WO2016051718A1 - Low-reflection coating, glass sheet equipped with low-reflection coating, glass sheet having low-reflection coating, glass substrate, and photoelectric conversion device - Google Patents

Low-reflection coating, glass sheet equipped with low-reflection coating, glass sheet having low-reflection coating, glass substrate, and photoelectric conversion device Download PDF

Info

Publication number
WO2016051718A1
WO2016051718A1 PCT/JP2015/004782 JP2015004782W WO2016051718A1 WO 2016051718 A1 WO2016051718 A1 WO 2016051718A1 JP 2015004782 W JP2015004782 W JP 2015004782W WO 2016051718 A1 WO2016051718 A1 WO 2016051718A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection coating
low
fine particles
low reflection
silica fine
Prior art date
Application number
PCT/JP2015/004782
Other languages
French (fr)
Japanese (ja)
Inventor
瑞穂 小用
竜一 田代
河津 光宏
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2016551515A priority Critical patent/JP6487933B2/en
Publication of WO2016051718A1 publication Critical patent/WO2016051718A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a low reflection coating, a glass plate with a low reflection coating, a glass plate having a low reflection coating, a glass substrate, and a photoelectric conversion device.
  • a low reflection coating is formed on the surface of a substrate such as glass or ceramic in order to transmit more light or prevent glare due to reflection for the purpose of improving the function of the substrate.
  • Low reflection coating is used for glass for vehicle, show window or glass plate used for photoelectric conversion device.
  • a so-called thin film type solar cell which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back surface thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially laminated, but a low reflection coating is laminated. It is formed on the main surface opposite to the main plane, that is, the main surface on the side where sunlight enters. Thus, in the solar cell in which the low reflection coating is formed on the sunlight incident side, more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
  • the most commonly used low-reflection coating is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD), etc., but a fine particle-containing film containing fine particles such as silica fine particles should be used as the low-reflection coating.
  • the fine particle-containing film is formed by applying a coating liquid containing fine particles on a transparent substrate by dipping, flow coating, spraying, or the like.
  • Patent Document 1 a coating liquid containing fine particles and a binder precursor is applied to a glass plate having surface irregularities by a spray method, dried at 400 ° C. and then 610 ° C. 8
  • a cover glass for a photoelectric conversion device obtained through a baking process for a minute is disclosed.
  • the low reflection coating applied to the cover glass can improve the average transmittance of light having a wavelength of 380 to 1100 nm by at least 2.37%.
  • Patent Document 2 a sol containing tetraethoxysilane, aluminum acetylacetonate, and colloidal silica is attached to a glass plate by a dip coating method, and heat treatment is performed at 680 ° C. for 180 seconds.
  • a glass substrate coated therewith is disclosed.
  • the low reflection coating applied to the glass substrate can improve the average transmittance of light having a wavelength of 300 to 1100 nm by 2.5%.
  • Patent Document 3 includes colloidal silica having a dispersion particle size larger than the average primary particle size and a shape factor and an aspect ratio of more than 1 to some extent, tetraalkoxysilane, and aluminum nitrate.
  • a coating-coated silicon substrate obtained by applying a coating composition containing the coating composition on a silicon substrate using a spin coater and performing a drying process at 100 ° C. for 1 minute is disclosed. Although there is no description about the improvement of the average light transmittance by this film, this film has a refractive index of 1.40 or less.
  • the transmittance gain is an increase in transmittance by applying a low-reflection coating with respect to transmittance, for example, average transmittance in a predetermined wavelength range. Specifically, it is determined as a value obtained by subtracting the transmittance before applying the coating from the transmittance when the coating is applied to the substrate.
  • a photoelectric conversion device when manufacturing a photoelectric conversion device using a glass plate, a photoelectric conversion device is manufactured by using a glass plate that has been previously coated with a low reflection coating.
  • the applied low reflection coating may be unintentionally damaged or soiled in the manufacturing process of the photoelectric conversion device, or the low reflection characteristics may be deteriorated.
  • the present invention provides a low-reflection coating having a high transmittance gain, a low-reflection coating excellent in wear resistance, and a photoelectric conversion device using a glass plate not provided with the low-reflection coating. Is suitable for being applied to the surface on which light is incident on the photoelectric conversion device, and provides a low reflection coating having the above characteristics (high transmittance gain and / or excellent wear resistance). Objective.
  • the present invention provides a low reflection coating that can be suitably applied to at least one of the main surfaces of a substrate.
  • the low reflection coating is a film in which solid spherical silica fine particles are fixed by a binder mainly composed of a metal oxide,
  • the silica fine particles include silica fine particles having an average particle diameter of 200 to 600 nm,
  • the binder includes silica as a metal oxide,
  • a low-reflection coating characterized in that a transmittance gain obtained by applying the low-reflection coating to a substrate is 1.5% or more.
  • the transmittance gain is an increase in the average transmittance of the substrate having the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating, with respect to the average transmittance in the wavelength region of 380 to 850 nm.
  • the low reflection coating of the present invention includes solid silica fine particles having an average particle diameter in a predetermined range and a binder mainly composed of a metal oxide, by applying the low reflection coating of the present invention to a substrate.
  • the obtained transmittance gain is 1.5% or more.
  • the low reflection coating of the present invention contains silica fine particles having an average particle size of 200 to 600 nm, the low reflection coating of the present invention has excellent wear resistance and / or high transmittance gain.
  • the first aspect of the low reflection coating of the present invention comprises a porous film in which solid spherical silica fine particles are fixed by a binder mainly composed of a metal oxide.
  • the binder may further contain an aluminum compound, and the metal oxide as the main component is preferably silica.
  • the “main component” means a component that is contained most on a mass basis.
  • the silica fine particles fixed by the binder include silica fine particles having an average particle size of 200 to 600 nm and silica fine particles having an average particle size of 80 to 150 nm, both of which are substantially spherical primary particles.
  • the silica fine particles fixed by the binder are preferably composed of silica fine particles having an average particle diameter in the two ranges. Since silica has a higher hardness than organic polymer materials and a relatively low refractive index, the apparent refractive index of a porous film composed of a binder and silica fine particles can be reduced.
  • primary particles made of silica and having a uniform particle size are produced at a low cost on a commercial scale, and are excellent in quantity, quality, and cost availability.
  • the “average particle size” is determined by observing a cross section of the low reflection coating using a scanning electron microscope SEM. Specifically, for any 50 particles that can observe the entire particle, the maximum diameter and the minimum diameter are measured, and the average value is used as the particle diameter of each particle. The average value of the particle diameters of the 50 particles is expressed as “ Determined as "average particle size”.
  • the silica fine particles having an average particle diameter of 200 to 600 nm are preferably 2 to 30 parts by mass with respect to 100 parts by mass of the total amount of silica fine particles fixed by the binder.
  • the silica fine particles having an average particle diameter of 200 to 600 nm are in the above-mentioned range, the low reflection coating has both a high transmittance gain of 1.5% or more and a high wear resistance.
  • the amount is less than 2 parts by mass, the wear resistance is deteriorated, and when the amount exceeds 30 parts by mass, the transmittance gain is decreased.
  • the aluminum compound preferably contained in the binder is preferably derived from a water-soluble inorganic aluminum compound added to a coating solution for forming a low reflection coating, and more preferably derived from aluminum halide or aluminum nitrate.
  • the preferred aluminum halide is aluminum chloride.
  • the content of the aluminum compound in the low reflection coating is 2 to 7% by mass, preferably 5 to 7% by mass, when the aluminum compound is converted to Al 2 O 3 .
  • the content of silica fine particles in the low reflection coating is 55 to 75% by mass, preferably 60 to 70% by mass, and the silica content in the binder is 25 to 45% by mass, and 30 to 40% by mass. % Is preferred.
  • the content ratio of the silica fine particles in the low reflection coating and the silica in the binder is in the range of 80:20 to 30:70, preferably in the range of 70:30 to 60:40, expressed as a mass ratio.
  • This content ratio can increase the reflectance gain of the low-reflection coating as the content ratio of the silica fine particles increases. This is because gaps between the silica fine particles and between the silica fine particles and the transparent substrate become large.
  • the content ratio of the silica fine particles is larger than the limit, the durability of the low reflective film coating is lowered.
  • silica in the binder has a function of adhering between the silica fine particles or between the silica fine particles and the transparent substrate, but if the content ratio of the silica fine particles is too large, the effect becomes poor. On the other hand, when the content ratio of the silica fine particles is smaller than the limit, the above-mentioned voids are too small, and the reflectance gain of the low reflection coating is lowered.
  • the transmittance gain obtained by applying the low reflection coating to the substrate may be 1.5% or more, preferably 2.5% or more. it can.
  • the second aspect of the low reflection coating of the present invention comprises a film in which solid spherical silica fine particles are fixed by a binder containing silica as a main component.
  • the silica fine particles fixed by the binder are composed of silica fine particles having an average particle diameter of 200 to 600 nm. Since silica has a higher hardness than organic polymer materials and a relatively low refractive index, the apparent refractive index of the porous layer composed of the binder and the silica fine particles can be further reduced.
  • primary particles made of silica and having a uniform particle size are produced at a low cost on a commercial scale, and are excellent in quantity, quality, and cost availability.
  • the binder may consist essentially of silica.
  • the term “substantially composed of silica” means that a small amount of components other than silica in the binder is allowed as long as the effect to be obtained by the present invention is not impaired. To do.
  • the silica content in the binder is 99% or more, preferably 99.5% or more, and more preferably 99.9% or more.
  • the content of silica fine particles in the low reflection coating is 55 to 70% by mass, preferably 60 to 70% by mass, and the silica content in the binder is 30 to 45% by mass, and 30 to 40% by mass. % Is preferred.
  • the content ratio of the silica fine particles in the low reflection coating and the silica in the binder is in the range of 75:25 to 30:70, preferably in the range of 70:30 to 60:40, expressed as a mass ratio.
  • This content ratio can increase the reflectance gain of the low-reflection coating as the content ratio of the silica fine particles increases. This is because gaps between the silica fine particles and between the silica fine particles and the transparent substrate become large.
  • the content ratio of the silica fine particles is larger than the limit, the durability of the low reflection coating is lowered.
  • silica in the binder has a function of adhering between the silica fine particles or between the silica fine particles and the transparent substrate, but if the content ratio of the silica fine particles is too large, the effect becomes poor. On the other hand, when the content ratio of the silica fine particles is smaller than the limit, the above-mentioned voids are too small, and the reflectance gain of the low reflection coating is lowered.
  • the transmittance gain obtained by applying the low reflection coating to the substrate may be 1.5% or more, preferably 2.5% or more.
  • high wear resistance can be obtained.
  • a third aspect of the low-reflection coating of the present invention is a film in which solid spherical silica fine particles are fixed by a binder having a refractive index of 1.5 to 1.8 at a wavelength of 550 nm. It consists of silica fine particles having an average particle diameter of 200 to 600 nm.
  • the binder contains silica as a main component.
  • the binder further includes a high refractive index component.
  • the silica fine particles are arranged on the main plane, and the binder has a diameter (average particle size) of the silica fine particles from the main plane. It exists between the main plane and the silica fine particles at a thickness of 30% to 70% of the diameter.
  • the thickness of the binder is less than 30%, the wear resistance deteriorates and the transmittance gain decreases, and when it exceeds 70%, the transmittance gain decreases rapidly.
  • Silica as fine particles has a higher hardness than organic polymer materials and a relatively low refractive index, so that the apparent refractive index of a porous layer made of a binder and silica fine particles can be reduced.
  • primary particles made of silica and having a uniform particle size are produced at a low cost on a commercial scale, and are excellent in quantity, quality, and cost availability.
  • the high refractive index component contained in the binder is preferably a compound of one or more metals selected from the group consisting of titanium, zirconium, niobium, zinc, chromium, aluminum, cadmium, strontium, yttrium, europium, and lanthanum. More preferably, they are titanium oxide, zirconium oxide, or aluminum oxide.
  • the transmittance gain obtained by applying the low reflection coating to the substrate may be 1.5% or more, preferably 2.5% or more. it can.
  • a hydrolyzable silicon compound typified by silicon alkoxide can be used as a silica source in the binder.
  • the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
  • These hydrolyzable silicon compounds may be made into binders by hydrolysis and condensation polymerization by a so-called sol-gel method.
  • the silica in the binder is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming a low reflection coating.
  • the hydrolyzable silicon compound includes, for example, a compound represented by the following formula (I).
  • X is at least one selected from an alkoxyl group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
  • the hydrolyzable silicon compound added to the coating solution is preferably tetraalkoxysilane.
  • Hydrolysis of the hydrolyzable silicon compound can be carried out as appropriate, but is preferably carried out in a solution containing silica fine particles.
  • it is preferable to prepare a coating liquid by sequentially adding a hydrolysis catalyst and silicon alkoxide while stirring a solution containing silica fine particles.
  • an acid and a base can be used for a hydrolysis catalyst, it is preferable to use an acid, especially an inorganic acid, and it is more preferable to use hydrochloric acid. This is because the acidity is better than the basicity, and the dispersibility of the silica fine particles is better and the stability of the coating liquid is also better. Furthermore, chlorine ions derived from hydrochloric acid increase the concentration of chlorine ions in the coating solution, and thus promote the effect brought about by the aluminum chloride added to the coating solution described above.
  • the low reflection coating of the present invention can be formed by applying a coating liquid, drying and curing.
  • a method for supplying these coating solutions any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, etc. can be used, but spray coating is excellent in terms of mass productivity, Roll coating and bar coating are more suitable in terms of homogeneity of the appearance of the coating film in addition to mass production.
  • the maximum temperature experienced by the substrate is 350 ° C. or less, and the time that the substrate is at a temperature of 200 ° C. or more is 5 minutes or less. .
  • the maximum temperature experienced by the substrate is 250 ° C. or lower, and the time during which the substrate is at a temperature of 100 ° C. or higher is 2 Is less than a minute.
  • the substrate to which the low reflection coating according to the first aspect, the second aspect, or the third aspect of the present invention can be suitably applied may be an uncoated glass plate.
  • a photoelectric conversion device can be provided using this glass plate.
  • the main plane of the glass plate on which the low reflection coating is formed is the main surface on which light is incident.
  • the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
  • the arithmetic average roughness Ra is a value defined in JIS (Japanese Industrial Standards) B0601-1994.
  • the glass plate may be a template glass having irregularities on the surface thereof, and the average interval Sm of the irregularities is 0.3 mm or more and 2.5 mm or less, further 0.3 mm or more, particularly 0.4 mm or more, especially It is preferably 0.45 mm or more, 2.5 mm or less, more preferably 2.1 mm or less, particularly 2.0 mm or less, and particularly preferably 1.5 mm or less.
  • the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
  • the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
  • the average interval Sm and the maximum height Ry are values defined in JIS (Japanese Industrial Standards) B0601-1994.
  • a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
  • the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
  • the substrate to which the low reflection coating of the first aspect, the second aspect, or the third aspect of the present invention can be suitably applied may be a glass substrate with a transparent conductive film.
  • This glass substrate with a transparent conductive film has, for example, a transparent conductive film on one main plane (a main plane opposite to the main plane on which the low-reflective coating is to be formed) of any of the glass plates described above.
  • one or more underlayers, for example, a transparent conductive layer mainly composed of fluorine-doped tin oxide may be laminated in order on the main plane of the glass plate.
  • a photoelectric conversion device using this glass substrate can be provided.
  • the main plane of the glass plate on which the low reflection coating is formed is the main surface on which light is incident.
  • the transmittance curve (transmission spectrum) of the substrate before and after the formation of the low reflection coating was measured.
  • the average transmittance was calculated by averaging the transmittance at a wavelength of 380 to 850 nm.
  • the increment of the average transmittance of the substrate with the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating was defined as the transmittance gain.
  • a reciprocating wear test was performed on the substrate on which the low-reflection coating according to each example was formed and the substrate according to Comparative Example 1 using a reciprocating wear tester manufactured by Daiei Kagaku Seiki Seisakusho.
  • the substrate on which the low reflection coating according to each Example was formed and the substrate according to Comparative Example 1 were fixed with a jig.
  • the substrate on which the low reflection coating was formed with the low reflection coating side facing upward was fixed with a jig.
  • a circular surface of a disc-shaped wear piece CS-10F having a diameter of 19 mm was brought into contact with the surface of the low reflection coating or the substrate, and a load of 4N was applied.
  • the contact area between the wearer CS-10F and the surface of the low reflection coating or the substrate was 284 mm 2 .
  • the wearer CS-10F was reciprocated linearly 50 times with respect to the surface of the low reflection coating or the substrate.
  • the speed of the wearer at this time was set to 120 mm / second, and the stroke width of the wearer was set to 120 mm.
  • the peeling state of the low reflection coating was visually confirmed, and the case where there was no peeling of the low reflection coating was evaluated as “ ⁇ ”.
  • the low reflection coating according to each example and comparative example was observed using a field emission scanning electron microscope (FE-SEM) (manufactured by Hitachi, Ltd., model: S-4500). From the FE-SEM photograph of the cross section of the low-reflection coating obliquely from 30 ° above, the average value of the thickness of the low-reflection coating at five measurement points was calculated as the film thickness (average film thickness) of the low-reflection coating.
  • FE-SEM field emission scanning electron microscope
  • Example 1 ⁇ Preparation of coating solution> Silica fine particle dispersion (Quarton PL-7, substantially spherical primary particles having an average particle diameter of 125 nm, solid content concentration 23 wt%, manufactured by Fuso Chemical Industry Co., Ltd.) 55.1 parts by mass, silica fine particle dispersion (Quarton PL-20) Approximately spherical primary particles having an average particle size of 220 to 370 nm, solid content concentration of 20% by weight, manufactured by Fuso Chemical Co., Ltd.) 1.6 parts by mass, 1-methoxy-2-propanol (solvent) 18.0 parts by mass, 1 part by mass of 1N hydrochloric acid (hydrolysis catalyst) is stirred and mixed, and further, 24.3 parts by mass of tetraethoxysilane (ethyl orthosilicate, manufactured by Tama Chemical Co., Ltd.) is added while stirring, and the temperature is kept at 40 ° C.
  • tetraethoxysilane e
  • stock A the mass obtained by converting the silica fine particles to the SiO 2
  • the ratio of the mass obtained by converting the silicon oxide component contained in the binder SiO 2 is 65: A 35, average particle size 200 to silica particles per 100 parts by weight
  • the silica fine particle of ⁇ 500 nm was 2.5 parts by mass.
  • coating liquid A1 60.0 g of the above-mentioned stock solution A, 3.0 g of propylene glycol (solvent), 84.2 g of 1-methoxy-2-propanol (solvent), aluminum chloride aqueous solution (concentration 47.6% by weight as AlCl 3.
  • coating liquid A1 the solid content concentration of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 is 8.0% by weight, and silicon oxide converted to SiO 2 is 100 parts by mass.
  • the aluminum compound converted to Al 2 O 3 was 5 parts by mass.
  • Example 1 the low reflective coating was formed in the main surface in which the transparent conductive film is not formed by using the glass plate with a transparent conductive film as a substrate.
  • This glass plate is composed of a normal soda lime silicate composition, and a transparent conductive film including a transparent conductive layer is formed on one main plane using an on-line CVD method. It was a glass plate. This glass plate is cut into a size of 200 mm ⁇ 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), washed with an ultrasonic cleaner, washed with deionized water, and then at room temperature. A glass plate for drying to form a low reflection coating was obtained. When the transmission characteristics of the substrate before applying the low-reflection coating were evaluated as described above, the average transmittance was 80.0%.
  • Example 1 the coating liquid A1 was applied to the main surface of the glass plate on which the transparent conductive film was not applied, using a roll coater. At this time, the film thickness of the coating solution was adjusted to 1 to 5 ⁇ m. Next, the coating liquid applied to the glass plate was dried with hot air and cured. This hot air drying uses a belt-conveying hot-air drying device, the hot air set temperature is 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was done by reciprocating the plate twice and passing under the nozzle four times.
  • the time during which the glass plate coated with the coating solution was in contact with hot air was 140 seconds, and the maximum temperature reached on the glass surface coated with the coating solution of the glass plate was 199 ° C.
  • the glass plate after drying and curing was allowed to cool to room temperature, and a low reflection coating was applied to the glass plate.
  • Example 2 ⁇ Preparation of coating solution> Silica fine particle dispersion (KE-W30, substantially spherical primary particles having an average particle diameter of 300 nm, solid concentration 20.5% by weight, manufactured by Nippon Shokubai Co., Ltd.) 63.4 parts by mass, 1-methoxy-2-propanol (solvent ) 11.3 parts by mass, 1.0 part by mass of 1N hydrochloric acid (hydrolysis catalyst) was stirred and mixed, and 24.3 parts by mass of tetraethoxysilane (same as that used in Example 1) was added while stirring. Then, the mixture was stirred for 8 hours while keeping the temperature at 40 ° C.
  • KE-W30 substantially spherical primary particles having an average particle diameter of 300 nm, solid concentration 20.5% by weight, manufactured by Nippon Shokubai Co., Ltd.
  • the ratio of the mass of silica fine particles converted to SiO 2 to the mass of silicon oxide components contained in the binder converted to SiO 2 was 65:35.
  • the above-mentioned stock solution B102.0 g and propylene glycol (solvent) 48.0 g were mixed with stirring to obtain a coating solution B1.
  • the solid content concentration obtained by converting silicon oxide (derived from silica fine particles and tetraalkoxysilane) into SiO 2 was 13.6% by weight.
  • Example 2 ⁇ Formation of low reflection film>
  • the low reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid B1 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 3 ⁇ Preparation of coating solution> Silica fine particle dispersion (Quatron PL-20, substantially spherical primary particles having an average particle size of 220 to 370 nm, the same as that used in Example 1) 71.2 parts by mass, 1-methoxy-2-propanol (solvent) 7 .8 parts by mass, 1.0 part by mass of 1N hydrochloric acid (hydrolysis catalyst) was mixed by stirring, and further 20.0 parts by mass of tetraethoxysilane (same as that used in Example 1) was added while stirring. Subsequently, the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a stock solution C. In Stock Solution C, the ratio of the mass of silica fine particles converted to SiO 2 to the mass of silicon oxide components contained in the binder converted to SiO 2 was 71.2: 28.8.
  • the mass ratio of the solid content concentration obtained by converting silicon oxide (derived from tetraalkoxysilane) into SiO 2 in the binder and the solid content concentration obtained by converting titanium oxide into TiO 2 was 75:25.
  • the refractive index of this binder at a wavelength of 550 nm was 1.6.
  • Example 3 ⁇ Formation of low reflection film>
  • a low-reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid C1 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Comparative Example 1 As Comparative Example 1, the same glass plate with a transparent conductive film as used in Examples 1 to 3 was used as the substrate, and the main plane on which the transparent conductive film was not formed was not subjected to the low reflection coating. Using. Prior to evaluation, it was washed and dried in the same manner as in Examples 1 to 3.
  • the low-reflective coating only by curing with hot air drying has a high transmittance gain of 1.5% or more and excellent wear resistance equivalent to the glass substrate surface before coating. I was able to get it.
  • a low-reflection coating exhibiting a high transmittance gain and / or excellent wear resistance, and preferably having a low-reflection property having such excellent characteristics even when the curing temperature is low.
  • a coating can be provided.

Abstract

 This low-reflection coating can be suitably applied to at least one main surface of a substrate. This low-reflection coating is a film obtained by using a binder having a metal oxide as a main component thereof to immobilize solid spherical silica microparticles. Said silica microparticles include silica microparticles having an average particle size of 200-600 nm. Said binder includes silica as a metal oxide. The transmittance gain obtained by applying the low-reflection coating to a substrate is 1.5% or more. The transmittance gain relates to the average transmittance in the wavelength region of 380-850 nm, and is the amount of increase in the average transmittance of the substrate after the low-reflection coating has been applied thereto with respect to the average transmittance of the substrate before the low-reflection coating has been applied thereto.

Description

低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、および光電変換装置Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, and photoelectric conversion device
 本発明は、低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、および光電変換装置に関する。 The present invention relates to a low reflection coating, a glass plate with a low reflection coating, a glass plate having a low reflection coating, a glass substrate, and a photoelectric conversion device.
 ガラス、セラミックなどの基材の表面には、その基材の用途における機能改善を目的として、光をより多く透過させるため、または反射による眩惑を防止するために、低反射コーティングが形成される。 A low reflection coating is formed on the surface of a substrate such as glass or ceramic in order to transmit more light or prevent glare due to reflection for the purpose of improving the function of the substrate.
 低反射コーティングは、車両用ガラス、ショーウィンドウまたは光電変換装置に用いるガラス板などに利用される。光電変換装置の一種であるいわゆる薄膜型太陽電池では、下地膜、透明導電膜、アモルファスシリコンなどからなる光電変換層および裏面薄膜電極を順次積層したガラス板を用いるが、低反射コーティングはこれら積層した主平面とは対向する主表面、つまり太陽光が入射する側の主表面に形成される。このように太陽光の入射側に低反射コーティングが形成された太陽電池では、より多くの太陽光が光電変換層または太陽電池素子に導かれ、その発電量が向上することになる。 低 Low reflection coating is used for glass for vehicle, show window or glass plate used for photoelectric conversion device. A so-called thin film type solar cell, which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back surface thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially laminated, but a low reflection coating is laminated. It is formed on the main surface opposite to the main plane, that is, the main surface on the side where sunlight enters. Thus, in the solar cell in which the low reflection coating is formed on the sunlight incident side, more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
 最もよく用いられる低反射コーティングは、真空蒸着法、スパッタリング法、化学蒸着法(CVD法)などによる誘電体膜であるが、シリカ微粒子などの微粒子を含む微粒子含有膜が低反射コーティングとして用いられることもある。微粒子含有膜は、微粒子を含むコーティング液を、ディッピング法、フローコート法、スプレー法などによって透明基体上に塗布することにより成膜される。 The most commonly used low-reflection coating is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD), etc., but a fine particle-containing film containing fine particles such as silica fine particles should be used as the low-reflection coating. There is also. The fine particle-containing film is formed by applying a coating liquid containing fine particles on a transparent substrate by dipping, flow coating, spraying, or the like.
 例えば、特開2014-032248号公報(特許文献1)には、表面凹凸を有するガラス板に、微粒子とバインダ前駆体とを含むコーティング液をスプレー法により塗布し、400℃で乾燥後610℃8分間の焼成工程を経て得られた光電変換装置用カバーガラスが開示されている。このカバーガラスに施された低反射コーティングによって、波長380~1100nmの光の平均透過率を少なくとも2.37%向上させることができる。 For example, in Japanese Patent Laid-Open No. 2014-032248 (Patent Document 1), a coating liquid containing fine particles and a binder precursor is applied to a glass plate having surface irregularities by a spray method, dried at 400 ° C. and then 610 ° C. 8 A cover glass for a photoelectric conversion device obtained through a baking process for a minute is disclosed. The low reflection coating applied to the cover glass can improve the average transmittance of light having a wavelength of 380 to 1100 nm by at least 2.37%.
 さらに、特表2013-537873号公報(特許文献2)には、テトラエトキシシラン、アルミニウムアセチルアセトネート、コロイドシリカを含むゾルを浸漬被覆法によりガラス板に付着させ、680℃180秒間の熱処理を行なうことで被覆されたガラス基板が開示されている。このガラス基板に施された低反射コーティングによって、波長300~1100nmの光の平均透過率を2.5%向上させることができる。 Further, in Japanese translations of PCT publication No. 2013-537873 (Patent Document 2), a sol containing tetraethoxysilane, aluminum acetylacetonate, and colloidal silica is attached to a glass plate by a dip coating method, and heat treatment is performed at 680 ° C. for 180 seconds. A glass substrate coated therewith is disclosed. The low reflection coating applied to the glass substrate can improve the average transmittance of light having a wavelength of 300 to 1100 nm by 2.5%.
 また、特開2014-015543号公報(特許文献3)には、平均一次粒子径より分散粒子径が大きく、形状係数とアスペクト比が1よりある程度以上大きいコロイダルシリカと、テトラアルコキシシラン、硝酸アルミニウムを含むコーティング組成物を、スピンコーターを用いてシリコン基板上に塗布し、100℃1分間の乾燥工程を経て得られた被膜付きシリコン基板が開示されている。この被膜による光の平均透過率の向上については記載がないが、この被膜は1.40以下の屈折率を有する。 Japanese Patent Application Laid-Open No. 2014-015543 (Patent Document 3) includes colloidal silica having a dispersion particle size larger than the average primary particle size and a shape factor and an aspect ratio of more than 1 to some extent, tetraalkoxysilane, and aluminum nitrate. A coating-coated silicon substrate obtained by applying a coating composition containing the coating composition on a silicon substrate using a spin coater and performing a drying process at 100 ° C. for 1 minute is disclosed. Although there is no description about the improvement of the average light transmittance by this film, this film has a refractive index of 1.40 or less.
特開2014-032248号公報JP 2014-032248 A 特表2013-537873号公報JP 2013-537873 A 特開2014-015543号公報JP 2014-015543 A
 ところで、低反射コーティングの効果について、透過率ゲインと呼ばれる性能が重要である。透過率ゲインとは、透過率、例えば所定の波長範囲の平均透過率に関し、低反射コーティングを施すことによる透過率の増分のことである。具体的には、基板に該コーティングを施した際の透過率から、該コーティングを施す前のそれを差し引いた値として求める。 By the way, with respect to the effect of the low-reflection coating, a performance called transmittance gain is important. The transmittance gain is an increase in transmittance by applying a low-reflection coating with respect to transmittance, for example, average transmittance in a predetermined wavelength range. Specifically, it is determined as a value obtained by subtracting the transmittance before applying the coating from the transmittance when the coating is applied to the substrate.
 たとえば、光電変換装置にガラス板が用いられ、その光入射側表面に低反射コーティングが施される場合、透過率ゲインが高いほど、そのガラス板を透過する光線量が増加し、光電変換装置の効率が向上する。 For example, when a glass plate is used for a photoelectric conversion device and a low reflection coating is applied to the light incident side surface, the higher the transmittance gain is, the more light is transmitted through the glass plate. Efficiency is improved.
 一方、ガラス板を用いた光電変換装置を製造する際、ガラス板にあらかじめ低反射コーティングを施したものを用いて光電変換装置を製造することが行われている。しかし、この方法では、施された低反射コーティングが、光電変換装置の製造工程において意図せず破損又は汚損したり、低反射特性が劣化したりする可能性がある。 On the other hand, when manufacturing a photoelectric conversion device using a glass plate, a photoelectric conversion device is manufactured by using a glass plate that has been previously coated with a low reflection coating. However, in this method, the applied low reflection coating may be unintentionally damaged or soiled in the manufacturing process of the photoelectric conversion device, or the low reflection characteristics may be deteriorated.
 本発明は、かかる事情に鑑み、透過率ゲインの高い低反射コーティング、および耐摩耗性に優れた低反射コーティングを提供すること、ならびに、低反射コーティングを施していないガラス板をもちいて光電変換装置を製造した後、その光電変換装置への光が入射する表面に施すのに適し、上記の特性(高い透過率ゲインおよび/または優れた耐摩耗性)を備えた低反射コーティングを提供することを目的とする。 In view of such circumstances, the present invention provides a low-reflection coating having a high transmittance gain, a low-reflection coating excellent in wear resistance, and a photoelectric conversion device using a glass plate not provided with the low-reflection coating. Is suitable for being applied to the surface on which light is incident on the photoelectric conversion device, and provides a low reflection coating having the above characteristics (high transmittance gain and / or excellent wear resistance). Objective.
 本発明は、基板の主表面の少なくとも片方に好適に施され得る低反射コーティングにおいて、
 前記低反射コーティングは、中実な球状のシリカ微粒子が、金属酸化物を主成分とするバインダによって固定されてなる膜であって、
 前記シリカ微粒子として、平均粒径が200~600nmであるシリカ微粒子を含み、
 前記バインダは、金属酸化物としてシリカを含み、
 前記低反射コーティングを基板に施すことにより得られる透過率ゲインが1.5%以上であることを特徴とする低反射コーティングを提供する。
 ここで、透過率ゲインは、波長域380~850nmにおける平均透過率に関し、前記低反射コーティングを施す前の前記基板の平均透過率に対する、前記低反射コーティングを施した前記基板の平均透過率の増分、として定義される。
The present invention provides a low reflection coating that can be suitably applied to at least one of the main surfaces of a substrate.
The low reflection coating is a film in which solid spherical silica fine particles are fixed by a binder mainly composed of a metal oxide,
The silica fine particles include silica fine particles having an average particle diameter of 200 to 600 nm,
The binder includes silica as a metal oxide,
Provided is a low-reflection coating characterized in that a transmittance gain obtained by applying the low-reflection coating to a substrate is 1.5% or more.
Here, the transmittance gain is an increase in the average transmittance of the substrate having the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating, with respect to the average transmittance in the wavelength region of 380 to 850 nm. , Defined as
 本発明の低反射コーティングは、所定の範囲の平均粒径を有する中実なシリカ微粒子と、金属酸化物を主成分とするバインダとを含むので、本発明の低反射コーティングを基板に施すことにより得られる透過率ゲインが1.5%以上である。さらに、本発明の低反射コーティングは、平均粒径が200~600nmのシリカ微粒子を含むので、本発明の低反射コーティングは、耐摩耗性に優れ、および/または高い透過率ゲインが得られる。 Since the low reflection coating of the present invention includes solid silica fine particles having an average particle diameter in a predetermined range and a binder mainly composed of a metal oxide, by applying the low reflection coating of the present invention to a substrate. The obtained transmittance gain is 1.5% or more. Furthermore, since the low reflection coating of the present invention contains silica fine particles having an average particle size of 200 to 600 nm, the low reflection coating of the present invention has excellent wear resistance and / or high transmittance gain.
 (第1の様態)
 本発明の低反射コーティングの第1の様態は、中実な球状のシリカ微粒子が、金属酸化物を主成分とするバインダによって固定されてなる多孔質膜からなる。バインダはアルミニウム化合物をさらに含んでもよく、主成分である金属酸化物は好ましくはシリカである。なお、本明細書において、「主成分」とは質量基準で最も多く含まれる成分を意味する。
(First mode)
The first aspect of the low reflection coating of the present invention comprises a porous film in which solid spherical silica fine particles are fixed by a binder mainly composed of a metal oxide. The binder may further contain an aluminum compound, and the metal oxide as the main component is preferably silica. In the present specification, the “main component” means a component that is contained most on a mass basis.
 バインダによって固定されているシリカ微粒子は、平均粒径が200~600nmであるシリカ微粒子と、平均粒径が80~150nmであるシリカ微粒子とを含み、いずれも略球状の一次粒子である。バインダによって固定されているシリカ微粒子は、好ましくは当該2つの範囲の平均粒径のシリカ微粒子からなる。シリカは有機ポリマ材料より硬度が高く、屈折率が比較的低いため、バインダとシリカ微粒子からなる多孔質膜の見かけの屈折率を低減することができる。さらに、シリカからなる略球形で粒径がよく揃った一次粒子は、商業的スケールで低コストで生産されており、量、質、及びコスト的な入手性に優れる。本明細書において、「平均粒径」とは、走査型電子顕微鏡SEMを用いて低反射コーティンの断面を観察することによって求められる。具体的に、粒子の全体を観察できる任意の50個の粒子についてその最大径及び最小径を測定してその平均値を各粒子の粒径とし、50個の粒子の粒径の平均値を「平均粒径」と決定する。 The silica fine particles fixed by the binder include silica fine particles having an average particle size of 200 to 600 nm and silica fine particles having an average particle size of 80 to 150 nm, both of which are substantially spherical primary particles. The silica fine particles fixed by the binder are preferably composed of silica fine particles having an average particle diameter in the two ranges. Since silica has a higher hardness than organic polymer materials and a relatively low refractive index, the apparent refractive index of a porous film composed of a binder and silica fine particles can be reduced. In addition, primary particles made of silica and having a uniform particle size are produced at a low cost on a commercial scale, and are excellent in quantity, quality, and cost availability. In this specification, the “average particle size” is determined by observing a cross section of the low reflection coating using a scanning electron microscope SEM. Specifically, for any 50 particles that can observe the entire particle, the maximum diameter and the minimum diameter are measured, and the average value is used as the particle diameter of each particle. The average value of the particle diameters of the 50 particles is expressed as “ Determined as "average particle size".
 前述の2種類のシリカ微粒子に関し、バインダによって固定されているシリカ微粒子の合計量100質量部に対して、平均粒径が200~600nmであるシリカ微粒子が2~30質量部であることが好ましい。平均粒径が200~600nmであるシリカ微粒子が前述の範囲であると、低反射コーティングは1.5%以上の高い透過率ゲインと、高い耐摩耗性を共に備える。2質量部を下回ると、耐摩耗性が劣化し、30質量部を超えると透過率ゲインが低下する。 Regarding the above-mentioned two types of silica fine particles, the silica fine particles having an average particle diameter of 200 to 600 nm are preferably 2 to 30 parts by mass with respect to 100 parts by mass of the total amount of silica fine particles fixed by the binder. When the silica fine particles having an average particle diameter of 200 to 600 nm are in the above-mentioned range, the low reflection coating has both a high transmittance gain of 1.5% or more and a high wear resistance. When the amount is less than 2 parts by mass, the wear resistance is deteriorated, and when the amount exceeds 30 parts by mass, the transmittance gain is decreased.
 バインダに好ましく含まれるアルミニウム化合物は、低反射コーティングを形成するためのコーティング液に添加された水溶性の無機アルミニウム化合物に由来することが好ましく、ハロゲン化アルミニウム又は硝酸アルミニウムに由来することがより好ましい。この場合、好ましいハロゲン化アルミニウムは塩化アルミニウムである。低反射コーティングにおけるアルミニウム化合物の含有率は、アルミニウム化合物をAlに換算して、2~7質量%であり、5~7質量%であることが好ましい。 The aluminum compound preferably contained in the binder is preferably derived from a water-soluble inorganic aluminum compound added to a coating solution for forming a low reflection coating, and more preferably derived from aluminum halide or aluminum nitrate. In this case, the preferred aluminum halide is aluminum chloride. The content of the aluminum compound in the low reflection coating is 2 to 7% by mass, preferably 5 to 7% by mass, when the aluminum compound is converted to Al 2 O 3 .
 低反射コーティングにおけるシリカ微粒子の含有率は、55~75質量%であり、60~70質量%であることが好ましく、バインダにおけるシリカの含有率は、25~45質量%であり、30~40質量%であることが好ましい。 The content of silica fine particles in the low reflection coating is 55 to 75% by mass, preferably 60 to 70% by mass, and the silica content in the binder is 25 to 45% by mass, and 30 to 40% by mass. % Is preferred.
 低反射コーティングにおけるシリカ微粒子と、バインダにおけるシリカとの含有比は、質量比で表わして80:20~30:70の範囲であり、好ましくは70:30~60:40の範囲である。この含有比は、シリカ微粒子の含有比が大きくなるほど、低反射コーティングの反射率ゲインを大きくすることができる。なぜなら、シリカ微粒子間やシリカ微粒子と透明基板との間の空隙が大きくなるからである。一方、シリカ微粒子の含有比が限度を超えて大きい場合、低反射膜コーティングの耐久性が低下する。なぜなら、バインダにおいてシリカはシリカ微粒子間やシリカ微粒子と透明基板との間を接着する働きがあるが、シリカ微粒子の含有比が大きすぎると、その効果が乏しくなるからである。他方、シリカ微粒子の含有比が限度を超えて小さくなると、前述の空隙が小さくなりすぎるため、低反射コーティングの反射率ゲインが低下してしまう。 The content ratio of the silica fine particles in the low reflection coating and the silica in the binder is in the range of 80:20 to 30:70, preferably in the range of 70:30 to 60:40, expressed as a mass ratio. This content ratio can increase the reflectance gain of the low-reflection coating as the content ratio of the silica fine particles increases. This is because gaps between the silica fine particles and between the silica fine particles and the transparent substrate become large. On the other hand, when the content ratio of the silica fine particles is larger than the limit, the durability of the low reflective film coating is lowered. This is because silica in the binder has a function of adhering between the silica fine particles or between the silica fine particles and the transparent substrate, but if the content ratio of the silica fine particles is too large, the effect becomes poor. On the other hand, when the content ratio of the silica fine particles is smaller than the limit, the above-mentioned voids are too small, and the reflectance gain of the low reflection coating is lowered.
 これにより、本発明の第1の態様の低反射コーティングによれば、低反射コーティングを基板に施すことにより得られる透過率ゲインを1.5%以上、好ましくは2.5%以上とすることができる。 Thereby, according to the low reflection coating of the first aspect of the present invention, the transmittance gain obtained by applying the low reflection coating to the substrate may be 1.5% or more, preferably 2.5% or more. it can.
 (第2の様態)
 本発明の低反射コーティングの第2の様態は、中実な球状のシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる膜からなる。バインダによって固定されているシリカ微粒子は、平均粒径が200~600nmであるシリカ微粒子からなる。シリカは有機ポリマ材料より硬度が高く、屈折率が比較的低いため、バインダとシリカ微粒子からなる多孔質層の見かけの屈折率をさらに低減することができる。さらに、シリカからなる略球形で粒径がよく揃った一次粒子は、商業的スケールで低コストで生産されており、量、質、及びコスト的な入手性に優れる。バインダは、実質的にシリカからなっていてもよい。なお、本明細書において「実質的にシリカからなるバインダ」とは、本発明により得られるべき効果が損なわれない程度であればバインダにおけるシリカ以外の成分の少量の含有が許容されることを意味する。例えば、バインダにおけるシリカの含有率は99%以上であり、好ましくは99.5%以上であり、より好ましくは99.9%以上である。
(Second mode)
The second aspect of the low reflection coating of the present invention comprises a film in which solid spherical silica fine particles are fixed by a binder containing silica as a main component. The silica fine particles fixed by the binder are composed of silica fine particles having an average particle diameter of 200 to 600 nm. Since silica has a higher hardness than organic polymer materials and a relatively low refractive index, the apparent refractive index of the porous layer composed of the binder and the silica fine particles can be further reduced. In addition, primary particles made of silica and having a uniform particle size are produced at a low cost on a commercial scale, and are excellent in quantity, quality, and cost availability. The binder may consist essentially of silica. In the present specification, the term “substantially composed of silica” means that a small amount of components other than silica in the binder is allowed as long as the effect to be obtained by the present invention is not impaired. To do. For example, the silica content in the binder is 99% or more, preferably 99.5% or more, and more preferably 99.9% or more.
 低反射コーティングにおけるシリカ微粒子の含有率は、55~70質量%であり、60~70質量%であることが好ましく、バインダにおけるシリカの含有率は、30~45質量%であり、30~40質量%であることが好ましい。 The content of silica fine particles in the low reflection coating is 55 to 70% by mass, preferably 60 to 70% by mass, and the silica content in the binder is 30 to 45% by mass, and 30 to 40% by mass. % Is preferred.
 低反射コーティングにおけるシリカ微粒子と、バインダにおけるシリカの含有比は、質量比で表わして75:25~30:70の範囲であり、好ましくは70:30~60:40の範囲である。この含有比は、シリカ微粒子の含有比が大きくなるほど低反射コーティングの反射率ゲインを大きくすることができる。なぜなら、シリカ微粒子間やシリカ微粒子と透明基板との間の空隙が大きくなるからである。一方、シリカ微粒子の含有比が限度を超えて大きい場合、低反射コーティングの耐久性が低下する。なぜなら、バインダにおいてシリカはシリカ微粒子間やシリカ微粒子と透明基板との間を接着する働きがあるが、シリカ微粒子の含有比が大きすぎると、その効果が乏しくなるからである。他方、シリカ微粒子の含有比が限度を超えて小さくなると、前述の空隙が小さくなりすぎるため、低反射コーティングの反射率ゲインが低下してしまう。 The content ratio of the silica fine particles in the low reflection coating and the silica in the binder is in the range of 75:25 to 30:70, preferably in the range of 70:30 to 60:40, expressed as a mass ratio. This content ratio can increase the reflectance gain of the low-reflection coating as the content ratio of the silica fine particles increases. This is because gaps between the silica fine particles and between the silica fine particles and the transparent substrate become large. On the other hand, when the content ratio of the silica fine particles is larger than the limit, the durability of the low reflection coating is lowered. This is because silica in the binder has a function of adhering between the silica fine particles or between the silica fine particles and the transparent substrate, but if the content ratio of the silica fine particles is too large, the effect becomes poor. On the other hand, when the content ratio of the silica fine particles is smaller than the limit, the above-mentioned voids are too small, and the reflectance gain of the low reflection coating is lowered.
 これにより、本発明の第2の態様の低反射コーティングによれば、低反射コーティングを基板に施すことにより得られる透過率ゲインを1.5%以上、好ましくは2.5%以上とすることができるとともに、高い耐摩耗性を得ることができる。 Thereby, according to the low reflection coating of the second aspect of the present invention, the transmittance gain obtained by applying the low reflection coating to the substrate may be 1.5% or more, preferably 2.5% or more. In addition, high wear resistance can be obtained.
 (第3の様態)
 本発明の低反射コーティングの第3の様態は、中実な球状のシリカ微粒子が、波長550nmにおける屈折率が1.5~1.8のバインダによって固定されてなる膜からなり、シリカ微粒子は、平均粒径が200~600nmであるシリカ微粒子からなる。例えば、バインダは、シリカを主成分として含む。また、例えば、バインダは、高屈折率成分をさらに含む。
(Third mode)
A third aspect of the low-reflection coating of the present invention is a film in which solid spherical silica fine particles are fixed by a binder having a refractive index of 1.5 to 1.8 at a wavelength of 550 nm. It consists of silica fine particles having an average particle diameter of 200 to 600 nm. For example, the binder contains silica as a main component. For example, the binder further includes a high refractive index component.
 好ましくは、第3の様態の本発明の低反射コーティングを、その主平面の少なくとも片方に有するガラス板において、シリカ微粒子は主平面上に配列され、バインダは主平面からシリカ微粒子の直径(平均粒径)の30%~70%の厚みで主平面とシリカ微粒子の間に存在する。バインダの厚みが、30%より少ない場合、耐摩耗性が劣化すると共に透過率ゲインが低下し、70%を超えると透過率ゲインが急速に低下する。 Preferably, in the glass plate having the low reflection coating of the present invention of the third aspect on at least one of its main planes, the silica fine particles are arranged on the main plane, and the binder has a diameter (average particle size) of the silica fine particles from the main plane. It exists between the main plane and the silica fine particles at a thickness of 30% to 70% of the diameter. When the thickness of the binder is less than 30%, the wear resistance deteriorates and the transmittance gain decreases, and when it exceeds 70%, the transmittance gain decreases rapidly.
 微粒子としてのシリカは有機ポリマ材料より硬度が高く、屈折率が比較的低いため、バインダとシリカ微粒子からなる多孔質層の見かけの屈折率を低減することができる。さらに、シリカからなる略球形で粒径がよく揃った一次粒子は、商業的スケールで低コストで生産されており、量、質、及びコスト的な入手性に優れる。 Silica as fine particles has a higher hardness than organic polymer materials and a relatively low refractive index, so that the apparent refractive index of a porous layer made of a binder and silica fine particles can be reduced. In addition, primary particles made of silica and having a uniform particle size are produced at a low cost on a commercial scale, and are excellent in quantity, quality, and cost availability.
 バインダに含まれる高屈折率成分は、チタン、ジルコニウム、ニオブ、亜鉛、クロム、アルミニウム、カドミウム、ストロンチウム、イットリウム、ユーロピウム、およびランタンからなる群から選ばれた1以上の金属の化合物であることが好ましく、より好ましくはチタン酸化物、ジルコニウム酸化物、またはアルミニウム酸化物である。 The high refractive index component contained in the binder is preferably a compound of one or more metals selected from the group consisting of titanium, zirconium, niobium, zinc, chromium, aluminum, cadmium, strontium, yttrium, europium, and lanthanum. More preferably, they are titanium oxide, zirconium oxide, or aluminum oxide.
 これにより、本発明の第3の態様の低反射コーティングによれば、低反射コーティングを基板に施すことにより得られる透過率ゲインを1.5%以上、好ましくは2.5%以上とすることができる。 Thereby, according to the low reflection coating of the third aspect of the present invention, the transmittance gain obtained by applying the low reflection coating to the substrate may be 1.5% or more, preferably 2.5% or more. it can.
 本発明の第1の態様、第2の態様、または第3の態様の低反射コーティングにおいて、バインダにおけるシリカの供給源としては、シリコンアルコキシドに代表される加水分解性シリコン化合物を用いることができる。シリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランを例示できる。これら加水分解性シリコン化合物は、いわゆるゾルゲル法により加水分解及び縮重合してバインダとすればよい。例えば、バインダにおけるシリカは、低反射コーティングを形成するためのコーティング液に添加された、加水分解性シリコン化合物または加水分解性シリコン化合物の加水分解物に由来する。加水分解性シリコン化合物は、例えば、下記式(I)に示す化合物を含む。ここで、Xは、アルコキシル基、アセトキシ基、アルケニルオキシ基、アミノ基、及びハロゲン原子から選ばれる少なくとも1つである。
 SiX(I)
In the low reflection coating of the first aspect, the second aspect, or the third aspect of the present invention, a hydrolyzable silicon compound typified by silicon alkoxide can be used as a silica source in the binder. Examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane. These hydrolyzable silicon compounds may be made into binders by hydrolysis and condensation polymerization by a so-called sol-gel method. For example, the silica in the binder is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming a low reflection coating. The hydrolyzable silicon compound includes, for example, a compound represented by the following formula (I). Here, X is at least one selected from an alkoxyl group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
SiX 4 (I)
 コーティング液に添加された加水分解性シリコン化合物は、好ましくはテトラアルコキシシランである。 The hydrolyzable silicon compound added to the coating solution is preferably tetraalkoxysilane.
 加水分解性シリコン化合物の加水分解は、適宜実施することができるが、シリカ微粒子が存在する溶液中で実施することが好ましい。そのシリカ微粒子の表面に存在するシラノール基と、シリコンアルコキシドなど加水分解性シリコン化合物が加水分解して生成したシラノール基との縮重合反応が促進され、シリカ微粒子の結合力向上に寄与するバインダの割合が高まるためである。具体的には、シリカ微粒子を含む溶液を撹拌しながら、加水分解触媒及びシリコンアルコキシドを順次添加することにより、コーティング液を調製することが好ましい。なお、加水分解触媒には酸及び塩基いずれを用いることもできるが、酸、とくに無機酸を用いることが好しく、塩酸を用いることがさらに好ましい。なぜなら、塩基性より酸性の方が、シリカ微粒子の分散性がよく、またコーティング液の安定性にも優れるからである。さらに、塩酸由来の塩素イオンは、コーティング液中での塩素イオンの濃度を高めるため、前述したコーティング液に添加した塩化アルミニウムがもたらす効果をより促進するからである。 Hydrolysis of the hydrolyzable silicon compound can be carried out as appropriate, but is preferably carried out in a solution containing silica fine particles. Ratio of binder that contributes to improving the binding force of silica fine particles by promoting the polycondensation reaction between silanol groups present on the surface of the silica fine particles and silanol groups generated by hydrolysis of hydrolyzable silicon compounds such as silicon alkoxide. This is because of the increase. Specifically, it is preferable to prepare a coating liquid by sequentially adding a hydrolysis catalyst and silicon alkoxide while stirring a solution containing silica fine particles. In addition, although an acid and a base can be used for a hydrolysis catalyst, it is preferable to use an acid, especially an inorganic acid, and it is more preferable to use hydrochloric acid. This is because the acidity is better than the basicity, and the dispersibility of the silica fine particles is better and the stability of the coating liquid is also better. Furthermore, chlorine ions derived from hydrochloric acid increase the concentration of chlorine ions in the coating solution, and thus promote the effect brought about by the aluminum chloride added to the coating solution described above.
 本発明の低反射コーティングは、コーティング液を塗布し、乾燥させ、硬化させて形成することができる。これらコーティング液を供給する方法には、公知の任意の方法、例えばスピンコーティング、ロールコーティング、バーコーティング、ディップコーティング、スプレーコーティングなど、を用いることができるが、スプレーコーティングは量産性の点で優れ、ロールコーティングやバーコーティングが量産性に加えて塗膜外観の均質性の点でより適している。 The low reflection coating of the present invention can be formed by applying a coating liquid, drying and curing. As a method for supplying these coating solutions, any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, etc. can be used, but spray coating is excellent in terms of mass productivity, Roll coating and bar coating are more suitable in terms of homogeneity of the appearance of the coating film in addition to mass production.
 低反射コーティングを形成するためのコーティング液を基板に塗布した後の加熱工程において、基板が経験する最高温度が350℃以下であり、基板が200℃以上の温度にある時間が5分以下である。 In the heating process after applying the coating liquid for forming the low-reflection coating to the substrate, the maximum temperature experienced by the substrate is 350 ° C. or less, and the time that the substrate is at a temperature of 200 ° C. or more is 5 minutes or less. .
 好ましくは、低反射コーティングを形成するためのコーティング液を前記基板に塗布した後の加熱工程において、基板が経験する最高温度が250℃以下であり、基板が100℃以上の温度にある時間が2分以下である。 Preferably, in the heating step after the coating liquid for forming the low-reflection coating is applied to the substrate, the maximum temperature experienced by the substrate is 250 ° C. or lower, and the time during which the substrate is at a temperature of 100 ° C. or higher is 2 Is less than a minute.
 本発明の第1の態様、第2の態様、または第3の態様の低反射コーティングを好適に施すことができる基板は、コーティングを施していないガラス板であってよい。このガラス板を用いて光電変換装置を提供できる。この場合、低反射コーティングが形成されているガラス板の主平面は光が入射する主表面である。ガラス板は、その主表面の算術平均粗さRaがたとえば1nm以下、好ましくは0.5nm以下の平滑性を有するフロート板ガラスであってもよい。ここで算術平均粗さRaは、JIS(日本工業規格) B0601-1994に規定された値である。 The substrate to which the low reflection coating according to the first aspect, the second aspect, or the third aspect of the present invention can be suitably applied may be an uncoated glass plate. A photoelectric conversion device can be provided using this glass plate. In this case, the main plane of the glass plate on which the low reflection coating is formed is the main surface on which light is incident. The glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less. Here, the arithmetic average roughness Ra is a value defined in JIS (Japanese Industrial Standards) B0601-1994.
 一方で、ガラス板は、その表面に凹凸を有する型板ガラスであってもよく、その凹凸の平均間隔Smは0.3mm以上2.5mm以下、さらに0.3mm以上、特に0.4mm以上、とりわけ0.45mm以上であることが好ましく、2.5mm以下、さらに2.1mm以下、特に2.0mm以下、とりわけ1.5mm以下であることが好ましい。ここで、平均間隔Smは、粗さ曲線が平均線と交差する点から求めた山谷一周期の間隔の平均値を意味する。さらには型板ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.5μm~10μm、特に1μm~8μmの最大高さRyを有することが好ましい。ここで平均間隔Smと最大高さRyは、JIS(日本工業規格) B0601-1994に規定された値である。 On the other hand, the glass plate may be a template glass having irregularities on the surface thereof, and the average interval Sm of the irregularities is 0.3 mm or more and 2.5 mm or less, further 0.3 mm or more, particularly 0.4 mm or more, especially It is preferably 0.45 mm or more, 2.5 mm or less, more preferably 2.1 mm or less, particularly 2.0 mm or less, and particularly preferably 1.5 mm or less. Here, the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line. Further, the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 μm to 10 μm, particularly 1 μm to 8 μm, together with the average interval Sm in the above range. Here, the average interval Sm and the maximum height Ry are values defined in JIS (Japanese Industrial Standards) B0601-1994.
 なお、ガラス板は、通常の型板ガラスや建築用板ガラスと同様の組成であってよいが、着色成分を極力含まないことが好ましい。ガラス板において、代表的な着色成分である酸化鉄の含有率は、Feに換算して、0.06質量%以下、特に0.02質量%以下が好適である。 In addition, although a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible. In the glass plate, the content of iron oxide, which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
 他方、本発明の第1の態様、第2の態様、または第3の態様の低反射コーティングを好適に施すことができる基板は、透明導電膜付ガラス基板であってよい。この透明導電膜付ガラス基板は、例えば上述の何れかのガラス板の一方の主平面(低反射コーティングが形成されるべき主平面と反対側の主平面)に、透明導電膜を有する。また、例えば、透明導電膜付ガラス基板は、ガラス板の主平面に、1層以上の下地層、例えばフッ素ドープ酸化スズを主成分とする透明導電層が順に積層されていてもよい。このガラス基板を用いた光電変換装置を提供できる。この場合、低反射コーティングが形成されているガラス板の主平面は光が入射する主表面である。 On the other hand, the substrate to which the low reflection coating of the first aspect, the second aspect, or the third aspect of the present invention can be suitably applied may be a glass substrate with a transparent conductive film. This glass substrate with a transparent conductive film has, for example, a transparent conductive film on one main plane (a main plane opposite to the main plane on which the low-reflective coating is to be formed) of any of the glass plates described above. Further, for example, in the glass substrate with a transparent conductive film, one or more underlayers, for example, a transparent conductive layer mainly composed of fluorine-doped tin oxide may be laminated in order on the main plane of the glass plate. A photoelectric conversion device using this glass substrate can be provided. In this case, the main plane of the glass plate on which the low reflection coating is formed is the main surface on which light is incident.
 以下、実施例により、本発明をさらに詳細に説明する。まず、各実施例、各比較例において、基板上に形成した低反射コーティングの各特性の評価方法を説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. First, a method for evaluating each characteristic of the low-reflection coating formed on the substrate in each example and each comparative example will be described.
 (透過特性)
 分光光度計(UV-3100PC、株式会社島津製作所製)を用い、低反射コーティングの形成前後における基板の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長380~850nmにおける透過率を平均化して算出した。低反射コーティングを施した基板の平均透過率の、該低反射コーティングを施す前の基板の平均透過率に対する増分を透過率ゲインとした。
(Transmission characteristics)
Using a spectrophotometer (UV-3100PC, manufactured by Shimadzu Corporation), the transmittance curve (transmission spectrum) of the substrate before and after the formation of the low reflection coating was measured. The average transmittance was calculated by averaging the transmittance at a wavelength of 380 to 850 nm. The increment of the average transmittance of the substrate with the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating was defined as the transmittance gain.
 (耐摩耗性)
 大栄科学精器製作所社製の往復摩耗試験機を用いて各実施例に係る低反射コーティングが形成された基板及び比較例1に係る基板について往復摩耗試験を行った。まず、各実施例に係る低反射コーティングが形成された基板及び比較例1に係る基板を治具で固定した。ここで、各実施例では、低反射コーティング側を上向きにして低反射コーティングが形成された基板を治具で固定した。次に、直径19mmの円板状の摩耗子CS-10Fの円形面を低反射コーティング又は基板の表面に接触させて4Nの荷重を加えた。このとき、摩耗子CS-10Fと低反射コーティング又は基板の表面との接触面積は、284mmであった。この状態で摩耗子CS-10Fを低反射コーティング又は基板の表面に対して50回直線的に往復運動させた。このときの摩耗子の速度を120mm/秒に設定し、摩耗子のストローク幅を120mmに設定した。往復摩耗試験後に、低反射コーティングの剥離状態を目視にて確認し、低反射コーティングの剥離がない場合を「〇」と評価した。
(Abrasion resistance)
A reciprocating wear test was performed on the substrate on which the low-reflection coating according to each example was formed and the substrate according to Comparative Example 1 using a reciprocating wear tester manufactured by Daiei Kagaku Seiki Seisakusho. First, the substrate on which the low reflection coating according to each Example was formed and the substrate according to Comparative Example 1 were fixed with a jig. Here, in each Example, the substrate on which the low reflection coating was formed with the low reflection coating side facing upward was fixed with a jig. Next, a circular surface of a disc-shaped wear piece CS-10F having a diameter of 19 mm was brought into contact with the surface of the low reflection coating or the substrate, and a load of 4N was applied. At this time, the contact area between the wearer CS-10F and the surface of the low reflection coating or the substrate was 284 mm 2 . In this state, the wearer CS-10F was reciprocated linearly 50 times with respect to the surface of the low reflection coating or the substrate. The speed of the wearer at this time was set to 120 mm / second, and the stroke width of the wearer was set to 120 mm. After the reciprocating wear test, the peeling state of the low reflection coating was visually confirmed, and the case where there was no peeling of the low reflection coating was evaluated as “◯”.
 (膜厚)
 各実施例及び比較例に係る低反射コーティングを電界放射型走査型電子顕微鏡(FE-SEM)(日立製作所社製、型式:S-4500)を用いて観察した。低反射コーティングの30°斜め上方からの断面におけるFE-SEM写真から、測定点5点における低反射コーティングの厚みの平均値を、低反射コーティングの膜厚(平均膜厚)として算出した。
(Film thickness)
The low reflection coating according to each example and comparative example was observed using a field emission scanning electron microscope (FE-SEM) (manufactured by Hitachi, Ltd., model: S-4500). From the FE-SEM photograph of the cross section of the low-reflection coating obliquely from 30 ° above, the average value of the thickness of the low-reflection coating at five measurement points was calculated as the film thickness (average film thickness) of the low-reflection coating.
 (実施例1)
 <コーティング液の調製>
 シリカ微粒子分散液(クォートロンPL-7、平均粒径125nmの略球状の一次粒子、固形分濃度23重量%、扶桑化学工業株式会社製)55.1質量部、シリカ微粒子分散液(クォートロンPL-20、平均粒径220~370nmの略球状の一次粒子、固形分濃度20重量%、扶桑化学工業株式会社製)1.6質量部、1-メトキシ-2-プロパノール(溶媒)18.0質量部、1N塩酸(加水分解触媒)1質量部を撹拌混合し、さらに撹拌しながらテトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製)24.3質量部、を添加し、引き続き40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、原液Aを得た。原液Aにおいて、シリカ微粒子をSiOに換算した質量と、バインダに含まれる酸化ケイ素成分をSiOに換算した質量の比は、65:35であり、シリカ微粒子合計100質量部に対する平均粒径200~500nmのシリカ微粒子は2.5質量部であった。
(Example 1)
<Preparation of coating solution>
Silica fine particle dispersion (Quarton PL-7, substantially spherical primary particles having an average particle diameter of 125 nm, solid content concentration 23 wt%, manufactured by Fuso Chemical Industry Co., Ltd.) 55.1 parts by mass, silica fine particle dispersion (Quarton PL-20) Approximately spherical primary particles having an average particle size of 220 to 370 nm, solid content concentration of 20% by weight, manufactured by Fuso Chemical Co., Ltd.) 1.6 parts by mass, 1-methoxy-2-propanol (solvent) 18.0 parts by mass, 1 part by mass of 1N hydrochloric acid (hydrolysis catalyst) is stirred and mixed, and further, 24.3 parts by mass of tetraethoxysilane (ethyl orthosilicate, manufactured by Tama Chemical Co., Ltd.) is added while stirring, and the temperature is kept at 40 ° C. While stirring for 8 hours, tetraethoxysilane was hydrolyzed to obtain a stock solution A. In stock A, the mass obtained by converting the silica fine particles to the SiO 2, the ratio of the mass obtained by converting the silicon oxide component contained in the binder SiO 2 is 65: A 35, average particle size 200 to silica particles per 100 parts by weight The silica fine particle of ˜500 nm was 2.5 parts by mass.
 前述の原液A60.0g、プロピレングリコール(溶媒)3.0g、1-メトキシ-2-プロパノール(溶媒)84.2g、塩化アルミニウム水溶液(AlClとして濃度47.6重量%。塩化アルミニウム6水和物(試薬グレード、シグマアルドリッチ社製)を脱イオン水に溶解)2.8gを撹拌混合し、コーティング液A1を得た。コーティング液A1において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiOに換算した固形分濃度は8.0重量%であり、SiOに換算したケイ素の酸化物を100質量部としたときのAlに換算したアルミニウム化合物は5質量部であった。 60.0 g of the above-mentioned stock solution A, 3.0 g of propylene glycol (solvent), 84.2 g of 1-methoxy-2-propanol (solvent), aluminum chloride aqueous solution (concentration 47.6% by weight as AlCl 3. Aluminum chloride hexahydrate (Reagent grade, manufactured by Sigma-Aldrich) dissolved in deionized water) 2.8 g was stirred and mixed to obtain coating liquid A1. In coating liquid A1, the solid content concentration of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 is 8.0% by weight, and silicon oxide converted to SiO 2 is 100 parts by mass. The aluminum compound converted to Al 2 O 3 was 5 parts by mass.
 <低反射膜の形成>
 実施例1では、透明導電膜付ガラス板を基板として、透明導電膜が形成されていない方の主平面に低反射コーティングを形成した。このガラス板は、通常のソーダライムシリケート組成からなり、オンラインCVD法を用い、片方の主平面に透明導電層を含む透明導電膜が形成されており、厚み3.2mmの日本板硝子株式会社製のガラス板であった。このガラス板を200mm×300mmの寸法に切断し、アルカリ溶液(アルカリ性洗浄液LBC-1、レイボルド株式会社製)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させて低反射コーティングを形成するためのガラス板とした。低反射コーティングを施す前のこの基板の透過特性を前述のとおり評価したところ、平均透過率80.0%であった。
<Formation of low reflection film>
In Example 1, the low reflective coating was formed in the main surface in which the transparent conductive film is not formed by using the glass plate with a transparent conductive film as a substrate. This glass plate is composed of a normal soda lime silicate composition, and a transparent conductive film including a transparent conductive layer is formed on one main plane using an on-line CVD method. It was a glass plate. This glass plate is cut into a size of 200 mm × 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), washed with an ultrasonic cleaner, washed with deionized water, and then at room temperature. A glass plate for drying to form a low reflection coating was obtained. When the transmission characteristics of the substrate before applying the low-reflection coating were evaluated as described above, the average transmittance was 80.0%.
 実施例1においては、ロールコーターを用い、前述のガラス板の透明導電膜が施されていない側の主表面にコーティング液A1を塗布した。なお、このとき塗布液の膜厚が1~5μmになるようにした。次いでこのガラス板に塗布したコーティング液を、熱風で乾燥させ、かつ、硬化させた。この熱風乾燥は、ベルト搬送式の熱風乾燥装置を用い、熱風の設定温度を300℃、熱風吐出ノズルとガラス板との間の距離を5mm、搬送速度を0.5m/分に設定し、ガラス板を2回往復させてノズルの下を4回通過させることで行なった。このとき、コーティング液が塗布されたガラス板が熱風に触れている時間は140秒であり、ガラス板のコーティング液が塗布されたガラス面における最高到達温度は199℃だった。乾燥及び硬化後のガラス板は室温まで放冷し、ガラス板に低反射コーティングを施した。 In Example 1, the coating liquid A1 was applied to the main surface of the glass plate on which the transparent conductive film was not applied, using a roll coater. At this time, the film thickness of the coating solution was adjusted to 1 to 5 μm. Next, the coating liquid applied to the glass plate was dried with hot air and cured. This hot air drying uses a belt-conveying hot-air drying device, the hot air set temperature is 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was done by reciprocating the plate twice and passing under the nozzle four times. At this time, the time during which the glass plate coated with the coating solution was in contact with hot air was 140 seconds, and the maximum temperature reached on the glass surface coated with the coating solution of the glass plate was 199 ° C. The glass plate after drying and curing was allowed to cool to room temperature, and a low reflection coating was applied to the glass plate.
 こうして得た低反射コーティングについて、前述の各特性を評価した。その結果を表1に示す。 The above-mentioned characteristics of the low reflection coating thus obtained were evaluated. The results are shown in Table 1.
 (実施例2)
 <コーティング液の調製>
 シリカ微粒子分散液(KE-W30、平均粒径300nmの略球状の一次粒子、固形分濃度20.5重量%、株式会社日本触媒製)63.4質量部、1-メトキシ-2-プロパノール(溶媒)11.3質量部、1N塩酸(加水分解触媒)1.0質量部を撹拌混合し、さらに撹拌しながらテトラエトキシシラン(実施例1で用いたものと同じ)24.3質量部、を添加し、引き続き40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、原液Bを得た。原液Bにおいて、シリカ微粒子をSiOに換算した質量と、バインダに含まれる酸化ケイ素成分をSiOに換算した質量の比は、65:35であった。
(Example 2)
<Preparation of coating solution>
Silica fine particle dispersion (KE-W30, substantially spherical primary particles having an average particle diameter of 300 nm, solid concentration 20.5% by weight, manufactured by Nippon Shokubai Co., Ltd.) 63.4 parts by mass, 1-methoxy-2-propanol (solvent ) 11.3 parts by mass, 1.0 part by mass of 1N hydrochloric acid (hydrolysis catalyst) was stirred and mixed, and 24.3 parts by mass of tetraethoxysilane (same as that used in Example 1) was added while stirring. Then, the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a stock solution B. In the stock solution B, the ratio of the mass of silica fine particles converted to SiO 2 to the mass of silicon oxide components contained in the binder converted to SiO 2 was 65:35.
 前述の原液B102.0g、プロピレングリコール(溶媒)48.0gを撹拌混合し、コーティング液B1を得た。コーティング液B1において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiOに換算した固形分濃度は13.6重量%であった。 The above-mentioned stock solution B102.0 g and propylene glycol (solvent) 48.0 g were mixed with stirring to obtain a coating solution B1. In the coating liquid B1, the solid content concentration obtained by converting silicon oxide (derived from silica fine particles and tetraalkoxysilane) into SiO 2 was 13.6% by weight.
 <低反射膜の形成>
 実施例2では、前述のコーティング液B1を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
<Formation of low reflection film>
In Example 2, the low reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid B1 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
 (実施例3)
 <コーティング液の調製>
 シリカ微粒子分散液(クォートロンPL-20、平均粒径220~370nmの略球状の一次粒子、実施例1で用いたものと同じ)71.2質量部、1-メトキシ-2-プロパノール(溶媒)7.8質量部、1N塩酸(加水分解触媒)1.0質量部を撹拌混合し、さらに撹拌しながらテトラエトキシシラン(実施例1で用いたものと同じ)20.0質量部、を添加し、引き続き40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、原液Cを得た。原液Cにおいて、シリカ微粒子をSiOに換算した質量と、バインダに含まれる酸化ケイ素成分をSiOに換算した質量の比は、71.2:28.8であった。
(Example 3)
<Preparation of coating solution>
Silica fine particle dispersion (Quatron PL-20, substantially spherical primary particles having an average particle size of 220 to 370 nm, the same as that used in Example 1) 71.2 parts by mass, 1-methoxy-2-propanol (solvent) 7 .8 parts by mass, 1.0 part by mass of 1N hydrochloric acid (hydrolysis catalyst) was mixed by stirring, and further 20.0 parts by mass of tetraethoxysilane (same as that used in Example 1) was added while stirring. Subsequently, the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a stock solution C. In Stock Solution C, the ratio of the mass of silica fine particles converted to SiO 2 to the mass of silicon oxide components contained in the binder converted to SiO 2 was 71.2: 28.8.
 前述の原液C50.2g、プロピレングリコール(溶媒)2.0g、1-メトキシ-2-プロパノール(溶媒)43.0質量部、チタニアゾル(PC-201、TiOとして固形分濃度20質量%、住友化学株式会社製)4.8gを撹拌混合し、コーティング液C1を得た。コーティング液C1において、ケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)をSiOに換算した固形分濃度とチタンの酸化物をTiOに換算した固形分濃度との合計は11.0重量%であった。バインダにおけるケイ素の酸化物(テトラアルコキシシランに由来)をSiOに換算した固形分濃度と、チタンの酸化物をTiOに換算した固形分濃度との質量比は、75:25であった。このバインダの波長550nmにおける屈折率は1.6であった。 50.2 g of the above-mentioned stock solution C, 2.0 g of propylene glycol (solvent), 43.0 parts by mass of 1-methoxy-2-propanol (solvent), titania sol (PC-201, 20% by mass as TiO 2 , Sumitomo Chemical) 4.8 g) was mixed with stirring to obtain a coating liquid C1. In the coating liquid C1, the total of the solid content concentration obtained by converting silicon oxide (derived from silica fine particles and tetraalkoxysilane) into SiO 2 and the solid content concentration obtained by converting titanium oxide into TiO 2 is 11.0 weight. %Met. The mass ratio of the solid content concentration obtained by converting silicon oxide (derived from tetraalkoxysilane) into SiO 2 in the binder and the solid content concentration obtained by converting titanium oxide into TiO 2 was 75:25. The refractive index of this binder at a wavelength of 550 nm was 1.6.
 <低反射膜の形成>
 実施例3では、前述のコーティング液C1を用いた以外は実施例1と同じ手順で、低反射コーティングを施し、前述の各特性を評価した。その結果を表1に示す。
<Formation of low reflection film>
In Example 3, a low-reflection coating was applied in the same procedure as in Example 1 except that the above-described coating liquid C1 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
 (比較例1)
 比較例1として、実施例1~3で用いたものと同じ透明導電膜付ガラス板を基板であって、透明導電膜が形成されていない方の主平面について、低反射コーティングを施さないものを用いた。評価に先立ち、実施例1~3と同様に洗浄し乾燥させた。
(Comparative Example 1)
As Comparative Example 1, the same glass plate with a transparent conductive film as used in Examples 1 to 3 was used as the substrate, and the main plane on which the transparent conductive film was not formed was not subjected to the low reflection coating. Using. Prior to evaluation, it was washed and dried in the same manner as in Examples 1 to 3.
 実施例1~3が示すとおり、熱風乾燥による硬化のみによる低反射コーティングは、1.5%以上の高い透過率ゲインと、コーティングを施す前のガラス基板表面と同程度の優れた耐摩耗性を得ることができた。 As shown in Examples 1 to 3, the low-reflective coating only by curing with hot air drying has a high transmittance gain of 1.5% or more and excellent wear resistance equivalent to the glass substrate surface before coating. I was able to get it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、高い透過率ゲインを示し、および/または摩耗性に優れた低反射コーティングを提供でき、好ましくは硬化温度が低温である場合であっても、こうした優れた特性を有する低反射コーティングを提供できる。 According to the present invention, it is possible to provide a low-reflection coating exhibiting a high transmittance gain and / or excellent wear resistance, and preferably having a low-reflection property having such excellent characteristics even when the curing temperature is low. A coating can be provided.

Claims (19)

  1.  基板の主表面の少なくとも片方に好適に施され得る低反射コーティングにおいて、
     前記低反射コーティングは、中実な球状のシリカ微粒子が、金属酸化物を主成分とするバインダによって固定されてなる膜であって、
     前記シリカ微粒子として、平均粒径が200~600nmであるシリカ微粒子を含み、
     前記バインダは、金属酸化物としてシリカを含み、
     前記低反射コーティングを基板に施すことにより得られる透過率ゲインが1.5%以上であることを特徴とする低反射コーティング。
     ここで、透過率ゲインは、波長域380~850nmにおける平均透過率に関し、前記低反射コーティングを施す前の前記基板の平均透過率に対する、前記低反射コーティングを施した前記基板の平均透過率の増分、である。
    In a low reflection coating that can be suitably applied to at least one of the main surfaces of the substrate,
    The low reflection coating is a film in which solid spherical silica fine particles are fixed by a binder mainly composed of a metal oxide,
    The silica fine particles include silica fine particles having an average particle diameter of 200 to 600 nm,
    The binder includes silica as a metal oxide,
    A low-reflection coating, wherein a transmittance gain obtained by applying the low-reflection coating to a substrate is 1.5% or more.
    Here, the transmittance gain is an increase in the average transmittance of the substrate having the low reflection coating with respect to the average transmittance of the substrate before the low reflection coating, with respect to the average transmittance in the wavelength region of 380 to 850 nm. .
  2.  前記バインダにおけるシリカが、前記低反射コーティングを形成するためのコーティング液に添加された、加水分解性シリコン化合物または加水分解性シリコン化合物の加水分解物に由来し、
     前記加水分解性シリコン化合物が、下記式(I)に示す化合物を含む、
     請求項1に記載の低反射コーティング。
     SiX(I)
     ここで、Xは、アルコキシル基、アセトキシ基、アルケニルオキシ基、アミノ基、及びハロゲン原子から選ばれる少なくとも1つである。
    Silica in the binder is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming the low reflection coating,
    The hydrolyzable silicon compound includes a compound represented by the following formula (I):
    The low reflection coating according to claim 1.
    SiX 4 (I)
    Here, X is at least one selected from an alkoxyl group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
  3.  前記加水分解性シリコン化合物が、テトラアルコキシシランである、請求項2に記載の低反射コーティング。 The low reflective coating according to claim 2, wherein the hydrolyzable silicon compound is tetraalkoxysilane.
  4.  前記低反射コーティングを形成するためのコーティング液を前記基板に塗布した後の加熱工程において、
     前記基板が経験する最高温度が350℃以下であり、
     前記基板が200℃以上の温度にある時間が5分以下である、
     請求項1~3のいずれか1項に記載の低反射コーティング。
    In the heating step after applying the coating liquid for forming the low reflection coating on the substrate,
    The maximum temperature experienced by the substrate is 350 ° C. or less;
    The time that the substrate is at a temperature of 200 ° C. or higher is 5 minutes or less,
    The low reflection coating according to any one of claims 1 to 3.
  5.  前記低反射コーティングを形成するためのコーティング液を前記基板に塗布した後の加熱工程において、
     前記基板が経験する最高温度が250℃以下であり、
     前記基板が100℃以上の温度にある時間が2分以下である、
     請求項4に記載の低反射コーティング。
    In the heating step after applying the coating liquid for forming the low reflection coating on the substrate,
    The maximum temperature experienced by the substrate is 250 ° C. or less;
    The time for which the substrate is at a temperature of 100 ° C. or more is 2 minutes or less,
    The low reflection coating according to claim 4.
  6.  前記中実な球状のシリカ微粒子として、さらに平均粒径が80~150nmであるシリカ微粒子を含み、
     前記バインダは、金属酸化物としてシリカを主成分として含み、
     前記バインダは多孔質であり、
     前記低反射コーティングにおける成分の含有率が、質量%表示で、
     前記シリカ微粒子 55~75%
     前記バインダにおけるシリカ 25~45%
    である、
     請求項1に記載の低反射コーティング。
    The solid spherical silica fine particles further include silica fine particles having an average particle diameter of 80 to 150 nm,
    The binder contains silica as a metal oxide as a main component,
    The binder is porous;
    The content of the component in the low reflection coating is expressed in mass%,
    Silica fine particles 55-75%
    Silica in the binder 25-45%
    Is,
    The low reflection coating according to claim 1.
  7.  前記バインダはアルミニウム化合物をさらに含み、
     前記低反射コーティングにおける含有率が、質量%表示で、前記アルミニウム化合物をAlに換算して2~7%である、請求項1に記載の低反射コーティング。
    The binder further includes an aluminum compound,
    The low-reflection coating according to claim 1, wherein the content of the low-reflection coating is 2% to 7% in terms of mass%, when the aluminum compound is converted to Al 2 O 3 .
  8.  前記アルミニウム化合物が、前記低反射コーティングを形成するためのコーティング液に添加された、水溶性の無機アルミニウム化合物に由来する、請求項7に記載の低反射コーティング。 The low-reflection coating according to claim 7, wherein the aluminum compound is derived from a water-soluble inorganic aluminum compound added to a coating liquid for forming the low-reflection coating.
  9.  前記無機アルミニウム化合物が、ハロゲン化アルミニウム又は硝酸アルミニウムである、請求項8に記載の低反射コーティング。 The low-reflection coating according to claim 8, wherein the inorganic aluminum compound is aluminum halide or aluminum nitrate.
  10.  前記無機アルミニウム化合物が、塩化アルミニウムである、請求項8に記載の低反射コーティング。 The low-reflection coating according to claim 8, wherein the inorganic aluminum compound is aluminum chloride.
  11.  前記中実な球状のシリカ微粒子は、平均粒径が200~600nmであるシリカ微粒子と、平均粒径が80~150nmであるシリカ微粒子とからなり、
     前記シリカ微粒子の合計量100質量部に対して、前記平均粒径が200~600nmであるシリカ微粒子が2~30質量部である、
     請求項6~10のいずれか1項に記載の低反射コーティング。
    The solid spherical silica fine particles are composed of silica fine particles having an average particle diameter of 200 to 600 nm and silica fine particles having an average particle diameter of 80 to 150 nm.
    The silica fine particles having an average particle diameter of 200 to 600 nm are 2 to 30 parts by mass with respect to 100 parts by mass of the total amount of the silica fine particles.
    The low reflection coating according to any one of claims 6 to 10.
  12.  前記中実な球状のシリカ微粒子は、
     平均粒径が200~600nmであるシリカ微粒子からなり、
     前記バインダは、前記金属酸化物としてシリカを主成分として含み、
     前記低反射コーティングにおける成分の含有率が、質量%表示で、
      前記シリカ微粒子 55~70%
      前記バインダにおけるシリカ 30~45%
    である、請求項1に記載の低反射コーティング。
    The solid spherical silica fine particles are
    Composed of silica fine particles having an average particle diameter of 200 to 600 nm,
    The binder contains silica as a main component as the metal oxide,
    The content of the component in the low reflection coating is expressed in mass%,
    Silica fine particles 55-70%
    Silica in the binder 30-45%
    The low-reflection coating according to claim 1, wherein
  13.  前記中実な球状のシリカ微粒子が、平均粒径が200~600nmであるシリカ微粒子からなり、
     前記バインダは、金属酸化物としてシリカを主成分として含み、
     前記バインダは、高屈折率成分をさらに含み
     前記バインダの波長550nmにおける屈折率が1.5~1.8である、
     請求項1に記載の低反射コーティング。
    The solid spherical silica fine particles are composed of silica fine particles having an average particle diameter of 200 to 600 nm,
    The binder contains silica as a metal oxide as a main component,
    The binder further includes a high refractive index component, and the refractive index of the binder at a wavelength of 550 nm is 1.5 to 1.8.
    The low reflection coating according to claim 1.
  14.  前記バインダに含まれる前記高屈折率成分は、チタン、ジルコニウム、ニオブ、亜鉛、クロム、アルミニウム、カドミウム、ストロンチウム、イットリウム、ユーロピウム、ランタンからなる群から選ばれた1以上の金属の化合物である、請求項13に記載の低反射コーティング。 The high refractive index component contained in the binder is a compound of one or more metals selected from the group consisting of titanium, zirconium, niobium, zinc, chromium, aluminum, cadmium, strontium, yttrium, europium, lanthanum, Item 14. The low reflection coating according to Item 13.
  15.  前記選ばれた1以上の金属の化合物が、チタン酸化物、ジルコニウム酸化物、またはアルミニウム酸化物である、請求項14に記載の低反射コーティング。 15. The low reflection coating according to claim 14, wherein the one or more selected metal compounds are titanium oxide, zirconium oxide, or aluminum oxide.
  16.  請求項13に記載の低反射コーティングを、その主平面の少なくとも片方に有するガラス板であって、
     前記シリカ微粒子は前記主平面上に配列され、
     前記バインダは前記主平面から前記シリカ微粒子の直径の30%~70%の厚みで前記主平面と前記シリカ微粒子の間に存在する、
     低反射コーティング付ガラス板。
    A glass plate having the low reflection coating according to claim 13 on at least one of its main planes,
    The silica fine particles are arranged on the main plane,
    The binder is present between the main plane and the silica fine particles at a thickness of 30% to 70% of the diameter of the silica fine particles from the main plane.
    Glass plate with low reflection coating.
  17.  請求項1に記載の低反射コーティングを有するガラス板。 A glass plate having the low reflection coating according to claim 1.
  18.  請求項16に記載の低反射コーティング付ガラス板または請求項17に記載の低反射コーティングを有するガラス板を用いたガラス基板であって、該低反射コーティングが形成されている主平面とは反対側の主平面に透明導電膜が形成されたガラス基板。 A glass substrate using the glass plate with a low reflection coating according to claim 16 or the glass plate having the low reflection coating according to claim 17, wherein the glass substrate is opposite to a main plane on which the low reflection coating is formed. The glass substrate in which the transparent conductive film was formed in the main plane.
  19.  請求項16に記載の低反射コーティング付ガラス板または請求項17に記載の低反射コーティングを有するガラス板を用いた光電変換装置であって、該低反射コーティングが形成されている前記ガラス板の主平面が、光が入射する主表面である、光電変換装置。 A photoelectric conversion device using the glass plate with a low reflection coating according to claim 16 or the glass plate with a low reflection coating according to claim 17, wherein the main portion of the glass plate on which the low reflection coating is formed. A photoelectric conversion device in which a plane is a main surface on which light is incident.
PCT/JP2015/004782 2014-09-30 2015-09-17 Low-reflection coating, glass sheet equipped with low-reflection coating, glass sheet having low-reflection coating, glass substrate, and photoelectric conversion device WO2016051718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551515A JP6487933B2 (en) 2014-09-30 2015-09-17 Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014201599 2014-09-30
JP2014-201599 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051718A1 true WO2016051718A1 (en) 2016-04-07

Family

ID=55629789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004782 WO2016051718A1 (en) 2014-09-30 2015-09-17 Low-reflection coating, glass sheet equipped with low-reflection coating, glass sheet having low-reflection coating, glass substrate, and photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP6487933B2 (en)
WO (1) WO2016051718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230113808A (en) 2020-12-15 2023-08-01 샌트랄 글래스 컴퍼니 리미티드 Coating liquid for optical members, polymer, cured film, photosensitive coating liquid, pattern cured film, optical member, solid-state imaging device, display device, polysiloxane compound, stabilizer used in coating liquid, method for producing cured film, method for producing pattern cured film , and methods for preparing polymers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047033A1 (en) * 1999-12-20 2001-06-28 Nippon Sheet Glass Co., Ltd. Photoelectric transducer and substrate for photoelectric transducer
WO2010134416A1 (en) * 2009-05-22 2010-11-25 東洋紡績株式会社 Highly adhesive polyester film for optical use
WO2011070714A1 (en) * 2009-12-11 2011-06-16 日本板硝子株式会社 Cover glass for photoelectric converter and process for producing same
JP2014015543A (en) * 2012-07-09 2014-01-30 Nissan Chem Ind Ltd Low refractive index coating composition
JP2014032248A (en) * 2012-08-01 2014-02-20 Nippon Sheet Glass Co Ltd Photoelectric conversion device cover glass
WO2014084093A1 (en) * 2012-11-27 2014-06-05 共栄社化学株式会社 Composition for hardcoat and molded article with hardcoat layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047033A1 (en) * 1999-12-20 2001-06-28 Nippon Sheet Glass Co., Ltd. Photoelectric transducer and substrate for photoelectric transducer
WO2010134416A1 (en) * 2009-05-22 2010-11-25 東洋紡績株式会社 Highly adhesive polyester film for optical use
WO2011070714A1 (en) * 2009-12-11 2011-06-16 日本板硝子株式会社 Cover glass for photoelectric converter and process for producing same
JP2014015543A (en) * 2012-07-09 2014-01-30 Nissan Chem Ind Ltd Low refractive index coating composition
JP2014032248A (en) * 2012-08-01 2014-02-20 Nippon Sheet Glass Co Ltd Photoelectric conversion device cover glass
WO2014084093A1 (en) * 2012-11-27 2014-06-05 共栄社化学株式会社 Composition for hardcoat and molded article with hardcoat layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230113808A (en) 2020-12-15 2023-08-01 샌트랄 글래스 컴퍼니 리미티드 Coating liquid for optical members, polymer, cured film, photosensitive coating liquid, pattern cured film, optical member, solid-state imaging device, display device, polysiloxane compound, stabilizer used in coating liquid, method for producing cured film, method for producing pattern cured film , and methods for preparing polymers

Also Published As

Publication number Publication date
JP6487933B2 (en) 2019-03-20
JPWO2016051718A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
US11442200B2 (en) Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
JP6039962B2 (en) Cover glass for photoelectric conversion device
JP7242720B2 (en) Glass plate with coating film and method for producing the same
JP6771388B2 (en) Method for manufacturing a glass plate with a low reflection coating and a glass plate with a low reflection coating
US10329430B2 (en) Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
JP6487933B2 (en) Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating
JP5989808B2 (en) Manufacturing method of glass plate with low reflection coating and coating liquid used therefor
WO2016002223A1 (en) Glass plate having low-reflection coating
JP7153638B2 (en) Glass articles with low reflection coating
WO2018198937A1 (en) Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate
WO2018198936A1 (en) Low-reflection-film-coated transparent substrate, photoelectric conversion device, coating liquid for forming low-reflection film for low-reflection-film-coated transparent substrate, and production method for low-reflection-film-coated transparent substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847963

Country of ref document: EP

Kind code of ref document: A1