WO2016051431A1 - 入出力装置、入出力プログラム、および入出力方法 - Google Patents

入出力装置、入出力プログラム、および入出力方法 Download PDF

Info

Publication number
WO2016051431A1
WO2016051431A1 PCT/JP2014/005005 JP2014005005W WO2016051431A1 WO 2016051431 A1 WO2016051431 A1 WO 2016051431A1 JP 2014005005 W JP2014005005 W JP 2014005005W WO 2016051431 A1 WO2016051431 A1 WO 2016051431A1
Authority
WO
WIPO (PCT)
Prior art keywords
curvature
input
radius
display
depth sensor
Prior art date
Application number
PCT/JP2014/005005
Other languages
English (en)
French (fr)
Inventor
ヨハネス ルンベリ
Original Assignee
株式会社ブリリアントサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリリアントサービス filed Critical 株式会社ブリリアントサービス
Priority to JP2016551118A priority Critical patent/JP6446465B2/ja
Priority to US15/515,636 priority patent/US10296098B2/en
Priority to PCT/JP2014/005005 priority patent/WO2016051431A1/ja
Publication of WO2016051431A1 publication Critical patent/WO2016051431A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to an input / output device, an input / output program, and an input / output method. More specifically, the present invention relates to an input / output device, an input / output program, and an input / output method capable of easily manipulating a stereoscopic image.
  • Patent Document 1 discloses a computer graphics that displays a high-quality image on a screen at high speed, that is, a high-speed image generation and display method.
  • the high-speed image generation and display method described in Patent Literature 1 is a high-speed image generation and display method for projecting and displaying an object having a three-dimensional structure on a two-dimensional screen, and the constituent surface of the object is a region in the target coordinate system.
  • the size of the object is hierarchically described as at least one element, and is displayed in the target coordinate system from the origin or viewpoint of the display reference coordinate system when projecting the constituent plane of the target when viewed from an arbitrary viewpoint onto the two-dimensional screen.
  • the degree of hierarchy is set with the distance to an arbitrary point of the target being set as at least one parameter.
  • Patent Document 2 discloses a stereoscopic image generation method and a stereoscopic image generation apparatus that efficiently generate a stereoscopic video without burden on an observer.
  • object data to be planarly displayed among objects composed of polygons having three-dimensional coordinates is displayed in the standard camera coordinate system data with the reference camera as the origin.
  • the data of the object in the right-eye parallax camera coordinate system is rendered in the video memory as the image data for the right eye, and the data of the object in the reference camera coordinate system and the data of the object in the parallax camera coordinate system for the left eye
  • image data draw in video memory and combine right-eye image data and left-eye image data drawn in video memory Te, and displaying an image with mixed stereoscopic object in a plan view object in the stereoscopic display device.
  • Patent Document 3 discloses a method using face recognition and gesture / position recognition techniques.
  • the method described in Patent Document 3 is a method for applying an attribute indicating a user's temperament to a visual display, which includes a step of rendering the user's visual display and a step of receiving physical space data.
  • the data is representative of the user in physical space, the step of analyzing at least one detectable feature to infer the user's temperament, and an attribute indicative of the user's temperament Applying to the display.
  • Patent Document 4 discloses a system and method for supplying a multi-mode input to a space or gesture calculation system.
  • the system disclosed in Patent Literature 4 includes an input device and a detector that is coupled to a processor and detects the orientation of the input device, and the input device has a plurality of mode orientations corresponding to the orientation.
  • Patent Document 5 discloses a system, method, and computer-readable medium for manipulating virtual objects.
  • the method described in Patent Document 5 is a method for operating a virtual object in a virtual space, the step of determining at least one controller used by a user to operate the virtual object, and the controller as a cursor in the virtual space.
  • a method is disclosed that includes mapping, determining a controller input indicating that a user operates a virtual object with a cursor, and displaying a result of the operation.
  • Patent Document 6 In Japanese Patent Application Laid-Open No. 2012-106005 (Patent Document 6), an observer of an image display device obtains a feeling as if it can directly operate a stereoscopic image that does not actually exist.
  • An image display device, a game program, and a game control method are disclosed.
  • the image display device described in Patent Literature 6 includes an image display unit that displays a parallax image on a display screen, and a virtual spatial coordinate of a stereoscopic image that is recognized between the display screen and the observer by an observer of the parallax image.
  • Patent Document 7 discloses a head mounted display having a depth sensor.
  • the head mounted display discloses a yoga instruction or a game simulator.
  • An input / output device includes a display device capable of generating a stereoscopic image, a depth sensor that measures a distance to an object, and a control unit that performs display on the display device according to the depth sensor.
  • the detection area of the sensor consists of a measurement area that is wide and curved in the depth direction of the depth sensor, and has a curvature radius on the far side in the depth direction of the depth sensor and a curvature radius on the near side in the depth direction of the depth sensor.
  • the radius of curvature on the far side is different from the radius of curvature on the near side. Therefore, it is possible to set a radius of curvature on the near side that is larger than the radius of curvature on the far side where the arm is extended. As a result, the user can operate smoothly on the near side and can be detected by the depth sensor. Therefore, the user can operate smoothly based on ergonomics.
  • the input / output device is the input / output device according to one aspect, wherein the control unit may cause the display device to display the detection locus of the detection region along the far radius of curvature by linear movement.
  • the control unit can display the detection locus along the far radius of curvature on the display device by linear movement. That is, when the user extends his / her hand to the maximum, the user's hand moves the radius of curvature on the far side around the shoulder. As a result, although the user intends to move in a straight line, the user actually moves with a radius of curvature. Therefore, the control unit recognizes it as a straight line and displays it on the display device with a linear movement. That is, the user can operate based on ergonomics.
  • the input / output device is the input / output device according to one aspect or the second aspect, wherein the control unit linearly moves the detection locus of the detection region along the radius of curvature on the near side to the display device. May be displayed.
  • the control unit can display the detection locus along the curvature radius on the near side on the display device by linear movement. That is, when the user bends his / her hand, the user's hand moves around the radius of curvature near the shoulder. As a result, although the user intends to move in a straight line, the user actually moves with a radius of curvature. Therefore, the control unit recognizes it as a straight line and displays it on the display device with a linear movement. That is, the user can operate based on ergonomics.
  • An input / output device is the input / output device according to the third aspect of the invention, wherein the radius of curvature on the far side may be smaller than the radius of curvature on the near side.
  • the input / output device can display the linear movement on the display device without making the user aware of it.
  • the input / output device is the input / output device according to the fourth aspect of the present invention, wherein the curved measurement region may be a three-dimensional region including both the vertical direction and the horizontal direction.
  • An input / output device is the input / output device according to the fifth aspect of the present invention, wherein the display device may be a head mounted display.
  • the input / output device is small and wearable, for example, like glasses, it can be easily carried.
  • the head mounted display is small, versatility and convenience can be enhanced.
  • An input / output program includes a display process capable of generating a stereoscopic image, a depth sensor process for measuring a distance to an object, and a control process for displaying the display process according to the depth sensor process.
  • the detection area of the depth sensor process includes a curved measurement area having a width in the depth direction of the depth sensor process, and a curvature radius on the far side in the depth direction in the depth sensor process, and the depth direction in the depth sensor process. The radius of curvature on the near side is different.
  • the radius of curvature on the far side is different from the radius of curvature on the near side. Therefore, it is possible to set a radius of curvature on the near side that is larger than the radius of curvature on the far side where the arm is extended. As a result, the user can operate smoothly on the near side and detect the depth sensor process.
  • the input / output program according to an eighth aspect of the present invention is the input / output program according to another aspect, wherein the control process may cause the display process to display the detection locus of the detection area along the radius of curvature on the far side by linear movement. .
  • the control process can display the detection locus along the radius of curvature on the far side by linear movement in the display process. That is, when the user extends his / her hand to the maximum, the user's hand moves the radius of curvature on the far side around the shoulder. As a result, although the user intends to move in a straight line, the user actually moves with a radius of curvature. Therefore, the control process recognizes it as a straight line and causes the display process to display it with a linear movement. That is, the user can operate based on ergonomics.
  • the input / output program according to the ninth invention is the input / output program according to another aspect or the eighth invention, in which the control process linearly displays the detection locus of the detection region along the radius of curvature on the near side in the display process. You may display by movement.
  • the control process can display the detection area along the radius of curvature on the near side by linear movement in the display process. That is, when the user bends his / her hand, the user's hand moves around the radius of curvature near the shoulder. As a result, although the user intends to move in a straight line, the user actually moves with a radius of curvature. Therefore, the control process recognizes it as a straight line and causes the display process to display it with a linear movement. That is, the user can operate based on ergonomics.
  • An input / output program according to a tenth aspect of the invention is the input / output program according to the ninth aspect of the invention from another aspect, wherein the far-side curvature radius may be smaller than the near-side curvature radius.
  • the input / output program can display the linear movement in the display process without making the user aware of it.
  • the input / output method includes a display step capable of generating a stereoscopic image, a depth sensor step of measuring a distance to the object, a control step of performing display on the display step according to the depth sensor step, And the detection area of the depth sensor process has a curved measurement area having a width in the depth direction of the depth sensor process, and a curvature radius on the far side in the depth direction in the depth sensor process, and the depth in the depth sensor process The radius of curvature on the near side of the direction is different.
  • the radius of curvature on the far side is different from the radius of curvature on the near side. Therefore, it is possible to set a radius of curvature on the near side that is larger than the radius of curvature on the far side where the arm is extended. As a result, the user can operate smoothly on the near side and detect the depth sensor process.
  • An input / output method is the input / output method according to another aspect, wherein the control step displays the detection locus of the detection region along the radius of curvature on the far side by linear movement in the display step. Good.
  • the control process can display the detection area along the radius of curvature on the far side by linear movement in the display process. That is, when the user extends his / her hand to the maximum, the user's hand moves the radius of curvature on the far side around the shoulder. As a result, although the user intends to move in a straight line, the user actually moves with a radius of curvature. Therefore, the control process recognizes it as a straight line and displays it in the display process by linear movement. That is, the user can operate based on ergonomics.
  • the input / output method according to the thirteenth invention is the input / output method according to still another aspect or the twelfth invention, wherein the control step uses the detection locus of the detection region along the radius of curvature on the near side as a display step. It may be displayed by linear movement.
  • the control process can display the detection area along the radius of curvature on the near side by linear movement in the display process. That is, when the user bends his / her hand, the user's hand moves around the radius of curvature near the shoulder. As a result, although the user intends to move in a straight line, the user actually moves with a radius of curvature. Therefore, the control process recognizes it as a straight line and displays it in the display process by linear movement. That is, the user can operate based on ergonomics.
  • the input / output method according to the fourteenth aspect of the present invention is the input / output method according to the thirteenth aspect of the present invention from yet another aspect, wherein the radius of curvature on the far side may be smaller than the radius of curvature on the near side.
  • the input / output method can display the linear movement in the display process without making the user aware of it.
  • FIG. 7 is a top view of FIG. 6.
  • FIG. 7 is a side view of FIG. 6.
  • FIG. 15 is a schematic diagram illustrating another example of the operation region described in FIGS. 12 to 14.
  • FIG. 15 is a schematic diagram illustrating another example of the operation region described in FIGS. 12 to 14.
  • FIG. 15 is a schematic diagram illustrating another example of the operation region described in FIGS. 12 to 14.
  • FIG. 15 is a schematic diagram illustrating another example of the operation region described in FIGS. 12 to 14.
  • the present invention is not limited to the eyeglass display device described below, but can be applied to other input / output devices, display devices, televisions, monitors, projectors, and the like.
  • FIG. 1 is a schematic external front view showing an example of the basic configuration of a spectacle display device 100 according to an embodiment
  • FIG. 2 is a schematic external perspective view showing an example of the spectacle display device 100.
  • the glasses display device 100 is a glasses-type display device. As will be described later, the eyeglass display device 100 is used by being worn on the user's face.
  • the eyeglass display device 100 mainly includes an eyeglass unit 200, a communication system 300, and an operation system 400.
  • the eyeglass unit 200 includes an eyeglass frame 210, a pair of transflective displays 220, and a pair of display adjustment mechanisms 600.
  • the spectacle frame 210 mainly includes a rim unit 211 and a temple unit 212.
  • a pair of transflective displays 220 is supported by the rim unit 211 of the spectacle frame 210.
  • the rim unit 211 is provided with a pair of display adjustment mechanisms 600.
  • the rim unit 211 is provided with an infrared detection unit 410 and a unit adjustment mechanism 500. Details of the unit adjustment mechanism 500 will be described later.
  • the pair of display adjustment mechanisms 600 can adjust the angle and position of the pair of transflective displays 220 as will be described later. Details of the pair of display adjustment mechanisms 600 will be described later.
  • the pair of transflective displays 220 is provided in the pair of display adjustment mechanisms 600 of the rim unit 211 in the glasses display device 100.
  • the pair of display adjustment mechanisms 600 of the unit 211 may be provided with lenses such as a normal sunglasses lens, an ultraviolet cut lens, or a spectacle lens, and may be provided with one transflective display 220 or a pair of transflective displays 220. Further, the transflective display 220 may be embedded in a part of the lenses. Further, although the pair of display adjustment mechanisms 600 are provided on the side portions of the transflective display 220, the present invention is not limited to this and may be provided around or inside the transflective display 220.
  • the present embodiment is not limited to the eyeglass type, and can be used for a hat type or any other head mounted display device as long as it is a type that can be worn on the human body and disposed in the field of view of the wearer. .
  • the communication system 300 includes a battery unit 301, an antenna module 302, a camera unit 303, a speaker unit 304, a GPS (Global Positioning System) unit 307, a microphone unit 308, a SIM (Subscriber Identity Module Card) unit 309, and a main unit 310.
  • the camera unit 303 may be provided with a CCD sensor.
  • the speaker unit 304 may be a normal earphone or a bone conduction earphone.
  • the SIM unit 309 may include an NFC (Near Field Communication) unit and other contact IC card units, and a non-contact IC card unit.
  • the communication system 300 includes at least one of the functions of a mobile phone, a smartphone, and a tablet terminal. Specifically, it includes a telephone function, an Internet function, a browser function, a mail function, an imaging function (including a recording function), and the like. Therefore, the user can use a call function similar to that of a mobile phone by using the eyeglass display device 100 with the communication device, the speaker, and the microphone. Further, since it is a glasses type, it is possible to make a call without using both hands.
  • the operation system 400 includes an infrared detection unit 410, a gyro sensor unit 420, an acceleration detection unit 430, and a control unit 450.
  • the infrared detection unit 410 mainly includes an infrared irradiation element 411 and an infrared detection camera 412.
  • the unit adjustment mechanism 500 can adjust the angle of the infrared detection unit 410.
  • the unit adjustment mechanism 500 has a structure that can adjust the angle of the infrared detection unit 410 about the horizontal axis of the arrow V5 and the vertical axis of the arrow H5.
  • Unit adjustment mechanism 500 moves and adjusts in the directions of arrows V5 and H5 in accordance with instructions from control unit 450. For example, when a predetermined gesture is recognized by the control unit 450, the unit adjustment mechanism 500 may be operated at a predetermined angle. In that case, the user can adjust the angle of the infrared detection unit 410 by performing a predetermined gesture.
  • the unit adjustment mechanism 500 is operated by the control unit 450.
  • the present invention is not limited to this, and the adjustment unit 520 in FIG. It is good also as being able to move and adjust in this direction.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the control unit 450 of the operation system 400.
  • the control unit 450 includes an image sensor calculation unit 451, a depth map calculation unit 452, an image processing unit 453, an anatomical recognition unit 454, a gesture data recording unit 455, a gesture identification unit 456, calibration data. It includes a recording unit 457, a composite arithmetic unit 458, an application software unit 459, an event service unit 460, a calibration service unit 461, a display service unit 462, a graphic arithmetic unit 463, a display arithmetic unit 464, and a six-axis drive driver unit 465.
  • control unit 450 need not include all of the above, and may include one or more units as necessary.
  • the gesture data recording unit 455 and the calibration data recording unit 457 may be arranged on the cloud, and the synthesis operation unit 458 may not be provided.
  • FIG. 4 is a flowchart showing a flow of processing in the operation system 400
  • FIG. 5 is a schematic diagram showing a concept corresponding to the flowchart of FIG.
  • the target data is acquired from the infrared detection unit 410, and the depth calculation is performed by the depth map calculation unit 452 (step S1).
  • the external image data is processed by the image processing unit 453 (step S2).
  • the anatomical recognition unit 454 identifies anatomical features from the outline image data processed in step S2 based on the standard human body structure. Thereby, the outer shape is recognized (step S3).
  • the gesture identification unit 456 identifies the gesture based on the anatomical features obtained in step S3 (step S4).
  • the gesture identification unit 456 refers to the gesture data recorded in the gesture data recording unit 455 and identifies the gesture from the outer shape where the anatomical features are identified.
  • the gesture identification unit 456 refers to the gesture data from the gesture data recording unit 455.
  • the gesture identification unit 456 is not limited to referencing, and may refer to other arbitrary data without referring to it at all. It may be processed. As described above, the hand gesture is recognized as shown in FIG.
  • the application software unit 459 and the event service unit 460 perform a predetermined event according to the gesture determined by the gesture identification unit 456 (step S5).
  • the image by a photography application for example is displayed.
  • the image data from the camera unit 303 may be displayed on the screen.
  • the display service unit 462, the calibration service unit 461, the graphic operation unit 463, the display operation unit 464, and the composition operation unit 458 display an image on the translucent display 220 or a virtual display of the image (step). S6).
  • a hand skeleton indicating a gesture is displayed as shown in FIG. 5 (c)
  • the shape and size of the photograph match the shape and size of the skeleton as shown in FIG. 5 (d).
  • the synthesized image is displayed.
  • the 6-axis drive driver unit 465 always detects signals from the gyro sensor unit 420 and the acceleration detection unit 430, and transmits the posture state to the display arithmetic unit 464.
  • the 6-axis drive driver unit 465 When the user wearing the glasses display device 100 tilts the glasses display device 100, the 6-axis drive driver unit 465 always receives signals from the gyro sensor unit 420 and the acceleration detection unit 430, and displays an image. Take control. In this control, the display of the image may be kept horizontal, or the display of the image may be adjusted according to the inclination.
  • FIG. 6 is a schematic perspective view for explaining a detection region of the infrared detection unit 410 and a virtual display region of the pair of transflective displays 220
  • FIG. 7 is a top view of FIG. 6
  • FIG. FIG. 7 is a side view of FIG. 6.
  • a three-dimensional orthogonal coordinate system including an x-axis, a y-axis, and a z-axis is defined.
  • the x-axis arrows in the following figures indicate the horizontal direction.
  • the y-axis arrow points in the vertical direction or the long axis direction of the user's body.
  • the z-axis arrow points in the depth direction.
  • the z-axis positive direction refers to the direction of greater depth.
  • the direction of each arrow is the same in other figures.
  • the eyeglass display device 100 includes a three-dimensional space detection region (3D space) 4103 ⁇ / b> D that can be detected by the infrared detection unit 410 of the operation system 400.
  • the three-dimensional space detection area 4103D is formed of a conical or pyramidal three-dimensional space from the infrared detection unit 410.
  • the infrared detection unit 410 can detect the infrared rays emitted from the infrared irradiation element 411 by the infrared detection camera 412, and thus can recognize a gesture in the three-dimensional space detection region 4103D.
  • one infrared detection unit 410 is provided.
  • the present invention is not limited to this, and a plurality of infrared detection units 410 may be provided, or one infrared irradiation element 411 may be provided.
  • a plurality of detection cameras 412 may be provided.
  • the pair of transflective displays 220 displays to the user a virtual image display that is not a part of the glasses display device 100 that is actually provided, but is located away from the glasses display device 100.
  • the region 2203D is visually recognized as being virtually displayed with a depth.
  • the depth corresponds to the thickness in the depth direction (z-axis direction) of the virtual three-dimensional shape of the virtual image display area 2203D. Therefore, the depth is provided according to the thickness of the virtual three-dimensional shape in the depth direction (z-axis direction).
  • the user recognizes the right-eye image through the right-eye semi-transmissive display 220 in the three-dimensional space area 2203DR, and the left-eye image is The light is transmitted through the transflective display 220 on the left eye side and recognized by the three-dimensional space area 2203DL.
  • both recognized images are synthesized in the user's brain, and can be recognized as a virtual image in the virtual image display area 2203D.
  • the virtual image display area 2203D includes a frame sequential method, a polarization method, a linear polarization method, a circular polarization method, a top-and-bottom method, a side-by-side method, an anaglyph method, a lenticular method, and a parallax barrier method.
  • the display may be performed using any one of a liquid crystal parallax barrier method, a two-parallax method, and a multi-parallax method using three or more parallaxes.
  • the virtual image display area 2203D has a spatial area shared with the three-dimensional space detection area 4103D.
  • the virtual image display area 2203D since the virtual image display area 2203D exists inside the three-dimensional space detection area 4103D, the virtual image display area 2203D serves as a shared area.
  • the shape and size of the virtual image display area 2203D can be arbitrarily adjusted by the display method on the pair of transflective displays 220. Moreover, as shown in FIG. 8, although the case where the infrared detection unit 410 is arrange
  • FIGS. 6 to 8 are schematic diagrams illustrating other examples of the detection area and the virtual display area illustrated in FIGS. 6 to 8.
  • an input / output device 900 For example, as shown in FIGS. 9 to 11, other input / output devices, display devices, televisions, monitors, and the like may be used instead of the transflective display 220 of the eyeglass display device 100.
  • other input / output devices, display devices, televisions, monitors, and projectors are collectively referred to as an input / output device 900.
  • the virtual image display area 2203D is output from the input / output device 900 in the negative z-axis direction, and the infrared detection unit 410 disposed at a position facing the input / output device 900 in the z-axis direction outputs the z-axis.
  • a three-dimensional space detection region 4103D may be formed in the positive direction.
  • a virtual image display area 2203D by the input / output device 900 is generated as a space area shared with the three-dimensional space detection area 4103D.
  • a virtual image display area 2203D is output from the input / output device 900, and the infrared detection unit 410 is in the same direction as the input / output device 900 (all directions on the z-axis positive side with respect to the xy plane).
  • the three-dimensional space detection region 4103D may be formed. Even in this case, the virtual image display area 2203D by the input / output device 900 is generated as a space area shared with the three-dimensional space detection area 4103D.
  • the virtual image display area 2203 ⁇ / b> D may be output from the input / output device 900 in a vertically upward direction (y-axis positive direction). Also in FIG. 11, similarly to FIGS. 9 and 10, the virtual image display area 2203 ⁇ / b> D by the input / output device 900 is generated as a space area shared with the three-dimensional space detection area 4103 ⁇ / b> D.
  • the input / output device 900 is arranged above the three-dimensional space detection region 4103D (y-axis positive direction side), and the virtual image display region 2203D is vertically downward (y-axis negative direction). It may be output, may be output from the horizontal direction (x-axis direction), or may be output from the rear upper side (z-axis negative direction and y-axis positive direction) like a projector or a movie theater.
  • FIGS. 12 and 13 are schematic diagrams illustrating examples of the operation area and the gesture area in the detection area.
  • the user horizontally moves both hands around the shoulder joints of the right shoulder joint RP and the left shoulder joint LP, so that the area where both hands can move is surrounded by a dotted line.
  • the moving area L and the moving area R become the same.
  • the user vertically moves both hands around the shoulder joints of the right shoulder joint RP and the left shoulder joint LP, so that the area where both hands can move is surrounded by a dotted line.
  • the moving area L and the moving area R become the same.
  • the user has a spherical shape (having an arch-shaped curved surface convex in the depth direction) with both hands rotating around the right shoulder joint RP and the left shoulder joint LP, respectively. Can be moved.
  • the three-dimensional space detection area 4103D by the infrared detection unit 410 the area where the virtual image display area may exist (the virtual image display area 2203D is illustrated in FIG. 12), the arm movement area L, and the movement area R are combined.
  • a space area that overlaps with the selected area is set as the operation area 410c.
  • a portion other than the operation region 410c in the three-dimensional space detection region 4103D and a portion overlapping with the combined region of the arm movement region L and the movement region R is set as the gesture region 410g.
  • the operation region 410c has a three-dimensional shape in which the surface farthest in the depth direction is a curved surface curved in an arch shape convex in the depth direction (z-axis positive direction), whereas the virtual image display region 2203D has a depth of The surface farthest in the direction has a three-dimensional shape that is a plane.
  • the user feels uncomfortable in the operation.
  • adjustment is performed by a calibration process. Details of the calibration process will be described later.
  • FIG. 14 is a flowchart for explaining the calibration process.
  • a calibration process is performed to facilitate the operation in the virtual image display area 2203D by a recognition process described later.
  • the finger length, hand length, and arm length that are different for each user are also adjusted.
  • the user wears the eyeglass display device 100 and extends both arms to the maximum.
  • the infrared detection unit 410 recognizes the maximum area of the operation area 410c (step S11). That is, since the length of the finger, the length of the hand, and the length of the arm, which are different for each user, are different depending on the user, the operation area 410c is adjusted.
  • the display position of the virtual image display area 2203D is determined (step S12). That is, if the virtual image display area 2203D is arranged outside the operation area 410c, the operation by the user becomes impossible, so the virtual image display area 2203D is arranged inside the operation area 410c.
  • the maximum area of the gesture area 410g is set in a position that does not overlap the display position of the virtual image display area 2203D within the three-dimensional space detection area 4103D of the infrared detection unit 410 of the eyeglass display device 100 (step S13).
  • the gesture region 410g is preferably arranged so as not to overlap the virtual image display region 2203D and has a thickness in the depth direction (z-axis positive direction).
  • the operation area 410c, the virtual image display area 2203D, and the gesture area 410g are set by the above method.
  • step) S14 When it is determined that the user's finger, hand, or arm exists outside the virtual image display area 2203D in the operation area 410c, rounding is performed so that the user's finger, hand, or arm exists inside the virtual image display area 2203D (step) S14).
  • both hands remain in the virtual image display area 2203D. Without any deviation in the depth direction (z-axis positive direction). Further, at the end of the virtually displayed image, it is not determined that both hands are present in the virtual image display area 2203D unless both arms are extended to the maximum. Therefore, if the signal from the infrared detection unit 410 is used without processing, even if the user moves away from the virtual image display area 2203D, it is difficult for the user to experience such a state.
  • the signal from the infrared detection unit 410 is processed so as to correct the hand protruding outside from the virtual image display area 2203D within the virtual image display area 2203D. To do. As a result, the user can operate from the center to the end of the flat virtual image display area 2203D having a depth with both arms extended to the maximum or slightly bent.
  • the virtual image display area 2203D is made up of a three-dimensional space area whose plane farthest in the depth direction is a plane, but is not limited to this, and is the plane area farthest in the depth direction. It is good also as consisting of the three-dimensional space area
  • the transflective display 220 displays a rectangular image in the virtual image display area 2203D. For example, as shown in FIG. 5B, a rectangular image is displayed (step S15). Subsequently, display is performed when the periphery of the image is surrounded by a finger on the transflective display 220 (step S16).
  • a finger-shaped image may be displayed lightly in the vicinity of the image, or an instruction may be transmitted from the speaker to the user by voice instead of being displayed on the transflective display 220.
  • the user places his / her finger on the portion where the image can be seen as shown in FIG. Then, the correlation between the display area of the virtual image display area 2203D and the infrared detection unit 410 is automatically adjusted (step S17).
  • a rectangle is formed with a finger, and is matched with the rectangle thus determined and the rectangle of the outer edge of the image.
  • the rectangular viewing size and position determined by the finger are matched with the rectangular viewing size and position of the outer edge of the image.
  • the method of determining the shape with the finger is not limited to this, and any other method such as a method of tracing the outer edge of the displayed image with a finger, a method of pointing a plurality of points on the outer edge of the displayed image with a finger, etc. It may be. Moreover, you may perform these methods about the image of several sizes.
  • FIG. 15 is a schematic diagram illustrating an example of finger recognition.
  • 15A is an enlarged view of the vicinity of the tip of the finger
  • FIG. 15B is an enlarged view of the vicinity of the base of the finger.
  • FIG. 16 is a flowchart illustrating an example of finger recognition processing.
  • the device is initialized (step S21).
  • the infrared ray irradiated from the infrared irradiation element 411 and reflected by the hand is detected by the infrared detection camera 412 (step S22).
  • the image data is replaced with a distance in units of pixels by the infrared detection unit 410 (step S23).
  • the brightness of infrared rays is inversely proportional to the cube of the distance.
  • a depth map is created (step S24).
  • an appropriate threshold value is provided for the created depth map.
  • the image data is binarized (step S25). That is, the noise of the depth map is removed.
  • a polygon having about 100 vertices is created from the binarized image data (step S26).
  • a low-pass filter (LPF) so the vertex becomes smooth, by creating a new polygon having more vertexes p n, it extracts the outline OF hand shown in FIG. 15 (step S27).
  • the number of vertices extracted to create a polygon from the binarized data in step S26 is about 100.
  • the number of vertices is not limited to this, and 1000 or any other arbitrary number is used. It may be a number.
  • step S28 From the set of vertices p n of new polygons created in step S27, using Convex Hull, it extracts the hull (step S28). Thereafter, a shared vertex p 0 between the new polygon created in step S27 and the convex hull created in step S28 is extracted (step S29).
  • the shared vertex p 0 itself extracted in this way can be used as the finger tip point. Further, another point calculated based on the position of the vertex p 0 may be used as the tip point of the finger. For example, it is also possible to calculate the center of the inscribed circle of the contour OF as the tip points P0 at the vertex p 0 as shown in FIG. 15 (A).
  • a vector of the reference line segment PP 1 passing through the pair of left and right vertices p 1 adjacent to the vertex p 0 is calculated.
  • the side pp 2 connecting the vertex p 1 and the adjacent vertex p 2 is selected, and its vector is calculated.
  • using the vertex p n constituting the outer OF repeated along the process of obtaining the vector edge to the outer periphery of the outer OF. It examines the respective sides of the orientation and the reference line segment PP 1 orientation determines that the sides pp k comprising parallel close to the reference line segment PP 1 is present at the position of the crotch of the finger.
  • the root point P1 of the finger is calculated (step S30).
  • a finger skeleton is obtained by connecting the finger tip point P0 and the finger root point P1 with a straight line (step S31).
  • the extension direction of the finger can be recognized.
  • skeletons for all fingers are obtained. Thereby, the hand pose can be recognized. That is, it is possible to recognize which of the thumb, the index finger, the middle finger, the ring finger, and the little finger is spread and which finger is gripped.
  • a difference in hand pose is detected in comparison with the image data of several frames performed immediately before (step S32). That is, the hand movement can be recognized by comparing with the image data of the last several frames.
  • the recognized hand shape is delivered to the event service unit 460 as gesture data (step S33).
  • step S34 the application software unit 459 performs a behavior corresponding to the event.
  • the display service unit 462 requests drawing in the three-dimensional space (step S35).
  • the graphic operation unit 463 refers to the calibration data recording unit 457 using the calibration service unit 461, and corrects the display (step S36).
  • display is performed on the transflective display 220 by the display arithmetic unit 464 (step S37).
  • the root point of the finger is detected by the process of step S30 and the process of step S31, but the root point detection method is not limited to this.
  • the length of the reference line segment PP 1 that connects a pair of adjacent vertices p 1 on one side and the other side of the vertex p 0 is calculated.
  • the length of a line connecting between the pair of vertices p 2 at the one side and the other side is calculated.
  • the length of the line segment connecting the pair of vertices on the one side and the other side is calculated in the order from the vertex located closer to the vertex p 0 to the vertex located further away.
  • Such line segments are approximately parallel to each other without intersecting within the outer shape OF.
  • the root point can be determined by detecting the line segment that does not exceed the predetermined amount and the farthest from the apex p 0 and extracts one point on the detected line segment. .
  • FIG. 17 is a schematic diagram illustrating an example of palm recognition.
  • the maximum inscribed circle C inscribed in the outer shape OF of the image data is extracted.
  • the position of the maximum inscribed circle C can be recognized as the palm position.
  • FIG. 18 is a schematic diagram showing an example of thumb recognition.
  • the thumb has characteristics different from the other four fingers of the index finger, the middle finger, the ring finger, and the little finger.
  • ⁇ 1 involving the thumb tends to be the largest.
  • ⁇ 11 involving the thumb tends to be the largest.
  • the thumb is determined based on such a tendency. As a result, it is possible to determine whether the hand is the right hand or the left hand, or the front or back of the palm.
  • arm recognition Next, arm recognition will be described. In the present embodiment, arm recognition is performed after any of a finger, palm, and thumb is recognized. Note that the arm recognition may be performed before recognizing any one of the finger, the palm, and the thumb, or at least one of them.
  • the polygon is extracted in a larger area than the hand-shaped polygon of the image data.
  • the process of steps S21 to S27 is performed in a range of 5 cm to 100 cm in length, and more preferably in a range of 10 cm to 40 cm to extract the outer shape.
  • a rectangular frame circumscribing the extracted outer shape is selected.
  • the square frame is a parallelogram or a rectangle.
  • the arm extending direction can be recognized from the long side extending direction, and the arm direction can be determined from the long side direction. I can do it.
  • the movement of the arm may be detected in comparison with the image data of the previous few frames.
  • the finger, palm, thumb, and arm are detected from the two-dimensional image.
  • the present invention is not limited to the above, and the infrared detection unit 410 may be further added, and only the infrared detection camera 412 is used. May be further added to recognize a three-dimensional image from a two-dimensional image. As a result, the recognition accuracy can be further increased.
  • FIG. 19 is a schematic diagram illustrating an example of display on the transflective display 220 of the eyeglass display device 100.
  • an advertisement 221 is displayed on a part of the transflective display 220 of the glasses display device 100, a map 222 is displayed on a part of the display, and the other part is a half of the glasses display device 100.
  • a landscape 223 is visually recognized through the transmissive display 220, and a weather forecast 224 and a time 225 are also displayed.
  • FIGS. 20 to 23 are schematic diagrams illustrating other examples of the operation area 410c described with reference to FIGS. 20 and 21 are schematic views showing a state in which the user is visually recognized from above, and FIGS. 22 and 23 are schematic views showing a state in which the user is visually recognized from the side.
  • FIG. 20 shows a case where the user fully extends the arm arm1, the arm arm2, and the hand H1, and the hand H1 in this case passes through the movement locus RL1 around the right shoulder joint RP.
  • the radius of curvature of the movement locus RL1 is rad1.
  • FIG. 21 shows a case where the user bends the arm arm1 and the arm arm2, and the hand H1 in this case passes through the movement locus RL2. That is, in FIG. 21, the user is trying to move the hand H1 in the horizontal direction, but will pass through a movement locus RL2 that is close to a straight line.
  • the radius of curvature of the movement locus RL2 is rad2.
  • the radius of curvature rad1 is smaller than the radius of curvature rad2.
  • control unit 450 even if the control unit 450 detects the movement locus RL1 from the infrared unit 410, it calibrates that the movement is linear. Similarly, the control unit 450 calibrates that the movement is linear even when the movement locus RL2 is detected.
  • FIG. 22 shows a case where the user fully extends the arm arm1, the arm arm2, and the hand H1, and the hand H1 in this case passes through the movement locus RL3 around the right shoulder joint RP.
  • the radius of curvature of the movement locus RL3 is rad3.
  • the user shows a case where the arm arm1 and the arm arm2 are bent, and the hand H1 in this case passes through the movement locus RL4. That is, in FIG. 23, the user is trying to move the hand H1 in the vertical direction, but passes the movement locus RL4 that is close to a straight line.
  • the radius of curvature of the movement locus RL4 is rad4.
  • the curvature radius rad3 is naturally smaller than the curvature radius rad4.
  • control unit 450 even when the control unit 450 detects the movement locus RL3 from the infrared unit 410, it calibrates that the movement is linear. Similarly, the control unit 450 calibrates that the movement is a linear movement even when the movement locus RL4 is detected.
  • calibration may be performed on an arbitrary trajectory passing between the movement trajectory RL1 and the movement trajectory RL2.
  • calibration may be performed on an arbitrary trajectory passing between the movement trajectory RL3 and the movement trajectory RL4.
  • the pair of light transmissive displays 220 has a straight line. In addition, it is displayed with a locus moved in a straight line.
  • the curvature radius rad1 on the far side is different from the curvature radius rad2 on the near side.
  • the radius of curvature rad3 on the far side is different from the radius of curvature rad4 on the near side. Accordingly, it is possible to set the nearer radius of curvature rad2, rad4 than the far radius of curvature rad1, rad3 obtained by extending the arms arm1, arm2. As a result, the user can operate smoothly on the near side and can be detected by the infrared unit 410. Therefore, the user can operate smoothly based on ergonomics.
  • control unit 450 can display the movement trajectories RL1 and RL3 along the far side curvature radius rad1,3 on the light transmission display 220 by linear movement. That is, when the user extends the hand H1 to the maximum, the user's hand H1 moves on the far side radii of curvature rad1, rad3 around the right shoulder joint RP and the left shoulder joint LP. As a result, although the user intends to move in a straight line, the user actually moves with the radii of curvature rad1 and rad3, so the control unit 450 recognizes it as a straight line and displays it on the light transmission display 220 with a straight line movement.
  • the control unit 450 can display the movement trajectories RL2 and RL4 along the near-side curvature radii rad2 and rad4 on the light transmission display 220 by linear movement. That is, when the user bends the arms arm1 and arm2, the user's hand moves around the curvature radiuses rad2 and rad4 on the near side around the right shoulder joint RP and the left shoulder joint LP. As a result, although the user intends to move in a straight line, the user actually moves with the radii of curvature rad2 and rad4. Therefore, the control unit 450 recognizes it as a straight line and displays it on the light transmission display 220 with a straight line movement.
  • the eyeglass display device 100 can be easily carried. Moreover, since the head mounted display is small, versatility and convenience can be enhanced.
  • the transflective display 220 corresponds to “display device”
  • the hand H1 and the arm arm2 correspond to “object”
  • the infrared detection unit 410 corresponds to “depth sensor”
  • the control unit 450 “ The three-dimensional space detection area 4103D corresponds to the “measurement area”
  • the far-side radius of curvature rad1, rad3 corresponds to the “far-side radius of curvature”
  • the near-side radius of curvature rad2, rad4 corresponds to “the radius of curvature on the near side”
  • the direction from the infrared unit 410 to the hand H1 corresponds to the “depth direction”
  • the eyeglass display device 100 corresponds to the “input / output device”.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本発明の目的は、容易に操作することができる入出力装置、入出力プログラムおよび入出力方法を提供することである。 本発明の他の目的は、人間工学に基づいて容易に操作することができる入出力装置、入出力プログラムおよび入出力方法を提供することである。 入出力装置は、立体視像を生成可能な表示装置と、対象物までの距離を測定する深度センサと、深度センサに応じて表示装置に表示を行う制御部と、を含み、深度センサの検知領域は、深度センサの深度方向に幅を有し、かつ湾曲した測定領域からなり、深度センサの深度方向の遠方側の曲率半径と、深度センサの深度方向の近方側の曲率半径とが、異なるものである。

Description

入出力装置、入出力プログラム、および入出力方法
 本発明は、入出力装置、入出力プログラムおよび入出力方法に関する。より具体的に本発明は、立体視像を容易に操作することができる入出力装置、入出力プログラムおよび入出力方法に関する。
 日本国特公平8-31140号公報(特許文献1)には、高速で臨場感のある画像をスクリーン上に表示するようなコンピュータグラフィックス、すなわち高速画像生成表示方法が開示されている。
 特許文献1に記載の高速画像生成表示方法においては、立体構造をもつ対象を2次元画面に投影して表示する高速画像生成表示方法であって、対象の構成面は、対象座標系において、領域の大きさを少なくとも1つの要素として階層的に記述され、任意の視点から見た時の該対象の構成面を2次元画面へ投影するに際して、表示基準座標系原点または視点から対象座標系で表される該対象の任意の点までの距離を少なくとも1つのパラメータとして階層度を設定することを特徴とする。
 日本国特開2004-126902号公報(特許文献2)には、観測者に負担のない立体視映像を効率よく生成する立体視画像生成方法および立体視画像生成装置が開示されている。
 特許文献2に記載の立体視画像生成方法は、三次元座標を有するポリゴンで構成されるオブジェクトのうち、平面視表示させるオブジェクトデータを基準カメラを原点とする基準カメラ座標系データに、立体視表示させるオブジェクトのデータを所定の視差角を有する右眼用及び左眼用視差カメラをそれぞれ原点とする右眼用及び左眼用視差カメラ座標系データに変換し、基準カメラ座標系のオブジェクトのデータと、右眼用視差カメラ座標系のオブジェクトのデータを右眼用画像データとして、ビデオメモリに描画し、基準カメラ座標系のオブジェクトのデータと、左眼用視差カメラ座標系のオブジェクトのデータを左眼用画像データとして、ビデオメモリに描画し、ビデオメモリに描画された右眼用画像データと左眼用画像データを合成して、立体視オブジェクトと平面視オブジェクトの混在する画像を立体視表示装置に表示することを特徴とする。
 日本国特表2012-533120号公報(特許文献3)には、顔認識及びジェスチャ/***認識技法を使用する方法が開示されている。
 特許文献3に記載の方法は、ユーザの気質を示す属性を視覚表示に適用するための方法であって、ユーザの視覚表示をレンダリングするステップと、物理的な空間のデータを受信するステップであって、データが、物理的な空間内のユーザを代表しているものと、ユーザの気質を推論するために、少なくとも1つの検出可能な特徴を解析するステップと、ユーザの気質を示す属性を視覚表示に適用するステップと、を含む。
 日本国特表2012-528405号公報(特許文献4)においては、空間またはジェスチャ計算システムにマルチモード入力を供給するシステムおよび方法が開示されている。
 特許文献4に記載のシステムは、入力デバイスと、プロセッサに結合され、入力デバイスの方位を検出する検出器と、を備えているシステムであって、入力デバイスが、方位に対応する複数のモード方位を有し、複数のモード方位が、ジェスチャ制御システムの複数の入力モードに対応し、検出器が、ジェスチャ制御システムに結合され、方位に応答して、複数の入力モードからの入力モードの選択を自動的に制御する。
 日本国特表2012-521039号公報(特許文献5)においては、仮想オブジェクトを操作するためのシステム、方法及びコンピューター読み取り可能な媒体が開示されている。特許文献5に記載の方法は、仮想空間において仮想オブジェクトを操作する方法であって、仮想オブジェクトを操作するためにユーザが利用する少なくとも1つのコントローラーを決定するステップと、コントローラーを仮想空間におけるカーソルにマッピングするステップと、ユーザがカーソルによって仮想オブジェクトを操作することを示すコントローラー入力を決定するステップと、操作の結果を表示するステップとを含む方法について開示されている。
 日本国特開2012-106005号公報(特許文献6)においては、画像表示装置の観察者が、実際には存在しない立体像に対してあたかも直接的に操作を行えるかのような感覚を得ることができる画像表示装置、ゲームプログラム、ゲーム制御方法が開示されている。特許文献6に記載の画像表示装置は、表示画面に視差画像を表示する画像表示手段と、視差画像の観察者によって表示画面と観察者との間に認識される立体像の仮想的な空間座標を算出する第1座標算出手段と、観察者の操作対象である操作体の空間座標を算出する第2座標算出手段と、第1座標算出手段によって算出された立体像の少なくとも1点の空間座標と、第2座標算出手段によって算出された操作体の少なくとも1点の空間座標との間の距離が所定の閾値以下になったときに、視差画像、または視差画像以外の表示画面上の画像の少なくとも一方の変化を伴う所定のイベントを発生させるイベント発生手段と、を備える。
 国際公開第2014/106823号公法(特許文献7)においては、深度センサを持つヘッドマウントディスプレイについて開示されている。
 当該ヘッドマウントディスプレイにおいては、ヨガの指導またはゲームシミュレータについて開示されている。
日本国特公平8-31140号公報 日本国特開2004-126902号公報 日本国特表2012-533120号公報 日本国特表2012-528405号公報 日本国特表2012-521039号公報 日本国特開2012-106005号公報 国際公開第2014/106823号公報
 本発明の目的は、容易に操作することができる入出力装置、入出力プログラムおよび入出力方法を提供することである。
 本発明の他の目的は、人間工学に基づいて容易に操作することができる入出力装置、入出力プログラムおよび入出力方法を提供することである。
(1)
 一局面に従う入出力装置は、立体視像を生成可能な表示装置と、対象物までの距離を測定する深度センサと、深度センサに応じて表示装置に表示を行う制御部と、を含み、深度センサの検知領域は、深度センサの深度方向に幅を有し、かつ湾曲した測定領域からなり、深度センサの深度方向の遠方側の曲率半径と、深度センサの深度方向の近方側の曲率半径とが、異なるものである。
 この場合、遠方側の曲率半径と、近方側の曲率半径とが異なる。したがって、腕を伸長させた遠方側の曲率半径よりも大きな近方側の曲率半径を設定することができる。その結果、ユーザは、近方側において、円滑に操作し、深度センサにより検知させることができる。したがって、ユーザは、人間工学基づいて円滑に操作することができる。
(2)
 第2の発明に係る入出力装置は、一局面に従う入出力装置において、制御部は、遠方側の曲率半径に沿った検知領域の検知軌跡を、表示装置に直線移動で表示させてもよい。
 この場合、制御部は、遠方側の曲率半径に沿った検知軌跡を、表示装置に直線移動で表示することができる。すなわち、ユーザが手を最大伸長させた場合、肩を中心にユーザの手が遠方側の曲率半径を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径で移動するため、制御部は、直線として認識し、表示装置に直線移動で表示させる。すなわち、ユーザは、人間工学に基づいて操作することができる。
(3)
 第3の発明に係る入出力装置は、一局面または第2の発明に係る入出力装置において、制御部は、近方側の曲率半径に沿った検知領域の検知軌跡を、表示装置に直線移動で表示させてもよい。
 この場合、制御部は、近方側の曲率半径に沿った検知軌跡を、表示装置に直線移動で表示することができる。すなわち、ユーザが手を曲げた場合、肩を中心にユーザの手が近方側の曲率半径を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径で移動するため、制御部は、直線として認識し、表示装置に直線移動で表示させる。すなわち、ユーザは、人間工学に基づいて操作することができる。
(4)
 第4の発明に係る入出力装置は、一局面から第3の発明に係る入出力装置において、遠方側の曲率半径は、近方側の曲率半径よりも小さくてもよい。
 この場合、遠方側の曲率半径は、肩を中心に移動させるのに対して、近方側の曲率半径は、肩のみでなく肘を腕と動かすことができるため、曲率半径が大きくなる。その結果、入出力装置は、ユーザに意識させることなく表示装置に直線移動を表示させることができる。
(5)
 第5の発明に係る入出力装置は、一局面から第4の発明に係る入出力装置において、湾曲した測定領域は、鉛直方向および水平方向の両方向を含む立体領域であってもよい。
 この場合、鉛直方向および水平方向の両方向を含む立体領域からなるので、入出力装置の操作性を高めることができる。
(6)
 第6の発明に係る入出力装置は、一局面から第5の発明に係る入出力装置において、表示装置がヘッドマウントディスプレイであってもよい。
 この場合、入出力装置が、例えば眼鏡のように小型かつ装着可能な態様となるので、容易に携帯可能となる。また、ヘッドマウントディスプレイは小型であるので、汎用性および利便性を高めることができる。
(7)
 他の局面に従う入出力プログラムは、立体視像を生成可能な表示処理と、対象物までの距離を測定する深度センサ処理と、深度センサ処理に応じて表示処理に表示を行う制御処理と、を含み、深度センサ処理の検知領域は、深度センサ処理の深度方向に幅を有し、かつ湾曲した測定領域からなり、深度センサ処理における深度方向の遠方側の曲率半径と、深度センサ処理における深度方向の近方側の曲率半径とが、異なるものである。
 この場合、遠方側の曲率半径と、近方側の曲率半径とが異なる。したがって、腕を伸長させた遠方側の曲率半径よりも大きな近方側の曲率半径を設定することができる。その結果、ユーザは、近方側において、円滑に操作し、深度センサ処理により検知させることができる。
(8)
 第8の発明に係る入出力プログラムは、他の局面に従う入出力プログラムにおいて、制御処理は、遠方側の曲率半径に沿った検知領域の検知軌跡を、表示処理に直線移動で表示させてもよい。
 この場合、制御処理は、遠方側の曲率半径に沿った検知軌跡を、表示処理に直線移動で表示することができる。すなわち、ユーザが手を最大伸長させた場合、肩を中心にユーザの手が遠方側の曲率半径を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径で移動するため、制御処理は、直線として認識し、表示処理に直線移動で表示させる。すなわち、ユーザは、人間工学に基づいて操作することができる。
(9)
 第9の発明に係る入出力プログラムは、他の局面または第8の発明に係る入出力プログラムにおいて、制御処理は、近方側の曲率半径に沿った検知領域の検知軌跡を、表示処理に直線移動で表示させてもよい。
 この場合、制御処理は、近方側の曲率半径に沿った検知領域を、表示処理に直線移動で表示することができる。すなわち、ユーザが手を曲げた場合、肩を中心にユーザの手が近方側の曲率半径を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径で移動するため、制御処理は、直線として認識し、表示処理に直線移動で表示させる。すなわち、ユーザは、人間工学に基づいて操作することができる。
(10)
 第10の発明に係る入出力プログラムは、他の局面から第9の発明に係る入出力プログラムにおいて、遠方側の曲率半径は、近方側の曲率半径よりも小さくてもよい。
 この場合、遠方側の曲率半径は、肩を中心に移動させるのに対して、近方側の曲率半径は、肩のみでなく肘を腕と動かすことができるため、曲率半径を大きくなる。その結果、入出力プログラムは、ユーザに意識させることなく表示処理に直線移動を表示させることができる。
(11)
 さらに他の局面に従う入出力方法は、立体視像を生成可能な表示工程と、対象物までの距離を測定する深度センサ工程と、深度センサ工程に応じて表示工程に表示を行う制御工程と、を含み、深度センサ工程の検知領域は、深度センサ工程の深度方向に幅を有し、かつ湾曲した測定領域からなり、深度センサ工程における深度方向の遠方側の曲率半径と、深度センサ工程における深度方向の近方側の曲率半径とが、異なるものである。
 この場合、遠方側の曲率半径と、近方側の曲率半径とが異なる。したがって、腕を伸長させた遠方側の曲率半径よりも大きな近方側の曲率半径を設定することができる。その結果、ユーザは、近方側において、円滑に操作し、深度センサ工程により検知させることができる。
(12)
 第12の発明に係る入出力方法は、さらに他の局面に従う入出力方法において、制御工程は、遠方側の曲率半径に沿った検知領域の検知軌跡を、表示工程に直線移動で表示させてもよい。
 この場合、制御工程は、遠方側の曲率半径に沿った検知領域を、表示工程に直線移動で表示することができる。すなわち、ユーザが手を最大伸長させた場合、肩を中心にユーザの手が遠方側の曲率半径を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径で移動するため、制御工程は、直線として認識し、表示工程に直線移動で表示させる。すなわち、ユーザは、人間工学に基づいて操作することができる。
(13)
 第13の発明に係る入出力方法は、さらに他の局面または第12の発明に係る入出力方法において、制御工程は、近方側の曲率半径に沿った検知領域の検知軌跡を、表示工程に直線移動で表示させてもよい。
 この場合、制御工程は、近方側の曲率半径に沿った検知領域を、表示工程に直線移動で表示することができる。すなわち、ユーザが手を曲げた場合、肩を中心にユーザの手が近方側の曲率半径を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径で移動するため、制御工程は、直線として認識し、表示工程に直線移動で表示させる。すなわち、ユーザは、人間工学に基づいて操作することができる。
(14)
 第14の発明に係る入出力方法は、さらに他の局面から第13の発明に係る入出力方法において、遠方側の曲率半径は、記近方側の曲率半径よりも小さくてもよい。
 この場合、遠方側の曲率半径は、肩を中心に移動させるのに対して、近方側の曲率半径は、肩のみでなく肘を腕と動かすことができるため、曲率半径を大きくなる。その結果、入出力方法は、ユーザに意識させることなく表示工程に直線移動を表示させることができる。
一実施の形態にかかる眼鏡表示装置の基本構成の一例を示す模式的外観正面図である。 眼鏡表示装置の一例を示す模式的外観斜視図である。 操作システムの制御ユニットの構成の一例を示す模式図である。 操作システムにおける処理の流れを示すフローチャートである。 図4のフローチャートに応じた概念を示す模式図である。 赤外線検知ユニットの検知領域と、一対の半透過ディスプレイの仮想表示領域とを説明するための模式的斜視図である。 図6の上面図である。 図6の側面図である。 検知領域と仮想表示領域との他の例を示す模式図である。 検知領域と仮想表示領域との他の例を示す模式図である。 検知領域と仮想表示領域との他の例を示す模式図である。 検知領域における操作領域とジェスチャ領域との一例を示す模式図である。 検知領域における操作領域とジェスチャ領域との一例を示す模式図である。 キャリブレーション処理の説明を行なうためのフローチャートである。 指認識の一例を示す模式図である。 指認識の処理の一例を示すフローチャートである。 掌認識の一例を示す模式図である。 親指認識の一例を示す模式図である。 眼鏡表示装置の半透過ディスプレイの表示の一例を示す模式図である。 図12から図14において説明した操作領域の他の例を示す模式図である。 図12から図14において説明した操作領域の他の例を示す模式図である。 図12から図14において説明した操作領域の他の例を示す模式図である。 図12から図14において説明した操作領域の他の例を示す模式図である。
 100 眼鏡表示装置
 220 半透過ディスプレイ
 2203D 仮想イメージ表示領域(共有領域)
 300 通信システム
 303 カメラユニット
 410 赤外線検知ユニット
 410c 操作領域
 420 ジャイロセンサユニット
 430 加速度検知ユニット
 4103D 三次元空間検知領域
 450 制御ユニット
 454 解剖学的認識ユニット
 456 ジェスチャ識別ユニット
 460 イベントサービスユニット
 461 キャリブレーションサービスユニット
 900 入出力装置
 H1 手
 RP 右肩関節
 LP 左肩関節
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 また、本発明は、以下に説明する眼鏡表示装置に限定されるものではなく、他の入出力装置、表示装置、テレビジョン、モニタ、プロジェクタ等にも適用することができる。
(眼鏡表示装置の構成概略)
 図1は、一実施の形態にかかる眼鏡表示装置100の基本構成の一例を示す模式的外観正面図であり、図2は、眼鏡表示装置100の一例を示す模式的外観斜視図である。
 図1または図2に示すように、眼鏡表示装置100は、眼鏡型の表示装置である。当該眼鏡表示装置100は、後述するように、ユーザの顔に装着して使用される。
 図1および図2に示すように、眼鏡表示装置100は、主に、眼鏡ユニット200、通信システム300および操作システム400からなる。
(眼鏡ユニット200)
 図1および図2に示すように、眼鏡ユニット200は、眼鏡フレーム210、一対の半透過ディスプレイ220および一対の表示調整機構600からなる。眼鏡フレーム210は、主にリムユニット211、テンプルユニット212を含む。
 眼鏡フレーム210のリムユニット211により一対の半透過ディスプレイ220が支持される。また、リムユニット211には、一対の表示調整機構600が設けられる。さらに、リムユニット211には、赤外線検知ユニット410およびユニット調整機構500が設けられる。ユニット調整機構500の詳細については後述する。
 一対の表示調整機構600は、後述するように一対の半透過ディスプレイ220の角度および位置を調整することができる。一対の表示調整機構600の詳細については、後述する。
 本実施の形態においては、眼鏡表示装置100には、リムユニット211の一対の表示調整機構600に一対の半透過ディスプレイ220を設けることとしているが、これに限定されず、眼鏡表示装置100のリムユニット211の一対の表示調整機構600に通常のサングラスレンズ、紫外線カットレンズ、または眼鏡レンズなどのレンズ類を設け、別に1個の半透過ディスプレイ220または一対の半透過ディスプレイ220を設けてもよい。
 また、当該レンズ類の一部に、半透過ディスプレイ220を埋め込んで設けてもよい。
 また、一対の表示調整機構600を半透過ディスプレイ220の側部に設けているが、これに限定されず、半透過ディスプレイ220の周囲または内部に設けてもよい。
 さらに、本実施の形態は、眼鏡タイプに限定するものではなく、人体に装着し、装着者の視野に配設できるタイプであれば、帽子タイプその他任意のヘッドマウントディスプレイ装置に使用することができる。
(通信システム300)
 次に、通信システム300について説明を行なう。
 通信システム300は、バッテリーユニット301、アンテナモジュール302、カメラユニット303、スピーカユニット304、GPS(Global Positioning System)ユニット307、マイクユニット308、SIM(Subscriber Identity Module Card)ユニット309およびメインユニット310を含む。
 なお、カメラユニット303にはCCDセンサが備えられてもよい。スピーカユニット304は、ノーマルイヤホンであってもよいし、骨伝導イヤホンであってもよい。SIMユニット309には、NFC(Near Field Communication:近距離無線通信)ユニットおよび他の接触式ICカードユニット、ならびに非接触式ICカードユニットを含んでもよい。
 以上のように、本実施の形態にかかる通信システム300は、少なくとも携帯電話、スマートフォンおよびタブレット端末のいずれかの機能を含むものである。具体的には、電話機能、インターネット機能、ブラウザ機能、メール機能、および撮像機能(録画機能を含む)等を含むものである。
 したがって、ユーザは、眼鏡表示装置100を用いて、通信装置、スピーカおよびマイクにより、携帯電話と同様の通話機能を使用することができる。また、眼鏡型であるので、両手を利用せず、通話を行なうことができる。
(操作システム400)
 続いて、操作システム400は、赤外線検知ユニット410、ジャイロセンサユニット420、加速度検知ユニット430および制御ユニット450からなる。赤外線検知ユニット410は、主に赤外線照射素子411および赤外線検知カメラ412からなる。
(ユニット調整機構500)
 図2に示すように、ユニット調整機構500は、赤外線検知ユニット410の角度を調整することができる。具体的には、ユニット調整機構500は、矢印V5の水平軸周り、および、矢印H5の垂直軸周り、に赤外線検知ユニット410の角度を調整可能な構造である。
 ユニット調整機構500は、制御ユニット450からの指示により矢印V5および矢印H5の方向に移動調整する。
 例えば、制御ユニット450により所定のジェスチャを認識した場合に、ユニット調整機構500を所定の角度で動作させてもよい。その場合、ユーザは、所定のジェスチャを行うことにより赤外線検知ユニット410の角度の調整を行うことができる。
 なお、本実施の形態においては制御ユニット450によりユニット調整機構500が動作することとしているが、これに限定されず、手動により図1の調整部520を操作して、矢印V5の方向および矢印H5の方向に移動調整できることとしてもよい。
 続いて、操作システム400の構成、処理の流れおよび概念について説明を行なう。図3は、操作システム400の制御ユニット450の構成の一例を示す模式図である。
 図3に示すように、制御ユニット450は、イメージセンサ演算ユニット451、デプスマップ演算ユニット452、イメージ処理ユニット453、解剖学的認識ユニット454、ジェスチャデータ記録ユニット455、ジェスチャ識別ユニット456、キャリブレーションデータ記録ユニット457、合成演算ユニット458、アプリケーションソフトユニット459、イベントサービスユニット460、キャリブレーションサービスユニット461、表示サービスユニット462、グラフィック演算ユニット463、ディスプレイ演算ユニット464、および6軸駆動ドライバユニット465を含む。
 なお、制御ユニット450は、上記の全てを含む必要はなく、適宜必要な1または複数のユニットを含んでもよい。たとえば、ジェスチャデータ記録ユニット455およびキャリブレーションデータ記録ユニット457は、クラウド上に配置してもよく、合成演算ユニット458を特に設けなくてもよい。
 次に、図4は、操作システム400における処理の流れを示すフローチャートであり、図5は図4のフローチャートに応じた概念を示す模式図である。
 まず、図4に示すように、赤外線検知ユニット410から対象のデータを取得し、デプスマップ演算ユニット452により深さ演算を行なう(ステップS1)。次に、イメージ処理ユニット453により外形イメージデータを処理する(ステップS2)。
 次いで、解剖学的認識ユニット454により、標準的な人体の構造に基づき、ステップS2において処理された外形イメージデータから、解剖学的特徴を識別する。これにより、外形が認識される(ステップS3)。
 さらに、ジェスチャ識別ユニット456により、ステップS3で得た解剖学的特徴に基づいてジェスチャを識別する(ステップS4)。
 ジェスチャ識別ユニット456は、ジェスチャデータ記録ユニット455に記録されたジェスチャデータを参照し、解剖学的特徴が識別された外形からジェスチャの識別を行なう。なお、ジェスチャ識別ユニット456は、ジェスチャデータ記録ユニット455からのジェスチャデータを参照することとしているが、参照することに限定されず、他の任意のデータを参照してもよく、全く参照することなく処理してもよい。
 以上により、図5(a)に示すように、手のジェスチャを認識する。
 続いて、アプリケーションソフトユニット459およびイベントサービスユニット460は、ジェスチャ識別ユニット456により判定されたジェスチャに応じて所定のイベントを実施する(ステップS5)。
 これによって、図5(b)に示すように、たとえば写真アプリによる画像が表示される。この際、当該画面には、カメラユニット303からの撮像データが表示されてよい。
 最後に、表示サービスユニット462、キャリブレーションサービスユニット461、グラフィック演算ユニット463、ディスプレイ演算ユニット464および合成演算ユニット458により、半透過ディスプレイ220に、イメージの表示、またはイメージの仮想表示が行なわれる(ステップS6)。これによって、図5(c)に示すようにジェスチャを示す手のスケルトンの表示が行われ、図5(d)に示すように、当該スケルトンの形状および大きさに写真の形状および大きさが合致するように合成されたイメージが表示される。
 なお、6軸駆動ドライバユニット465は、常にジャイロセンサユニット420、加速度検知ユニット430からの信号を検知し、ディスプレイ演算ユニット464に姿勢状況を伝達する。
 眼鏡表示装置100を装着したユーザが眼鏡表示装置100を傾斜させた場合には、6軸駆動ドライバユニット465は、常にジャイロセンサユニット420、加速度検知ユニット430からの信号を受信し、イメージの表示の制御を行なう。当該制御においては、イメージの表示を水平に維持させてもよいし、イメージの表示を傾斜にあわせて調整してもよい。
(検知領域と仮想表示領域との一例)
 次に、操作システム400の赤外線検知ユニット410の検知領域と、一対の半透過ディスプレイ220の仮想表示領域との関係について説明を行なう。
 図6は、赤外線検知ユニット410の検知領域と、一対の半透過ディスプレイ220の仮想表示領域とを説明するための模式的斜視図であり、図7は図6の上面図であり、図8は、図6の側面図である。
 以下において、説明の便宜上、図6に示すように、x軸、y軸およびz軸からなる三次元直交座標系が定義される。以下の図におけるx軸の矢印は、水平方向を指す。y軸の矢印は、鉛直方向またはユーザの体の長軸方向を指す。z軸の矢印は、深度方向を指す。z軸正方向は、より大きい深度の方向を指す。それぞれの矢印の向きは、他の図においても同じである。
 図6から図8に示すように、眼鏡表示装置100は操作システム400の赤外線検知ユニット410により検知可能な三次元空間検知領域(3Dスペース)4103Dを有する。
 三次元空間検知領域4103Dは、赤外線検知ユニット410からの円錐状または角錐状の三次元空間からなる。
 すなわち、赤外線検知ユニット410は、赤外線照射素子411から、照射された赤外線を、赤外線検知カメラ412により検知できるので、三次元空間検知領域4103D内のジェスチャを認識することができる。
 また、本実施の形態においては、赤外線検知ユニット410を1個設けることとしているが、これに限定されず、赤外線検知ユニット410を複数個設けてもよいし、赤外線照射素子411を1個、赤外線検知カメラ412を複数個設けてもよい。
 続いて、図6から図8に示すように一対の半透過ディスプレイ220は、ユーザに、実際に設けられた眼鏡表示装置100の部分ではなく、眼鏡表示装置100から離れた場所となる仮想イメージ表示領域2203Dに、奥行きを持って仮想表示されたものとして視認させる。当該奥行きは、仮想イメージ表示領域2203Dが有する仮想立体形状の深度方向(z軸方向)の厚みに対応する。したがって、当該仮想立体形状の深度方向(z軸方向)の厚みに応じて奥行きが設けられる。
 すなわち、実際には眼鏡表示装置100の半透過ディスプレイ220に表示されるものの、ユーザは、右目のイメージは右目側の半透過ディスプレイ220を透過し三次元空間領域2203DRで認識し、左目のイメージは左目側の半透過ディスプレイ220を透過し三次元空間領域2203DLで認識する。その結果、認識された両イメージがユーザの脳内で合成されることにより、仮想イメージ表示領域2203Dで仮想イメージとして認識することができる。
 また、仮想イメージ表示領域2203Dは、フレーム・シーケンシャル方式、偏光方式、直線偏光方式、円偏光方式、トップ・アンド・ボトム方式、サイド・バイ・サイド方式、アナグリフ方式、レンチキュラ方式、パララックス・バリア方式、液晶パララックス・バリア方式、2視差方式および3視差以上を利用する多視差方式のいずれかを利用して表示されてもよい。
 また、本実施の形態においては、仮想イメージ表示領域2203Dは、三次元空間検知領域4103Dと共有する空間領域を有する。特に、図6および図7に示すように、三次元空間検知領域4103Dの内部に、仮想イメージ表示領域2203Dが存在するため、仮想イメージ表示領域2203Dが共有領域となる。
 なお、仮想イメージ表示領域2203Dの形状およびサイズについては、一対の半透過ディスプレイ220への表示方法により任意に調整することができる。
 また、図8に示すように、一対の半透過ディスプレイ220よりも赤外線検知ユニット410が上方(y軸正方向)に配設されている場合について説明しているが、鉛直方向(y軸方向)に対して、赤外線検知ユニット410の配設位置が半透過ディスプレイ220よりも下方(y軸負方向)または半透過ディスプレイ220と同位置であっても、同様に、仮想イメージ表示領域2203Dは、三次元空間検知領域4103Dと共有する空間領域を有する。
(検知領域と仮想表示領域との他の例)
 続いて、図9から図11は、図6から図8において示した検知領域と仮想表示領域との他の例を示す模式図である。
 例えば、図9から図11に示すように、眼鏡表示装置100の半透過ディスプレイ220の代わりに、他の入出力装置、表示装置、テレビジョン、モニタ等を用いてもよい。以下、他の入出力装置、表示装置、テレビジョン、モニタ、プロジェクタを総称して入出力装置900と略記する。
 図9に示すように、入出力装置900からz軸負方向に仮想イメージ表示領域2203Dが出力され、入出力装置900にz軸方向で対向する位置に配設された赤外線検知ユニット410からz軸正方向に三次元空間検知領域4103Dが形成されてもよい。
 この場合、入出力装置900による仮想イメージ表示領域2203Dが、三次元空間検知領域4103Dと共有の空間領域として生じる。
 また、図10に示すように、入出力装置900から仮想イメージ表示領域2203Dが出力され、入出力装置900と同方向(xy平面を基準としていずれもz軸正側の方向)に赤外線検知ユニット410の三次元空間検知領域4103Dが形成されてもよい。
 この場合でも、入出力装置900による仮想イメージ表示領域2203Dが、三次元空間検知領域4103Dと共有の空間領域として生じる。
 次に、図11に示すように、入出力装置900から鉛直上方向(y軸正方向)に仮想イメージ表示領域2203Dが出力されてもよい。図11においても、図9、図10と同様に、入出力装置900による仮想イメージ表示領域2203Dが、三次元空間検知領域4103Dと共有の空間領域として生じる。
 また、図示していないが、入出力装置900を三次元空間検知領域4103Dより上方側(y軸正方向の側)に配置し、鉛直下方向(y軸負方向)に仮想イメージ表示領域2203Dが出力されてもよく、水平方向(x軸方向)から出力されてもよく、プロジェクタまたは映画館のように、後上方(z軸負方向かつy軸正方向)から出力されてもよい。
(操作領域とジェスチャ領域)
 続いて、検知領域における操作領域とジェスチャ領域とについて説明する。図12および図13は、検知領域における操作領域と、ジェスチャ領域との一例を示す模式図である。
 まず、図12に示すように、一般的に、ユーザは、右肩関節RPおよび左肩関節LPの両肩関節を回転中心として両手を水平移動させるため、両手の移動できる領域は、点線で囲まれた移動領域Lおよび移動領域Rとなる。
 また、図13に示すように、一般的に、ユーザは、右肩関節RPおよび左肩関節LPの両肩関節を回転中心として両手を鉛直移動させるため、両手の移動できる領域は、点線で囲まれた移動領域Lおよび移動領域Rとなる。
 すなわち、図12および図13に示すように、ユーザは、両手を右肩関節RPおよび左肩関節LPをそれぞれ回転中心とした欠球状(深度方向に凸のアーチ状曲面を有する)の立体空間内で移動させることができる。
 次に、赤外線検知ユニット410による三次元空間検知領域4103Dと、仮想イメージ表示領域が存在しうる領域(図12では仮想イメージ表示領域2203Dを例示)と、腕の移動領域Lおよび移動領域Rを合わせた領域との全てが重なる空間領域を、操作領域410cとして設定する。
 また、三次元空間検知領域4103D内における操作領域410c以外の部分で、かつ腕の移動領域Lおよび移動領域Rを合わせた領域と重なる部分をジェスチャ領域410gとして設定する。
 ここで、操作領域410cが、深度方向に最も遠い面が深度方向(z軸正方向)に凸のアーチ状に湾曲した曲面である立体形状を有することに対し、仮想イメージ表示領域2203Dは、深度方向に最も遠い面が平面である立体形状を有する。このように両領域の間で当該面の形状が異なることに起因し、ユーザは、当該操作において体感的に違和感を覚える。当該違和感を取り除くためにキャリブレーション処理で調整を行なう。また、キャリブレーション処理の詳細については、後述する。
(キャリブレーションの説明)
 次いで、キャリブレーション処理について説明を行なう。図14は、キャリブレーション処理の説明を行なうためのフローチャートである。
 図12および図13に示したように、ユーザが仮想イメージ表示領域2203Dに沿って手を動かそうとすると、補助のない平面に沿って動作させる必要がある。したがって、後述する認識処理により仮想イメージ表示領域2203Dにおいて、操作をし易くするためにキャリブレーション処理を行なう。
 また、キャリブレーション処理には、ユーザの個々で異なる指の長さ、手の長さ、腕の長さの調整も行なう。
 以下、図14を用いて説明を行なう。まず、ユーザが、眼鏡表示装置100を装着し、両腕を最大限に伸張する。その結果、赤外線検知ユニット410が、操作領域410cの最大領域を認識する(ステップS11)。
 すなわち、ユーザによりユーザの個々で異なる指の長さ、手の長さ、腕の長さが異なるので、操作領域410cの調整を行なうものである。
 次に、眼鏡表示装置100においては、仮想イメージ表示領域2203Dの表示位置を決定する(ステップS12)。すなわち、仮想イメージ表示領域2203Dを操作領域410cの外側に配置するとユーザによる操作が不可能となるため、操作領域410cの内部に配置する。
 続いて、眼鏡表示装置100の赤外線検知ユニット410の三次元空間検知領域4103D内で、かつ仮想イメージ表示領域2203Dの表示位置と重ならない位置に、ジェスチャ領域410gの最大領域を設定する(ステップS13)。
 なお、ジェスチャ領域410gは、仮想イメージ表示領域2203Dと重ならないように配置しかつ深さ方向(z軸正方向)に厚みを持たせることが好ましい。
 本実施の形態においては、以上の手法により、操作領域410c、仮想イメージ表示領域2203D、ジェスチャ領域410gが設定される。
 続いて、操作領域410c内における仮想イメージ表示領域2203Dのキャリブレーションについて説明する。
 操作領域410c内の仮想イメージ表示領域2203Dの外部周囲にユーザの指、手、または腕が存在すると判定された場合に、あたかも仮想イメージ表示領域2203Dの内部に存在するように、丸め込みを行なう(ステップS14)。
 図12および図13に示すように、半透過ディスプレイ220により仮想表示されたイメージの中央部近辺では、両腕を最大限に伸ばした状態にすると、両手先が仮想イメージ表示領域2203D内に留まることなく深さ方向(z軸正方向)の外部へ外れてしまう。また、仮想表示されたイメージの端部においては、両腕を最大限に伸ばさない限り、両手先が仮想イメージ表示領域2203D内に存在すると判定されない。
 そのため、赤外線検知ユニット410からの信号を無処理のまま使用すると、ユーザは、手先が仮想イメージ表示領域2203Dから外れたとしても、そのような状態であることを体感しにくい。
 したがって、本実施の形態におけるステップS14の処理においては、仮想イメージ表示領域2203Dから外部へ突き出た手先が、仮想イメージ表示領域2203D内にあるものとして補正すべく、赤外線検知ユニット410からの信号を処理する。
 その結果、ユーザは、両腕を最大限に伸ばした状態、または少し曲げた状態で、奥行きのある平面状の仮想イメージ表示領域2203D内の中央部から端部まで操作することができる。
 なお、本実施の形態においては、仮想イメージ表示領域2203Dを、深度方向に最も遠い面が平面である三次元空間領域からなることとしているが、これに限定されず、深度方向に最も遠い面領域L,Rの深度方向に最も遠い面に沿った形状の曲面である三次元空間領域からなることとしてもよい。その結果、ユーザは、両腕を最大限に伸ばした状態、または少し曲げた状態で、奥行きのある平面状の仮想イメージ表示領域2203D内の中央部から端部まで操作することができる。
 さらに、半透過ディスプレイ220は、仮想イメージ表示領域2203Dに矩形状の像を表示させる。例えば、図5(b)に示したように、矩形状の像を表示させる(ステップS15)。
 続いて、半透過ディスプレイ220に、像の周囲を指で囲んでくださいと、表示を行なう(ステップS16)。ここで、像の近傍に指の形の像を薄く表示してもよいし、半透過ディスプレイ220に表示を行なう代わりにスピーカから音声により指示をユーザに伝えてもよい。
 ユーザは、指示に従い図5(d)に示すように、指を像の見える部分にあわせる。そして、仮想イメージ表示領域2203Dの表示領域と、赤外線検知ユニット410との相関関係が自動調整される(ステップS17)。
 なお、上記においては、指で矩形を形作り、そのように定められた矩形と、像の外縁の矩形にあわせる。このことによって、指により定められた矩形の視認サイズおよび位置と像の外縁の矩形の視認サイズ及び位置とを合わせることとした。しかしながら、指によって形状を定める手法はこれに限定されず、表示された像の外縁を指でなぞる手法、表示された像の外縁上の複数の点を指で指し示す手法等、他の任意の手法であってもよい。また、これらの手法を複数のサイズの像について行ってもよい。
 なお、上記のキャリブレーション処理の説明においては、眼鏡表示装置100の場合についてのみ説明を行ったが、入出力装置900の場合には、ステップS11の処理において、像を表示させ、ステップS17の処理の当該像と赤外線検知ユニット410との相関関係を調整してもよい。
(指、掌、腕認識)
 次いで、指認識について説明を行い、その後掌認識、腕認識の順で説明を行なう。図15は、指認識の一例を示す模式図である。図15において、(A)は指の先端付近の拡大図であり、(B)は指の根元付近の拡大図である。図16は、指認識の処理の一例を示すフローチャートである。
 図16に示すように、本実施の形態においては、デバイスの初期化を行なう(ステップS21)。次に、赤外線照射素子411から照射され、手に反射した赤外線が、赤外線検知カメラ412により検出される(ステップS22)。
 次に、赤外線検知ユニット410により画像データをピクセル単位で距離に置き換える(ステップS23)。この場合、赤外線の明るさは、距離の三乗に反比例する。これを利用し、デプスマップを作成する(ステップS24)。
 次いで、作成したデプスマップに適切な閾値を設ける。そして、画像データを二値化する(ステップS25)。すなわち、デプスマップのノイズを除去する。
 続いて、二値化した画像データから約100個の頂点を持つポリゴンを作成する(ステップS26)。そして、頂点が滑らかになるようにローパスフィルタ(LPF)により、より多くの頂点pを有する新たな多角形を作成することによって、図15に示す手の外形OFを抽出する(ステップS27)。
 なお、本実施の形態においては、ステップS26において二値化したデータからポリゴンを作成するために抽出する頂点の数を約100個としているが、これに限定されず、1000個、その他の任意の個数であってもよい。
 ステップS27で作成した新たな多角形の頂点pの集合から、Convex Hullを用いて、凸包を抽出する(ステップS28)。
 その後、ステップS27で作成された新たな多角形と、ステップS28で作成された凸包との共有の頂点pを抽出する(ステップS29)。このように抽出された共有の頂点p自体を指の先端点として用いることができる。
 さらに、頂点pの位置に基づいて算出される他の点を指の先端点として用いてもよい。例えば、図15(A)に示すように頂点pにおける外形OFの内接円の中心を先端点P0として算出することもできる。
 そして、図15に示すように、頂点pに隣接する左右一対の頂点pを通る基準線分PPのベクトルを算出する。その後、頂点pと、隣接する頂点pとを結ぶ辺ppを選択し、そのベクトルを算出する。同様に、外形OFを構成する頂点pを用い、辺のベクトルを求める処理を外形OFの外周に沿って繰り返す。各辺の向きと基準線分PPの向きとを調べ、基準線分PPと平行に近くなる辺ppが指の股の位置に存在すると判定する。そして、辺ppの位置に基づき、指の根元点P1を算出する(ステップS30)。指の先端点P0と指の根元点P1とを直線で結ぶことで、指のスケルトンが得られる(ステップS31)。指のスケルトンを得ることで、指の延在方向を認識することができる。
 全ての指について同様の処理を行なうことで、全ての指のスケルトンを得る。これにより、手のポーズを認識することができる。すなわち、親指、人差し指、中指、薬指、小指のいずれの指が広げられ、いずれの指が握られているかを認識することができる。
 続いて、直前に実施した数フレームの画像データと比較して、手のポーズの違いを検知する(ステップS32)。すなわち、直前の数フレームの画像データと比較することにより、手の動きを認識することができる。
 次いで、認識した手の形状を、ジェスチャデータとしてイベントサービスユニット460へイベント配送する(ステップS33)。
 次いで、アプリケーションソフトユニット459によりイベントに応じた振る舞いを実施する(ステップS34)。
 続いて、表示サービスユニット462により、三次元空間に描画を要求する(ステップS35)。
 グラフィック演算ユニット463は、キャリブレーションサービスユニット461を用いてキャリブレーションデータ記録ユニット457を参照し、表示の補正を行なう(ステップS36)。
 最後に、ディスプレイ演算ユニット464により半透過ディスプレイ220に表示を行なう(ステップS37)。
 なお、本実施の形態においては、ステップS30の処理およびステップS31の処理により指の根元点を検出したが、根元点の検出方法はこれに限定されない。例えば、まず、頂点pの一方の側と他方の側において隣接する一対の頂点pを結ぶ基準線分PPの長さを算出する。次に、当該一方の側と他方の側における一対の頂点p間を結ぶ線分の長さを算出する。同様に、当該一方の側と他方の側における一対の頂点間を結ぶ線分の長さを、頂点pにより近い位置にある頂点からより遠い位置にある頂点への順で算出していく。このような線分は、外形OF内で交わることなく、互いにおおよそ平行となる。当該線分の両端の頂点が指の部分にある場合は、線分の長さは指の幅に相当するため、その変化量は小さい。一方、線分の両端の頂点の少なくともいずれかが指の股の部分に達した場合は、当該長さの変化量が大きくなる。したがって、当該長さの変化量が所定量を超えずかつ頂点pから最も遠い線分を検知し、検知された線分上の1点を抽出することによって、根元点を決定することができる。
(掌認識)
 次いで、図17は、掌認識の一例を示す模式図である。
 図17に示すように、指認識を実施した後、画像データの外形OFに内接する最大内接円Cを抽出する。当該最大内接円Cの位置が、掌の位置として認識できる。
 次いで、図18は、親指認識の一例を示す模式図である。
 図18に示すように、親指は、人差し指、中指、薬指、および小指の他の4指とは異なる特徴を有する。例えば、掌の位置を示す最大内接円Cの中心と各指の根元点P1とを結ぶ直線が相互になす角度θ1,θ2,θ3,θ4のうち、親指が関与するθ1が最も大きい傾向にある。また、各指の先端点P0と各指の根元点P1とを結んだ直線が相互になす角度θ11,θ12,θ13,θ14のうち、親指が関与するθ11が最も大きい傾向にある。このような傾向に基づき親指の判定を行なう。その結果、右手か左手か、または掌の表か裏かを判定することができる。
(腕認識)
 次いで、腕認識について説明を行なう。本実施の形態において、腕認識は、指、掌および親指のいずれかを認識した後に実施する。なお、腕認識は、指、掌および親指のいずれかを認識する前、またはそれらの少なくともいずれかと同時に実施してもよい。
 本実施の形態においては、画像データの手の形のポリゴンよりも大きな領域でポリゴンを抽出する。例えば、長さ5cm以上100cm以下の範囲、より好ましくは、10cm以上40cm以下の範囲で、ステップS21からS27の処理を実施し、外形を抽出する。
 その後、抽出した外形に外接する四角枠を選定する。本実施の形態においては、当該四角枠は、平行四辺形または長方形からなる。
 この場合、平行四辺形または長方形は、対向する長辺を有するので、長辺の延在方向から腕の延在方向を認識することができ、長辺の向きから腕の向きを判定することが出来る。なお、ステップS32の処理と同様に、直前の数フレームの画像データと比較して、腕の動きを検知させてもよい。
 なお、上記の説明においては、2次元像から指、掌、親指、腕を検出することとしているが、上記に限定されず、赤外線検知ユニット410をさらに増設してもよく、赤外線検知カメラ412のみをさらに増設し、2次元像から、3次元像を認識させてもよい。その結果、さらに認識確度を高めることができる。
(半透過ディスプレイの表示例)
 次に、図19は、眼鏡表示装置100の半透過ディスプレイ220の表示の一例を示す模式図である。
 図19に示すように、眼鏡表示装置100の半透過ディスプレイ220には、一部には広告221が表示され、さらに一部には地図222が表示され、その他には、眼鏡表示装置100の半透過ディスプレイ220を透過して風景223が視認され、その他に天気予報224および時刻225が表示される。
(操作領域410cの詳細)
 図20から図23は、図12から図14において説明した操作領域410cの他の例を示す模式図である。
 図20および図21は、ユーザを上方から視認した状態を示す模式図であり、図22および図23は、ユーザを側方から視認した状態を示す模式図である。
 図20は、ユーザは、腕arm1、腕arm2および手H1を伸ばし切った場合を示し、この場合の手H1は、右肩関節RPを中心に移動軌跡RL1を通過する。この場合、移動軌跡RL1の曲率半径はrad1である。
 一方、図21は、ユーザは、腕arm1および腕arm2を屈曲させた場合を示し、この場合の手H1は、移動軌跡RL2を通過する。
 すなわち、図21においては、ユーザが水平方向に手H1を移動させようとしているが、直線に近い移動軌跡RL2を通ることとなる。この場合、移動軌跡RL2の曲率半径はrad2である。ここで、人間工学に基づいて、当然のことながら、曲率半径rad1は、曲率半径rad2よりも小さい値となる。
 この場合、制御ユニット450は、赤外線ユニット410から移動軌跡RL1を検知した場合でも、直線移動であるとキャリブレーションする。同様に、制御ユニット450は、移動軌跡RL2を検知した場合でも、直線移動であるとキャリブレーションする。
 次いで、図22は、ユーザは、腕arm1、腕arm2および手H1を伸ばし切った場合を示し、この場合の手H1は、右肩関節RPを中心に移動軌跡RL3を通過する。この場合、移動軌跡RL3の曲率半径はrad3である。
 一方、図23に示すように、ユーザは、腕arm1および腕arm2を屈曲させた場合を示し、この場合の手H1は、移動軌跡RL4を通過する。
 すなわち、図23においては、ユーザが鉛直方向に手H1を移動させようとしているが、直線に近い移動軌跡RL4を通ることとなる。この場合、移動軌跡RL4の曲率半径はrad4である。ここで、人間工学に基づいて、当然のことながら、曲率半径rad3は、曲率半径rad4よりも小さい値となる。
 この場合、制御ユニット450は、赤外線ユニット410から移動軌跡RL3を検知した場合でも、直線移動であるとキャリブレーションする。同様に、制御ユニット450は、移動軌跡RL4を検知した場合でも、直線移動であるとキャリブレーションする。
 以上のように、図20から図23においては、一方の腕の場合について説明したが、他方の腕の場合も同じように、キャリブレーションが実施され、両腕の場合も複数のキャリブレーションが同時に行われる。
 また、移動軌跡RL1および移動軌跡RL2の間を通る任意の軌跡に対して、キャリブレーションを実施してもよい。同様に、移動軌跡RL3および移動軌跡RL4の間を通る任意の軌跡に対して、キャリブレーションを実施してもよい。
 その結果、人間工学に基づいて、ユーザが直線に手H1を移動させる軌跡が、湾曲していても、制御ユニット450によりキャリブレーションされて認識されるとともに、一対の光透過ディスプレイ220には、直線で表示されるとともに、直線で移動した軌跡で表示される。
 以上のように、遠方側の曲率半径rad1と、近方側の曲率半径rad2とが異なる。また、遠方側の曲率半径rad3と、近方側の曲率半径rad4とが異なる。したがって、腕arm1、arm2を伸長させた遠方側の曲率半径rad1,rad3よりも大きな近方側の曲率半径rad2,rad4を設定することができる。その結果、ユーザは、近方側において、円滑に操作し、赤外線ユニット410により検知させることができる。したがって、ユーザは、人間工学基づいて円滑に操作することができる。
 また、制御ユニット450は、遠方側の曲率半径rad1,3に沿った移動軌跡RL1,RL3を、光透過ディスプレイ220に直線移動で表示することができる。すなわち、ユーザが手H1を最大伸長させた場合、右肩関節RPおよび左肩関節LPを中心にユーザの手H1が遠方側の曲率半径rad1,rad3を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径rad1,rad3で移動するため、制御ユニット450は、直線として認識し、光透過ディスプレイ220に直線移動で表示させる。
 同様に、制御ユニット450は、近方側の曲率半径rad2,rad4に沿った移動軌跡RL2,RL4を、光透過ディスプレイ220に直線移動で表示することができる。すなわち、ユーザが腕arm1,arm2を曲げた場合、右肩関節RPおよび左肩関節LPを中心にユーザの手が近方側の曲率半径rad2,rad4を移動する。その結果、ユーザは、直線で移動させている意図があるものの、実際には、曲率半径rad2,rad4で移動するため、制御ユニット450は、直線として認識し、光透過ディスプレイ220に直線移動で表示させる。
 また、眼鏡表示装置100は、容易に携帯可能となる。また、ヘッドマウントディスプレイは小型であるので、汎用性および利便性を高めることができる。
 本発明においては、半透過ディスプレイ220が「表示装置」に相当し、手H1、腕arm2が「対象物」に相当し、赤外線検知ユニット410が「深度センサ」に相当し、制御ユニット450が「制御部」に相当し、三次元空間検知領域4103Dが「測定領域」に相当し、遠方側の曲率半径rad1,rad3が「遠方側の曲率半径」に相当し、近方側の曲率半径rad2,rad4が「近方側の曲率半径」に相当し、赤外線ユニット410から手H1の方向が「深度方向」に相当し、眼鏡表示装置100が「入出力装置」に相当する。
 本発明の好ましい一実施の形態は上記の通りであるが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。

Claims (14)

  1.  立体視像を生成可能な表示装置と、
     対象物までの距離を測定する深度センサと、
     前記深度センサに応じて前記表示装置に表示を行う制御部と、を含み、
     前記深度センサの検知領域は、前記深度センサの深度方向に幅を有し、かつ湾曲した測定領域からなり、
     前記深度センサの深度方向の遠方側の曲率半径と、前記深度センサの深度方向の近方側の曲率半径とが、異なる、入出力装置。
  2.  前記制御部は、前記遠方側の曲率半径に沿った検知領域の検知軌跡を、前記表示装置に直線移動で表示する、請求項1記載の入出力装置。
  3.  前記制御部は、前記近方側の曲率半径に沿った検知領域の検知軌跡を、前記表示装置に直線移動で表示する、請求項1または2記載の入出力装置。
  4.  前記遠方側の曲率半径は、前記近方側の曲率半径よりも小さい、請求項1から3のいずれかに記載の入出力装置。
  5.  前記湾曲した測定領域は、鉛直方向および水平方向の両方向を含む立体領域である、請求項1から4のいずれかに記載の入出力装置。
  6.  前記表示装置がヘッドマウントディスプレイである、請求項1から5のいずれか1項に記載の入出力装置。
  7.  立体視像を生成可能な表示処理と、
     対象物までの距離を測定する深度センサ処理と、
     前記深度センサ処理に応じて前記表示処理に表示を行う制御処理と、を含み、
     前記深度センサ処理の検知領域は、前記深度センサ処理の深度方向に幅を有し、かつ湾曲した測定領域からなり、
     前記深度センサ処理における深度方向の遠方側の曲率半径と、前記深度センサ処理における深度方向の近方側の曲率半径とが、異なる、入出力プログラム。
  8.  前記制御処理は、前記遠方側の曲率半径に沿った検知領域の検知軌跡を、前記表示処理に直線移動で表示する、請求項7記載の入出力プログラム。
  9.  前記制御処理は、前記近方側の曲率半径に沿った検知領域の検知軌跡を、前記表示処理に直線移動で表示する、請求項7または8記載の入出力プログラム。
  10.  前記遠方側の曲率半径は、前記近方側の曲率半径よりも小さい、請求項7から9のいずれかに記載の入出力プログラム。
  11.  立体視像を生成可能な表示工程と、
     対象物までの距離を測定する深度センサ工程と、
     前記深度センサ工程に応じて前記表示工程に表示を行う制御工程と、を含み、
     前記深度センサ工程の検知領域は、前記深度センサ工程の深度方向に幅を有し、かつ湾曲した測定領域からなり、
     前記深度センサ工程における深度方向の遠方側の曲率半径と、前記深度センサ工程における深度方向の近方側の曲率半径とが、異なる、入出力方法。
  12.  前記制御工程は、前記遠方側の曲率半径に沿った検知領域の検知軌跡を、前記表示工程に直線移動で表示する、請求項11記載の入出力方法。
  13.  前記制御工程は、前記近方側の曲率半径に沿った検知領域の検知軌跡を、前記表示工程に直線移動で表示する、請求項11または12記載の入出力方法。
  14.  前記遠方側の曲率半径は、前記近方側の曲率半径よりも小さい、請求項11から13のいずれかに記載の入出力方法。
PCT/JP2014/005005 2014-09-30 2014-09-30 入出力装置、入出力プログラム、および入出力方法 WO2016051431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016551118A JP6446465B2 (ja) 2014-09-30 2014-09-30 入出力装置、入出力プログラム、および入出力方法
US15/515,636 US10296098B2 (en) 2014-09-30 2014-09-30 Input/output device, input/output program, and input/output method
PCT/JP2014/005005 WO2016051431A1 (ja) 2014-09-30 2014-09-30 入出力装置、入出力プログラム、および入出力方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/005005 WO2016051431A1 (ja) 2014-09-30 2014-09-30 入出力装置、入出力プログラム、および入出力方法

Publications (1)

Publication Number Publication Date
WO2016051431A1 true WO2016051431A1 (ja) 2016-04-07

Family

ID=55629536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005005 WO2016051431A1 (ja) 2014-09-30 2014-09-30 入出力装置、入出力プログラム、および入出力方法

Country Status (3)

Country Link
US (1) US10296098B2 (ja)
JP (1) JP6446465B2 (ja)
WO (1) WO2016051431A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074936A1 (ja) * 2020-10-09 2022-04-14 ソニーセミコンダクタソリューションズ株式会社 情報処理装置及び情報処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162162A (ja) * 2015-03-02 2016-09-05 株式会社リコー 接触検出装置、プロジェクタ装置、電子黒板装置、デジタルサイネージ装置、プロジェクタシステム及び接触検出方法
USD849822S1 (en) * 2017-12-29 2019-05-28 Aira Tech Corp. Smart glasses for interactive use cases
CN111324200B (zh) * 2018-12-14 2022-11-25 深圳市中兴微电子技术有限公司 一种虚拟现实的显示方法及装置、计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202256A (ja) * 1998-01-20 1999-07-30 Ricoh Co Ltd 頭部搭載型画像表示装置
JP2014507701A (ja) * 2010-12-24 2014-03-27 サムスン エレクトロニクス カンパニー リミテッド 3dディスプレイ端末装置及びその操作方法
JP2014072576A (ja) * 2012-09-27 2014-04-21 Kyocera Corp 表示装置および制御方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500114B1 (en) * 1993-11-23 2002-12-31 Dofi Technologies, Inc. Method of extracting biopsy cells from the breast
US5946142A (en) * 1995-12-11 1999-08-31 Hitachi Ltd. Projection lens system and projection image display apparatus using the same
JP2002203254A (ja) * 2000-08-30 2002-07-19 Usc Corp 曲面像変換方法及びこの曲面像変換方法を記録した記録媒体
AU2002354681A1 (en) * 2001-07-13 2003-01-29 Mems Optical, Inc. Autosteroscopic display with rotated microlens-array and method of displaying multidimensional images, especially color images
JP4211292B2 (ja) * 2002-06-03 2009-01-21 ソニー株式会社 画像処理装置および画像処理方法、プログラム並びにプログラム記録媒体
US20040119867A1 (en) * 2002-10-01 2004-06-24 Olympus Optical Co., Ltd. Imaging apparatus, controlling method thereof and finder
DE102004003013B3 (de) * 2004-01-20 2005-06-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bilderfassungssystem und dessen Verwendung
JP2006154702A (ja) * 2004-10-29 2006-06-15 Konica Minolta Opto Inc 変倍光学系、撮像レンズ装置及びデジタル機器
US20070030543A1 (en) * 2005-08-08 2007-02-08 Bahram Javidi Depth and lateral size control of three-dimensional images in projection integral imaging
US8050461B2 (en) * 2005-10-11 2011-11-01 Primesense Ltd. Depth-varying light fields for three dimensional sensing
US9182228B2 (en) * 2006-02-13 2015-11-10 Sony Corporation Multi-lens array system and method
US9344612B2 (en) * 2006-02-15 2016-05-17 Kenneth Ira Ritchey Non-interference field-of-view support apparatus for a panoramic facial sensor
US7376314B2 (en) * 2006-03-22 2008-05-20 Spectral Imaging Laboratory Fiber coupled artificial compound eye
US8384769B1 (en) * 2007-05-23 2013-02-26 Kwangwoon University Research Institute For Industry Cooperation 3D image display method and system thereof
WO2009041055A1 (ja) * 2007-09-26 2009-04-02 Panasonic Corporation ビーム走査型表示装置、その表示方法、プログラム、及び集積回路
WO2010116726A1 (ja) * 2009-04-09 2010-10-14 パナソニック株式会社 ビーム走査型表示装置
WO2011027536A1 (ja) * 2009-09-01 2011-03-10 オリンパス株式会社 光学装置、およびそれを用いた撮像装置、撮像システム
JP2011081480A (ja) * 2009-10-05 2011-04-21 Seiko Epson Corp 画像入力システム
JP2012003022A (ja) * 2010-06-16 2012-01-05 Panasonic Corp 立体撮影光学系、交換レンズ装置、カメラシステム
KR101708807B1 (ko) * 2010-09-30 2017-02-21 삼성전자 주식회사 이미지 센서
JP2012113281A (ja) * 2010-11-04 2012-06-14 Panasonic Corp 立体撮像光学系、撮像装置及びカメラ
US20120151760A1 (en) * 2010-12-15 2012-06-21 Sony Ericsson Mobile Communications Ab Non-planar display glass for mobile device
KR20120105169A (ko) * 2011-03-15 2012-09-25 삼성전자주식회사 복수의 거리 픽셀들을 포함하는 3차원 이미지 센서의 구동 방법
US8773513B2 (en) * 2011-07-01 2014-07-08 Seiko Epson Corporation Context and epsilon stereo constrained correspondence matching
US10015471B2 (en) * 2011-08-12 2018-07-03 Semiconductor Components Industries, Llc Asymmetric angular response pixels for single sensor stereo
US8833978B2 (en) * 2011-10-25 2014-09-16 Leotek Electronics Corporation Traffic signal light device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202256A (ja) * 1998-01-20 1999-07-30 Ricoh Co Ltd 頭部搭載型画像表示装置
JP2014507701A (ja) * 2010-12-24 2014-03-27 サムスン エレクトロニクス カンパニー リミテッド 3dディスプレイ端末装置及びその操作方法
JP2014072576A (ja) * 2012-09-27 2014-04-21 Kyocera Corp 表示装置および制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074936A1 (ja) * 2020-10-09 2022-04-14 ソニーセミコンダクタソリューションズ株式会社 情報処理装置及び情報処理方法

Also Published As

Publication number Publication date
US10296098B2 (en) 2019-05-21
JP6446465B2 (ja) 2018-12-26
US20170300121A1 (en) 2017-10-19
JPWO2016051431A1 (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6195893B2 (ja) 形状認識装置、形状認識プログラム、および形状認識方法
JP6177872B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6333801B2 (ja) 表示制御装置、表示制御プログラム、および表示制御方法
JP6250024B2 (ja) キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法
WO2014128751A1 (ja) ヘッドマウントディスプレイ装置、ヘッドマウントディスプレイ用プログラム、およびヘッドマウントディスプレイ方法
JP2017120556A (ja) 操作用ヘッドマウントディスプレイ、操作用ヘッドマウントディスプレイの制御方法および操作用ヘッドマウントディスプレイのプログラム
JP6250025B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6446465B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6479835B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6563802B2 (ja) 運送点検用ヘッドマウントディスプレイおよび運送点検用ヘッドマウントディスプレイのプログラム
JP2017111537A (ja) ヘッドマウントディスプレイおよびヘッドマウントディスプレイのプログラム
JP2017099686A (ja) ゲーム用ヘッドマウントディスプレイ、ゲーム用ヘッドマウントディスプレイのプログラム、およびゲーム用ヘッドマウントディスプレイの制御方法
JP6479836B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP2017111724A (ja) 配管用ヘッドマウントディスプレイ
JP2017111721A (ja) クリーンルーム用ヘッドマウントディスプレイ、クリーンルーム用ヘッドマウントディスプレイの制御方法、およびクリーンルーム用ヘッドマウントディスプレイの制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515636

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14903384

Country of ref document: EP

Kind code of ref document: A1