WO2018198937A1 - Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate - Google Patents

Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate Download PDF

Info

Publication number
WO2018198937A1
WO2018198937A1 PCT/JP2018/016162 JP2018016162W WO2018198937A1 WO 2018198937 A1 WO2018198937 A1 WO 2018198937A1 JP 2018016162 W JP2018016162 W JP 2018016162W WO 2018198937 A1 WO2018198937 A1 WO 2018198937A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent substrate
coating
film
coating liquid
mass
Prior art date
Application number
PCT/JP2018/016162
Other languages
French (fr)
Japanese (ja)
Inventor
瑞穂 小用
中澤 達洋
河津 光宏
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2019514445A priority Critical patent/JP7213177B2/en
Publication of WO2018198937A1 publication Critical patent/WO2018198937A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to a transparent substrate with a coating, a coating liquid for forming a coating of the transparent substrate with a coating, and a method for producing the transparent substrate with a coating.
  • a low reflection film is formed on the surface of a substrate such as glass or ceramic for the purpose of improving the function of the substrate in order to transmit more light or prevent glare due to reflection.
  • the low reflection film is used for glass for a vehicle, a show window or a glass plate used for a photoelectric conversion device.
  • a so-called thin film solar cell which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially stacked. It is formed on the main surface opposite to the main surface, that is, the main surface on the side where sunlight enters.
  • the solar cell in which the low reflection film is formed on the sunlight incident side more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
  • the most commonly used low-reflection film is a dielectric film formed by a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method), or the like. There is also.
  • the fine particle-containing film is formed by applying a coating liquid containing fine particles onto a transparent substrate by dipping, flow coating, spraying, or the like.
  • Patent Document 1 a coating liquid containing fine particles and a binder precursor is applied to a glass plate having surface irregularities by a spray method, dried at 400 ° C. and then 610 ° C.
  • the cover glass for photoelectric conversion devices formed by performing the baking process for 8 minutes is disclosed.
  • the coating formed on the cover glass can improve the average transmittance of light having a wavelength of 380 to 1100 nm by at least 2.37%.
  • Patent Document 2 a sol containing tetraethoxysilane, aluminum acetylacetonate, and colloidal silica is attached to a glass plate by a dip coating method, and heat treatment is performed at 680 ° C. for 180 seconds. A glass substrate coated therewith is disclosed. With the film formed on the glass substrate, the average transmittance of light having a wavelength of 300 to 1100 nm can be improved by 2.5%.
  • Patent Document 3 discloses colloidal silica having a dispersed particle size larger than the average primary particle size and having a shape factor and an aspect ratio of more than 1 to some extent, tetraalkoxysilane, A coated silicon substrate formed by applying a coating composition containing aluminum nitrate onto a substrate using a spin coater and performing a drying process at 100 ° C. for 1 minute is disclosed. Although there is no description about the improvement of the average light transmittance by this film, this film has a refractive index of 1.40 or less.
  • a transparent substrate with a coating such as a glass plate on which a coating is formed.
  • a transparent substrate with a coating has high alkali resistance so that it can be washed with a strong detergent as in the case of a float plate glass or the like without a coating.
  • the coated transparent substrate is also required to have improved alkali resistance. As described above, the coated transparent substrate has room for further improvement in terms of improving durability and alkali resistance.
  • an object of the present invention is to provide a coated transparent substrate having further improved durability and alkali resistance. Furthermore, another object of the present invention is to provide a coating solution for forming a film of such a transparent substrate with a film and a method for producing the transparent substrate with a film.
  • a first aspect of the present invention is a transparent substrate with a coating comprising a transparent substrate and a coating formed on at least one main surface of the transparent substrate,
  • the coating includes silica having a continuous structure, an aluminum compound, and an organic component, The content of the component in the coating is expressed in mass%, Silica having a continuous structure more than 93% to 99.9%
  • the aluminum compound is converted to Al 2 O 3 0.05 to less than 2%
  • the film thickness is 20 to 500 nm
  • the organic component comprises a beta keto ester;
  • a transparent substrate with a coating is provided.
  • the second aspect of the present invention is a coating liquid for forming a film of a transparent substrate with a film
  • the coating liquid includes a hydrolyzable silicon compound, an aluminum chelate complex, and a solvent
  • the hydrolyzable silicon compound is a compound represented by the formula (I): SiX 4 (where X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom).
  • the aluminum chelate complex includes a polydentate ligand having a ⁇ -ketoester structure
  • the solvent includes an organic solvent that is miscible with water and has a boiling point of 70 ° C. or higher and lower than 180 ° C., When the mass of the silicon oxide component contained in the hydrolyzable silicon compound is 100 parts by mass when converted to SiO 2 , the aluminum chelate complex is 0.1 to 10 parts by mass.
  • Provide coating fluid When the mass of the silicon oxide component contained in the hydrolyzable silicon compound
  • the third aspect of the present invention is as follows.
  • a method for producing a coated transparent substrate according to the first aspect of the present invention The manufacturing method includes: An application step of applying a coating liquid for forming the film to the transparent substrate; A heating step of heating the transparent substrate coated with the coating liquid; Including The coating liquid is a coating liquid according to the second aspect of the present invention, In the heating step, the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time that the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less, A method for producing a coated transparent substrate is provided.
  • a coated transparent substrate with improved durability and alkali resistance can be provided.
  • the transparent substrate with a film according to the present embodiment includes a transparent substrate and a film formed on at least one main surface of the transparent substrate.
  • the film in the present embodiment includes silica having a continuous structure, an aluminum compound, and an organic component.
  • the coating has a physical thickness of 20 to 500 nm.
  • the physical thickness of the coating is preferably more than 100 nm and 500 nm or less, more preferably more than 100 nm and 150 nm or less.
  • the physical thickness of the coating is preferably 20 to 100 nm, and more preferably 50 to 90 nm.
  • the coating contains more than 93 mass% to 99.9 mass% (greater than 93 mass% and 99.9 mass% or less) of silica having a continuous structure.
  • Silica having a continuous structure is a silica that exists in a bulk shape in the coating and serves to shape the shape of the coating. Therefore, for example, when the coating includes silica fine particles, silica having a continuous structure is distinguished from the silica fine particles.
  • the silica having a continuous structure can also serve as a binder for binding the particulate components.
  • the silica network is sufficiently formed.
  • the content of silica having a continuous structure in the coating is preferably 97 to 99.8% by mass.
  • the content of the aluminum compound in the coating is 0.05 to less than 2% by mass (0.05% to less than 2% by mass) when the aluminum compound is converted to Al 2 O 3 , and 0.05 to 1 It is preferable that it is mass%.
  • the aluminum compound contained in the coating is preferably an aluminum chelate complex.
  • the film can improve durability and alkali resistance.
  • the aluminum chelate complex preferably contains a polydentate ligand having a ⁇ -ketoester structure.
  • An aluminum chelate complex containing such a multidentate ligand has high stability in a coating solution for forming a film.
  • the aluminum chelate complex may contain 1 or 2 alkoxy groups bonded directly to the aluminum atom.
  • the alkoxy group preferably has 1 to 8 carbon atoms, for example.
  • the alkoxy group may be, for example, any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group. It is considered that when the aluminum chelate complex contains an alkoxy group bonded directly to an aluminum atom, a crosslinked structure having aluminum as a central element can be introduced into the coating.
  • the carboxylic acid constituting the ester has 4 to 6 carbon atoms, and the alcohol constituting the ester has 1 to 3 carbon atoms. Is preferred. More preferably, in the ⁇ -ketoester structure, the carboxylic acid constituting the ester has 4 carbon atoms, and the alcohol constituting the ester has 2 carbon atoms.
  • Examples of the aluminum chelate complex contained in the film include ethyl acetoacetate, methyl acetoacetate, isopropyl acetoacetate, ethyl 3-oxopentanoate and ethyl 3-oxo-4-methylpentanoate as multidentate ligands.
  • Aluminum chelate complexes are preferably used.
  • the coating contains an organic component in the range of 0.05 to 5% by mass, and preferably in the range of 0.2 to 2% by mass.
  • This organic component contains a ⁇ -ketoester.
  • the organic component when the aluminum compound is an aluminum chelate complex, the organic component includes an organic component derived from a ligand of the aluminum chelate complex.
  • the organic component may contain an alkyl group.
  • the alkyl group may be, for example, a methyl group or an ethyl group.
  • the total content of silica, aluminum compound and organic component having a continuous structure in the coating is preferably 95% by mass or more.
  • the coating film may consist of only a silica having a continuous structure, an aluminum compound, and an organic component.
  • the film may contain other components other than silica having a continuous structure, an aluminum compound, and an organic component.
  • the coating may further contain inorganic fine particles.
  • the inorganic fine particles contained in the film may be inorganic fine particles other than silica fine particles, for example. Further, the coating may not contain inorganic fine particles.
  • a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound can be used as a source of silica having a continuous structure.
  • the hydrolyzable silicon compound may include a compound represented by the following formula (I).
  • X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
  • a hydrolyzable silicon compound typified by silicon alkoxide can be used as a supply source of silica having a continuous structure in the coating.
  • the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and ethyltrimethoxysilane.
  • These hydrolyzable silicon compounds may be hydrolyzed and polycondensed by a so-called sol-gel method to form silica having a continuous structure.
  • Hydrolysis of the hydrolyzable silicon compound can be carried out as appropriate.
  • an acid and a base can be used for a hydrolysis catalyst
  • inorganic acids such as an acid, especially hydrochloric acid, nitric acid, a sulfuric acid, and phosphoric acid
  • hydrochloric acid it is preferable to use inorganic acids, such as an acid, especially hydrochloric acid, nitric acid, a sulfuric acid, and phosphoric acid.
  • hydrochloric acid is superior to the basic solution in terms of stability of the coating solution.
  • the hydrolysis catalyst it is desirable to use an acid having a high degree of ionization in an aqueous solution. Specifically, it is desirable to use an acid having an acid dissociation constant pKa (meaning a first acid dissociation constant when the acid is a polybasic acid) of 2.5 or less.
  • pKa meaning a first acid dissociation constant when the acid is a polybasic acid
  • the transparent substrate for example, a glass plate and a substrate made of an organic polymer are used.
  • substrate which consists of organic polymers the board
  • an example in which a glass plate is used as the transparent substrate will be described.
  • the glass plate is not particularly limited, but in order to smooth the surface of the coating provided on the main surface, a glass plate having excellent microscopic surface smoothness is preferable.
  • the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
  • the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
  • the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye.
  • the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order.
  • the average spacing Sm of the irregularities on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly 2.0 mm or less. In particular, it is preferably 1.5 mm or less.
  • the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
  • the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
  • the average interval Sm and the maximum height Ry are values specified in JIS (Japanese Industrial Standards) B0601-1994.
  • the arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even a template glass can be suitably used as a transparent substrate of a transparent substrate with a film of this embodiment as a glass plate having excellent microscopic surface smoothness.
  • the glass plate may have the same composition as that of ordinary template glass or architectural glass plate, and preferably contains no coloring component as much as possible.
  • the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
  • the glass plate may be a glass plate in which another film is further formed on the main surface opposite to the main surface on which the film is formed.
  • the glass plate with a transparent conductive film is mentioned as a glass plate which can apply the film of this embodiment suitably.
  • This glass plate with a transparent conductive film has, for example, a transparent conductive film on one main surface of any of the glass plates described above, and has one or more underlayers such as fluorine-doped on the main surface of the glass plate.
  • the transparent conductive layer which has tin oxide as a main component is laminated
  • the transparent substrate with a coating according to the present embodiment described above can achieve high durability (particularly, durability evaluated by the following pressure cooker test) and high alkali resistance.
  • the transparent substrate with a film of the present embodiment includes, for example, an average transmittance in a wavelength range of 380 to 850 nm of the transparent substrate with a film after the pressure cooker test is performed, and the transparent substrate with a film before the pressure cooker test is performed.
  • the absolute value of the difference from the average transmittance in the wavelength region can be 1% or less, and can also be 0.6% or less.
  • the pressure cooker test refers to a transparent substrate with a film held at a temperature of 130 ° C., 2 atm, and a relative humidity of 100% for 1 hour at room temperature after releasing the applied pressure. It is a test in which the cycle of allowing to cool to 2 cycles is applied.
  • the transparent substrate with a film of the present embodiment is subjected to, for example, the average transmittance in the wavelength region 380 to 850 nm of the transparent substrate with a film after performing an alkali resistance test defined in JIS R3221: 2002, and the alkali resistance test is performed.
  • the absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with the previous film can be 0.8% or less, and can also be 0.5% or less.
  • the coated transparent substrate of this embodiment can have a transmittance gain of 1.5% or more, preferably 1.6% or more.
  • the transmittance gain in the present specification is an increase in the average transmittance in the wavelength region of the transparent substrate with the coating with respect to the average transmittance in the wavelength region 380 to 850 nm of the transparent substrate in a state where the coating is not formed. is there.
  • the transparent substrate with a film of this embodiment can be formed by applying a coating liquid on the main surface of a transparent substrate such as a glass plate to form a coating film, and drying and curing the coating film. That is, the coating film is formed by performing a heating process for drying and curing the coating film after the coating liquid for forming the coating film is applied to the transparent substrate.
  • the coating liquid in the present embodiment includes a hydrolyzable silicon compound, an aluminum chelate complex, and a solvent.
  • the hydrolyzable silicon compound in the coating liquid has the formula (I): SiX 4 (wherein X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom). Contains the compound shown.
  • hydrolyzable silicon compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetraisopropoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and ethyltrimethoxysilane.
  • the silicon alkoxide can be used.
  • the aluminum chelate complex in the coating solution contains a polydentate ligand having a ⁇ -ketoester structure.
  • the aluminum chelate complex may further comprise 1 or 2 alkoxy groups bonded directly to aluminum.
  • the alkoxy group preferably has 1 to 8 carbon atoms, for example.
  • the alkoxy group may be any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group. It is considered that when the aluminum chelate complex contains an alkoxy group bonded directly to an aluminum atom, a crosslinked structure having aluminum as a central element can be introduced into the coating.
  • the carboxylic acid constituting the ester has 4 to 6 carbon atoms and the alcohol constituting the ester has 1 to 3 carbon atoms. More preferably, in the ⁇ -ketoester structure, the carboxylic acid constituting the ester has 4 carbon atoms, and the alcohol constituting the ester has 2 carbon atoms.
  • Examples of the aluminum chelate complex in the coating solution include ethyl acetoacetate, methyl acetoacetate, isopropyl acetoacetate, ethyl 3-oxopentanoate and ethyl 3-oxo-4-methylpentanoate as multidentate ligands.
  • Aluminum chelate complexes are preferably used.
  • the solvent in the coating solution contains an organic solvent that is miscible with water.
  • This organic solvent includes those having a boiling point of 70 ° C. or higher and lower than 180 ° C.
  • ethanol (boiling point: 78 ° C.), 2-propanol (boiling point: 83 ° C.), 1-methoxy-2-propanol (boiling point: 121 ° C.), acetylacetone (boiling point: 141 ° C.), methoxypropyl acetate (boiling point: 146 ° C.) ), 3-methoxy-1-butanol (boiling point: 160 ° C.), diacetone alcohol (boiling point: 168 ° C.), 3-methoxy-3-methyl-1-butanol (boiling point: 174 ° C.), and the like.
  • the organic solvent has a boiling point of 70 ° C. or higher and lower than 180 ° C.
  • the organic solvent contains a solvent having a boiling point of 70 ° C. or higher and lower than 180 ° C. as a main component, and further includes a high boiling point organic solvent.
  • the organic solvent having a high boiling point those having a boiling point of 180 to 250 ° C. can be used. Thereby, the drying speed after coating can be delayed, and as a result, the leveling of the coating film is promoted, and the effects of reducing coating unevenness and homogenizing the appearance can be expected.
  • the amount of the organic solvent having a high boiling point is desirably 5% by mass or less based on the entire coating liquid.
  • high-boiling organic solvent examples include propylene glycol (boiling point: 187 ° C.), diethylene glycol monomethyl ether (boiling point: 193 ° C.), hexylene glycol (boiling point: 198 ° C.) and diethylene glycol (boiling point: 244 ° C.).
  • the aluminum chelate complex is 0.1 to 10 parts by mass.
  • the range is preferably 1 to 5 parts by mass.
  • the coating liquid in the present embodiment may further contain a hydrolysis catalyst for a hydrolyzable silicon compound.
  • a hydrolysis catalyst for a hydrolyzable silicon compound.
  • the hydrolysis catalyst either an acid or a base can be used. From the viewpoint of the stability of the coating solution, it is desirable to use an acid, particularly an inorganic acid, particularly hydrochloric acid. This is because acidic than basic is better in dispersibility of silica fine particles, and more excellent in the stability of the coating liquid.
  • As the hydrolysis catalyst it is desirable to use an acid having a high degree of ionization in an aqueous solution. Specifically, it is desirable to use an acid having an acid dissociation constant pKa (meaning a first acid dissociation constant when the acid is a polybasic acid) of 2.5 or less.
  • pKa meaning a first acid dissociation constant when the acid is a polybasic acid
  • any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, or the like can be used.
  • Spray coating is excellent in terms of mass productivity.
  • Roll coating and bar coating are excellent in terms of homogeneity of the appearance of the coating film in addition to mass productivity.
  • the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time during which the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less. Is preferred. Moreover, it is preferable that the time in which the surface of the transparent substrate is at a temperature of 100 ° C. or higher is 30 seconds or longer in the heating step.
  • the present embodiment as described above, which includes an application step of applying a coating liquid for forming a coating on a transparent substrate, and a heating step of heating the transparent substrate to which the coating liquid has been applied.
  • the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less
  • the time during which the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less, preferably A production method wherein 130 ° C. or more is 5 minutes or less, Can be mentioned.
  • the following transparent substrates with a film according to aspects 1 to 7 can be mentioned.
  • a transparent substrate with a coating includes silica having a continuous structure and an aluminum compound, The content of the component in the coating is expressed in mass%, Silica having a continuous structure: 75 to 98% (preferably 75 to 95%, more preferably 80 to 92%) The aluminum compound is converted to Al 2 O 3 : 2 to 25% (preferably 5 to 25%, more preferably more than 8% to 20%) And The film thickness is 20 to 500 nm. Transparent substrate with coating.
  • a transparent substrate with a coating according to aspect 1 The aluminum compound is derived from an aluminum halide (preferably aluminum chloride) added to a coating solution for forming the film. Transparent substrate with coating.
  • an aluminum halide preferably aluminum chloride
  • a transparent substrate with a coating according to aspect 1 or 2 is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming the film,
  • the hydrolyzable silicon compound is tetraalkoxysilane;
  • Transparent substrate with coating it is preferable that the transparent substrate with a film of aspect 3 consists of a silica and aluminum compound in which a film has a continuous structure.
  • a coated transparent substrate according to any one of the above aspects 1 to 3 A transmittance gain defined as an increase in the average transmittance of the transparent substrate with the coating in the wavelength region with respect to the average transmittance of the transparent substrate without the coating in the wavelength region of 380 to 850 nm is 1 .5% or more, Transparent substrate with coating.
  • a coated transparent substrate according to any one of the above aspects 1 to 4, The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after performing the pressure cooker test on the transparent substrate with the coating, and the wavelength of the transparent substrate with the coating before performing the pressure cooker test
  • the absolute value of the difference from the average transmittance in the region is 1% or less (preferably 0.5% or less, more preferably 0.2% or less).
  • the pressure cooker test means that the coated transparent substrate is held for 1 hour under high temperature and high temperature conditions of 130 ° C., 2 atm and relative humidity of 100%, and after releasing the applied pressure, it is released to room temperature. This is a test in which the cycle of cooling is performed for two cycles.
  • a coated transparent substrate according to any one of the above aspects 1 to 5, The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after performing the alkali resistance test defined in JIS R3221: 2002 on the transparent substrate with the coating, and the above before the alkali resistance test is performed.
  • the absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with a coating is 2% or less (preferably 1% or less, more preferably 0.5% or less).
  • Transparent substrate with coating stipulated in JIS R3221: 2002 is such that the transparent substrate with a coating is placed in contact with a sodium hydroxide solution having a temperature of 23 ° C. and a concentration of 1 mol / L so that the coating completely contacts the solution. It is a test immersed in time.
  • the thickness of the coating was determined using a photograph of a field emission scanning electron microscope (FE-SEM). The coating was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). From the FE-SEM photograph in the cross section from the upper side of the film at an angle of 30 °, the average value of the thickness of the coating at five measurement points was defined as the thickness of the coating.
  • FE-SEM field emission scanning electron microscope
  • Alkali resistance evaluation According to the alkali resistance test described in JIS R3221: 2002, the alkali resistance of the coated transparent substrate was evaluated. Specifically, the transparent substrate with a film was immersed in a 1 mol / L NaOH aqueous solution at 23 ° C. for 6 hours so that the film was completely in contact with the solution, then washed with water and dried. However, in this embodiment, instead of the absolute value of the difference in visible light transmittance defined in JIS R3221: 2002, the average transmission in the wavelength range of 380 to 850 nm measured by the same method as the evaluation of the transmission characteristics described above. The absolute value of the difference between the average transmittance after the alkali resistance test and the average transmittance before the alkali resistance test was carried out was determined as the alkali resistance evaluation.
  • Example 1 Preparation of coating solution> A mixture of 76.63 parts by weight of 1-methoxy-2-propanol (solvent), 5.03 parts by weight of water and 1.00 parts by weight of 1N hydrochloric acid (hydrolysis catalyst) was stirred and mixed with tetraethoxysilane (normal silicic acid). 17.34 parts by mass of ethyl (manufactured by Tama Chemical Co., Ltd.) was added, and the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a hydrolyzate A.
  • Hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 39.40 g, aluminum chelate complex solution (aluminum ethyl acetoacetate dibutoxide (“DX-9740” manufactured by Shin-Etsu Chemical Co., Ltd.)) at a concentration of 10 mass. %, Dissolved in 1-methoxy-2-propanol (solvent) so that the amount of the solution was 1%, the mixture was stirred and mixed to obtain the coating liquid of Example 1.
  • DX-9740 aluminum chelate complex solution
  • the silicon oxide component contained in the solid content of the coating solution is 98.82% by mass in terms of SiO 2
  • the aluminum compound in terms of Al 2 O 3 is 0.33% by mass
  • the organic component (aluminum chelate complex distribution) was 0.85% by mass.
  • the content rate of each component in solid content of a coating liquid is corresponded to the content rate of each component in the film formed. The same applies to the following examples and comparative examples.
  • Example 1 a coating was formed on the main surface on one side of the glass plate with a transparent conductive film to obtain a transparent substrate with a coating.
  • This glass plate is made of Nippon Soda Glass Co., Ltd., having a thickness of 3.2 mm, having a normal soda lime silicate composition, and having a transparent conductive layer including a transparent conductive layer formed on one main surface using an on-line CVD method. It was a glass plate with a transparent conductive film.
  • This glass plate is cut into 200 ⁇ 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), cleaned with an ultrasonic cleaner, washed with deionized water, and dried at room temperature. Thus, a glass plate for forming a film was obtained.
  • an alkaline solution alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.
  • Example 1 using a roll coater, the coating liquid of Example 1 was applied to the main surface of the glass plate on which the transparent conductive film was not applied. At this time, the film thickness of the coating solution was adjusted to 1 to 5 ⁇ m. Next, the coating solution applied to the glass plate was dried and cured with hot air.
  • This hot air drying uses a belt-conveying hot air drying device, the hot air set temperature is set to 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was performed by reciprocating four times and passing under the nozzle four times. At this time, the time during which the glass plate coated with the coating solution was in contact with hot air was 140 seconds.
  • Example 2 ⁇ Preparation of coating solution> Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 39.85 g, aluminum chelate complex solution 0.15 g
  • a coating solution was prepared in the same manner as in Example 1 except that. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 0.5 parts by mass of the aluminum chelate complex is contained.
  • the silicon oxide component contained in the solid content of the coating solution is 99.70% by mass in terms of SiO 2
  • the aluminum compound in terms of Al 2 O 3 is 0.08% by mass
  • the organic component the distribution of the aluminum chelate complex.
  • the organic component derived from the ligand was 0.21% by mass.
  • Example 2 a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Example 2 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 3 ⁇ Preparation of coating solution> Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 39.70 g, aluminum chelate complex solution 0.30 g
  • a coating solution was prepared in the same manner as in Example 1 except that. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 1 part by mass of the aluminum chelate complex is contained.
  • the silicon oxide component contained in the solid content of the coating solution is 99.41% by mass in terms of SiO 2
  • the aluminum compound in terms of Al 2 O 3 is 0.17% by mass
  • the organic component the distribution of the aluminum chelate complex.
  • the organic component derived from the ligand was 0.43% by mass.
  • Example 3 a coating film was formed by the same procedure as in Example 1 except that the coating liquid of Example 3 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • Example 4 Preparation of coating solution> Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 38.68 g, aluminum chelate complex solution 1.32 g
  • a coating solution was prepared in the same manner as in Example 1 except that. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 4.4 parts by mass of the aluminum chelate complex is contained.
  • the silicon oxide component contained in the solid content of the coating solution is 97.44% by mass in terms of SiO 2
  • the aluminum compound in terms of Al 2 O 3 is 0.72% by mass
  • the organic component the distribution of the aluminum chelate complex.
  • the organic component derived from the ligand was 1.84% by mass.
  • Example 4 a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Example 4 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
  • the silicon oxide component contained in the solid content of the coating solution is 91.93% by mass in terms of SiO 2
  • the aluminum compound in terms of Al 2 O 3 is 2.27% by mass
  • the organic component the distribution of the aluminum chelate complex.
  • the organic component derived from the ligand was 5.80% by mass.
  • Comparative Example 1 a coating film was formed in the same procedure as in Example 1 except that the coating solution of Comparative Example 1 was used, and the above-described characteristics were evaluated. The results are shown in Table 2.
  • the coating solution when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 13.1 parts by mass of aluminum chloride is contained.
  • Example 1 a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Reference Example 1 was used, and the above-described characteristics were evaluated. The results are shown in Table 2.
  • the film was formed under the same heating conditions (heated cloth drying) as in Example 1, as shown in Table 2, the durability results evaluated by the pressure cooker test and the alkali resistance evaluation results were not good. Therefore, the heating for drying and curing the coating liquid applied to the glass plate is not performed using hot air, but the glass plate coated with the coating liquid is held in an electric furnace set at 400 ° C. for 4 minutes. Was done by. In the heating using this electric furnace, the maximum temperature reached on the glass surface on which the coating solution for the glass plate was applied was 300 ° C.
  • the glass plate after drying and curing was allowed to cool to room temperature, and a film was formed on the glass plate.
  • a glass plate provided with a coating formed by heating using this electric furnace was excellent in durability and alkali resistance evaluated by a pressure cooker test.
  • Table 2 the evaluation result of the glass plate provided with the film formed under the same heating conditions as in Example 1 is written together with “hot air drying”, and the film formed by heating using the above electric furnace The evaluation result of the provided glass plate is written together with “electric furnace drying”.
  • the coating solution when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 26.2 parts by mass of aluminum chloride is contained.
  • the silicon oxide component contained in the solid content of the coating solution was 83.33% by mass in terms of SiO 2
  • the aluminum compound in terms of Al 2 O 3 was 16.67% by mass
  • the organic component was 0% by mass. It was.
  • Example 2 a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Reference Example 2 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 2.
  • Table 2 the result of durability evaluated by the pressure cooker test and the result of alkali resistance evaluation were not good. Therefore, the heating for drying and curing the coating liquid applied to the glass plate is not performed using hot air, but the glass plate coated with the coating liquid is held in an electric furnace set at 400 ° C. for 4 minutes. Was done by. In the heating using this electric furnace, the maximum temperature reached on the glass surface on which the coating solution for the glass plate was applied was 300 ° C.
  • the glass plate after drying and curing was allowed to cool to room temperature, and a film was formed on the glass plate.
  • a glass plate provided with a coating formed by heating using this electric furnace was excellent in durability and alkali resistance evaluated by a pressure cooker test.
  • Table 2 the evaluation result of the glass plate provided with the film formed under the same heating conditions as in Example 1 is written together with “hot air drying”, and the film formed by heating using the above electric furnace The evaluation result of the provided glass plate is written together with “electric furnace drying”.
  • the transparent substrates with coatings of Examples 1 to 4 had a transmittance gain of 1.6% or more, and also had high durability and high alkali resistance.
  • the coated transparent substrates of Comparative Examples 1 to 3 have a high transmittance gain, but cannot satisfy both high durability and high alkali resistance, and are evaluated particularly in the pressure cooker test. It was inferior in durability.
  • a coated transparent substrate excellent in durability and alkali resistance can be provided.

Abstract

This coating-film-coated transparent substrate includes a transparent substrate and a coating film that is formed on at least one principal surface of the transparent substrate. The coating film includes: silica that has a continuous structure; an aluminum compound; and an organic component. The coating film contains, by mass%, more than 93% but no more than 99.9% of the silica that has a continuous structure, at least 0.05% but less than 2% of the aluminum compound in terms of Al2O3, and 0.05%–5% of the organic component. The film thickness of the coating film is 20–500 nm. The organic component includes a β-keto ester.

Description

被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法Transparent substrate with coating, coating liquid for forming coating on transparent substrate with coating, and method for producing transparent substrate with coating
 本発明は、被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法に関する。 The present invention relates to a transparent substrate with a coating, a coating liquid for forming a coating of the transparent substrate with a coating, and a method for producing the transparent substrate with a coating.
 ガラス、セラミックなどの基材の表面には、その基材の用途における機能改善を目的として、例えば光をより多く透過させるため、又は反射による眩惑を防止するための低反射膜が形成される。 A low reflection film is formed on the surface of a substrate such as glass or ceramic for the purpose of improving the function of the substrate in order to transmit more light or prevent glare due to reflection.
 例えば低反射膜は、車両用ガラス、ショーウィンドウ又は光電変換装置に用いるガラス板などに利用される。光電変換装置の一種であるいわゆる薄膜型太陽電池では、下地膜、透明導電膜、アモルファスシリコンなどからなる光電変換層及び裏面薄膜電極を順次積層したガラス板を用いるが、低反射膜はこれら積層した主表面とは対向する主表面、つまり太陽光が入射する側の主表面に形成される。このように太陽光の入射側に低反射膜が形成された太陽電池では、より多くの太陽光が光電変換層又は太陽電池素子に導かれ、その発電量が向上することになる。 For example, the low reflection film is used for glass for a vehicle, a show window or a glass plate used for a photoelectric conversion device. A so-called thin film solar cell, which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially stacked. It is formed on the main surface opposite to the main surface, that is, the main surface on the side where sunlight enters. Thus, in the solar cell in which the low reflection film is formed on the sunlight incident side, more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
 最もよく用いられる低反射膜は、真空蒸着法、スパッタリング法、化学蒸着法(CVD法)などによる誘電体膜であるが、シリカ微粒子などの微粒子を含む微粒子含有膜が低反射膜として用いられることもある。微粒子含有膜は、微粒子を含む塗工液を、ディッピング法、フローコート法、スプレー法などによって透明基体上に塗布することにより成膜される。 The most commonly used low-reflection film is a dielectric film formed by a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method), or the like. There is also. The fine particle-containing film is formed by applying a coating liquid containing fine particles onto a transparent substrate by dipping, flow coating, spraying, or the like.
 特開2014-032248号公報(特許文献1)には、表面凹凸を有するガラス板に、微粒子とバインダ前駆体とを含む塗工液をスプレー法により塗布し、これに400℃で乾燥後610℃で8分間の焼成工程を実施することにより形成された光電変換装置用カバーガラスが開示されている。このカバーガラスに形成された被膜によって、波長380~1100nmの光の平均透過率を少なくとも2.37%向上させることができる。 In Japanese Patent Application Laid-Open No. 2014-032248 (Patent Document 1), a coating liquid containing fine particles and a binder precursor is applied to a glass plate having surface irregularities by a spray method, dried at 400 ° C. and then 610 ° C. The cover glass for photoelectric conversion devices formed by performing the baking process for 8 minutes is disclosed. The coating formed on the cover glass can improve the average transmittance of light having a wavelength of 380 to 1100 nm by at least 2.37%.
 さらに、特表2013-537873号公報(特許文献2)には、テトラエトキシシラン、アルミニウムアセチルアセトネート、コロイドシリカを含むゾルを浸漬被覆法によりガラス板に付着させ、680℃180秒間の熱処理を行なうことで被覆されたガラス基板が開示されている。このガラス基板に形成された被膜によって、波長300~1100nmの光の平均透過率を2.5%向上させることができる。 Further, in Japanese translations of PCT publication No. 2013-537873 (Patent Document 2), a sol containing tetraethoxysilane, aluminum acetylacetonate, and colloidal silica is attached to a glass plate by a dip coating method, and heat treatment is performed at 680 ° C. for 180 seconds. A glass substrate coated therewith is disclosed. With the film formed on the glass substrate, the average transmittance of light having a wavelength of 300 to 1100 nm can be improved by 2.5%.
 また、特開2014-015543号公報(特許文献3)には、平均一次粒子径より分散粒子径が大きく、形状係数とアスペクト比が1よりある程度以上大きいコロイダルシリカと、テトラアルルコキシシランと、硝酸アルミニウムとを含むコーティング組成物をスピンコーターを用いて基板上に塗布し、100℃1分間の乾燥工程を実施することにより形成された、被膜付きシリコン基板が開示されている。この被膜による光の平均透過率の向上については記載がないが、この被膜は1.40以下の屈折率を有する。 Japanese Patent Application Laid-Open No. 2014-015543 (Patent Document 3) discloses colloidal silica having a dispersed particle size larger than the average primary particle size and having a shape factor and an aspect ratio of more than 1 to some extent, tetraalkoxysilane, A coated silicon substrate formed by applying a coating composition containing aluminum nitrate onto a substrate using a spin coater and performing a drying process at 100 ° C. for 1 minute is disclosed. Although there is no description about the improvement of the average light transmittance by this film, this film has a refractive index of 1.40 or less.
特開2014-032248号公報JP 2014-032248 A 特表2013-537873号公報JP 2013-537873 A 特開2014-015543号公報JP 2014-015543 A
 被膜が形成されているガラス板等の被膜付き透明基板には、高い耐久性が要求される。また、被膜付き透明基板は、被膜が設けられていないフロート板ガラス等と同様に強力な洗剤で洗浄できるように、高い耐アルカリ性を有することが好ましい。したがって、被膜付き透明基板には、耐アルカリ性の向上も要求される。このように、被膜付き透明基板については、耐久性及び耐アルカリ性を向上させるという点において、さらなる改善の余地があった。 High durability is required for a transparent substrate with a coating such as a glass plate on which a coating is formed. Moreover, it is preferable that a transparent substrate with a coating has high alkali resistance so that it can be washed with a strong detergent as in the case of a float plate glass or the like without a coating. Accordingly, the coated transparent substrate is also required to have improved alkali resistance. As described above, the coated transparent substrate has room for further improvement in terms of improving durability and alkali resistance.
 本発明は、かかる事情に鑑み、耐久性及び耐アルカリ性がさらに向上した被膜付き透明基板を提供することを目的とする。さらに、本発明は、そのような被膜付き透明基板の被膜を形成するための塗工液と、被膜付き透明基板の製造方法を提供することも目的とする。 In view of such circumstances, an object of the present invention is to provide a coated transparent substrate having further improved durability and alkali resistance. Furthermore, another object of the present invention is to provide a coating solution for forming a film of such a transparent substrate with a film and a method for producing the transparent substrate with a film.
 本発明の第1の態様は、透明基板と、前記透明基板の少なくとも一方の主表面に形成されている被膜とを含む、被膜付き透明基板であって、
 前記被膜は、連続構造を有するシリカと、アルミニウム化合物と、有機成分とを含み、
 前記被膜における成分の含有率が、質量%表示で、
  前記連続構造を有するシリカ  93%超~99.9%
  前記アルミニウム化合物をAl23に換算して  0.05~2%未満
  有機成分  0.05~5%
であり、
 前記被膜の膜厚が20~500nmであり、
 前記有機成分がβケトエステルを含む、
被膜付き透明基板を提供する。
A first aspect of the present invention is a transparent substrate with a coating comprising a transparent substrate and a coating formed on at least one main surface of the transparent substrate,
The coating includes silica having a continuous structure, an aluminum compound, and an organic component,
The content of the component in the coating is expressed in mass%,
Silica having a continuous structure more than 93% to 99.9%
The aluminum compound is converted to Al 2 O 3 0.05 to less than 2% Organic component 0.05 to 5%
And
The film thickness is 20 to 500 nm,
The organic component comprises a beta keto ester;
A transparent substrate with a coating is provided.
 また、本発明の第2の態様は、被膜付き透明基板の被膜を形成するための塗工液であって、
 前記塗工液は、加水分解性シリコン化合物と、アルミニウムキレート錯体と、溶媒とを含み、
 前記加水分解性シリコン化合物は、式(I):SiX4(ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである)に示す化合物を含み、
 前記アルミニウムキレート錯体は、βケトエステル構造を有する多座配位子を含み、
 前記溶媒は、水と混和し、かつ、70℃以上180℃未満の沸点を有する有機溶媒を含み、
 前記加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、前記アルミニウムキレート錯体は、0.1~10質量部である、
塗工液を提供する。
Moreover, the second aspect of the present invention is a coating liquid for forming a film of a transparent substrate with a film,
The coating liquid includes a hydrolyzable silicon compound, an aluminum chelate complex, and a solvent,
The hydrolyzable silicon compound is a compound represented by the formula (I): SiX 4 (where X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom). Including
The aluminum chelate complex includes a polydentate ligand having a β-ketoester structure,
The solvent includes an organic solvent that is miscible with water and has a boiling point of 70 ° C. or higher and lower than 180 ° C.,
When the mass of the silicon oxide component contained in the hydrolyzable silicon compound is 100 parts by mass when converted to SiO 2 , the aluminum chelate complex is 0.1 to 10 parts by mass.
Provide coating fluid.
 また、本発明の第3の態様は、
 上記本発明の第1の態様に係る被膜付き透明基板の製造方法であって、
 前記製造方法は、
 前記被膜を形成するための塗工液を前記透明基板に塗布する塗布工程と、
 前記塗工液が塗布された前記透明基板を加熱する加熱工程と、
を含み、
 前記塗工液は、上記本発明の第2の態様に係る塗工液であり、
 前記加熱工程において、前記透明基板の表面が経験する最高温度が350℃以下であり、前記透明基板の表面が150℃以上の温度にある時間が5分以下である、
被膜付き透明基板の製造方法を提供する。
The third aspect of the present invention is as follows.
A method for producing a coated transparent substrate according to the first aspect of the present invention,
The manufacturing method includes:
An application step of applying a coating liquid for forming the film to the transparent substrate;
A heating step of heating the transparent substrate coated with the coating liquid;
Including
The coating liquid is a coating liquid according to the second aspect of the present invention,
In the heating step, the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time that the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less,
A method for producing a coated transparent substrate is provided.
 本発明によれば、耐久性及び耐アルカリ性が向上した被膜付き透明基板を提供できる。 According to the present invention, a coated transparent substrate with improved durability and alkali resistance can be provided.
 本発明の被膜付き透明基板の一実施形態について説明する。 One embodiment of the coated transparent substrate of the present invention will be described.
 本実施形態の被膜付き透明基板は、透明基板と、透明基板の少なくとも一方の主表面に形成されている被膜とを含んでいる。 The transparent substrate with a film according to the present embodiment includes a transparent substrate and a film formed on at least one main surface of the transparent substrate.
 まず、被膜について説明する。 First, the coating will be described.
 本実施形態における被膜は、連続構造を有するシリカと、アルミニウム化合物と、有機成分とを含む。被膜は、物理的厚さが20~500nmである。被膜の一態様において、例えば、被膜の物理的厚さは100nmを超え500nm以下が好ましく、100nmを超え150nm以下がより好ましい。被膜の別の態様において、例えば、被膜の物理的厚さは、20~100nmが好ましく、50~90nmがより好ましい。 The film in the present embodiment includes silica having a continuous structure, an aluminum compound, and an organic component. The coating has a physical thickness of 20 to 500 nm. In one embodiment of the coating, for example, the physical thickness of the coating is preferably more than 100 nm and 500 nm or less, more preferably more than 100 nm and 150 nm or less. In another embodiment of the coating, for example, the physical thickness of the coating is preferably 20 to 100 nm, and more preferably 50 to 90 nm.
 被膜は、連続構造を有するシリカを93質量%超~99.9質量%(93質量%を超え、99.9質量%以下)含んでいる。連続構造を有するシリカは、被膜においてバルク状に存在して被膜の形状を形作る役割をなすシリカである。したがって、例えば被膜がシリカ微粒子を含む場合、連続構造を有するシリカは、このシリカ微粒子とは区別される。被膜が粒子状の成分を含む場合、連続構造を有するシリカは、粒子状の成分を結着させるためのバインダとしての役割も果たすことができる。被膜における連続構造を有するシリカの含有率が93質量%超~99.9質量%の範囲であると、シリカネットワークが十分に形成される。シリカの含有率が93質量%以下であると、被膜の化学的耐久性及び耐水性が劣化する。被膜における連続構造を有するシリカの含有率は、97~99.8質量%が好ましい。 The coating contains more than 93 mass% to 99.9 mass% (greater than 93 mass% and 99.9 mass% or less) of silica having a continuous structure. Silica having a continuous structure is a silica that exists in a bulk shape in the coating and serves to shape the shape of the coating. Therefore, for example, when the coating includes silica fine particles, silica having a continuous structure is distinguished from the silica fine particles. When the coating includes particulate components, the silica having a continuous structure can also serve as a binder for binding the particulate components. When the content of the silica having a continuous structure in the coating is in the range of more than 93 mass% to 99.9 mass%, the silica network is sufficiently formed. When the silica content is 93% by mass or less, the chemical durability and water resistance of the coating deteriorate. The content of silica having a continuous structure in the coating is preferably 97 to 99.8% by mass.
 前記被膜におけるアルミニウム化合物の含有率は、アルミニウム化合物をAl23に換算して、0.05~2質量未満%(0.05質量%以上2質量%未満)であり、0.05~1質量%であることが好ましい。 The content of the aluminum compound in the coating is 0.05 to less than 2% by mass (0.05% to less than 2% by mass) when the aluminum compound is converted to Al 2 O 3 , and 0.05 to 1 It is preferable that it is mass%.
 前記被膜に含まれるアルミニウム化合物は、アルミニウムキレート錯体であることが好ましい。被膜が、Al23に換算した場合に上記範囲となるようにアルミニウム化合物を含むことにより、被膜は、耐久性及び耐アルカリ性を向上させることができる。 The aluminum compound contained in the coating is preferably an aluminum chelate complex. By including the aluminum compound so that the film falls within the above range when converted to Al 2 O 3 , the film can improve durability and alkali resistance.
 アルミニウムキレート錯体は、βケトエステル構造を有する多座配位子を含むことが好ましい。このような多座配位子を含むアルミニウムキレート錯体は、被膜を形成するための塗工液中での安定性が高い。 The aluminum chelate complex preferably contains a polydentate ligand having a β-ketoester structure. An aluminum chelate complex containing such a multidentate ligand has high stability in a coating solution for forming a film.
 アルミニウムキレート錯体は、アルミニウム原子に直接結合した1又は2個のアルコキシ基を含んでいてもよい。この場合、アルコキシ基の炭素数は、例えば1~8が好ましい。アルコキシ基は、例えば、i-プロポキシ基、n-ブトキシ基及びsec-ブトキシ基からなる群から選択されるいずれか1つであってもよい。アルミニウムキレート錯体がアルミニウム原子に直接結合したアルコキシ基を含むことにより、被膜中にアルミニウムを中心元素とした架橋構造を導入することができると考えられる。 The aluminum chelate complex may contain 1 or 2 alkoxy groups bonded directly to the aluminum atom. In this case, the alkoxy group preferably has 1 to 8 carbon atoms, for example. The alkoxy group may be, for example, any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group. It is considered that when the aluminum chelate complex contains an alkoxy group bonded directly to an aluminum atom, a crosslinked structure having aluminum as a central element can be introduced into the coating.
 アルミニウムキレート錯体に含まれる多座配位子のβケトエステル構造において、エステルを構成するカルボン酸の炭素数が4~6個であり、エステルを構成するアルコールの炭素数が1~3個であることが好ましい。より好ましくは、βケトエステル構造において、エステルを構成するカルボン酸の炭素数が4個であり、エステルを構成するアルコールの炭素数が2個であることである。 In the β-ketoester structure of the polydentate ligand contained in the aluminum chelate complex, the carboxylic acid constituting the ester has 4 to 6 carbon atoms, and the alcohol constituting the ester has 1 to 3 carbon atoms. Is preferred. More preferably, in the β-ketoester structure, the carboxylic acid constituting the ester has 4 carbon atoms, and the alcohol constituting the ester has 2 carbon atoms.
 被膜に含まれるアルミニウムキレート錯体としては、例えば、エチルアセトアセテート、メチルアセトアセテート、イソプロピルアセトアセテート、3-オキソペンタン酸エチル及び3-オキソ-4-メチルペンタン酸エチル等を多座配位子として含むアルミニウムキレート錯体が好適に用いられる。 Examples of the aluminum chelate complex contained in the film include ethyl acetoacetate, methyl acetoacetate, isopropyl acetoacetate, ethyl 3-oxopentanoate and ethyl 3-oxo-4-methylpentanoate as multidentate ligands. Aluminum chelate complexes are preferably used.
 被膜は、有機成分を0.05~5質量%の範囲で含んでおり、0.2~2質量%の範囲で含むことが好ましい。この有機成分は、βケトエステルを含んでいる。例えば、アルミニウム化合物がアルミニウムキレート錯体である場合、有機成分は、アルミニウムキレート錯体の配位子由来の有機成分を含む。 The coating contains an organic component in the range of 0.05 to 5% by mass, and preferably in the range of 0.2 to 2% by mass. This organic component contains a β-ketoester. For example, when the aluminum compound is an aluminum chelate complex, the organic component includes an organic component derived from a ligand of the aluminum chelate complex.
 有機成分は、アルキル基を含んでもよい。アルキル基は、例えば、メチル基及びエチル基でもよい。 The organic component may contain an alkyl group. The alkyl group may be, for example, a methyl group or an ethyl group.
 被膜における、連続構造を有するシリカ、アルミニウム化合物及び有機成分の含有率の合計は、95質量%以上であることが好ましい。被膜は、連続構造を有するシリカ、アルミニウム化合物及び有機成分のみからなっていてもよい。 The total content of silica, aluminum compound and organic component having a continuous structure in the coating is preferably 95% by mass or more. The coating film may consist of only a silica having a continuous structure, an aluminum compound, and an organic component.
 被膜は、連続構造を有するシリカ、アルミニウム化合物及び有機成分以外の他の成分を含んでいてもよい。例えば、被膜は、無機微粒子をさらに含んでいてもよい。被膜に含まれる無機微粒子は、例えばシリカ微粒子以外の無機微粒子であってもよい。また、被膜は、無機微粒子を含んでいなくてもよい。 The film may contain other components other than silica having a continuous structure, an aluminum compound, and an organic component. For example, the coating may further contain inorganic fine particles. The inorganic fine particles contained in the film may be inorganic fine particles other than silica fine particles, for example. Further, the coating may not contain inorganic fine particles.
 被膜において、連続構造を有するシリカの供給源としては、加水分解性シリコン化合物又は加水分解性シリコン化合物の加水分解物を用いることができる。この加水分解性シリコン化合物は、下記式(I)に示す化合物を含んでよい。なお、以下の式(I)において、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである。
 SiX4  (I)
In the coating, a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound can be used as a source of silica having a continuous structure. The hydrolyzable silicon compound may include a compound represented by the following formula (I). In the following formula (I), X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
SiX 4 (I)
 上記のとおり、被膜における連続構造を有するシリカの供給源として、シリコンアルコキシドに代表される加水分解性シリコン化合物を用いることができる。シリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン及びエチルトリメトキシシランを例示できる。これら加水分解性シリコン化合物は、いわゆるゾルゲル法により加水分解及び縮重合して、連続構造を有するシリカを形成すればよい。 As described above, a hydrolyzable silicon compound typified by silicon alkoxide can be used as a supply source of silica having a continuous structure in the coating. Examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and ethyltrimethoxysilane. These hydrolyzable silicon compounds may be hydrolyzed and polycondensed by a so-called sol-gel method to form silica having a continuous structure.
 加水分解性シリコン化合物の加水分解は、適宜実施することができる。なお、加水分解触媒には酸・塩基いずれを用いることもできるが、酸、特に塩酸、硝酸、硫酸及びリン酸等の無機酸を用いることが好しく、塩酸を用いることがさらに好ましい。塩基性より酸性の方が、塗工液の安定性にも優れるからである。また、加水分解触媒としては、水溶液中での電離度が大きい酸を用いることが望ましい。具体的には、酸解離定数pKa(酸が多塩基酸である場合には第一酸解離定数を意味する)が2.5以下の酸を用いることが望ましい。 Hydrolysis of the hydrolyzable silicon compound can be carried out as appropriate. In addition, although an acid and a base can be used for a hydrolysis catalyst, it is preferable to use inorganic acids, such as an acid, especially hydrochloric acid, nitric acid, a sulfuric acid, and phosphoric acid, and it is more preferable to use hydrochloric acid. This is because the acidic solution is superior to the basic solution in terms of stability of the coating solution. As the hydrolysis catalyst, it is desirable to use an acid having a high degree of ionization in an aqueous solution. Specifically, it is desirable to use an acid having an acid dissociation constant pKa (meaning a first acid dissociation constant when the acid is a polybasic acid) of 2.5 or less.
 次に、本実施形態の被膜付き透明基板に用いられる透明基板について説明する。 Next, the transparent substrate used for the transparent substrate with a film of this embodiment will be described.
 透明基板としては、例えば、ガラス板及び有機高分子からなる基板が用いられる。有機高分子からなる基板としては、例えば、アクリル樹脂製、ポリカーボネート樹脂製、ポリスチレン樹脂製及びポリエステル樹脂製の板状体及びフィルムが例示される。ここでは、透明基板としてガラス板を用いる例について説明する。 As the transparent substrate, for example, a glass plate and a substrate made of an organic polymer are used. As a board | substrate which consists of organic polymers, the board | plate-like body and film made from an acrylic resin, a polycarbonate resin, a polystyrene resin, and a polyester resin are illustrated, for example. Here, an example in which a glass plate is used as the transparent substrate will be described.
 ガラス板は、特に限定されないが、その主表面上に設けられる被膜の表面を平滑にするためには、微視的な表面の平滑性が優れているものが好ましい。例えば、ガラス板は、その主表面の算術平均粗さRaが例えば1nm以下、好ましくは0.5nm以下の平滑性を有するフロート板ガラスであってもよい。ここで、本明細書における算術平均粗さRaは、JIS B0601-1994に規定された値である。 The glass plate is not particularly limited, but in order to smooth the surface of the coating provided on the main surface, a glass plate having excellent microscopic surface smoothness is preferable. For example, the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less. Here, the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
 一方で、ガラス板は、その表面に、肉眼で確認できるサイズの巨視的な凹凸を有する型板ガラスであってもよい。なお、ここでいう巨視的な凹凸とは、粗さ曲線における評価長さをセンチメートルオーダーとした際に確認される、平均間隔Smがミリメートルオーダー程度の凹凸のことである。型板ガラスの表面における凹凸の平均間隔Smは、0.3mm以上、さらに0.4mm以上、特に0.45mm以上であることが好ましく、2.5mm以下、さらに2.1mm以下、特に2.0mm以下、とりわけ1.5mm以下であることが好ましい。ここで、平均間隔Smは、粗さ曲線が平均線と交差する点から求めた山谷一周期の間隔の平均値を意味する。さらに、型板ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.5μm~10μm、特に1μm~8μmの最大高さRyを有することが好ましい。ここで、平均間隔Sm及び最大高さRyは、JIS(日本工業規格) B0601-1994に規定された値である。なお、このような型板ガラスであっても、微視的には(例えば原子間力顕微鏡(AFM)観察のような、粗さ曲線における評価長さが数100nmである表面粗さ測定では)、算術平均粗さRaが数nm以下、例えば1nm以下を満たすことが可能である。したがって、型板ガラスであっても、微視的な表面の平滑性に優れるガラス板として、本実施形態の被膜付き透明基板の透明基板として好適に使用できる。 On the other hand, the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye. Here, the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order. The average spacing Sm of the irregularities on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly 2.0 mm or less. In particular, it is preferably 1.5 mm or less. Here, the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line. Further, the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 μm to 10 μm, particularly 1 μm to 8 μm, together with the average interval Sm in the above range. Here, the average interval Sm and the maximum height Ry are values specified in JIS (Japanese Industrial Standards) B0601-1994. Even with such a template glass, microscopically (for example, in the surface roughness measurement in which the evaluation length in the roughness curve is several hundreds of nanometers, such as observation with an atomic force microscope (AFM)), The arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even a template glass can be suitably used as a transparent substrate of a transparent substrate with a film of this embodiment as a glass plate having excellent microscopic surface smoothness.
 なお、ガラス板は、通常の型板ガラスや建築用板ガラスと同様の組成であってもよく、着色成分を極力含まないことが好ましい。ガラス板において、代表的な着色成分である酸化鉄の含有率は、Fe23に換算して、0.06質量%以下、特に0.02質量%以下が好適である。 The glass plate may have the same composition as that of ordinary template glass or architectural glass plate, and preferably contains no coloring component as much as possible. In the glass plate, the content of iron oxide, which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
 また、ガラス板は、被膜が形成される主表面とは反対側の主表面に、別の膜がさらに形成されているガラス板であってもよい。例えば、本実施形態の被膜を好適に施すことができるガラス板として、透明導電膜付きガラス板が挙げられる。この透明導電膜付きガラス板は、例えば上述の何れかのガラス板の一方の主表面に透明導電膜を有するものであって、ガラス板の主表面に、1層以上の下地層、例えばフッ素ドープ酸化錫を主成分とする透明導電層が順に積層されているものである。 Further, the glass plate may be a glass plate in which another film is further formed on the main surface opposite to the main surface on which the film is formed. For example, the glass plate with a transparent conductive film is mentioned as a glass plate which can apply the film of this embodiment suitably. This glass plate with a transparent conductive film has, for example, a transparent conductive film on one main surface of any of the glass plates described above, and has one or more underlayers such as fluorine-doped on the main surface of the glass plate. The transparent conductive layer which has tin oxide as a main component is laminated | stacked in order.
 以上の本実施形態の被膜付き透明基板は、高い耐久性(特に、以下のプレッシャークッカー試験で評価される耐久性)と、高い耐アルカリ性とを実現できる。 The transparent substrate with a coating according to the present embodiment described above can achieve high durability (particularly, durability evaluated by the following pressure cooker test) and high alkali resistance.
 本実施形態の被膜付き透明基板は、例えば、プレッシャークッカー試験を実施した後の被膜付き透明基板の波長域380~850nmにおける平均透過率と、プレッシャークッカー試験を実施する前の前記被膜付き透明基板の該波長域における平均透過率との差の絶対値を、1%以下とすることができ、0.6%以下とすることもできる。なお、本明細書において、プレッシャークッカー試験とは、被膜付き透明基板を、温度130℃、2気圧、相対湿度100%の高湿高温条件下で1時間保持し、印加した圧力を解除したのち室温まで放冷する、というサイクルを2サイクル施す試験である。 The transparent substrate with a film of the present embodiment includes, for example, an average transmittance in a wavelength range of 380 to 850 nm of the transparent substrate with a film after the pressure cooker test is performed, and the transparent substrate with a film before the pressure cooker test is performed. The absolute value of the difference from the average transmittance in the wavelength region can be 1% or less, and can also be 0.6% or less. In this specification, the pressure cooker test refers to a transparent substrate with a film held at a temperature of 130 ° C., 2 atm, and a relative humidity of 100% for 1 hour at room temperature after releasing the applied pressure. It is a test in which the cycle of allowing to cool to 2 cycles is applied.
 本実施形態の被膜付き透明基板は、例えば、JIS R3221:2002に定める耐アルカリ性試験を行った後の被膜付き透明基板の波長域380~850nmにおける平均透過率と、上記耐アルカリ性試験が実施される前の被膜付き透明基板の該波長域における平均透過率との差の絶対値を、0.8%以下とすることができ、0.5%以下とすることもできる。 The transparent substrate with a film of the present embodiment is subjected to, for example, the average transmittance in the wavelength region 380 to 850 nm of the transparent substrate with a film after performing an alkali resistance test defined in JIS R3221: 2002, and the alkali resistance test is performed. The absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with the previous film can be 0.8% or less, and can also be 0.5% or less.
 本実施形態の被膜付き透明基板は、1.5%以上、好ましくは1.6%以上の透過率ゲインを有することができる。ここで、本明細書における透過率ゲインとは、被膜が形成されていない状態の透明基板の波長域380~850nmにおける平均透過率に対する、被膜付き透明基板の該波長域における平均透過率の増分である。 The coated transparent substrate of this embodiment can have a transmittance gain of 1.5% or more, preferably 1.6% or more. Here, the transmittance gain in the present specification is an increase in the average transmittance in the wavelength region of the transparent substrate with the coating with respect to the average transmittance in the wavelength region 380 to 850 nm of the transparent substrate in a state where the coating is not formed. is there.
 本実施形態の被膜付き透明基板は、ガラス板等の透明基板の主表面に塗工液を塗布して塗膜を形成し、その塗膜を乾燥及び硬化させることによって形成できる。すなわち、被膜は、当該被膜を形成するための塗工液が透明基板に塗布された後に、塗膜の乾燥及び硬化のための加熱工程が実施されることによって形成される。 The transparent substrate with a film of this embodiment can be formed by applying a coating liquid on the main surface of a transparent substrate such as a glass plate to form a coating film, and drying and curing the coating film. That is, the coating film is formed by performing a heating process for drying and curing the coating film after the coating liquid for forming the coating film is applied to the transparent substrate.
 次に、本実施形態の被膜付き透明基板の被膜を形成するための塗工液について説明する。 Next, a coating solution for forming a film of the transparent substrate with a film according to this embodiment will be described.
 本実施形態における塗工液は、加水分解性シリコン化合物と、アルミニウムキレート錯体と、溶媒とを含む。 The coating liquid in the present embodiment includes a hydrolyzable silicon compound, an aluminum chelate complex, and a solvent.
 塗工液における加水分解性シリコン化合物は、式(I):SiX4(ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである)に示す化合物を含む。加水分解性シリコン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン及びテトライソプロポキシシラン等のテトラアルコキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、並びに、エチルトリメトキシシラン等の、シリコンアルコキシドを用いることができる。 The hydrolyzable silicon compound in the coating liquid has the formula (I): SiX 4 (wherein X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom). Contains the compound shown. Examples of hydrolyzable silicon compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetraisopropoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and ethyltrimethoxysilane. The silicon alkoxide can be used.
 塗工液におけるアルミニウムキレート錯体は、βケトエステル構造を有する多座配位子を含む。アルミニウムキレート錯体は、さらに、アルミニウムに直接結合した1又は2個のアルコキシ基を含んでもよい。この場合、アルコキシ基の炭素数は、例えば1~8が好ましい。アルコキシ基は、i-プロポキシ基、n-ブトキシ基及びsec-ブトキシ基からなる群から選択されるいずれか1つであってもよい。アルミニウムキレート錯体がアルミニウム原子に直接結合したアルコキシ基を含むことにより、被膜中にアルミニウムを中心元素とした架橋構造を導入することができると考えられる。 The aluminum chelate complex in the coating solution contains a polydentate ligand having a β-ketoester structure. The aluminum chelate complex may further comprise 1 or 2 alkoxy groups bonded directly to aluminum. In this case, the alkoxy group preferably has 1 to 8 carbon atoms, for example. The alkoxy group may be any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group. It is considered that when the aluminum chelate complex contains an alkoxy group bonded directly to an aluminum atom, a crosslinked structure having aluminum as a central element can be introduced into the coating.
 アルミニウムキレート錯体のβケトエステル構造において、エステルを構成するカルボン酸の炭素数が4~6個であり、エステルを構成するアルコールの炭素数が1~3個であることが好ましい。より好ましくは、βケトエステル構造において、エステルを構成するカルボン酸の炭素数が4個であり、エステルを構成するアルコールの炭素数が2個であることである。 In the β-ketoester structure of the aluminum chelate complex, it is preferable that the carboxylic acid constituting the ester has 4 to 6 carbon atoms and the alcohol constituting the ester has 1 to 3 carbon atoms. More preferably, in the β-ketoester structure, the carboxylic acid constituting the ester has 4 carbon atoms, and the alcohol constituting the ester has 2 carbon atoms.
 塗工液におけるアルミニウムキレート錯体としては、例えば、エチルアセトアセテート、メチルアセトアセテート、イソプロピルアセトアセテート、3-オキソペンタン酸エチル及び3-オキソ-4-メチルペンタン酸エチル等を多座配位子として含むアルミニウムキレート錯体が好適に用いられる。 Examples of the aluminum chelate complex in the coating solution include ethyl acetoacetate, methyl acetoacetate, isopropyl acetoacetate, ethyl 3-oxopentanoate and ethyl 3-oxo-4-methylpentanoate as multidentate ligands. Aluminum chelate complexes are preferably used.
 塗工液における溶媒は、水と混和する有機溶媒を含む。この有機溶媒は、沸点が70℃以上180℃未満のものを含む。例えば、エタノール(沸点:78℃)、2-プロパノール(沸点:83℃)、1-メトキシ-2-プロパノール(沸点:121℃)、アセチルアセトン(沸点:141℃)、メトキシプロピルアセテート(沸点:146℃)、3-メトキシ-1-ブタノール(沸点:160℃)、ジアセトンアルコール(沸点:168℃)及び3-メトキシ-3-メチル-1-ブタノール(沸点:174℃)等が例示される。好ましい態様としては、有機溶媒が、沸点が70℃以上180℃未満のものからなることである。別の好ましい態様としては、有機溶媒が、沸点が70℃以上180℃未満のものを主成分とし、さらに高沸点の有機溶媒を含むことである。この高沸点の有機溶媒としては、沸点が180~250℃のものを用いることができる。これにより、塗工後の乾燥速度を遅らせることができ、その結果、塗膜のレベリングを促進し、塗布ムラの低減及び外観の均質化といった効果が期待できる。この高沸点の有機溶媒が含まれる量は、塗工液全体に対して5質量%以下が望ましい。この高沸点の有機溶媒として、例えば、プロピレングリコール(沸点:187℃)、ジエチレングリコールモノメチルエーテル(沸点:193℃)、ヘキシレングリコール(沸点:198℃)及びジエチレングリコール(沸点:244℃)が例示される。 The solvent in the coating solution contains an organic solvent that is miscible with water. This organic solvent includes those having a boiling point of 70 ° C. or higher and lower than 180 ° C. For example, ethanol (boiling point: 78 ° C.), 2-propanol (boiling point: 83 ° C.), 1-methoxy-2-propanol (boiling point: 121 ° C.), acetylacetone (boiling point: 141 ° C.), methoxypropyl acetate (boiling point: 146 ° C.) ), 3-methoxy-1-butanol (boiling point: 160 ° C.), diacetone alcohol (boiling point: 168 ° C.), 3-methoxy-3-methyl-1-butanol (boiling point: 174 ° C.), and the like. In a preferred embodiment, the organic solvent has a boiling point of 70 ° C. or higher and lower than 180 ° C. In another preferred embodiment, the organic solvent contains a solvent having a boiling point of 70 ° C. or higher and lower than 180 ° C. as a main component, and further includes a high boiling point organic solvent. As the organic solvent having a high boiling point, those having a boiling point of 180 to 250 ° C. can be used. Thereby, the drying speed after coating can be delayed, and as a result, the leveling of the coating film is promoted, and the effects of reducing coating unevenness and homogenizing the appearance can be expected. The amount of the organic solvent having a high boiling point is desirably 5% by mass or less based on the entire coating liquid. Examples of the high-boiling organic solvent include propylene glycol (boiling point: 187 ° C.), diethylene glycol monomethyl ether (boiling point: 193 ° C.), hexylene glycol (boiling point: 198 ° C.) and diethylene glycol (boiling point: 244 ° C.). .
 本実施形態の塗工液においては、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、アルミニウムキレート錯体は、0.1~10質量部の範囲であり、好ましくは1~5質量部の範囲である。 In the coating liquid of this embodiment, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, the aluminum chelate complex is 0.1 to 10 parts by mass. The range is preferably 1 to 5 parts by mass.
 本実施形態における塗工液においては、加水分解性シリコン化合物の加水分解触媒をさらに含んでいてもよい。加水分解触媒としては、酸及び塩基のいずれをも用いることができるが、コーティング液の安定性の観点から、酸、特に無機酸、とりわけ塩酸を用いることが望ましい。塩基性より酸性の方が、シリカ微粒子の分散性がよく、また塗工液の安定性にも優れるからである。また、加水分解触媒としては、水溶液中での電離度が大きい酸を用いることが望ましい。具体的には、酸解離定数pKa(酸が多塩基酸である場合には第一酸解離定数を意味する)が2.5以下の酸を用いることが望ましい。 The coating liquid in the present embodiment may further contain a hydrolysis catalyst for a hydrolyzable silicon compound. As the hydrolysis catalyst, either an acid or a base can be used. From the viewpoint of the stability of the coating solution, it is desirable to use an acid, particularly an inorganic acid, particularly hydrochloric acid. This is because acidic than basic is better in dispersibility of silica fine particles, and more excellent in the stability of the coating liquid. As the hydrolysis catalyst, it is desirable to use an acid having a high degree of ionization in an aqueous solution. Specifically, it is desirable to use an acid having an acid dissociation constant pKa (meaning a first acid dissociation constant when the acid is a polybasic acid) of 2.5 or less.
 塗工液を透明基板の主表面に塗布する方法には、公知の任意の方法、例えばスピンコーティング、ロールコーティング、バーコーティング、ディップコーティング、スプレーコーティングなど、を用いることができる。スプレーコーティングは量産性の点で優れている。ロールコーティングやバーコーティングは量産性に加えて塗膜外観の均質性の点で優れている。 As a method for applying the coating liquid to the main surface of the transparent substrate, any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, or the like can be used. Spray coating is excellent in terms of mass productivity. Roll coating and bar coating are excellent in terms of homogeneity of the appearance of the coating film in addition to mass productivity.
 塗膜の乾燥及び硬化のための加熱工程においては、透明基板の表面が経験する最高温度が350℃以下であり、透明基板の表面が150℃以上の温度にある時間が5分以下であることが好ましい。また、加熱工程における加熱は、透明基板の表面が100℃以上の温度にある時間が30秒以上であることが好ましい。 In the heating process for drying and curing the coating, the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time during which the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less. Is preferred. Moreover, it is preferable that the time in which the surface of the transparent substrate is at a temperature of 100 ° C. or higher is 30 seconds or longer in the heating step.
 以上から、例えば、本実施形態の被膜付き透明基板の製造方法の一例として、
 被膜を形成するための塗工液を透明基板に塗布する塗布工程と、塗工液が塗布された透明基板を加熱する加熱工程と、を含み、前記塗工液が上記で説明した本実施形態の塗工液であり、前記加熱工程において、前記透明基板の表面が経験する最高温度が350℃以下であり、前記透明基板の表面が150℃以上の温度にある時間が5分以下、好ましくは130℃以上が5分以下である、製造方法、
を挙げることができる。
From the above, for example, as an example of a method for producing a transparent substrate with a film of the present embodiment,
The present embodiment as described above, which includes an application step of applying a coating liquid for forming a coating on a transparent substrate, and a heating step of heating the transparent substrate to which the coating liquid has been applied. In the heating step, the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time during which the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less, preferably A production method wherein 130 ° C. or more is 5 minutes or less,
Can be mentioned.
 別の態様の被膜付き透明基板として、以下の態様1~7の被膜付き透明基板が挙げられる。 As another embodiment of the transparent substrate with a film, the following transparent substrates with a film according to aspects 1 to 7 can be mentioned.
 [態様1]
 透明基板と、前記透明基板の少なくとも一方の主表面に形成されている被膜とを含む、
被膜付き透明基板であって、
 前記被膜は、連続構造を有するシリカと、アルミニウム化合物とを含み、
 前記被膜における成分の含有率が、質量%表示で、
  前記連続構造を有するシリカ:75~98%(好ましくは75~95%、より好ましくは80~92%)
  前記アルミニウム化合物をAl23に換算して:2~25%(好ましくは5~25%、より好ましくは8%超~20%)
であり、
 前記被膜の膜厚が20~500nmである、
被膜付き透明基板。
[Aspect 1]
Including a transparent substrate and a film formed on at least one main surface of the transparent substrate,
A transparent substrate with a coating,
The coating includes silica having a continuous structure and an aluminum compound,
The content of the component in the coating is expressed in mass%,
Silica having a continuous structure: 75 to 98% (preferably 75 to 95%, more preferably 80 to 92%)
The aluminum compound is converted to Al 2 O 3 : 2 to 25% (preferably 5 to 25%, more preferably more than 8% to 20%)
And
The film thickness is 20 to 500 nm.
Transparent substrate with coating.
 [態様2]
 上記態様1の被膜付き透明基板であって、
 前記アルミニウム化合物が、前記被膜を形成するための塗工液に添加された、ハロゲン化アルミニウム(好ましくは塩化アルミニウム)に由来する、
被膜付き透明基板。
[Aspect 2]
A transparent substrate with a coating according to aspect 1,
The aluminum compound is derived from an aluminum halide (preferably aluminum chloride) added to a coating solution for forming the film.
Transparent substrate with coating.
 [態様3]
 上記態様1又は2の被膜付き透明基板であって、
 前記連続構造を有するシリカが、前記被膜を形成するための塗工液に添加された、加水分解性シリコン化合物または加水分解性シリコン化合物の加水分解物に由来し、
 前記加水分解性シリコン化合物が、テトラアルコキシシランである、
被膜付き透明基板。
 なお、態様3の被膜付き透明基板は、被膜が連続構造を有するシリカおよびアルミニウム化合物からなることが好ましい。
[Aspect 3]
A transparent substrate with a coating according to aspect 1 or 2,
The silica having the continuous structure is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming the film,
The hydrolyzable silicon compound is tetraalkoxysilane;
Transparent substrate with coating.
In addition, it is preferable that the transparent substrate with a film of aspect 3 consists of a silica and aluminum compound in which a film has a continuous structure.
 [態様4]
 上記態様1~3のいずれか1つの態様の被膜付き透明基板であって、
 前記被膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記被膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが、1.5%以上である、
被膜付き透明基板。
[Aspect 4]
A coated transparent substrate according to any one of the above aspects 1 to 3,
A transmittance gain defined as an increase in the average transmittance of the transparent substrate with the coating in the wavelength region with respect to the average transmittance of the transparent substrate without the coating in the wavelength region of 380 to 850 nm is 1 .5% or more,
Transparent substrate with coating.
 [態様5]
 上記態様1~4のいずれか1つの態様の被膜付き透明基板であって、
 前記被膜付き透明基板に対してプレッシャークッカー試験を実施した後の前記被膜付き透明基板の波長域380~850nmにおける平均透過率と、前記プレッシャークッカー試験を実施する前の前記被膜付き透明基板の該波長域における平均透過率との差の絶対値が、1%以下(好ましくは0.5%以下、より好ましくは0.2%以下)である、
被膜付き透明基板。
 ここで、前記プレッシャークッカー試験とは、前記被膜付き透明基板を、温度130℃、2気圧、相対湿度100%の高湿高温条件下で1時間保持し、印加した圧力を解除したのち室温まで放冷する、というサイクルを2サイクル施す試験である。
[Aspect 5]
A coated transparent substrate according to any one of the above aspects 1 to 4,
The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after performing the pressure cooker test on the transparent substrate with the coating, and the wavelength of the transparent substrate with the coating before performing the pressure cooker test The absolute value of the difference from the average transmittance in the region is 1% or less (preferably 0.5% or less, more preferably 0.2% or less).
Transparent substrate with coating.
Here, the pressure cooker test means that the coated transparent substrate is held for 1 hour under high temperature and high temperature conditions of 130 ° C., 2 atm and relative humidity of 100%, and after releasing the applied pressure, it is released to room temperature. This is a test in which the cycle of cooling is performed for two cycles.
 [態様6]
 上記態様1~5のいずれか1つの態様の被膜付き透明基板であって、
 前記被膜付き透明基板に対してJIS R3221:2002に定める耐アルカリ性試験を行った後の前記被膜付き透明基板の波長域380~850nmにおける平均透過率と、前記耐アルカリ性試験が実施される前の前記被膜付き透明基板の該波長域における平均透過率との差の絶対値が、2%以下(好ましくは1%以下、より好ましくは0.5%以下)である、
被膜付き透明基板。
 ここで、前記JIS R3221:2002に定める耐アルカリ性試験とは、前記被膜付き透明基板を、温度23℃、濃度1mol/Lの水酸化ナトリウム溶液に、被膜が当該溶液に完全に接触するように6時間浸漬する試験である。
[Aspect 6]
A coated transparent substrate according to any one of the above aspects 1 to 5,
The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after performing the alkali resistance test defined in JIS R3221: 2002 on the transparent substrate with the coating, and the above before the alkali resistance test is performed. The absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with a coating is 2% or less (preferably 1% or less, more preferably 0.5% or less).
Transparent substrate with coating.
Here, the alkali resistance test stipulated in JIS R3221: 2002 is such that the transparent substrate with a coating is placed in contact with a sodium hydroxide solution having a temperature of 23 ° C. and a concentration of 1 mol / L so that the coating completely contacts the solution. It is a test immersed in time.
 [態様7]
 上記態様1~6のいずれか1つの態様の被膜付き透明基板であって、
 前記被膜は、前記被膜を形成するための塗工液が前記透明基板に塗布された後に、加熱工程が実施されることによって形成されており、
 前記加熱工程において、
 前記透明基板の表面が経験する最高温度が250℃以上(好ましくは280℃以上、400℃以下)である、
被膜付き透明基板。
[Aspect 7]
A coated transparent substrate according to any one of the above aspects 1 to 6,
The coating is formed by performing a heating step after a coating liquid for forming the coating is applied to the transparent substrate,
In the heating step,
The maximum temperature experienced by the surface of the transparent substrate is 250 ° C. or higher (preferably 280 ° C. or higher, 400 ° C. or lower).
Transparent substrate with coating.
 以下、実施例により、本発明をさらに詳細に説明する。まず、各実施例、各比較例において、透明基板(ここではガラス板)の表面上に形成した被膜の厚さの測定方法及び各特性の評価方法を説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. First, in each example and each comparative example, a method for measuring the thickness of a film formed on the surface of a transparent substrate (here, a glass plate) and a method for evaluating each property will be described.
(被膜の厚さ)
 被膜の厚さは、電界放射型走査型電子顕微鏡(FE-SEM)の写真を用いて求めた。被膜を電界放射型走査型電子顕微鏡(S-4500、株式会社日立製作所製)によって観察した。被膜の30°斜め上方からの断面におけるFE-SEM写真から、測定点5点での被膜の厚さの平均値を、被膜の厚さとした。
(Thickness of coating)
The thickness of the coating was determined using a photograph of a field emission scanning electron microscope (FE-SEM). The coating was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). From the FE-SEM photograph in the cross section from the upper side of the film at an angle of 30 °, the average value of the thickness of the coating at five measurement points was defined as the thickness of the coating.
(透過特性)
 分光光度計(「U-4100」、株式会社日立ハイテクサイエンス製)を用い、被膜の形成前後における透明基板(ここではガラス板)の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長域380~850nmにおける透過率を平均化して算出した。被膜が形成されたガラス板の平均透過率の、該被膜が形成される前のガラス板の平均透過率に対する増分を透過率ゲインとした。
(Transmission characteristics)
Using a spectrophotometer (“U-4100”, manufactured by Hitachi High-Tech Science Co., Ltd.), the transmittance curve (transmission spectrum) of the transparent substrate (here, a glass plate) before and after the formation of the coating was measured. The average transmittance was calculated by averaging the transmittance in the wavelength range of 380 to 850 nm. The increment of the average transmittance of the glass plate on which the coating was formed with respect to the average transmittance of the glass plate before the coating was formed was defined as a transmittance gain.
(プレッシャークッカー試験)
 得られた被膜の耐久性を評価するため、促進試験としてプレッシャークッカー試験を実施した。被膜付き透明基板を、温度130℃、2気圧、相対湿度100%に設定した試験槽内に1時間保持し、印加した圧力を解除したのち槽内から取り出して室温まで放冷する工程からなるサイクルを、2サイクル施すことにより、本発明でのプレッシャークッカー試験とした。この試験の実施前と実施後での平均透過率をそれぞれ測定し、平均透過率の差の絶対値を、プレッシャークッカー試験による耐久性の評価とした。平均透過率は、上述の透過特性を評価する際と同様の方法により測定した。
(Pressure cooker test)
In order to evaluate the durability of the resulting coating, a pressure cooker test was conducted as an accelerated test. A cycle consisting of a process in which a transparent substrate with a film is held in a test tank set at a temperature of 130 ° C., 2 atm, and relative humidity of 100% for 1 hour, released from the applied pressure and allowed to cool to room temperature. Was subjected to two cycles to obtain a pressure cooker test in the present invention. The average transmittance before and after this test was measured, and the absolute value of the difference in average transmittance was evaluated as the durability by the pressure cooker test. The average transmittance was measured by the same method as that used for evaluating the above-described transmission characteristics.
(耐アルカリ性評価)
 JIS R3221:2002に記載されている耐アルカリ性試験に準じて、被膜付き透明基板の耐アルカリ性を評価した。具体的には、23℃の1mol/LのNaOH水溶液に、当該溶液に被膜が完全に接触するように被膜付き透明基板を6時間浸漬させ、その後水洗し乾燥させた。ただし、本実施例では、JIS R3221:2002で定められている可視光透過率の差の絶対値の代わりに、上述の透過特性の評価と同様の方法で測定した波長域380~850nmにおける平均透過率を用い、耐アルカリ性試験後の平均透過率と、耐アルカリ性試験が実施される前の平均透過率との差の絶対値を求めて、これを耐アルカリ性評価とした。
(Alkali resistance evaluation)
According to the alkali resistance test described in JIS R3221: 2002, the alkali resistance of the coated transparent substrate was evaluated. Specifically, the transparent substrate with a film was immersed in a 1 mol / L NaOH aqueous solution at 23 ° C. for 6 hours so that the film was completely in contact with the solution, then washed with water and dried. However, in this embodiment, instead of the absolute value of the difference in visible light transmittance defined in JIS R3221: 2002, the average transmission in the wavelength range of 380 to 850 nm measured by the same method as the evaluation of the transmission characteristics described above. The absolute value of the difference between the average transmittance after the alkali resistance test and the average transmittance before the alkali resistance test was carried out was determined as the alkali resistance evaluation.
(実施例1)
<塗工液の調製>
 1-メトキシ-2-プロパノール(溶媒)76.63質量部、水5.03質量部及び1N塩酸(加水分解触媒)1.00質量部を攪拌混合し、さらに攪拌しながらテトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製)17.34質量部を添加し、引き続き40℃に保温しながら8時間攪拌してテトラエトキシシランを加水分解し、加水分解液Aを得た。
Example 1
<Preparation of coating solution>
A mixture of 76.63 parts by weight of 1-methoxy-2-propanol (solvent), 5.03 parts by weight of water and 1.00 parts by weight of 1N hydrochloric acid (hydrolysis catalyst) was stirred and mixed with tetraethoxysilane (normal silicic acid). 17.34 parts by mass of ethyl (manufactured by Tama Chemical Co., Ltd.) was added, and the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a hydrolyzate A.
 加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)39.40g、アルミニウムキレート錯体溶液(アルミニウムエチルアセトアセテートジブトキシド(信越化学工業株式会社製「DX-9740」)を、濃度10質量%となるように1-メトキシ-2-プロパノール(溶媒)に溶解したもの)0.60gを攪拌混合し、実施例1の塗工液を得た。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、アルミニウムキレート錯体は2質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して98.82質量%、Al23に換算したアルミニウム化合物は0.33質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は0.85質量%であった。なお、塗工液の固形分における各成分の含有率は、形成される被膜における各成分の含有率に相当する。このことは、以下の実施例及び比較例についても同様である。 Hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 39.40 g, aluminum chelate complex solution (aluminum ethyl acetoacetate dibutoxide (“DX-9740” manufactured by Shin-Etsu Chemical Co., Ltd.)) at a concentration of 10 mass. %, Dissolved in 1-methoxy-2-propanol (solvent) so that the amount of the solution was 1%, the mixture was stirred and mixed to obtain the coating liquid of Example 1. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 2 parts by mass of the aluminum chelate complex is contained. The silicon oxide component contained in the solid content of the coating solution is 98.82% by mass in terms of SiO 2 , the aluminum compound in terms of Al 2 O 3 is 0.33% by mass, and the organic component (aluminum chelate complex distribution). The organic component derived from the ligand was 0.85% by mass. In addition, the content rate of each component in solid content of a coating liquid is corresponded to the content rate of each component in the film formed. The same applies to the following examples and comparative examples.
<被膜の形成>
 実施例1では、透明導電膜付きガラス板の片側の主表面に被膜を形成して、被膜付き透明基板を得た。このガラス板は、通常のソーダライムシリケート組成からなり、オンラインCVD法を用いて片方の主表面に透明導電層を含む透明導電膜が形成された、厚さ3.2mmの日本板硝子株式会社製の透明導電膜付きガラス板であった。このガラス板を200×300mmに切断し、アルカリ溶液(アルカリ性洗浄液 LBC-1、レイボルド株式会社製)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させて被膜を形成するためのガラス板とした。被膜を施す前のこのガラス板の透過特性を前述のとおり評価したところ、平均透過率83.2%であった。
<Formation of coating>
In Example 1, a coating was formed on the main surface on one side of the glass plate with a transparent conductive film to obtain a transparent substrate with a coating. This glass plate is made of Nippon Soda Glass Co., Ltd., having a thickness of 3.2 mm, having a normal soda lime silicate composition, and having a transparent conductive layer including a transparent conductive layer formed on one main surface using an on-line CVD method. It was a glass plate with a transparent conductive film. This glass plate is cut into 200 × 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), cleaned with an ultrasonic cleaner, washed with deionized water, and dried at room temperature. Thus, a glass plate for forming a film was obtained. When the transmission characteristic of this glass plate before coating was evaluated as described above, the average transmittance was 83.2%.
 実施例1においては、ロールコーターを用い、前述のガラス板の透明導電膜が施されていない側の主表面に実施例1の塗工液を塗布した。なお、このとき塗布液の膜厚が1~5μmになるようにした。次いでこのガラス板に塗布した塗工液を、熱風で乾燥・硬化させた。この熱風乾燥は、ベルト搬送式の熱風乾燥装置を用い、熱風の設定温度を300℃、熱風吐出ノズルとガラス板との間の距離を5mm、搬送速度を0.5m/分に設定し、2回往復してノズルの下を4回通過させることで行なった。このとき、塗工液が塗布されたガラス板が熱風に触れている時間は140秒であった。ガラス板の塗工液が塗布されたガラス面が130℃以上の温度にある時間は33秒であり、150℃以上の温度にある時間は18秒であり、最高到達温度は200℃だった。乾燥・硬化後のガラス板は室温まで放冷し、ガラス板に被膜を形成した。 In Example 1, using a roll coater, the coating liquid of Example 1 was applied to the main surface of the glass plate on which the transparent conductive film was not applied. At this time, the film thickness of the coating solution was adjusted to 1 to 5 μm. Next, the coating solution applied to the glass plate was dried and cured with hot air. This hot air drying uses a belt-conveying hot air drying device, the hot air set temperature is set to 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was performed by reciprocating four times and passing under the nozzle four times. At this time, the time during which the glass plate coated with the coating solution was in contact with hot air was 140 seconds. The time during which the glass surface coated with the coating solution for the glass plate was at a temperature of 130 ° C. or higher was 33 seconds, the time at a temperature of 150 ° C. or higher was 18 seconds, and the maximum temperature reached was 200 ° C. The glass plate after drying and curing was allowed to cool to room temperature, and a film was formed on the glass plate.
 こうして得た被膜付き透明基板について、前述の各特性を評価した。その結果を表1に示す。 The above-mentioned characteristics were evaluated for the transparent substrate with a coating thus obtained. The results are shown in Table 1.
(実施例2)
<塗工液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)39.85g、アルミニウムキレート錯体溶液0.15gとした以外は、実施例1と同様に塗工液を調製した。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、アルミニウムキレート錯体は0.5質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して99.70質量%、Al23に換算したアルミニウム化合物は0.08質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は0.21質量%であった。
(Example 2)
<Preparation of coating solution>
Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 39.85 g, aluminum chelate complex solution 0.15 g A coating solution was prepared in the same manner as in Example 1 except that. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 0.5 parts by mass of the aluminum chelate complex is contained. The silicon oxide component contained in the solid content of the coating solution is 99.70% by mass in terms of SiO 2 , the aluminum compound in terms of Al 2 O 3 is 0.08% by mass, and the organic component (the distribution of the aluminum chelate complex). The organic component derived from the ligand was 0.21% by mass.
<被膜の形成>
 実施例2では、前述の実施例2の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<Formation of coating>
In Example 2, a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Example 2 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
(実施例3)
<塗工液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)39.70g、アルミニウムキレート錯体溶液0.30gとした以外は、実施例1と同様に塗工液を調製した。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、アルミニウムキレート錯体は1質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して99.41質量%、Al23に換算したアルミニウム化合物は0.17質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は0.43質量%であった。
(Example 3)
<Preparation of coating solution>
Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 39.70 g, aluminum chelate complex solution 0.30 g A coating solution was prepared in the same manner as in Example 1 except that. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 1 part by mass of the aluminum chelate complex is contained. The silicon oxide component contained in the solid content of the coating solution is 99.41% by mass in terms of SiO 2 , the aluminum compound in terms of Al 2 O 3 is 0.17% by mass, and the organic component (the distribution of the aluminum chelate complex). The organic component derived from the ligand was 0.43% by mass.
<被膜の形成>
 実施例3では、前述の実施例3の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<Formation of coating>
In Example 3, a coating film was formed by the same procedure as in Example 1 except that the coating liquid of Example 3 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
(実施例4)
<塗工液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)38.68g、アルミニウムキレート錯体溶液1.32gとした以外は、実施例1と同様に塗工液を調製した。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、アルミニウムキレート錯体は4.4質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して97.44質量%、Al23に換算したアルミニウム化合物は0.72質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は1.84質量%であった。
Example 4
<Preparation of coating solution>
Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 38.68 g, aluminum chelate complex solution 1.32 g A coating solution was prepared in the same manner as in Example 1 except that. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 4.4 parts by mass of the aluminum chelate complex is contained. The silicon oxide component contained in the solid content of the coating solution is 97.44% by mass in terms of SiO 2 , the aluminum compound in terms of Al 2 O 3 is 0.72% by mass, and the organic component (the distribution of the aluminum chelate complex). The organic component derived from the ligand was 1.84% by mass.
<被膜の形成>
 実施例4では、前述の実施例4の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<Formation of coating>
In Example 4, a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Example 4 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
(比較例1)
<塗工液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)35.59g、アルミニウムキレート錯体溶液4.41gとした以外は、実施例1と同様に塗工液を調製した。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、アルミニウムキレート錯体は14.7質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して91.93質量%、Al23に換算したアルミニウム化合物は2.27質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は5.80質量%であった。
(Comparative Example 1)
<Preparation of coating solution>
Hydrolyzed liquid A, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed liquid A 60.00 g, 1-methoxy-2-propanol (solvent) 35.59 g, aluminum chelate complex solution 4.41 g A coating solution was prepared in the same manner as in Example 1 except that. In the coating liquid, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 14.7 parts by mass of the aluminum chelate complex is contained. The silicon oxide component contained in the solid content of the coating solution is 91.93% by mass in terms of SiO 2 , the aluminum compound in terms of Al 2 O 3 is 2.27% by mass, and the organic component (the distribution of the aluminum chelate complex). The organic component derived from the ligand was 5.80% by mass.
<被膜の形成>
 比較例1では、前述の比較例1の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表2に示す。
<Formation of coating>
In Comparative Example 1, a coating film was formed in the same procedure as in Example 1 except that the coating solution of Comparative Example 1 was used, and the above-described characteristics were evaluated. The results are shown in Table 2.
(比較例2)
<塗工液の調製>
 アルミニウムキレート錯体溶液を添加せずに、加水分解液A及び1-メトキシ-2-プロパノール(溶媒)を、加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)40.00gとした以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して100質量%であった。
(Comparative Example 2)
<Preparation of coating solution>
Without adding the aluminum chelate complex solution, the hydrolyzate A and 1-methoxy-2-propanol (solvent) were changed to hydrolyzate A 60.00 g and 1-methoxy-2-propanol (solvent) 40.00 g. Prepared a coating solution in the same manner as in Example 1. The silicon oxide component contained in the solid content of the coating solution was 100% by mass in terms of SiO 2 .
<被膜の形成>
 比較例2では、前述の比較例2の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表2に示す。
<Formation of coating>
In Comparative Example 2, a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Comparative Example 2 was used, and the above-described characteristics were evaluated. The results are shown in Table 2.
(比較例3)
<塗工液の調製>
 1-メトキシ-2-プロパノール(溶媒)63.79質量部、水32.70質量部及び1N塩酸(加水分解触媒)1.50質量部を攪拌混合し、さらに攪拌しながらテトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製)52.01質量部を添加し、引き続き40℃に保温しながら8時間攪拌してテトラエトキシシランを加水分解し、加水分解液Bを得た。
(Comparative Example 3)
<Preparation of coating solution>
63.79 parts by mass of 1-methoxy-2-propanol (solvent), 32.70 parts by mass of water, and 1.50 parts by mass of 1N hydrochloric acid (hydrolysis catalyst) are stirred and mixed, and tetraethoxysilane (normal silicic acid) is further stirred. Ethyl (manufactured by Tama Chemical Co., Ltd.) was added in an amount of 52.01 parts by mass, and the resulting mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a hydrolyzate B.
 アルミニウムキレート錯体溶液を添加せずに、加水分解液B60.00g及び1-メトキシ-2-プロパノール(溶媒)40.00gを攪拌混合し、比較例2の塗工液を得た。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して100質量%であった。 Without adding the aluminum chelate complex solution, 60.00 g of the hydrolyzate B and 40.00 g of 1-methoxy-2-propanol (solvent) were mixed with stirring to obtain a coating solution of Comparative Example 2. The silicon oxide component contained in the solid content of the coating solution was 100% by mass in terms of SiO 2 .
<被膜の形成>
 比較例3では、前述の比較例3の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表2に示す。
<Formation of coating>
In Comparative Example 3, a coating film was formed in the same procedure as in Example 1 except that the coating solution of Comparative Example 3 was used, and the above-described characteristics were evaluated. The results are shown in Table 2.
(参考例1)
<塗工液の調製>
 アルミニウムキレート錯体溶液の代わりに、塩化アルミニウム水溶液(AlCl3として濃度47.6質量%、塩化アルミニウム6水和物、試薬グレード、シグマアルドリッチ社製を脱イオン水に溶解)を用いた。加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)39.18g、塩化アルミニウム水溶液0.82gを攪拌混合した。これら以外は、実施例1と同様に塗工液を調製した。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、塩化アルミニウムは13.1質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して90.91質量%、Al23に換算したアルミニウム化合物は9.09質量%、有機成分は0質量%であった。
(Reference Example 1)
<Preparation of coating solution>
Instead of the aluminum chelate complex solution, an aluminum chloride aqueous solution (concentration 47.6% by mass as AlCl 3 , aluminum chloride hexahydrate, reagent grade, dissolved in deionized water by Sigma-Aldrich) was used. 60.00 g of hydrolyzed solution A, 39.18 g of 1-methoxy-2-propanol (solvent) and 0.82 g of aqueous aluminum chloride solution were mixed with stirring. Except for these, a coating solution was prepared in the same manner as in Example 1. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 13.1 parts by mass of aluminum chloride is contained. The silicon oxide component contained in the solid content of the coating solution in terms of SiO 2 90.91 wt%, aluminum compound calculated as Al 2 O 3 9.09 wt%, the organic component is met 0 wt% It was.
<被膜の形成>
 参考例1では、前述の参考例1の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表2に示す。実施例1と同じ加熱条件(熱布乾燥)で被膜を形成した場合、表2に示すように、プレッシャークッカー試験によって評価される耐久性の結果、及び、耐アルカリ性評価の結果が良くなかった。そこで、ガラス板に塗布した塗工液を乾燥及び硬化させるための加熱を、熱風を用いた加熱ではなく、400℃に設定した電気炉に塗工液が塗布されたガラス板を4分間保持することによって行った。この電気炉を用いた加熱では、ガラス板の塗工液が塗布されたガラス面における最高到達温度は300℃だった。乾燥・硬化後のガラス板は室温まで放冷し、ガラス板に被膜を形成した。この電気炉を用いた加熱によって形成された被膜を備えたガラス板は、プレッシャークッカー試験によって評価される耐久性、及び、耐アルカリ性に優れていた。なお、表2中、実施例1と同じ加熱条件で形成された被膜を備えたガラス板の評価結果には「熱風乾燥」と併記され、上記の電気炉を用いた加熱によって形成された被膜を備えたガラス板の評価結果には「電気炉乾燥」と併記されている。
<Formation of coating>
In Reference Example 1, a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Reference Example 1 was used, and the above-described characteristics were evaluated. The results are shown in Table 2. When the film was formed under the same heating conditions (heated cloth drying) as in Example 1, as shown in Table 2, the durability results evaluated by the pressure cooker test and the alkali resistance evaluation results were not good. Therefore, the heating for drying and curing the coating liquid applied to the glass plate is not performed using hot air, but the glass plate coated with the coating liquid is held in an electric furnace set at 400 ° C. for 4 minutes. Was done by. In the heating using this electric furnace, the maximum temperature reached on the glass surface on which the coating solution for the glass plate was applied was 300 ° C. The glass plate after drying and curing was allowed to cool to room temperature, and a film was formed on the glass plate. A glass plate provided with a coating formed by heating using this electric furnace was excellent in durability and alkali resistance evaluated by a pressure cooker test. In Table 2, the evaluation result of the glass plate provided with the film formed under the same heating conditions as in Example 1 is written together with “hot air drying”, and the film formed by heating using the above electric furnace The evaluation result of the provided glass plate is written together with “electric furnace drying”.
(参考例2)
<塗工液の調製>
 アルミニウムキレート錯体溶液の代わりに、塩化アルミニウム水溶液(AlCl3として濃度47.6質量%、塩化アルミニウム6水和物、試薬グレード、シグマアルドリッチ社製を脱イオン水に溶解)を用いた。加水分解液A60.00g、1-メトキシ-2-プロパノール(溶媒)38.35g、塩化アルミニウム水溶液1.65gを混合攪拌した。これら以外は、実施例1と同様に塗工液を調製した。塗工液において、加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、塩化アルミニウムは26.2質量部含まれている。この塗工液の固形分に含まれる酸化ケイ素成分はSiO2に換算して83.33質量%、Al23に換算したアルミニウム化合物は16.67質量%、有機成分は0質量%であった。
(Reference Example 2)
<Preparation of coating solution>
Instead of the aluminum chelate complex solution, an aluminum chloride aqueous solution (concentration 47.6% by mass as AlCl 3 , aluminum chloride hexahydrate, reagent grade, dissolved in deionized water by Sigma-Aldrich) was used. 60.00 g of hydrolyzed solution A, 38.35 g of 1-methoxy-2-propanol (solvent) and 1.65 g of an aqueous aluminum chloride solution were mixed and stirred. Except for these, a coating solution was prepared in the same manner as in Example 1. In the coating solution, when the mass of the silicon oxide component contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass, 26.2 parts by mass of aluminum chloride is contained. The silicon oxide component contained in the solid content of the coating solution was 83.33% by mass in terms of SiO 2 , the aluminum compound in terms of Al 2 O 3 was 16.67% by mass, and the organic component was 0% by mass. It was.
<被膜の形成>
 参考例2では、前述の参考例2の塗工液を用いた以外は実施例1と同じ手順で、被膜を形成し、前述の各特性を評価した。その結果を表2に示す。実施例1と同じ加熱条件(熱風乾燥)で被膜を形成した場合、表2に示すように、プレッシャークッカー試験によって評価される耐久性の結果、及び、耐アルカリ性評価の結果が良くなかった。そこで、ガラス板に塗布した塗工液を乾燥及び硬化させるための加熱を、熱風を用いた加熱ではなく、400℃に設定した電気炉に塗工液が塗布されたガラス板を4分間保持することによって行った。この電気炉を用いた加熱では、ガラス板の塗工液が塗布されたガラス面における最高到達温度は300℃だった。乾燥・硬化後のガラス板は室温まで放冷し、ガラス板に被膜を形成した。この電気炉を用いた加熱によって形成された被膜を備えたガラス板は、プレッシャークッカー試験によって評価される耐久性、及び、耐アルカリ性に優れていた。なお、表2中、実施例1と同じ加熱条件で形成された被膜を備えたガラス板の評価結果には「熱風乾燥」と併記され、上記の電気炉を用いた加熱によって形成された被膜を備えたガラス板の評価結果には「電気炉乾燥」と併記されている。
<Formation of coating>
In Reference Example 2, a coating film was formed in the same procedure as in Example 1 except that the coating liquid of Reference Example 2 described above was used, and the above-described characteristics were evaluated. The results are shown in Table 2. When a film was formed under the same heating conditions (hot air drying) as in Example 1, as shown in Table 2, the result of durability evaluated by the pressure cooker test and the result of alkali resistance evaluation were not good. Therefore, the heating for drying and curing the coating liquid applied to the glass plate is not performed using hot air, but the glass plate coated with the coating liquid is held in an electric furnace set at 400 ° C. for 4 minutes. Was done by. In the heating using this electric furnace, the maximum temperature reached on the glass surface on which the coating solution for the glass plate was applied was 300 ° C. The glass plate after drying and curing was allowed to cool to room temperature, and a film was formed on the glass plate. A glass plate provided with a coating formed by heating using this electric furnace was excellent in durability and alkali resistance evaluated by a pressure cooker test. In Table 2, the evaluation result of the glass plate provided with the film formed under the same heating conditions as in Example 1 is written together with “hot air drying”, and the film formed by heating using the above electric furnace The evaluation result of the provided glass plate is written together with “electric furnace drying”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~4の被膜付き透明基板は、1.6%以上の透過率ゲインを有し、さらに高い耐久性及び高い耐アルカリ性も備えていた。これに対し、比較例1~3の被膜付き透明基板は、高い透過率ゲインを有しているものの、高い耐久性と高い耐アルカリ性との両方を満たすことができず、特にプレッシャークッカー試験で評価される耐久性に劣っていた。 The transparent substrates with coatings of Examples 1 to 4 had a transmittance gain of 1.6% or more, and also had high durability and high alkali resistance. On the other hand, the coated transparent substrates of Comparative Examples 1 to 3 have a high transmittance gain, but cannot satisfy both high durability and high alkali resistance, and are evaluated particularly in the pressure cooker test. It was inferior in durability.
 本発明によれば、耐久性及び耐アルカリ性に優れた被膜付き透明基板を提供できる。 According to the present invention, a coated transparent substrate excellent in durability and alkali resistance can be provided.

Claims (27)

  1.  透明基板と、前記透明基板の少なくとも一方の主表面に形成されている被膜とを含む、
    被膜付き透明基板であって、
     前記被膜は、連続構造を有するシリカと、アルミニウム化合物と、有機成分とを含み、
     前記被膜における成分の含有率が、質量%表示で、
      前記連続構造を有するシリカ  93%超~99.9%
      前記アルミニウム化合物をAl23に換算して  0.05~2%未満
      有機成分  0.05~5%
    であり、
     前記被膜の膜厚が20~500nmであり、
     前記有機成分がβケトエステルを含む、
    被膜付き透明基板。
    Including a transparent substrate and a film formed on at least one main surface of the transparent substrate,
    A transparent substrate with a coating,
    The coating includes silica having a continuous structure, an aluminum compound, and an organic component,
    The content of the component in the coating is expressed in mass%,
    Silica having a continuous structure more than 93% to 99.9%
    The aluminum compound is converted to Al 2 O 3 0.05 to less than 2% Organic component 0.05 to 5%
    And
    The film thickness is 20 to 500 nm,
    The organic component comprises a beta keto ester;
    Transparent substrate with coating.
  2.  前記アルミニウム化合物はアルミニウムキレート錯体であり、
     前記アルミニウムキレート錯体は、βケトエステル構造を有する多座配位子を含む、
    請求項1に記載の被膜付き透明基板。
    The aluminum compound is an aluminum chelate complex,
    The aluminum chelate complex includes a polydentate ligand having a β-ketoester structure,
    The transparent substrate with a film according to claim 1.
  3.  前記アルミニウムキレート錯体は、さらにアルミニウム原子に直接結合した1又は2個のアルコキシ基を含む、
    請求項2に記載の被膜付き透明基板。
    The aluminum chelate complex further includes one or two alkoxy groups directly bonded to the aluminum atom.
    The transparent substrate with a film according to claim 2.
  4.  前記アルコキシ基の炭素数が1~8である、
    請求項3に記載の被膜付き透明基板。
    The alkoxy group has 1 to 8 carbon atoms;
    The transparent substrate with a film according to claim 3.
  5.  前記アルコキシ基が、i-プロポキシ基、n-ブトキシ基及びsec-ブトキシ基からなる群から選択されるいずれか1つである、
    請求項4に記載の被膜付き透明基板。
    The alkoxy group is any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group;
    The coated transparent substrate according to claim 4.
  6.  前記βケトエステル構造において、
     エステルを構成するカルボン酸の炭素数が4~6個であり、
     エステルを構成するアルコールの炭素数が1~3個である、
    請求項1~5のいずれか1項に記載の被膜付き透明基板。
    In the β-ketoester structure,
    The carbon number of the carboxylic acid constituting the ester is 4-6,
    The alcohol constituting the ester has 1 to 3 carbon atoms,
    The transparent substrate with a film according to any one of claims 1 to 5.
  7.  前記βケトエステル構造において、
     エステルを構成するカルボン酸の炭素数が4個であり、
     エステルを構成するアルコールの炭素数が2個である、
    請求項6に記載の被膜付き透明基板。
    In the β-ketoester structure,
    The number of carbon atoms of the carboxylic acid constituting the ester is 4,
    The number of carbon atoms of the alcohol constituting the ester is 2,
    The transparent substrate with a film according to claim 6.
  8.  前記連続構造を有するシリカが、前記被膜を形成するための塗工液に添加された、加水分解性シリコン化合物又は加水分解性シリコン化合物の加水分解物に由来し、
     該加水分解性シリコン化合物が、下記式(I)に示す化合物を含む、
    請求項1~7のいずれか1項に記載の被膜付き透明基板。
     SiX4  (I)
     ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである。
    The silica having the continuous structure is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming the film,
    The hydrolyzable silicon compound includes a compound represented by the following formula (I):
    The transparent substrate with a film according to any one of claims 1 to 7.
    SiX 4 (I)
    Here, X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
  9.  前記加水分解性シリコン化合物が、テトラアルコキシシランである、
    請求項8に記載の被膜付き透明基板。
    The hydrolyzable silicon compound is tetraalkoxysilane;
    The transparent substrate with a film according to claim 8.
  10.  前記被膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記被膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが、1.5%以上である、
    請求項1~9のいずれか1項に記載の被膜付き透明基板。
    A transmittance gain defined as an increase in the average transmittance of the transparent substrate with the coating in the wavelength region with respect to the average transmittance of the transparent substrate without the coating in the wavelength region of 380 to 850 nm is 1 .5% or more,
    The transparent substrate with a film according to any one of claims 1 to 9.
  11.  前記被膜付き透明基板に対してプレッシャークッカー試験を実施した後の前記被膜付き透明基板の波長域380~850nmにおける平均透過率と、前記プレッシャークッカー試験を実施する前の前記被膜付き透明基板の該波長域における平均透過率との差の絶対値が、1%以下である、
    請求項1~10のいずれか1項に記載の被膜付き透明基板。
     ここで、前記プレッシャークッカー試験とは、前記被膜付き透明基板を、温度130℃、2気圧、相対湿度100%の高湿高温条件下で1時間保持し、印加した圧力を解除したのち室温まで放冷する、というサイクルを2サイクル施す試験である。
    The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after performing the pressure cooker test on the transparent substrate with the coating, and the wavelength of the transparent substrate with the coating before performing the pressure cooker test The absolute value of the difference from the average transmittance in the region is 1% or less,
    The transparent substrate with a film according to any one of claims 1 to 10.
    Here, the pressure cooker test means that the coated transparent substrate is held for 1 hour under high temperature and high temperature conditions of 130 ° C., 2 atm and relative humidity of 100%, and after releasing the applied pressure, it is released to room temperature. This is a test in which the cycle of cooling is performed for two cycles.
  12.  前記被膜付き透明基板に対してJIS R3221:2002に定める耐アルカリ性試験を行った後の前記被膜付き透明基板の波長域380~850nmにおける平均透過率と、前記耐アルカリ性試験が実施される前の前記被膜付き透明基板の該波長域における平均透過率との差の絶対値が、0.8%以下である、
    請求項1~11のいずれか1項に記載の被膜付き透明基板。
     ここで、前記JIS R3221:2002に定める耐アルカリ性試験とは、前記被膜付き透明基板を、温度23℃、濃度1mol/Lの水酸化ナトリウム溶液に、被膜が当該溶液に完全に接触するように6時間浸漬する試験である。
    The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after performing the alkali resistance test defined in JIS R3221: 2002 on the transparent substrate with the coating, and the above before the alkali resistance test is performed. The absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with a coating is 0.8% or less,
    The transparent substrate with a film according to any one of claims 1 to 11.
    Here, the alkali resistance test stipulated in JIS R3221: 2002 is such that the transparent substrate with a coating is placed in contact with a sodium hydroxide solution having a temperature of 23 ° C. and a concentration of 1 mol / L so that the coating completely contacts the solution. It is a test immersed in time.
  13.  前記被膜は、前記被膜を形成するための塗工液が前記透明基板に塗布された後に、加熱工程が実施されることによって形成されており、
     前記加熱工程において、
     前記透明基板の表面が経験する最高温度が350℃以下であり、
     前記透明基板の表面が150℃以上の温度にある時間が5分以下である、
    請求項1~12のいずれか1項に記載の被膜付き透明基板。
    The coating is formed by performing a heating step after a coating liquid for forming the coating is applied to the transparent substrate,
    In the heating step,
    The maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less,
    The time during which the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less,
    The coated transparent substrate according to any one of claims 1 to 12.
  14.  前記透明基板がガラス板である、
    請求項1~13のいずれか1項に記載の被膜付き透明基板。
    The transparent substrate is a glass plate;
    The transparent substrate with a film according to any one of claims 1 to 13.
  15.  前記透明基板の前記被膜が形成されている前記主表面とは反対側の主表面に、透明導電層を含む膜が形成されている、
    請求項14に記載の被膜付き透明基板。
    A film including a transparent conductive layer is formed on the main surface opposite to the main surface on which the film of the transparent substrate is formed.
    The transparent substrate with a film according to claim 14.
  16.  被膜付き透明基板の被膜を形成するための塗工液であって、
     前記塗工液は、加水分解性シリコン化合物と、アルミニウムキレート錯体と、溶媒とを含み、
     前記加水分解性シリコン化合物は、式(I):SiX4(ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである)に示す化合物を含み、
     前記アルミニウムキレート錯体は、βケトエステル構造を有する多座配位子を含み、
     前記溶媒は、水と混和し、かつ、70℃以上180℃未満の沸点を有する有機溶媒を含み、
     前記加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量を100質量部としたときに、前記アルミニウムキレート錯体は、0.1~10質量部である、
    塗工液。
    A coating solution for forming a coating on a transparent substrate with a coating,
    The coating liquid includes a hydrolyzable silicon compound, an aluminum chelate complex, and a solvent,
    The hydrolyzable silicon compound is a compound represented by the formula (I): SiX 4 (where X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom). Including
    The aluminum chelate complex includes a polydentate ligand having a β-ketoester structure,
    The solvent includes an organic solvent that is miscible with water and has a boiling point of 70 ° C. or higher and lower than 180 ° C.,
    When the mass of the silicon oxide component contained in the hydrolyzable silicon compound is 100 parts by mass when converted to SiO 2 , the aluminum chelate complex is 0.1 to 10 parts by mass.
    Coating liquid.
  17.  前記加水分解性シリコン化合物の加水分解触媒として、酸解離定数pKaが2.5以下の酸をさらに含む、
    請求項16に記載の塗工液。
    The hydrolysis catalyst for the hydrolyzable silicon compound further includes an acid having an acid dissociation constant pKa of 2.5 or less,
    The coating liquid according to claim 16.
  18.  前記加水分解性シリコン化合物が、テトラアルコキシシランである、
    請求項16又は17に記載の塗工液。
    The hydrolyzable silicon compound is tetraalkoxysilane;
    The coating liquid according to claim 16 or 17.
  19.  前記アルミニウムキレート錯体は、さらに、アルミニウム原子に直接結合した1又は2個のアルコキシ基を含む、
    請求項16~18のいずれか1項に記載の塗工液。
    The aluminum chelate complex further includes one or two alkoxy groups directly bonded to the aluminum atom.
    The coating liquid according to any one of claims 16 to 18.
  20.  前記アルコキシ基の炭素数が1~8である、
    請求項19に記載の塗工液。
    The alkoxy group has 1 to 8 carbon atoms;
    The coating liquid according to claim 19.
  21.  前記アルコキシ基が、i-プロポキシ基、n-ブトキシ基及びsec-ブトキシ基からなる群から選択されるいずれか1つである、
    請求項20に記載の塗工液。
    The alkoxy group is any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group;
    The coating liquid according to claim 20.
  22.  前記βケトエステル構造において、
     エステルを構成するカルボン酸の炭素数が4~6個であり、
     エステルを構成するアルコールの炭素数が1~3個である、
    請求項16~21のいずれか1項に記載の塗工液。
    In the β-ketoester structure,
    The carbon number of the carboxylic acid constituting the ester is 4-6,
    The alcohol constituting the ester has 1 to 3 carbon atoms,
    The coating liquid according to any one of claims 16 to 21.
  23.  前記βケトエステル構造において、
     エステルを構成するカルボン酸の炭素数が4個であり、
     エステルを構成するアルコールの炭素数が2個である、
    請求項22に記載の塗工液。
    In the β-ketoester structure,
    The number of carbon atoms of the carboxylic acid constituting the ester is 4,
    The number of carbon atoms of the alcohol constituting the ester is 2,
    The coating liquid according to claim 22.
  24.  請求項1~15のいずれか1項に記載の被膜付き透明基板の製造方法であって、
     前記製造方法は、
     前記被膜を形成するための塗工液を前記透明基板に塗布する塗布工程と、
     前記塗工液が塗布された前記透明基板を加熱する加熱工程と、
    を含み、
     前記塗工液は、請求項16~23のいずれか1項に記載の塗工液であり、
     前記加熱工程において、前記透明基板の表面が経験する最高温度が350℃以下であり、前記透明基板の表面が150℃以上の温度にある時間が5分以下である、
    被膜付き透明基板の製造方法。
    A method for producing a coated transparent substrate according to any one of claims 1 to 15,
    The manufacturing method includes:
    An application step of applying a coating liquid for forming the film to the transparent substrate;
    A heating step of heating the transparent substrate coated with the coating liquid;
    Including
    The coating liquid is the coating liquid according to any one of claims 16 to 23,
    In the heating step, the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time that the surface of the transparent substrate is at a temperature of 150 ° C. or more is 5 minutes or less,
    A method for producing a transparent substrate with a film.
  25.  前記製造方法によって製造された前記被膜付き透明基板について、前記被膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記被膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが、1.5%以上である、
    請求項24に記載の被膜付き透明基板の製造方法。
    With respect to the transparent substrate with a coating manufactured by the manufacturing method, the average transmittance in the wavelength region of the transparent substrate with the coating is compared with the average transmittance in the wavelength region of 380 to 850 nm of the transparent substrate in a state where the coating is not formed. The transmittance gain, defined as the rate increment, is greater than or equal to 1.5%;
    The manufacturing method of the transparent substrate with a film of Claim 24.
  26.  前記製造方法によって製造された前記被膜付き透明基板に対してプレッシャークッカー試験を実施した後の前記被膜付き透明基板の波長域380~850nmにおける平均透過と、前記プレッシャークッカー試験を実施する前の前記被膜付き透明基板の該波長域に
    おける平均透過率との差の絶対値が、1%以下である、
    請求項24又は25に記載の被膜付き透明基板の製造方法。
     ここで、前記プレッシャークッカー試験とは、前記被膜付き透明基板を、温度130℃、2気圧、相対湿度100%の高温高湿条件下で1時間保持し、印加した圧力を解除したのち室温まで放冷する、というサイクルを2サイクル施す試験である。
    The average transmission in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after the pressure cooker test is performed on the transparent substrate with the coating manufactured by the manufacturing method, and the coating before the pressure cooker test is performed The absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with a thickness is 1% or less,
    The manufacturing method of the transparent substrate with a film of Claim 24 or 25.
    Here, the pressure cooker test means that the transparent substrate with a film is held at a high temperature and high humidity of 130 ° C., 2 atm, and relative humidity of 100% for 1 hour, and after releasing the applied pressure, it is released to room temperature. This is a test in which the cycle of cooling is performed for two cycles.
  27.  前記製造方法によって製造された前記被膜付き透明基板に対してJIS R3221:2002に定める耐アルカリ性試験を行った後の前記被膜付き透明基板の波長域380~850nmにおける平均透過率と、前記耐アルカリ性試験が実施される前の前記被膜付き透明基板の該波長域における平均透過率との差の絶対値が、0.8%以下である、
    請求項24~26のいずれか1項に記載の被膜付き透明基板の製造方法。
    The average transmittance in the wavelength range of 380 to 850 nm of the transparent substrate with the coating after conducting the alkali resistance test defined in JIS R3221: 2002 on the transparent substrate with the coating manufactured by the manufacturing method, and the alkali resistance test The absolute value of the difference from the average transmittance in the wavelength region of the transparent substrate with a coating before the is carried out is 0.8% or less,
    The method for producing a transparent substrate with a film according to any one of claims 24 to 26.
PCT/JP2018/016162 2017-04-27 2018-04-19 Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate WO2018198937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514445A JP7213177B2 (en) 2017-04-27 2018-04-19 Film-coated transparent substrate, coating solution for forming film on film-coated transparent substrate, and method for producing film-coated transparent substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-088246 2017-04-27
JP2017088246 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198937A1 true WO2018198937A1 (en) 2018-11-01

Family

ID=63918213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016162 WO2018198937A1 (en) 2017-04-27 2018-04-19 Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate

Country Status (2)

Country Link
JP (1) JP7213177B2 (en)
WO (1) WO2018198937A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152103A (en) * 1997-07-30 1999-02-26 Fuji Photo Film Co Ltd Antireflection film and display arranged the film
JP2002022905A (en) * 2000-07-04 2002-01-23 Jsr Corp Anttreflection film, laminate including the same, and method for producing the antireflection film
JP2003327911A (en) * 2002-05-15 2003-11-19 Dainippon Ink & Chem Inc Method for forming coating film, coating film produced thereby, antireflection film and photocatalytic film
JP2009527786A (en) * 2006-11-23 2009-07-30 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical article comprising a two-layered scratch and abrasion resistant coating and method of producing the same
JP2015110313A (en) * 2013-10-31 2015-06-18 セントラル硝子株式会社 Hydrophilic coating-formed article, hydrophilic coating-forming coat liquid and method for producing hydrophilic coating-formed article
WO2016051750A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate and photoelectric conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152103A (en) * 1997-07-30 1999-02-26 Fuji Photo Film Co Ltd Antireflection film and display arranged the film
JP2002022905A (en) * 2000-07-04 2002-01-23 Jsr Corp Anttreflection film, laminate including the same, and method for producing the antireflection film
JP2003327911A (en) * 2002-05-15 2003-11-19 Dainippon Ink & Chem Inc Method for forming coating film, coating film produced thereby, antireflection film and photocatalytic film
JP2009527786A (en) * 2006-11-23 2009-07-30 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical article comprising a two-layered scratch and abrasion resistant coating and method of producing the same
JP2015110313A (en) * 2013-10-31 2015-06-18 セントラル硝子株式会社 Hydrophilic coating-formed article, hydrophilic coating-forming coat liquid and method for producing hydrophilic coating-formed article
WO2016051750A1 (en) * 2014-09-30 2016-04-07 日本板硝子株式会社 Low reflection coating, glass plate, glass substrate and photoelectric conversion device

Also Published As

Publication number Publication date
JP7213177B2 (en) 2023-01-26
JPWO2018198937A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
US11442200B2 (en) Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
JP6826985B2 (en) Glass plate with coating film and its manufacturing method
EP3225600B1 (en) Glass plate with low-reflection coating
US10329430B2 (en) Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate
WO2016143297A1 (en) Glass plate provided with coating film and method for manufacturing same
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
WO2018198937A1 (en) Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
JP6487933B2 (en) Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating
CN108545753A (en) A kind of network-like SiO2Plate film sol and its preparation method and application
JP7153638B2 (en) Glass articles with low reflection coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789965

Country of ref document: EP

Kind code of ref document: A1