WO2016052113A1 - Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element - Google Patents

Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element Download PDF

Info

Publication number
WO2016052113A1
WO2016052113A1 PCT/JP2015/075604 JP2015075604W WO2016052113A1 WO 2016052113 A1 WO2016052113 A1 WO 2016052113A1 JP 2015075604 W JP2015075604 W JP 2015075604W WO 2016052113 A1 WO2016052113 A1 WO 2016052113A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
siloxane resin
resin composition
mass
Prior art date
Application number
PCT/JP2015/075604
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 中村
貴規 田口
祐継 室
久保田 誠
上村 哲也
高桑 英希
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014248286A external-priority patent/JP6001041B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020177008874A priority Critical patent/KR101913604B1/en
Publication of WO2016052113A1 publication Critical patent/WO2016052113A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds

Definitions

  • the present invention relates to a siloxane resin composition, a transparent cured product using the siloxane resin composition, a transparent pixel, a microlens, and a solid-state imaging device.
  • Patent Document 1 proposes a positive photosensitive resin composition in which particles such as titanium oxide are contained in polyimide.
  • An object of the present invention is to provide a siloxane resin composition suitable as a material for transparent members such as lenses and transparent pixels. It is not limited to the positive type, and can be applied as a thermosetting resin or a negative type photosensitive resin, and can be suitably applied to micro-processing of micro lenses and transparent pixels, and if necessary, An object is to provide a siloxane resin composition capable of improving manufacturing suitability and properties of a cured film. Another object of the present invention is to provide a transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition.
  • a siloxane resin composition having a molar extinction coefficient at 365 nm of 5000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or more and a molar extinction coefficient at 400 nm of 3500 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or less.
  • Composition. [3] The siloxane resin composition according to [1] or [2], wherein the metal-containing particles have a refractive index of 1.75 or more and 2.90 or less.
  • the siloxane resin composition according to any one of [1] to [6] which is an ultraviolet curable resin composition.
  • the polymerization initiator is an organic halogenated compound, oxydiazole compound, carbonyl compound, ketal compound, benzoin compound, acridine compound, organic peroxide compound, azo compound, coumarin compound, azide compound, metallocene compound, hexaary Rubiimidazole compound, organic boric acid compound, disulfonic acid compound, oxime compound, onium salt compound, hydroxyacetophenone compound, aminoacetophenone compound, acylphosphine oxide compound, trihalomethyltriazine compound, benzyldimethyl ketal compound, ⁇ -hydroxyketone compound, ⁇ -Aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, triallylimidazole dimers, onium compounds, benzothiazo Selected from the group consisting of a phenolic compound, a benzophenone compound, a cyclopentadiene-benzene-iron complex
  • siloxane resin composition according to any one of [1] to [10], wherein the siloxane resin is a hydrolysis condensation reaction product of an alkoxysilane compound.
  • the ultraviolet absorber is contained in a solid component in an amount of 0.01% by mass to 20% by mass.
  • siloxane resin composition according to any one of [1] to [13], wherein the siloxane resin is obtained by a hydrolytic condensation reaction in the presence of the metal-containing particles.
  • a transparent cured product obtained by curing the siloxane resin composition according to any one of [1] to [14].
  • a transparent pixel comprising the transparent cured product according to [15].
  • a microlens comprising the transparent cured product according to [15].
  • a solid-state imaging device comprising the transparent pixel according to [16], the microlens according to [17], or both.
  • the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “radiation” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. In the present invention, light means actinic rays or radiation.
  • exposure in this specification is not only exposure with far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays, EUV light, but also drawing with particle beams such as electron beams and ion beams. Are also included in the exposure.
  • (meth) acrylate represents both and / or acrylate and methacrylate
  • (meth) acryl represents both and / or acryl and “(meth) acrylic”
  • Acryloyl represents both and / or acryloyl and methacryloyl.
  • “monomer” and “monomer” are synonymous.
  • the monomer in this specification is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound refers to a compound having a polymerizable group, and may be a monomer or a polymer.
  • the polymerizable group refers to a group that participates in a polymerization reaction.
  • the weight average molecular weight and the number average molecular weight can be determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the siloxane resin composition of the present invention is suitable as a material for transparent members such as lenses and transparent pixels.
  • a thermosetting resin or a negative photosensitive resin can be used, and it can also be suitably applied to micro-processing of micro lenses and transparent pixels.
  • a high-quality transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition can be provided.
  • the siloxane resin composition of the present invention contains a specific amount of metal-containing particles, a siloxane resin, a polymerization initiator, and a specific ultraviolet absorber.
  • the metal-containing particles widely include particles containing a metal as a constituent element.
  • the term metal is to be interpreted in the broadest sense, and metalloids such as boron, silicon and arsenic are also included here.
  • the metal-containing particles are configured to include oxygen atoms, they may be particularly referred to as metal oxide particles.
  • the metal-containing particles preferably contain a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si. Especially, it is preferable that it is the oxide particle of the composite metal containing 2 or more types of them.
  • a combination containing Ti and Zr (further Si if necessary), Ti and Sn (further Si if necessary), Ti, Zr and Sn (further Si if necessary) is preferable, and a combination containing Ti, Zr, Sn and Si is preferable. Further preferred.
  • constituent material of the metal-containing particles examples include titanium oxide, zirconium oxide, silicon oxide, barium titanate, barium sulfate, barium oxide, hafnium oxide, tantalum oxide, tungsten oxide, and yttrium oxide. These constituent materials may contain two or more kinds, and preferably contain at least titanium oxide and zirconium oxide.
  • titanium oxide is contained as a constituent material, it is preferable to contain rutile titanium oxide.
  • rutile type titanium oxide with respect to the total amount of titanium oxide, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit is 100% by mass.
  • the metal-containing particles preferably have a refractive index of 1.75 or higher, more preferably 1.90 or higher.
  • the upper limit is preferably 2.90 or less, and more preferably 2.70 or less.
  • the average particle size of the metal-containing particles is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • 1 nm or more is preferable and 3 nm or more is more preferable.
  • the metal-containing particles can be pulverized or dispersed using a dispersing machine such as a bead mill by procuring appropriate particle powder.
  • the refractive index of metal-containing particles can be measured by the following method.
  • a mixed solution sample of a matrix resin having a solid content concentration of 10%, prepared so that the content of the metal-containing particles is 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass, and metal-containing particles is prepared.
  • Each is coated on a silicon wafer using a spin coater so as to have a thickness of 0.3 to 1.0 ⁇ m, and then heated and dried on a hot plate at 200 ° C. for 5 minutes to obtain a coating film.
  • the refractive index at a wavelength of 633 nm (25 ° C.) is obtained using an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.), and the value of 100% by mass of the metal-containing particles can be extrapolated.
  • the number average particle diameter of the metal-containing particles (meaning the average particle diameter in the primary particle diameter) can be determined from the photograph obtained by observing the particles with a transmission electron microscope. The projected area of the particles is obtained, and the equivalent circle diameter is obtained from this to obtain the average particle diameter. In addition, in order to obtain
  • the average particle diameter is determined as an average value of 80 particles excluding the maximum 10 and the minimum 10. In this specification, the average particle diameter means the number average particle diameter unless otherwise specified.
  • metal-containing particles examples include T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; manufactured by Daiichi Rare Element Chemical Co., Ltd.) or STR-100N (oxidized oxide). Titanium, manufactured by Sakai Chemical Industry Co., Ltd.).
  • the metal-containing particles can also be obtained as a dispersion dispersed in a liquid.
  • silicon oxide-titanium oxide particles examples include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” “TR-520", “Optlake” TR-527, “Optlake” TR-528, “Optlake” TR-529, “Optlake” TR-544 or “Optlake” TR-550
  • STR-100W and STR-100WLPT both manufactured by Sakai Chemical Industry Co., Ltd.
  • the content ratio (element composition) of the metal element in the metal-containing particles includes Ti and Zr, and the ratio is preferably 1 to 40, more preferably 1 to 30, more preferably 3 to 20 in terms of Ti / Zr ratio. 4 to 12 is more preferable, and 4 to 9 is most preferable. When satisfying such a numerical range, it is preferable because the storage stability of the composition can be enhanced while maintaining a high refractive index. Moreover, by making Ti / Zr into this range, the light resistance of the cured product of the siloxane resin composition can be improved, which is preferable.
  • the interaction with a specific ultraviolet absorber is further enhanced, and the desired light resistance can be exhibited at a high level while maintaining the high refractive index of the cured product of the siloxane resin composition.
  • Ti and Si are contained, and the ratio thereof is preferably 1 to 40, more preferably 1 to 30, and further preferably 1 to 10 in terms of Ti / Si ratio. In other words, Ti and Si are contained, and the ratio is preferably 1 or more in terms of Ti / Si ratio.
  • 40 or less are preferable, 30 or less are more preferable, and 10 or less are especially preferable.
  • the Ti / Sn ratio is preferably 10 or more, more preferably 13 or more, further preferably 15 or more, further preferably 17 or more, further preferably 19 or more, and particularly preferably 20 or more.
  • the compatibility (affinity) with the organic component used together with the metal-containing particles can be expected.
  • grain is evaluated by the element composition (atomic%) quantified by the fluorescent X ray analysis (Rigaku's PrimusII type
  • the ratio of a plurality of elements is determined by obtaining each element composition (atomic%) and evaluating the ratio of each elemental composition (atomic%).
  • the elemental composition ratio is synonymous even if it is obtained as a mole ratio.
  • the surface treatment of the metal-containing particles may be in any mode, and examples include a mode in which the surface is treated with a surfactant described later and a mode in which the surface is treated with a processing agent containing another metal.
  • a mode in which the surface is treated with a surfactant described later and a mode in which the surface is treated with a processing agent containing another metal.
  • grain and forms a film, such as another kind of metal containing material, on the surface is mentioned.
  • a coating of another type of gold-containing material or the like may be thick and core-shell type metal-containing particles may be used.
  • the ratio of the core to the shell is not particularly limited, but when the total particle is 100 parts by mass, the ratio of the core is preferably 85 parts by mass or more, more preferably 87 parts by mass or more, and particularly preferably 90 parts by mass or more.
  • the upper limit is practically 97 parts by mass or less.
  • the combination of the materials constituting the core and the shell is not particularly limited, but examples include that the core is composed of particles containing Ti, Sn, etc., and the shell is composed of a coating containing Zr or Si. In view of increasing the refractive index of the particles, it is particularly desirable that the material constituting the shell is a high refractive index material.
  • the shell is a material that is stable to light (for example, zirconium) for the purpose of suppressing the photocatalytic activity of the titanium oxide component present on the particle surface. ) Is desirable.
  • the content of the metal-containing particles is 40% by mass or more in the solid component of the composition, preferably 45% by mass or more, more preferably 50% by mass or more, and 55% by mass or more. Is particularly preferred.
  • As an upper limit it is preferable that it is 80 mass% or less, It is more preferable that it is 75 mass% or less, It is especially preferable that it is 70 mass% or less.
  • the refractive index of the cured film can be increased.
  • it is thought that such a high concentration of metal-containing particles contributes to the deterioration of the cured film through the above-described photocatalytic action.
  • a metal containing particle may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid component refers to a component that does not volatilize or evaporate when subjected to a drying treatment at 170 ° C. Typically, it refers to components other than solvents and dispersion media.
  • the metal-containing particles used in the present invention can be produced by a conventional method. For example, as in the examples described later, a metal salt as a constituent element is added to a medium for forming a sol, and an alkali or an acid is further added as necessary to obtain a dispersed sol (cake). In addition, when a medium is an acid or an alkali, it is not necessary to add these additionally. The example which solidifies and pulverizes by heating this is given. At this time, composite metal particles can be obtained by adding a metal element salt to be mixed to the sol. Alternatively, once the core particles are formed, a sol containing the desired metal salt is formed in the same manner as described above. By heating this and pulverizing the solidified material, core-shell type particles can be obtained.
  • the salt of each metal illustrated above is mentioned.
  • Specific examples include titanium tetrachloride, potassium stannate, zirconium oxychloride, aluminum oxychloride, and aluminum chloride.
  • various organic metal compounds and metal alkoxides can also be used.
  • the solvent that forms the sol include aqueous alkaline solutions such as aqueous ammonia, potassium hydroxide, and sodium hydroxide, and acidic aqueous solutions such as hydrochloric acid, nitric acid, and sulfuric acid.
  • a sol-gel method in which metal alkoxide is dissolved using water or various organic media can be used.
  • metal-containing particles for example, the method described in paragraphs ⁇ 0015> to ⁇ 0043> of JP-A-2008-69193 can be referred to. Moreover, as the specific metal-containing particles, those described in paragraphs ⁇ 0015> to ⁇ 0043> of JP-A-2008-69193 can be used, and are incorporated herein by reference.
  • the siloxane resin is preferably a resin obtained by hydrolytic condensation reaction of an alkoxysilane compound represented by any of the following formulas (1) to (3) (hereinafter also simply referred to as “silane compound”). Furthermore, it is also preferable that the silane compound represented by the formula (1) and the silane compound represented by the formula (2) are both subjected to a hydrolytic condensation reaction. Alternatively, both of the silane compound of formula (1) and the silane compound of formula (3) may be subjected to a hydrolytic condensation reaction. The silane compound of formula (2) and the silane compound of formula (3), or A silane compound of formula (2) and a silane compound of formula (3) may be subjected to a hydrolytic condensation reaction. One silane compound of each formula may be used, or two or more silane compounds may be used.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), alkynyl A group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (7 carbon atoms).
  • a is 0, 1 or 2.
  • a is preferably 0 or 1, and more preferably 1.
  • R 3 is a functional group-containing group.
  • the functional group is preferably a group containing a hetero atom (S, O, N, P, Si, etc.) in the structure. Or it is preferable that a polymeric group, an acidic group, or a basic group is included.
  • the carboxyl group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may form a salt, ester, or anhydride thereof.
  • the amino group may also form a salt.
  • R 4 and R 5 are each independently a group having the same meaning as R 1 . c is 0 or 1;
  • R 6 and R 7 are each independently a group having the same meaning as R 1 above, or an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyloxy group.
  • R 6 and R 7 may be R 3 groups.
  • X is a divalent or higher linking group. When X is a divalent linking group, examples of the linking group L described below are given.
  • X is a trivalent linking group, for example, an isocyanuric skeleton is exemplified.
  • d is an integer of 1 to 4, preferably 1 or 2.
  • R 1 to R 7 may each independently have an arbitrary substituent T. Moreover, you may couple
  • Examples of the bifunctional silane compound include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, cyclohexylmethyldimethoxysilane, and the like. Can be mentioned.
  • Examples of the tetrafunctional silane compound include tetramethoxysilane and tetraethoxysilane.
  • Examples of silane compounds represented by formula (2) Examples of the trifunctional silane compound include 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -acryloyloxytrimethoxysilane, and ⁇ -acryloyloxy.
  • bifunctional silane compound examples include ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, and ⁇ -methacrylic.
  • Examples of the silane compound represented by the formula (3) include 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (3-aminoethyl) tetramethyldisiloxane, 1,3 -Bis (3-aminopropyl) tetraethyldisiloxane and the like.
  • the siloxane resin can be obtained through the hydrolysis reaction and the condensation reaction using the above-described alkoxysilane compound.
  • a known method can be used as the hydrolysis-condensation reaction, and a catalyst such as an acid or a base may be used as necessary.
  • the catalyst is not particularly limited as long as the pH is changed.
  • examples of the acid (organic acid, inorganic acid) include nitric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, hydrochloric acid and the like.
  • examples of the alkali include ammonia, triethylamine, ethylenediamine, and the like.
  • the amount to be used is not particularly limited as long as the siloxane resin satisfies a predetermined molecular weight.
  • a solvent may be added as necessary.
  • the solvent is not particularly limited as long as the hydrolysis-condensation reaction can be carried out, and examples of the solvent described below can be given. Among them, for example, alcohol compounds such as water, methanol, ethanol, propanol, diacetone alcohol, tetrahydrofurfuryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, dipropylene glycol methyl ether, etc.
  • Examples include ether compounds, ester compounds such as methyl acetate, ethyl acetate, butyl acetate, ⁇ -butyrolactone, and propylene glycol monomethyl ether acetate, and ketone compounds such as acetone, methyl ethyl ketone, and methyl isoamyl ketone.
  • the conditions (temperature, time, amount of solvent) for the hydrolysis-condensation reaction may be appropriately selected according to the type of material used.
  • the weight average molecular weight of the siloxane resin used in this embodiment is preferably 2,000 or more, particularly preferably 3,000 or more.
  • the upper limit is preferably 500,000 or less, more preferably 450,000 or less, and particularly preferably 250,000 or less.
  • the molecular weight of the polymer means a weight average molecular weight unless otherwise specified, and is measured in terms of standard polystyrene by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a measuring device manufactured by Tosoh Corporation is used. As conditions, it shall be based on the following condition 1. However, depending on the polymer type, an appropriate carrier (eluent) and a column suitable for it may be selected and used.
  • the siloxane resin is adjusted with dimethylformamide so that the sample concentration is 0.3% by mass, and measurement is performed. However, depending on the type and molecular weight, measurement may be performed under the above condition 1.
  • preferred siloxane resins include the following.
  • alkoxysilane having four or more alkoxy groups include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, tetraphenoxysilane, tetramethoxydisiloxane, tetraethoxydisiloxane, and bis (triethoxysilylpropyl) tetrasulfide.
  • Tris- (3-trimethoxysilylpropyl) isocyanurate
  • tris- (3-triethoxysilylpropyl) isocyanurate Tris- (3-triethoxysilylpropyl) isocyanurate.
  • a mixture of tetrafunctional silane and 9 functional silane is used in order to allow bulky 9 functional silane and tetrafunctional silane with less steric hindrance to react with each other. Is preferred.
  • the siloxane resin is also preferably a hydrolyzate condensation reaction product with a bifunctional or trifunctional alkoxysilane compound.
  • alkoxysilane compound constituting the siloxane resin include dimethoxydimethylsilane, diethoxydimethylsilane, dimethoxydiphenylsilane, diethoxydiphenylsilane, dihydroxydiphenylsilane, dimethoxy (methyl) (phenyl) silane, and diethoxy (methyl) (phenyl).
  • Silane dimethoxy (methyl) (phenethyl) silane, dicyclopentyldimethoxysilane or cyclohexyldimethoxy (methyl) silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Or 3-acryloxypropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl anhydride Acid, 3-trimethoxysilylethyl succinic anhydride, 3-trimethoxysilylbutyl succinic anhydride, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3- (3,4-epoxy (Cyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxy (C
  • the content of the siloxane resin is preferably reduced when the composition contains an alkali-soluble resin to be described later, and is preferably increased when the composition does not contain an alkali-soluble resin. That is, when the composition contains an alkali-soluble resin, the content of the siloxane resin is preferably 1% by mass or more, more preferably 2% by mass or more in the solid component of the composition, It is particularly preferably 3% by mass or more. As an upper limit, it is preferable that it is 30 mass% or less, and it is more preferable that it is 20 mass% or less.
  • the content of the siloxane resin is preferably 10% by mass or more, more preferably 15% by mass or more in the solid component of the composition, It is particularly preferable that the content is at least mass%. As an upper limit, it is preferable that it is 40 mass% or less, and it is more preferable that it is 35 mass% or less.
  • the content of the siloxane resin with respect to 100 parts by mass of the metal-containing particles is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and particularly preferably 15 parts by mass or more.
  • the upper limit is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and particularly preferably 45 parts by mass or less.
  • the amount of the siloxane resin is preferably used in the above lower limit or more from the viewpoint of film forming property and film durability. On the other hand, it is preferable from the viewpoint that a high refractive index can be maintained by suppressing it to the upper limit value or less.
  • siloxane resin basically means a polymer obtained through a hydrolytic condensation reaction of an alkoxysilane compound. However, a polymer obtained by other reaction and a silane compound itself as a raw material are also included. Including meaning.
  • the siloxane resin is preferably a hydrolytic condensation reaction product of a silane compound. The hydrolysis condensation reaction of the silane compound may be performed in the presence of metal-containing particles. At this time, a particle-resin matrix or a core-shell structure that reacts with the metal-containing particles on the surface thereof may be formed.
  • the ultraviolet absorber employed in the present invention has a molar extinction coefficient (unit: mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ) at a wavelength of 365 nm of 5000 or more, preferably 6500 or more, and preferably 8000 or more. Is more preferably 10,000 or more.
  • the molar extinction coefficient at a wavelength of 400 nm is 3500 or less, preferably 2500 or less, and more preferably 1500 or less.
  • the molar extinction coefficient is based on the conditions measured in Examples described below unless otherwise specified.
  • the effect of the ultraviolet absorber in this invention is described. This effect is estimated as follows.
  • the siloxane resin composition of the present invention is used as a negative photosensitive resin composition (ultraviolet curable), an example in which the siloxane resin composition is applied on a substrate is used. At this time, actinic radiation (for example, i-line) is irradiated through a photomask. Then, this exposed portion is exposed and cured. The pattern of the hardened
  • the siloxane resin composition is highly transparent, particularly when it is affected by the particles in the composition, light may be scattered in the resin and the resin around the side may be exposed.
  • the resin of the side periphery will also harden
  • the siloxane resin composition of the present invention employs an ultraviolet absorbent having specific absorption characteristics, exposure blur can be suppressed and a sharp cured product can be obtained.
  • ultraviolet rays i-rays
  • the matrix of the siloxane resin and the metal-containing particles tends to cause the above-described light scattering. Therefore, it is understood that the effect of the specific ultraviolet absorber adopted in the present invention is remarkable.
  • the siloxane resin composition of the present invention can also realize excellent light resistance in the cured product.
  • the reason for this includes estimation, but it is possible that the ultraviolet absorbent having the specific absorption characteristics is adsorbed on the surface of the metal-containing particles in a specific state. As a result, it is understood that the scattering of ultraviolet rays on the particle surface is effectively suppressed, and the deterioration of the composition and the cured product are suppressed. And this effect
  • the ultraviolet absorber can be widely selected and used as long as it has the above optical characteristics. Specifically, (benzo) triazole compound, benzophenone compound, diene compound, avobenzone compound, (benzo) dithiazole compound, (Benzo) dithiol compound, coumarin compound, triazine compound, etc. are mentioned.
  • () means that it may or may not be a benzo-substituted product.
  • a diene compound, an avobenzone compound, a benzodithiol compound, a triazole, or a triazine compound is preferable.
  • the ultraviolet absorber employed in the present invention may have one or more CO groups (carbonyl groups), CONH groups (amide groups), COO groups (ester groups), and CN groups (cyano groups) in the molecule.
  • Preferred hereinafter these groups are referred to as specific adsorbing groups). It is more preferable that there are two or more specific adsorption groups in the molecule. Although there is no upper limit in particular, it is practical that it is eight or less. Although its action includes unknown points, it is understood that it effectively adsorbs or disperses on the surface of the metal-containing particles as described above, and alleviates the influence of light scattering by the above-mentioned particles.
  • the ultraviolet absorber used in the present invention is preferably composed of a compound having a skeleton of any one of the following formulas (a) to (g), and particularly from a compound having a skeleton of the formulas (d) to (g). More preferably, it is particularly preferably made of a compound having a skeleton of formulas (d) to (f).
  • a compound having an arbitrary substituent in a predetermined range in these skeletons can be used.
  • the example of the postscript substituent T is mentioned.
  • an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), a hydroxyl group, an alkoxy group (preferably having 1 to 24 carbon atoms, 1 to 12 is more preferable, 1 to 6 is more preferable, and 1 to 3 is particularly preferable.)
  • the heterocyclic group preferably contains any of N, O, and S, and particularly preferably contains N.
  • the heterocyclic group is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring.
  • the benzene rings of the formulas (a) to (f) have one or more of the above substituents. When there are a plurality of optional substituents on the benzene ring, they may form a ring.
  • R U1 and R U2 are each independently a substituent T, and among them, a cyano group or an acyl group (preferably having 1 to 24 carbon atoms, more preferably 4 to 18 carbon atoms) is preferable.
  • R U1 and R U2 may be the same or different.
  • R U3 and R U4 each independently represent a substituent T, and among them, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms). To 3 are particularly preferable, and an alkyl group having a cyano group or a carboxyl group is preferable.
  • R U5 and R U6 are preferably groups having the same meanings as R U1 and R U2 , respectively.
  • R U1 and R U2 , R U3 and R U4 , R U5 and R U6 may be combined or condensed to form a ring.
  • an ultraviolet absorber for example, Uvinul A, 3000, 3008, 3049, 3050 (manufactured by BASF), Sumsorb 130, 140, 200, 250, 320, 340, 350 (manufactured by Sumitomo Chemical Co., Ltd.), EVERSORB10, EVERSORB11, EVERSORB12 (manufactured by Yongkou Chemical Industry Co., Ltd.), Tomissorb 800 (manufactured by API Corporation), SEESORB100, 101, 101S, 102, 103, 105, 106, Benzophenone compounds such as 107, 151 (Cipro Kasei), and Dysizer M (Sankyo Kasei); Sumisorb 200, 250, 300, 320, 340, 350 (Sumitomo Chemical), JF77, JF78, JF79, JF80, JF83 (Johoku Chemical), TINUVIN PS, 99-2, 109, 171, 328, 384-2, 4
  • the ultraviolet absorber is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 1% by mass or more.
  • 20 mass% or less is preferable, 15 mass% or less is more preferable, and 10 mass% or less is especially preferable.
  • 100 parts by mass of the metal-containing particles 0.1 part by mass or more is preferable, 0.5 part by mass or more is more preferable, and 1 part by mass or more is particularly preferable.
  • 20 mass parts or less are preferable, 10 mass parts or less are more preferable, and 5 mass parts or less are especially preferable.
  • the ultraviolet absorber it is preferable to apply the ultraviolet absorber at the above lower limit value or more because the above-described developability and light resistance can be effectively improved. By setting it to the upper limit value or less, it is possible to suppress an excessive influence on optical properties such as transparency, and to suppress bloom and contribute to manufacturing aptitude, which is preferable.
  • An ultraviolet absorber may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention contains a polymerization initiator.
  • the polymerization initiator may be either a thermal polymerization initiator or a photopolymerization initiator, but a photopolymerization initiator is preferred.
  • aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898 examples include aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898.
  • examples of the hydroxyacetophenone-based initiator include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF).
  • aminoacetophenone initiators IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF) and the like can be used.
  • a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
  • acylphosphine initiators IRGACURE-819, Darocur 4265, DAROCUR-TPO (trade names: all manufactured by BASF) can be used.
  • the azo compound include 2,2-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismaleonitrile, dimethyl-2,2′-azobis (2-methylpropionate) [V -601] (manufactured by Wako).
  • an oxime compound In the present invention, it is preferable to use an oxime compound.
  • the oxime compound effectively functions as a polymerization initiator that initiates and accelerates polymerization in the siloxane resin composition of the present invention.
  • the oxime compound is less colored by post-heating and has good curability.
  • the present invention is preferable in that the resolution of the pattern and the light resistance of the cured product can be improved.
  • commercially available products such as IRGACURE OXE01 (lower formula) and IRGACURE OXE02 (lower formula) can be suitably used.
  • oxime compound serving as a polymerization initiator those represented by the following formula (OX) are preferred, and those represented by the formula (OX-1) are more preferred.
  • ⁇ A 1 A 1 is preferably —AC or an alkyl group of the formula (OX-1).
  • the alkyl group preferably has 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the alkyl group may have a substituent T described later. Further, the substituent T may be substituted via a linking group L described later.
  • ⁇ C C represents Ar, —SAr, or —COAr.
  • ⁇ R R represents a monovalent substituent, and is preferably a monovalent nonmetallic atomic group.
  • the monovalent nonmetallic atomic group include an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), and an aryl group (preferably having a carbon number of 6 to 14, more preferably 6-10), an acyl group (preferably 2-12 carbon atoms, more preferably 2-6, particularly preferably 2-3), an aryloyl group (preferably 7-15 carbon atoms, more preferably 7-11).
  • An alkoxycarbonyl group (preferably having a carbon number of 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3), an aryloxycarbonyl group (preferably having a carbon number of 7 to 15, more preferably 7 to 11), a complex A cyclic group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an alkylthiocarbonyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 3 carbon atoms), Over thiocarbonyl group include (preferably having 7 to 15, more preferably from 7 to 11 carbon atoms) and the like. Moreover, these groups may have one or more substituents.
  • substituent T may be further substituted with another substituent T.
  • substituent T a halogen atom, an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), an aryl group (preferably having a carbon number of 6 to 14, more preferably 6).
  • an arylthio group preferably having 6 to 14 carbon atoms, more preferably 6 to 10
  • an aryloyl group preferably having 7 to 15 carbon atoms, more preferably 7 to 11
  • the linking group L is preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof.
  • ⁇ B B represents a monovalent substituent, and is an alkyl group (preferably having 1 to 12 carbon atoms), an aryl group (preferably having 6 to 14 carbon atoms, more preferably having 6 to 10 carbon atoms), a heterocyclic group (preferably having carbon atoms). 2 to 18, more preferably 2 to 12 carbon atoms. These groups may be bonded via a linking group L. In addition, these groups may have one or more substituents T. The substituent T may also be substituted through an arbitrary linking group L.
  • the linking group L is also preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof. Specific examples of B include the following.
  • ⁇ A A is a single bond or a linking group.
  • the linking group include the linking group L or arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms) or a heterocyclic linking group (preferably an aromatic heterocyclic linking group) (preferably Has 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms.
  • Ar Ar is an aryl group or heteroaryl (aromatic heterocyclic group).
  • the aryl group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and is preferably a phenyl group or a naphthyl group.
  • the heteroaryl group is preferably a carbazolyl group having preferably 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and optionally having a substituent such as an alkyl group at the N-position.
  • the polymerization initiator preferably has a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in a wavelength region of 360 nm to 480 nm, and particularly has a high absorbance at 365 nm and 455 nm. preferable.
  • the molar extinction coefficient at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and 5,000 to 200,000. It is particularly preferred.
  • the method for measuring the molar extinction coefficient is the same as that of the ultraviolet absorber, and unless otherwise specified, is based on the conditions measured in Examples described later.
  • the content of the polymerization initiator (total content in the case of two or more) is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.3% by mass with respect to the total solid content of the composition. % To 8% by mass, more preferably 0.5% to 5% by mass. Within this range, good curability and transparency can be obtained. Moreover, a polymerization initiator can be used individually or in combination of 2 or more types.
  • the siloxane resin composition of the present invention may contain a solvent.
  • the solvent used in the hydrolysis condensation reaction of the silane compound may be used as it is as the solvent of the composition, or the following solvent may be used in addition to or in place of the solvent.
  • the solvent include water, aliphatic compounds, halogenated hydrocarbon compounds, alcohol compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds, and aromatic compounds. These solvents may be used as a mixture. Examples of each are listed below.
  • Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, cyclopentanone, etc.
  • Nitrile compounds Acetonitrile, etc.
  • Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N-methylformamide, acetamide N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc.
  • ⁇ Sulphoxide compound Dimethylsulfoxy Etc.
  • Aromatic compounds as benzene, toluene, etc.
  • an alcohol compound, an ester compound, or an ether compound is preferable because each component of the composition is uniformly dissolved.
  • the amount of the solvent used is not particularly limited, but when it is a coating solution, the solid component is preferably 5% by mass or more, more preferably 8% by mass or more, It is particularly preferable that the content be 10% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the solvent may be used alone or in combination of two or more.
  • the siloxane resin composition of the present invention may contain a polymerizable compound.
  • the polymerizable compound is preferably an addition polymerizable compound having a polymerizable group such as at least one ethylenically unsaturated double bond, an epoxy group, or an oxetanyl group.
  • it is selected from compounds having at least one polymerizable group, more preferably two or more.
  • it may have a chemical form such as a monomer, a prepolymer, that is, a multimer such as a dimer, a trimer, and an oligomer, or a mixture thereof and a copolymer thereof.
  • Examples of monomers and copolymers thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof and amides.
  • an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, or an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound is used.
  • an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a nucleophilic substituent such as a hydroxyl group, an amino group or a mercapto group with a monofunctional or polyfunctional isocyanate or epoxy, and A dehydration condensation reaction product with a monofunctional or polyfunctional carboxylic acid is also preferably used.
  • a substitution reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a leaving group such as a halogen group or a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. It is.
  • the compounds described in paragraph numbers 0095 to 0108 of JP-A-2009-288705 can be preferably used in the present invention.
  • the polymerizable compound is preferably further represented by the following formulas (MO-1) to (MO-6).
  • n 0 to 14, respectively, and m is 1 to 8, respectively.
  • a plurality of R, T and Z present in one molecule may be the same or different.
  • T is an oxyalkylene group
  • the end of the oxyalkylene group on the carbon atom side is bonded to R.
  • At least one of R is a polymerizable group.
  • n is preferably 0 to 5, and more preferably 1 to 3.
  • m is preferably 1 to 5, and more preferably 1 to 3.
  • dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, KAYARAD D-320; Nippon Kayaku) as the polymerizable compound, etc.
  • Dipentaerythritol penta (meth) acrylate (commercially available) KAYARAD D-310 (commercially available from Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku Co., Ltd.) And a structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) -modified (meth) acrylate (commercially available product is M-460; Made sub-synthesis) is preferable. These oligomer types can also be used.
  • polymerizable compound a compound represented by the following formula (i) or (ii) can also be used.
  • E represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —, and — ((CH 2 ) y CH 2 O)-is preferred.
  • Each y represents an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably an integer of 1 to 3.
  • X represents a hydrogen atom, an acryloyl group, a methacryloyl group, or a carboxyl group, respectively.
  • the total number of acryloyl groups and methacryloyl groups is preferably 3 or 4, more preferably 4.
  • the total number of acryloyl groups and methacryloyl groups is 5 or 6, with 6 being preferred.
  • m represents an integer of 0 to 10 and is preferably an integer of 1 to 5.
  • n represents an integer of 0 to 10, and an integer of 1 to 5 is preferable.
  • the ethylenic compound may have an unreacted carboxyl group as in the case of a mixture, and this can be used as it is.
  • an acidic group may be introduced by reacting a hydroxyl group of the ethylenic compound with a non-aromatic carboxylic acid anhydride.
  • non-aromatic carboxylic acid anhydride examples include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, anhydrous Maleic acid is mentioned.
  • the molecular weight of the polymerizable compound is not particularly limited, but is preferably 300 or more and 1500 or less, and more preferably 400 or more and 700 or less.
  • the content of the polymerizable compound with respect to the total solid content in the composition is preferably in the range of 1% by mass to 50% by mass, more preferably in the range of 3% by mass to 40% by mass, The range of 5% by mass to 30% by mass is more preferable. Within this range, the curability is good and preferable without excessively reducing the refractive index and transparency.
  • a polymeric compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention may contain an alkali-soluble resin.
  • the alkali-soluble resin is a linear organic polymer, and promotes at least one alkali-solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can be suitably selected from alkali-soluble resins having a group. From the viewpoint of heat resistance, polyhydroxystyrene resins, polysiloxane resins, acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred.
  • acrylic resins acrylamide resins, and acrylic / acrylamide copolymer resins are preferred.
  • examples of the group that promotes alkali solubility include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. Those which are soluble in a solvent and can be developed with a weak alkaline aqueous solution are preferred, and (meth) acrylic acid is particularly preferred.
  • These acidic groups may be only one type or two or more types.
  • a polymer having a carboxylic acid in the side chain is preferable, such as a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, and a crotonic acid copolymer.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable as the alkali-soluble resin.
  • examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and (iso) pentyl (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) ) Acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, and other vinyl compounds include styrene, ⁇ -methylstyrene, vinyltoluene, glycid
  • the other monomer copolymerizable with (meth) acrylic acid is preferably a repeating unit represented by the following formula (A1).
  • R 11 represents a hydrogen atom or a methyl group.
  • R 12 represents an alkylene group having 2 or 3 carbon atoms, and among them, 2 carbon atoms are preferable.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • n1 represents an integer of 1 to 15, and preferably 1 to 12.
  • the repeating unit represented by the above formula (A1) has good adsorption and / or orientation on the particle surface due to the effect of ⁇ electrons of the benzene ring present in the side chain. In particular, when this side chain portion has an ethylene oxide or propylene oxide structure of paracumylphenol, its steric effect is added, and a better adsorption and / or orientation plane can be formed.
  • R 13 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. This is because when R 13 has a large number of carbon atoms, this group becomes an obstacle to suppress the approach between the resins and promote adsorption and / or orientation, but if it is too large, the effect may be hindered. Because.
  • the alkyl group represented by R 13 is preferably an unsubstituted alkyl group or an alkyl group substituted with a phenyl group.
  • An alkali-soluble polyester resin may be used for the siloxane resin composition of the present invention. Although the action mechanism of the effect obtained by containing an alkali-soluble polyester resin is not clear, it is thought that those having an aromatic ring reduce the decomposability of the ester group and enable effective development.
  • a method for synthesizing the alkali-soluble polyester resin a method in which a polyaddition reaction between a polyfunctional epoxy compound and a polyvalent carboxylic acid compound or a polyaddition reaction between a polyol compound and a dianhydride is preferable.
  • a polyol compound what was obtained by reaction of a polyfunctional epoxy compound and a radically polymerizable group containing monobasic acid compound is preferable.
  • Examples of the catalyst used in the polyaddition reaction and the addition reaction include ammonium catalysts such as tetrabutylammonium acetate; amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine; triphenylphosphine And a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
  • ammonium catalysts such as tetrabutylammonium acetate
  • amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine
  • triphenylphosphine triphenylphosphine
  • a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
  • the alkali-soluble resin is preferably soluble in a tetramethylammonium hydroxide (TMAH) aqueous solution at a concentration of 0.1% by mass or more at 23 ° C. Further, it is preferably soluble in 1% by mass or more of TMAH aqueous solution, and more preferably soluble in 2% or more of TMAH aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • the acid value of the alkali-soluble resin is preferably 30 to 200 mgKOH / g, more preferably 50 to 150 mgKOH / g, still more preferably 70 to 120 mgKOH / g. By setting it as such a range, the image development residue of an unexposed part can be reduced effectively.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 2,000 to 50,000, more preferably 5,000 to 30,000, and particularly preferably 7,000 to 20,000.
  • the content of the alkali-soluble resin is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass with respect to the total solid content of the composition.
  • An alkali-soluble resin may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention may contain a polymerization inhibitor.
  • Polymerization inhibitors include phenolic hydroxyl group-containing compounds, N-oxide compounds, piperidine 1-oxyl free radical compounds, pyrrolidine 1-oxyl free radical compounds, N-nitrosophenylhydroxylamines, diazonium compounds, and cations Examples include dyes, sulfide group-containing compounds, nitro group-containing compounds, transition metal compounds such as FeCl 3 and CuCl 2 .
  • the description of JP 2010-106268 A paragraphs 0260 to 0280 (corresponding to ⁇ 0284> to ⁇ 0296> in the corresponding US Patent Application Publication No. 2011/0124824) can be referred to. The contents of which are incorporated herein.
  • a preferable addition amount of the polymerization inhibitor is preferably 0.01 parts by mass or more and 10 parts by mass or less, and more preferably 0.01 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the polymerization initiator. It is most preferable that it exists in the range of 0.05 mass part or more and 5 mass parts or less.
  • a polymerization inhibitor may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a polymer compound represented by the general formula (1) of claim 1 (corresponding claim 1 of US2010 / 0233595) of JP-A-2007-277514 is preferable.
  • the description of JP 2007-277514 A (corresponding US 2010/0233595) can be referred to, and the contents thereof are incorporated in the present specification.
  • the polymer compound represented by the general formula (1) is not particularly limited, but can be synthesized according to the synthesis methods described in paragraphs 0114 to 0140 and 0266 to 0348 of JP-A-2007-277514.
  • the content of the dispersing agent is preferably 10 to 1000 parts by mass, more preferably 30 to 1000 parts by mass, and further preferably 50 to 800 parts by mass with respect to 100 parts by mass of the metal-containing particles.
  • the total solid content of the composition is preferably 10 to 30% by mass.
  • the siloxane resin composition of the present invention may contain a surfactant.
  • the surfactant include silicone surfactants, silicon surfactants such as organopolysiloxanes, fluorine surfactants, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene octylphenyl ether.
  • Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate or polyethylene glycol distearate, polyalkylene oxide surfactants, poly (meth) acrylate surfactants, acrylic or methacrylic surfactants
  • a surfactant made of a polymer is exemplified.
  • Examples of commercially available surfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475 or F477 (all manufactured by Dainippon Ink & Chemicals, Inc.) or NBX- 15 or FTX-218 (both manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, BYK-333, BYK-301, BYK-331, BYK-345 or BYK-307 (all of which are Big Chemie Japan Co., Ltd.) And the like.
  • surfactant is not specifically limited, 1 mass% or more is preferable in a solid component of a composition, 1.5 mass% or more is more preferable, and 5 mass% or more is especially preferable. Although an upper limit is not specifically limited, 30 mass% or less is preferable and 15 mass% or less is more preferable.
  • Surfactant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the siloxane resin composition of the present invention may contain other additives such as a dissolution inhibitor, a stabilizer, or an antifoaming agent, if necessary.
  • an alkaline solution is preferably used.
  • the concentration of the alkaline compound is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass.
  • Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxy , Tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene and the like.
  • an organic alkali is preferable.
  • a washing treatment with water is generally performed after development.
  • quaternary ammonium salts are preferable, and tetramethylammonium hydroxide (TMAH) or choline is more preferable.
  • TMAH tetramethylammonium hydroxide
  • One developer may be used alone, or two or more developers may be used in combination.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but the alkyl
  • Aryloxy groups such as phenoxy, 1-naphthylo Si, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • alkoxycarbonyl groups preferably alkoxycarbonyl groups having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • aryloxycarbonyl groups preferably Is an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc., an amino group (preferably having 0 to 20 carbon atoms)
  • alkylamino group, arylamino group for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.
  • sulfamoyl group preferably having 0 to 20
  • phosphinyl group for example, -P (R P) 2), (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloyl Louis amino group ((meth) acrylamide group), a hydroxyl group, a thiol group, a carboxyl group , Phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) ).
  • substituent T may be further substituted with the substituent T described above.
  • the salt may be formed.
  • a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
  • Each substituent defined in the present specification may be substituted through the following linking group L within the scope of the effects of the present invention, or the linking group L may be present in the structure thereof.
  • the alkyl group / alkylene group, alkenyl group / alkenylene group and the like may further have the following hetero-linking group interposed in the structure.
  • the linking group L includes a hydrocarbon linking group [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably carbon atoms).
  • the said hydrocarbon coupling group may form the double bond and the triple bond suitably, and may connect.
  • the ring to be formed is preferably a 5-membered ring or a 6-membered ring.
  • a nitrogen-containing five-membered ring is preferable, and examples of the compound forming the ring include pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or these And derivatives thereof.
  • 6-membered ring examples include piperidine, morpholine, piperazine, and derivatives thereof. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • RN is a hydrogen atom or a substituent. Examples of the substituent include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms).
  • To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred).
  • RP is a hydrogen atom, a hydroxyl group, or a substituent.
  • substituents examples include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms).
  • To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms).
  • an alkoxy group preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3
  • an alkenyloxy group having carbon number
  • More preferably 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3, and an alkynyloxy group preferably having 2 to 24 carbon atoms, more preferably 2 to 12 and more preferably 2 to 6.
  • More preferably, 2 to 3 are particularly preferred
  • an aralkyloxy group preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms
  • an aryloxy group preferably 6 to 22 carbon atoms, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
  • the number of atoms constituting the linking group L is preferably 1 to 36, more preferably 1 to 24, still more preferably 1 to 12, and particularly preferably 1 to 6.
  • the number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less.
  • the lower limit is 1 or more.
  • the number of connected atoms refers to the minimum number of atoms that are located in a path connecting predetermined structural portions and are involved in the connection. For example, in the case of —CH 2 —C ( ⁇ O) —O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3. Specific examples of combinations of linking groups include the following.
  • x is an integer of 1 or more, preferably 1 to 500, 1 to 100 is more preferable.
  • Lr is preferably an alkylene group, an alkenylene group or an alkynylene group.
  • the carbon number of Lr is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
  • a plurality of Lr, R N , R P , x, etc. need not be the same.
  • the direction of the linking group is not limited by the above description, and may be understood as appropriate according to a predetermined chemical formula.
  • the siloxane resin composition of the present invention can be stored, transported and used in any container as long as corrosion resistance or the like does not matter (whether or not it is a kit).
  • a container having a high cleanliness and a low impurity elution is preferable.
  • the containers that can be used include, but are not limited to, “Clean Bottle” series manufactured by Aicero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Co., Ltd., and the like.
  • the container or the inner wall of the container is subjected to a resin different from one or more resins selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, or subjected to rust prevention and metal elution prevention treatment.
  • a resin different from one or more resins selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, or subjected to rust prevention and metal elution prevention treatment.
  • it is formed from a finished metal.
  • the siloxane resin composition of the present invention is preferably filtered with a filter for the purpose of removing foreign substances and reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited.
  • a filter made of fluorine resin such as PTFE (polytetrafluoroethylene), polyamide resin such as nylon, polyolefin resin (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP), and the like can be given.
  • PTFE polytetrafluoroethylene
  • polyamide resin such as nylon
  • polyolefin resin including high density and ultra high molecular weight
  • polyethylene and polypropylene (PP) polypropylene
  • nylon are preferable.
  • the pore size of the filter is suitably about 0.1 to 7.0 ⁇ m, preferably about 0.2 to 2.5 ⁇ m, more preferably about 0.2 to 1.5 ⁇ m, and still more preferably 0.3 to 0.0 ⁇ m. 7 ⁇ m. By setting it within this range, it becomes possible to reliably remove fine foreign matters such as impurities and aggregates contained in the composition while suppressing filtration clogging.
  • different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. When filtering two or more times by combining different filters, it is preferable that the second and subsequent hole diameters are the same or larger than the first filtering hole diameter.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is suitably about 0.2 to 10.0 ⁇ m, preferably about 0.2 to 7.0 ⁇ m, more preferably about 0.3 to 6.0 ⁇ m.
  • the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components. Such filtering is the same for the preferred embodiment of the resist filtering described below.
  • a transparent cured product (preferably an ultraviolet curable resin composition)
  • the siloxane resin composition of the present invention preferably an ultraviolet curable resin composition
  • it can be applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating or slit coating. .
  • it can pre-bake with heating apparatuses, such as a hot plate or oven, and a film
  • Prebaking is preferably performed at 50 to 150 ° C. for 30 seconds to 30 minutes.
  • the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • the exposure light source is not limited, and ultraviolet rays such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), or h-line (wavelength 405 nm), KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, etc. Can be used.
  • post-exposure baking may be performed by heating the film at 150 to 450 ° C. for about 1 hour using a heating device such as a hot plate or an oven.
  • a heating device such as a hot plate or an oven.
  • actinic radiation having a wavelength of 300 to 400 nm is preferably used, and i-line is more preferably used.
  • the unexposed portion is dissolved by development, and a negative pattern can be obtained.
  • a developing method a method of immersing in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle is preferable. Examples of the developer include those exemplified above.
  • the film is preferably rinsed with water. Subsequently, dry baking may be performed at 50 to 150 ° C. Thereafter, the film is thermally cured at 120 to 280 ° C. for about 1 hour using a heating device such as a hot plate or an oven to obtain a cured product (film).
  • Transparent pixels and the like incorporated in the solid-state imaging device can be formed on the substrate in such a procedure.
  • the thickness of the resulting cured product (film) is preferably 0.1 to 10 ⁇ m.
  • the leakage current is preferably 10 ⁇ 6 A / cm 2 or less, and the relative dielectric constant is preferably 6.0 or more.
  • the refractive index of the cured film of the siloxane resin composition of the present invention is preferably 1.6 or more, and more preferably 1.7 or more. Although there is no upper limit in particular, it is practical that it is 2.0 or less. Unless otherwise specified, the refractive index is based on the conditions measured in Examples described later.
  • the cured film of the siloxane resin composition of the present invention preferably has high transparency.
  • the visible light transmittance is preferably 80% or more, more preferably 88% or more, and particularly preferably 90% or more. There is no particular upper limit, but it is practical that it is 99% or less. Unless otherwise specified, the visible light transmittance is based on the conditions measured in the examples described later.
  • the cured film obtained by curing the siloxane resin composition of the present invention can be particularly suitably used as a microlens or a transparent pixel of a solid-state imaging device.
  • microlens array 10 An example of the formation process of the microlens array 10 will be described as one form of the microlens formation method. If necessary, the unevenness on the surface of the base material (element) 3 is embedded and flattened by spin-coating a transparent resin (flattening film) 2.
  • the lens material 1 is uniformly applied to the surface of the flattened substrate 3 (step 1).
  • the siloxane resin composition described above can be used as the lens material.
  • a photoresist (photosensitive material) 4 is uniformly applied on the lens material 1 (step 2). As this photosensitive material, those commonly used for this type of processing can be used.
  • the photoresist 4 is irradiated with ultraviolet rays using a reticle as a mask by a stepper device to expose a portion of the space between the lenses.
  • the exposed portion is decomposed and removed with a developer to form a pattern (step 3).
  • the patterned resist 4a is heated to obtain a hemispherical pattern (semispherical resist 4b) (step 4).
  • the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase.
  • the lens material layer is etched by dry etching (step 5).
  • the microlens array 10 in which hemispherical lenses (microlenses 1a) are arranged can be formed.
  • Another embodiment of the lens array includes a method in which the use of the resist is omitted and the lens material is patterned by exposure. In this embodiment, the patterned lens material is melted as it is to obtain a hemispherical lens.
  • the resist material a material that can be appropriately used for this kind of processing can be adopted.
  • a positive type, a negative type, and a positive / negative type photoresist can be mentioned.
  • the positive resist include photosensitive resin compositions such as vinyl cinnamate, cyclized polyisobutylene, azo-novolak resin, and diazoketone-novolak resin.
  • the negative resist include azide-cyclized polyisoprene, azido-phenol resin, and chloromethyl polystyrene.
  • specific examples of the positive / negative resist include poly (p-butoxycarbonyloxystyrene) -based photosensitive resin compositions.
  • JP-A-1-142548 can be preferably used.
  • it is a photosensitive resin composition containing cresol novolac resin and naphthoquinone diazide sulfonic acid ester as main components. More specifically, an esterification reaction product of 2,3,4,4′-tetrahydroxybenzophenone and naphthoquinone-1,2-diazide-5-sulfonyl chloride (the content of triester is 85 mol%) is exemplified. can do.
  • the resist material is preferably a positive resist containing a novolac resin. More specifically, a positive resist containing a resin having a repeating unit represented by the following formula (R-1) can be given.
  • R 13 to R 16 each independently represent a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms).
  • s represents an integer of 1 to 3.
  • the molecular weight of the resin is not particularly limited, but is usually 1,000 to 1,000,000, preferably 2,000 to 100,000, more preferably 3,000 to 50,000 in terms of polystyrene-equivalent weight average molecular weight.
  • the solid-state imaging device has a transparent pixel and / or a microlens made of a cured product of the siloxane resin composition of the present invention.
  • the solid-state imaging element has a microlens array on a semiconductor light receiving element, and is incorporated so that the microlens array and the color filter are adjacent to each other.
  • the light receiving element receives light that passes through the transparent resin film, the lens, and the color filter in this order, and functions as an image sensor.
  • the transparent resin film functions as an antireflection film, improves the light collection efficiency of the microlens, and the light efficiently collected by the microlens is detected by the light receiving element via the color filter.
  • the cured product of the siloxane resin composition of the present invention can be suitably used as a transparent pixel interposed in the lens or RGB pixel array.
  • Examples of solid-state imaging devices to which a lens array is applied include those described in Japanese Patent Application Laid-Open No. 2007-119744. Specifically, a transfer electrode is provided between a CCD region and a photoelectric conversion unit formed on the surface of the semiconductor substrate, and a light shielding film is formed thereon via an interlayer film. On the light shielding film, an interlayer insulating film made of BPSG (Boro-Phospho-Silicate Glass), a passivation film, a transparent planarizing film having a low refractive index made of acrylic resin, and the like are laminated. G. B. Are combined to form a color filter. Further, a large number of microlenses are arranged so as to be positioned above the photoelectric conversion portion which is a light receiving region via a protective film.
  • BPSG Bo-Phospho-Silicate Glass
  • the obtained mixed aqueous solution is cooled to room temperature and then concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.) to disperse water in the form of core fine particles having a solid content of 10% by mass.
  • ACV-3010 ultrafiltration membrane device
  • the water-dispersed sol (AA-1) of the metal oxide fine particles thus obtained was transparent and milky white.
  • the content of the metal component contained in the metal oxide fine particles was measured, 87.5% by mass of TiO 2 , 10.6% by mass of SnO 2 , and K 2 O based on the oxide conversion standard of each metal component. It was 1.8% by mass.
  • 0.2 kg of the fired powder of the surface-treated metal oxide fine particles obtained above was dispersed in 0.2 kg of pure water, and 0.1 kg of a tartaric acid aqueous solution having a concentration of 28.6% and a KOH aqueous solution having a concentration of 50 mass% were added thereto. 0.06 kg was added and sufficiently stirred.
  • alumina beads having a particle diameter of 0.1 mm high-purity alumina beads manufactured by Daimei Chemical Industry Co., Ltd.
  • the surface-treated metal oxide fine particles were pulverized and dispersed for 180 minutes.
  • alumina beads were separated and removed using a stainless steel filter having an aperture of 44 ⁇ m, and then 1.4 kg of pure water was further added and stirred, so that the surface-treated metal oxide fine particles having a solid content of 11% by mass were obtained. 1.7 kg of an aqueous dispersion was obtained.
  • anion exchange resin manufactured by Mitsubishi Chemical Corporation: SANUPC
  • a centrifuge Hitachi Machine (CR-21G manufactured by Kikai Co., Ltd.) and treated for 1 hour at a speed of 12,000 rpm, and then water-dispersed sol (AB) of surface-treated metal oxide fine particles having a solid content concentration of 10 mass% by adding ion exchange water -1) 1.9 kg was prepared.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain a dispersion composition A-1.
  • thermosetting compositions thermosetting compositions
  • Metal oxide particles 70 parts by mass Siloxane resin 25 parts by mass PGMEA 135 parts by mass (*) DAA 266 parts by mass (*) KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) 2 parts by weight Photopolymerization initiator 1 part by weight Ultraviolet absorber (A) having the structure shown in the table 2 parts by weight (#) Polymerization inhibitor (p-methoxyphenol) 0.01 parts by mass (*)
  • ⁇ Light resistance test [1-2]> The composition was applied to high refractive index glass (SFLD-6 [trade name] manufactured by Sumita Optical Glass Co., Ltd.) with a spin coater (H-360S [trade name] (Mikasa Corp.)). Using a hot plate, the coating film was obtained by prebaking at 100 ° C. for 2 minutes. Exposure was performed at 1000 mJ / cm 2 using an ultrahigh pressure mercury lamp “USH-500BY” [trade name] manufactured by USHIO INC. This coating film was heated at 200 ° C. for 5 minutes on a hot plate in an air atmosphere to obtain a cured film having a thickness of 0.5 ⁇ m.
  • the obtained cured film was irradiated with light of 5 million lxh for 50 hours using a light resistance tester (Xenon Weather Meter SX75 [trade name] manufactured by Suga Test Instruments Co., Ltd.) to perform a light resistance test.
  • the temperature of the subject (temperature in the test apparatus) was set to 63 ° C.
  • the relative humidity in the test apparatus was 50% RH.
  • the transmittance of the cured film was measured, and the light resistance was evaluated based on the following criteria.
  • the light resistance test was performed five times for each sample (cured films of each example and comparative example), and an average value of three results excluding one each of the maximum value and the minimum value of the evaluation points was adopted.
  • the refractive index at a wavelength of 633 nm at a room temperature of 25 ° C. was measured using an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.) with the same cured film sample.
  • the refractive indexes of the cured films of the examples were all about 1.8, realizing a desired high refractive index.
  • molar extinction coefficient of each ultraviolet absorber was calculated by preparing a 1.00 ⁇ 10 ⁇ 3 mol / L chloroform solution and measuring the absorbance according to the following procedure.
  • the chloroform solution adjusted to the above concentration was placed in a glass cell having an internal space width of 1 cm, and the absorbance was measured using a UV-Vis-NIR spectrum meter (Cary5000) [trade name] manufactured by Agilent Technologies.
  • the measurement temperature was 25 ° C.
  • the absorbance A thus obtained was applied to the following formula to calculate the molar extinction coefficient (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ).
  • represents the molar extinction coefficient (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 )
  • A represents the absorbance
  • c represents the concentration (mol / L)
  • l represents the optical path length (cm).
  • the concentration c is 1.00 ⁇ 10 ⁇ 3 mol / L.
  • the optical path length l corresponds to the width of the internal space of the glass cell and is therefore 1 cm.
  • the cured film obtained by using the siloxane resin composition of the present invention achieves good optical properties, excellent resolution, and light resistance. It was found that it demonstrated high performance.
  • Example 1-2 Preparation of aqueous dispersion sol of nuclear fine particles (E-1)) 7.60 kg of titanium tetrachloride aqueous solution containing 7.75% by mass of titanium tetrachloride in terms of TiO 2 and 2.91 kg of aqueous ammonia containing 15% by mass of ammonia were mixed, and ZrO 2 was mixed therewith while mixing them. 7.6 kg of 1.23% concentration zirconium oxychloride octahydrate aqueous solution in terms of mass was added dropwise over 24 hours to prepare a white slurry liquid having a pH of 8.8.
  • the slurry was diluted 5 times with ion-exchanged water, filtered, and further washed with ion-exchanged water to obtain 5.2 kg of a hydrous titanium zirconate cake having a solid content of 10% by mass.
  • 7.1 kg of hydrogen peroxide containing 35% by mass of hydrogen peroxide and 20.0 kg of ion-exchanged water were added to the cake, and then heated at 80 ° C. for 1 hour with stirring. Thereto was added 28.90 kg of ion-exchanged water to obtain 61.39 kg of an aqueous titanium zirconate solution containing 1% by mass of titanium zirconate in terms of TiO 2 .
  • This aqueous solution of titanium zirconate acid was transparent yellowish brown and had a pH of 8.9.
  • 4.00 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with 60.78 kg of the above titanium peroxide zirconate aqueous solution, and tin containing 1% by mass of potassium stannate in terms of SnO 2 conversion standard was added thereto. 8.01 kg of potassium acid aqueous solution was gradually added with stirring.
  • it after separating the cation exchange resin which took in potassium ion etc., it heated at the temperature of 168 degreeC for 20 hours in the autoclave.
  • the obtained mixed aqueous solution is cooled to room temperature and then concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.) to disperse water in the form of core fine particles having a solid content of 10% by mass. 6.89 kg of sol (water dispersion sol of metal oxide fine particles (E-1)) was obtained.
  • the water-dispersed sol (E-1) of the metal oxide fine particles thus obtained was transparent and milky white.
  • the content of the metal component contained in the metal oxide fine particles was measured, it was 90.0% by mass of TiO 2 , 4.2% by mass of SnO 2 , 0.2% by mass of K 2 O, based on the oxide conversion standard of each metal component. 5 wt%, and was ZrO 2 5.3% by mass.
  • alumina beads having a particle size of 0.1 mm (Daimei Chemical Co., Ltd. high-purity alumina beads) are added to the stirred solution, and this is subjected to a wet crusher (Kampe Co., Ltd. batch type tabletop sand mill). For 180 minutes, the fired powder of the metal oxide fine particles was pulverized and dispersed. Thereafter, the alumina beads were separated and removed using a stainless steel filter having an opening of 44 ⁇ m, and further 1.39 kg of pure water was added and stirred to obtain metal oxide fine particles having a solid content of 11.0% by mass. 1.70 kg of aqueous dispersion was obtained.
  • this mixed solution was put into an autoclave (manufactured by Pressure Glass Industrial Co., Ltd.) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
  • the obtained mixed solution is cooled to room temperature, and then concentrated using an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) to disperse in water with a solid content of 10.0% by mass.
  • SIP-1013 ultrafiltration membrane
  • a sol was prepared.
  • an aqueous dispersion sol (CST-1) of core-shell type metal oxide fine particles in which the surface of the metal oxide fine particles was coated with an oxide containing silicon was obtained.
  • TiO 2 was 86.3% by mass, SnO 2 5.1% by mass, ZrO based on the oxide conversion standard of each metal component. It was 2 5.1 wt% and K 2 O 0.5 wt%. (TiO 2 was 79.87 g / mol, ZrO 2 was 123.2 g / mol, and Ti / Zr (molar ratio) in the above composition was 26).
  • the dispersion medium is replaced with methanol by using an ultrafiltration membrane device (a filtration membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013), and methanol-dispersed sol of core-shell type metal oxide fine particles (CSTM- 1) was obtained.
  • an ultrafiltration membrane device a filtration membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013
  • methanol-dispersed sol of core-shell type metal oxide fine particles (CSTM- 1) was obtained.
  • the solid content concentration contained in the obtained methanol dispersion sol (CSTM-1) was about 30% by mass, and the water content was 0.28% by mass.
  • dispersion composition E-1 10.9 g (0.08 mol) of methyltrimethoxysilane, 63.5 g (0.32 mol) of phenyltrimethoxysilane, methanol dispersion sol EM-1 of metal oxide fine particles (solid content concentration 30 mass%, methanol 70 mass%) 440.0 g and DAA 370.0 g were placed in a reaction vessel, and 32.0 g of water and 1.0 g of phosphoric acid were added dropwise to this solution with stirring so that the reaction temperature did not exceed 40 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C.
  • dispersion composition C-1 was prepared in the same manner as the preparation of dispersion composition E-1, except that the metal-containing material used was changed to CSTM-1.
  • ⁇ Test 400 range> A siloxane resin composition was obtained in the same manner as in Example 1 except that the dispersion composition and / or ultraviolet absorber used was changed as shown in Table 1-4. Using the obtained siloxane resin composition, the resolution, light resistance, and transparency were evaluated in the same manner as in Example 1.
  • the siloxane resin compositions of Tests 401 to 409 shown in Table 1-4 all show good resolution, light resistance, and transparency with respect to the siloxane resin compositions of Comparative Examples shown in Table 1-2. Accordingly, in the case of Zr-containing titanium oxide (metal oxide fine particles), if Ti / Zr is 1 to 40, the shape is core-shell type (test 101 to 302) or non-core shell type (test 401 to 408). Regardless, all showed good results. The test 409 coated with an oxide containing silicon also showed good results.
  • Example 2 A siloxane resin composition was prepared in the same manner as in Test 101 of Example 1 except that ethyltrimethoxysilane was used instead of methyltrimethoxysilane in the preparation of the dispersion composition A-1.
  • a siloxane resin composition was prepared in the same manner as in Example 1 except that part of methyltrimethoxysilane was changed to tetramethoxysilane (methyltrimethoxysilane and tetramethoxysilane were used in combination). These siloxane resin compositions were used to carry out the above-described tests for resolution, light resistance, and applicability, and all confirmed that good results were obtained.
  • each sample (dispersion composition A-) was prepared in the same manner as the dispersion composition A-1, except that the composition ratio of TiO 2 and ZrO 2 was adjusted to be as shown in Table 2 below. 2 to A-5) were prepared.
  • a siloxane resin composition was prepared in the same manner as in Test 101 of Example 1 except that each of the above dispersion compositions was used, and the same items as in Table 1 were tested.
  • the light resistance test [1-2] the light resistance test [1-2a] under severer conditions was performed. Specifically, for the conditions of the above light resistance test [1-2], the temperature around the subject (internal temperature) was 63 ° C., and the humidity was 90% RH. The light irradiation time was 50 hours.
  • the light resistance is high. Can be realized.
  • Example 4 A similar test was performed on the above dispersion composition A-1 by changing the concentration of the metal oxide fine particles to 40 mass%, 50 mass%, and 55 mass%, respectively.
  • the refractive indexes of the cured films were 1.67, 1.73, and 1.75, respectively. It was also confirmed that each item showed good performance.
  • the concentration of the metal oxide fine particles was set to 10% by mass, the refractive index of the cured film greatly fell below 1.6.
  • this concentration there was no problem of resolution, light resistance, and transparency even when using an ultraviolet absorber whose molar absorption coefficient does not have the molar absorption coefficient defined in the present invention. . From this result, it can be seen that the ultraviolet absorbent used in the present invention exhibits its usefulness only when a considerable amount of metal oxide fine particles is used.
  • Example 5 The siloxane resin compositions prepared in the above tests 101, 123, 124, and 201 were used and applied onto a silicon wafer. Thereafter, pre-baking (100 ° C., 2 min) and post-baking (230 ° C., 10 min) were performed to form a coating film (lens material 1) having a film thickness of 1.1 ⁇ m (FIG. 1 (1)). Further, FHi-4750 ([trade name] Fujifilm Electronics Materials Co., Ltd., FFEM resist solution) is applied on this to a dry film thickness of 1.5 ⁇ m, and heated on a hot plate at 90 ° C. for 1 minute. Then, a photoresist film 4 was formed (FIG. 1 (2)).
  • This photoresist film 4 is 300 mJ / by an i-line stepper (product name: FPA-3000i5 +, manufactured by Canon Inc.) through a mask having a square lattice pattern with a side of 1.4 ⁇ m and a gap between patterns of 0.35 ⁇ m. It was exposed in cm 2. This was subjected to paddle development for 60 seconds at room temperature using an alkaline developer HPRD-429E (manufactured by FUJIFILM Electronics Materials Co., Ltd.) and then rinsed with pure water for 20 seconds in a spin shower. It was. Thereafter, the substrate was further washed with pure water, and then the substrate was dried at a high speed to form a resist pattern (patterned photoresist 4a) (FIG.
  • i-line stepper product name: FPA-3000i5 +, manufactured by Canon Inc.
  • the separation width when patterning was 238.7 nm.
  • the resist was shaped into a lens shape (hemisphere) by post-baking with a hot plate at 145 ° C. for 120 seconds, then at 160 ° C. for 120 seconds, and further at 175 ° C. for 120 seconds (FIG. 1 (4)). .
  • the substrate obtained as described above was dry-etched using a dry etching apparatus (manufactured by Hitachi High-Technologies: U-621) under the following conditions to form a lens array (FIG. 1 (5)). ).
  • the height of the lens body was 380 nm.
  • RF power 800W ⁇
  • Antenna bias 400W ⁇
  • Wafer bias 400W ⁇
  • Photoresist etching rate 140 nm / min
  • microlens array specimen exhibited excellent performance suitable for use in a solid-state imaging device.

Abstract

A siloxane resin composition which comprises metal-containing particles, a siloxane resin, a polymerization initiator, and an ultraviolet absorber, wherein the metal-containing particles are contained in an amount of 40-80 mass% relative to the solid components of the composition and the ultraviolet absorber has a molar absorptivity coefficient at 365 nm of 5,000 mol-1·L·cm-1 or higher and a molar absorptivity coefficient at 400 nm of 3,500 mol-1·L·cm-1 or lower.

Description

シロキサン樹脂組成物、これを用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
 本発明は、シロキサン樹脂組成物、これを用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子に関する。 The present invention relates to a siloxane resin composition, a transparent cured product using the siloxane resin composition, a transparent pixel, a microlens, and a solid-state imaging device.
 固体撮像素子などに組み込まれる透明材料として、ウエハレベルレンズや、マイクロレンズが挙げられる。あるいは、これらを被覆する反射防止膜、その下部に位置する透明画素、透明絶縁膜、平坦化膜などが挙げられる。それぞれの部材には、その機能に応じた特性が求められる。例えば、上記のマイクロレンズや透明画素には、高い屈折率と、高い光透過率が求められる。また、昨今、益々進む素子の微小化を実現するために、各材料には、微細な加工精度に適合する製造適性が要求される。
 具体的に、透明樹脂に高屈折率粒子を導入する技術が検討されている。特許文献1では、ポリイミドに酸化チタン等の粒子を含有させたポジ型の感光性樹脂組成物を提案している。
As a transparent material incorporated in a solid-state imaging device or the like, a wafer level lens or a microlens can be given. Alternatively, an antireflection film covering these, a transparent pixel located under the film, a transparent insulating film, a planarizing film, and the like can be given. Each member is required to have characteristics corresponding to its function. For example, the above-described microlens and transparent pixel are required to have a high refractive index and a high light transmittance. Also, in recent years, in order to realize ever-increasing miniaturization of elements, each material is required to have manufacturability suitable for fine processing accuracy.
Specifically, a technique for introducing high refractive index particles into a transparent resin has been studied. Patent Document 1 proposes a positive photosensitive resin composition in which particles such as titanium oxide are contained in polyimide.
国際公開公報第2005/088396号パンフレットInternational Publication No. 2005/088396 Pamphlet
 本発明は、レンズや透明画素などの透明部材の材料として適合するシロキサン樹脂組成物の提供を目的とする。ポジ型に限らず、加熱硬化型の樹脂や、ネガ型の感光性樹脂としても対応することが可能であり、マイクロレンズや透明画素の微細加工にも好適に対応することができ、必要によりその製造適性と硬化膜の特性を良化することができるシロキサン樹脂組成物の提供を目的とする。また、上記シロキサン樹脂組成物を用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子の提供を目的とする。 An object of the present invention is to provide a siloxane resin composition suitable as a material for transparent members such as lenses and transparent pixels. It is not limited to the positive type, and can be applied as a thermosetting resin or a negative type photosensitive resin, and can be suitably applied to micro-processing of micro lenses and transparent pixels, and if necessary, An object is to provide a siloxane resin composition capable of improving manufacturing suitability and properties of a cured film. Another object of the present invention is to provide a transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition.
 上記の課題は下記の手段により解決された。
〔1〕金属含有粒子とシロキサン樹脂と重合開始剤と紫外線吸収剤とを含有するシロキサン樹脂組成物であって、上記金属含有粒子を組成物の固形成分中、40質量%以上80質量%以下で含有し、上記紫外線吸収剤の365nmにおけるモル吸光係数が5000mol-1・L・cm-1以上であり、400nmにおけるモル吸光係数が3500mol-1・L・cm-1以下であるシロキサン樹脂組成物。
〔2〕上記金属含有粒子を構成する元素として、Ti、Ta、W、Y、Ba、Hf、Zr、Sn、Nb、V、およびSiから選ばれる金属を含有する〔1〕に記載のシロキサン樹脂組成物。
〔3〕上記金属含有粒子の屈折率が1.75以上2.90以下である〔1〕または〔2〕に記載のシロキサン樹脂組成物。
〔4〕上記金属含有粒子の数平均粒径が3nm以上30nm以下である〔1〕~〔3〕のいずれか1つに記載のシロキサン樹脂組成物。
〔5〕上記シロキサン樹脂組成物を硬化させた硬化膜の屈折率が1.6以上2.0以下である〔1〕~〔4〕のいずれか1つに記載のシロキサン樹脂組成物。
〔6〕上記金属含有粒子を構成する元素として、TiとZrを含有し、Ti/Zrが3以上30以下である〔1〕~〔5〕のいずれか1つに記載のシロキサン樹脂組成物。
〔7〕紫外線硬化型の樹脂組成物である〔1〕~〔6〕のいずれか1つに記載のシロキサン樹脂組成物。
〔8〕さらに重合性化合物を含む〔1〕~〔7〕のいずれか1つに記載のシロキサン樹脂組成物。
〔9〕上記紫外線吸収剤が、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物、ジエン化合物、ベンゾジチオール、およびアボベンゾン化合物からなる群より選ばれる〔1〕~〔8〕のいずれか1つに記載のシロキサン樹脂組成物。
〔10〕上記重合開始剤が、有機ハロゲン化化合物、オキシジアゾール化合物、カルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシム化合物、オニウム塩化合物、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、アシルホスフィンオキシド化合物、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体化合物、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物、α-アミノアルキルフェノン化合物、および安息香酸エステル化合物からなる群より選ばれる〔1〕~〔9〕のいずれか1つに記載のシロキサン樹脂組成物。
〔11〕上記シロキサン樹脂がアルコキシシラン化合物の加水分解縮合反応物である〔1〕~〔10〕のいずれか1つに記載のシロキサン樹脂組成物。
〔12〕上記金属含有粒子100質量部に対してシロキサン樹脂を1質量部以上60質量部以下で用いる〔1〕~〔11〕のいずれか1つに記載のシロキサン樹脂組成物。
〔13〕上記紫外線吸収剤を固形成分中、0.01質量%以上20質量%以下含有する〔1〕~〔12〕のいずれか1つに記載のシロキサン樹脂組成物。
〔14〕上記シロキサン樹脂が上記金属含有粒子の存在下で加水分解縮合反応させて得たものである〔1〕~〔13〕のいずれか1つに記載のシロキサン樹脂組成物。
〔15〕〔1〕~〔14〕のいずれか1つに記載のシロキサン樹脂組成物を硬化させてなる透明硬化物。
〔16〕〔15〕に記載の透明硬化物からなる透明画素。
〔17〕〔15〕に記載の透明硬化物からなるマイクロレンズ。
〔18〕〔16〕に記載の透明画素、〔17〕に記載のマイクロレンズ、またはこれらの両者を具備する固体撮像素子。
The above problems have been solved by the following means.
[1] A siloxane resin composition containing metal-containing particles, a siloxane resin, a polymerization initiator, and an ultraviolet absorber, wherein the metal-containing particles are contained in a solid component of the composition in an amount of 40% by mass to 80% by mass. And a siloxane resin composition having a molar extinction coefficient at 365 nm of 5000 mol −1 · L · cm −1 or more and a molar extinction coefficient at 400 nm of 3500 mol −1 · L · cm −1 or less.
[2] The siloxane resin according to [1], which contains a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si as an element constituting the metal-containing particles. Composition.
[3] The siloxane resin composition according to [1] or [2], wherein the metal-containing particles have a refractive index of 1.75 or more and 2.90 or less.
[4] The siloxane resin composition according to any one of [1] to [3], wherein the metal-containing particles have a number average particle size of 3 nm to 30 nm.
[5] The siloxane resin composition according to any one of [1] to [4], wherein the cured film obtained by curing the siloxane resin composition has a refractive index of 1.6 to 2.0.
[6] The siloxane resin composition according to any one of [1] to [5], which contains Ti and Zr as elements constituting the metal-containing particles, and Ti / Zr is 3 or more and 30 or less.
[7] The siloxane resin composition according to any one of [1] to [6], which is an ultraviolet curable resin composition.
[8] The siloxane resin composition according to any one of [1] to [7], further comprising a polymerizable compound.
[9] The siloxane according to any one of [1] to [8], wherein the ultraviolet absorber is selected from the group consisting of benzotriazole compounds, benzophenone compounds, triazine compounds, diene compounds, benzodithiols, and avobenzone compounds. Resin composition.
[10] The polymerization initiator is an organic halogenated compound, oxydiazole compound, carbonyl compound, ketal compound, benzoin compound, acridine compound, organic peroxide compound, azo compound, coumarin compound, azide compound, metallocene compound, hexaary Rubiimidazole compound, organic boric acid compound, disulfonic acid compound, oxime compound, onium salt compound, hydroxyacetophenone compound, aminoacetophenone compound, acylphosphine oxide compound, trihalomethyltriazine compound, benzyldimethyl ketal compound, α-hydroxyketone compound, α -Aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, triallylimidazole dimers, onium compounds, benzothiazo Selected from the group consisting of a phenolic compound, a benzophenone compound, a cyclopentadiene-benzene-iron complex compound, a halomethyloxadiazole compound, a 3-aryl-substituted coumarin compound, an α-aminoalkylphenone compound, and a benzoate ester compound [1 ] The siloxane resin composition according to any one of [9] to [9].
[11] The siloxane resin composition according to any one of [1] to [10], wherein the siloxane resin is a hydrolysis condensation reaction product of an alkoxysilane compound.
[12] The siloxane resin composition according to any one of [1] to [11], wherein a siloxane resin is used in an amount of 1 part by mass to 60 parts by mass with respect to 100 parts by mass of the metal-containing particles.
[13] The siloxane resin composition according to any one of [1] to [12], wherein the ultraviolet absorber is contained in a solid component in an amount of 0.01% by mass to 20% by mass.
[14] The siloxane resin composition according to any one of [1] to [13], wherein the siloxane resin is obtained by a hydrolytic condensation reaction in the presence of the metal-containing particles.
[15] A transparent cured product obtained by curing the siloxane resin composition according to any one of [1] to [14].
[16] A transparent pixel comprising the transparent cured product according to [15].
[17] A microlens comprising the transparent cured product according to [15].
[18] A solid-state imaging device comprising the transparent pixel according to [16], the microlens according to [17], or both.
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書中における「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線または放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 また、本明細書において、“(メタ)アクリレート”はアクリレートおよびメタクリレートの双方、または、いずれかを表し、“(メタ)アクリル”はアクリルおよびメタクリルの双方、または、いずれかを表し、“(メタ)アクリロイル”はアクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 また、本明細書において、“単量体”と“モノマー”とは同義である。本明細書における単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書において、重合性化合物とは、重合性基を有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性基とは、重合反応に関与する基を言う。
 重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により求めることができる。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
In the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In addition, “radiation” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. In the present invention, light means actinic rays or radiation. Unless otherwise specified, “exposure” in this specification is not only exposure with far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays, EUV light, but also drawing with particle beams such as electron beams and ion beams. Are also included in the exposure.
In this specification, “(meth) acrylate” represents both and / or acrylate and methacrylate, “(meth) acryl” represents both and / or acryl and “(meth) acrylic” ) "Acryloyl" represents both and / or acryloyl and methacryloyl.
In the present specification, “monomer” and “monomer” are synonymous. The monomer in this specification is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less. In the present specification, the polymerizable compound refers to a compound having a polymerizable group, and may be a monomer or a polymer. The polymerizable group refers to a group that participates in a polymerization reaction.
The weight average molecular weight and the number average molecular weight can be determined by gel permeation chromatography (GPC).
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
 本発明のシロキサン樹脂組成物は、レンズや透明画素などの透明部材の材料として適合する。ポジ型に限らず、加熱硬化型の樹脂や、ネガ型の感光性樹脂としても対応することが可能であり、マイクロレンズや透明画素の微細加工にも好適に対応することができる。さらに、要求に応じて、パターン形成時の製造適性(特にパターン形状及び残渣性)や硬化膜の特性(耐光性)を良化することができる。また、上記シロキサン樹脂組成物を用いた良質の透明硬化物、透明画素、マイクロレンズ、固体撮像素子を提供することができる。 The siloxane resin composition of the present invention is suitable as a material for transparent members such as lenses and transparent pixels. Not only the positive type but also a thermosetting resin or a negative photosensitive resin can be used, and it can also be suitably applied to micro-processing of micro lenses and transparent pixels. Furthermore, according to demands, it is possible to improve the manufacturing suitability (particularly the pattern shape and residue properties) at the time of pattern formation and the properties (light resistance) of the cured film. In addition, a high-quality transparent cured product, a transparent pixel, a microlens, and a solid-state imaging device using the siloxane resin composition can be provided.
レンズアレイの製造工程を模式的に示す工程説明図である。It is process explanatory drawing which shows the manufacturing process of a lens array typically.
 本発明のシロキサン樹脂組成物は、特定量の金属含有粒子とシロキサン樹脂と重合開始剤と特定の紫外線吸収剤とを含有する。これにより、上述した優れた効果を発揮する理由は推定を含むが、以下のように考えられる。重合開始剤を利用した光硬化性のシロキサン樹脂において、金属含有粒子は異物となってしまう。これを相当量を超えて含有させると、例えばその硬化膜の現像性や耐光性は著しく低下する。金属含有粒子のもつ物理的影響のほかに、光の散乱特性がその一因となっていると考えられる。特に金属含有粒子(TiO等)を相当量含む場合、その光触媒活性作用により活性酸素が生成し、これにより樹脂成分が分解されることも劣化(着色)の一因であると考えられる。一方、金属含有粒子の量を抑えてしまうと、所望の高屈折率の達成は難しくなる。これに対し、特定の光吸収特性を有する紫外線吸収剤を適用することにより、単に光の吸収性のバランスを良化させるのみではなく、上記の散乱の影響や光触媒活性作用を効果的に抑えて、硬化膜の透明性や屈折率は維持した上で、上記現像性や耐光性を改善できた。これは、実験的な確認を通じて、紫外線吸収剤の特定波長の吸光係数というパラメータによって的確に規定されることが判明した。以下、その好ましい実施形態について詳細に説明する。 The siloxane resin composition of the present invention contains a specific amount of metal-containing particles, a siloxane resin, a polymerization initiator, and a specific ultraviolet absorber. Thereby, although the reason which exhibits the outstanding effect mentioned above includes estimation, it is considered as follows. In the photocurable siloxane resin using a polymerization initiator, the metal-containing particles become foreign matters. If this content exceeds a considerable amount, for example, the developability and light resistance of the cured film are significantly reduced. In addition to the physical effects of metal-containing particles, light scattering properties are considered to be a factor. In particular, when a considerable amount of metal-containing particles (TiO 2 or the like) is contained, it is considered that the generation of active oxygen due to the photocatalytic activity and the decomposition of the resin component due to this cause of deterioration (coloring). On the other hand, if the amount of metal-containing particles is suppressed, it is difficult to achieve a desired high refractive index. On the other hand, by applying an ultraviolet absorber having specific light absorption characteristics, not only improves the balance of light absorption, but also effectively suppresses the effects of scattering and photocatalytic activity. The developability and light resistance could be improved while maintaining the transparency and refractive index of the cured film. Through experimental confirmation, it has been found that this is precisely defined by a parameter called the extinction coefficient at a specific wavelength of the UV absorber. Hereinafter, the preferred embodiment will be described in detail.
<金属含有粒子>
 金属含有粒子は金属を構成元素として含む粒子を広く包含する。ここでは金属の語は最も広義に解釈されるべきものであり、ホウ素、ケイ素、ヒ素などの半金属もここに含まれるものとする。金属含有粒子が、酸素原子を含んで構成されているとき、特に金属酸化物粒子と呼ぶことがある。
 本発明において、金属含有粒子は、Ti、Ta、W、Y、Ba、Hf、Zr、Sn、Nb、V、およびSiから選ばれる金属を含有することが好ましい。なかでも、そのうちの2種以上を含む複合金属の酸化物粒子であることが好ましい。例えば、TiとZr(必要によりさらにSi)、TiとSn(必要によりさらにSi)、TiとZrとSn(必要によりさらにSi)を含む組み合わせが好ましく、TiとZrとSnとSiを含む組み合わせが更に好ましい。
<Metal-containing particles>
The metal-containing particles widely include particles containing a metal as a constituent element. Here, the term metal is to be interpreted in the broadest sense, and metalloids such as boron, silicon and arsenic are also included here. When the metal-containing particles are configured to include oxygen atoms, they may be particularly referred to as metal oxide particles.
In the present invention, the metal-containing particles preferably contain a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si. Especially, it is preferable that it is the oxide particle of the composite metal containing 2 or more types of them. For example, a combination containing Ti and Zr (further Si if necessary), Ti and Sn (further Si if necessary), Ti, Zr and Sn (further Si if necessary) is preferable, and a combination containing Ti, Zr, Sn and Si is preferable. Further preferred.
 金属含有粒子の構成材料としては、例えば、酸化チタン、酸化ジルコニウム、酸化シリコン、チタン酸バリウム、硫酸バリウム、酸化バリウム、酸化ハフニウム、酸化タンタル、酸化タングステン、酸化イットリウムが挙げられる。これらの構成材料は、2種以上を含有していてもよく、酸化チタンおよび酸化ジルコニウムを少なくとも含有することが好ましい。
 構成材料として、酸化チタンを含有する場合、ルチル型の酸化チタンを含有することが好ましい。さらに、酸化チタンの全量に対してルチル型の酸化チタンを80質量%以上含有することが好ましく、90質量%以上含有することがより好ましく、95質量%以上含有することが特に好ましい。上限は、100質量%である。
Examples of the constituent material of the metal-containing particles include titanium oxide, zirconium oxide, silicon oxide, barium titanate, barium sulfate, barium oxide, hafnium oxide, tantalum oxide, tungsten oxide, and yttrium oxide. These constituent materials may contain two or more kinds, and preferably contain at least titanium oxide and zirconium oxide.
When titanium oxide is contained as a constituent material, it is preferable to contain rutile titanium oxide. Furthermore, it is preferable to contain 80% by mass or more of rutile type titanium oxide with respect to the total amount of titanium oxide, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit is 100% by mass.
 金属含有粒子の屈折率は、高屈折率を得る観点から、1.75以上が好ましく、1.90以上がより好ましい。上限としては、2.90以下が好ましく、2.70以下がより好ましい。
 金属含有粒子の平均粒径としては、500nm以下が好ましく、200nm以下がより好ましく、100nm以下がさらに好ましく、50nm以下がより好ましく、30nm以下が特に好ましい。下限値としては、1nm以上が好ましく、3nm以上がより好ましい。上記粒径の範囲とすることで、硬化膜の透明度が向上し好ましい。また、硬化膜等の均質性および必要により絶縁性や耐久性を付与することができ好ましい。金属含有粒子は適当な粒子の粉体を調達し、ビーズミル等の分散機を用いて粉砕又は分散することができる。
From the viewpoint of obtaining a high refractive index, the metal-containing particles preferably have a refractive index of 1.75 or higher, more preferably 1.90 or higher. The upper limit is preferably 2.90 or less, and more preferably 2.70 or less.
The average particle size of the metal-containing particles is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. As a lower limit, 1 nm or more is preferable and 3 nm or more is more preferable. By setting it as the range of the said particle size, the transparency of a cured film improves and it is preferable. Moreover, the homogeneity of a cured film etc. and insulation and durability can be provided if necessary, which is preferable. The metal-containing particles can be pulverized or dispersed using a dispersing machine such as a bead mill by procuring appropriate particle powder.
~粒子の屈折率の測定~
 金属含有粒子の屈折率は以下の方法で測定することができる。金属含有粒子の含有率を0質量%、20質量%、30質量%、40質量%、50質量%に調製した固形分濃度10%のマトリックス樹脂と、金属含有粒子の混合溶液サンプルを作製する。それぞれ、シリコンウェハー上に、厚さが0.3~1.0μmとなるように、スピンコーターを用いて塗布し、ついで200℃のホットプレートで5分間、加熱、乾燥させ、コーティング膜を得る。次に例えばエリプソメータ(大塚電子(株)社製)を用いて波長633nm(25℃)での屈折率を求め、金属含有粒子100質量%の値を外挿して求めることができる。
-Measurement of refractive index of particles-
The refractive index of metal-containing particles can be measured by the following method. A mixed solution sample of a matrix resin having a solid content concentration of 10%, prepared so that the content of the metal-containing particles is 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass, and metal-containing particles is prepared. Each is coated on a silicon wafer using a spin coater so as to have a thickness of 0.3 to 1.0 μm, and then heated and dried on a hot plate at 200 ° C. for 5 minutes to obtain a coating film. Next, for example, the refractive index at a wavelength of 633 nm (25 ° C.) is obtained using an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.), and the value of 100% by mass of the metal-containing particles can be extrapolated.
~平均粒径の測定~
 金属含有粒子の数平均粒径(一次粒径における平均粒径を意味する)は、粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。粒子の投影面積を求め、そこから円相当径を求め平均粒径とする。なお、平均粒径を求めるために任意の100個の粒子について測定する。最大側10個および最小側10個をのぞいた、80個の平均値として平均粒径を求める。本明細書において、平均粒径は、特に断らない限り、数平均粒径の意味である。
-Measurement of average particle size-
The number average particle diameter of the metal-containing particles (meaning the average particle diameter in the primary particle diameter) can be determined from the photograph obtained by observing the particles with a transmission electron microscope. The projected area of the particles is obtained, and the equivalent circle diameter is obtained from this to obtain the average particle diameter. In addition, in order to obtain | require an average particle diameter, it measures about arbitrary 100 particles. The average particle diameter is determined as an average value of 80 particles excluding the maximum 10 and the minimum 10. In this specification, the average particle diameter means the number average particle diameter unless otherwise specified.
 市販の金属含有粒子としては、例えば、T-BTO-020RF(チタン酸バリウム;戸田工業株式会社製)、UEP-100(酸化ジルコニウム;第一稀元素化学工業株式会社製)又はSTR-100N(酸化チタン;堺化学工業株式会社製)が挙げられる。
 金属含有粒子は、液中に分散した分散体としても入手することができる。酸化ケイ素-酸化チタン粒子としては、例えば、“オプトレイク”(登録商標)TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-544又は“オプトレイク”TR-550(いずれも日揮触媒化成工業(株)製)が挙げられ、また、ケイ素で被覆されている酸化チタン粒子としては、STR-100W、STR-100WLPT(いずれも堺化学工業株式会社製)が挙げられる。酸化ジルコニウム粒子としては、例えば、“バイラール”登録商標Zr-C20(平均粒径=20nm;多木化学(株)製)、ZSL-10A(平均粒径=60-100nm;第一稀元素株式会社製)、“ナノユース”(登録商標)OZ-30M(平均粒径=7nm;日産化学工業(株)製)、SZR-M(堺化学(株)製)又はHXU-120JC(住友大阪セメント(株)製)が挙げられる。
Examples of commercially available metal-containing particles include T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; manufactured by Daiichi Rare Element Chemical Co., Ltd.) or STR-100N (oxidized oxide). Titanium, manufactured by Sakai Chemical Industry Co., Ltd.).
The metal-containing particles can also be obtained as a dispersion dispersed in a liquid. Examples of the silicon oxide-titanium oxide particles include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” "TR-520", "Optlake" TR-527, "Optlake" TR-528, "Optlake" TR-529, "Optlake" TR-544 or "Optlake" TR-550 As the titanium oxide particles coated with silicon, STR-100W and STR-100WLPT (both manufactured by Sakai Chemical Industry Co., Ltd.) can be mentioned. Zirconium oxide particles include, for example, “Vilar” registered trademark Zr-C20 (average particle size = 20 nm; manufactured by Taki Chemical Co., Ltd.), ZSL-10A (average particle size = 60-100 nm; Daiichi Rare Element Co., Ltd.) ), “Nanouse” (registered trademark) OZ-30M (average particle size = 7 nm; manufactured by Nissan Chemical Industries, Ltd.), SZR-M (manufactured by Sakai Chemical Co., Ltd.) or HXU-120JC (Sumitomo Osaka Cement Co., Ltd.) ))).
 金属含有粒子における金属元素の含有比率(元素組成)としては、Ti及びZrを含有しその割合が、Ti/Zr比で1~40が好ましく、1~30がより好ましく、3~20がさらに好ましく、4~12がよりさらに好ましく、4~9が最も好ましい。このような数値範囲を満たす場合には、高屈折率を維持しつつ、組成物の保存性を高めることができるため好ましい。また、Ti/Zrをこの範囲とすることで、シロキサン樹脂組成物の硬化物の耐光性を良化することができ好ましい。特に本発明においては、特定の紫外線吸収剤との相互作用が一層高まり、シロキサン樹脂組成物の硬化物の高屈折率を維持しつつ、所望の耐光性を高いレベルで発揮できるため好ましい。
 また、Ti及びSiを含有しその割合が、Ti/Si比で1~40が好ましく、1~30がより好ましく、1~10がさらに好ましい。別の表現を取れば、Ti及びSiを含有しその割合が、Ti/Si比で1以上が好ましい。上限としては、40以下が好ましく、30以下がより好ましく、10以下が特に好ましい。
 Ti/Sn比は、10以上であることが好ましく、13以上がより好ましく、15以上がさらに好ましく、17以上がさらに好ましく、19以上がさらに好ましく、20以上が特に好ましい。上限としては、1000以下であることが好ましく、500以下がより好ましく、300以下がさらに好ましく、100以下がさらに好ましく、60以下がさらに好ましく、50以下がさらに好ましく、40以下が特に好ましい。Ti/Snをこの範囲とすることで、金属含有粒子と共に使用される有機成分とのなじみ(親和性)が良好となるという作用が期待でき好ましい。
The content ratio (element composition) of the metal element in the metal-containing particles includes Ti and Zr, and the ratio is preferably 1 to 40, more preferably 1 to 30, more preferably 3 to 20 in terms of Ti / Zr ratio. 4 to 12 is more preferable, and 4 to 9 is most preferable. When satisfying such a numerical range, it is preferable because the storage stability of the composition can be enhanced while maintaining a high refractive index. Moreover, by making Ti / Zr into this range, the light resistance of the cured product of the siloxane resin composition can be improved, which is preferable. In particular, in the present invention, the interaction with a specific ultraviolet absorber is further enhanced, and the desired light resistance can be exhibited at a high level while maintaining the high refractive index of the cured product of the siloxane resin composition.
Further, Ti and Si are contained, and the ratio thereof is preferably 1 to 40, more preferably 1 to 30, and further preferably 1 to 10 in terms of Ti / Si ratio. In other words, Ti and Si are contained, and the ratio is preferably 1 or more in terms of Ti / Si ratio. As an upper limit, 40 or less are preferable, 30 or less are more preferable, and 10 or less are especially preferable.
The Ti / Sn ratio is preferably 10 or more, more preferably 13 or more, further preferably 15 or more, further preferably 17 or more, further preferably 19 or more, and particularly preferably 20 or more. As an upper limit, it is preferable that it is 1000 or less, 500 or less is more preferable, 300 or less is more preferable, 100 or less is more preferable, 60 or less is further more preferable, 50 or less is further more preferable, 40 or less is especially preferable. By making Ti / Sn within this range, it is preferable that the compatibility (affinity) with the organic component used together with the metal-containing particles can be expected.
~金属元素の含有率の測定~
 なお、金属含有粒子の金属元素の含有率は、蛍光X線分析(リガク製 PrimusII型蛍光X線分析装置)で定量した元素組成(原子%)で評価する。複数の元素の比率は各元素組成(原子%)を求め、それぞれの元素組成(原子%)の比率で評価する。なお、元素組成比は、モル数の比率として求めても同義である。
~ Measurement of metal element content ~
In addition, the content rate of the metal element of a metal containing particle | grain is evaluated by the element composition (atomic%) quantified by the fluorescent X ray analysis (Rigaku's PrimusII type | mold fluorescent X ray analyzer). The ratio of a plurality of elements is determined by obtaining each element composition (atomic%) and evaluating the ratio of each elemental composition (atomic%). The elemental composition ratio is synonymous even if it is obtained as a mole ratio.
 金属含有粒子の表面処理はどのような態様であってもよいが、例えば後述する界面活性剤により処理する態様や、別の金属を含有する処理剤で処理する態様などが挙げられる。例えば、特定の金属含有粒子を形成し、その表面に別種の金属含有物等の被膜を形成する態様が挙げられる。あるいは、別種の金含有物等の被膜を厚みのあるものとし、コアシェル型の金属含有粒子としてもよい。コアとシェルの比率は特に限定されないが、粒子全体を100質量部としたときに、コアの比率は85質量部以上が好ましく、87質量部以上がより好ましく、90質量部以上が特に好ましい。上限は97質量部以下が実際的である。コアとシェルの比率を上記の範囲とすることで、高屈折率を維持させつつ、諸特性を良化させられることから好ましい。
 コアとシェルを構成する材料の組合せは特に限定されないが、コアをTi,Sn等を含有する粒子で構成し、シェルをZrまたはSiを含有する被覆で構成する例が挙げられる。粒子の屈折率を高くするという意図から、シェルを構成する材料は高屈折率材料であることが特に望ましい。さらに、コアに使用する金属含有粒子成分として酸化チタンが含有される場合には、粒子表面に存在する酸化チタン成分の光触媒活性を抑制する目的で、シェルは光に対して安定な材料(例えばジルコニウム)であることが望ましい。
The surface treatment of the metal-containing particles may be in any mode, and examples include a mode in which the surface is treated with a surfactant described later and a mode in which the surface is treated with a processing agent containing another metal. For example, the aspect which forms a specific metal containing particle | grain and forms a film, such as another kind of metal containing material, on the surface is mentioned. Alternatively, a coating of another type of gold-containing material or the like may be thick and core-shell type metal-containing particles may be used. The ratio of the core to the shell is not particularly limited, but when the total particle is 100 parts by mass, the ratio of the core is preferably 85 parts by mass or more, more preferably 87 parts by mass or more, and particularly preferably 90 parts by mass or more. The upper limit is practically 97 parts by mass or less. By setting the ratio of the core and the shell within the above range, it is preferable because various properties can be improved while maintaining a high refractive index.
The combination of the materials constituting the core and the shell is not particularly limited, but examples include that the core is composed of particles containing Ti, Sn, etc., and the shell is composed of a coating containing Zr or Si. In view of increasing the refractive index of the particles, it is particularly desirable that the material constituting the shell is a high refractive index material. Furthermore, when titanium oxide is contained as a metal-containing particle component used for the core, the shell is a material that is stable to light (for example, zirconium) for the purpose of suppressing the photocatalytic activity of the titanium oxide component present on the particle surface. ) Is desirable.
 金属含有粒子の含有量は、組成物の固形成分中で40質量%以上であり、45質量%以上であることが好ましく、50質量%以上であることがさらに好ましく、55質量%以上であることが特に好ましい。上限としては、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが特に好ましい。金属含有粒子をより多く適用することにより、硬化膜の屈折率を高めることができる。一方、その他の性能との両立を考慮すると上記上限値以下とすることが好ましい。なお、このように金属含有粒子の濃度が高いことが、上述した光触媒作用を介して硬化膜を劣化させる一因になっているものと考えられる。これに対し、本発明においては、上記特定の紫外線吸収剤を組み合わせて用いることで、この点を、他の性能を阻害せずに改善することができる。
 金属含有粒子は1種を単独で用いても2種以上を組み合わせて用いてもよい。
 なお、本明細書において固形成分(固形分)とは、170℃で乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分を言う。典型的には、溶媒や分散媒体以外の成分を指す。
The content of the metal-containing particles is 40% by mass or more in the solid component of the composition, preferably 45% by mass or more, more preferably 50% by mass or more, and 55% by mass or more. Is particularly preferred. As an upper limit, it is preferable that it is 80 mass% or less, It is more preferable that it is 75 mass% or less, It is especially preferable that it is 70 mass% or less. By applying more metal-containing particles, the refractive index of the cured film can be increased. On the other hand, in consideration of compatibility with other performances, it is preferable to set the upper limit value or less. In addition, it is thought that such a high concentration of metal-containing particles contributes to the deterioration of the cured film through the above-described photocatalytic action. On the other hand, in this invention, this point can be improved by using the said specific ultraviolet absorber in combination, without inhibiting other performances.
A metal containing particle may be used individually by 1 type, or may be used in combination of 2 or more type.
In the present specification, the solid component (solid content) refers to a component that does not volatilize or evaporate when subjected to a drying treatment at 170 ° C. Typically, it refers to components other than solvents and dispersion media.
 本発明で用いられる金属含有粒子は常法によって製造することができる。例えば、後記実施例のように、構成元素となる金属の塩をゾルを形成する媒体に添加し、さらに必要によりアルカリや酸を添加することにより分散ゾル(ケーキ)を得る。なお、媒体が酸やアルカリである場合は、これらを追加して添加する必要はない。これを加熱することにより、固形化し、粉末化する例が挙げられる。このとき、混合したい金属元素の塩を上記のゾルに添加することで、複合金属の粒子を得ることができる。あるいは、一度核粒子を形成しておき、さらにこれとともに所望の金属塩を含有するゾルを上記と同様に形成する。これを加熱し、固形化したものを粉砕等することにより、コアシェル型の粒子を得ることができる。
 原料となる金属塩としては、上記で例示した各金属の塩が挙げられる。具体的には、四塩化チタン、スズ酸カリウム、オキシ塩化ジルコニウム、オキシ塩化アルミニウム、塩化アルミニウム等が挙げられる。あるいは、各種の有機金属化合物や金属アルコキシドなども使用することができる。
 ゾルを形成する溶媒としては、アンモニア水、水酸化カリウム、水酸化ナトリウム等のアルカリ性水溶液、塩酸、硝酸、硫酸などの酸性水溶液などが挙げられる。あるいは、水や各種の有機媒体を用い、金属アルコキシドを溶解するゾルゲル法なども挙げられる。
 本発明に適用できる金属含有粒子の製造方法としては、例えば、特開2008-69193の段落<0015>~<0043>に記載の方法を参照することができる。また、その具体的な金属含有粒子として、特開2008-69193の段落<0015>~<0043>に記載のものを利用することができ、本明細書に引用して取り込む。
The metal-containing particles used in the present invention can be produced by a conventional method. For example, as in the examples described later, a metal salt as a constituent element is added to a medium for forming a sol, and an alkali or an acid is further added as necessary to obtain a dispersed sol (cake). In addition, when a medium is an acid or an alkali, it is not necessary to add these additionally. The example which solidifies and pulverizes by heating this is given. At this time, composite metal particles can be obtained by adding a metal element salt to be mixed to the sol. Alternatively, once the core particles are formed, a sol containing the desired metal salt is formed in the same manner as described above. By heating this and pulverizing the solidified material, core-shell type particles can be obtained.
As a metal salt used as a raw material, the salt of each metal illustrated above is mentioned. Specific examples include titanium tetrachloride, potassium stannate, zirconium oxychloride, aluminum oxychloride, and aluminum chloride. Alternatively, various organic metal compounds and metal alkoxides can also be used.
Examples of the solvent that forms the sol include aqueous alkaline solutions such as aqueous ammonia, potassium hydroxide, and sodium hydroxide, and acidic aqueous solutions such as hydrochloric acid, nitric acid, and sulfuric acid. Alternatively, a sol-gel method in which metal alkoxide is dissolved using water or various organic media can be used.
As a method for producing metal-containing particles applicable to the present invention, for example, the method described in paragraphs <0015> to <0043> of JP-A-2008-69193 can be referred to. Moreover, as the specific metal-containing particles, those described in paragraphs <0015> to <0043> of JP-A-2008-69193 can be used, and are incorporated herein by reference.
<シロキサン樹脂>
 シロキサン樹脂は、下記の式(1)~(3)のいずれかで表されるアルコキシシラン化合物(以下、単に「シラン化合物」ともいう。)を加水分解縮合反応させた樹脂であることが好ましい。さらに、式(1)で表されるシラン化合物と式(2)で表されるシラン化合物をともに加水分解縮合反応させたものであることも好ましい。あるいは、式(1)のシラン化合物と式(3)のシラン化合物とをともに加水分解縮合反応させてもよく、式(2)のシラン化合物と式(3)のシラン化合物、あるいは式(1)のシラン化合物と式(2)のシラン化合物と式(3)のシラン化合物とをともに加水分解縮合反応させたものとしてもよい。なお、各式のシラン化合物を1種ずつ用いても、2種以上用いてもよい。
<Siloxane resin>
The siloxane resin is preferably a resin obtained by hydrolytic condensation reaction of an alkoxysilane compound represented by any of the following formulas (1) to (3) (hereinafter also simply referred to as “silane compound”). Furthermore, it is also preferable that the silane compound represented by the formula (1) and the silane compound represented by the formula (2) are both subjected to a hydrolytic condensation reaction. Alternatively, both of the silane compound of formula (1) and the silane compound of formula (3) may be subjected to a hydrolytic condensation reaction. The silane compound of formula (2) and the silane compound of formula (3), or A silane compound of formula (2) and a silane compound of formula (3) may be subjected to a hydrolytic condensation reaction. One silane compound of each formula may be used, or two or more silane compounds may be used.
  (RSi(OR4-a (1)
 RおよびRはそれぞれ独立に水素原子または炭化水素基を表す。炭化水素基はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)が好ましく、アルキル基、アリール基、またはアルケニル基がより好ましい。
 aは0、1または2である。aはなかでも0または1が好ましく、1がより好ましい。
(R 1 ) a Si (OR 2 ) 4-a (1)
R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group. The hydrocarbon group is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), alkynyl A group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (7 carbon atoms). To 23, more preferably 7 to 15, and particularly preferably 7 to 11, and more preferably an alkyl group, an aryl group, or an alkenyl group.
a is 0, 1 or 2. a is preferably 0 or 1, and more preferably 1.
  RSi(R(OR3-c (2)
 Rは官能基含有基である。官能基としてはヘテロ原子(S,O,N,P,Si等)を構造内に含む基であることが好ましい。あるいは、重合性基や酸性基、もしくは塩基性基を含むことが好ましい。(メタ)アクリロイルオキシ基、チオール基(スルファニル基)、エポキシ基、オキセタン基、グリシジル基、グリシドキシ基、ヒドロキシル基、フェノール性水酸基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アミノ基、イソシアネート基、ウレア基、またはこれらの置換基を有する基である。Rが連結基を介してSiに結合するとき、後記連結基Lの例が挙げられ、中でも炭化水素連結基が好ましい。カルボキシル基、スルホン酸基、リン酸基、ホスホン酸基は塩やエステル、その無水物を形成していてもよい。アミノ基も塩を形成していてもよい。
 RおよびRはそれぞれ独立に、Rと同義の基である。
 cは0または1である。
R 3 Si (R 4 ) c (OR 5 ) 3-c (2)
R 3 is a functional group-containing group. The functional group is preferably a group containing a hetero atom (S, O, N, P, Si, etc.) in the structure. Or it is preferable that a polymeric group, an acidic group, or a basic group is included. (Meth) acryloyloxy group, thiol group (sulfanyl group), epoxy group, oxetane group, glycidyl group, glycidoxy group, hydroxyl group, phenolic hydroxyl group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, amino group , An isocyanate group, a urea group, or a group having these substituents. When R 3 is bonded to Si via a linking group, examples of the linking group L described below are given, and among these, a hydrocarbon linking group is preferable. The carboxyl group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may form a salt, ester, or anhydride thereof. The amino group may also form a salt.
R 4 and R 5 are each independently a group having the same meaning as R 1 .
c is 0 or 1;
  R Si-X-(SiR  (3)
 RおよびRは、それぞれ独立に、上記Rと同義の基、あるいは、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニルオキシ基(炭素数2~12が好ましく、2~6がより好ましい)、アルキニルオキシ基(炭素数2~12が好ましく、2~6がより好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、またはアラルキルオキシ基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)である。複数のR及びRのうち1~4個はRの基であってもよい。
 Xは2価以上の連結基である。Xが2価の連結基のとき、後記連結基Lの例が挙げられる。具体的には、S、O、CO、NR、ポリスルフィド基(Sが2~6個)などが挙げられる。Xが3価の連結基のとき例えばイソシアヌル骨格が挙げられる。dは1~4の整数であり、1または2が好ましい。
R 6 3 Si—X— (SiR 7 3 ) d (3)
R 6 and R 7 are each independently a group having the same meaning as R 1 above, or an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyloxy group. (Preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), alkynyloxy group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), aryloxy group (preferably 6 to 22 carbon atoms, 6 To 14 are more preferable, and 6 to 10 are particularly preferable), or an aralkyloxy group (preferably 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms, and particularly preferably 7 to 11 carbon atoms). 1-4 of R 6 and R 7 may be R 3 groups.
X is a divalent or higher linking group. When X is a divalent linking group, examples of the linking group L described below are given. Specific examples include S, O, CO, NR N , and polysulfide groups (2 to 6 S). When X is a trivalent linking group, for example, an isocyanuric skeleton is exemplified. d is an integer of 1 to 4, preferably 1 or 2.
 R~Rはそれぞれ独立に任意の置換基Tを有していてもよい。また、本発明の効果を奏する範囲で、連結基Lを伴ってケイ素原子と結合していてもよい。あるいは隣接するものが互いに結合ないし縮合して環を形成していてもよい。 R 1 to R 7 may each independently have an arbitrary substituent T. Moreover, you may couple | bond with the silicon atom with the coupling group L in the range with the effect of this invention. Alternatively, adjacent ones may be bonded to each other or condensed to form a ring.
 式(1)で表されるシラン化合物の例:
 3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-t-ブトキシシラン、メチルトリ-sec-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、シクロペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、アリルトリメトキシシランなどが挙げられる。
 2官能性シラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、シクロヘキシルメチルジメトキシシランなどが挙げられる。
 4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。
Examples of silane compounds represented by formula (1):
Examples of the trifunctional silane compound include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, methyltri-t-butoxysilane, methyltri-sec-butoxy Silane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, cyclopentyltrimethoxysilane, hexyltrimethoxysilane, cyclohexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxy Silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 1-naphthyltrimethoxysilane, - naphthyl trimethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyl triethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p- styryl trimethoxysilane, and the like allyl trimethoxysilane.
Examples of the bifunctional silane compound include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, cyclohexylmethyldimethoxysilane, and the like. Can be mentioned.
Examples of the tetrafunctional silane compound include tetramethoxysilane and tetraethoxysilane.
 式(2)で表されるシラン化合物の例:
 3官能性シラン化合物としては、例えば、3-グリシドキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリエトキシシラン、γ-アクリロイルオキシトリメトキシシラン、γ-アクリロイルオキシプロピルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、γ-グリシドキシプロピルトリ-n-ブトキシシラン、γ-グリシドキシプロピルトリ-t-ブトキシシラン、γ-グリシドキシプロピルトリ-sec-ブトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシ-t-ブチルトリエトキシシラン、α-グリシドキシ-t-ブチルトリエトキシシラン、α-グリシドキシ-t-ブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリ-t-ブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリ-n-ブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリ-sec-ブトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、3-ウレイドプロピルトリエトキシシランなどが挙げられる。
 2官能性シラン化合物としては、例えばγ-グリシドキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、3-メタクリロキシプロピルジメトキシシランなどが挙げられる。
Examples of silane compounds represented by formula (2):
Examples of the trifunctional silane compound include 3-glycidoxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloyloxytrimethoxysilane, and γ-acryloyloxy. Propyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane , Β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyl Liethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxy Propyltri-n-butoxysilane, γ-glycidoxypropyltri-t-butoxysilane, γ-glycidoxypropyltri-sec-butoxysilane, γ-glycidoxypropyltrimethoxysilane, α-glycidoxybutyl Trimethoxysilane, α-glycidoxy-t-butyltriethoxysilane, α-glycidoxy-t-butyltriethoxysilane, α-glycidoxy-t-butyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glyce Sidoxybutyltriethoxysilane, γ- Lysidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri-t-butoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri-n-butoxysilane, 2- (3,4-epoxy (Cyclohexyl) ethyltri-s ec-butoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxysilane, 4- (3,4-epoxycyclohexyl) butyltrimethoxysilane, 4- (3,4-epoxycyclohexyl) butyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- Isocyanatopropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-ureidopropyltriethoxysilane and the like.
Examples of the bifunctional silane compound include γ-glycidoxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, and γ-methacrylic. Oxypropylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethyl Methyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypro Rumethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, β- Glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane , Γ-glycidoxypropylvinyldiethoxysilane, 3-methacryloxypropyldimethoxysilane and the like.
 式(3)で表されるシラン化合物としては、例えば、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(3-アミノエチル)テトラメチルジシロキサン、1,3-ビス(3-アミノプロピル)テトラエチルジシロキサン等が挙げられる。 Examples of the silane compound represented by the formula (3) include 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (3-aminoethyl) tetramethyldisiloxane, 1,3 -Bis (3-aminopropyl) tetraethyldisiloxane and the like.
 シロキサン樹脂は、上述したアルコキシシラン化合物を用いて、加水分解反応および縮合反応を介して得ることができる。加水分解縮合反応としては公知の方法を使用することができ、必要に応じて、酸または塩基などの触媒を使用してもよい。触媒としてはpHを変更させるものであれば特に制限がなく、具体的には、酸(有機酸、無機酸)としては、硝酸、リン酸、シュウ酸、酢酸、蟻酸、塩酸などが挙げられる。アルカリとしては、例えばアンモニア、トリエチルアミン、エチレンジアミンなどが挙げられる。使用する量は、シロキサン樹脂が所定の分子量を満たせば、特に限定されない。 The siloxane resin can be obtained through the hydrolysis reaction and the condensation reaction using the above-described alkoxysilane compound. A known method can be used as the hydrolysis-condensation reaction, and a catalyst such as an acid or a base may be used as necessary. The catalyst is not particularly limited as long as the pH is changed. Specifically, examples of the acid (organic acid, inorganic acid) include nitric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, hydrochloric acid and the like. Examples of the alkali include ammonia, triethylamine, ethylenediamine, and the like. The amount to be used is not particularly limited as long as the siloxane resin satisfies a predetermined molecular weight.
 加水分解縮合反応においては、必要に応じて、溶媒を加えてもよい。溶媒としては加水分解縮合反応が実施できれば特に制限されず、後記の溶媒の例が挙げられる。なかでも、例えば、水、メタノール、エタノール、プロパノール、ジアセトンアルコール、テトラヒドロフルフリルアルコールなどのアルコール化合物、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジプロピレングリコールメチルエーテルなどのエーテル化合物、酢酸メチル、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテートなどのエステル化合物、アセトン、メチルエチルケトン、メチルイソアミルケトンなどのケトン化合物などが挙げられる。
 加水分解縮合反応の条件(温度、時間、溶媒量)は使用される材料の種類に応じて、適宜好適な条件が選択されればよい。
In the hydrolysis condensation reaction, a solvent may be added as necessary. The solvent is not particularly limited as long as the hydrolysis-condensation reaction can be carried out, and examples of the solvent described below can be given. Among them, for example, alcohol compounds such as water, methanol, ethanol, propanol, diacetone alcohol, tetrahydrofurfuryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, dipropylene glycol methyl ether, etc. Examples include ether compounds, ester compounds such as methyl acetate, ethyl acetate, butyl acetate, γ-butyrolactone, and propylene glycol monomethyl ether acetate, and ketone compounds such as acetone, methyl ethyl ketone, and methyl isoamyl ketone.
The conditions (temperature, time, amount of solvent) for the hydrolysis-condensation reaction may be appropriately selected according to the type of material used.
 本実施形態で使用されるシロキサン樹脂の重量平均分子量は、2,000以上が好ましく、3,000以上が特に好ましい。上限としては、500,000以下が好ましく、450,000以下がより好ましく、250,000以下が特に好ましい。 The weight average molecular weight of the siloxane resin used in this embodiment is preferably 2,000 or more, particularly preferably 3,000 or more. The upper limit is preferably 500,000 or less, more preferably 450,000 or less, and particularly preferably 250,000 or less.
 本発明においてポリマーの分子量については、特に断らない限り、重量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算で計測する。測定装置は東ソー社製のものを使用する。条件としては、下記条件1によることとする。ただし、ポリマー種によっては、さらに適宜適切なキャリア(溶離液)およびそれに適合したカラムを選定して用いてもよい。
(条件1)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラム
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
In the present invention, the molecular weight of the polymer means a weight average molecular weight unless otherwise specified, and is measured in terms of standard polystyrene by gel permeation chromatography (GPC). A measuring device manufactured by Tosoh Corporation is used. As conditions, it shall be based on the following condition 1. However, depending on the polymer type, an appropriate carrier (eluent) and a column suitable for it may be selected and used.
(Condition 1)
Column: TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, TOSOH TSKgel Super HZ2000 connected column Carrier: Tetrahydrofuran Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
 シロキサン樹脂の場合には、シロキサン樹脂をジメチルホルムアミドにより試料濃度が0.3質量%になるよう調整し、測定を行なう。ただし、その種類や分子量によっては、上記条件1によって測定してもよい。 In the case of a siloxane resin, the siloxane resin is adjusted with dimethylformamide so that the sample concentration is 0.3% by mass, and measurement is performed. However, depending on the type and molecular weight, measurement may be performed under the above condition 1.
 一部重複する部分もあるが、好ましいシロキサン樹脂としては、下記も挙げられる。
 4つ以上のアルコキシ基を有するアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシラン、テトラメトキシジシロキサン、テトラエトキシジシロキサン、ビス(トリエトキシシリルプロピル)テトラスルフィド、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレートが挙げられる。硬化膜の耐薬品性の向上の観点から、嵩高い9官能性シランと立体障害の少ない4官能性シランとを相互に反応させるようにするため、4官能性シランと9官能性シランとの混合物が好ましい。
Although there are some overlapping portions, preferred siloxane resins include the following.
Examples of the alkoxysilane having four or more alkoxy groups include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, tetraphenoxysilane, tetramethoxydisiloxane, tetraethoxydisiloxane, and bis (triethoxysilylpropyl) tetrasulfide. , Tris- (3-trimethoxysilylpropyl) isocyanurate, and tris- (3-triethoxysilylpropyl) isocyanurate. From the viewpoint of improving the chemical resistance of the cured film, a mixture of tetrafunctional silane and 9 functional silane is used in order to allow bulky 9 functional silane and tetrafunctional silane with less steric hindrance to react with each other. Is preferred.
 シロキサン樹脂は2官能あるいは3官能のアルコキシシラン化合物との加水分解物縮合反応物であることも好ましい。シロキサン樹脂を構成するアルコキシシラン化合物としては、例えば、ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジヒドロキシジフェニルシラン、ジメトキシ(メチル)(フェニル)シラン、ジエトキシ(メチル)(フェニル)シラン、ジメトキシ(メチル)(フェネチル)シラン、ジシクロペンチルジメトキシシラン又はシクロヘキシルジメトキシ(メチル)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン又は3-アクリロキシプロピルトリエトキシシラン、3-トリメトキシシリルプロピル無水コハク酸、3-トリエトキシシリルプロピル無水コハク酸、3-トリメトキシシリルエチル無水コハク酸、3-トリメトキシシリルブチル無水コハク酸、3-グリシジロキシプロピルトリメトキシシラン、3-グリシジロキシプロピルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、フェネチルトリメトキシシラン、ナフチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、フェネチルトリエトキシシラン、ナフチルトリエトキシシラン、テトラメトキシシラン又はテトラエトキシシランが挙げられる。 The siloxane resin is also preferably a hydrolyzate condensation reaction product with a bifunctional or trifunctional alkoxysilane compound. Examples of the alkoxysilane compound constituting the siloxane resin include dimethoxydimethylsilane, diethoxydimethylsilane, dimethoxydiphenylsilane, diethoxydiphenylsilane, dihydroxydiphenylsilane, dimethoxy (methyl) (phenyl) silane, and diethoxy (methyl) (phenyl). ) Silane, dimethoxy (methyl) (phenethyl) silane, dicyclopentyldimethoxysilane or cyclohexyldimethoxy (methyl) silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Or 3-acryloxypropyltriethoxysilane, 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl anhydride Acid, 3-trimethoxysilylethyl succinic anhydride, 3-trimethoxysilylbutyl succinic anhydride, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3- (3,4-epoxy (Cyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, phenethyltrimethoxysilane, naphthyltrimethoxysilane, methyltriethoxy Examples include silane, ethyltriethoxysilane, phenyltriethoxysilane, phenethyltriethoxysilane, naphthyltriethoxysilane, tetramethoxysilane, and tetraethoxysilane.
 シロキサン樹脂の含有量は、組成物に後述するアルカリ可溶性樹脂を含有している場合には、少なくすることが好ましく、アルカリ可溶性樹脂を含有していない場合には、多くすることが好ましい。すなわち、組成物にアルカリ可溶性樹脂を含有している場合、シロキサン樹脂の含有量は、組成物の固形成分中で1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが特に好ましい。上限としては、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 また組成物にアルカリ可溶性樹脂を含有していない場合、シロキサン樹脂の含有量は、組成物の固形成分中で10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。
 金属含有粒子100質量部に対するシロキサン樹脂の含有量は、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、15質量部以上であることが特に好ましい。上限としては、60質量部以下であることが好ましく、50質量部以下であることがより好ましく、45質量部以下であることが特に好ましい。シロキサン樹脂の量は、上記下限値以上で用いることが、製膜性や膜の耐久性の観点で好ましい。一方、上記上限値以下に抑えることで、高屈折率を維持できる観点から好ましい。
The content of the siloxane resin is preferably reduced when the composition contains an alkali-soluble resin to be described later, and is preferably increased when the composition does not contain an alkali-soluble resin. That is, when the composition contains an alkali-soluble resin, the content of the siloxane resin is preferably 1% by mass or more, more preferably 2% by mass or more in the solid component of the composition, It is particularly preferably 3% by mass or more. As an upper limit, it is preferable that it is 30 mass% or less, and it is more preferable that it is 20 mass% or less.
When the composition does not contain an alkali-soluble resin, the content of the siloxane resin is preferably 10% by mass or more, more preferably 15% by mass or more in the solid component of the composition, It is particularly preferable that the content is at least mass%. As an upper limit, it is preferable that it is 40 mass% or less, and it is more preferable that it is 35 mass% or less.
The content of the siloxane resin with respect to 100 parts by mass of the metal-containing particles is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and particularly preferably 15 parts by mass or more. The upper limit is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and particularly preferably 45 parts by mass or less. The amount of the siloxane resin is preferably used in the above lower limit or more from the viewpoint of film forming property and film durability. On the other hand, it is preferable from the viewpoint that a high refractive index can be maintained by suppressing it to the upper limit value or less.
 なお、本明細書においてシロキサン樹脂というときには、基本的には、アルコキシシラン化合物の加水分解縮合反応を経て得た重合物を意味するが、その他の反応による重合物や、原料となるシラン化合物そのものも含む意味である。ただし、本発明において、シロキサン樹脂は、シラン化合物の加水分解縮合反応物であることが好ましい。なお、シラン化合物の加水分解縮合反応は金属含有粒子の共存下で行われてもよい。このとき、金属含有粒子とその表面で反応した、粒子-樹脂マトリックスや、コアシェル構造を形成していてもよい。 In the present specification, the term “siloxane resin” basically means a polymer obtained through a hydrolytic condensation reaction of an alkoxysilane compound. However, a polymer obtained by other reaction and a silane compound itself as a raw material are also included. Including meaning. However, in the present invention, the siloxane resin is preferably a hydrolytic condensation reaction product of a silane compound. The hydrolysis condensation reaction of the silane compound may be performed in the presence of metal-containing particles. At this time, a particle-resin matrix or a core-shell structure that reacts with the metal-containing particles on the surface thereof may be formed.
<紫外線吸収剤>
 本発明に採用される紫外線吸収剤は、その波長365nmにおけるモル吸光係数(単位:mol-1・L・cm-1)が5000以上であり、6500以上であることが好ましく、8000以上であることがより好ましく、10000以上であることが特に好ましい。一方、波長400nmにおけるモル吸光係数が3500以下であり、2500以下であることが好ましく、1500以下であることがより好ましい。なお、本明細書において、モル吸光係数は、特に断らない限り、後記実施例で測定した条件によるものとする。
 ここで、本発明における紫外線吸収剤の作用について述べる。この作用は以下のように推定される。例えば、本発明のシロキサン樹脂組成物をネガ型の感光性樹脂組成物(紫外線硬化型)として用いる場合、基板の上にシロキサン樹脂組成物を塗布して用いる例が挙げられる。このとき、フォトマスクを介して活性放射線(例えばi線)を照射する。すると、この露光部分が感光され硬化する。これを所定の現像液で現像することで、シロキサン樹脂組成物の硬化物のパターンが得られる。
 一方、シロキサン樹脂組成物の透明性が高い場合で、特に組成物中の粒子の影響を受ける場合、光が樹脂中で散乱し側方周辺の樹脂が感光されることがある。そうすると、その側方周辺の樹脂も硬化し、輪郭がフォトマスクに対してぼけた状態でパターン化される。
 これに対し、本発明のシロキサン樹脂組成物においては、特定の吸収特性を有する紫外線吸収剤を採用したため、露光ぼけを抑制しシャープな形状の硬化物を得ることができる。具体的には、紫外線(i線)を露光に用いた場合において、シロキサン樹脂と金属含有粒子とのマトリックスが上述した光の散乱を及ぼしやすくなると解される。そのため、本発明で採用した特定の紫外線吸収剤の効果が顕著となると解される。
<Ultraviolet absorber>
The ultraviolet absorber employed in the present invention has a molar extinction coefficient (unit: mol −1 · L · cm −1 ) at a wavelength of 365 nm of 5000 or more, preferably 6500 or more, and preferably 8000 or more. Is more preferably 10,000 or more. On the other hand, the molar extinction coefficient at a wavelength of 400 nm is 3500 or less, preferably 2500 or less, and more preferably 1500 or less. In the present specification, the molar extinction coefficient is based on the conditions measured in Examples described below unless otherwise specified.
Here, the effect | action of the ultraviolet absorber in this invention is described. This effect is estimated as follows. For example, when the siloxane resin composition of the present invention is used as a negative photosensitive resin composition (ultraviolet curable), an example in which the siloxane resin composition is applied on a substrate is used. At this time, actinic radiation (for example, i-line) is irradiated through a photomask. Then, this exposed portion is exposed and cured. The pattern of the hardened | cured material of a siloxane resin composition is obtained by developing this with a predetermined developing solution.
On the other hand, when the siloxane resin composition is highly transparent, particularly when it is affected by the particles in the composition, light may be scattered in the resin and the resin around the side may be exposed. If it does so, the resin of the side periphery will also harden | cure and it will be patterned in the state in which the outline was blurred with respect to the photomask.
On the other hand, since the siloxane resin composition of the present invention employs an ultraviolet absorbent having specific absorption characteristics, exposure blur can be suppressed and a sharp cured product can be obtained. Specifically, it is understood that when ultraviolet rays (i-rays) are used for exposure, the matrix of the siloxane resin and the metal-containing particles tends to cause the above-described light scattering. Therefore, it is understood that the effect of the specific ultraviolet absorber adopted in the present invention is remarkable.
 さらに、本発明のシロキサン樹脂組成物においては、その硬化物において優れた耐光性をも実現することができる。この理由はとして、推定を含むが、上記特定の吸収特性を有する紫外線吸収剤が金属含有粒子表面に特有の状態で吸着することが挙げられる。その結果、粒子表面での紫外線の散乱を効果的に抑え、組成物の劣化やその硬化物の劣化の抑制に寄与したものと解される。そして、この作用は先に述べたとおり金属含有粒子の濃度が高いほど顕著になるものと解される。 Furthermore, the siloxane resin composition of the present invention can also realize excellent light resistance in the cured product. The reason for this includes estimation, but it is possible that the ultraviolet absorbent having the specific absorption characteristics is adsorbed on the surface of the metal-containing particles in a specific state. As a result, it is understood that the scattering of ultraviolet rays on the particle surface is effectively suppressed, and the deterioration of the composition and the cured product are suppressed. And this effect | action is understood to become so remarkable that the density | concentration of a metal containing particle | grain is high as stated above.
 紫外線吸収剤は、上記の光学特性を有するものであれば広く選択して用いることができ、具体的には、(ベンゾ)トリアゾール化合物、ベンゾフェノン化合物、ジエン化合物、アボベンゾン化合物、(ベンゾ)ジチアゾール化合物、(ベンゾ)ジチオール化合物、クマリン化合物、又はトリアジン化合物などが挙げられる。ここでの( )はベンゾ置換体であってもなくてもよいことを意味する。なかでも高い解像性と耐光性を考慮すると、ジエン化合物、アボベンゾン化合物、ベンゾジチオール化合物、トリアゾール、又はトリアジン化合物が好ましい。 The ultraviolet absorber can be widely selected and used as long as it has the above optical characteristics. Specifically, (benzo) triazole compound, benzophenone compound, diene compound, avobenzone compound, (benzo) dithiazole compound, (Benzo) dithiol compound, coumarin compound, triazine compound, etc. are mentioned. Here, () means that it may or may not be a benzo-substituted product. Among these, in consideration of high resolution and light resistance, a diene compound, an avobenzone compound, a benzodithiol compound, a triazole, or a triazine compound is preferable.
 本発明に採用される紫外線吸収剤は、その分子内に1つ以上のCO基(カルボニル基)、CONH基(アミド基)、COO基(エステル基)、CN基(シアノ基)を有することが好ましい(以下、これらの基を特定吸着基と呼ぶ)。上記の特定吸着基は分子内に2つ以上あることがより好ましい。上限は特にないが、8個以下であることが実際的である。その作用は不明の点を含むが、上記のように金属含有粒子の表面に効果的に吸着し、あるいは分散し、上述した粒子による光の散乱の影響を緩和するものと解される。その点では、上記金属含有粒子がM-O結合(M=金属)を有する金属酸化物微粒子であることが好ましい。 The ultraviolet absorber employed in the present invention may have one or more CO groups (carbonyl groups), CONH groups (amide groups), COO groups (ester groups), and CN groups (cyano groups) in the molecule. Preferred (hereinafter these groups are referred to as specific adsorbing groups). It is more preferable that there are two or more specific adsorption groups in the molecule. Although there is no upper limit in particular, it is practical that it is eight or less. Although its action includes unknown points, it is understood that it effectively adsorbs or disperses on the surface of the metal-containing particles as described above, and alleviates the influence of light scattering by the above-mentioned particles. In that respect, the metal-containing particles are preferably metal oxide fine particles having a MO bond (M = metal).
 本発明に用いられる紫外線吸収剤は、下記の式(a)~(g)のいずれかの骨格を有する化合物からなることが好ましく、なかでも式(d)~(g)の骨格を有する化合物からなることがより好ましく、式(d)~(f)の骨格を有する化合物からなることが特に好ましい。これらの骨格に所定の範囲で任意の置換基を有する化合物を利用することができる。任意の置換基としては、後記置換基Tの例が挙げられる。なかでも、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がより好ましく、1~3が特に好ましい)、ヒドロキシル基、アルコキシ基(炭素数1~24が好ましく、1~12がより好ましく、1~6がより好ましく、1~3が特に好ましい)、アシル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がより好ましく、2~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、ヘテロ環基(炭素数1~12が好ましく、2~5がより好ましい)が挙げられる。ヘテロ環基は、N、O、Sのいずれかを含有するものが好ましく、なかでもNを含有するものが好ましい。ヘテロ環基は、5~7員環が好ましく、5または6員環がより好ましい。特に、式(a)~(f)のベンゼン環には上記の置換基を1つ以上有することが好ましい。ベンゼン環上の任意の置換基は、複数あるとき、環を形成していてもよい。 The ultraviolet absorber used in the present invention is preferably composed of a compound having a skeleton of any one of the following formulas (a) to (g), and particularly from a compound having a skeleton of the formulas (d) to (g). More preferably, it is particularly preferably made of a compound having a skeleton of formulas (d) to (f). A compound having an arbitrary substituent in a predetermined range in these skeletons can be used. As an arbitrary substituent, the example of the postscript substituent T is mentioned. Among them, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), a hydroxyl group, an alkoxy group (preferably having 1 to 24 carbon atoms, 1 to 12 is more preferable, 1 to 6 is more preferable, and 1 to 3 is particularly preferable.) Acyl group (2 to 24 carbon atoms are preferable, 2 to 12 are more preferable, 2 to 6 are more preferable, and 2 to 3 are preferable) Is particularly preferable), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), a heterocyclic group (preferably having 1 to 12 carbon atoms, and more preferably 2 to 5 carbon atoms). Is mentioned. The heterocyclic group preferably contains any of N, O, and S, and particularly preferably contains N. The heterocyclic group is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring. In particular, it is preferable that the benzene rings of the formulas (a) to (f) have one or more of the above substituents. When there are a plurality of optional substituents on the benzene ring, they may form a ring.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(f)において、RU1およびRU2はそれぞれ独立に置換基Tであり、中でもシアノ基またはアシル基(炭素数1~24が好ましく、4~18がより好ましい)が好ましい。RU1およびRU2は同じであっても異なっていてもよい。
 式(g)において、RU3およびRU4は、それぞれ独立に、置換基Tであり、中でもアルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がより好ましく、1~3が特に好ましい)が好ましく、シアノ基もしくはカルボキシル基を有するアルキル基が好ましい。RU5およびRU6はそれぞれRU1およびRU2と同義の基が好ましい。
 RU1とRU2、RU3とRU4、RU5とRU6は結合ないし縮合して環を形成していてもよい。
In the formula (f), R U1 and R U2 are each independently a substituent T, and among them, a cyano group or an acyl group (preferably having 1 to 24 carbon atoms, more preferably 4 to 18 carbon atoms) is preferable. R U1 and R U2 may be the same or different.
In the formula (g), R U3 and R U4 each independently represent a substituent T, and among them, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms). To 3 are particularly preferable, and an alkyl group having a cyano group or a carboxyl group is preferable. R U5 and R U6 are preferably groups having the same meanings as R U1 and R U2 , respectively.
R U1 and R U2 , R U3 and R U4 , R U5 and R U6 may be combined or condensed to form a ring.
 紫外線吸収剤として、より具体的には、例えば、Uvinul A、同3000、同3008、同3049、同3050(BASF製)、スミソーブ130、同140、同200、同250、同320、同340、同350(住友化学製)、EVERSORB10、EVERSORB11、EVERSORB12(台湾永光化学工業製)、トミソーブ800(エーピーアイコーポレーション製)、SEESORB100、同101、同101S、同102、同103、同105、同106、同107、同151(シプロ化成製)、ジスライザーM(三協化成)などのベンゾフェノン化合物;
 スミソーブ200、同250、同300、同320、同340、同350(住友化学製)、JF77、JF78、JF79、JF80、JF83(城北化学工業製)、TINUVIN PS、同99-2、同109、同171、同328、同384-2、同479、同900、同928、同1130(BASF製)、同70、同71、同72、同73、同74、同75、同76、同234、同77、同78、同80、同81(台湾永光化学工業製)、トミソーブ100、同600(エーピーアイコーポレーション製)、SEESORB701、同702、同703、同704、同706、同707、同709(シプロ化成製)などのベンゾトリアゾール化合物;
 スミソーブ400(住友化学製)、サリチル酸フェニルなどのベンゾエート化合物;
 TINUVIN400、同405、同460、同477DW、同479(BASF製)などのヒドロキシフェニルトリアジン化合物;
 クマリン-4、4-ヒドロキシクマリン、7-ヒドロキシクマリンなどのクマリン化合物;などを挙げることができる。
 ジエン化合物としては、特開2010-78729号公報の段落0144~0164欄の化合物が使用でき、これらの内容が援用でき、本明細書に組み込まれる。
More specifically, as an ultraviolet absorber, for example, Uvinul A, 3000, 3008, 3049, 3050 (manufactured by BASF), Sumsorb 130, 140, 200, 250, 320, 340, 350 (manufactured by Sumitomo Chemical Co., Ltd.), EVERSORB10, EVERSORB11, EVERSORB12 (manufactured by Yongkou Chemical Industry Co., Ltd.), Tomissorb 800 (manufactured by API Corporation), SEESORB100, 101, 101S, 102, 103, 105, 106, Benzophenone compounds such as 107, 151 (Cipro Kasei), and Dysizer M (Sankyo Kasei);
Sumisorb 200, 250, 300, 320, 340, 350 (Sumitomo Chemical), JF77, JF78, JF79, JF80, JF83 (Johoku Chemical), TINUVIN PS, 99-2, 109, 171, 328, 384-2, 479, 900, 928, 1130 (made by BASF), 70, 71, 72, 73, 74, 75, 76, 234 77, 78, 80, 81 (manufactured by Eiko Chemical Industries, Taiwan), Tomissorb 100, 600 (manufactured by API Corporation), SEESORB701, 702, 703, 704, 706, 707, Benzotriazole compounds such as 709 (manufactured by Cypro Kasei);
Benzoate compounds such as Sumisorb 400 (manufactured by Sumitomo Chemical) and phenyl salicylate;
Hydroxyphenyltriazine compounds such as TINUVIN400, 405, 460, 477DW, and 479 (manufactured by BASF);
And coumarin compounds such as coumarin-4, 4-hydroxycoumarin and 7-hydroxycoumarin.
As the diene compound, compounds described in paragraphs 0144 to 0164 of JP2010-78729A can be used, and the contents thereof can be incorporated and incorporated in the present specification.
 シロキサン樹脂組成物の固形成分中では、紫外線吸収剤は、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上が特に好ましい。上限としては、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が特に好ましい。金属含有粒子100質量部に対しては、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が特に好ましい。上限としては、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が特に好ましい。紫外線吸収剤を上記下限値以上で適用することで、上述した現像性や耐光性の良化作用を効果的に得ることができ好ましい。上記上限値以下とすることで、透明性などの光学特性への過度の影響を抑えることができ、またブルームなどを抑え製造適性にも資するため好ましい。
 紫外線吸収剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
In the solid component of the siloxane resin composition, the ultraviolet absorber is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 1% by mass or more. As an upper limit, 20 mass% or less is preferable, 15 mass% or less is more preferable, and 10 mass% or less is especially preferable. With respect to 100 parts by mass of the metal-containing particles, 0.1 part by mass or more is preferable, 0.5 part by mass or more is more preferable, and 1 part by mass or more is particularly preferable. As an upper limit, 20 mass parts or less are preferable, 10 mass parts or less are more preferable, and 5 mass parts or less are especially preferable. It is preferable to apply the ultraviolet absorber at the above lower limit value or more because the above-described developability and light resistance can be effectively improved. By setting it to the upper limit value or less, it is possible to suppress an excessive influence on optical properties such as transparency, and to suppress bloom and contribute to manufacturing aptitude, which is preferable.
An ultraviolet absorber may be used individually by 1 type, or may be used in combination of 2 or more type.
<重合開始剤>
 本発明のシロキサン樹脂組成物には、重合開始剤を含有させる。重合開始剤としては、熱重合開始剤でも光重合開始剤でもよいが、光重合性開始剤が好ましい。例えば、有機ハロゲン化化合物、オキシジアゾール化合物、カルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシム化合物、オニウム塩化合物、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、アシルホスフィンオキシド化合物、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体化合物、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物、α-アミノアルキルフェノン化合物、安息香酸エステル化合物が挙げられる。
 これらの具体例として、特開2010-106268号公報段落<0135>(対応する米国特許出願公開第2011/0124824号明細書の<0163>)以降の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<Polymerization initiator>
The siloxane resin composition of the present invention contains a polymerization initiator. The polymerization initiator may be either a thermal polymerization initiator or a photopolymerization initiator, but a photopolymerization initiator is preferred. For example, organic halogenated compounds, oxydiazole compounds, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid Compound, disulfonic acid compound, oxime compound, onium salt compound, hydroxyacetophenone compound, aminoacetophenone compound, acylphosphine oxide compound, trihalomethyltriazine compound, benzyldimethyl ketal compound, α-hydroxyketone compound, α-aminoketone compound, acylphosphine compound , Phosphine oxide compound, metallocene compound, triallylimidazole dimer, onium compound, benzothiazole compound, benzo Examples include phenone compounds, cyclopentadiene-benzene-iron complex compounds, halomethyloxadiazole compounds, 3-aryl-substituted coumarin compounds, α-aminoalkylphenone compounds, and benzoate compounds.
As specific examples thereof, the description after paragraph <0135> of Japanese Patent Application Laid-Open No. 2010-106268 (corresponding to <0163> of US Patent Application Publication No. 2011/0124824) can be referred to. Incorporated into.
 具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィンオキシド系開始剤を挙げることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959,IRGACURE-127(商品名:いずれもBASF社製)を挙げることができる。
 アミノアセトフェノン系開始剤の市販品としてはIRGACURE-907、IRGACURE-369、IRGACURE-379(商品名:いずれもBASF社製)等を用いることができる。また、365nmまたは405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤の市販品としては、IRGACURE-819、ダロキュア4265、DAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
 アゾ化合物としては、2,2-アゾビスイソブチロニトリル(AIBN)、3-カルボキシプロピオニトリル、アゾビスマレイロニトリル、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)[V-601](Wako社製)等が挙げられる。
Specific examples include aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898.
Examples of the hydroxyacetophenone-based initiator include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF).
As commercially available aminoacetophenone initiators, IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF) and the like can be used. In addition, a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
As commercially available acylphosphine initiators, IRGACURE-819, Darocur 4265, DAROCUR-TPO (trade names: all manufactured by BASF) can be used.
Examples of the azo compound include 2,2-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismaleonitrile, dimethyl-2,2′-azobis (2-methylpropionate) [V -601] (manufactured by Wako).
 本発明においてはオキシム化合物を用いることが好ましい。オキシム化合物は、本発明のシロキサン樹脂組成物において重合を開始・促進する重合開始剤としての機能を効果的に発揮する。また、オキシム化合物は後加熱での着色が少なく、硬化性も良好である。特に、本発明においては、パターンの解像性や硬化物の耐光性を良化できる点で好ましい。なかでも、IRGACURE OXE01(下式)、IRGACURE OXE02(下式)などの市販品(いずれも、BASF社製)を好適に使用することができる。 In the present invention, it is preferable to use an oxime compound. The oxime compound effectively functions as a polymerization initiator that initiates and accelerates polymerization in the siloxane resin composition of the present invention. In addition, the oxime compound is less colored by post-heating and has good curability. In particular, the present invention is preferable in that the resolution of the pattern and the light resistance of the cured product can be improved. Among these, commercially available products (both manufactured by BASF) such as IRGACURE OXE01 (lower formula) and IRGACURE OXE02 (lower formula) can be suitably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 重合開始剤となるオキシム化合物としては、下記式(OX)で表されるものが好ましく、式(OX-1)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000003

 ・A
 Aは式(OX-1)の-A-Cまたはアルキル基であることが好ましい。アルキル基は、炭素数1~12が好ましく、1~6であることがより好ましい。アルキル基は、後記置換基Tを有していてもよい。また、置換基Tは後記連結基Lを介在して置換していてもよい。
As the oxime compound serving as a polymerization initiator, those represented by the following formula (OX) are preferred, and those represented by the formula (OX-1) are more preferred.
Figure JPOXMLDOC01-appb-C000003

・ A 1
A 1 is preferably —AC or an alkyl group of the formula (OX-1). The alkyl group preferably has 1 to 12 carbon atoms, and more preferably 1 to 6 carbon atoms. The alkyl group may have a substituent T described later. Further, the substituent T may be substituted via a linking group L described later.
・C
 CはAr、-SAr、もしくは-COArを表す。
・R
 Rは一価の置換基を表し、一価の非金属原子団であることが好ましい。上記一価の非金属原子団としては、アルキル基(好ましくは炭素数1~12、より好ましくは1~6、特に好ましくは1~3)、アリール基(好ましくは炭素数6~14、より好ましくは6~10)、アシル基(好ましくは炭素数2~12、より好ましくは2~6、特に好ましくは2~3)、アリーロイル基(好ましくは炭素数7~15、より好ましくは7~11)、アルコキシカルボニル基(好ましくは炭素数2~12、より好ましくは2~6、特に好ましくは2~3)、アリールオキシカルボニル基(好ましくは炭素数7~15、より好ましくは7~11)、複素環基(好ましくは炭素数2~12、より好ましくは2~6)、アルキルチオカルボニル基(好ましくは炭素数2~12、より好ましくは2~6、特に好ましくは2~3)、アリールチオカルボニル基(好ましくは炭素数7~15、より好ましくは7~11)等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、さらに他の置換基Tで置換されていてもよい。置換基Tの中でも、ハロゲン原子、アルキル基(好ましくは炭素数1~12、より好ましくは1~6、特に好ましくは1~3)、アリール基(好ましくは炭素数6~14、より好ましくは6~10)、アリールチオ基(好ましくは炭素数6~14、より好ましくは6~10)、アリーロイル基(好ましくは炭素数7~15、より好ましくは7~11))等が好ましい。連結基Lはなかでも、炭素数1~6のアルキレン基,O,S,CO,NR,またはこれらの組み合わせが好ましい。
・ C
C represents Ar, —SAr, or —COAr.
・ R
R represents a monovalent substituent, and is preferably a monovalent nonmetallic atomic group. Examples of the monovalent nonmetallic atomic group include an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), and an aryl group (preferably having a carbon number of 6 to 14, more preferably 6-10), an acyl group (preferably 2-12 carbon atoms, more preferably 2-6, particularly preferably 2-3), an aryloyl group (preferably 7-15 carbon atoms, more preferably 7-11). An alkoxycarbonyl group (preferably having a carbon number of 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3), an aryloxycarbonyl group (preferably having a carbon number of 7 to 15, more preferably 7 to 11), a complex A cyclic group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an alkylthiocarbonyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 3 carbon atoms), Over thiocarbonyl group include (preferably having 7 to 15, more preferably from 7 to 11 carbon atoms) and the like. Moreover, these groups may have one or more substituents. Further, the above-described substituent may be further substituted with another substituent T. Among the substituent T, a halogen atom, an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, particularly preferably 1 to 3), an aryl group (preferably having a carbon number of 6 to 14, more preferably 6). To 10), an arylthio group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10), an aryloyl group (preferably having 7 to 15 carbon atoms, more preferably 7 to 11)) and the like. Among them, the linking group L is preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof.
・B
 Bは一価の置換基を表し、アルキル基(好ましくは炭素数1~12)、アリール基(好ましくは炭素数6~14、より好ましくは炭素数6~10)、複素環基(好ましくは炭素数2~18、より好ましくは炭素数2~12)を表す。これらの基は、連結基Lを介して結合していてもよい。また、これらの基は1以上の置換基Tを有していてもよい。置換基Tも任意の連結基Lを介して置換していてもよい。ここでも連結基Lも、炭素数1~6のアルキレン基,O,S,CO,NR,またはこれらの組み合わせが好ましい。Bの具体的な基として下記が挙げられる。*は結合位置を示すが、異なる位置で結合していてもよい。また、これらの基はさらに置換基Tを伴っていてもよい。具体的には、ベンゾイル基、フェニルチオ基、フェニルオキシ基が挙げられる。
・ B
B represents a monovalent substituent, and is an alkyl group (preferably having 1 to 12 carbon atoms), an aryl group (preferably having 6 to 14 carbon atoms, more preferably having 6 to 10 carbon atoms), a heterocyclic group (preferably having carbon atoms). 2 to 18, more preferably 2 to 12 carbon atoms. These groups may be bonded via a linking group L. In addition, these groups may have one or more substituents T. The substituent T may also be substituted through an arbitrary linking group L. Here, the linking group L is also preferably an alkylene group having 1 to 6 carbon atoms, O, S, CO, NR N , or a combination thereof. Specific examples of B include the following. * Indicates a bonding position, but may be bonded at different positions. Further, these groups may be further accompanied by a substituent T. Specific examples include a benzoyl group, a phenylthio group, and a phenyloxy group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
・A
 Aは単結合または連結基である。連結基の好ましい例としては、上記連結基Lまたはアリーレン基(好ましくは炭素数6~14、より好ましくは炭素数6~10)または複素環連結基(好ましくは芳香族複素環連結基)(好ましくは炭素数2~18、より好ましくは炭素数2~12)である。
・ A
A is a single bond or a linking group. Preferred examples of the linking group include the linking group L or arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms) or a heterocyclic linking group (preferably an aromatic heterocyclic linking group) (preferably Has 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms.
・Ar
 Arはアリール基またはヘテロアリール(芳香族複素環基)である。アリール基としては、好ましくは炭素数6~14、より好ましくは炭素数6~10であり、フェニル基、ナフチル基が好ましい。ヘテロアリール基としては、好ましくは炭素数2~18、より好ましくは炭素数2~12であり、N位にアルキル基等の置換基を有していてもよいカルバゾリル基が好ましい。
・ Ar
Ar is an aryl group or heteroaryl (aromatic heterocyclic group). The aryl group preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and is preferably a phenyl group or a naphthyl group. The heteroaryl group is preferably a carbazolyl group having preferably 2 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and optionally having a substituent such as an alkyl group at the N-position.
 オキシム化合物としては、特開2012-208494号公報段落0513(対応する米国特許出願公開第2012/235099号明細書の<0632>)以降の式(OX-1)、(OX-2)または(OX-3)で表される化合物の説明を参酌でき、これらの内容は本明細書に組み込まれる。 As the oxime compound, paragraph 0513 of JP2012-208494A (corresponding to <0632> of US Patent Application Publication No. 2012/235099) and the following formulas (OX-1), (OX-2) or (OX The description of the compound represented by -3) can be referred to, and the contents thereof are incorporated in the present specification.
 重合開始剤は、350nm~500nmの波長領域に極大吸収波長を有することが好ましく、360nm~480nmの波長領域に吸収波長を有するものであることがより好ましく、365nm及び455nmの吸光度が高いものが特に好ましい。365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることが特に好ましい。モル吸光係数の測定方法は紫外線吸収剤と同じであり、特に断らない限り、後記実施例で測定した条件によるものとする。 The polymerization initiator preferably has a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in a wavelength region of 360 nm to 480 nm, and particularly has a high absorbance at 365 nm and 455 nm. preferable. From the viewpoint of sensitivity, the molar extinction coefficient at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and 5,000 to 200,000. It is particularly preferred. The method for measuring the molar extinction coefficient is the same as that of the ultraviolet absorber, and unless otherwise specified, is based on the conditions measured in Examples described later.
 重合開始剤の含有量(2種以上の場合は総含有量)は、組成物の全固形分に対し0.1質量%以上10質量%以下であることが好ましく、より好ましくは0.3質量%以上8質量%以下、更に好ましくは0.5質量%以上5質量%以下である。この範囲で、良好な硬化性と透明性とが得られる。
 また、重合開始剤は、単独で、又は2種以上を併用して用いることができる。
The content of the polymerization initiator (total content in the case of two or more) is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.3% by mass with respect to the total solid content of the composition. % To 8% by mass, more preferably 0.5% to 5% by mass. Within this range, good curability and transparency can be obtained.
Moreover, a polymerization initiator can be used individually or in combination of 2 or more types.
<溶媒>
 本発明のシロキサン樹脂組成物には溶媒を含有させてもよい。この溶媒は、上記シラン化合物の加水分解縮合反応に用いた溶媒をそのまま組成物の溶媒として用いてもよく、あるいはその溶媒に加えて、または切り替えて下記の溶媒を用いてもよい。
 溶媒としては、たとえば、水、脂肪族化合物、ハロゲン化炭化水素化合物、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物、ニトリル化合物、アミド化合物、スルホキシド化合物、芳香族化合物が挙げられる。これらの溶媒は混合して使用してもよい。それぞれの例を下記に列挙する。
・水
・脂肪族化合物
 ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなど
・ハロゲン化炭化水素化合物
 塩化メチレン、クロロホルム、ジクロルメタン、二塩化エタン、四塩化炭素、トリクロロエチレン、テトラクロロエチレン、エピクロロヒドリン、モノクロロベンゼン、オルソジクロロベンゼン、アリルクロライド、HCFC、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸トリクロル酢酸、臭化メチル、ウ化メチル、トリ(テトラ)クロロエチレなど
・アルコール化合物
 メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジアセトンアルコール、テトラヒドロフルフリルアルコールなど
・エーテル化合物(水酸基含有エーテル化合物を含む)
 ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、アニソール、テトラヒドロフラン、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)など
・エステル化合物
 酢酸エチル、乳酸エチル、2-(1-メトキシ)プロピルアセテート、プロピレングリコールモノメチルエーテルアセテートなど
・ケトン化合物
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン、シクロペンタノンなど
・ニトリル化合物
 アセトニトリルなど
・アミド化合物
 N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなど
・スルホキシド化合物
 ジメチルスルホキシドなど
・芳香族化合物
 ベンゼン、トルエンなど
<Solvent>
The siloxane resin composition of the present invention may contain a solvent. As the solvent, the solvent used in the hydrolysis condensation reaction of the silane compound may be used as it is as the solvent of the composition, or the following solvent may be used in addition to or in place of the solvent.
Examples of the solvent include water, aliphatic compounds, halogenated hydrocarbon compounds, alcohol compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds, and aromatic compounds. These solvents may be used as a mixture. Examples of each are listed below.
Water / aliphatic compounds Hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane, etc.Halogenated hydrocarbon compounds Methylene chloride, chloroform, dichloromethane, ethane dichloride, carbon tetrachloride, trichloroethylene, tetrachloroethylene, epichlorohydride Phosphorus, monochlorobenzene, orthodichlorobenzene, allyl chloride, HCFC, monochloroacetic acid methyl, monochloroacetic acid ethyl, monochloroacetic acid trichloroacetic acid, methyl bromide, methyl hydride, tri (tetra) chloroethylene, etc., alcohol compounds methyl alcohol, ethyl alcohol, 1 -Propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanedio , Cyclohexanediol, sorbitol, xylitol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, diacetone alcohol, tetrahydrofurfuryl alcohol, etc. Including compounds)
Dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, anisole, tetrahydrofuran, alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether) , Diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.) Ester compounds Ethyl acetate, ethyl lactate, 2- (1-methoxy) propyl acetate, propylene glycol monomethyl ether acetate, etc. Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, cyclopentanone, etc. Nitrile compounds Acetonitrile, etc. Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N-methylformamide, acetamide N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc. ・ Sulphoxide compound Dimethylsulfoxy Etc. Aromatic compounds as benzene, toluene, etc.
 溶媒としては組成物の各成分を均一に溶解するため、アルコール化合物、エステル化合物、又はエーテル化合物が好ましい。例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジアセトンアルコール、エチレングリコールモノノルマルブチルエーテル、酢酸2-エトキシエチル、1-メトキシプロピル-2-アセテート、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブタノールアセテート、3-メトキシブチルアセテート、1,3-ブチレングリコルジアセテート,エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、乳酸エチル、乳酸ブチル、アセト酢酸エチル又はγ―ブチロラクトンが挙げられる。 As the solvent, an alcohol compound, an ester compound, or an ether compound is preferable because each component of the composition is uniformly dissolved. For example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diacetone alcohol, ethylene glycol mononormal butyl ether, 2-ethoxyethyl acetate, 1-methoxypropyl-2-acetate, 3-methoxy-3-methylbutanol, 3-methoxy -3-Methylbutanol acetate, 3-methoxybutyl acetate, 1,3-butylene glycol diacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, ethyl lactate, butyl lactate, ethyl acetoacetate or γ-butyrolactone.
 溶媒の使用量は特に限定されないが、塗布液とするような場合には、固形成分が5質量%以上となるようにすることが好ましく、8質量%以上となるようにすることがより好ましく、10質量%以上となるようにすることが特に好ましい。上限としては、50質量%以下となるようにすることが好ましく、40質量%以下となるようにすることがより好ましく、35質量%以下となるようにすることが特に好ましい。
 溶媒は1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
The amount of the solvent used is not particularly limited, but when it is a coating solution, the solid component is preferably 5% by mass or more, more preferably 8% by mass or more, It is particularly preferable that the content be 10% by mass or more. The upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
The solvent may be used alone or in combination of two or more.
<重合性化合物>
 本発明のシロキサン樹脂組成物には、重合性化合物を含有させてもよい。重合性化合物は、少なくとも1個のエチレン性不飽和二重結合、エポキシ基、オキセタニル基などの重合性基を有する付加重合性化合物であることが好ましい。好ましくは重合性基を少なくとも1個、より好ましくは2個以上有する化合物から選ばれる。上限は特にないが、12個以下が実際的である。例えばモノマー、プレポリマー、すなわち2量体、3量体などの多量体及びオリゴマー、又はそれらの混合物並びにそれらの共重合体などの化学的形態をもつものでもよい。モノマー及びその共重合体の例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)や、そのエステル類、アミド類が挙げられる。好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が用いられる。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル類あるいは不飽和カルボン酸アミド類と単官能若しくは多官能イソシアネート類あるいはエポキシ類との付加反応物、及び単官能若しくは、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基や、エポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルあるいは不飽和カルボン酸アミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物;更にハロゲン基や、トシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルあるいは不飽和カルボン酸アミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン、ビニルエーテル等に置き換えた化合物群を使用することも可能である。これらの具体的な化合物としては、特開2009-288705号公報の段落番号0095~段落番号0108に記載されている化合物を本発明においても好適に用いることができる。
<Polymerizable compound>
The siloxane resin composition of the present invention may contain a polymerizable compound. The polymerizable compound is preferably an addition polymerizable compound having a polymerizable group such as at least one ethylenically unsaturated double bond, an epoxy group, or an oxetanyl group. Preferably, it is selected from compounds having at least one polymerizable group, more preferably two or more. There is no particular upper limit, but 12 or less is practical. For example, it may have a chemical form such as a monomer, a prepolymer, that is, a multimer such as a dimer, a trimer, and an oligomer, or a mixture thereof and a copolymer thereof. Examples of monomers and copolymers thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides. Preferably, an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, or an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound is used. Further, an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a nucleophilic substituent such as a hydroxyl group, an amino group or a mercapto group with a monofunctional or polyfunctional isocyanate or epoxy, and A dehydration condensation reaction product with a monofunctional or polyfunctional carboxylic acid is also preferably used. In addition, an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having an electrophilic substituent such as an isocyanate group or an epoxy group and a monofunctional or polyfunctional alcohol, amine, or thiol; Furthermore, a substitution reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a leaving group such as a halogen group or a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. It is. As another example, it is also possible to use a group of compounds substituted with unsaturated phosphonic acid, styrene, vinyl ether or the like instead of the unsaturated carboxylic acid. As these specific compounds, the compounds described in paragraph numbers 0095 to 0108 of JP-A-2009-288705 can be preferably used in the present invention.
 重合性化合物は、さらに、下記式(MO-1)~(MO-6)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
The polymerizable compound is preferably further represented by the following formulas (MO-1) to (MO-6).
Figure JPOXMLDOC01-appb-C000005
 式中、nは、それぞれ、0~14であり、mは、それぞれ、1~8である。一分子内に複数存在するR、TおよびZは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、オキシアルキレン基の炭素原子側の末端がRに結合する。Rのうち少なくとも1つは、重合性基である。 In the formula, n is 0 to 14, respectively, and m is 1 to 8, respectively. A plurality of R, T and Z present in one molecule may be the same or different. When T is an oxyalkylene group, the end of the oxyalkylene group on the carbon atom side is bonded to R. At least one of R is a polymerizable group.
 nは0~5が好ましく、1~3がより好ましい。
 mは1~5が好ましく、1~3がより好ましい。
 上記式(MO-1)~(MO-6)で表される重合性化合物の具体例としては、特開2007-269779号公報の段落番号0248~段落番号0251に記載されている化合物を本実施形態においても好適に用いることができる。
n is preferably 0 to 5, and more preferably 1 to 3.
m is preferably 1 to 5, and more preferably 1 to 3.
As specific examples of the polymerizable compounds represented by the above formulas (MO-1) to (MO-6), the compounds described in Paragraph Nos. 0248 to 0251 of JP-A No. 2007-26979 are used in this embodiment. It can use suitably also in a form.
 中でも、重合性化合物等としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬株式会社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造や、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成製)が好ましい。これらのオリゴマータイプも使用できる。 Among them, dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, KAYARAD D-320; Nippon Kayaku) as the polymerizable compound, etc. Dipentaerythritol penta (meth) acrylate (commercially available) KAYARAD D-310 (commercially available from Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku Co., Ltd.) And a structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) -modified (meth) acrylate (commercially available product is M-460; Made sub-synthesis) is preferable. These oligomer types can also be used.
 重合性化合物としては、下記式(i)または(ii)で表される化合物も使用できる。 As the polymerizable compound, a compound represented by the following formula (i) or (ii) can also be used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式中、Eは、それぞれ、-((CHCHO)-、または-((CHCH(CH)O)-を表し、-((CHCHO)-が好ましい。
 yは、それぞれ、1~10の整数を表し、1~5の整数が好ましく、1~3の整数がより好ましい。
 Xは、それぞれ、水素原子、アクリロイル基、メタクリロイル基、またはカルボキシル基を表す。式(i)中、アクリロイル基およびメタクリロイル基の合計は3個または4個であることが好ましく、4個がより好ましい。式(ii)中、アクリロイル基およびメタクリロイル基の合計は5個または6個であり、6個が好ましい。
 mは、それぞれ、0~10の整数を表し、1~5の整数が好ましい。
 nは、それぞれ、0~10の整数を表し、1~5の整数が好ましい。
In the above formulae, E represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —, and — ((CH 2 ) y CH 2 O)-is preferred.
Each y represents an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably an integer of 1 to 3.
X represents a hydrogen atom, an acryloyl group, a methacryloyl group, or a carboxyl group, respectively. In the formula (i), the total number of acryloyl groups and methacryloyl groups is preferably 3 or 4, more preferably 4. In the formula (ii), the total number of acryloyl groups and methacryloyl groups is 5 or 6, with 6 being preferred.
m represents an integer of 0 to 10 and is preferably an integer of 1 to 5.
n represents an integer of 0 to 10, and an integer of 1 to 5 is preferable.
 重合性化合物としては、カルボキシル基、スルホン酸基、リン酸基等の酸性基を有していてもよい。従って、エチレン性化合物が、混合物である場合のように未反応のカルボキシル基を有するものであってもよく、これをそのまま利用することができる。必要において、上述のエチレン性化合物のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸性基を導入してもよい。この場合、使用される非芳香族カルボン酸無水物の具体例としては、無水テトラヒドロフタル酸、アルキル化無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、アルキル化無水ヘキサヒドロフタル酸、無水コハク酸、無水マレイン酸が挙げられる。 As a polymeric compound, you may have acidic groups, such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Accordingly, the ethylenic compound may have an unreacted carboxyl group as in the case of a mixture, and this can be used as it is. If necessary, an acidic group may be introduced by reacting a hydroxyl group of the ethylenic compound with a non-aromatic carboxylic acid anhydride. In this case, specific examples of the non-aromatic carboxylic acid anhydride used include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, anhydrous Maleic acid is mentioned.
 重合性化合物の分子量は特に限定されないが、300以上1500以下であることが好ましく、400以上700以下であることがより好ましい。 The molecular weight of the polymerizable compound is not particularly limited, but is preferably 300 or more and 1500 or less, and more preferably 400 or more and 700 or less.
 組成物中の全固形分に対して、重合性化合物の含有量は、1質量%~50質量%の範囲であることが好ましく、3質量%~40質量%の範囲であることがより好ましく、5質量%~30質量%の範囲であることが更に好ましい。この範囲内であると、屈折率や透明性を過度に低下させることなく、硬化性が良好で好ましい。
 重合性化合物は1種を単独で用いても2種以上を組み合わせて用いてもよい。
The content of the polymerizable compound with respect to the total solid content in the composition is preferably in the range of 1% by mass to 50% by mass, more preferably in the range of 3% by mass to 40% by mass, The range of 5% by mass to 30% by mass is more preferable. Within this range, the curability is good and preferable without excessively reducing the refractive index and transparency.
A polymeric compound may be used individually by 1 type, or may be used in combination of 2 or more type.
<アルカリ可溶性樹脂>
 本発明のシロキサン樹脂組成物には、アルカリ可溶性樹脂を含有させてもよい。アルカリ可溶性樹脂としては、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基を有するアルカリ可溶性樹脂の中から適宜選択することができる。
 耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。現像性制御の観点からは、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。アルカリ可溶性を促進する基(以下、酸性基ともいう)としては、例えば、カルボキシル基、リン酸基、スルホン酸基、フェノール性水酸基などが挙げられる。溶媒に可溶で弱アルカリ水溶液により現像可能なものが好ましく、(メタ)アクリル酸が特に好ましいものとして挙げられる。これら酸性基は、1種のみであってもよいし、2種以上であってもよい。
<Alkali-soluble resin>
The siloxane resin composition of the present invention may contain an alkali-soluble resin. The alkali-soluble resin is a linear organic polymer, and promotes at least one alkali-solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can be suitably selected from alkali-soluble resins having a group.
From the viewpoint of heat resistance, polyhydroxystyrene resins, polysiloxane resins, acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred. From the viewpoint of development control, acrylic resins, acrylamide resins, and acrylic / acrylamide copolymer resins are preferred. Examples of the group that promotes alkali solubility (hereinafter also referred to as an acidic group) include a carboxyl group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxyl group. Those which are soluble in a solvent and can be developed with a weak alkaline aqueous solution are preferred, and (meth) acrylic acid is particularly preferred. These acidic groups may be only one type or two or more types.
 アルカリ可溶性樹脂として用いられる線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましく、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他の単量体との共重合体が、アルカリ可溶性樹脂として好適である。(メタ)アクリル酸と共重合可能な他の単量体としては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレート及びアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、(イソ)ペンチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等、ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等、特開平10-300922号公報に記載のN位置換マレイミドモノマーとして、jN-フェニルマレイミド、N-シクロヘキシルマレイミド等を挙げることができる。 As the linear organic polymer used as the alkali-soluble resin, a polymer having a carboxylic acid in the side chain is preferable, such as a methacrylic acid copolymer, an acrylic acid copolymer, an itaconic acid copolymer, and a crotonic acid copolymer. , Maleic acid copolymers, partially esterified maleic acid copolymers, alkali-soluble phenolic resins such as novolak resins, etc., acid cellulose derivatives having a carboxylic acid in the side chain, and acid anhydrides added to polymers having a hydroxyl group. Can be mentioned. In particular, a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is suitable as the alkali-soluble resin. Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. Examples of the alkyl (meth) acrylate and aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and (iso) pentyl (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) ) Acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, and other vinyl compounds include styrene, α-methylstyrene, vinyltoluene, glycidyl methacrylate, acrylonitrile , Vinyl acetate, N-vinylpyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, and the like, as N-substituted maleimide monomers described in JP-A-10-300922, jN-phenylmaleimide, N-cyclohexyl A maleimide etc. can be mentioned.
 (メタ)アクリル酸と共重合可能な他の単量体としては、下記式(A1)で表される繰り返し単位であることも好ましい。 The other monomer copolymerizable with (meth) acrylic acid is preferably a repeating unit represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 R11は水素原子又はメチル基を表す。R12は炭素数2又は3のアルキレン基を表し、なかでも炭素数2が好ましい。R13は水素原子又は炭素数1~20のアルキル基を表す。n1は1~15の整数を表し、1~12が好ましい。上記式(A1)で表される繰り返し単位は、側鎖に存在するベンゼン環のπ電子の効果により粒子表面への吸着及び/又は配向性が良好となる。特に、この側鎖部分が、パラクミルフェノールのエチレンオキサイド又はプロピレンオキサイド構造をとる場合には、その立体的な効果も加わり、より良好な吸着及び/又は配向面を形成することができる。そのため、より効果が高く好ましい。
 R13は炭素数1~20のアルキル基であることが好ましく、炭素数が1~10であるアルキル基がより好ましい。これは、R13の炭素数が大きい場合、この基が障害となり樹脂同士の接近を抑制し吸着及び/又は配向を促進するが、大きすぎると逆にその効果までをも妨げてしまう場合があるためである。R13で表されるアルキル基としては、無置換のアルキル基又はフェニル基で置換されたアルキル基が好ましい。
R 11 represents a hydrogen atom or a methyl group. R 12 represents an alkylene group having 2 or 3 carbon atoms, and among them, 2 carbon atoms are preferable. R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. n1 represents an integer of 1 to 15, and preferably 1 to 12. The repeating unit represented by the above formula (A1) has good adsorption and / or orientation on the particle surface due to the effect of π electrons of the benzene ring present in the side chain. In particular, when this side chain portion has an ethylene oxide or propylene oxide structure of paracumylphenol, its steric effect is added, and a better adsorption and / or orientation plane can be formed. Therefore, it is more effective and preferable.
R 13 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. This is because when R 13 has a large number of carbon atoms, this group becomes an obstacle to suppress the approach between the resins and promote adsorption and / or orientation, but if it is too large, the effect may be hindered. Because. The alkyl group represented by R 13 is preferably an unsubstituted alkyl group or an alkyl group substituted with a phenyl group.
 本発明のシロキサン樹脂組成物には、アルカリ可溶性ポリエステル樹脂を用いてもよい。アルカリ可溶性ポリエステル樹脂を含有することにより得られる効果の作用機序は明らかでないが、芳香環を有するものはエステル基の分解性を低下させ、効果的な現像を可能にするものと思料される。 An alkali-soluble polyester resin may be used for the siloxane resin composition of the present invention. Although the action mechanism of the effect obtained by containing an alkali-soluble polyester resin is not clear, it is thought that those having an aromatic ring reduce the decomposability of the ester group and enable effective development.
 アルカリ可溶性ポリエステル樹脂の合成方法としては、多官能エポキシ化合物と多価カルボン酸化合物との重付加反応、又は、ポリオール化合物と二酸無水物との重付加反応を経る方法が好ましい。ポリオール化合物としては、多官能エポキシ化合物とラジカル重合性基含有一塩基酸化合物との反応により得られたものが好ましい。重付加反応および付加反応に用いる触媒としては、例えば、テトラブチルアンモニウムアセテート等のアンモニウム系触媒;2,4,6-トリス(ジメチルアミノメチル)フェノール若しくはジメチルベンジルアミン等のアミノ系触媒;トリフェニルホスフィン等のリン系触媒;およびアセチルアセトネートクロム若しくは塩化クロム等のクロム系触媒等が挙げられる。 As a method for synthesizing the alkali-soluble polyester resin, a method in which a polyaddition reaction between a polyfunctional epoxy compound and a polyvalent carboxylic acid compound or a polyaddition reaction between a polyol compound and a dianhydride is preferable. As a polyol compound, what was obtained by reaction of a polyfunctional epoxy compound and a radically polymerizable group containing monobasic acid compound is preferable. Examples of the catalyst used in the polyaddition reaction and the addition reaction include ammonium catalysts such as tetrabutylammonium acetate; amino catalysts such as 2,4,6-tris (dimethylaminomethyl) phenol or dimethylbenzylamine; triphenylphosphine And a phosphorus catalyst such as acetylacetonate chromium or chromium chloride.
 アルカリ可溶性樹脂は23℃で0.1質量%以上の濃度のテトラメチルアンモニウムヒドロオキサイド(TMAH)水溶液に可溶であるものが好ましい。さらに1質量%以上のTMAH水溶液に可溶であること、さらに2%以上のTMAH水溶液に可溶であることが好ましい。 The alkali-soluble resin is preferably soluble in a tetramethylammonium hydroxide (TMAH) aqueous solution at a concentration of 0.1% by mass or more at 23 ° C. Further, it is preferably soluble in 1% by mass or more of TMAH aqueous solution, and more preferably soluble in 2% or more of TMAH aqueous solution.
 アルカリ可溶性樹脂の酸価としては好ましくは30~200mgKOH/g、より好ましくは50~150mgKOH/g、さらに好ましくは70~120mgKOH/gである。このような範囲とすることにより、未露光部の現像残渣を効果的に低減できる。
 アルカリ可溶性樹脂の重量平均分子量(Mw)としては、2,000~50,000が好ましく、5,000~30,000がさらに好ましく、7,000~20,000が特に好ましい。
 アルカリ可溶性樹脂の含有量としては、組成物の全固形分に対して、10~50質量%が好ましく、より好ましくは15~40質量%であり、特に好ましくは20~35質量%である。
 アルカリ可溶性樹脂は1種を単独で用いても2種以上を組み合わせて用いてもよい。
The acid value of the alkali-soluble resin is preferably 30 to 200 mgKOH / g, more preferably 50 to 150 mgKOH / g, still more preferably 70 to 120 mgKOH / g. By setting it as such a range, the image development residue of an unexposed part can be reduced effectively.
The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 2,000 to 50,000, more preferably 5,000 to 30,000, and particularly preferably 7,000 to 20,000.
The content of the alkali-soluble resin is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass with respect to the total solid content of the composition.
An alkali-soluble resin may be used individually by 1 type, or may be used in combination of 2 or more type.
<重合禁止剤>
 本発明のシロキサン樹脂組成物には重合禁止剤を含有させてもよい。重合禁止剤としては、フェノール系水酸基含有化合物、N-オキシド化合物類、ピペリジン1-オキシルフリーラジカル化合物類、ピロリジン1-オキシルフリーラジカル化合物類、N-ニトロソフェニルヒドロキシルアミン類、ジアゾニウム化合物類、及びカチオン染料類、スルフィド基含有化合物類、ニトロ基含有化合物類、FeCl、CuCl等の遷移金属化合物類が挙げられる。重合禁止剤としては、具体的には、特開2010-106268号公報段落0260~0280(対応する米国特許出願公開第2011/0124824号明細書の<0284>~<0296>)の説明を参酌でき、これらの内容は本明細書に組み込まれる。
<Polymerization inhibitor>
The siloxane resin composition of the present invention may contain a polymerization inhibitor. Polymerization inhibitors include phenolic hydroxyl group-containing compounds, N-oxide compounds, piperidine 1-oxyl free radical compounds, pyrrolidine 1-oxyl free radical compounds, N-nitrosophenylhydroxylamines, diazonium compounds, and cations Examples include dyes, sulfide group-containing compounds, nitro group-containing compounds, transition metal compounds such as FeCl 3 and CuCl 2 . As the polymerization inhibitor, the description of JP 2010-106268 A paragraphs 0260 to 0280 (corresponding to <0284> to <0296> in the corresponding US Patent Application Publication No. 2011/0124824) can be referred to. The contents of which are incorporated herein.
 重合禁止剤の好ましい添加量としては、重合開始剤100質量部に対して、0.01質量部以上10質量部以下であることが好ましく、更に0.01質量部以上8質量部以下であることが好ましく、0.05質量部以上5質量部以下の範囲にあることが最も好ましい。
 重合禁止剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
A preferable addition amount of the polymerization inhibitor is preferably 0.01 parts by mass or more and 10 parts by mass or less, and more preferably 0.01 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the polymerization initiator. It is most preferable that it exists in the range of 0.05 mass part or more and 5 mass parts or less.
A polymerization inhibitor may be used individually by 1 type, or may be used in combination of 2 or more type.
<分散剤>
 分散剤としては、特開2007-277514号公報の請求項1(対応するUS2010/0233595の請求項1)の一般式(1)で表される高分子化合物が好ましい。特開2007-277514号公報(対応するUS2010/0233595)の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 上記一般式(1)で表される高分子化合物は、特に制限されないが、特開2007-277514号公報段落0114~0140及び0266~0348に記載の合成方法に準じて合成することができる。
<Dispersant>
As the dispersant, a polymer compound represented by the general formula (1) of claim 1 (corresponding claim 1 of US2010 / 0233595) of JP-A-2007-277514 is preferable. The description of JP 2007-277514 A (corresponding US 2010/0233595) can be referred to, and the contents thereof are incorporated in the present specification.
The polymer compound represented by the general formula (1) is not particularly limited, but can be synthesized according to the synthesis methods described in paragraphs 0114 to 0140 and 0266 to 0348 of JP-A-2007-277514.
 分散剤の含有量としては、金属含有粒子100質量部に対して、10~1000質量部であることが好ましく、30~1000質量部がより好ましく、50~800質量部がさらに好ましい。また、組成物の全固形分に対しては、10~30質量%であることが好ましい。これらの分散剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The content of the dispersing agent is preferably 10 to 1000 parts by mass, more preferably 30 to 1000 parts by mass, and further preferably 50 to 800 parts by mass with respect to 100 parts by mass of the metal-containing particles. The total solid content of the composition is preferably 10 to 30% by mass. These dispersants may be used alone or in combination of two or more.
<界面活性剤>
 本発明のシロキサン樹脂組成物は、界面活性剤を含有してもよい。界面活性剤としては、例えば、シリコーン系界面活性剤、オルガノポリシロキサン系等のケイ素系界面活性剤、フッ素系界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウリレート若しくはポリエチレングリコールジステアレート等のノニオン系界面活性剤ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤又はアクリル系若しくはメタクリル系の重合物からなる界面活性剤が挙げられる。市販品の界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475若しくはF477(いずれも大日本インキ化学工業(株)製)又はNBX-15若しくはFTX-218(いずれも(株)ネオス製)等のフッ素系界面活性剤、BYK-333、BYK-301、BYK-331、BYK-345若しくはBYK-307(いずれもビックケミー・ジャパン(株)製)等のシリコーン系界面活性剤が挙げられる。
<Surfactant>
The siloxane resin composition of the present invention may contain a surfactant. Examples of the surfactant include silicone surfactants, silicon surfactants such as organopolysiloxanes, fluorine surfactants, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene octylphenyl ether. Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate or polyethylene glycol distearate, polyalkylene oxide surfactants, poly (meth) acrylate surfactants, acrylic or methacrylic surfactants A surfactant made of a polymer is exemplified. Examples of commercially available surfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475 or F477 (all manufactured by Dainippon Ink & Chemicals, Inc.) or NBX- 15 or FTX-218 (both manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, BYK-333, BYK-301, BYK-331, BYK-345 or BYK-307 (all of which are Big Chemie Japan Co., Ltd.) And the like.
 界面活性剤の添加量は、特に限定されないが、組成物の固形成分中、1質量%以上が好ましく、1.5質量%以上がより好ましく、5質量%以上が特に好ましい。上限値も特に限定されないが、30質量%以下が好ましく、15質量%以下がより好ましい。
 界面活性剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
Although the addition amount of surfactant is not specifically limited, 1 mass% or more is preferable in a solid component of a composition, 1.5 mass% or more is more preferable, and 5 mass% or more is especially preferable. Although an upper limit is not specifically limited, 30 mass% or less is preferable and 15 mass% or less is more preferable.
Surfactant may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明のシロキサン樹脂組成物は、必要に応じて、その他、溶解抑止剤、安定剤又は消泡剤等の添加剤を含有しても構わない。 The siloxane resin composition of the present invention may contain other additives such as a dissolution inhibitor, a stabilizer, or an antifoaming agent, if necessary.
<現像液>
 現像液としては、アルカリ性溶液を用いることが好ましい。例えば、アルカリ性化合物の濃度を0.001~10質量%とすることが好ましく、0.01~5質量%とすることがより好ましい。アルカリ性化合物は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム,ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシ、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる。このうち、本発明においては、有機アルカリが好ましい。なお、アルカリ性水溶液を現像液として用いた場合は、一般に現像後に水で洗浄処理が施される。これらの現像液の中で好ましくは第四級アンモニウム塩、更に好ましくは、テトラメチルアンモニウムヒドロオキシド(TMAH)もしくはコリンである。
 現像液は1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
<Developer>
As the developer, an alkaline solution is preferably used. For example, the concentration of the alkaline compound is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass. Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxy , Tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene and the like. Among these, in this invention, an organic alkali is preferable. In the case where an alkaline aqueous solution is used as a developer, a washing treatment with water is generally performed after development. Among these developers, quaternary ammonium salts are preferable, and tetramethylammonium hydroxide (TMAH) or choline is more preferable.
One developer may be used alone, or two or more developers may be used in combination.
 なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、上記化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただしアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラン、テトラヒドロフラン、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7~23のアリーロイル基、例えば、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルスルホニル基(好ましくは炭素原子数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシル基、チオール基、カルボキシル基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
 また、上記置換基が酸性基または塩基性基のときはその塩を形成していてもよい。
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
 本明細書で規定される各置換基は、本発明の効果を奏する範囲で下記の連結基Lを介在して置換されていても、その構造中に連結基Lが介在していてもよい。たとえば、アルキル基・アルキレン基、アルケニル基・アルケニレン基等はさらに構造中に下記のヘテロ連結基を介在していてもよい。
 連結基Lとしては、炭化水素連結基〔炭素数1~10のアルキレン基(より好ましくは炭素数1~6、さらに好ましくは1~3)、炭素数2~10のアルケニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数2~10のアルキニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数6~22のアリーレン基(より好ましくは炭素数6~10)、またはこれらの組合せ〕、ヘテロ連結基〔カルボニル基(-CO-)、チオカルボニル基(-CS-)、エーテル基(-O-)、チオエーテル基(-S-)、イミノ基(-NR-)、ポリスルフィド基(Sの数が1~8個)、イミン連結基(R-N=C<,-N=C(R)-)、スルホニル基(-SO-)、スルフィニル基(-SO-)、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、またはこれらの組合せ〕、またはこれらを組み合せた連結基が好ましい。なお、縮合して環を形成する場合には、上記炭化水素連結基が、二重結合や三重結合を適宜形成して連結していてもよい。形成される環として好ましくは、5員環または6員環が好ましい。5員環としては含窒素の5員環が好ましく、その環をなす化合物として例示すれば、ピロール、イミダゾール、ピラゾール、インダゾール、インドール、ベンゾイミダゾール、ピロリジン、イミダゾリジン、ピラゾリジン、インドリン、カルバゾール、またはこれらの誘導体などが挙げられる。6員環としては、ピペリジン、モルホリン、ピペラジン、またはこれらの誘導体などが挙げられる。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
 Rは水素原子または置換基である。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)が好ましい。
 Rは水素原子、ヒドロキシル基、または置換基である。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アルコキシ基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキルオキシ基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、が好ましい。
 連結基Lを構成する原子の数は、1~36であることが好ましく、1~24であることがより好ましく、1~12であることがさらに好ましく、1~6であることが特に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ経路に位置し連結に関与する最少の原子数を言う。たとえば、-CH-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
 具体的に連結基の組合せとしては、以下のものが挙げられる。オキシカルボニル基(-OCO-)、カーボネート基(-OCOO-)、アミド基(-CONH-)、ウレタン基(-NHCOO-)、ウレア基(-NHCONH-)、(ポリ)アルキレンオキシ基(-(Lr-O)x-)、カルボニル(ポリ)オキシアルキレン基(-CO-(O-Lr)x-、カルボニル(ポリ)アルキレンオキシ基(-CO-(Lr-O)x-)、カルボニルオキシ(ポリ)アルキレンオキシ基(-COO-(Lr-O)x-)、(ポリ)アルキレンイミノ基(-(Lr-NR)x)、アルキレン(ポリ)イミノアルキレン基(-Lr-(NR-Lr)x-)、カルボニル(ポリ)イミノアルキレン基(-CO-(NR-Lr)x-)、カルボニル(ポリ)アルキレンイミノ基(-CO-(Lr-NR)x-)、(ポリ)エステル基(-(CO-O-Lr)x-、-(O-CO-Lr)x-、-(O-Lr-CO)x-、-(Lr-CO-O)x-、-(Lr-O-CO)x-)、(ポリ)アミド基(-(CO-NR-Lr)x-、-(NR-CO-Lr)x-、-(NR-Lr-CO)x-、-(Lr-CO-NR)x-、-(Lr-NR-CO)x-)などである。xは1以上の整数であり、1~500が好ましく、1~100がより好ましい。
 Lrはアルキレン基、アルケニレン基、アルキニレン基が好ましい。Lrの炭素数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。複数のLrやR、R、x等は同じである必要はない。連結基の向きは上記の記載により限定されず、適宜所定の化学式に合わせた向きで理解すればよい。
In addition, in this specification, it uses for the meaning containing the salt and its ion other than the said compound itself about the display of a compound (For example, when attaching | subjecting and attaching | subjecting a compound and an end). In addition, it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
In the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but the alkyl group usually means a cycloalkyl group), aryl Group (preferably having 6 to 2 carbon atoms) Aryl groups such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, preferably at least 1 A 5- or 6-membered heterocyclic group having one oxygen atom, sulfur atom or nitrogen atom is preferred, and examples thereof include tetrahydropyran, tetrahydrofuran, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzoimidazolyl, 2-thiazolyl, 2-oxazolyl, pyrrolidone group, etc.), alkoxy groups (preferably alkoxy groups having 1-20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy etc.), aryloxy groups (preferably 6-26 carbon atoms). Aryloxy groups such as phenoxy, 1-naphthylo Si, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably alkoxycarbonyl groups having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), aryloxycarbonyl groups (preferably Is an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc., an amino group (preferably having 0 to 20 carbon atoms) Including amino group, alkylamino group, arylamino group, for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl group (preferably having 0 to 20 carbon atoms) The sulfamoyl A group such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.), an acyl group (preferably an acyl group having 1 to 20 carbon atoms such as acetyl, propionyl, butyryl, etc.), an aryloyl group ( Preferably an aryloyl group having 7 to 23 carbon atoms, such as benzoyl, an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably having a carbon number) 7 to 23 aryloyloxy groups such as benzoyloxy), carbamoyl groups (preferably carbamoyl groups having 1 to 20 carbon atoms such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl etc.), acylamino groups ( Preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino Benzoylamino and the like), an alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, such as methylthio, ethylthio, isopropylthio, benzylthio and the like), an arylthio group (preferably an arylthio group having 6 to 26 carbon atoms, such as Phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), alkylsulfonyl groups (preferably alkylsulfonyl groups having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, etc.), arylsulfonyl groups (Preferably an arylsulfonyl group having 6 to 22 carbon atoms, such as benzenesulfonyl), an alkylsilyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, Ethylsilyl, etc.), arylsilyl groups (preferably arylsilyl groups having 6 to 42 carbon atoms, such as triphenylsilyl), phosphoryl groups (preferably phosphoryl groups having 0 to 20 carbon atoms, such as —OP (= O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl group having 0 to 20 carbon atoms, such as —P (═O) (R P ) 2 ), a phosphinyl group (preferably having 0 to 20 carbon atoms). phosphinyl group, for example, -P (R P) 2), (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloyl Louis amino group ((meth) acrylamide group), a hydroxyl group, a thiol group, a carboxyl group , Phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) ).
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above.
Moreover, when the said substituent is an acidic group or a basic group, the salt may be formed.
When a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
Each substituent defined in the present specification may be substituted through the following linking group L within the scope of the effects of the present invention, or the linking group L may be present in the structure thereof. For example, the alkyl group / alkylene group, alkenyl group / alkenylene group and the like may further have the following hetero-linking group interposed in the structure.
The linking group L includes a hydrocarbon linking group [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably carbon atoms). 2 to 6, more preferably 2 to 4), an alkynylene group having 2 to 10 carbon atoms (more preferably 2 to 6, more preferably 2 to 4 carbon atoms), and an arylene group having 6 to 22 carbon atoms (more preferably Is a carbon number 6-10), or a combination thereof], hetero-linking group [carbonyl group (—CO—), thiocarbonyl group (—CS—), ether group (—O—), thioether group (—S—) , Imino group (—NR N —), polysulfide group (the number of S is 1 to 8), imine linking group (R N —N═C <, —N═C (R N ) —), sulfonyl group (— SO 2 -), a sulfinyl group (-SO- , A phosphate linking group (—O—P (OH) (O) —O—), a phosphonic acid linking group (—P (OH) (O) —O—), or a combination thereof), or a combination thereof A linking group is preferred. In addition, when condensing and forming a ring, the said hydrocarbon coupling group may form the double bond and the triple bond suitably, and may connect. The ring to be formed is preferably a 5-membered ring or a 6-membered ring. As the five-membered ring, a nitrogen-containing five-membered ring is preferable, and examples of the compound forming the ring include pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or these And derivatives thereof. Examples of the 6-membered ring include piperidine, morpholine, piperazine, and derivatives thereof. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
RN is a hydrogen atom or a substituent. Examples of the substituent include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms). To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred).
RP is a hydrogen atom, a hydroxyl group, or a substituent. Examples of the substituent include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms). To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred), an alkoxy group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3), an alkenyloxy group (having carbon number). To 24, more preferably 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3, and an alkynyloxy group (preferably having 2 to 24 carbon atoms, more preferably 2 to 12 and more preferably 2 to 6). More preferably, 2 to 3 are particularly preferred), an aralkyloxy group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryloxy group (preferably 6 to 22 carbon atoms, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
The number of atoms constituting the linking group L is preferably 1 to 36, more preferably 1 to 24, still more preferably 1 to 12, and particularly preferably 1 to 6. The number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less. The lower limit is 1 or more. The number of connected atoms refers to the minimum number of atoms that are located in a path connecting predetermined structural portions and are involved in the connection. For example, in the case of —CH 2 —C (═O) —O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
Specific examples of combinations of linking groups include the following. Oxycarbonyl group (—OCO—), carbonate group (—OCOO—), amide group (—CONH—), urethane group (—NHCOO—), urea group (—NHCONH—), (poly) alkyleneoxy group (— ( Lr-O) x-), carbonyl (poly) oxyalkylene group (-CO- (O-Lr) x-, carbonyl (poly) alkyleneoxy group (-CO- (Lr-O) x-), carbonyloxy ( Poly) alkyleneoxy group (—COO— (Lr—O) x—), (poly) alkyleneimino group (— (Lr—NR N ) x), alkylene (poly) iminoalkylene group (—Lr— (NR N —) lr) x-), carbonyl (poly) iminoalkylene group (-CO- (NR N -Lr) x- ), carbonyl (poly) alkyleneimino group (-CO- (lr-NR N) -), (Poly) ester group (-(CO-O-Lr) x-,-(O-CO-Lr) x-,-(O-Lr-CO) x-,-(Lr-CO-O) x-,-(Lr-O-CO) x-), (poly) amide group (-(CO-NR N -Lr) x-,-(NR N -CO-Lr) x-,-(NR N- Lr-CO) x-,-(Lr-CO-NR N ) x-,-(Lr-NR N -CO) x-), etc. x is an integer of 1 or more, preferably 1 to 500, 1 to 100 is more preferable.
Lr is preferably an alkylene group, an alkenylene group or an alkynylene group. The carbon number of Lr is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3. A plurality of Lr, R N , R P , x, etc. need not be the same. The direction of the linking group is not limited by the above description, and may be understood as appropriate according to a predetermined chemical formula.
<容器>
 本発明のシロキサン樹脂組成物は、(キットであるか否かに関わらず)対腐食性等が問題とならない限り、任意の容器に充填して保管、運搬、そして使用することができる。また、半導体用途向けに、容器のクリーン度が高く、不純物の溶出が少ないものが好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、コダマ樹脂工業(株)製の「ピュアボトル」などが挙げられるが、これらに限定されるものではない。この容器ないしその収容部の内壁は、ポリエチレン樹脂、ポリプロピレン樹脂、及び、ポリエチレン-ポリプロピレン樹脂からなる群より選択される1種以上の樹脂とは異なる樹脂、又は、防錆・金属溶出防止処理が施された金属から形成されることが好ましい。
<Container>
The siloxane resin composition of the present invention can be stored, transported and used in any container as long as corrosion resistance or the like does not matter (whether or not it is a kit). For semiconductor applications, a container having a high cleanliness and a low impurity elution is preferable. Examples of the containers that can be used include, but are not limited to, “Clean Bottle” series manufactured by Aicero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Co., Ltd., and the like. The container or the inner wall of the container is subjected to a resin different from one or more resins selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, or subjected to rust prevention and metal elution prevention treatment. Preferably, it is formed from a finished metal.
<フィルタリング>
 本発明のシロキサン樹脂組成物は、異物の除去や欠陥の低減などの目的で、フィルタで濾過することが好ましい。従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)及びナイロンが好ましい。
 フィルタの孔径は、0.1~7.0μm程度が適しており、好ましくは0.2~2.5μm程度、より好ましくは0.2~1.5μm程度、さらに好ましくは0.3~0.7μmである。この範囲とすることにより、ろ過詰まりを抑えつつ、組成物に含まれる不純物や凝集物など、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせても良い。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、もしくは大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2~10.0μm程度が適しており、好ましくは0.2~7.0μm程度、さらに好ましくは0.3~6.0μm程度である。この範囲とすることにより、混合液に含有されている成分粒子を残存させたまま、混合液に混入している異物を除去することができる。
 例えば、第1のフィルタでのフィルタリングは、分散液のみで行い、他の成分を混合した後で、第2のフィルタリングを行ってもよい。
このようなフィルタリングは、その好ましい実施形態について、後記のレジストのフィルタリングについても同じである。
<Filtering>
The siloxane resin composition of the present invention is preferably filtered with a filter for the purpose of removing foreign substances and reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited. For example, a filter made of fluorine resin such as PTFE (polytetrafluoroethylene), polyamide resin such as nylon, polyolefin resin (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP), and the like can be given. Among these materials, polypropylene (including high density polypropylene) and nylon are preferable.
The pore size of the filter is suitably about 0.1 to 7.0 μm, preferably about 0.2 to 2.5 μm, more preferably about 0.2 to 1.5 μm, and still more preferably 0.3 to 0.0 μm. 7 μm. By setting it within this range, it becomes possible to reliably remove fine foreign matters such as impurities and aggregates contained in the composition while suppressing filtration clogging.
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. When filtering two or more times by combining different filters, it is preferable that the second and subsequent hole diameters are the same or larger than the first filtering hole diameter. Moreover, you may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
As the second filter, a filter formed of the same material as the first filter described above can be used. The pore size of the second filter is suitably about 0.2 to 10.0 μm, preferably about 0.2 to 7.0 μm, more preferably about 0.3 to 6.0 μm. By setting it as this range, the foreign material mixed in the liquid mixture can be removed while the component particles contained in the liquid mixture remain.
For example, the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components.
Such filtering is the same for the preferred embodiment of the resist filtering described below.
<メタル濃度>
 本発明のシロキサン樹脂組成物は、そのメタル(Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属元素)の濃度がいずれも5ppm以下であることが好ましい。このようなメタル濃度の低減については、その好ましい実施形態について、後記のレジスト材料についても同じである。
<Metal concentration>
The concentration of the metal (Na, K, Ca, Fe, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn metal elements) of the siloxane resin composition of the present invention is 5 ppm or less. It is preferable. The reduction of the metal concentration is the same for the resist material described later in the preferred embodiment.
<透明硬化物の形成>
 本発明のシロキサン樹脂組成物(好ましくは、紫外線硬化型の樹脂組成物である)を用いた透明硬化物(膜)の形成方法について、例を挙げて説明する。シロキサン樹脂組成物を塗布液とした際には、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング又はスリットコーティング等の公知の方法によって下地基板上に塗布することができる。その後、ホットプレート又はオーブン等の加熱装置でプリベークし、膜を形成することができる。プリベークは、50~150℃で30秒~30分間行うことが好ましい。プリベーク後の膜厚は、0.1~15μmとすることが好ましい。
<Formation of transparent cured product>
A method for forming a transparent cured product (film) using the siloxane resin composition of the present invention (preferably an ultraviolet curable resin composition) will be described with an example. When the siloxane resin composition is used as a coating solution, it can be applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating or slit coating. . Then, it can pre-bake with heating apparatuses, such as a hot plate or oven, and a film | membrane can be formed. Prebaking is preferably performed at 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after pre-baking is preferably 0.1 to 15 μm.
 プリベーク後、例えば、ステッパ、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(以下、PLA)等の露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を所望のマスクを介して又は介さずに照射する。露光光源(活性放射線)に制限はなく、i線(波長365nm)、g線(波長436nm)、もしくはh線(波長405nm)等の紫外線、KrF(波長248nm)レーザー又はArF(波長193nm)レーザー等を用いることができる。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、150~450℃で1時間程度加熱する露光後ベークを行っても構わない。本発明においては中でも波長300~400nmの活性放射線を用いることが好ましく、i線を用いることがより好ましい。 After pre-baking, for example, using an exposure machine such as a stepper, mirror projection mask aligner (MPA) or parallel light mask aligner (hereinafter referred to as PLA), light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion) is desired. Irradiate through or without the mask. The exposure light source (active radiation) is not limited, and ultraviolet rays such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), or h-line (wavelength 405 nm), KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, etc. Can be used. Thereafter, post-exposure baking may be performed by heating the film at 150 to 450 ° C. for about 1 hour using a heating device such as a hot plate or an oven. In the present invention, actinic radiation having a wavelength of 300 to 400 nm is preferably used, and i-line is more preferably used.
 パターニング露光後、現像により非露光部が溶解し、ネガ型パターンを得ることができる。現像方法としては、シャワー、ディッピング又はパドル等の方法で、現像液に5秒~10分間浸漬する方法が好ましい。現像液としては、先に例示したものが挙げられる。現像後は、膜を水でリンスすることが好ましい。続いて50~150℃で乾燥ベークを行ってもよい。その後、この膜をホットプレート又はオーブン等の加熱装置を用いて、120~280℃で1時間程度熱硬化することにより、硬化物(膜)が得られる。
 固体撮像素子に組み込まれる透明画素などは、このような手順で基板上に形成することができる。
After patterning exposure, the unexposed portion is dissolved by development, and a negative pattern can be obtained. As a developing method, a method of immersing in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle is preferable. Examples of the developer include those exemplified above. After development, the film is preferably rinsed with water. Subsequently, dry baking may be performed at 50 to 150 ° C. Thereafter, the film is thermally cured at 120 to 280 ° C. for about 1 hour using a heating device such as a hot plate or an oven to obtain a cured product (film).
Transparent pixels and the like incorporated in the solid-state imaging device can be formed on the substrate in such a procedure.
 得られる硬化物(膜)の膜厚は、0.1~10μmが好ましい。リーク電流は10-6A/cm以下、比誘電率は6.0以上であることが好ましい。 The thickness of the resulting cured product (film) is preferably 0.1 to 10 μm. The leakage current is preferably 10 −6 A / cm 2 or less, and the relative dielectric constant is preferably 6.0 or more.
 本発明のシロキサン樹脂組成物の硬化膜の屈折率は1.6以上であることが好ましく、1.7以上であることがより好ましい。上限は特にないが、2.0以下であることが実際的である。屈折率は特に断らない限り、後記実施例で測定した条件によるものとする。 The refractive index of the cured film of the siloxane resin composition of the present invention is preferably 1.6 or more, and more preferably 1.7 or more. Although there is no upper limit in particular, it is practical that it is 2.0 or less. Unless otherwise specified, the refractive index is based on the conditions measured in Examples described later.
 本発明のシロキサン樹脂組成物の硬化膜は透明性が高いことが好ましい。可視光の透過率で80%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることが特に好ましい。上限は特にないが、99%以下であることが実際的である。可視光の透過率は特に断らない限り、後記実施例で測定した条件によるものとする。 The cured film of the siloxane resin composition of the present invention preferably has high transparency. The visible light transmittance is preferably 80% or more, more preferably 88% or more, and particularly preferably 90% or more. There is no particular upper limit, but it is practical that it is 99% or less. Unless otherwise specified, the visible light transmittance is based on the conditions measured in the examples described later.
 本発明のシロキサン樹脂組成物を硬化して得られる硬化膜は、固体撮像素子のマイクロレンズや透明画素として特に好適に用いることができる。 The cured film obtained by curing the siloxane resin composition of the present invention can be particularly suitably used as a microlens or a transparent pixel of a solid-state imaging device.
<マイクロレンズアレイの形成方法[図1参照]>
 マイクロレンズの形成方法の一形態としてマイクロレンズアレイ10の形成工程の一例について説明する。必要により、基材(素子)3の表面の凹凸を、透明樹脂(平坦化膜)2をスピンコートすることで埋め込み、平坦化しておく。平坦化した基材3の表面にレンズ材料1を均一に塗布する(工程1)。このレンズ材料として上記のシロキサン樹脂組成物を用いることができる。レンズ材料1の上にフォトレジスト(感光性材料)4を均一に塗布する(工程2)。この感光性材料としてはこの種の加工に常用されるものを用いることができる。フォトレジスト4に、ステッパ装置でレチクルをマスクとして紫外線照射を行い、レンズ間スペースの部分を露光する。感光した部分を現像液で分解除去し、パターン形成する(工程3)。パターン化されたレジスト4aを加熱することで、半球状のパターン(半球状のレジスト4b)を得る(工程4)。このときレジストは溶融し液相となり、半球状態になった後、固相に変化する。その後、ドライエッチングによりレンズ材料の層をエッチングする(工程5)。このようにして半球状のレンズ(マイクロレンズ1a)が配列されたマイクロレンズアレイ10を形成することができる。
 レンズアレイの別の実施形態としては、上記のレジストの使用を省略し、レンズ材料を露光によりパターン化する方法が挙げられる。この実施形態では、パターン化したレンズ材料をそのまま溶融し、半球状のレンズを得る。
<Method for forming microlens array [see FIG. 1]>
An example of the formation process of the microlens array 10 will be described as one form of the microlens formation method. If necessary, the unevenness on the surface of the base material (element) 3 is embedded and flattened by spin-coating a transparent resin (flattening film) 2. The lens material 1 is uniformly applied to the surface of the flattened substrate 3 (step 1). The siloxane resin composition described above can be used as the lens material. A photoresist (photosensitive material) 4 is uniformly applied on the lens material 1 (step 2). As this photosensitive material, those commonly used for this type of processing can be used. The photoresist 4 is irradiated with ultraviolet rays using a reticle as a mask by a stepper device to expose a portion of the space between the lenses. The exposed portion is decomposed and removed with a developer to form a pattern (step 3). The patterned resist 4a is heated to obtain a hemispherical pattern (semispherical resist 4b) (step 4). At this time, the resist melts into a liquid phase, becomes a hemispherical state, and then changes to a solid phase. Thereafter, the lens material layer is etched by dry etching (step 5). In this way, the microlens array 10 in which hemispherical lenses (microlenses 1a) are arranged can be formed.
Another embodiment of the lens array includes a method in which the use of the resist is omitted and the lens material is patterned by exposure. In this embodiment, the patterned lens material is melted as it is to obtain a hemispherical lens.
 なお、上記レジスト材料としては、適宜この種の加工に用いることができるものを採用することができる。例えば、ポジ型、ネガ型、およびポジ-ネガ兼用型のフォトレジストが挙げられる。ポジ型レジストの具体例は、ケイ皮酸ビニル系、環化ポリイソブチレン系、アゾ-ノボラック樹脂系、ジアゾケトン-ノボラック樹脂系などの各感光性樹脂組成物が挙げられる。また、ネガ型レジストの具体例は、アジド-環化ポリイソプレン系、アジド-フェノール樹脂系、クロロメチルポリスチレン系などが挙げられる。更に、ポジ-ネガ兼用型レジストの具体例は、ポリ(p-ブトキシカルボニルオキシスチレン)系などの各感光性樹脂組成物が挙げられる。なかでも好ましくは、特開平1-142548の段落[実施例4]に開示のものを好適に採用することができる。具体的には、クレゾールノボラック樹脂とナフトキノンジアジドスルホン酸エステルを主成分とする感光性樹脂組成物である。さらに具体的には、2,3,4,4‘-テトラヒドロキシベンゾフェノンとナフトキノン-1,2-ジアジド-5-スルホニルクロリドとのエステル化反応生成物(トリエステルの含有量 85モル%)を例示することができる。 In addition, as the resist material, a material that can be appropriately used for this kind of processing can be adopted. For example, a positive type, a negative type, and a positive / negative type photoresist can be mentioned. Specific examples of the positive resist include photosensitive resin compositions such as vinyl cinnamate, cyclized polyisobutylene, azo-novolak resin, and diazoketone-novolak resin. Specific examples of the negative resist include azide-cyclized polyisoprene, azido-phenol resin, and chloromethyl polystyrene. Further, specific examples of the positive / negative resist include poly (p-butoxycarbonyloxystyrene) -based photosensitive resin compositions. Of these, those disclosed in paragraph [Example 4] of JP-A-1-142548 can be preferably used. Specifically, it is a photosensitive resin composition containing cresol novolac resin and naphthoquinone diazide sulfonic acid ester as main components. More specifically, an esterification reaction product of 2,3,4,4′-tetrahydroxybenzophenone and naphthoquinone-1,2-diazide-5-sulfonyl chloride (the content of triester is 85 mol%) is exemplified. can do.
 レジスト材料は、なかでもノボラック系樹脂を含むポジ型レジストが好ましい。より具体的には、以下の式(R-1)で表される繰り返し単位を有する樹脂を含有するポジ型レジストが挙げられる。 The resist material is preferably a positive resist containing a novolac resin. More specifically, a positive resist containing a resin having a repeating unit represented by the following formula (R-1) can be given.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、R13~R16はそれぞれ独立に水素原子またはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)を示す。sは1~3の整数を表す。上記樹脂の分子量は特に限定されないが、ポリスチレン換算の重量平均分子量において、通常1000~100万、好ましくは2000~10万、より好ましくは3000~5万である。 In the formula, R 13 to R 16 each independently represent a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms). s represents an integer of 1 to 3. The molecular weight of the resin is not particularly limited, but is usually 1,000 to 1,000,000, preferably 2,000 to 100,000, more preferably 3,000 to 50,000 in terms of polystyrene-equivalent weight average molecular weight.
<固体撮像素子>
 本発明の好ましい実施形態に係る固体撮像素子は、本発明のシロキサン樹脂組成物の硬化物からなる透明画素および/またはマイクロレンズを有する。固体撮像素子は、半導体受光素子上にマイクロレンズアレイを有し、マイクロレンズアレイとカラーフィルタが隣接するように組み込まれる。受光素子は、透明樹脂膜、レンズ及びカラーフィルタの順に通過して到達する光を受光し、イメージセンサーとして機能する。具体的には、透明樹脂膜が反射防止膜として機能し、マイクロレンズの集光効率を向上させ、マイクロレンズによって効率的に集められた光がカラーフィルタを介して受光素子に検知される。これらがRGBそれぞれに対応する光を検知する受光素子の画素全般に渡って機能する。そのため、受光素子の画素とマイクロレンズの個々のレンズとが高密度に配列されている場合でも、極めて鮮明な画像を得ることができる。上記のレンズやRGBの画素配列に介在させる透明画素として本発明のシロキサン樹脂組成物の硬化物を好適に利用することができる。
<Solid-state imaging device>
The solid-state imaging device according to a preferred embodiment of the present invention has a transparent pixel and / or a microlens made of a cured product of the siloxane resin composition of the present invention. The solid-state imaging element has a microlens array on a semiconductor light receiving element, and is incorporated so that the microlens array and the color filter are adjacent to each other. The light receiving element receives light that passes through the transparent resin film, the lens, and the color filter in this order, and functions as an image sensor. Specifically, the transparent resin film functions as an antireflection film, improves the light collection efficiency of the microlens, and the light efficiently collected by the microlens is detected by the light receiving element via the color filter. These function over the entire pixel of the light receiving element that detects light corresponding to RGB. Therefore, even when the pixels of the light receiving element and the individual lenses of the microlens are arranged with high density, an extremely clear image can be obtained. The cured product of the siloxane resin composition of the present invention can be suitably used as a transparent pixel interposed in the lens or RGB pixel array.
 レンズアレイを適用した固体撮像素子の例として、特開2007-119744号公報に記載のものが挙げられる。具体的には、半導体基板の表面に形成されたCCD領域や光電変換部の間に転送電極を有しており、その上には層間膜を介して遮光膜が形成されている。遮光膜の上には、BPSG(Boro-Phospho-Silicate Glass)等による層間絶縁膜、パッシベーション膜及びアクリル系樹脂等による低屈折率の透明平坦化膜が積層され、その上に、R.G.B.が組み合わされたカラーフィルタが形成されている。さらに保護膜を介して、受光領域である光電変換部の上方に位置するようにマイクロレンズが多数配列して形成されてなる。 Examples of solid-state imaging devices to which a lens array is applied include those described in Japanese Patent Application Laid-Open No. 2007-119744. Specifically, a transfer electrode is provided between a CCD region and a photoelectric conversion unit formed on the surface of the semiconductor substrate, and a light shielding film is formed thereon via an interlayer film. On the light shielding film, an interlayer insulating film made of BPSG (Boro-Phospho-Silicate Glass), a passivation film, a transparent planarizing film having a low refractive index made of acrylic resin, and the like are laminated. G. B. Are combined to form a color filter. Further, a large number of microlenses are arranged so as to be positioned above the photoelectric conversion portion which is a light receiving region via a protective film.
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例により限定して解釈されるものではない。なお、本実施例において「部」及び「%」とは特に断らない限りいずれも質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not construed as being limited to these examples. In this example, “part” and “%” are based on mass unless otherwise specified.
<分散組成物A-1の合成例>
<核微粒子の水分散ゾル(AA-1)の調製>
 四塩化チタンをTiO換算基準で7.8質量%含む四塩化チタン水溶液7.6kgと、アンモニアを15質量%含むアンモニア水3.0kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、イオン交換水で洗浄して、固形分含有量が10質量%の含水チタン酸ケーキ6.2kgを得た。
 次に、このケーキに、過酸化水素を35質量%含む過酸化水素水7.1kgとイオン交換水20.0kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらにそこへイオン交換水28.9kgを加えて、過酸化チタン酸をTiO換算基準で1質量%含む過酸化チタン酸水溶液を62.2kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。
 次いで、上記過酸化チタン酸水溶液62.2kgに陽イオン交換樹脂(三菱化学(株)製)3.0kgを混合して、これに、スズ酸カリウムをSnO換算基準で1質量%含むスズ酸カリウム水溶液7.8kgを撹拌下で徐々に添加した。次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、オートクレーブ中で165℃の温度で18時間、加熱した。
 次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV-3010)で濃縮して、固形分含有量が10質量%の核微粒子の水分散ゾル(AA-1)(金属酸化物微粒子の水分散ゾル(AA-1))7.0kgを得た。
 このようにして得られた金属酸化物微粒子の水分散ゾル(AA-1)は透明な乳白色であった。さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 87.5質量%、SnO 10.6質量%およびKO 1.8質量%であった。
<Synthesis Example of Dispersion Composition A-1>
<Preparation of aqueous dispersion sol (AA-1) of nuclear fine particles>
A white slurry liquid having a pH of 9.5 was prepared by mixing 7.6 kg of an aqueous titanium tetrachloride solution containing 7.8% by mass of titanium tetrachloride on a TiO 2 basis and 3.0 kg of aqueous ammonia containing 15% by mass of ammonia. . Next, this slurry was filtered and then washed with ion-exchanged water to obtain 6.2 kg of a hydrous titanate cake having a solid content of 10% by mass.
Next, 7.1 kg of hydrogen peroxide containing 35% by mass of hydrogen peroxide and 20.0 kg of ion-exchanged water were added to the cake, and then heated at 80 ° C. for 1 hour with stirring. Thereto, 28.9 kg of ion-exchanged water was added, and 62.2 kg of an aqueous solution of titanic acid peroxide containing 1% by mass of titanic acid peroxide in terms of TiO 2 was obtained. This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.5.
Next, 3.0 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with 62.2 kg of the aqueous solution of titanic acid titanate, and stannic acid containing 1% by mass of potassium stannate in terms of SnO 2 conversion. 7.8 kg of aqueous potassium solution was gradually added with stirring. Next, after separating the cation exchange resin which took in potassium ion etc., it heated in the temperature of 165 degreeC in the autoclave for 18 hours.
Next, the obtained mixed aqueous solution is cooled to room temperature and then concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.) to disperse water in the form of core fine particles having a solid content of 10% by mass. 7.0 kg of sol (AA-1) (aqueous dispersion sol of metal oxide fine particles (AA-1)) was obtained.
The water-dispersed sol (AA-1) of the metal oxide fine particles thus obtained was transparent and milky white. Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, 87.5% by mass of TiO 2 , 10.6% by mass of SnO 2 , and K 2 O based on the oxide conversion standard of each metal component. It was 1.8% by mass.
<表面処理金属酸化物微粒子の水分散ゾル(AB-1)の調製>
 上記で得られた核微粒子の水分散ゾル(AA-1)7.0kgに、水酸化カリウム水溶液でpHを7.0に調整しながらZrO質量換算で3.6%濃度のオキシ塩化ジルコニウム八水和物水溶液1.5kgを徐々に添加し、40℃にて1時間で攪拌混合してジルコニウムで表面処理された金属酸化物微粒子の水分散液を得た。このとき、ジルコニウムの量は核微粒子中に含まれる金属元素に対して酸化物換算基準で5.0モル%であった。
 次いで、上述のジルコニウムで表面処理された金属酸化物微粒子の水分散液8.5kgをスプレードライヤー(NIRO社製NIRO ATOMIZER)に供して噴霧乾燥した。これにより、平均粒径が約2μmの表面処理金属酸化物微粒子からなる乾燥粉体0.9kgを得た。
 次に、上記で得られた表面処理金属酸化物微粒子の乾燥粉体0.9kgを、空気雰囲気下、500℃の温度にて2時間焼成して、表面処理金属酸化物微粒子の焼成粉体0.8kgを得た。上記で得られた表面処理金属酸化物微粒子の焼成粉体0.2kgを純水0.2kgに分散させ、これに、濃度28.6%の酒石酸水溶液0.1kg、濃度50質量%のKOH水溶液0.06kgを加えて充分攪拌した。ついで、攪拌後の溶液に粒径0.1mmのアルミナビーズ(大明化学工業(株)製 高純度アルミナビース)を加え、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、上記表面処理金属酸化物微粒子の焼成粉体の粉砕及び分散処理を行った。その後、アルミナビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水1.4kgを添加して撹拌し、固形分含有量が11質量%の表面処理金属酸化物微粒子の水分散液1.7kgを得た。
 ついで、限外濾過膜を用いてイオン交換水で洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)0.09kgを加えて脱イオン処理をした後、遠心分離機(日立工機(株)製CR-21G)に供して12,000rpmの速度で1時間処理した後、イオン交換水を添加して固形分濃度10質量%の表面処理金属酸化物微粒子の水分散ゾル(AB-1)1.9kgを調製した。
 この表面処理金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 82.6質量%、SnO 10.3質量%、ZrO 4.9質量%およびKO 2.2質量%であった。このときのTi/Zr比率(元素組成)は26であった。得られた金属酸化物微粒子の数平均粒径は約5~20nmであった。
<Preparation of water-dispersed sol (AB-1) of surface-treated metal oxide fine particles>
To 7.0 kg of the aqueous dispersion sol (AA-1) of the nuclear fine particles obtained above, the zirconium oxychloride having a concentration of 3.6% in terms of ZrO 2 mass while adjusting the pH to 7.0 with an aqueous potassium hydroxide solution. 1.5 kg of an aqueous hydrate solution was gradually added and stirred and mixed at 40 ° C. for 1 hour to obtain an aqueous dispersion of metal oxide fine particles surface-treated with zirconium. At this time, the amount of zirconium was 5.0 mol% in terms of oxide with respect to the metal element contained in the core fine particles.
Next, 8.5 kg of an aqueous dispersion of metal oxide fine particles surface-treated with zirconium as described above was spray-dried using a spray dryer (NIRO ATOMIZER manufactured by NIRO). As a result, 0.9 kg of a dry powder composed of surface-treated metal oxide fine particles having an average particle diameter of about 2 μm was obtained.
Next, 0.9 kg of the dried powder of the surface-treated metal oxide fine particles obtained above was calcined for 2 hours at a temperature of 500 ° C. in an air atmosphere to obtain a calcined powder of surface-treated metal oxide fine particles 0. .8 kg was obtained. 0.2 kg of the fired powder of the surface-treated metal oxide fine particles obtained above was dispersed in 0.2 kg of pure water, and 0.1 kg of a tartaric acid aqueous solution having a concentration of 28.6% and a KOH aqueous solution having a concentration of 50 mass% were added thereto. 0.06 kg was added and sufficiently stirred. Next, alumina beads having a particle diameter of 0.1 mm (high-purity alumina beads manufactured by Daimei Chemical Industry Co., Ltd.) were added to the stirred solution, and this was subjected to a wet pulverizer (batch type tabletop sand mill manufactured by Campe Co., Ltd.). The surface-treated metal oxide fine particles were pulverized and dispersed for 180 minutes. Thereafter, the alumina beads were separated and removed using a stainless steel filter having an aperture of 44 μm, and then 1.4 kg of pure water was further added and stirred, so that the surface-treated metal oxide fine particles having a solid content of 11% by mass were obtained. 1.7 kg of an aqueous dispersion was obtained.
Next, after washing with ion-exchanged water using an ultrafiltration membrane, 0.09 kg of anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment, and then a centrifuge (Hitachi Machine (CR-21G manufactured by Kikai Co., Ltd.) and treated for 1 hour at a speed of 12,000 rpm, and then water-dispersed sol (AB) of surface-treated metal oxide fine particles having a solid content concentration of 10 mass% by adding ion exchange water -1) 1.9 kg was prepared.
When the content of the metal component contained in the surface-treated metal oxide fine particles was measured, 82.6% by mass of TiO 2 , 10.3% by mass of SnO 2 , and ZrO 2 4 in terms of oxide conversion of each metal component. And 9% by mass and 2.2% by mass of K 2 O, respectively. The Ti / Zr ratio (element composition) at this time was 26. The number average particle diameter of the obtained metal oxide fine particles was about 5 to 20 nm.
<表面処理金属酸化物微粒子のメタノール分散ゾル(AC-1)の調製>
 上記で調製した表面処理金属酸化物微粒子の水分散ゾル(AB-1)0.6kgに陽イオン交換樹脂9.6gを攪拌下で添加した後、樹脂を分離して脱イオンされた表面処理金属酸化物微粒子の水分散液を調製した。ついで、上記脱イオンされた表面処理金属酸化物微粒子の水分散液を、限外濾過膜装置(旭化成(株)製濾過膜、SIP-1013)を用いて分散媒を水からメタノールに置換・濃縮して表面処理金属酸化物微粒子のメタノール分散ゾル(AC-1)0.3kgを得た。その結果、得られたメタノール分散ゾル中に含まれる固形分濃度は30質量%であり、また水分含有量は約0.3質量%であった。
<Preparation of methanol-dispersed sol (AC-1) of surface-treated metal oxide fine particles>
After adding 9.6 g of the cation exchange resin to 0.6 kg of the water-dispersed sol (AB-1) of the surface-treated metal oxide fine particles prepared as described above, the surface-treated metal was deionized by separating the resin. An aqueous dispersion of oxide fine particles was prepared. Subsequently, the dispersion liquid of the deionized surface-treated metal oxide fine particles is replaced with a dispersion medium from water to methanol and concentrated using an ultrafiltration membrane device (a filtration membrane manufactured by Asahi Kasei Corporation, SIP-1013). As a result, 0.3 kg of methanol-dispersed sol (AC-1) of surface-treated metal oxide fine particles was obtained. As a result, the solid content concentration contained in the obtained methanol-dispersed sol was 30% by mass, and the water content was about 0.3% by mass.
<分散組成物A-1の調製>
 メチルトリメトキシシラン10.9g(0.08mol)、フェニルトリメトキシシラン63.5g(0.32mol)、表面処理金属酸化物微粒子のメタノール分散ゾルAC-1(固形分濃度30質量%、メタノール70質量%)440.0g、DAA(ジアセトンアルコール)370.0gを反応容器に入れ、この溶液に、水32.0gおよびリン酸1.0gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、分散組成物A-1を得た。
<Preparation of Dispersion Composition A-1>
Methanol dispersion sol AC-1 of methyltrimethoxysilane 10.9 g (0.08 mol), phenyltrimethoxysilane 63.5 g (0.32 mol), surface-treated metal oxide fine particles (solid content concentration 30 mass%, methanol 70 mass) %) 440.0 g and DAA (diacetone alcohol) 370.0 g were put in a reaction vessel, and 32.0 g of water and 1.0 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain a dispersion composition A-1.
(実施例1・比較例1)
 上記で得られた分散組成物A-1を用いて、以下の表の組成となるように各成分を混合もしくは溶媒置換等して実施例および比較例のシロキサン樹脂組成物(熱硬化性組成物)を得た。得られた実施例および比較例の各熱硬化性組成物を用いて、以下に示す評価を行った。
(Example 1 and Comparative Example 1)
Using the dispersion composition A-1 obtained above, each component was mixed or solvent-substituted so that the composition shown in the following table was obtained, and the siloxane resin compositions (thermosetting compositions) of Examples and Comparative Examples were used. ) The evaluation shown below was performed using the obtained thermosetting compositions of Examples and Comparative Examples.
<試験100番台、200番台、c01~c06>
 金属酸化物粒子                 70質量部
 シロキサン樹脂                 25質量部
 PGMEA                  135質量部(*)
 DAA                    266質量部(*)
 KAYARAD DPHA(日本化薬(株)製)   2質量部
 光重合開始剤                   1質量部
 表に記載の構造の紫外線吸収剤(A)        2質量部(#)
 重合禁止剤(p-メトキシフェノール)    0.01質量部(*)
<Test 100s, 200s, c01-c06>
Metal oxide particles 70 parts by mass Siloxane resin 25 parts by mass PGMEA 135 parts by mass (*)
DAA 266 parts by mass (*)
KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) 2 parts by weight Photopolymerization initiator 1 part by weight Ultraviolet absorber (A) having the structure shown in the table 2 parts by weight (#)
Polymerization inhibitor (p-methoxyphenol) 0.01 parts by mass (*)
<試験300番台>
 金属酸化物粒子                 70質量部
 シロキサン樹脂                 25質量部
 PGMEA                  135質量部(*)
 DAA                    266質量部(*)
 KAYARAD DPHA(日本化薬(株)製)   2質量部
 光重合開始剤                   1質量部
 表に記載の構造の紫外線吸収剤(A)        3質量部
 重合禁止剤(p-メトキシフェノール)    0.01質量部(*)
<Test 300 range>
Metal oxide particles 70 parts by mass Siloxane resin 25 parts by mass PGMEA 135 parts by mass (*)
DAA 266 parts by mass (*)
KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) 2 parts by weight Photopolymerization initiator 1 part by weight UV absorber (A) having the structure shown in the table 3 parts by weight Polymerization inhibitor (p-methoxyphenol) 0.01 part by weight (*)
 (*)表1での記載を省略した成分
 (#)c06では紫外線吸収剤を添加していない
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 DAA:ジアセトンアルコール
 KAYARAD DPHA 不飽和二重結合を有する重合性化合物(モノマー)
 (ジペンタエリスリトールヘキサアクリレート)
 表中の後添加樹脂B-1は、シロキサン樹脂22質量部に対し、アルカリ可溶性樹脂(B-1)が3質量部となるよう調整し(両者の合計で25質量部となるようにし)添加することにより含有させた。
 表中、OXE01は、IRGACURE OXE01(BASF社製)を表し、OXE02は、IRGACURE OXE02(BASF社製)を表す。
(*) Component omitted in Table 1 (#) No UV absorber added in c06 PGMEA: Propylene glycol monomethyl ether acetate DAA: Diacetone alcohol KAYARAD DPHA Polymerizable compound having an unsaturated double bond ( monomer)
(Dipentaerythritol hexaacrylate)
The post-addition resin B-1 in the table was adjusted so that the alkali-soluble resin (B-1) was 3 parts by mass with respect to 22 parts by mass of the siloxane resin (the total amount of both was 25 parts by mass). It was made to contain.
In the table, OXE01 represents IRGACURE OXE01 (manufactured by BASF), and OXE02 represents IRGACURE OXE02 (manufactured by BASF).
<解像性試験[1-1]>
 上記で得られた各硬化性組成物を、塗布後の膜厚が0.8μmになるように、下塗り層付き8インチシリコンウェハ上に東京エレクトロン製Act8[商品名]を用いてスピンコート法で塗布し、その後ホットプレート上で、100℃で2分間加熱して硬化性組成物層を得た。
 次いで、得られた硬化性組成物層に対し、i線ステッパー露光装置FPA-3000i5+[商品名](Canon(株)製)を用い、1.1μm四方のベイヤーパターンを、マスクを介して露光(露光量50~1700mJ/cm)した。
 次いで、露光後の硬化性組成物層に対し、現像装置(東京エレクトロン製Act8[商品名])を使用し現像性の評価を行った。現像液には水酸化テトラメチルアンモニウム(TMAH)0.3%水溶液を用い、23℃で60秒間シャワー現像を行った。その後、純水を用いたスピンシャワーにてリンスを行い、パターンを得た。得られたパターンの歪を走査型電子顕微鏡(SEM)(S-4800H[商品名]、(株)日立ハイテクノロジーズ製)観察(倍率:20000倍)により評価した。以下の基準に沿ってリソグラフィー性能を評価した。解像性試験は各試料(各実施例および比較例の硬化性組成物)につき3回行いその結果を総合して判定した。
 「5」:パターンがはっきりしており、残渣がない。 
 「4」:パターンがややテーパー形状になっているが、残渣がない。 
 「3」:パターンがテーパー形状になっているが、残渣は少ない。
 「2」:パターンがテーパー形状になっており、残渣が多い。
 「1」:パターンができない。
<Resolution test [1-1]>
Each curable composition obtained above was spin-coated using Act8 [trade name] manufactured by Tokyo Electron on an 8-inch silicon wafer with an undercoat layer so that the film thickness after coating was 0.8 μm. After coating, it was heated on a hot plate at 100 ° C. for 2 minutes to obtain a curable composition layer.
Next, the obtained curable composition layer was exposed to a 1.1 μm square Bayer pattern through a mask using an i-line stepper exposure apparatus FPA-3000i5 + [trade name] (manufactured by Canon Inc.). The exposure amount was 50 to 1700 mJ / cm 2 ).
Next, the developability of the curable composition layer after the exposure was evaluated using a developing device (Act 8 [trade name] manufactured by Tokyo Electron). As a developer, a 0.3% aqueous solution of tetramethylammonium hydroxide (TMAH) was used, and shower development was performed at 23 ° C. for 60 seconds. Then, it rinsed with the spin shower using a pure water, and the pattern was obtained. The distortion of the obtained pattern was evaluated by observation with a scanning electron microscope (SEM) (S-4800H [trade name], manufactured by Hitachi High-Technologies Corporation) (magnification: 20000 times). Lithography performance was evaluated according to the following criteria. The resolution test was performed three times for each sample (the curable compositions of the examples and comparative examples), and the results were comprehensively determined.
“5”: The pattern is clear and there is no residue.
“4”: The pattern is slightly tapered, but there is no residue.
“3”: The pattern is tapered, but there is little residue.
“2”: The pattern is tapered, and there are many residues.
“1”: A pattern cannot be formed.
<耐光性試験[1-2]>
 高屈折率ガラス((株)住田光学ガラス社製SFLD-6[商品名])に、組成物をスピンコーター(H-360S[商品名](ミカサ(株))製)で塗布した。ホットプレ-トを用いて、100℃で2分プリベークして塗布膜を得た。ウシオ電機(株)製超高圧水銀ランプ「USH-500BY」[商品名]により1000mJ/cmで露光した。この塗布膜を、空気雰囲気下のホットプレート上で200℃で5分加熱し、膜厚0.5μmの硬化膜を得た。得られた硬化膜に対し、耐光試験機(スガ試験機(株)製Xenon Weather Meter SX75[商品名])を用いて500万lxhの光を50時間照射して、耐光性試験を行った。被検体の温度(試験装置内温度)は63℃に設定した。試験装置内の相対湿度は50%RHとした。耐光性試験後、硬化膜の透過率を測定し、下記基準に基づいて耐光性を評価した。耐光性試験は各試料(各実施例および比較例の硬化膜)につき5回行い、評価点の最大値と最小値の1つずつを除いた3回の結果の平均値を採用した。
 「5」:透過率の変化量が±5%以下
 「4」:透過率の変化量が±5%を超えて±8%以下
 「3」:透過率の変化量が±8%を超えて±10%以下
 「2」:透過率の変化量が±10%を超えて±20%以下
 「1」:透過率の変化量が±20%を超える
<透明性試験[1-3]>
~屈折率および可視光透過率の測定~
 耐光性評価に用いた硬化膜において、大塚電子(株)製「MCPD-3000」を用い、硬化膜の光透過率を400nm~700nmで測定した。光透過率は400~700nmの最低透過率の値を採用した。透明性試験は各試料(各実施例および比較例の硬化膜)につき5回行い、評価点の最大値と最小値の1つずつを除いた3回の結果の平均値を採用した。
 「5」:透過率が95%を超えている
 「4」:透過率が90%を超えて95%以下
 「3」:透過率が85%を超えて90%以下
 「2」:透過率が80%を超えて85%以下
 「1」:透過率が80%以下
<Light resistance test [1-2]>
The composition was applied to high refractive index glass (SFLD-6 [trade name] manufactured by Sumita Optical Glass Co., Ltd.) with a spin coater (H-360S [trade name] (Mikasa Corp.)). Using a hot plate, the coating film was obtained by prebaking at 100 ° C. for 2 minutes. Exposure was performed at 1000 mJ / cm 2 using an ultrahigh pressure mercury lamp “USH-500BY” [trade name] manufactured by USHIO INC. This coating film was heated at 200 ° C. for 5 minutes on a hot plate in an air atmosphere to obtain a cured film having a thickness of 0.5 μm. The obtained cured film was irradiated with light of 5 million lxh for 50 hours using a light resistance tester (Xenon Weather Meter SX75 [trade name] manufactured by Suga Test Instruments Co., Ltd.) to perform a light resistance test. The temperature of the subject (temperature in the test apparatus) was set to 63 ° C. The relative humidity in the test apparatus was 50% RH. After the light resistance test, the transmittance of the cured film was measured, and the light resistance was evaluated based on the following criteria. The light resistance test was performed five times for each sample (cured films of each example and comparative example), and an average value of three results excluding one each of the maximum value and the minimum value of the evaluation points was adopted.
“5”: Change in transmittance is ± 5% or less “4”: Change in transmittance exceeds ± 5% to ± 8% or less “3”: Change in transmittance exceeds ± 8% ± 2% or less “2”: Change in transmittance exceeds ± 10% and ± 20% or less “1”: Change in transmittance exceeds ± 20% <Transparency test [1-3]>
-Measurement of refractive index and visible light transmittance-
For the cured film used for light resistance evaluation, “MCPD-3000” manufactured by Otsuka Electronics Co., Ltd. was used, and the light transmittance of the cured film was measured from 400 nm to 700 nm. As the light transmittance, a minimum transmittance value of 400 to 700 nm was adopted. The transparency test was performed five times for each sample (cured films of each example and comparative example), and an average value of three results excluding one each of the maximum value and the minimum value of the evaluation points was adopted.
“5”: Transmittance exceeds 95% “4”: Transmittance exceeds 90% and 95% or less “3”: Transmittance exceeds 85% and 90% or less “2”: Transmittance More than 80% and 85% or less "1": Transmittance is 80% or less
 なお、このとき同じ硬化膜サンプルで、エリプソメータ(大塚電子(株)社製)を用い、室温25℃での波長633nmにおける屈折率を測定した。その結果は、実施例の硬化膜の屈折率はいずれも約1.8であり所望の高屈折率を実現していた。 At this time, the refractive index at a wavelength of 633 nm at a room temperature of 25 ° C. was measured using an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.) with the same cured film sample. As a result, the refractive indexes of the cured films of the examples were all about 1.8, realizing a desired high refractive index.
<モル吸光係数の測定方法>
 各紫外線吸収剤のモル吸光係数は1.00×10-3mol/Lのクロロホルム溶液を調製し、以下の手順で、吸光度を測定することで算出した。
 上記の濃度に調整したクロロホルム溶液を内部空間の幅が1cmのガラスセルに入れ、Agilent Technologies社製UV-Vis-NIRスペクトルメーター(Cary5000)[商品名]を用いて吸光度を測定した。測定温度は25℃とした。そこで得られた吸光度Aを下記式に当てはめてモル吸光係数(mol-1・L・cm-1)を算出した。
<Measurement method of molar extinction coefficient>
The molar extinction coefficient of each ultraviolet absorber was calculated by preparing a 1.00 × 10 −3 mol / L chloroform solution and measuring the absorbance according to the following procedure.
The chloroform solution adjusted to the above concentration was placed in a glass cell having an internal space width of 1 cm, and the absorbance was measured using a UV-Vis-NIR spectrum meter (Cary5000) [trade name] manufactured by Agilent Technologies. The measurement temperature was 25 ° C. The absorbance A thus obtained was applied to the following formula to calculate the molar extinction coefficient (mol −1 · L · cm −1 ).
Figure JPOXMLDOC01-appb-M000009

 なお、上記式においてεはモル吸光係数(mol-1・L・cm-1)、Aは吸光度、cは濃度(mol/L)、lは光路長(cm)を表す。濃度cは1.00×10-3mol/Lである。光路長lは上記ガラスセルの内部空間の幅が相当し、したがって1cmとなる。
Figure JPOXMLDOC01-appb-M000009

In the above formula, ε represents the molar extinction coefficient (mol −1 · L · cm −1 ), A represents the absorbance, c represents the concentration (mol / L), and l represents the optical path length (cm). The concentration c is 1.00 × 10 −3 mol / L. The optical path length l corresponds to the width of the internal space of the glass cell and is therefore 1 cm.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011

 配合:質量部
Figure JPOXMLDOC01-appb-T000011

Formulation: parts by mass
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記の結果より、特定の紫外線吸収剤を用いることで、本発明のシロキサン樹脂組成物を用いて得られる硬化膜が、良好な光学特性を達成し、しかも解像性に優れ、耐光性においても高い性能を発揮することが分かった。 From the above results, by using a specific ultraviolet absorber, the cured film obtained by using the siloxane resin composition of the present invention achieves good optical properties, excellent resolution, and light resistance. It was found that it demonstrated high performance.
(実施例1-2)
(核微粒子の水分散ゾル(E-1)の調製)
 四塩化チタンをTiO換算基準で7.75質量%含む四塩化チタン水溶液7.60kgと、アンモニアを15質量%含むアンモニア水2.91kgとを混合し、これらを混合しながら、そこへZrO質量換算で1.23%濃度のオキシ塩化ジルコニウム八水和物水溶液7.6kgを24時間かけて滴下し、pH8.8の白色スラリー液を調製した。次いで、このスラリー液をイオン交換水で5倍に希釈してから濾過し、さらにイオン交換水で洗浄して、固形分含有量が10質量%の含水チタンジルコニウム酸ケーキ5.2kgを得た。
 次に、このケーキに、過酸化水素を35質量%含む過酸化水素水7.1kgとイオン交換水20.0kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらにそこへイオン交換水28.90kgを加えて、過酸化チタンジルコニウム酸をTiO換算基準で1質量%含む過酸化チタンジルコニウム酸水溶液を61.39kg得た。この過酸化チタンジルコニウム酸水溶液は、透明な黄褐色でpHは8.9であった。
 次いで、上記過酸化チタンジルコニウム酸水溶液60.78kgに陽イオン交換樹脂(三菱化学(株)製)4.00kgを混合して、これに、スズ酸カリウムをSnO換算基準で1質量%含むスズ酸カリウム水溶液8.01kgを撹拌下で徐々に添加した。次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、オートクレーブ中で168℃の温度で20時間、加熱した。
 次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV-3010)で濃縮して、固形分含有量が10質量%の核微粒子の水分散ゾル(金属酸化物微粒子の水分散ゾル(E-1))6.89kgを得た。このようにして得られた金属酸化物微粒子の水分散ゾル(E-1)は透明な乳白色であった。この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 90.0質量%、SnO 4.2質量%、KO 0.5質量%、およびZrO 5.3質量%であった。
Example 1-2
(Preparation of aqueous dispersion sol of nuclear fine particles (E-1))
7.60 kg of titanium tetrachloride aqueous solution containing 7.75% by mass of titanium tetrachloride in terms of TiO 2 and 2.91 kg of aqueous ammonia containing 15% by mass of ammonia were mixed, and ZrO 2 was mixed therewith while mixing them. 7.6 kg of 1.23% concentration zirconium oxychloride octahydrate aqueous solution in terms of mass was added dropwise over 24 hours to prepare a white slurry liquid having a pH of 8.8. Next, the slurry was diluted 5 times with ion-exchanged water, filtered, and further washed with ion-exchanged water to obtain 5.2 kg of a hydrous titanium zirconate cake having a solid content of 10% by mass.
Next, 7.1 kg of hydrogen peroxide containing 35% by mass of hydrogen peroxide and 20.0 kg of ion-exchanged water were added to the cake, and then heated at 80 ° C. for 1 hour with stirring. Thereto was added 28.90 kg of ion-exchanged water to obtain 61.39 kg of an aqueous titanium zirconate solution containing 1% by mass of titanium zirconate in terms of TiO 2 . This aqueous solution of titanium zirconate acid was transparent yellowish brown and had a pH of 8.9.
Next, 4.00 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with 60.78 kg of the above titanium peroxide zirconate aqueous solution, and tin containing 1% by mass of potassium stannate in terms of SnO 2 conversion standard was added thereto. 8.01 kg of potassium acid aqueous solution was gradually added with stirring. Next, after separating the cation exchange resin which took in potassium ion etc., it heated at the temperature of 168 degreeC for 20 hours in the autoclave.
Next, the obtained mixed aqueous solution is cooled to room temperature and then concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.) to disperse water in the form of core fine particles having a solid content of 10% by mass. 6.89 kg of sol (water dispersion sol of metal oxide fine particles (E-1)) was obtained. The water-dispersed sol (E-1) of the metal oxide fine particles thus obtained was transparent and milky white. When the content of the metal component contained in the metal oxide fine particles was measured, it was 90.0% by mass of TiO 2 , 4.2% by mass of SnO 2 , 0.2% by mass of K 2 O, based on the oxide conversion standard of each metal component. 5 wt%, and was ZrO 2 5.3% by mass.
(金属酸化物微粒子のメタノール分散ゾル(EM-1)の調製)
 上述の金属酸化物微粒子の水分散ゾル(E-1)7.51kgをスプレードライヤーにて噴霧乾燥した。これにより、平均粒径が約2μmの金属酸化物微粒子からなる乾燥粉体0.90kgを得た。次に、上記で得られた金属酸化物微粒子の乾燥粉体0.90kgを、空気雰囲気下、500℃の温度にて2時間焼成して、金属酸化物微粒子の焼成粉体0.90kgを得た。上記で得られた金属酸化物微粒子の焼成粉体0.20kgを純水0.18kgに分散させ、これに、濃度28.6%の酒石酸水溶液0.13kg、濃度50質量%のKOH水溶液0.06kgを加えて充分攪拌した。次に、攪拌後の溶液に粒径0.1mmのアルミナビーズ(大明化学工業(株)製高純度アルミナビース)を加え、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、上記金属酸化物微粒子の焼成粉体の粉砕及び分散処理を行った。その後、アルミナビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水1.39kgを添加して撹拌し、固形分含有量が11.0質量%の金属酸化物微粒子の水分散液1.70kgを得た。次に、限外濾過膜を用いてイオン交換水で洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)0.09kgを加えて脱イオン処理をした後、遠心分離機(日立工機(株)製CR-21G)に供して11,000rpmの速度で1時間処理した後、イオン交換水を添加して固形分濃度10質量%の金属酸化物微粒子の水分散ゾル(EZ-1)1.86kgを調製した。
 さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 88.9質量%、SnO 5.3質量%、ZrO 5.3質量%およびKO 0.5質量%であった。(TiOは79.87g/mol、ZrOは123.2g/molであり、上記の配合におけるTi/Zr(モル比)は26となる。)
 次に、冷却した後に限外濾過膜装置(旭化成(株)製濾過膜、SIP-1013)を用いて、金属酸化物微粒子の水分散ゾル(EZ-1)の分散媒を水からメタノールに置換して金属酸化物微粒子のメタノール分散ゾル(EM-1)0.32kgを得た。その結果、得られたメタノール分散ゾル(EM-1)中に含まれる固形分濃度は約30質量%であり、水分含有量は0.28質量%であった。
(Preparation of metal oxide fine particle methanol dispersion sol (EM-1))
7.51 kg of the above-mentioned aqueous dispersion sol (E-1) of metal oxide fine particles was spray-dried with a spray dryer. As a result, 0.90 kg of a dry powder composed of metal oxide fine particles having an average particle diameter of about 2 μm was obtained. Next, 0.90 kg of the dried powder of metal oxide fine particles obtained above was fired at 500 ° C. for 2 hours in an air atmosphere to obtain 0.90 kg of fired powder of metal oxide fine particles. It was. 0.20 kg of the fired powder of metal oxide fine particles obtained above was dispersed in 0.18 kg of pure water. 06 kg was added and stirred thoroughly. Next, alumina beads having a particle size of 0.1 mm (Daimei Chemical Co., Ltd. high-purity alumina beads) are added to the stirred solution, and this is subjected to a wet crusher (Kampe Co., Ltd. batch type tabletop sand mill). For 180 minutes, the fired powder of the metal oxide fine particles was pulverized and dispersed. Thereafter, the alumina beads were separated and removed using a stainless steel filter having an opening of 44 μm, and further 1.39 kg of pure water was added and stirred to obtain metal oxide fine particles having a solid content of 11.0% by mass. 1.70 kg of aqueous dispersion was obtained. Next, after washing with ion-exchanged water using an ultrafiltration membrane, 0.09 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment, and then a centrifuge (Hitachi) After being treated for 1 hour at a speed of 11,000 rpm using a CR-21G manufactured by Koki Co., Ltd., ion-exchanged water was added, and an aqueous dispersion sol of metal oxide fine particles having a solid content concentration of 10% by mass (EZ- 1) 1.86 kg was prepared.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 88.9% by mass, SnO 2 5.3% by mass, ZrO 2 5 based on the oxide conversion standard of each metal component. .3 was wt% and K 2 O 0.5 wt%. (TiO 2 is 79.87 g / mol, ZrO 2 is 123.2 g / mol, and Ti / Zr (molar ratio) in the above composition is 26.)
Next, after cooling, the dispersion medium of the water dispersion sol (EZ-1) of metal oxide fine particles is replaced from water to methanol using an ultrafiltration membrane device (a filtration membrane manufactured by Asahi Kasei Corporation, SIP-1013). As a result, 0.32 kg of methanol dispersion sol (EM-1) of metal oxide fine particles was obtained. As a result, the solid content concentration contained in the obtained methanol dispersion sol (EM-1) was about 30% by mass, and the water content was 0.28% by mass.
(ZrOの比率を変えた金属酸化物微粒子のメタノール分散ゾル(EM―2およびEM-3)の調製)
 核微粒子の水分散ゾル(E-1)調製時のオキシ塩化ジルコニウムの添加量を調整した以外は、核微粒子の水分散ゾル(E-1)の調製に準拠して、ZrOの量を変化させた金属酸化物微粒子の分散ゾル(EM-2)および(EM-3)を調製した。それぞれの分散液(ゾル)に含まれる粒子のTi/Zr(モル比)を表1-3に示した。
(Preparation of methanol dispersion sol (EM-2 and EM-3) of metal oxide fine particles with different ZrO 2 ratio)
The amount of ZrO 2 was changed in accordance with the preparation of the aqueous dispersion sol (E-1) of the nuclear fine particles, except that the amount of zirconium oxychloride added during the preparation of the aqueous dispersion sol (E-1) of the nuclear fine particles was adjusted. Dispersed sols (EM-2) and (EM-3) of fine metal oxide particles prepared were prepared. Table 1-3 shows the Ti / Zr (molar ratio) of the particles contained in each dispersion (sol).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(平均粒径を変えた金属酸化物微粒子のメタノール分散ゾル(EM-4~EM-7)の調製)
 金属酸化物微粒子の熱処理温度および処理時間を調節することにより、平均粒径の異なる金属酸化物微粒子のメタノール分散ゾル(EM-4)~(EM-7)を調製した。それぞれの分散液(ゾル)に含まれる粒子の数平均粒径(Mn)を表1-3に示した。なお、測定方法は上述したとおりである。
(Preparation of methanol dispersion sol (EM-4 to EM-7) of metal oxide fine particles with different average particle sizes)
By adjusting the heat treatment temperature and treatment time of the metal oxide fine particles, methanol dispersed sols (EM-4) to (EM-7) of metal oxide fine particles having different average particle diameters were prepared. Table 1-3 shows the number average particle size (Mn) of the particles contained in each dispersion (sol). The measuring method is as described above.
(珪酸液の調製)
 市販の水ガラス(AGCエスアイテック(株)製)0.31kgを純水にて希釈したのち、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、珪酸をSiO2換算基準で2.0質量%含む珪酸水溶液3.00kgを得た。なお、この珪酸水溶液のpHは、2.3であった。
(Preparation of silicic acid solution)
After diluting 0.31 kg of commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water, it is dealkalized using a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and silicic acid is converted into SiO2 standard. Thus, 3.00 kg of an aqueous silicic acid solution containing 2.0% by mass was obtained. The silicic acid aqueous solution had a pH of 2.3.
(コアシェル型金属酸化物微粒子のメタノール分散ゾル(CSTM-1)の調製)
 上記の金属酸化物微粒子のメタノール分散ゾル(EM-1)1.80kgに純水12.3kgを加えて、撹拌しながら90℃の温度に加熱したのち、これに上記の珪酸水溶液2.39kgを徐々に添加した。珪酸水溶液の添加終了後、90℃の温度に保ちながら攪拌下でさらに10時間熟成した。このとき、金属酸化物微粒子を被覆する複合酸化物の量は、該表面処理粒子100質量部に対して12質量部であった。
 次いで、この混合液をオートクレーブ(耐圧硝子工業(株)製)に入れて、165℃の温度で18時間、加熱処理を行った。次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP-1013)を用いて濃縮して固形分含有量が10.0質量%の水分散ゾルを調製した。これにより、金属酸化物微粒子の表面を、ケイ素を含む酸化物で被覆したコアシェル型金属酸化物微粒子の水分散ゾル(CST-1)を得た。
 得られたコアシェル型金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO 86.3質量%、SnO 5.1質量%、ZrO 5.1質量%およびKO 0.5質量%であった。(TiOは79.87g/mol、ZrOは123.2g/molであり、上記の配合におけるTi/Zr(モル比)は26となる)であった。
 次に、冷却した後に限外濾過膜装置(旭化成(株)製濾過膜、SIP-1013)を用いて分散媒を水からメタノールに置換してコアシェル型金属酸化物微粒子のメタノール分散ゾル(CSTM-1)を得た。その結果、得られたメタノール分散ゾル(CSTM-1)中に含まれる固形分濃度は約30質量%であり、水分含有量は0.28質量%であった。
(Preparation of methanol-dispersed sol (CSTM-1) of core-shell type metal oxide fine particles)
After adding 12.3 kg of pure water to 1.80 kg of methanol dispersion sol (EM-1) of the above metal oxide fine particles and heating to 90 ° C. with stirring, 2.39 kg of the above silicic acid aqueous solution is added thereto. Slowly added. After the addition of the aqueous silicic acid solution, the mixture was further aged for 10 hours under stirring while maintaining the temperature at 90 ° C. At this time, the amount of the composite oxide covering the metal oxide fine particles was 12 parts by mass with respect to 100 parts by mass of the surface-treated particles.
Next, this mixed solution was put into an autoclave (manufactured by Pressure Glass Industrial Co., Ltd.) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours. Next, the obtained mixed solution is cooled to room temperature, and then concentrated using an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) to disperse in water with a solid content of 10.0% by mass. A sol was prepared. As a result, an aqueous dispersion sol (CST-1) of core-shell type metal oxide fine particles in which the surface of the metal oxide fine particles was coated with an oxide containing silicon was obtained.
When the content of the metal component contained in the obtained core-shell type metal oxide fine particles was measured, TiO 2 was 86.3% by mass, SnO 2 5.1% by mass, ZrO based on the oxide conversion standard of each metal component. It was 2 5.1 wt% and K 2 O 0.5 wt%. (TiO 2 was 79.87 g / mol, ZrO 2 was 123.2 g / mol, and Ti / Zr (molar ratio) in the above composition was 26).
Next, after cooling, the dispersion medium is replaced with methanol by using an ultrafiltration membrane device (a filtration membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013), and methanol-dispersed sol of core-shell type metal oxide fine particles (CSTM- 1) was obtained. As a result, the solid content concentration contained in the obtained methanol dispersion sol (CSTM-1) was about 30% by mass, and the water content was 0.28% by mass.
<分散組成物E-1の調製>
 メチルトリメトキシシラン10.9g(0.08mol)、フェニルトリメトキシシラン63.5g(0.32mol)、金属酸化物微粒子のメタノール分散ゾルEM-1(固形分濃度30質量%、メタノール70質量%)440.0g、DAA370.0gを反応容器に入れ、この溶液に、水32.0gおよびリン酸1.0gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、分散組成物E-1を得た(固形分35.8質量%、組成物固形分中の金属酸化物微粒子濃度64質量%)。
<Preparation of dispersion composition E-1>
10.9 g (0.08 mol) of methyltrimethoxysilane, 63.5 g (0.32 mol) of phenyltrimethoxysilane, methanol dispersion sol EM-1 of metal oxide fine particles (solid content concentration 30 mass%, methanol 70 mass%) 440.0 g and DAA 370.0 g were placed in a reaction vessel, and 32.0 g of water and 1.0 g of phosphoric acid were added dropwise to this solution with stirring so that the reaction temperature did not exceed 40 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain a dispersion composition E-1 (solid content 35.8% by mass, metal oxide fine particles in the composition solid content) Concentration 64 mass%).
<分散組成物(E-2~E-7)の調製>
 分散組成物E-1の調製において、使用する金属含有粒子材料を表1-4の通りに変更した以外は、分散組成物E-1の調製と同様の方法で、分散組成物E-2~E-7を調製した。
<Preparation of dispersion compositions (E-2 to E-7)>
In the preparation of the dispersion composition E-1, the dispersion compositions E-2 to E-2 were prepared in the same manner as the preparation of the dispersion composition E-1, except that the metal-containing particle material used was changed as shown in Table 1-4. E-7 was prepared.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<分散組成物C-1の調製>
 分散組成物E-1の調製において、使用する金属含有材料を、CSTM-1に変更した以外は分散組成物E-1の調製と同様の方法で分散組成物C-1を調製した。
<Preparation of Dispersion Composition C-1>
In the preparation of dispersion composition E-1, dispersion composition C-1 was prepared in the same manner as the preparation of dispersion composition E-1, except that the metal-containing material used was changed to CSTM-1.
<試験400番台>
 使用する分散組成物、および/または紫外線吸収剤を、表1-4の通りに変更した以外は実施例1と同様の方法でシロキサン樹脂組成物を得た。得られたシロキサン樹脂組成物を用いて、実施例1と同様の方法で解像性、耐光性、透明性を評価した。
<Test 400 range>
A siloxane resin composition was obtained in the same manner as in Example 1 except that the dispersion composition and / or ultraviolet absorber used was changed as shown in Table 1-4. Using the obtained siloxane resin composition, the resolution, light resistance, and transparency were evaluated in the same manner as in Example 1.
 表1-4に示す試験401~409のシロキサン樹脂組成物は、いずれも表1-2に示す比較例のシロキサン樹脂組成物に対し良好な解像性、耐光性、透明性を示している。このことより、Zr含有酸化チタン(金属酸化物微粒子)において、Ti/Zrが1~40であれば、その形状がコアシェル型(試験101~302)、または非コアシェル型(試験401~408)を問わず、いずれも良好な結果を示した。また、ケイ素を含む酸化物で被覆した試験409も同様に良好な結果を示した。 The siloxane resin compositions of Tests 401 to 409 shown in Table 1-4 all show good resolution, light resistance, and transparency with respect to the siloxane resin compositions of Comparative Examples shown in Table 1-2. Accordingly, in the case of Zr-containing titanium oxide (metal oxide fine particles), if Ti / Zr is 1 to 40, the shape is core-shell type (test 101 to 302) or non-core shell type (test 401 to 408). Regardless, all showed good results. The test 409 coated with an oxide containing silicon also showed good results.
(実施例2)
 上記分散組成物A-1の調製において、メチルトリメトキシシランに代えて、エチルトリメトキシシランを用いた以外は実施例1の試験101と同様にして、シロキサン樹脂組成物を作成した。また、メチルトリメトキシシランの一部をテトラメトキシシランに変えた(メチルトリメトキシシラン及びテトラメトキシシランを併用した)以外は実施例1と同様にしてシロキサン樹脂組成物を作成した。これらのシロキサン樹脂組成物を用いて上記の解像性、耐光性、適用性の各試験を実施したが、いずれも良好な結果が得られることを確認した。
(Example 2)
A siloxane resin composition was prepared in the same manner as in Test 101 of Example 1 except that ethyltrimethoxysilane was used instead of methyltrimethoxysilane in the preparation of the dispersion composition A-1. A siloxane resin composition was prepared in the same manner as in Example 1 except that part of methyltrimethoxysilane was changed to tetramethoxysilane (methyltrimethoxysilane and tetramethoxysilane were used in combination). These siloxane resin compositions were used to carry out the above-described tests for resolution, light resistance, and applicability, and all confirmed that good results were obtained.
 (実施例3)
 上記分散組成物A-1の調製において、TiOとZrOの組成比が下表2となるように調整した以外は分散組成物A-1と同様にして、各試料(分散組成物A-2~A-5)を調製した。
(Example 3)
In the preparation of the dispersion composition A-1, each sample (dispersion composition A-) was prepared in the same manner as the dispersion composition A-1, except that the composition ratio of TiO 2 and ZrO 2 was adjusted to be as shown in Table 2 below. 2 to A-5) were prepared.
 上記各分散組成物を用いる以外は実施例1の試験101と同様にしてシロキサン樹脂組成物を調製し、表1と同じ項目の試験を行った。ただし、耐光性試験[1-2]については、よりシビアな条件での耐光性試験[1-2a]を行った。具体的には、上記の耐光性試験[1-2]の条件に対して、被検体周辺の温度(装置内温度)を63℃とし、湿度を90%RHとした。光の照射時間は50時間とした。 A siloxane resin composition was prepared in the same manner as in Test 101 of Example 1 except that each of the above dispersion compositions was used, and the same items as in Table 1 were tested. However, for the light resistance test [1-2], the light resistance test [1-2a] under severer conditions was performed. Specifically, for the conditions of the above light resistance test [1-2], the temperature around the subject (internal temperature) was 63 ° C., and the humidity was 90% RH. The light irradiation time was 50 hours.
 その結果、解像性試験[1-1]の評価および透明性試験[1-3]の評価については、いずれの試料も良好な成績であった。通常の耐光性試験[1-2]についても、いずれの試料もおおむね良好な結果を示した。一方、シビアな条件での耐光性[1-2a]では、下記の通りとなり、有意な差を生じることを確認した。 As a result, all the samples showed good results in the evaluation of the resolution test [1-1] and the evaluation of the transparency test [1-3]. In the normal light resistance test [1-2], all the samples showed generally good results. On the other hand, the light resistance [1-2a] under severe conditions was as follows, and it was confirmed that a significant difference was produced.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記の結果から分かるとおり、本発明の好ましい実施形態において、金属酸化物微粒子のTi/Zr比を好適な範囲とすることにより、シビアな環境下で使用されるような場合に、特に高い耐光性を実現することができる。 As can be seen from the above results, in a preferred embodiment of the present invention, by setting the Ti / Zr ratio of the metal oxide fine particles in a suitable range, particularly when used in severe environments, the light resistance is high. Can be realized.
 (実施例4)
 上記の分散組成物A-1に対して、金属酸化物微粒子の濃度を40質量%、50質量%、55質量%にそれぞれ変えて同様の試験を行った。硬化膜の屈折率はそれぞれ1.67、1.73、1.75となった。また、各項目において、良好な性能を示すことも確認した。これに対し、金属酸化物微粒子の濃度を10質量%としたところ、硬化膜の屈折率は1.6を大きく割り込んだ。一方、この濃度では、紫外線吸収剤のモル吸光係数が本発明で規定するモル吸光係数を有していない紫外線吸収剤を用いても、解像性、耐光性、透明性の問題は生じなかった。この結果から、本発明で用いられる紫外線吸収剤は、金属酸化物微粒子を相当量用いたときに初めて、その有用性を発揮することが分かる。
Example 4
A similar test was performed on the above dispersion composition A-1 by changing the concentration of the metal oxide fine particles to 40 mass%, 50 mass%, and 55 mass%, respectively. The refractive indexes of the cured films were 1.67, 1.73, and 1.75, respectively. It was also confirmed that each item showed good performance. On the other hand, when the concentration of the metal oxide fine particles was set to 10% by mass, the refractive index of the cured film greatly fell below 1.6. On the other hand, at this concentration, there was no problem of resolution, light resistance, and transparency even when using an ultraviolet absorber whose molar absorption coefficient does not have the molar absorption coefficient defined in the present invention. . From this result, it can be seen that the ultraviolet absorbent used in the present invention exhibits its usefulness only when a considerable amount of metal oxide fine particles is used.
(実施例5)
 上記試験101、123、124、201で調製したシロキサン樹脂組成物を、それぞれ用いて、シリコンウェハー上に塗布した。その後、プリベーク(100℃、2min)、ポストベーク(230℃、10min)を実施して膜厚1.1μmの塗布膜(レンズ材料1)を形成した(図1(1))。さらに、この上にFHi-4750([商品名]富士フイルムエレクトロニクスマテリアルズ(株)FFEM社製レジスト液)を乾燥膜厚1.5μmとなるよう塗布し、90℃で1分間、ホットプレートで加熱し、フォトレジスト膜4を形成した(図1(2))。このフォトレジスト膜4を、1辺1.4μm、パターン間ギャップが0.35μmの正方格子パターンを有するマスクを介してi線ステッパー(製品名:FPA-3000i5+、キャノン(株)製)により300mJ/cmで露光した。
 これをアルカリ性現像液HPRD-429E(富士フイルムエレクトロニクスマテリアルズ(株)製)を用いて、室温にて60秒間、パドル現像した後、さらに20秒間、純水を用いてスピンシャワーにてリンスを行った。その後更に、純水にて水洗を行い、その後、高速回転にて基板を乾燥させ、レジストパターン(パターン化されたフォトレジスト4a)を形成した(図1(3))。パターニングしたときの離間幅は238.7nmであった。145℃で120秒間、次いで、160℃で120秒間、さらに、175℃で120秒間、ホットプレートでポストベーク処理し、レジストをレンズ状の形状(半球状)に整形した(図1(4))。
 以上のようにして得られた基板を、ドライエッチング装置(日立ハイテクノロジーズ製:U-621)を使用し、下記条件にてドライエッチング処理を実施し、レンズアレイを形成した(図1(5))。レンズ体の高さは、380nmであった。
・RFパワー:800W
・アンテナバイアス:400W
・ウエハバイアス:400W
・チャンバー内圧:2Pa
・基板温度:50℃
・混合ガス種および流量:CF/C/Ar = 350/25/800ml/分・フォトレジストエッチングレート:140nm/分
(Example 5)
The siloxane resin compositions prepared in the above tests 101, 123, 124, and 201 were used and applied onto a silicon wafer. Thereafter, pre-baking (100 ° C., 2 min) and post-baking (230 ° C., 10 min) were performed to form a coating film (lens material 1) having a film thickness of 1.1 μm (FIG. 1 (1)). Further, FHi-4750 ([trade name] Fujifilm Electronics Materials Co., Ltd., FFEM resist solution) is applied on this to a dry film thickness of 1.5 μm, and heated on a hot plate at 90 ° C. for 1 minute. Then, a photoresist film 4 was formed (FIG. 1 (2)). This photoresist film 4 is 300 mJ / by an i-line stepper (product name: FPA-3000i5 +, manufactured by Canon Inc.) through a mask having a square lattice pattern with a side of 1.4 μm and a gap between patterns of 0.35 μm. It was exposed in cm 2.
This was subjected to paddle development for 60 seconds at room temperature using an alkaline developer HPRD-429E (manufactured by FUJIFILM Electronics Materials Co., Ltd.) and then rinsed with pure water for 20 seconds in a spin shower. It was. Thereafter, the substrate was further washed with pure water, and then the substrate was dried at a high speed to form a resist pattern (patterned photoresist 4a) (FIG. 1 (3)). The separation width when patterning was 238.7 nm. The resist was shaped into a lens shape (hemisphere) by post-baking with a hot plate at 145 ° C. for 120 seconds, then at 160 ° C. for 120 seconds, and further at 175 ° C. for 120 seconds (FIG. 1 (4)). .
The substrate obtained as described above was dry-etched using a dry etching apparatus (manufactured by Hitachi High-Technologies: U-621) under the following conditions to form a lens array (FIG. 1 (5)). ). The height of the lens body was 380 nm.
・ RF power: 800W
・ Antenna bias: 400W
・ Wafer bias: 400W
・ Inner chamber pressure: 2Pa
-Substrate temperature: 50 ° C
Mixed gas type and flow rate: CF 4 / C 4 F 6 / Ar = 350/25/800 ml / min Photoresist etching rate: 140 nm / min
 上記の各マイクロレンズアレイ試験体について諸特性を確認したところ、固体撮像素子への利用に適合した優れた性能を示すことを確認した。 When various characteristics were confirmed for each of the above-mentioned microlens array specimens, it was confirmed that the microlens array specimen exhibited excellent performance suitable for use in a solid-state imaging device.
 (符号の説明)
 1 レンズ材料(lens material)
 1a マイクロレンズ
 2 平坦化膜(leveling film)
 3 基材(substrate)
 4 フォトレジスト膜
 4a パターン化されたレジスト
 4b 半球状のレジスト
 10 マイクロレンズ アレイ
(1)塗布及び硬化工程(Coating and curing)
(2)i線感光材料の塗布工程(i-line photo resist Coating)
(3)パターニング及びソリグラフィー工程(Patterning by Litho.)
(4)加熱フロー工程(Thermal flow)
(5)ドライエッチング(Dry etching)
(Explanation of symbols)
1 Lens material
1a Microlens 2 Leveling film
3 Substrate
4 Photoresist film 4a Patterned resist 4b Hemispherical resist 10 Microlens array (1) Coating and curing process
(2) i-line photo resist coating process
(3) Patterning and solitography process (Patterning by Litho.)
(4) Thermal flow process
(5) Dry etching

Claims (18)

  1.  金属含有粒子と、シロキサン樹脂と重合開始剤と、紫外線吸収剤と、を含有するシロキサン樹脂組成物であって、上記金属含有粒子を組成物の固形成分中、40質量%以上80質量%以下で含有し、上記紫外線吸収剤の365nmにおけるモル吸光係数が5000mol-1・L・cm-1以上であり、400nmにおけるモル吸光係数が3500mol-1・L・cm-1以下であるシロキサン樹脂組成物。 A siloxane resin composition comprising metal-containing particles, a siloxane resin, a polymerization initiator, and an ultraviolet absorber, wherein the metal-containing particles are contained in a solid component of the composition at 40% by mass or more and 80% by mass or less. And a siloxane resin composition having a molar extinction coefficient at 365 nm of 5000 mol −1 · L · cm −1 or more and a molar extinction coefficient at 400 nm of 3500 mol −1 · L · cm −1 or less.
  2.  上記金属含有粒子を構成する元素として、Ti、Ta、W、Y、Ba、Hf、Zr、Sn、Nb、V、およびSiから選ばれる金属を含有する請求項1に記載のシロキサン樹脂組成物。 The siloxane resin composition according to claim 1, comprising a metal selected from Ti, Ta, W, Y, Ba, Hf, Zr, Sn, Nb, V, and Si as an element constituting the metal-containing particles.
  3.  上記金属含有粒子の屈折率が1.75以上2.90以下である請求項1または2に記載のシロキサン樹脂組成物。 The siloxane resin composition according to claim 1 or 2, wherein the metal-containing particles have a refractive index of 1.75 or more and 2.90 or less.
  4.  上記金属含有粒子の数平均粒径が3nm以上30nm以下である請求項1~3のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 3, wherein the metal-containing particles have a number average particle size of 3 nm or more and 30 nm or less.
  5.  上記シロキサン樹脂組成物を硬化させた硬化膜の屈折率が1.6以上2.0以下である請求項1~4のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 4, wherein the cured film obtained by curing the siloxane resin composition has a refractive index of 1.6 or more and 2.0 or less.
  6.  上記金属含有粒子を構成する元素として、TiとZrを含有し、Ti/Zrが3以上30以下である請求項1~5のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 5, wherein Ti and Zr are contained as elements constituting the metal-containing particles, and Ti / Zr is 3 or more and 30 or less.
  7.  紫外線硬化型の樹脂組成物である請求項1~6のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 6, wherein the siloxane resin composition is an ultraviolet curable resin composition.
  8.  さらに重合性化合物を含む請求項1~7のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 7, further comprising a polymerizable compound.
  9.  上記紫外線吸収剤が、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物、ジエン化合物、ベンゾジチオール、およびアボベンゾン化合物からなる群より選ばれる請求項1~8のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 8, wherein the ultraviolet absorber is selected from the group consisting of a benzotriazole compound, a benzophenone compound, a triazine compound, a diene compound, a benzodithiol, and an avobenzone compound.
  10.  上記重合開始剤が、有機ハロゲン化化合物、オキシジアゾール化合物、カルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシム化合物、オニウム塩化合物、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、アシルホスフィンオキシド化合物、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体化合物、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物、α-アミノアルキルフェノン化合物、および安息香酸エステル化合物からなる群より選ばれる請求項1~9のいずれか1項に記載のシロキサン樹脂組成物。 The polymerization initiator is an organic halogenated compound, oxydiazole compound, carbonyl compound, ketal compound, benzoin compound, acridine compound, organic peroxide compound, azo compound, coumarin compound, azide compound, metallocene compound, hexaarylbiimidazole compound Organic boric acid compounds, disulfonic acid compounds, oxime compounds, onium salt compounds, hydroxyacetophenone compounds, aminoacetophenone compounds, acylphosphine oxide compounds, trihalomethyltriazine compounds, benzyldimethyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds , Acylphosphine compound, phosphine oxide compound, metallocene compound, triallylimidazole dimer, onium compound, benzothiazole 2. A compound selected from the group consisting of a compound, a benzophenone compound, a cyclopentadiene-benzene-iron complex compound, a halomethyloxadiazole compound, a 3-aryl-substituted coumarin compound, an α-aminoalkylphenone compound, and a benzoate compound. The siloxane resin composition according to any one of 1 to 9.
  11.  上記シロキサン樹脂がアルコキシシラン化合物の加水分解縮合反応物である請求項1~10のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 10, wherein the siloxane resin is a hydrolysis condensation reaction product of an alkoxysilane compound.
  12.  上記金属含有粒子100質量部に対してシロキサン樹脂を1質量部以上60質量部以下で用いる請求項1~11のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 11, wherein the siloxane resin is used in an amount of 1 to 60 parts by mass with respect to 100 parts by mass of the metal-containing particles.
  13.  上記紫外線吸収剤を固形成分中、0.01質量%以上20質量%以下含有する請求項1~12のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 12, wherein the ultraviolet absorber is contained in a solid component in an amount of 0.01% by mass to 20% by mass.
  14.  上記シロキサン樹脂が上記金属含有粒子の存在下で加水分解縮合反応させて得たものである請求項1~13のいずれか1項に記載のシロキサン樹脂組成物。 The siloxane resin composition according to any one of claims 1 to 13, wherein the siloxane resin is obtained by a hydrolytic condensation reaction in the presence of the metal-containing particles.
  15.  請求項1~14のいずれか1項に記載のシロキサン樹脂組成物を硬化させてなる透明硬化物。 A transparent cured product obtained by curing the siloxane resin composition according to any one of claims 1 to 14.
  16.  請求項15に記載の透明硬化物からなる透明画素。 A transparent pixel comprising the transparent cured product according to claim 15.
  17.  請求項15に記載の透明硬化物からなるマイクロレンズ。 A microlens made of the transparent cured product according to claim 15.
  18.  請求項16に記載の透明画素、請求項17に記載のマイクロレンズ、またはこれらの両者を具備する固体撮像素子。 A solid-state imaging device comprising the transparent pixel according to claim 16, the microlens according to claim 17, or both of them.
PCT/JP2015/075604 2014-10-03 2015-09-09 Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element WO2016052113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020177008874A KR101913604B1 (en) 2014-10-03 2015-09-09 Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-205275 2014-10-03
JP2014205275 2014-10-03
JP2014-248286 2014-12-08
JP2014248286A JP6001041B2 (en) 2014-10-03 2014-12-08 Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same

Publications (1)

Publication Number Publication Date
WO2016052113A1 true WO2016052113A1 (en) 2016-04-07

Family

ID=55630156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075604 WO2016052113A1 (en) 2014-10-03 2015-09-09 Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element

Country Status (1)

Country Link
WO (1) WO2016052113A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119476A (en) * 2004-10-22 2006-05-11 Nippon Zeon Co Ltd Anti-reflection stack and optical member
JP2007246877A (en) * 2005-10-03 2007-09-27 Toray Ind Inc Siloxane-based resin composition, optical article and method for producing siloxane-based resin composition
JP2010031272A (en) * 2008-07-01 2010-02-12 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2010047746A (en) * 2008-07-01 2010-03-04 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2010059235A (en) * 2008-09-01 2010-03-18 Fujifilm Corp Ultraviolet absorbent composition
WO2014157296A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Photosensitive resin composition, cured film, image forming method, solid-state imaging element, color filter and ultraviolet absorbent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119476A (en) * 2004-10-22 2006-05-11 Nippon Zeon Co Ltd Anti-reflection stack and optical member
JP2007246877A (en) * 2005-10-03 2007-09-27 Toray Ind Inc Siloxane-based resin composition, optical article and method for producing siloxane-based resin composition
JP2010031272A (en) * 2008-07-01 2010-02-12 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2010047746A (en) * 2008-07-01 2010-03-04 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2010059235A (en) * 2008-09-01 2010-03-18 Fujifilm Corp Ultraviolet absorbent composition
WO2014157296A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Photosensitive resin composition, cured film, image forming method, solid-state imaging element, color filter and ultraviolet absorbent

Similar Documents

Publication Publication Date Title
JP6476211B2 (en) Light shielding film, infrared light cut filter with light shielding film, and solid-state imaging device
JP6893236B2 (en) Compositions, membranes, photosensors and dispersants
JP6744921B2 (en) Dispersion, composition, film, method for producing film and dispersant
JP6387110B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, solid-state imaging device, and microlens manufacturing method using the same
JP6701324B2 (en) Composition, film, cured film, optical sensor and method for manufacturing film
JP6001041B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
JP7127194B2 (en) Siloxane resin composition, microlens or transparent pixel using the same, solid-state imaging device
TW201609540A (en) Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module
WO2021044988A1 (en) Composition, film, structure, color filter, solid-state imaging element, and image display device
JP5799182B1 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
JP6298175B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
WO2017158914A1 (en) Composition, film, cured film, optical sensor and method for producing film
JP6013422B2 (en) Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
WO2016052113A1 (en) Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element
WO2021044987A1 (en) Composition, film, structure, color filter, solid-state image sensor, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008874

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846633

Country of ref document: EP

Kind code of ref document: A1