited. When the ring F is a 5-membered ring, the 3-position with respect to the ring-constituting nitrogen atom coordinated to the metal atom M is preferable. When the ring F is a 6-membered ring, the 3-position or the 4-position is preferable with respect to the ring-constituting nitrogen atom coordinated to the metal atom M, and the 4-position is more preferable.
Moreover, if the ring D DL and ring E DL each have a R a1 or R a4, the position R a1 or R a4 is attached in each ring D DL and ring E DL is not particularly limited.
 R、Ra1およびRa4の置換基は、後述する置換基群Zより選ばれる基が挙げられる。
 Rは、なかでも、芳香族ヘテロ環基、芳香族炭化水素環基、エテニル基、エチニル基、ハロゲン原子、アルキル基、アミノ基(アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、N-アルキル-N-アリールアミノ基等を含む)、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、シリル基が好ましく、芳香族ヘテロ環基、芳香族炭化水素環基、エテニル基、エチニル基、アルキル基、アルコキシ基もしくはアミノ基(アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基等を含む)がより好ましい。また、上記各基を組み合わせてなる基も好ましい。
Substituents of R a, R a1 and R a4 include groups selected from substituent group Z R which will be described later.
R a is an aromatic heterocyclic group, aromatic hydrocarbon ring group, ethenyl group, ethynyl group, halogen atom, alkyl group, amino group (alkylamino group, dialkylamino group, arylamino group, diarylamino group, among others. , N-alkyl-N-arylamino groups, etc.), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, silyl groups are preferred, aromatic heterocyclic groups, aromatic hydrocarbon ring groups, ethenyl groups, ethynyl A group, an alkyl group, an alkoxy group or an amino group (including an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group and the like) is more preferable. A group formed by combining the above groups is also preferable.
 Ra1およびRa4としては、それぞれ、アルキル基、シクロアルキル基、アルケニル基(好ましくはエテニル基)、アルキニル基(好ましくはエチニル基)、アリール基、ヘテロ環基(好ましくは芳香族ヘテロ環基)、ハロゲン原子、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アミノ基、シアノ基、アルキルスルホニル基、アリールスルホニル基が好ましく、ハロゲン化アルキル基、ハロゲン化アリール基がより好ましく、ハロゲン化アルキル基、ハロゲン原子、シアノ基がさらに好ましい。また、上記各基を組み合わせてなる基も好ましい。ハロゲン化アルキル基およびハロゲン化アリール基は後述する。 R a1 and R a4 are each an alkyl group, a cycloalkyl group, an alkenyl group (preferably ethenyl group), an alkynyl group (preferably ethynyl group), an aryl group, or a heterocyclic group (preferably an aromatic heterocyclic group). A halogen atom, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an amino group, a cyano group, an alkylsulfonyl group and an arylsulfonyl group, a halogenated alkyl group and a halogenated aryl group are more preferable, and a halogenated alkyl group Further preferred are a halogen atom and a cyano group. A group formed by combining the above groups is also preferable. The halogenated alkyl group and the halogenated aryl group will be described later.
 式(DL)において、ma、ma1およびma4は、0~2の整数が好ましく、1または2がより好ましい。 In the formula (DL), ma, ma1 and ma4 are preferably integers of 0 to 2, more preferably 1 or 2.
 上記式(DL)で表される配位子は、下記式(DL-1)または(DL-2)で表されることが好ましい。ここで、式(DL-1)で表される配位子はLとLとLとの3座配位子の好ましいものであり、式(DL-2)で表される配位子はLとLとの2座配位子の好ましいものである。 The ligand represented by the above formula (DL) is preferably represented by the following formula (DL-1) or (DL-2). Here, the ligand represented by the formula (DL-1) is a preferred tridentate ligand of L 1 , L 2 and L 3, and the coordination represented by the formula (DL-2) The child is a preferred bidentate ligand of L 1 and L 2 .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 Ra2およびRa3は各々独立に酸性基を有さない置換基を表す。ma2は0または1を表し、1が好ましい。ma3は0~2の整数を表し、1または2がより好ましい。
 X1およびX2は、各々独立に、CRa5または窒素原子を表す。Ra5は水素原子または置換基を表す。この置換基は式(DL)におけるRと同義であり、好ましい範囲も同じである。X1およびX2を含む環(環Fともいう)としては、上記式(DL)における環Fと同義であり、好ましい範囲も同じである。
 Ra1、Ra4、ma1およびma4は、上記式(DL)におけるRa1、Ra4、ma1およびma4と同義であり、好ましい範囲も同じである。
 Ra2およびRa3で表される置換基は、上記式(DL)におけるRと同義であり、好ましい範囲も同じである。
 ma1、ma3およびma4の各々が2以上の整数であるとき、複数のRa1、Ra3およびRa4は、それぞれ、同一でも異なっていてもよく、互いに結合して環を形成してもよい。
R a2 and R a3 each independently represent a substituent having no acidic group. ma2 represents 0 or 1, and 1 is preferable. ma3 represents an integer of 0 to 2, and 1 or 2 is more preferable.
X1 and X2 each independently represent CR a5 or a nitrogen atom. R a5 represents a hydrogen atom or a substituent. This substituent is synonymous with Ra in Formula (DL), and its preferable range is also the same. The ring containing X1 and X2 (also referred to as ring F) has the same meaning as ring F in formula (DL), and the preferred range is also the same.
R a1, R a4, ma1 and ma4 has the same meaning as R a1, R a4, ma1 and ma4 in the formula (DL), and the preferred range is also the same.
The substituent represented by R a2 and R a3 has the same meaning as R a in the above formula (DL), and the preferred range is also the same.
When each of ma1, ma3 and ma4 is an integer of 2 or more, the plurality of R a1 , R a3 and R a4 may be the same or different, and may be bonded to each other to form a ring.
 環Dおよび環Eは、各々独立に、5員環または6員環の芳香族環を表す。このような芳香族環としては、上記式(DL)における環DDLおよび環EDLで挙げた環が挙げられ、好ましい芳香族環も環DDLおよび環EDLに挙げた環と同じである。
 環Dおよび環E中のDおよびDと、F環に結合する炭素原子との間の結合は、単結合でも二重結合でもよい。
 DおよびDは、各々独立に、炭素原子のアニオンまたは窒素原子のアニオンを表す。
Ring D and ring E each independently represent a 5-membered or 6-membered aromatic ring. Examples of such an aromatic ring include the rings mentioned in the ring DD L and ring E DL in the above formula (DL), and preferred aromatic rings are the same as those mentioned in the ring D DL and ring E DL. .
The bond between D 1 and D 2 in ring D and ring E and the carbon atom bonded to the F ring may be a single bond or a double bond.
D 1 and D 2 each independently represents an anion of a carbon atom or an anion of a nitrogen atom.
 環Dおよび環Eは、ピラゾール環、トリアゾール環またはベンゼン環がより好ましい。 Ring D and ring E are more preferably a pyrazole ring, a triazole ring or a benzene ring.
 式(DL-2)で表される2座配位子は、下記式(2L-1)~(2L-4)のいずれかの式で表される2座の配位子が好ましい。 The bidentate ligand represented by the formula (DL-2) is preferably a bidentate ligand represented by any one of the following formulas (2L-1) to (2L-4).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式中、*は金属イオンMとの配位位置(結合位置)を表す。環D2Lは芳香族環を表す。A111~A141は各々独立に、窒素原子のアニオンまたは炭素原子のアニオンを表す。R111~R143は各々独立に、水素原子、または、酸性基を有しない置換基を表す。 In the formula, * represents a coordination position (bonding position) with the metal ion M. Ring D 2L represents an aromatic ring. A 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom. R 111 to R 143 each independently represents a hydrogen atom or a substituent having no acidic group.
 ここで、A111~A141は、環D2Lを構成する窒素原子または炭素原子に結合した水素原子が解離した炭素原子のアニオンまたは窒素原子のアニオンである。式(2L-1)~(2L-4)において、環D2Lは、芳香族炭化水素環、酸素を含む芳香族へテロ環、硫黄を含む芳香族へテロ環、窒素を含む芳香族ヘテロ環が挙げられる。
 芳香族炭化水素環としては、ベンゼン環、ナフタレン環等が挙げられ、ベンゼン環が好ましく、ハロゲン原子、ハロゲン化アルキル基、もしくはハロゲン化アリール基で置換されたベンゼン環がより好ましい。ハロゲン化アルキル基は、ハロゲン原子が置換したアルキル基であり、フッ化アルキル基(例えば、トリフルオロメチル基)が好ましい。ハロゲン化アリール基としては、1~5個のハロゲン原子が置換したフェニル基が好ましい。
 酸素を含む芳香族へテロ環としてはフラン環が好ましく、硫黄を含む芳香族へテロ環としてはチオフェン環が好ましい。窒素を含む芳香族ヘテロ環としては、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環が好ましい。
 環D2Lは、例えば、ベンゼン環、チオフェン環もしくはフラン環の環構成原子の1つがアニオンとなった各環、または、下記式(a-1)~(a-5)、(a-1a)、(a-2a)、(a-1b)および(a-4a)で表される各環等が好ましく挙げられる。
Here, A 111 to A 141 are an anion of a carbon atom or an anion of a nitrogen atom in which a hydrogen atom bonded to a nitrogen atom or a carbon atom constituting the ring D 2L is dissociated. In the formulas (2L-1) to (2L-4), the ring D 2L is an aromatic hydrocarbon ring, an aromatic heterocycle containing oxygen, an aromatic heterocycle containing sulfur, or an aromatic heterocycle containing nitrogen Is mentioned.
Examples of the aromatic hydrocarbon ring include a benzene ring and a naphthalene ring, and a benzene ring is preferable, and a benzene ring substituted with a halogen atom, a halogenated alkyl group, or a halogenated aryl group is more preferable. The halogenated alkyl group is an alkyl group substituted with a halogen atom, and a fluorinated alkyl group (for example, a trifluoromethyl group) is preferable. The halogenated aryl group is preferably a phenyl group substituted with 1 to 5 halogen atoms.
The aromatic heterocycle containing oxygen is preferably a furan ring, and the aromatic heterocycle containing sulfur is preferably a thiophene ring. As the aromatic heterocycle containing nitrogen, a pyrrole ring, a pyrazole ring, an imidazole ring and a triazole ring are preferable.
Ring D 2L is, for example, each ring in which one of the ring constituent atoms of a benzene ring, thiophene ring or furan ring is an anion, or the following formulas (a-1) to (a-5), (a-1a) , (A-2a), (a-1b) and each ring represented by (a-4a) are preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式中、Rdは酸性基を有さない置換基を表す。b1は0~2の整数、b2は0~3の整数、b3は0または1をそれぞれ表す。b1が2のとき、またはb2が2以上のとき、複数のRdは同一でも異なってもよい。また複数のRd同士が互いに結合して環を形成してもよい。Rdとしては、例えば、後述する置換基群Zより選ばれる基が挙げられる。 In the formula, Rd represents a substituent having no acidic group. b1 represents an integer of 0 to 2, b2 represents an integer of 0 to 3, and b3 represents 0 or 1. When b1 is 2 or b2 is 2 or more, a plurality of Rd may be the same or different. A plurality of Rd's may be bonded to each other to form a ring. The Rd, for example, include groups selected from Substituent group Z R which will be described later.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、Rd、b1~b3は、上記式(a-1)~(a-5)中のRd、b1~b3と同義であり、好ましい範囲も同じである。b4は0~4、b5は0~5の各整数を表す。式(a-1a)、(a-1b)において、Rdはベンゼン環だけでなく、ピロール環にも有してもよいことを示すものである。 In the formula, Rd and b1 to b3 are synonymous with Rd and b1 to b3 in the above formulas (a-1) to (a-5), and preferred ranges are also the same. b4 represents an integer of 0 to 4, and b5 represents an integer of 0 to 5. In the formulas (a-1a) and (a-1b), Rd represents not only a benzene ring but also a pyrrole ring.
 Rdとしては、好ましくは、直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基、アリール基、ハロゲン原子、アルコキシカルボニル基、シクロアルコキシカルボニル基、シアノ基、アルキルスルホニル基、アリールスルホニル基およびこれらを組み合わせてなる基である。より好ましくは、直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、アリール基およびこれらを組み合わせてなる基であり、さらに好ましくは直鎖または分岐のハロゲン化アルキル基、ハロゲン化アリール基である。 Rd is preferably a linear or branched alkyl group, cycloalkyl group, alkenyl group, fluoroalkyl group, aryl group, halogen atom, alkoxycarbonyl group, cycloalkoxycarbonyl group, cyano group, alkylsulfonyl group, arylsulfonyl A group and a group formed by combining these groups. More preferably, it is a linear or branched alkyl group, cycloalkyl group, alkenyl group, aryl group or a group formed by a combination thereof, and more preferably a linear or branched halogenated alkyl group or a halogenated aryl group. .
 R111~R143で表される置換基としては、上記式(DL)におけるRと同義であり、好ましい範囲も同じである。
 R111~R114の少なくとも1つ、R121~R123の少なくとも1つ、R131~R133の少なくとも1つ、R141~R143の少なくとも1つは置換基であることが好ましく、一つまたは二つが置換基であることがより好ましい。
The substituent represented by R 111 to R 143 has the same meaning as R a in the above formula (DL), and the preferred range is also the same.
At least one of R 111 to R 114 , at least one of R 121 to R 123 , at least one of R 131 to R 133 , and at least one of R 141 to R 143 are preferably substituents, and one Or it is more preferable that two are substituents.
 式(DL-1)で表される3座配位子は、下記式(3L-1)~(3L-4)のいずれかの式で表される3座の配位子が好ましい。 The tridentate ligand represented by the formula (DL-1) is preferably a tridentate ligand represented by any one of the following formulas (3L-1) to (3L-4).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式中、*は金属イオンMとの配位位置(結合位置)を表す。環D2Lは芳香族環を表す。A211~A242は、各々独立に、窒素原子のアニオン(窒素アニオンともいう)または炭素原子のアニオン(炭素アニオンともいう)を表す。
 R211~R241は各々独立に、水素原子、または、酸性基を有しない置換基を表す。
In the formula, * represents a coordination position (bonding position) with the metal ion M. Ring D 2L represents an aromatic ring. A 211 to A 242 each independently represents an anion of a nitrogen atom (also referred to as a nitrogen anion) or an anion of a carbon atom (also referred to as a carbon anion).
R 211 to R 241 each independently represents a hydrogen atom or a substituent having no acidic group.
 A211~A242は、それぞれ、上記式(2L-1)~(2L-4)のA111~A141と同義である。
 式(3L-1)~(3L-4)における環D2Lは、上記式(2L―1)~(2L-4)の環D2Lと同義であり、好ましい範囲も同じである。環D2Lは、A211~A242のいずれか1つと炭素原子または2つの炭素原子を含む芳香族環がより好ましい。このとき、各式において2つの環D2Lは同一でも異なってもよい。
 R211~R241で表される置換基としては、それぞれ、上記式(DL)におけるRと同義であり、好ましい範囲も同じである。
 R211~R213の少なくとも1つ、R221およびR222の少なくとも1つ、R231およびR232の少なくとも1つ、ならびに、R241は、置換基であることが好ましい。
A 211 to A 242 have the same meanings as A 111 to A 141 in the above formulas (2L-1) to (2L-4), respectively.
Ring D 2L in formulas (3L-1) to (3L-4) has the same meaning as ring D 2L in formulas (2L-1) to (2L-4), and the preferred range is also the same. Ring D 2L is more preferably an aromatic ring containing any one of A 211 to A 242 and a carbon atom or two carbon atoms. At this time, in each formula, two rings D2L may be the same or different.
The substituents represented by R 211 to R 241 each have the same meaning as R a in the above formula (DL), and the preferred range is also the same.
At least one of R 211 to R 213 , at least one of R 221 and R 222 , at least one of R 231 and R 232 , and R 241 are preferably substituents.
 本発明では、上記2座配位子または3座配位子のうち、置換基に(ヘテロ)アリールアミノ基もしくはジ(ヘテロ)アリールアミノ基を有するものが、特に吸収が長波長化するために好ましい。
 具体的には、上記の好ましい配位子は、金属イオンMに配位する原子が窒素アニオンまたは炭素アニオンであって、かつ下記式(SA)を部分構造に有する配位子である。
In the present invention, among the above bidentate ligands or tridentate ligands, those having a (hetero) arylamino group or a di (hetero) arylamino group as a substituent have a particularly long absorption wavelength. preferable.
Specifically, the preferable ligand is a ligand in which an atom coordinated to the metal ion M is a nitrogen anion or a carbon anion and the partial structure has the following formula (SA).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式中、RDA1はアリール基またはヘテロアリール基を表し、RDA2はアルキル基またはアリール基またはヘテロアリール基を表す。RDA1とRDA2は互いに結合して環を形成してもよい。LLは、エテニル基、エチニル基、アリーレン基またはヘテロアリーレン基を表す。aは0~5の整数を表し、aが2以上のとき、複数存在するLLは同一であっても異なっていてもよい。 In the formula, R DA1 represents an aryl group or a heteroaryl group, and R DA2 represents an alkyl group, an aryl group, or a heteroaryl group. R DA1 and R DA2 may be bonded to each other to form a ring. LL represents an ethenyl group, an ethynyl group, an arylene group, or a heteroarylene group. a represents an integer of 0 to 5, and when a is 2 or more, a plurality of LLs may be the same or different.
 上記式(SA)で表される基は、金属イオンMに配位する芳香族炭化水素環または窒素を含む芳香族ヘテロ環に置換していることが好ましく、窒素原子を含む芳香族ヘテロ環に置換していることがより好ましい。
 上記式(SA)で表される基のうち、RDA1およびRDA2の少なくとも一方がアリール基またはヘテロアリール基であることが好ましく、ともにアリール基であることがさらに好ましい。アルキル基、アリール基、ヘテロアリール基は置換基を有してもよく、このような置換基としては、後述する置換基群Zより選ばれる基が挙げられる。
 アリール基としては、特に限定されないが、フェニル基、ナフチル基等が挙げられ、フェニル基が好ましい。ヘテロアリール基としては、特に限定されないが、フラニル基、チエニル基が好ましい。
The group represented by the formula (SA) is preferably substituted with an aromatic hydrocarbon ring coordinated to the metal ion M or an aromatic heterocycle containing nitrogen, and the aromatic heterocycle containing a nitrogen atom More preferably, it is substituted.
Of the groups represented by the formula (SA), at least one of R DA1 and R DA2 is preferably an aryl group or a heteroaryl group, and more preferably an aryl group. Alkyl group, an aryl group, a heteroaryl group may have a substituent, and examples of such substituents include groups selected from Substituent group Z R which will be described later.
Although it does not specifically limit as an aryl group, A phenyl group, a naphthyl group, etc. are mentioned, A phenyl group is preferable. Although it does not specifically limit as a heteroaryl group, A furanyl group and a thienyl group are preferable.
 LLは、配位子の配位原子を含む芳香族炭化水素環または含窒素芳香族ヘテロ環と一緒になって縮環構造を形成してもよい。例えば、LLがエテニル基で、このエテニル基が配位子の配位原子を含む含窒素芳香族ヘテロ環と結合してキノリン環を形成してもよい。
 LLにおけるアリーレン基としてはフェニレン基、ナフチレン基等が挙げられ、ヘテロアリーレン基としては、2価の5または6員環で、環構成原子として、酸素原子、硫黄原子、窒素原子を含むものが好ましく、ベンゼン環やヘテロ環で縮環していてもよい。
 ヘテロアリーレン基のヘテロ環としては、例えば、フラン環、チオフェン環、ピロール環、ピリジン環が挙げられ、フラン環、チオフェン環が好ましい。
LL may form a condensed ring structure together with an aromatic hydrocarbon ring or a nitrogen-containing aromatic heterocycle containing a ligand coordination atom. For example, LL may be an ethenyl group, and this ethenyl group may be bonded to a nitrogen-containing aromatic heterocycle containing a ligand coordination atom to form a quinoline ring.
Examples of the arylene group in LL include a phenylene group and a naphthylene group, and the heteroarylene group is preferably a divalent 5- or 6-membered ring containing an oxygen atom, a sulfur atom, or a nitrogen atom as a ring-constituting atom. And may be condensed with a benzene ring or a hetero ring.
Examples of the hetero ring of the heteroarylene group include a furan ring, a thiophene ring, a pyrrole ring, and a pyridine ring, and a furan ring and a thiophene ring are preferable.
 LLにおけるエテニル基、アリーレン基、ヘテロアリーレン基は置換基を有してもよく、置換基としては後述する置換基群Zより選ばれる基が挙げられる。 Ethenyl group in LL, arylene group, heteroarylene group may have a substituent group, include groups selected from Substituent group Z R which will be described later as the substituent.
 上記式(SA)において、aが0であるか、aが1でLLがエテニル基、エチニル基、フェニレン基またはヘテロアリーレン基であることが好ましく、aが0であるか、aが1でフェニレン基またはヘテロアリーレン基であることがより好ましく、aが0であるか、aが1でフェニレン基、2価のフラン環基、2価のチオフェン環基であることがさらに好ましく、aが0であることが特に好ましい。 In the above formula (SA), it is preferable that a is 0, or a is 1 and LL is an ethenyl group, ethynyl group, phenylene group or heteroarylene group, and a is 0 or a is 1 and phenylene. Or a heteroarylene group, more preferably a is 0, or a is 1, a phenylene group, a divalent furan ring group, or a divalent thiophene ring group, and a is 0. It is particularly preferred.
 本発明では、RDA1とRDA2が互いに結合して環を形成したものも好ましい。
 形成する環としては、5または6員環が好ましく、RDA1とRDA2がともにアリール基である場合に結合したものが、より好ましい。
 RDA1とRDA2が互いに結合して形成された環としては、以下の環が好ましい。
In the present invention, those in which R DA1 and R DA2 are bonded to each other to form a ring are also preferred.
The ring to be formed is preferably a 5- or 6-membered ring, and more preferably bonded when R DA1 and R DA2 are both aryl groups.
The ring formed by combining R DA1 and R DA2 with each other is preferably the following ring.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 ここで、RDA3およびRDA4は各々独立にアルキル基を表す。
 上記環は、置換基を有してもよく、このような置換基としては後述する置換基群Zより選ばれる基が挙げられる。
Here, R DA3 and R DA4 each independently represents an alkyl group.
The ring may have a substituent group, include groups selected from Substituent group Z R which will be described later examples of the substituent.
 上記式(DL)で表される配位子は、米国特許出願公開第2010/0258175A1明細書、特許第4298799号公報、Angew.Chem.Int.Ed.,2011,50,p.2054-2058に記載の方法、この文献で挙げられている参照文献に記載されている方法、もしくはこれらの方法に準じた方法で合成することができる。 The ligand represented by the above formula (DL) is disclosed in US Patent Application Publication No. 2010 / 0258175A1, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. 2011, 50, p. It can be synthesized by the method described in 2054-2058, the method described in the references cited in this document, or a method according to these methods.
 以下に、上記式(DL)で表される配位子の具体例を示す。また、この配位子LDとして後述する金属錯体色素における配位子LDも挙げられる。本発明はこれらの配位子に限定されるものではない。下記具体例において、Meはメチルを表し、*は環同士またはピリジン環と置換基R201が互いに結合する結合位置を表す。 Specific examples of the ligand represented by the above formula (DL) are shown below. Moreover, the ligand LD in the metal complex pigment | dye mentioned later as this ligand LD is also mentioned. The present invention is not limited to these ligands. In the following specific examples, Me represents methyl, and * represents a bonding position at which the rings or the pyridine ring and the substituent R 201 are bonded to each other.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 LとLとの2座配位子と併用される配位子Lは、単座配位子であれば、特に限定されない。配位子Lは、好ましくはアニオンである。例えば、アシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基、アリールオキシ基およびハロゲン原子からなる群より選ばれる基もしくは原子またはこれらのアニオンが好ましい。
 配位子Lが、アルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは置換基を有していてもいなくてもよい。また、アリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換基を有していてもいなくてもよく、単環でも縮環していてもよい。
The ligand L 3 used in combination with the bidentate ligand of L 1 and L 2 is not particularly limited as long as it is a monodentate ligand. Ligand L 3 is preferably an anion. For example, acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate group, trithiocarbonate group, acyl group, thiocyanate group, A group or atom selected from the group consisting of an isothiocyanate group, a cyanate group, an isocyanate group, a cyano group, an alkylthio group, an arylthio group, an alkoxy group, an aryloxy group and a halogen atom, or an anion thereof is preferred.
When the ligand L 3 includes an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, or the like, they may or may not have a substituent. Moreover, when an aryl group, a heterocyclic group, a cycloalkyl group, etc. are included, they may or may not have a substituent, and may be monocyclic or condensed.
 なかでも、配位子Lは、シアネート基、イソシアネート基、チオシアネート基およびイソチオシアネート基またはこれらのアニオンが好ましく、イソシアネート基(イソシアネートアニオン)またはイソチオシアネート(NCS)基(イソチオシアネートアニオン)がより好ましく、イソチオシアネート基(イソチオシアネートアニオン)が特に好ましい。 Among these, the ligand L 3 is preferably a cyanate group, an isocyanate group, a thiocyanate group and an isothiocyanate group or anions thereof, and more preferably an isocyanate group (isocyanate anion) or an isothiocyanate (NCS) group (isothiocyanate anion). An isothiocyanate group (isothiocyanate anion) is particularly preferred.
- 電荷中和対イオンCI -
 金属錯体色素は、その電荷を中和させるために必要な対イオンを有してもよい。一般に、金属錯体色素が陽イオンもしくは陰イオンであるか、または、正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有すること等により、金属錯体色素は解離して負電荷を持ってもよい。この場合、金属錯体色素全体の電荷はCIにより電気的に中性とされる。
-Charge neutralization counter ion CI-
The metal complex dye may have a counter ion necessary to neutralize its charge. In general, whether a metal complex dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
The metal complex dye may be dissociated and have a negative charge because the substituent has a dissociable group. In this case, the entire charge of the metal complex dye is electrically neutralized by CI.
 対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機もしくは有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えばテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン等)、アルカリ金属イオン(Liイオン、Naイオン、Kイオン等)、アルカリ土類金属イオン、金属錯体イオンまたはプロトンである。正の対イオンとしては、無機もしくは有機のアンモニウムイオン(テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラオクチルアンモニウムイオン、テトラデシルアンモニウムイオン等)、アルカリ金属イオン、プロトンが好ましい。 When the counter ion CI is a positive counter ion, for example, the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetraalkylphosphonium ion, alkyltriphenylphosphonium ion). Etc.), alkali metal ions (Li ion, Na ion, K ion, etc.), alkaline earth metal ions, metal complex ions or protons. As the positive counter ion, inorganic or organic ammonium ions (tetraethylammonium ion, tetrabutylammonium ion, tetrahexylammonium ion, tetraoctylammonium ion, tetradecylammonium ion, etc.), alkali metal ions, and protons are preferable.
 対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換もしくは無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換もしくは無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオンが挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。負の対イオンとしては、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、置換もしくは無置換のアルキルスルホン酸イオン、置換もしくは無置換のアリールスルホン酸イオン、アリールジスルホン酸イオン、過塩素酸イオン、ヘキサフルオロホスフェートイオンが好ましく、ハロゲン陰イオン、ヘキサフルオロホスフェートイオンがより好ましい。 When the counter ion CI is a negative counter ion, for example, the counter ion CI may be an inorganic anion or an organic anion. For example, hydroxide ion, halogen anion (for example, fluoride ion, chloride ion, bromide ion, iodide ion, etc.), substituted or unsubstituted alkylcarboxylate ion (acetate ion, trifluoroacetate ion, etc.), Substituted or unsubstituted arylcarboxylate ions (benzoate ions, etc.), substituted or unsubstituted alkylsulfonate ions (methanesulfonate ions, trifluoromethanesulfonate ions, etc.), substituted or unsubstituted arylsulfonate ions (for example, p-toluenesulfonate ion, p-chlorobenzenesulfonate ion, etc.), aryl disulfonate ion (eg, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalenedisulfonate ion, etc.) , Alkyl sulfate ion Such as methyl sulfate ion, etc.), sulfate ion, thiocyanate ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, and a picrate ion. Furthermore, an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there. Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
 式(I)で表される金属錯体色素は、例えば、特開2013-084594号公報に記載の方法、特許第4298799号公報に記載の方法、米国特許出願公開第2013/0018189A1、米国特許出願公開第2012/0073660A1、米国特許出願公開第2012/0111410A1および米国特許出願公開第2010/0258175A1の各明細書に記載の方法、Angew.Chem.Int.Ed.,2011,50,p.2054-2058に記載の方法、この文献で挙げられている参照文献に記載の方法、太陽電池に関する上記特許文献、公知の方法、または、これらに準じた方法で合成することができる。 Examples of the metal complex dye represented by the formula (I) include a method described in JP2013-084594A, a method described in Japanese Patent No. 4298799, US Patent Application Publication No. 2013 / 0018189A1, and US Patent Application Publication. No. 2012 / 0073660A1, U.S. Patent Application Publication No. 2012 / 0111410A1, and U.S. Patent Application Publication No. 2010 / 0258175A1, Angew. Chem. Int. Ed. 2011, 50, p. It can be synthesized by the method described in 2054-2058, the method described in the reference cited in this document, the above-mentioned patent document relating to solar cells, a known method, or a method analogous thereto.
 式(I)で表される金属錯体色素は、長波長領域の吸収特性が優れる。金属錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。 The metal complex dye represented by the formula (I) has excellent absorption characteristics in the long wavelength region. The maximum absorption wavelength in the solution of the metal complex dye is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
 以下の記載(実施例を含む)において、式(I)で表される金属錯体色素の具体例を示す。また、下記具体例および実施例の具体例に対して、-COOHの少なくとも1つをカルボキシ基の塩とした金属錯体色素も挙げられる。この金属錯体色素において、カルボキシ基の塩を形成する対カチオンとしては、上記CIで説明する正のイオンが挙げられる。本発明はこれらの金属錯体色素に限定されない。これらの金属錯体色素は光学異性体、幾何異性体が存在する場合、これらの異性体のいずれであってもよく、またこれらの異性体の混合物であってもよい。
 下記具体例は、各具体例におけるターピリジン系配位子および配位子L~Lの具体的な組み合わせに関わらず、ターピリジン系配位子および配位子L~Lそれぞれの具体例をも各々独立に示すものである。なお、具体例中のMeはメチルを表し、D-1~D-10はそれぞれ後述する実施例で合成した金属錯体色素の番号を示す。
In the following description (including examples), specific examples of the metal complex dye represented by the formula (I) are shown. In addition to the following specific examples and specific examples, metal complex dyes in which at least one of —COOH is a salt of a carboxy group are also exemplified. In this metal complex dye, examples of the counter cation that forms a salt of a carboxy group include positive ions described in the above CI. The present invention is not limited to these metal complex dyes. These metal complex dyes may be any of these isomers or a mixture of these isomers when optical isomers and geometric isomers are present.
The following specific examples are specific examples of the terpyridine ligand and the ligands L 1 to L 3 regardless of the specific combination of the terpyridine ligand and the ligands L 1 to L 3 in each specific example. Are also shown independently. In the specific examples, Me represents methyl, and D-1 to D-10 represent the numbers of the metal complex dyes synthesized in the examples described later.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
<置換基群>
 本発明において、好ましい置換基としては、下記置換基群から選ばれる置換基が挙げられる。
 本明細書において、アルキル基をシクロアルキル基と区別して記載している場合、アルキル基は、直鎖アルキル基および分岐アルキル基を包含する意味で用いる。一方、アルキル基をシクロアルキル基と区別して記載していない場合(単に、アルキル基と記載されている場合)、および、特段の断りがない場合、アルキル基は、直鎖アルキル基、分岐アルキル基およびシクロアルキル基を包含する意味で用いる。このことは、環状構造を採りうる基(アルキル基、アルケニル基、アルキニル基等)を含む基(アルコキシ基、アルキルチオ基、アルケニルオキシ基等)、環状構造を採りうる基を含む化合物(上記アルキルエステル化物等)についても同様である。下記置換基群の説明においては、例えば、アルキル基とシクロアルキル基のように、直鎖または分岐構造の基と環状構造の基とを明確にするため、これらを分けて記載していることもある。
<Substituent group>
In the present invention, preferred substituents include substituents selected from the following substituent group.
In this specification, when an alkyl group is described separately from a cycloalkyl group, the alkyl group is used to include a straight-chain alkyl group and a branched alkyl group. On the other hand, when an alkyl group is not described separately from a cycloalkyl group (when simply described as an alkyl group), and unless otherwise specified, an alkyl group is a linear alkyl group or a branched alkyl group And cycloalkyl group. This is because a group containing a group that can take a cyclic structure (alkyl group, alkenyl group, alkynyl group, etc.) (alkoxy group, alkylthio group, alkenyloxy group, etc.) or a group containing a group that can take a cyclic structure (the above alkyl ester). The same applies to chemicals). In the following description of the substituent group, for example, in order to clarify a linear or branched group and a cyclic group such as an alkyl group and a cycloalkyl group, they may be described separately. is there.
 (置換基群Z
 置換基群Zは、上記酸性基を含まない置換基群である。
 本明細書において、単に置換基としてしか記載されていない場合は、この置換基群Zを参照するものである。また、各々の基、例えば、アルキル基、が記載されているのみの場合(例えばRX1)は、この置換基群Zの対応する基における好ましい範囲、具体例が適用される。
(Substituent group Z R )
Substituent group Z R is a substituent group which does not contain the acidic group.
In the present specification, when simply not listed only as substituents, it is intended to refer to the substituent group Z R. Moreover, when only each group, for example, an alkyl group, is described (for example, R X1 ), preferred ranges and specific examples in the corresponding group of the substituent group Z R are applied.
 置換基群Zに含まれる基としては、下記の基、または、下記の基を複数組み合わせてなる基を含む。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、n-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、1-エチルペンチル、デシル、ベンジル、2-エトキシエチル、1-カルボキシメチルまたはトリフルオロメチル)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、ブテニルまたはオレイル)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブチニルまたはフェニルエチニル)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシルまたは4-メチルシクロヘキシル)、シクロアルケニル基(好ましくは炭素数5~20で、例えばシクロペンテニルまたはシクロヘキセニル)、アリール基(芳香族炭化水素環基、好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル、ジフルオロフェニルまたはテトラフルオロフェニル)、ヘテロ環基(好ましくは炭素数2~20で、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5員環または6員環のヘテロ環基がより好ましい。ヘテロ環には芳香族環および脂肪族環を含む。芳香族ヘテロ環基(例えばヘテロアリール基)として次の基が挙げられる。例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリルまたは2-オキサゾリル)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ヘキシルオキシまたはベンジルオキシ)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシまたはアリルオキシ)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロピニルオキシまたは4-ブチニルオキシ)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシまたは4-メチルシクロヘキシルオキシ)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシまたは4-メトキシフェノキシ)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシまたはプリニルオキシ)、
The group contained in the substituent group Z R, including the following groups or, by combining a plurality of groups of the following groups.
An alkyl group (preferably having 1 to 20 carbon atoms such as methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, 1-ethylpentyl, decyl, benzyl, 2-ethoxyethyl, 1 -Carboxymethyl or trifluoromethyl), alkenyl groups (preferably having 2 to 20 carbon atoms, eg vinyl, allyl, butenyl or oleyl), alkynyl groups (preferably having 2 to 20 carbon atoms, eg ethynyl, butynyl or Phenylethynyl), a cycloalkyl group (preferably having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl or 4-methylcyclohexyl), a cycloalkenyl group (preferably having 5 to 20 carbon atoms, such as cyclopentenyl or cyclo Hexenyl), ants Group (aromatic hydrocarbon ring group, preferably having 6 to 26 carbon atoms, for example, phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, difluorophenyl or tetrafluorophenyl), hetero A cyclic group (preferably a 5- or 6-membered heterocyclic group having 2 to 20 carbon atoms and having at least one oxygen atom, sulfur atom, or nitrogen atom is more preferable. The heterocyclic ring includes an aromatic ring and an aliphatic group. Aromatic heterocyclic groups (eg heteroaryl groups) include the following groups (eg, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl or 2-oxazolyl), An alkoxy group (preferably having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropyloxy, hexylo Si or benzyloxy), an alkenyloxy group (preferably having 2 to 20 carbon atoms such as vinyloxy or allyloxy), an alkynyloxy group (preferably having 2 to 20 carbon atoms such as 2-propynyloxy or 4-butynyloxy) A cycloalkyloxy group (preferably having 3 to 20 carbon atoms, for example, cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or 4-methylcyclohexyloxy), an aryloxy group (preferably having 6 to 26 carbon atoms, for example, phenoxy 1-naphthyloxy, 3-methylphenoxy or 4-methoxyphenoxy), heterocyclic oxy groups (eg imidazolyloxy, benzoimidazolyloxy, thiazolyloxy, benzothiazolyloxy, triazinyloxy or purini) Ruoxy),
アルコキシカルボニル基(好ましくは炭素数2~20で、例えば、エトキシカルボニルまたは2-エチルヘキシルオキシカルボニル)、シクロアルコキシカルボニル基(好ましくは炭素数4~20で、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニルまたはシクロヘキシルオキシカルボニル)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニルまたはナフチルオキシカルボニル)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノまたはトリアジニルアミノ)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイルまたはN-フェニルスルファモイル)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニルまたはベンゾイル)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシまたはベンゾイルオキシ)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイルまたはN-フェニルカルバモイル)、 An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, such as ethoxycarbonyl or 2-ethylhexyloxycarbonyl), a cycloalkoxycarbonyl group (preferably having 4 to 20 carbon atoms, such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl or Cyclohexyloxycarbonyl), aryloxycarbonyl group (preferably having 6 to 20 carbon atoms, for example, phenyloxycarbonyl or naphthyloxycarbonyl), amino group (preferably having 0 to 20 carbon atoms, alkylamino group, alkenylamino group, Including alkynylamino group, cycloalkylamino group, cycloalkenylamino group, arylamino group, heterocyclic amino group, such as amino, N, N-dimethylamino, N, N-diethylamino, N Ethylamino, N-allylamino, N- (2-propynyl) amino, N-cyclohexylamino, N-cyclohexenylamino, anilino, pyridylamino, imidazolylamino, benzoimidazolylamino, thiazolylamino, benzothiazolylamino or triazinylamino) A sulfamoyl group (preferably an alkyl, cycloalkyl or aryl sulfamoyl group having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-cyclohexylsulfamoyl or N-phenylsulfamoyl) An acyl group (preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl or benzoyl), an acyloxy group (preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexyl Boniruokishi or benzoyloxy), a carbamoyl group (preferably 1 to 20 carbon atoms, alkyl, a carbamoyl group of the cycloalkyl or aryl Preferably, for example, N, N- dimethylcarbamoyl, N- cyclohexylcarbamoyl or N- phenylcarbamoyl),
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノまたはベンゾイルアミノ)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミドまたはN-エチルベンゼンスルホンアミド)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ヘキシルチオ、ペンチルチオまたはベンジルチオ)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオまたは4-メチルシクロヘキシルチオ)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオまたは4-メトキシフェニルチオ)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニルまたはベンゼンスルホニル)、 An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino or benzoylamino), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide group having 0 to 20 carbon atoms) For example, methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide or N-ethylbenzenesulfonamide), an alkylthio group (preferably having 1 to 20 carbon atoms, for example, methylthio, ethylthio , Isopropylthio, hexylthio, pentylthio or benzylthio), a cycloalkylthio group (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopentylthio, cyclohexyl Thio or 4-methylcyclohexylthio), an arylthio group (preferably having 6 to 26 carbon atoms, for example, phenylthio, 1-naphthylthio, 3-methylphenylthio or 4-methoxyphenylthio), alkyl, cycloalkyl or arylsulfonyl group (Preferably having 1 to 20 carbon atoms such as methylsulfonyl, ethylsulfonyl, cyclohexylsulfonyl or benzenesulfonyl),
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、トリフェニルシリル、ジエチルベンジルシリルまたはジメチルフェニルシリル)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシまたはジメチルフェニルシリルオキシ)、ヒドロキシ基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子またはヨウ素原子)が挙げられる。 A silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy is preferable, for example, trimethylsilyl, triethylsilyl, triisopropylsilyl, triphenylsilyl, diethylbenzylsilyl or dimethylphenylsilyl. ), A silyloxy group (preferably a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy or dimethylphenylsilyloxy ), A hydroxy group, a cyano group, a nitro group, and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom).
 置換基群Zから選ばれる基は、より好ましくはアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、シクロアルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルキルチオ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはシアノ基が挙げられる。 Group selected from substituent group Z R is more preferably an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an alkoxy group, cycloalkoxy group, aryloxy group, alkylthio group, cycloalkylthio group, an arylthio Group, alkoxycarbonyl group, cycloalkoxycarbonyl group, amino group, acylamino group, cyano group or halogen atom, particularly preferably alkyl group, alkenyl group, heterocyclic group, alkoxy group, alkylthio group, alkoxycarbonyl group, amino group An acylamino group or a cyano group.
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは置換されていても無置換でもよい。また、アリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。 When a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be substituted or unsubstituted. In addition, when an aryl group, a heterocyclic group and the like are included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
 次に、光電変換素子および色素増感太陽電池の主たる部材の好ましい態様について、図1および図2を参照して、説明する。 Next, preferred modes of main members of the photoelectric conversion element and the dye-sensitized solar cell will be described with reference to FIGS. 1 and 2.
<導電性支持体>
 導電性支持体は、導電性を有し、感光体層2等を支持できるものであれば特に限定されない。導電性支持体は、導電性を有する材料、例えば金属で形成された導電性支持体1、または、ガラスもしくはプラスチックの基板44とこの基板44の表面に成膜された透明導電膜43とを有する導電性支持体41が好ましい。
<Conductive support>
The conductive support is not particularly limited as long as it has conductivity and can support the photoreceptor layer 2 and the like. The conductive support has a conductive support 1 made of a conductive material, for example, a metal, or a glass or plastic substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44. A conductive support 41 is preferred.
 なかでも、基板44の表面に導電性の金属酸化物を塗設して透明導電膜43を成膜した導電性支持体41がさらに好ましい。プラスチックで形成された基板44としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。また、基板44を形成する材料は、ガラスおよびプラスチックの他にも、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いることができる。金属酸化物としては、スズ酸化物(TO)が好ましく、インジウム-スズ酸化物(スズドープ酸化インジウム;ITO)、フッ素をドープした酸化スズ(FTO)等のフッ素ドープスズ酸化物が特に好ましい。このときの金属酸化物の塗布量は、基板44の表面積1m当たり0.1~100gが好ましい。導電性支持体41を用いる場合、光は基板44側から入射させることが好ましい。 Among these, the conductive support 41 in which a conductive metal oxide is coated on the surface of the substrate 44 to form a transparent conductive film 43 is more preferable. Examples of the substrate 44 made of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534. In addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) can be used as a material for forming the substrate 44. As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable. The coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the substrate 44. When the conductive support 41 is used, light is preferably incident from the substrate 44 side.
 導電性支持体1および41は、実質的に透明であることが好ましい。「実質的に透明である」とは、光(波長300~1200nm)の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上であることが特に好ましい。
 導電性支持体1および41の厚みは、特に限定されないが、0.05μm~10mmであることが好ましく、0.1μm~5mmであることがさらに好ましく、0.3μm~4mmであることが特に好ましい。
 透明導電膜43を設ける場合、透明導電膜43の厚みは、0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、0.05~20μmであることが特に好ましい。
Conductive supports 1 and 41 are preferably substantially transparent. “Substantially transparent” means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more. .
The thickness of the conductive supports 1 and 41 is not particularly limited, but is preferably 0.05 μm to 10 mm, more preferably 0.1 μm to 5 mm, and particularly preferably 0.3 μm to 4 mm. .
When the transparent conductive film 43 is provided, the thickness of the transparent conductive film 43 is preferably 0.01 to 30 μm, more preferably 0.03 to 25 μm, and particularly preferably 0.05 to 20 μm. .
 導電性支持体1および41は、表面に光マネージメント機能を有してもよい。例えば、表面に、特開2003-123859号公報に記載の高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。 The conductive supports 1 and 41 may have a light management function on the surface. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated may be provided on the surface, as described in JP-A-2002-260746. The light guide function may be provided.
<感光体層>
 感光体層は、上記色素21が担持された半導体微粒子22および電解質を有していれば、その他の構成は特に限定されない。好ましくは、上記感光体層2および上記感光体層42が挙げられる。
<Photoreceptor layer>
Other configurations are not particularly limited as long as the photoreceptor layer includes the semiconductor fine particles 22 on which the dye 21 is supported and an electrolyte. Preferably, the photoreceptor layer 2 and the photoreceptor layer 42 are used.
- 半導体微粒子(半導体微粒子が形成する層) -
 半導体微粒子22は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイト型結晶構造を有する化合物の微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブもしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイト型結晶構造を有する化合物としては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
-Semiconductor fine particles (layers formed by semiconductor fine particles)-
The semiconductor fine particles 22 are preferably fine particles of a metal chalcogenide (eg, oxide, sulfide, selenide, etc.) or a compound having a perovskite crystal structure. Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxide, cadmium sulfide, and cadmium selenide. Preferred examples of the compound having a perovskite crystal structure include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ・ナノワイヤー・ナノロッドは、単独で、または、チタニア微粒子に混合して、用いることができる。 Examples of the crystal structure of titania include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods can be used alone or mixed with titania fine particles.
 半導体微粒子22の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子22を導電性支持体1または41上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。 The particle diameters of the semiconductor fine particles 22 are 0.001 to 1 μm as primary particles and 0.01 to 100 μm as the average particle diameter of the dispersion in terms of the average particle diameter when the projected area is converted into a circle. Is preferred. Examples of a method for coating the semiconductor fine particles 22 on the conductive support 1 or 41 include a wet method, a dry method, and other methods.
 半導体微粒子22は多くの色素21を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子22を導電性支持体1または41上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子22が形成する半導体層45(光電変換素子10においては感光体層2と同義)の厚みが大きいほど単位面積当たりに担持できる色素21の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。 The semiconductor fine particles 22 preferably have a large surface area so that a large amount of the dye 21 can be adsorbed. For example, in a state where the semiconductor fine particles 22 are coated on the conductive support 1 or 41, the surface area thereof is preferably 10 times or more, more preferably 100 times or more the projected area. Although there is no restriction | limiting in particular in this upper limit, Usually, it is about 5000 times. In general, the larger the thickness of the semiconductor layer 45 (synonymous with the photoreceptor layer 2 in the photoelectric conversion element 10) formed by the semiconductor fine particles 22, the greater the amount of the dye 21 that can be carried per unit area, and the higher the light absorption efficiency. However, since the diffusion distance of the generated electrons increases, the loss due to charge recombination also increases.
 半導体層45(光電変換素子10においては感光体層2)の好ましい厚みは、光電変換素子の用途によって一義的なものではないが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は、1~50μmがより好ましく、3~30μmがさらに好ましい。 The preferred thickness of the semiconductor layer 45 (photosensitive layer 2 in the photoelectric conversion element 10) is not uniquely determined depending on the use of the photoelectric conversion element, but is typically 0.1 to 100 μm. When used as a dye-sensitized solar cell, the thickness is more preferably 1 to 50 μm, further preferably 3 to 30 μm.
 半導体微粒子22は、導電性支持体1または41に塗布した後に、100~800℃の温度で10分~10時間焼成して、粒子同士を密着させることが好ましい。成膜温度は、導電性支持体1または基板44の材料としてガラスを用いる場合、60~600℃が好ましい。 The semiconductor fine particles 22 are preferably applied to the conductive support 1 or 41 and then baked at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours to bring the particles into close contact with each other. The film forming temperature is preferably 60 to 600 ° C. when glass is used as the material of the conductive support 1 or the substrate 44.
 半導体微粒子22の、導電性支持体1または41の表面積1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。 The coating amount of the semiconductor fine particles 22 per 1 m 2 of the surface area of the conductive support 1 or 41 is preferably 0.5 to 500 g, more preferably 5 to 100 g.
 導電性支持体1または41と感光体層2または42との間には、感光体層2または42が含む電解質と導電性支持体1または41が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。
 また、受光電極5または40と対極4または48の接触を防ぐために、スペーサーS(図2参照)やセパレータを用いることが好ましい。
Between the conductive support 1 or 41 and the photoreceptor layer 2 or 42, in order to prevent reverse current due to direct contact between the electrolyte contained in the photoreceptor layer 2 or 42 and the conductive support 1 or 41, It is preferable to form a short-circuit prevention layer.
In order to prevent contact between the light receiving electrode 5 or 40 and the counter electrode 4 or 48, it is preferable to use a spacer S (see FIG. 2) or a separator.
 - 色素 -
 光電変換素子10および色素増感太陽電池20においては、増感色素として少なくとも1種の上記式(I)で表される金属錯体色素を使用する。式(I)で表される金属錯体色素は上記の通りである。
-Dye-
In the photoelectric conversion element 10 and the dye-sensitized solar cell 20, at least one metal complex dye represented by the above formula (I) is used as a sensitizing dye. The metal complex dye represented by the formula (I) is as described above.
 本発明において、上記式(I)の金属錯体色素と併用できる色素としては、Ru錯体色素、スクアリリウムシアニン色素、有機色素、ポルフィリン色素、フタロシアニン色素等が挙げられる。 In the present invention, examples of the dye that can be used in combination with the metal complex dye of the above formula (I) include a Ru complex dye, a squarylium cyanine dye, an organic dye, a porphyrin dye, and a phthalocyanine dye.
 Ru錯体色素としては、例えば、特表平7-500630号公報に記載のRu錯体色素(特に第5頁左下欄5行目~第7頁右上欄7行目の例1~例19で合成された色素)、特表2002-512729号公報に記載のRu錯体色素(特に第20頁の下から3行目~第29頁23行目の例1~例16で合成された色素)、特開2001-59062号公報に記載のRu錯体色素(特に、段落番号0087~0104に記載の色素)、特開2001-6760号公報に記載のRu錯体色素(特に、段落番号0093~0102に記載の色素)、特開2001-253894号公報に記載のRu錯体色素(特に、段落番号0009~0010に記載の色素)、特開2003-212851号公報に記載のRu錯体色素(特に、段落番号0005に記載の色素)、国際公開第2007/91525号に記載のRu錯体色素(特に、[0067]に記載の色素)、特開2001-291534号公報に記載のRu錯体色素(特に、段落番号0120~0144に記載の色素)、特開2012-012570号公報に記載のRu錯体色素(特に、段落番号0095~0103に記載の色素)、特開2013-084594号公報に記載のRu金属錯体色素(特に、段落番号0072~0081等に記載の色素)、国際公開第2013/088898号に記載のRu錯体色素(特に、[0286]~[0293]に記載の色素)、または、国際公開第2013/47615号に記載のRu錯体色素(特に、[0078]~[0082]に記載の色素)が挙げられる。 Examples of the Ru complex dye include Ru complex dyes described in JP-A-7-500630 (especially synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). Dyes), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 on the third line to the 29th line from the bottom of page 20), JP, Ru complex dyes described in JP 2001-59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in JP 2001-6760 A (particularly, dyes described in paragraphs 0093 to 0102) ), Ru complex dyes described in JP-A No. 2001-253894 (particularly dyes described in paragraph Nos. 0009 to 0010), Ru complex dyes described in JP-A No. 2003-212851 (particularly paragraph No. 0005) Described), Ru complex dyes described in International Publication No. 2007/91525 (especially dyes described in [0067]), Ru complex dyes described in Japanese Patent Application Laid-Open No. 2001-291534 (particularly, paragraphs 0120 to 0144), Ru complex dyes described in JP2012-012570 (especially dyes described in paragraphs 0095 to 0103), Ru metal complex dyes described in JP2013-084594A (especially And dyes described in paragraphs 0072 to 0081), Ru complex dyes described in International Publication No. 2013/088888 (particularly, dyes described in [0286] to [0293]), or International Publication Nos. 2013/47615. Ru complex dyes described in the above (especially dyes described in [0078] to [0082]).
 スクアリリウムシアニン色素としては、例えば、特開平11-214730号公報に記載のスクアリリウムシアニン色素(特に、段落番号0036~0047に記載の色素)、特開2012-144688号公報に記載のスクアリリウムシアニン色素(特に、段落番号0039~0046および段落番号0054~0060に記載の色素)、または、特開2012-84503号公報に記載のスクアリリウムシアニン色素(特に、段落番号0066~0076等に記載の色素)が挙げられる。 Examples of the squarylium cyanine dye include squarylium cyanine dyes described in JP-A No. 11-214730 (particularly dyes described in paragraphs 0036 to 0047), squarylium cyanine dyes described in JP-A No. 2012-144688 (in particular, And dyes described in paragraphs 0039 to 0046 and 0054 to 0060), or squarylium cyanine dyes described in JP 2012-84503 A (in particular, dyes described in paragraphs 0066 to 0076 and the like). .
 有機色素としては、例えば、特開2004-063274号公報に記載の有機色素(特に、段落番号0017~0021に記載の色素)、特開2005-123033号公報に記載の有機色素(特に、段落番号0021~0028に記載の色素)、特開2007-287694号公報に記載の有機色素(特に、段落番号0091~0096に記載の色素)、特開2008-71648号公報に記載の有機色素(特に、段落番号0030~0034に記載の色素)、または、国際公開第2007/119525号に記載の有機色素(特に、[0024]に記載の色素)が挙げられる。 Examples of the organic dye include organic dyes described in JP-A No. 2004-063274 (particularly dyes described in paragraph Nos. 0017 to 0021) and organic dyes described in JP-A No. 2005-123033 (particularly paragraph numbers). Dyes described in JP-A-2007-287694, organic dyes described in JP-A No. 2007-287694 (especially dyes described in paragraphs 0091-0096), organic dyes described in JP-A-2008-71648 (in particular, And the organic dyes described in International Publication No. 2007/119525 (particularly, the dyes described in [0024]).
 ポルフィリン色素としては、例えば、Angew.Chem.Int.Ed.,49,p.1~5(2010)等に記載のポルフィリン色素が挙げられ、フタロシアニン色素としては、例えば、Angew.Chem.Int.Ed.,46,p.8358(2007)等に記載のフタロシアニン色素が挙げられる。 Examples of porphyrin dyes include Angew. Chem. Int. Ed. 49, p. 1-5 (2010), and the like. Examples of the phthalocyanine dye include Angew. Chem. Int. Ed. 46, p. 8358 (2007) and the like.
 併用できる色素としては、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が好ましい。 The dye that can be used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
 色素の使用量は、全体で、導電性支持体1または41の表面積1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。また、色素21の半導体微粒子22に対する吸着量は1gの半導体微粒子22に対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子22における増感効果が十分に得られる。 The total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.1 to 10 mmol per 1 m 2 of the surface area of the conductive support 1 or 41. is there. The amount of the dye 21 adsorbed on the semiconductor fine particles 22 is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles 22. By using such a dye amount, the sensitizing effect in the semiconductor fine particles 22 can be sufficiently obtained.
 式(I)で表される金属錯体色素と他の色素を併用する場合、式(I)で表される金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。 When the metal complex dye represented by the formula (I) and another dye are used in combination, the ratio of the mass of the metal complex dye represented by the formula (I) / the mass of the other dye is 95/5 to 10/90. Is preferred, 95/5 to 50/50 is more preferred, 95/5 to 60/40 is more preferred, 95/5 to 65/35 is particularly preferred, and 95/5 to 70/30 is most preferred.
 色素を半導体微粒子22に担持させた後に、アミン化合物を用いて半導体微粒子22の表面を処理してもよい。好ましいアミン化合物としてピリジン化合物(例えば4-t-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。 After the dye is supported on the semiconductor fine particles 22, the surface of the semiconductor fine particles 22 may be treated with an amine compound. Preferable amine compounds include pyridine compounds (for example, 4-t-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
 - 共吸着剤 -
 本発明においては、式(I)で表される金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシ基またはその塩)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。
 脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えば、ブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはデオキシコール酸である。
-Coadsorbent-
In the present invention, it is preferable to use a coadsorbent together with the metal complex dye represented by the formula (I) or a dye used in combination as necessary. As such a co-adsorbent, a co-adsorbent having at least one acidic group (preferably, a carboxy group or a salt thereof) is preferable, and examples thereof include a compound having a fatty acid or a steroid skeleton.
The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. .
Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid, and chenodeoxycholic acid, and more preferred is deoxycholic acid.
 好ましい共吸着剤は、下記式(CA)で表される化合物である。 A preferred co-adsorbent is a compound represented by the following formula (CA).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
 酸性基は、上記式(I)中の酸性基AncおよびAncと同義であり、好ましい範囲も同じである。
 RA1は、これらのなかでも、カルボキシ基もしくはスルホ基またはこれらの塩が置換したアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
In the formula, R A1 represents a substituent having an acidic group. R A2 represents a substituent. nA represents an integer of 0 or more.
The acidic group is synonymous with the acidic groups Anc 1 and Anc 2 in the above formula (I), and the preferred range is also the same.
Among these, R A1 is preferably a carboxy group, a sulfo group, or an alkyl group substituted by a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2. More preferred is CONHCH 2 CH 2 SO 3 H.
 RA2としては、上記の置換基群Zから選ばれる基が挙げられる。なかでも、アルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基またはアリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基またはアシルオキシ基がより好ましい。
 nAは2~4が好ましい。
Examples of R A2 include a group selected from the above substituent group Z R. Of these, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group or an arylaminocarbonyloxy group is preferable, and an alkyl group, a hydroxy group or an acyloxy group is more preferable.
nA is preferably 2 to 4.
 上記共吸着剤は、半導体微粒子22に吸着させることにより、金属錯体色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は、特に限定されないが、上記の作用を効果的に発現させる観点から、上記金属錯体色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルである。 The co-adsorbent has an effect of suppressing inefficient association of the metal complex dye by adsorbing to the semiconductor fine particles 22 and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte. The amount of the co-adsorbent used is not particularly limited, but from the viewpoint of effectively expressing the above action, it is preferably 1 to 200 mol, more preferably 10 to 150 mol, relative to 1 mol of the metal complex dye. Particularly preferred is 20 to 50 mol.
 - 光散乱層 -
 本発明において、光散乱層は、入射光を散乱させる機能を有する点で、半導体層と異なる。
 色素増感太陽電池20において、光散乱層46は、好ましくは、棒状または板状の金属酸化物粒子を含有する。光散乱層46に用いられる金属酸化物粒子は、例えば、上記金属のカルコゲニド(酸化物)の粒子が挙げられる。光散乱層46を設ける場合、光散乱層の厚みは感光体層42の厚みの10~50%とすることが好ましい。
 光散乱層46は、特開2002-289274号公報に記載されている光散乱層が好ましく、特開2002-289274号公報の記載が、そのまま本明細書に好ましく取り込まれる。
-Light scattering layer-
In the present invention, the light scattering layer is different from the semiconductor layer in that it has a function of scattering incident light.
In the dye-sensitized solar cell 20, the light scattering layer 46 preferably contains rod-like or plate-like metal oxide particles. Examples of the metal oxide particles used in the light scattering layer 46 include the metal chalcogenide (oxide) particles. When the light scattering layer 46 is provided, the thickness of the light scattering layer is preferably 10 to 50% of the thickness of the photoreceptor layer 42.
The light scattering layer 46 is preferably a light scattering layer described in JP-A No. 2002-289274, and the description of JP-A No. 2002-289274 is preferably incorporated in the present specification as it is.
<電荷移動体層>
 本発明の光電変換素子に用いられる電荷移動体層3および47は、色素21の酸化体に電子を補充する機能を有する層であり、受光電極5または40と対極4または48との間に設けられる。
 電荷移動体層3および47は電解質を含む。ここで、「電荷移動体層が電解質を含む」とは、電荷移動体層が電解質のみからなる態様、および、電解質と電解質以外の物質を含有する態様の、両態様を含む意味である。
 電荷移動体層3および47は、固体状、液体状、ゲル状またはこれら混合状態のいずれであってもよい。
<Charge transfer layer>
The charge transfer body layers 3 and 47 used in the photoelectric conversion element of the present invention are layers having a function of replenishing electrons to the oxidant of the dye 21 and are provided between the light receiving electrode 5 or 40 and the counter electrode 4 or 48. It is done.
The charge transfer layer 3 and 47 contains an electrolyte. Here, “the charge transfer layer contains an electrolyte” means to include both modes of the mode in which the charge transfer layer is made of only an electrolyte and the mode containing an electrolyte and a substance other than the electrolyte.
The charge transfer layer 3 and 47 may be solid, liquid, gel, or a mixed state thereof.
 - 電解質 -
 電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を含有する溶融塩および酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質等が挙げられる。なかでも、液体電解質が光電変換効率の点で好ましい。
- Electrolytes -
Examples of the electrolyte include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, a molten salt containing a redox couple, and a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which a redox couple is dissolved in an organic solvent. . Especially, a liquid electrolyte is preferable at the point of photoelectric conversion efficiency.
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合わせ(例えば赤血塩と黄血塩の組み合わせ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうち、ヨウ素とヨウ化物との組み合わせ、または2価と3価のコバルト錯体の組み合わせが好ましく、ヨウ素とヨウ化物との組み合わせが特に好ましい。 As an oxidation-reduction pair, for example, iodine and iodide (iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable) A combination of an alkyl viologen (eg, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and a reduced form thereof, a combination of polyhydroxybenzene (eg, hydroquinone, naphthohydroquinone, etc.) and an oxidized form thereof, A combination of trivalent iron complexes (for example, a combination of red blood salt and yellow blood salt), a combination of divalent and trivalent cobalt complexes, and the like. Among these, a combination of iodine and iodide or a combination of divalent and trivalent cobalt complexes is preferable, and a combination of iodine and iodide is particularly preferable.
 上記コバルト錯体は、特開2014-82189号公報の段落番号0144~0156に記載の式(CC)で表される錯体が好ましく、特開2014-82189号公報の段落番号0144~0156の記載が、そのまま本明細書に好ましく取り込まれる。 The cobalt complex is preferably a complex represented by the formula (CC) described in paragraphs 0144 to 0156 of JP2014-82189A, and described in paragraphs 0144 to 0156 of JP2014-82189A. It is preferably incorporated in the present specification as it is.
 電解質として、ヨウ素とヨウ化物との組み合わせを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。 When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
 液体電解質およびゲル電解質に用いる有機溶媒としては、特に限定されないが、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。
 特に、液体電解質に用いる有機溶媒としては、ニトリル化合物、エーテル化合物、エステル化合物等が好ましく、ニトリル化合物がより好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
The organic solvent used for the liquid electrolyte and the gel electrolyte is not particularly limited, but an aprotic polar solvent (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3 -Methyloxazolidinone etc.) are preferred.
In particular, the organic solvent used for the liquid electrolyte is preferably a nitrile compound, an ether compound, an ester compound, more preferably a nitrile compound, and particularly preferably acetonitrile or methoxypropionitrile.
 溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム型陽イオンを含むイオン性液体、ピリジニウム型陽イオンを含むイオン性液体、グアニジウム型陽イオンを含むイオン性液体およびこれらの組み合わせが好ましい。また、これら陽イオンに対して特定のアニオンを組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。溶融塩は液晶性の置換基を持っていてもよい。また、溶融塩として、四級アンモニウム塩の溶融塩を用いることもできる。 Molten salts include ionic liquids containing imidazolium or triazolium cations, ionic liquids containing oxazolium cations, ionic liquids containing pyridinium cations, ionic liquids containing guanidinium cations, and these A combination is preferred. Moreover, you may combine a specific anion with respect to these cations. Additives may be added to these molten salts. The molten salt may have a liquid crystalline substituent. Moreover, the molten salt of a quaternary ammonium salt can also be used as the molten salt.
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり光電変換効率が向上する。 As molten salts other than these, for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like. In this case, the amount of the polymer added is 1 to 50% by mass. In addition, γ-butyrolactone may be included in the electrolytic solution, thereby increasing the diffusion efficiency of iodide ions and improving the photoelectric conversion efficiency.
 ゲル電解質のマトリクスに使用されるポリマー(ポリマーマトリクス)としては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。 Examples of the polymer (polymer matrix) used for the gel electrolyte matrix include polyacrylonitrile and polyvinylidene fluoride.
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい(擬固体化された電解質を、以下、「擬固体電解質」ともいう。)。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。 The electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter). Examples of the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
 また、ポリマーマトリクス、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いてもよい。
 ポリマーマトリクスとして好ましくは、含窒素複素環を主鎖または側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造を持つ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン、メタクリレート、アクリレート、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリコールとデキストリン等の包接化合物、含酸素または含硫黄高分子を添加した系、天然高分子等が挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子等を添加してもよい。
Alternatively, a method of confining a polymer matrix, a crosslinkable polymer compound or monomer, a crosslinking agent, an electrolyte, and a solvent in the polymer may be used.
The polymer matrix is preferably a polymer having a nitrogen-containing heterocycle in the main chain or side chain repeating unit, a cross-linked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or a polymer having a ureido structure. Molecules, compounds containing liquid crystal compounds, polymers having an ether bond, polyvinylidene fluoride, methacrylates, acrylates, thermosetting resins, crosslinked polysiloxanes, polyvinyl alcohol (PVA), inclusion compounds such as polyalkylene glycols and dextrins, Examples include systems to which oxygen-containing or sulfur-containing polymers are added, natural polymers, and the like. An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex of a cation moiety and iodine in one polymer, and the like may be added to these.
 ポリマーマトリクスとして、2官能以上のイソシアネート基と、ヒドロキシ基、アミノ基、カルボキシ基等の官能基とを反応させた架橋ポリマーを含む系を用いてもよい。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸またはポリカルボン酸等を2価以上の金属イオン化合物と反応させる架橋方法等を用いてもよい。 As the polymer matrix, a system containing a crosslinked polymer obtained by reacting a bifunctional or higher functional isocyanate group with a functional group such as a hydroxy group, an amino group, or a carboxy group may be used. In addition, a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
 上記擬固体電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒等が挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させてもよい。液体電解質溶液を保持させる方法として好ましくは、導電性高分子膜、繊維状固体、フィルタ等の布状固体を使用する方法が挙げられる。 Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, a solvent having a specific dielectric constant, and the like. The liquid electrolyte solution may be held in the solid electrolyte membrane or the pores. A preferred method for holding the liquid electrolyte solution is a method using a cloth-like solid such as a conductive polymer film, a fibrous solid, or a filter.
 電解質は、添加物として、4-t-ブチルピリジン等のピリジン化合物のほか、アミノピリジン化合物、ベンズイミダゾール化合物、アミノトリアゾール化合物およびアミノチアゾール化合物、イミダゾール化合物、アミノトリアジン化合物、尿素化合物、アミド化合物、ピリミジン化合物または窒素を含まない複素環を含有していてもよい。 In addition to pyridine compounds such as 4-t-butylpyridine, electrolytes include aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea compounds, amide compounds, and pyrimidines. It may contain a compound or a nitrogen-free heterocycle.
 また、光電変換効率を向上させるために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。
 ヨウ素は、ヨウ素とシクロデキストリンとの包接化合物として使用することもできる。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。
Moreover, in order to improve photoelectric conversion efficiency, you may take the method of controlling the water | moisture content of electrolyte solution. Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. It is preferable to adjust the water content (content ratio) of the electrolytic solution to 0 to 0.1% by mass.
Iodine can also be used as an inclusion compound of iodine and cyclodextrin. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
 以上の液体電解質および擬固体電解質の代わりに、p型半導体あるいはホール輸送材料等の固体電荷輸送層、例えば、CuI、CuNCS等を用いることができる。また、Nature,vol.486,p.487(2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いてもよい。有機ホール輸送材料としては、好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシラン等の導電性高分子および2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミン等の芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。 Instead of the above liquid electrolyte and quasi-solid electrolyte, a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used. An organic hole transport material may be used as the solid charge transport layer. The organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C and Si, triarylamine, etc. And aromatic amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
 酸化還元対は、電子のキャリアになるので、ある程度の濃度で含有するのが好ましい。好ましい濃度としては合計で0.01モル/L以上であり、より好ましくは0.1モル/L以上であり、特に好ましくは0.3モル/L以上である。この場合の上限は特に制限はないが、通常5モル/L程度である。 Since the redox couple becomes an electron carrier, it is preferably contained at a certain concentration. A preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more. The upper limit in this case is not particularly limited, but is usually about 5 mol / L.
<対極>
 対極4および48は、色素増感太陽電池の正極として働くものであることが好ましい。対極4および48は、通常、上記導電性支持体1または41と同じ構成とすることもできるが、強度が十分に保たれるような構成では基板44は必ずしも必要でない。対極4および48の構造としては、集電効果が高い構造が好ましい。感光体層2および42に光が到達するためには、上記導電性支持体1または41と対極4または48との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体1または41が透明であって太陽光を導電性支持体1または41側から入射させるのが好ましい。この場合、対極4および48は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対極4および48としては、金属もしくは導電性の酸化物を蒸着したガラスまたはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
<Counter electrode>
The counter electrodes 4 and 48 preferably function as positive electrodes of the dye-sensitized solar cell. The counter electrodes 4 and 48 can usually have the same configuration as that of the conductive support 1 or 41, but the substrate 44 is not necessarily required in a configuration in which the strength is sufficiently maintained. As the structure of the counter electrodes 4 and 48, a structure having a high current collecting effect is preferable. In order for light to reach the photoreceptor layers 2 and 42, at least one of the conductive support 1 or 41 and the counter electrode 4 or 48 must be substantially transparent. In the dye-sensitized solar cell of the present invention, the conductive support 1 or 41 is preferably transparent, and sunlight is preferably incident from the conductive support 1 or 41 side. In this case, it is more preferable that the counter electrodes 4 and 48 have a property of reflecting light. As the counter electrodes 4 and 48 of the dye-sensitized solar cell, a glass or plastic on which a metal or a conductive oxide is deposited is preferable, and a glass on which platinum is deposited is particularly preferable. In the dye-sensitized solar cell, it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
 本発明は、例えば、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。 The present invention includes, for example, Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can be applied to the photoelectric conversion element and the dye-sensitized solar cell described in the publication. Also, JP 2004-152613 A, JP 2000-90989 A, JP 2003-217688 A, JP 2002-367686 A, JP 2003-323818 A, JP 2001-43907 A, JP 2000-340269, JP 2005-85500, JP 2004-273272, JP 2000-323190, JP 2000-228234, JP 2001-266963, JP 2001-185244, JP-T-2001-525108, JP-A-2001-203377, JP-A-2000-1000048, JP-A-2001-210390, JP-A-2002-280857, JP-A-2001-2001. No. 273937, JP-A 2000-285 77 No. photoelectric conversion device described in JP-A-2001-320068, can be applied to a dye-sensitized solar cell.
[光電変換素子および色素増感太陽電池の製造方法]
 本発明の光電変換素子および色素増感太陽電池は、本発明の金属錯体色素および溶媒を含有する色素溶液(本発明の色素溶液)を用いて、製造することが好ましい。
[Method for producing photoelectric conversion element and dye-sensitized solar cell]
The photoelectric conversion element and the dye-sensitized solar cell of the present invention are preferably produced using a dye solution (the dye solution of the present invention) containing the metal complex dye of the present invention and a solvent.
 このような色素溶液には、本発明の金属錯体色素が溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。 In such a dye solution, the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒を挙げることができるが、特にこれに限定されない。本発明においては有機溶媒が好ましく、さらにアルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、および、これらの2種以上の混合溶媒がより好ましい。混合溶媒としては、アルコール溶媒と、アミド溶媒、ニトリル溶媒または炭化水素溶媒から選ばれる溶媒との混合溶媒が好ましい。さらに好ましくはアルコール溶媒とアミド溶媒の混合溶媒、アルコール溶媒と炭化水素溶媒の混合溶媒、アルコール溶媒とニトリル溶媒の混合溶媒であり、特に好ましくはアルコール溶媒とアミド溶媒の混合溶媒、アルコール溶媒とニトリル溶媒の混合溶媒である。具体的にはメタノール、エタノール、プロパノールおよびt-ブタノールの少なくとも1種と、ジメチルホルムアミドおよびジメチルアセトアミドの少なくとも1種との混合溶媒、メタノール、エタノール、プロパノールおよびt-ブタノールの少なくとも1種と、アセトニトリルとの混合溶媒が好ましい。 Examples of the solvent to be used include, but are not limited to, the solvents described in JP-A No. 2001-291534. In the present invention, an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, and a mixed solvent of two or more of these are more preferable. As the mixed solvent, a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable. More preferably, it is a mixed solvent of an alcohol solvent and an amide solvent, a mixed solvent of an alcohol solvent and a hydrocarbon solvent, a mixed solvent of an alcohol solvent and a nitrile solvent, and particularly preferably a mixed solvent of an alcohol solvent and an amide solvent, an alcohol solvent and a nitrile solvent. It is a mixed solvent. Specifically, a mixed solvent of at least one of methanol, ethanol, propanol and t-butanol and at least one of dimethylformamide and dimethylacetamide, at least one of methanol, ethanol, propanol and t-butanol, and acetonitrile The mixed solvent is preferable.
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、上記の共吸着剤が好ましく、なかでも上記式(CA)で表される化合物が好ましい。
 ここで、本発明の色素溶液は、光電変換素子や色素増感太陽電池を製造する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤の濃度が調整されている色素溶液が好ましい。本発明においては、本発明の色素溶液は、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。共吸着剤の使用量は上記した通りである。
The dye solution preferably contains a co-adsorbent. As the co-adsorbent, the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the above formula (CA) is preferable.
Here, the dye solution of the present invention is a dye solution in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when producing a photoelectric conversion element or a dye-sensitized solar cell. Is preferred. In the present invention, the dye solution of the present invention preferably contains 0.001 to 0.1% by mass of the metal complex dye of the present invention. The amount of coadsorbent used is as described above.
 色素溶液は、水分含有量を調整することが好ましく、本発明では水分含有量を0~0.1質量%に調整することが好ましい。 The water content of the dye solution is preferably adjusted. In the present invention, the water content is preferably adjusted to 0 to 0.1% by mass.
 本発明においては、上記色素溶液を用いて、半導体微粒子表面に式(I)で表される金属錯体色素またはこれを含む色素を担持させることにより、感光体層を作製することが好ましい。すなわち、感光体層は、導電性支持体上に設けた半導体微粒子に上記色素溶液を塗布(ディップ法を含む)し、乾燥または硬化させて、形成することが好ましい。
 このようにして作製した感光体層を備えた受光電極に、さらに電荷移動体層や対極等を設ける(組み立てる)ことで、本発明の光電変換素子または色素増感太陽電池を得ることができる。
In the present invention, the photoreceptor layer is preferably prepared by supporting the metal complex dye represented by the formula (I) or a dye containing the same on the surface of the semiconductor fine particles using the dye solution. That is, the photoreceptor layer is preferably formed by applying the above dye solution (including a dip method) to semiconductor fine particles provided on a conductive support, and drying or curing.
The photoelectric conversion element or the dye-sensitized solar cell of the present invention can be obtained by further providing (assembling) the charge transfer body layer, the counter electrode, and the like on the light-receiving electrode provided with the photoreceptor layer thus produced.
 色素増感太陽電池は、上記のようにして作製した光電変換素子の導電性支持体1および対極4に外部回路6を接続して、製造される。 The dye-sensitized solar cell is manufactured by connecting the external circuit 6 to the conductive support 1 and the counter electrode 4 of the photoelectric conversion element manufactured as described above.
 以下に実施例に基づき、本発明についてさらに詳細に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
 以下に、本発明の金属錯体色素の合成方法を詳しく説明する。
 本明細書において、室温とは25℃を意味する。また、Etはエチルを表し、pinはピナコリル基を表し、TfOHはトリフルオロメタンスルホン酸を表す。
 実施例1において合成した金属錯体色素を、MSI-MSにより、同定した。
Below, the synthesis | combining method of the metal complex pigment | dye of this invention is demonstrated in detail.
In this specification, room temperature means 25 degreeC. Et represents ethyl, pin represents a pinacolyl group, and TfOH represents trifluoromethanesulfonic acid.
The metal complex dye synthesized in Example 1 was identified by MSI-MS.
 実施例1(金属錯体色素の合成)
 本実施例で、合成した金属錯体色素D-1~D-10を以下に示す。
Example 1 (Synthesis of metal complex dye)
The metal complex dyes D-1 to D-10 synthesized in this example are shown below.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(金属錯体色素(D-1)の合成)
 以下のスキームに従って、金属錯体色素(D-1)を合成した。
(Synthesis of metal complex dye (D-1))
A metal complex dye (D-1) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(i)化合物(2)の合成
 European Journal of Organic Chemistry, 2011,#28 p.5587-5598に記載の方法に準拠して、化合物(2)を合成した。
(I) Synthesis of Compound (2) European Journal of Organic Chemistry, 2011, # 28 p. Compound (2) was synthesized according to the method described in No. 5587-5598.
(ii)化合物(4)の合成
 化合物(2)2g、トルエン20mLを三つ口フラスコに入れ、減圧および窒素ガス置換を施した。そこへ、テトラキス(トリフェニルホスフィン)パラジウム(0)0.356gと、ヘキサメチル二スズ2.0gを加え、混合物を加熱還流することにより、3時間反応させた。得られた反応液を、室温まで放冷し、セライトろ過により不溶物を除去し、さらに濃縮した。
 濃縮残渣にトルエン20mLと化合物(3)2.3gを加え、得られた混合液を減圧および窒素ガス置換した。そこへ、テトラキス(トリフェニルホスフィン)パラジウム(0)0.356gを加え、得られた混合物を加熱還流することにより、6時間反応させた。得られた反応液を、放冷し、セライトろ過により不溶物を除去し、濃縮して、粗体を得た。得られた粗体をシリカゲルカラムクロマトグラフィーにより精製することで化合物(4)を1.3g得た。
(Ii) Synthesis of Compound (4) 2 g of Compound (2) and 20 mL of toluene were placed in a three-necked flask and subjected to reduced pressure and nitrogen gas replacement. Thereto was added 0.356 g of tetrakis (triphenylphosphine) palladium (0) and 2.0 g of hexamethyldistin, and the mixture was heated to reflux for 3 hours. The resulting reaction solution was allowed to cool to room temperature, insolubles were removed by celite filtration, and further concentrated.
To the concentrated residue, 20 mL of toluene and 2.3 g of compound (3) were added, and the resulting mixture was reduced in pressure and replaced with nitrogen gas. Thereto, 0.356 g of tetrakis (triphenylphosphine) palladium (0) was added, and the resulting mixture was heated to reflux for 6 hours to react. The resulting reaction solution was allowed to cool, insolubles were removed by celite filtration, and concentrated to obtain a crude product. The obtained crude product was purified by silica gel column chromatography to obtain 1.3 g of Compound (4).
(iii)化合物(5)の合成
 化合物(4)1.3g、RuCl・xHO 0.65g、エタノール80mLをナスフラスコに入れ、外温95℃にて5時間加熱攪拌した。得られた反応液を室温に戻し、ろ過、乾燥することで化合物(5)を1.3g得た。
(Iii) Synthesis of Compound (5) 1.3 g of Compound (4), 0.65 g of RuCl 3 xH 2 O, and 80 mL of ethanol were placed in an eggplant flask and stirred with heating at an external temperature of 95 ° C. for 5 hours. The obtained reaction liquid was returned to room temperature, filtered and dried to obtain 1.3 g of Compound (5).
(iv)化合物(7)の合成
 化合物(5)1.3gと、化合物(6)0.66gと、トリエチルアミン0.97mLと、N,N-ジメチルホルムアミド(DMF)25mLを、ナスフラスコに入れ、外温125℃にて2時間加熱攪拌した。得られた反応液を室温に戻した後、減圧濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにより精製して、化合物(7)0.9gを得た。
(Iv) Synthesis of Compound (7) 1.3 g of Compound (5), 0.66 g of Compound (6), 0.97 mL of triethylamine, and 25 mL of N, N-dimethylformamide (DMF) were placed in an eggplant flask. The mixture was stirred with heating at an external temperature of 125 ° C. for 2 hours. The obtained reaction liquid was returned to room temperature and then concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography to obtain 0.9 g of compound (7).
(v)化合物(8)の合成
 化合物(7)0.9g、NHSCN 0.65gと、N,N-ジメチルホルムアミド45mLと、蒸留水10mLとを、ナスフラスコに入れ、外温100℃にて6時間加熱攪拌した。得られた反応液を室温に戻して減圧濃縮した後、シリカゲルカラムクロマトグラフィーにより精製して、化合物(8)を0.5g得た。
(V) Synthesis of Compound (8) 0.9 g of Compound (7), 0.65 g of NH 4 SCN, 45 mL of N, N-dimethylformamide and 10 mL of distilled water were placed in an eggplant flask, and the external temperature was 100 ° C. For 6 hours. The obtained reaction liquid was returned to room temperature, concentrated under reduced pressure, and then purified by silica gel column chromatography to obtain 0.5 g of compound (8).
(vi)金属錯体色素(D-1)の合成
 化合物(8)0.30g、N,N-ジメチルホルムアミド5mL、1NのNaOH水溶液3mLをナスフラスコに入れ、1.5時間加熱攪拌した。その後、トリフルオロメタンスルホン酸(TfOH)のメタノール溶液で酸性に調整した。析出した結晶をろ取し、超純水で洗浄した後に、乾燥して、金属錯体色素(D-1)を0.23g得た。
(Vi) Synthesis of Metal Complex Dye (D-1) 0.30 g of Compound (8), 5 mL of N, N-dimethylformamide, 3 mL of 1N NaOH aqueous solution were placed in an eggplant flask and stirred with heating for 1.5 hours. Then, it adjusted to acidity with the methanol solution of trifluoromethanesulfonic acid (TfOH). The precipitated crystals were collected by filtration, washed with ultrapure water, and then dried to obtain 0.23 g of metal complex dye (D-1).
 金属錯体色素(D-1)の合成と同様にして、上記金属錯体色素(D-2)~(D-10)をそれぞれ合成した。
 合成した金属錯体色素(D-1)~(D-10)は下記表1のデータから確認された。
The metal complex dyes (D-2) to (D-10) were synthesized in the same manner as in the synthesis of the metal complex dye (D-1).
The synthesized metal complex dyes (D-1) to (D-10) were confirmed from the data shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
実施例2(色素増感太陽電池の製造)
 実施例1で合成した金属錯体色素(D-1)~(D-10)または下記比較化合物(C-1)~(C-3)それぞれを用いて、図2に示す色素増感太陽電池20(5mm×5mmのスケール)を製造した。製造は、以下に示す手順により、行った。製造した色素増感太陽電池20それぞれの下記性能を評価した。その結果を表2に示した。
Example 2 (Production of dye-sensitized solar cell)
Using each of the metal complex dyes (D-1) to (D-10) synthesized in Example 1 or the following comparative compounds (C-1) to (C-3), the dye-sensitized solar cell 20 shown in FIG. (5 mm × 5 mm scale) was manufactured. Manufacture was performed according to the following procedure. The following performance of each of the produced dye-sensitized solar cells 20 was evaluated. The results are shown in Table 2.
(受光電極前駆体の作製)
 ガラス基板(基板44、厚み4mm)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成し、導電性支持体41を作製した。そして、このSnO導電膜上に、チタニアペースト「18NR-T」(DyeSol社製)をスクリーン印刷し、120℃で乾燥させた。次いで、チタニアペースト「18NR-T」を再度スクリーン印刷し、120℃で1時間乾燥させた。その後、乾燥させたチタニアペーストを、空気中、500℃で焼成し、半導体層45(層厚;10μm)を成膜した。さらに、この半導体層45上に、チタニアペースト「18NR-AO」(DyeSol社製)をスクリーン印刷し、120℃で1時間乾燥させた。その後、乾燥させたチタニアペーストを500℃で焼成し、半導体層45上に光散乱層46(層厚;5μm)を成膜した。
 このようにして、SnO導電膜上に、感光体層42(受光面の面積;5mm×5mm、層厚;15μm、金属錯体色素は未担持)を形成し、金属錯体色素を担持していない受光電極前駆体を作製した。
(Preparation of light receiving electrode precursor)
A fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44, thickness 4 mm) to produce a conductive support 41. Then, titania paste “18NR-T” (manufactured by DyeSol) was screen printed on the SnO 2 conductive film and dried at 120 ° C. Next, the titania paste “18NR-T” was screen-printed again and dried at 120 ° C. for 1 hour. Thereafter, the dried titania paste was baked in air at 500 ° C. to form a semiconductor layer 45 (layer thickness: 10 μm). Further, a titania paste “18NR-AO” (manufactured by DyeSol) was screen-printed on the semiconductor layer 45 and dried at 120 ° C. for 1 hour. Thereafter, the dried titania paste was baked at 500 ° C., and a light scattering layer 46 (layer thickness: 5 μm) was formed on the semiconductor layer 45.
In this way, the photoreceptor layer 42 (light receiving surface area: 5 mm × 5 mm, layer thickness: 15 μm, metal complex dye not supported) is formed on the SnO 2 conductive film, and the metal complex dye is not supported. A light receiving electrode precursor was prepared.
(色素吸着)
 次に、金属錯体色素を担持していない感光体層42に実施例1で合成した各金属錯体色素(D-1)~(D-10)を以下のようにして担持させた。先ず、t-ブタノールとアセトニトリルとの1:1(体積比)の混合溶媒に、上記金属錯体色素それぞれを濃度が2×10-4モル/Lとなるように溶解し、さらにそこへ共吸着剤としてデオキシコール酸を上記金属錯体色素1モルに対して30モル加え、各色素溶液を調製した。次に、各色素溶液に受光電極前駆体を25℃で45時間浸漬し、色素溶液から引き上げた後に乾燥させた。
 このようにして、受光電極前駆体に各金属錯体色素が担持した受光電極40をそれぞれ作製した。
(Dye adsorption)
Next, each of the metal complex dyes (D-1) to (D-10) synthesized in Example 1 was supported on the photoreceptor layer 42 not supporting the metal complex dye as follows. First, each of the metal complex dyes is dissolved in a 1: 1 (volume ratio) mixed solvent of t-butanol and acetonitrile so as to have a concentration of 2 × 10 −4 mol / L, and the coadsorbent is further dissolved therein. 30 mol of deoxycholic acid was added to 1 mol of the above metal complex dye to prepare each dye solution. Next, the photoelectrode precursor was immersed in each dye solution at 25 ° C. for 45 hours, pulled up from the dye solution, and then dried.
In this manner, each of the light receiving electrodes 40 in which each metal complex dye was supported on the light receiving electrode precursor was produced.
(色素増感太陽電池の組み立て)
 対極48として、上記の導電性支持体41と同様の形状と大きさを有する白金電極(Pt薄膜の厚み;100nm)を作製した。また、電解液として、ヨウ素0.1M(モル/L)、ヨウ化リチウム0.1M、4-t-ブチルピリジン0.5Mおよび1,2-ジメチル-3-プロピルイミダゾリウムヨージド0.6Mをアセトニトリルに溶解して、液体電解質を調製した。さらに、感光体層42の大きさに合わせた形状を有するスペーサーS「サーリン」(商品名、デュポン社製)を準備した。
 上記のようにして作製した受光電極40それぞれと対極48とを、上記スペーサーSを介して、対向させて熱圧着させた後に、感光体層42と対極48との間に電解液注入口から上記液体電解質を充填して電荷移動体層47を形成した。このようにして作製した電池の外周および電解液注入口を、レジンXNR-5516(ナガセケムテック製)を用いて、封止、硬化し、各色素増感太陽電池(試料番号1~10)を製造した。
(Assembly of dye-sensitized solar cell)
As the counter electrode 48, a platinum electrode (Pt thin film thickness: 100 nm) having the same shape and size as the conductive support 41 was prepared. In addition, as an electrolytic solution, iodine 0.1M (mol / L), lithium iodide 0.1M, 4-t-butylpyridine 0.5M and 1,2-dimethyl-3-propylimidazolium iodide 0.6M were used. A liquid electrolyte was prepared by dissolving in acetonitrile. Further, a spacer S “Surlin” (trade name, manufactured by DuPont) having a shape matched to the size of the photoreceptor layer 42 was prepared.
Each of the light-receiving electrodes 40 and the counter electrode 48 manufactured as described above are thermocompression-bonded so as to face each other via the spacer S, and then the electrolyte solution injection port is interposed between the photoreceptor layer 42 and the counter electrode 48. The charge transfer layer 47 was formed by filling the liquid electrolyte. The outer periphery of the battery thus prepared and the electrolyte injection port were sealed and cured using Resin XNR-5516 (manufactured by Nagase Chemtech), and each dye-sensitized solar cell (sample numbers 1 to 10) was sealed. Manufactured.
 比較のため、上記色素増感太陽電池の製造において、実施例1で合成した金属錯体色素に代えて下記金属錯体色素(C-1)~(C-3)のいずれかを用いた以外は、上記色素増感太陽電池の製造と同様にして、色素増感太陽電池(試料番号c1~c3)を製造した。
 金属錯体色素(C-1)は特許文献1に記載の化合物「A-4」である。金属錯体色素(C-2)は特許文献2に記載の化合物「D-9」である。金属錯体色素(C-3)は特許文献1の段落[0042]に記載の化合物である。
For comparison, in the production of the dye-sensitized solar cell, except that any of the following metal complex dyes (C-1) to (C-3) was used instead of the metal complex dye synthesized in Example 1, Dye-sensitized solar cells (sample numbers c1 to c3) were manufactured in the same manner as the dye-sensitized solar cells.
The metal complex dye (C-1) is the compound “A-4” described in Patent Document 1. The metal complex dye (C-2) is the compound “D-9” described in Patent Document 2. The metal complex dye (C-3) is a compound described in paragraph [0042] of Patent Document 1.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
<光電変換効率の評価>
 製造した色素増感太陽電池それぞれを用いて電池特性試験を行った。電池特性試験は、ソーラーシミュレーター(WXS-85H、WACOM社製)を用い、AM1.5フィルタを通したキセノンランプから1000W/mの擬似太陽光を照射することにより行った。I-Vテスターを用いて電流-電圧特性を測定し、光電変換効率を求めた。
<Evaluation of photoelectric conversion efficiency>
A battery characteristic test was performed using each of the produced dye-sensitized solar cells. The battery characteristic test was performed by irradiating 1000 W / m 2 of simulated sunlight from a xenon lamp through an AM1.5 filter using a solar simulator (WXS-85H, manufactured by WACOM). The current-voltage characteristics were measured using an IV tester to determine the photoelectric conversion efficiency.
 製造した色素増感太陽電池(試料番号1~10およびc1~c3)それぞれについて、上記のようにして、光電変換効率を測定した。測定した光電変換効率を評価した。評価は、色素増感太陽電池(試料番号c2)の光電変換効率(Sc2)を、基準とした。
 光電変換効率の評価基準において、「A」および「B」が本試験の合格レベルであり、好ましくは「A」である。一方、「C」は光電変換効率が不十分であり、本発明の合格レベル(要求レベル)に到達しない。
(光電変換効率の評価基準)
 光電変換効率が光電変換効率(Sc2)に対して、
 A:1.1倍より大きいもの
 B:1.0倍より大きく、1.1倍以下のもの
 C:1.0倍以下のもの
For each of the produced dye-sensitized solar cells (sample numbers 1 to 10 and c1 to c3), the photoelectric conversion efficiency was measured as described above. The measured photoelectric conversion efficiency was evaluated. Evaluation was based on the photoelectric conversion efficiency (S c2 ) of the dye-sensitized solar cell (sample number c2).
In the evaluation criteria for the photoelectric conversion efficiency, “A” and “B” are acceptable levels of this test, and preferably “A”. On the other hand, “C” has insufficient photoelectric conversion efficiency and does not reach the pass level (required level) of the present invention.
(Evaluation criteria for photoelectric conversion efficiency)
The photoelectric conversion efficiency is relative to the photoelectric conversion efficiency (S c2 ).
A: More than 1.1 times B: More than 1.0 times, 1.1 times or less C: 1.0 times or less
<耐久性の評価>
 色素増感太陽電池(試料番号1~10およびc1~c3)それぞれを、40℃の恒温槽に入れて、耐熱試験を行った。耐熱試験前の色素増感太陽電池および耐熱試験20時間後の色素増感太陽電池それぞれについて、上記のようにして、光電変換効率を測定した。耐熱試験20時間後の光電変換効率の減少分を、耐熱試験前の光電変換効率で割った値を熱劣化比とした。この熱劣化比を指標として耐久性を評価した。評価は、色素増感太陽電池(試料番号c1)の熱劣化比(S c1)を基準とした。
 耐久性の評価基準において、「A」および「B」が本試験の合格レベルであり、好ましくは「A」である。一方、「C」は熱劣化比が大きく、本発明の合格レベル(要求レベル)に到達しない。
(耐久性の評価基準)
 熱劣化比が熱劣化比(S c1)に対して、
 A:0.9倍未満のもの
 B:0.9倍以上1.0倍未満のもの
 C:1.0倍以上のもの
<Durability evaluation>
Each of the dye-sensitized solar cells (sample numbers 1 to 10 and c1 to c3) was placed in a constant temperature bath at 40 ° C. and subjected to a heat resistance test. For each of the dye-sensitized solar cell before the heat test and the dye-sensitized solar cell 20 hours after the heat test, the photoelectric conversion efficiency was measured as described above. The value obtained by dividing the decrease in photoelectric conversion efficiency after 20 hours of the heat resistance test by the photoelectric conversion efficiency before the heat resistance test was defined as the thermal deterioration ratio. Durability was evaluated using this thermal deterioration ratio as an index. Evaluation was based on the thermal deterioration ratio (S R c1 ) of the dye-sensitized solar cell (sample number c1).
In the durability evaluation criteria, “A” and “B” are acceptable levels of this test, and preferably “A”. On the other hand, “C” has a large thermal deterioration ratio and does not reach the acceptable level (required level) of the present invention.
(Evaluation criteria for durability)
Thermal degradation ratio is relative to thermal degradation ratio (S R c1 )
A: Less than 0.9 times B: 0.9 times or more and less than 1.0 times C: 1.0 times or more
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 表2に示す結果から、以下のことが分かる。
 試料番号1~10(本発明)においては、いずれも、配位子として、上記ターピリジン系配位子と、配位子L、LおよびLとを組み合わせた金属錯体色素(D-1~D-10)を用いた。これらの金属錯体色素(D-1~D-10)が半導体微粒子に担持された本発明の光電変換素子および色素増感太陽電池(試料番号1~10)は、いずれも、光電変換効率および耐久性がともに高かった。
From the results shown in Table 2, the following can be understood.
In Sample Nos. 1 to 10 (invention), all of them are metal complex dyes (D-1) in which the above terpyridine ligand and ligands L 1 , L 2 and L 3 are combined as a ligand. ~ D-10) were used. The photoelectric conversion elements and dye-sensitized solar cells (sample numbers 1 to 10) of the present invention in which these metal complex dyes (D-1 to D-10) are supported on semiconductor fine particles are both photoelectric conversion efficiency and durability. Both sexes were high.
 さらに、本発明の金属錯体色素は、本発明の光電変換素子および色素増感太陽電池の増感色素として好適に用いることができた。本発明の金属錯体色素と溶媒とを含有する本発明の色素溶液は、本発明の金属錯体色素を(DL)担持した半導体微粒子の調製に好適に用いることができた。 Furthermore, the metal complex dye of the present invention could be suitably used as a sensitizing dye of the photoelectric conversion element and dye-sensitized solar cell of the present invention. The dye solution of the present invention containing the metal complex dye of the present invention and a solvent could be suitably used for the preparation of semiconductor fine particles carrying (DL) the metal complex dye of the present invention.
 これに対して、試料番号c1においては、配位子L、LおよびLを有しない金属錯体色素を用いた。この光電変換素子および色素増感太陽電池は、光電変換効率および耐久性が合格レベルに到達しなかった。
 また、試料番号c2においては、上記ターピリジン系配位子を有しない金属錯体色素を用いた。この光電変換素子および色素増感太陽電池は、光電変換効率が合格レベルに到達しなかった。
 さらに、試料番号c3においては、L~Lのうちアニオン性配位子(NCS)を1つしか有しない金属錯体色素を用いた。この光電変換素子および色素増感太陽電池は、光電変換効率および耐久性がともに合格レベルに到達しなかった。
On the other hand, in sample number c1, a metal complex dye having no ligands L 1 , L 2 and L 3 was used. In this photoelectric conversion element and the dye-sensitized solar cell, the photoelectric conversion efficiency and durability did not reach acceptable levels.
Moreover, in sample number c2, the metal complex dye which does not have the said terpyridine type ligand was used. In this photoelectric conversion element and the dye-sensitized solar cell, the photoelectric conversion efficiency did not reach the acceptable level.
Further, in sample number c3, a metal complex dye having only one anionic ligand (NCS) among L 1 to L 3 was used. In this photoelectric conversion element and the dye-sensitized solar cell, both the photoelectric conversion efficiency and the durability did not reach acceptable levels.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年9月29日に日本国で特許出願された特願2014-199253に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-199253 filed in Japan on September 29, 2014, which is hereby incorporated herein by reference. Capture as part.
1、41 導電性支持体
2、42 感光体層
 21 色素
 22 半導体微粒子
3、47 電荷移動体層
4、48 対極
5、40 受光電極
6 外部回路
10 光電変換素子
100 光電変換素子を電池用途に応用したシステム
M 動作手段(例えば電動モーター)
20 色素増感太陽電池
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
S スペーサー
DESCRIPTION OF SYMBOLS 1,41 Conductive support body 2,42 Photoconductor layer 21 Dye 22 Semiconductor fine particle 3,47 Charge transfer body layer 4,48 Counter electrode 5,40 Photosensitive electrode 6 External circuit 10 Photoelectric conversion element 100 Application of photoelectric conversion element to battery use System M operating means (eg electric motor)
20 Dye-sensitized solar cell 43 Transparent conductive film 44 Substrate 45 Semiconductor layer 46 Light scattering layer S Spacer

Claims (10)

  1.  導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
     式中、AncおよびAncは各々独立に酸性基を表す。
     Mは金属イオンを表す。
     Xは、-CH=または-N=を表す。
     Arは、下記式(X-1)もしくは式(X-2)で表される単環の環基、または、下記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基を表す。
     L~Lは配位子を表す。ただし、L~Lのうちの2つがアニオン性配位子を表し、L~Lのうちの少なくとも1つが環を構成する窒素原子で前記Mに配位する配位子を表す。L~Lのうち、LとLとが互いに結合してなる2座配位子であるか、または、LとLとLとが互いに結合してなる3座配位子である。
    Figure JPOXMLDOC01-appb-C000002
     式中、Aは、各々独立に、-O-、-S-または-NR-を表す。Rは水素原子、アルキル基またはアリール基を表す。
     RX1~RX6は、各々独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。RXaは、各々独立に、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。n1~n3は、各々独立に、0以上の整数であり、かつ上記各多環の環基が無置換であるときの水素原子数以下の整数を表す。
     *は、Xを含む環との結合位置を表す。
    A photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer is a metal represented by the following formula (I) A photoelectric conversion element having semiconductor fine particles carrying a complex dye.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, Anc 1 and Anc 2 each independently represent an acidic group.
    M represents a metal ion.
    X I represents —CH═ or —N═.
    Ar represents a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) Represents a polycyclic ring group containing a monocyclic ring group as a condensed ring.
    L 1 to L 3 represent a ligand. However, two of L 1 to L 3 represent an anionic ligand, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting a ring. L 1 to L 3 are bidentate ligands in which L 1 and L 2 are bonded to each other, or tridentate coordination in which L 1 , L 2 and L 3 are bonded to each other It is a child.
    Figure JPOXMLDOC01-appb-C000002
    In the formula, A H independently represents —O—, —S— or —NR A —. R A represents a hydrogen atom, an alkyl group or an aryl group.
    R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. n1 to n3 each independently represents an integer of 0 or more, and represents an integer of the number of hydrogen atoms or less when each of the polycyclic ring groups is unsubstituted.
    * Represents the bonding position to the ring containing X I.
  2.  前記2座配位子が、下記式(2L-1)~(2L-4)のいずれかの式で表される請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
     式中、環D2Lは芳香族環を表す。A111~A141は各々独立に窒素原子のアニオンまたは炭素原子のアニオンを表す。R111~R143は各々独立に水素原子、または、前記酸性基を有しない置換基を表す。*は前記金属イオンMへの配位位置を表す。
    The photoelectric conversion element according to claim 1, wherein the bidentate ligand is represented by any one of the following formulas (2L-1) to (2L-4).
    Figure JPOXMLDOC01-appb-C000003
    In the formula, ring D 2L represents an aromatic ring. A 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom. R 111 to R 143 each independently represents a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
  3.  前記3座配位子が、下記式(3L-1)~(3L-4)のいずれかの式で表される請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     式中、環D2Lは芳香族環を表す。A211~A242は各々独立に窒素原子のアニオンまたは炭素原子のアニオンを表す。R211~R241は各々独立に水素原子、または、前記酸性基を有しない置換基を表す。*は前記金属イオンMへの配位位置を表す。
    The photoelectric conversion device according to claim 1, wherein the tridentate ligand is represented by any one of the following formulas (3L-1) to (3L-4).
    Figure JPOXMLDOC01-appb-C000004
    In the formula, ring D 2L represents an aromatic ring. A 211 to A 242 each independently represents an anion of a nitrogen atom or an anion of a carbon atom. R 211 to R 241 each independently represent a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
  4.  前記Arが、前記式(X-1)で表される単環の環基、または、式(X-1a)もしくは式(X-3a)で表される単環の環基を縮合環として含む多環の環基である請求項1~3のいずれか1項に記載の光電変換素子。 Ar includes a monocyclic ring group represented by the formula (X-1) or a monocyclic ring group represented by the formula (X-1a) or the formula (X-3a) as a condensed ring. The photoelectric conversion device according to any one of claims 1 to 3, which is a polycyclic ring group.
  5.  前記Aが、-O-または-S-である請求項1~4のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 4, wherein the A H is -O- or -S-.
  6.  前記Mが、Ru2+またはOs2+である請求項1~5のいずれか1項に記載の光電変換素子。 6. The photoelectric conversion element according to claim 1, wherein M is Ru 2+ or Os 2+ .
  7.  前記酸性基が、カルボキシ基またはその塩である請求項1~6のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, wherein the acidic group is a carboxy group or a salt thereof.
  8.  請求項1~7のいずれか1項に記載の光電変換素子を備えた色素増感太陽電池。 A dye-sensitized solar cell comprising the photoelectric conversion element according to any one of claims 1 to 7.
  9.  下記式(I)で表される金属錯体色素。
    Figure JPOXMLDOC01-appb-C000005
     式中、AncおよびAncは各々独立に酸性基を表す。
     Mは金属イオンを表す。
     Xは、-CH=または-N=を表す。
     Arは、下記式(X-1)もしくは式(X-2)で表される単環の環基、または、下記式(X-1a)~式(X-3a)のいずれかの式で表される単環の環基を縮合環として含む多環の環基を表す。
     L~Lは配位子を表す。ただし、L~Lのうちの2つがアニオン性配位子を表し、L~Lのうちの少なくとも1つが環を構成する窒素原子で前記Mに配位する配位子を表す。L~Lのうち、LとLとが互いに結合してなる2座配位子であるか、または、LとLとLとが互いに結合してなる3座配位子である。
    Figure JPOXMLDOC01-appb-C000006
     式中、Aは、各々独立に、-O-、-S-または-NR-を表す。Rは水素原子、アルキル基またはアリール基を表す。
     RX1~RX6は、各々独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。RXaは、各々独立に、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、シリル基、シアノ基またはヒドロキシ基を表す。n1~n3は、各々独立に、0以上の整数であり、かつ上記各多環の環基が無置換であるときの水素原子数以下の整数を表す。
     *は、Xを含む環との結合位置を表す。
    A metal complex dye represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000005
    In the formula, Anc 1 and Anc 2 each independently represent an acidic group.
    M represents a metal ion.
    X I represents —CH═ or —N═.
    Ar represents a monocyclic ring group represented by the following formula (X-1) or (X-2), or any one of the following formulas (X-1a) to (X-3a) Represents a polycyclic ring group containing a monocyclic ring group as a condensed ring.
    L 1 to L 3 represent a ligand. However, two of L 1 to L 3 represent an anionic ligand, and at least one of L 1 to L 3 represents a ligand coordinated to M by a nitrogen atom constituting a ring. L 1 to L 3 are bidentate ligands in which L 1 and L 2 are bonded to each other, or tridentate coordination in which L 1 , L 2 and L 3 are bonded to each other It is a child.
    Figure JPOXMLDOC01-appb-C000006
    In the formula, A H independently represents —O—, —S— or —NR A —. R A represents a hydrogen atom, an alkyl group or an aryl group.
    R X1 to R X6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. R Xa each independently represents an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a silyl group, a cyano group, or a hydroxy group. n1 to n3 each independently represents an integer of 0 or more, and represents an integer of the number of hydrogen atoms or less when each of the polycyclic ring groups is unsubstituted.
    * Represents the bonding position to the ring containing X I.
  10.  請求項9に記載の金属錯体色素と溶媒とを含有する色素溶液。 A dye solution containing the metal complex dye according to claim 9 and a solvent.
PCT/JP2015/076260 2014-09-29 2015-09-16 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution WO2016052192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551908A JP6300332B2 (en) 2014-09-29 2015-09-16 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014199253 2014-09-29
JP2014-199253 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052192A1 true WO2016052192A1 (en) 2016-04-07

Family

ID=55630234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076260 WO2016052192A1 (en) 2014-09-29 2015-09-16 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution

Country Status (3)

Country Link
JP (1) JP6300332B2 (en)
TW (1) TW201615654A (en)
WO (1) WO2016052192A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036237A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012146632A (en) * 2010-12-21 2012-08-02 Sony Corp Dye, dye-sensitized photoelectric conversion element, electronic device, and building
JP2013084593A (en) * 2011-09-26 2013-05-09 Fujifilm Corp Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used therein
JP2013213119A (en) * 2012-03-30 2013-10-17 Fujikura Ltd Photosensitive dye and dye-sensitized solar cell using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036237A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2012146632A (en) * 2010-12-21 2012-08-02 Sony Corp Dye, dye-sensitized photoelectric conversion element, electronic device, and building
JP2013084593A (en) * 2011-09-26 2013-05-09 Fujifilm Corp Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used therein
JP2013213119A (en) * 2012-03-30 2013-10-17 Fujikura Ltd Photosensitive dye and dye-sensitized solar cell using the same

Also Published As

Publication number Publication date
TW201615654A (en) 2016-05-01
JPWO2016052192A1 (en) 2017-07-27
JP6300332B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6204591B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterified product thereof
KR20150092259A (en) Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
JP6311204B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterified product thereof
WO2015190467A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal-complex pigment, pigment solution, and terpyridine compound or esterified terpyridine compound
JP6175564B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
JP6253167B2 (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
JP6300334B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
WO2015002081A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, ligand, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
JP6300333B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterified product thereof
JP6300332B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
JP6204603B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
JP6304612B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
WO2016143507A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution
JP6410669B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
WO2016052196A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterification product thereof
JP2016076585A (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
JP2016063154A (en) Photoelectric transducer, dye-sensitized solar cell, ruthenium complex dye, and dye solution
JP2016072394A (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847649

Country of ref document: EP

Kind code of ref document: A1