WO2016050534A1 - Flüssigkeitsgekühlte elektrische maschine - Google Patents

Flüssigkeitsgekühlte elektrische maschine Download PDF

Info

Publication number
WO2016050534A1
WO2016050534A1 PCT/EP2015/071463 EP2015071463W WO2016050534A1 WO 2016050534 A1 WO2016050534 A1 WO 2016050534A1 EP 2015071463 W EP2015071463 W EP 2015071463W WO 2016050534 A1 WO2016050534 A1 WO 2016050534A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
shaft
electrical machine
electric machine
counter
Prior art date
Application number
PCT/EP2015/071463
Other languages
English (en)
French (fr)
Inventor
Klaus Büttner
Klaus Kirchner
Ardian Tropoja
Nico Wolf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to RU2017110526A priority Critical patent/RU2670601C9/ru
Priority to BR112017004942A priority patent/BR112017004942A2/pt
Priority to EP15774527.4A priority patent/EP3161358A1/de
Priority to US15/515,476 priority patent/US20180269743A1/en
Priority to CN201580040834.8A priority patent/CN106662255B/zh
Publication of WO2016050534A1 publication Critical patent/WO2016050534A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/124Sealing of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/183Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for pipe joints or seals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • Liquid-cooled electric machine The invention relates to an electrical machine, insbesonde re ⁇ an asynchronous machine, with a cooled rotor.
  • An electric machine is used for the energy conversion of elec tric ⁇ into mechanical energy and vice versa.
  • the electric machine In the energy conversion from mechanical to electrical energy, the electric machine is used as a generator. In the energy conversion from electrical to mechanical energy, the electric machine is used as a motor. In both cases, one would like to achieve high efficiency at a high power density. The high efficiency is neces ⁇ dig to offer energy cost-effective and resource-saving. A high power density is necessary because you want to produce electrical machines with less material cost cheaper or due to weight sensitive applications of the electric machine would like to build this with a lower mass. Examples of weight-sensitive applications appli ⁇ are applications in which the support structure for the electrical machine is expensive, or the electric machine in the application is transported from one location to another location.
  • an elec ⁇ cal machine which has a shaft with an axial bore.
  • a flux guide extends into the axial bore, that a coolant, in particular a
  • Coolant can flow from the flux guide into the axial Boh ⁇ tion.
  • a seal is provided which is arranged on the shaft so that the cooling liquid can press the seal against the shaft.
  • the seal is pressed against the shaft by air, which is located in a cavity between a retaining element, ie a gap seal and the further seal.
  • An object of the invention is to provide an electric machine with an effective seal of a cooling medium.
  • An electrical machine which is in particular an asyn ⁇ chron machine, has a stator and a rotor.
  • the rotor is rotatably mounted and rotatably connected to a shaft.
  • the shaft is part of the rotor.
  • the shaft has an axial bore.
  • a cooling medium is provided, which is in particular a cooling liquid.
  • the cooling medium cools the rotor and thus the electric machine in particular via the shaft of the rotor.
  • the cooling medium is introduced into the axial bore of the Wel ⁇ le.
  • the flux guide leads the flow of the cooling medium in the axial bore.
  • the flux guiding element extending into the axial bore, for example, so that the coolant, in particular a cooling liquid can flow from the flux-guiding element in the axial Boh ⁇ tion or can flow into the flux-guiding element from the axia- len bore out.
  • a mechanical seal is provided to seal the opening of the axial bore.
  • the seal relates, for example, to a seal with respect to a space of the electrical machine which has the air gap between the stator and the rotor or in which there is a winding head of the stator.
  • the mechanical seal is a robust seal with a long service life so that the life of the electrical machine does not have to be compensated for.
  • the sliding ring seal seals the rotationally movable shaft with the axi ⁇ alen bore from a stationary element to rotationally. This element is, for example, a connection flange for the supply or removal of the cooling medium.
  • the mechanical seal has a sliding ring and a counter ring, wherein the sliding ring is connected to the shaft and the counter ring with the stationary member to the rotor.
  • the stationary member is for example a shield or a carrier for fastening the flux-guiding element or a Ranele ⁇ ment, so the connecting flange for introducing and / or discharging the cooling medium into the shaft of the electrical machine.
  • a surface is formed, which seals a space with cooling medium from a space without cooling medium.
  • the sliding ring is movable towards the counter ring with the shaft. Sliding ring and counter ring are thus movable relative to each other.
  • a first sealing ring seals the sliding ring from the shaft.
  • the first seal and the slip ring can move with the shaft.
  • the first sealing ring is stationary to the sliding ring.
  • a second sealing ring seals the counter-ring to the stationary element.
  • the second sealing ring is stationary to the stationary element.
  • Coolant water and / or glycol on or consists hie ⁇ out are 50% to 50%.
  • the electrical machine is the
  • Sliding ring of the mechanical seal arranged to counter-ring axially acting.
  • the shaft is fixed by bearings axially as well as radially. This allows the position of the counter ring in relation to the sliding ring, which is attached to the shaft, can be easily determined by the axial position of the mating ring, for example, the carrier is adjustable.
  • the axial pressure between the sliding ring and the mating ring can be changed by a variable axial positioning of the mating ring in relation to the support of the mating ring. If no pressure is exerted between the sliding ring and the counter ring, then the axial gap between the sliding ring and the counter ring can be changed.
  • the positioning of the mating ring to the carrier takes place for example via spacers such as screws or inserts under defenceli ⁇ cal thickness.
  • the counter ring of the mechanical seal on a ceramic in particular a sintered ceramic.
  • a ceramic is wear-resistant and thus contributes to a long life of the electric machine.
  • this has a moisture sensor.
  • the moisture sensor is provided in a cavity, which means that the moisture sensor is at least so mounted in or on the electric machine that with this a moisture in a cavity of the electric machine can be measured. For example, it can be determined whether corrosion threatens. If an excessively high level of humidity is detected, it is possible, for example, to switch on a heater in the electric machine, which may be necessary in particular during periods when the electric machine is at a standstill.
  • a value for a humidity in a cavity of the electric machine is determined. The determined value can then be evaluated.
  • the value is transmitted to an evaluation device, wherein it is determined by means of the evaluation device ⁇ whether trainees the mechanical seal swap is. If the mechanical seal leaks, the coolant can penetrate a dry part of the electric machine and cause damage. This can be prevented by the evaluation device. This is achieved for example by DA, that the electrical machine is not operable at high moisture- ⁇ keits tone (exceeding a threshold value) and can not be energized.
  • the electric machine is for example a drive for a vehicle.
  • the vehicle is, for example, an electric car or a hybrid car, whose propulsion can be achieved by means of the electric machine.
  • the use of the mechanical seal in conjunction with the cooling of the rotor via the shaft with the bore allows a compact design. This compact design is suitable for tight installation spaces in a vehicle.
  • An easily replaceable sealing system as a part is axially removable
  • the mechanical seal has advantages for sealing the rotor cooling system with radial shaft seal. Due to high peripheral speeds and shape and position deviations and
  • the sealing lip can be reinforced with special fillers to to achieve a suitability for high peripheral speed.
  • the fillers can lead to increased wear on the shaft surface, which necessitates additional expensive machining ⁇ preparation steps such as curing, grind, and polish.
  • an assembly aid or a specially ⁇ le geometry on the shaft is necessary.
  • the seal system of a mechanical seal is wear-free with standard lubrication and is well suited for sealing water / glycol coolant at high speeds (> 20,000 / min).
  • the sealing system acts axially on a counter ring made of sintered special technical ceramics. Sealing systems, such as Shaft seal directly act radially on the motor shaft and thus lead to wear on this, which u.U. makes an exchange necessary.
  • FIG. 5 shows the electrical machine with a representation of the flow of the cooling medium.
  • 1 shows an electric machine 1 with a housing 101.
  • the housing 101 there is a stator 2 and a rotor 4, wherein the rotor 4 is rotatable about an axis 3 via bearings 8 and 8 ⁇ .
  • the stator 2 has a
  • the electrical machine is an asynchronous machine with a short-circuiting ring 17.
  • a shaft 5 of the rotor 4 has an axi ⁇ ale bore 6 into which a flux-guiding element 7 authorized to bring ⁇ tion of a coolant rises, the flux-guiding element 7 has an inlet pipe.
  • 9 A the passage tube 9 bearing through a coolant inlet 34, the pipe 9 in a carrier 37 which constitutes a stationary element is fed with coolant.
  • the coolant leaves the electric machine 1 again via a coolant outlet 33, which adjoins a hollow-cylindrical space 32.
  • the sealing of the opening of the shaft 6 to other parts of the rotor 4 and the stator 2 is achieved by means of the mechanical seal 40, which is shown in Figure 4 in detail.
  • a flow of the cooling medium in the shaft 5 is shown in FIG.
  • the illustration according to FIG. 2 shows, in addition to elements from FIG. 1, the mechanical seal 40 (see FIG. 4) with a sliding ring 41 and a mating ring 42.
  • the sliding ring 41 is connected to the shaft 5, a first sealing ring 48 being present between the shaft 5 and the sliding ring 41 is.
  • the slip ring 41 has, for example, in a plastic bound carbon in order to achieve a good sliding action.
  • the counter-ring 42 is connected to the carrier 37, wherein between the carrier 37 and the counter-ring 42, a second sealing ring 49 is present.
  • the sealing rings 48 and 49 are for example O-rings.
  • the mating ring 42 has SiC, for example.
  • the counter ring 42 has in particular a torque arm 21 and individual springs 22, so that the Ge ⁇ genring 42 abuts against the sliding ring 41.
  • the electric machine also has a cavity 55, wherein a sensor 56 measures the humidity in the cavity 55.
  • the measured sensor value is evaluated in a Auswer ⁇ te Rhein 57th
  • the sensor can also be positioned in the region of windings of the stator, which is in the FIG. 2, however, is not shown.
  • a Kugelven ⁇ til coolant 47 can be performed from the electric machine additionally.
  • the illustration of FIG 3 shows an alternative to the sliding ⁇ ring seal a radial shaft seal 53 according to the prior art.
  • the radial shaft seal 53 has an angle reinforcement 54 and a spring 52 which presses the seal onto the shaft 5.
  • FIG 4 shows a mechanical seal (40), in which the sliding ring 41 is connected via a rubber-elastic transducer 43 with the shaft.
  • the sliding ring 41 abuts surface against the counter-ring 42, wherein the counter-ring 42 is connected via a rubber-elastic bellows 44 with a carrier 37.
  • This carrier is stationary and rotational not movable via bearings.
  • the bellows 44 is in particular an elastomer bellows.
  • a spring 45 in particular a Spiralfe ⁇ the presses the counter-ring 42 on the sliding ring 41.
  • the spring 45 is in particular a single spring.
  • the spring 45 is supported at least indirectly on the carrier 37.
  • the Darge ⁇ presented balanced mechanical seal can be installed as a preassembled unit.
  • FIG. 5 shows the electric machine 1, with the flow of the
  • the rotor 4 is rotatably mounted around the rotation axis 3 gela ⁇ siege by the shaft 5 is mounted on the bearings 8, 8 'in the housing 101.
  • the bearing 8 and 8 ⁇ is in this embodiment ⁇ example, a ball bearing. Other bearings such as roller bearings, needle roller bearings, etc. are usable, but not shown.
  • a cooling liquid is USAGE ⁇ det as a cooling means 15, consisting of water and Glysantin ® G30 in the ratio 50:50, or comprises these substances.
  • the shaft 5 of the rotor 4 has an axial bore 6.
  • a flux guide 7 extends from an open end of the shaft 5 in the axial bore 6, that the cooling liquid 15 flow from the flux guide 7 in the axial bore 6 can.
  • the flux guide 7 has an inlet pipe 9 which is fixed in or on a support 37 of the flux guide 7.
  • the carrier 37 is fixed to the housing 101 of the electric machine 1.
  • the intake tube 9 flows through the coolant 15 in the direction ei ⁇ nes closed end of the axial bore 6 where it emerges from the intake tube 9 and by a Transfer element 13 is deflected.
  • the transmission element 13 has a recess 14 that is rotationally symmetrical with respect to the axis of rotation 3, so that the coolant has only slight turbulence caused by the deflection of the coolant.
  • the transmission element 13 is made of aluminum, so that it can transmit a waste heat, which it has received at the boundary 12 of the axia ⁇ len bore 6 or at the closed end of the axial bore 6, to a good extent on the cooling liquid ⁇ keit 15.
  • the shaft 5 was conventionally made of a steel. Due to the larger Wär ⁇ meausdehnungskostoryen of the transfer element 13 relative to the conventional steel of the shaft 5 the transfer element against the boundary 12 of the axial bore 6 is pressed Ge, so that with increasing temperature, a better heat meübergang between the edging 12 of the axial bore 6 and the transmission element 13 is present.
  • the cooling fluid 15 flows into the hohlzy ⁇ relieving shaped channel 31 which is formed by the boundary 12 of the axia- len bore 6 and the outer surface 10 of the inlet pipe. 9 At an open end of the shaft 5, the cooling liquid 15 then flows out of the hollow cylindrical channel 31 into the hollow cylindrical space 32. From there, the cooling liquid 15 leaves the hollow cylindrical space 32 through a coolant outlet 33, which merges with a part of its
  • the stator 2 has a laminated core 16 and the rotor 4 a laminated core 16 ⁇ .
  • the rotor 4 further comprises copper rods 23 which are arranged in grooves 25 of the laminated core 16 ⁇ .
  • the copper rods 23 are short-circuited by aluminum-molded short-circuiting rings 17.
  • FIG 5 a residual cross-section in the radial direction adjacent to the copper rods 23 drawn in a different hatching than the short-circuiting rings 17.
  • the remaining cross sections of the grooves 25 can be poured out regardless of a casting of the shorting rings 17 or 17 poured with aluminum 24 when casting the shorting rings ,
  • the cast end rings 17 have an on ⁇ Fixed To supply section 18th This is directly connected to the shaft 5. That is, a surface of the shorting ring 17 in the vicinity of the attachment portion 18 contacts the surface of the shaft 5. To ensure this contact between the shorting ⁇ ring 17 and the shaft 5 via a wide temperature range, a shrink ring 19 is ring on the short circuit 17 is arranged, that the fastening region 18 located between the shrink ring 19 and the shaft 5 is located.
  • Shrink ring 19 is made of a steel that expands less with increasing temperature than the aluminum of the shorting ring 17.
  • the shrink ring 19 is used in balancing the rotor for the attachment of balancing bores 20.
  • the inlet pipe 9 is a diecast aluminum part. Due to the good thermal conductivity of the aluminum, a more uniform cooling of the shaft 5 along the axis of rotation 3 he ⁇ ranges. Namely, the waste heat which the cooling liquid 15 receives in the hollow cylindrical channel 31 can be transferred to the cooling liquid 15 within the inlet pipe 9 to a greater extent due to the good thermal conductivity of the inlet pipe 9. Thus, the relatively cold cooling liquid 15 within the inlet tube 9 in the vicinity of the open end of the axial bore 6 supports the cooling liquid 15 in the hollow cylindrical channel 31 by absorbing a certain amount of the waste heat from it through the aluminum of the inlet tube 9 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Die Erfindung betrifft eine elektrische Maschine (1, 51), insbesondere Asynchronmaschine, welche einen Stator (2), einen drehbar gelagerten Rotor (4) mit einer Welle (5) und ein Flussleitelement (7) aufweist. Die Welle (5) weist eine axiale Bohrung (6) auf. Das Flussleitelement (7) erstreckt sich derart in die axiale Bohrung (6), dass ein Kühlmittel (15), insbesondere eine Kühlflüssigkeit (15), aus dem Flussleitelement (7, 47) in die axiale Bohrung (6) fließen kann oder umgekehrt. Eine Gleitringdichtung (40) dichtet die Öffnung der axialen Bohrung (6) ab. Im Betrieb der elektrischen Maschine (1, 51) ist ein Wert für eine Feuchtigkeit in einem Hohlraum (55) der elektrischen Maschine (1, 51) ermittelbar.

Description

Beschreibung
Flüssigkeitsgekühlte elektrische Maschine Die Erfindung betrifft eine elektrische Maschine, insbesonde¬ re eine Asynchronmaschine, mit einem gekühlten Rotor.
Eine elektrische Maschine wird zur Energiewandlung von elek¬ trischer in mechanische Energie und umgekehrt eingesetzt. Bei der Energiewandlung von mechanischer in elektrische Energie wird die elektrische Maschine als Generator eingesetzt. Bei der Energiewandlung von elektrischer in mechanische Energie wird die elektrische Maschine als Motor eingesetzt. In beiden Fällen möchte man einen hohen Wirkungsgrad bei einer hohen Leistungsdichte erreichen. Der hohe Wirkungsgrad ist notwen¬ dig, um Energie kostengünstig und ressourcenschonend anbieten zu können. Eine hohe Leistungsdichte ist notwendig, da man elektrische Maschinen mit geringerem Materialeinsatz kostengünstiger fertigen möchte oder aufgrund gewichtsensibler An- Wendungen der elektrischen Maschine diese mit einer geringeren Masse bauen möchte. Beispiele für gewichtsensible Anwen¬ dungen sind Anwendungen, bei denen die Tragstruktur für die elektrische Maschine kostspielig ist, oder die elektrische Maschine in der Anwendung von einem Ort zu einem anderen Ort transportiert wird. Dies betrifft beispielsweise den Fahr¬ zeugbau, also insbesondere eine elektrische Maschine in einem Elektrofahrzeug oder auch einem Hybridfahrzeug. Um einen ho¬ hen Wirkungsgrad bei einer hohen Leistungsdichte zu errei¬ chen, werden die Prinzipien und die Konstruktionen der elek- frischen Maschinen sowie deren Kühlung verbessert.
Aus der DE 10 2012 203 697 AI ist beispielsweise eine elek¬ trische Maschine bekannt, welche eine Welle mit einer axialen Bohrung aufweist. Ein Flussleitelement erstreckt sich so in die axiale Bohrung, dass ein Kühlmittel, insbesondere eine
Kühlflüssigkeit, aus dem Flussleitelement in die axiale Boh¬ rung fließen kann. Zur Abdichtung ist eine Dichtung vorgesehen, welche so an der Welle angeordnet ist, dass die Kühl- flüssigkeit die Dichtung gegen die Welle pressen kann. Die Dichtung wird durch Luft, die sich in einem Hohlraum zwischen einem Rückhalteelement, d.h. einer Spaltdichtung und der weiteren Dichtung befindet, gegen die Welle gepresst.
Eine Aufgabe der Erfindung ist es, eine elektrische Maschine mit einer effektiven Abdichtung eines Kühlmediums anzugeben.
Eine Lösung der Aufgabe ergibt sich bei einer elektrischen Maschine mit den Merkmalen nach Anspruch 1 und bei einem Verfahren zum Betrieb der elektrischen Maschine nach Anspruch 9. Weitere Ausgestaltungen der Lösung ergeben sich gemäß der abhängigen Ansprüche 2 bis 8 bzw. 10. Eine elektrische Maschine, welche insbesondere eine Asyn¬ chronmaschine ist, weist einen Stator und einen Rotor auf. Der Rotor ist drehbar gelagert und mit einer Welle drehfest verbunden. Somit ist die Welle Teil des Rotors. Die Welle weist eine axiale Bohrung auf. Zur Kühlung der elektrischen Maschine ist ein Kühlmedium vorgesehen, welches insbesondere eine Kühlflüssigkeit ist. Das Kühlmedium kühlt den Rotor und damit die elektrische Maschine insbesondere über die Welle des Rotors. Das Kühlmedium ist in die axiale Bohrung der Wel¬ le einführbar. Dies gelingt mittels eines Flussleitelementes . Das Flussleitelement führt den Fluss des Kühlmediums in der axialen Bohrung. Das Flussleitelement erstreckt sich z.B. so in die axiale Bohrung, dass das Kühlmittel, insbesondere eine Kühlflüssigkeit, aus dem Flussleitelement in die axiale Boh¬ rung fließen kann oder in das Flussleitelement aus der axia- len Bohrung heraus fließen kann. Eine Gleitringdichtung ist zur Abdichtung der Öffnung der axialen Bohrung vorhanden. Die Abdichtung betrifft beispielsweise eine Dichtheit gegenüber einem Raum der elektrischen Maschine, welche den Luftspalt zwischen Stator und Rotor aufweist bzw. in welchem sich ein Wickelkopf des Stators befindet. Die Gleitringdichtung ist eine robuste Dichtung mit einer langen Lebensdauer, so dass für die Lebenszeit der elektrischen Maschine nicht mit einem Austausch der Dichtung gerechnet werden muss. Die Gleitring- dichtung dichtet die rotatorisch bewegbare Welle mit der axi¬ alen Bohrung zu einem dazu rotatorisch stationärem Element ab. Dieses Element ist beispielsweise ein Anschlussflansch für die Zufuhr oder Abfuhr des Kühlmediums.
In einer Ausgestaltung der elektrischen Maschine weist die Gleitringdichtung einen Gleitring und einen Gegenring auf, wobei der Gleitring mit der Welle verbunden ist und der Gegenring mit dem zum Rotor stationären Element. Das stationäre Element ist beispielsweise ein Lagerschild oder ein Träger zur Befestigung des Flussleitelementes oder ein Anschlussele¬ ment, also der Anschlussflansch zum Einleiten und/oder Ausleiten des Kühlmediums in die Welle der elektrischen Maschine. Zwischen dem Gleitring und dem Gegenring bildet sich eine Fläche aus, welche einen Raum mit Kühlmedium von einem Raum ohne Kühlmedium abdichtet. Der Gleitring ist zum Gegenring mit der Welle bewegbar. Gleitring und Gegenring sind also zueinander bewegbar. In einer Ausgestaltung der elektrischen Maschine dichtet ein erster Dichtring den Gleitring zur Welle ab. Der erste Dichtring und der Gleitring können sich mit der Welle bewegen. Damit ist der erste Dichtring stationär zum Gleitring. In einer Ausgestaltung der elektrischen Maschine dichtet ein zweiter Dichtring den Gegenring zum stationären Element ab. Damit ist der zweite Dichtring stationär zum stationären Element . In einer Ausgestaltung der elektrischen Maschine weist die
Kühlflüssigkeit Wasser und/oder Glycol auf oder besteht hie¬ raus. Das Verhältnis Wasser zu Glycol ist beispielsweise 50% zu 50%. In einer Ausgestaltung der elektrischen Maschine ist der
Gleitring der Gleitringdichtung zum Gegenring axial wirkend angeordnet. Die Welle ist durch Lager axial wie auch radial fixiert. Damit kann die Position des Gegenrings im Verhältnis zum Gleitring, welcher an der Welle befestigt ist, einfach festgelegt werden, indem hierfür die axiale Position des Gegenrings z.B. zum Träger einstellbar ist. So kann der axiale Druck zwischen Gleitring und Gegenring durch eine variable axiale Positionierung des Gegenrings im Verhältnis zum Träger des Gegenrings verändert werden. Wird kein Druck zwischen Gleitring und Gegenring ausgeübt, so kann der axiale Spalt zwischen Gleitring und Gegenring verändert werden. Die Positionierung des Gegenrings zu dessen Träger erfolgt z.B. über Abstandshalter wie Schrauben oder Einlegeteile unterschiedli¬ cher Dicke.
In einer Ausgestaltung der elektrischen Maschine weist der Gegenring der Gleitringdichtung eine Keramik, insbesondere eine gesinterte Keramik auf. Eine Keramik ist verschleißarm und trägt somit zu einer langen Lebensdauer der elektrischen Maschine bei.
In einer Ausgestaltung der elektrischen Maschine weist diese einen Feuchtigkeitssensor auf. Der Feuchtigkeitssensor ist in einem Hohlraum vorgesehen, was bedeutet, dass der Feuchtigkeitssensor zumindest derart in oder an der elektrischen Maschine angebracht ist, dass mit diesem eine Feuchtigkeit in einem Hohlraum der elektrischen Maschine messbar ist. So kann beispielsweise festgestellt werden, ob Korrosion droht. Wird eine zu hohe Feuchtigkeit festgestellt, so kann beispielswei¬ se eine Heizung in der elektrischen Maschine eingeschaltet werden, was insbesondere zu Zeiten des Stillstandes der elektrischen Maschine notwendig sein kann.
In einem Verfahren zum Betrieb der elektrischen Maschine, in einer der beschriebenen Ausgestaltungen, wird ein Wert für eine Feuchtigkeit in einem Hohlraum der elektrischen Maschine ermittelt. Der ermittelte Wert kann dann ausgewertet werden.
In einer Ausgestaltung des Verfahrens wird der Wert an eine Auswerteeinrichtung übermittelt, wobei mittels der Auswerte¬ einrichtung ermittelt wird, ob die Gleitringdichtung auszu- tauschen ist. Leckt die Gleitringdichtung, so kann das Kühlmittel in einen trockenen Teil der elektrischen Maschine eindringen und einen Schaden verursachen. Durch die Auswerteeinrichtung kann dies verhindert werden. Dies gelingt z.B. da- durch, dass die elektrische Maschine bei zu hohen Feuchtig¬ keitswerten (bei Überschreitung eines Schwellwertes) nicht mehr betreibbar ist und nicht mehr unter Spannung gesetzt werden kann. Die elektrische Maschine ist beispielsweise ein Antrieb für ein Fahrzeug. Das Fahrzeug ist z.B. ein Elektroauto oder ein Hybridauto, dessen Vortrieb mittels der elektrischen Maschine erzielbar ist. Die Verwendung der Gleitringdichtung in Verbindung mit der Kühlung des Rotors über die Welle mit der Bohrung ermöglicht einen kompakten Aufbau. Dieser kompakte Aufbau ist für enge Einbauräume in einem Fahrzeug geeignet.
Durch die Verwendung der Gleitringdichtung können sich verschiedene positive Effekte erzielen lassen, wie z.B.:
- ein wartungsfreundliches Dichtsystem,
- ein einfach austauschbares Dichtsystem, da ein Teil axial abziehbar ist;
- eine gute Abdichtung bei höherer Umfangsgeschwindigkeit;
- eine gute Eignung zur Abdichtung eines Wasser/Glykol- Gemisches als Kühlmedium;
- eine gute Ausgleichsmöglichkeit von Form- und/oder Längen- und/oder Lageabweichungen zwischen Motorwelle und Dichtsystem und
- eine gute Anpassbarkeit des Dichtsystems an einen geänder- ten Systemdruck, der beispielsweise durch eine Designände¬ rung hervorgerufen wurde.
Die Gleitringdichtung hat Vorteile zu einer Abdichtung des Rotorkühlsystem mit Radialwellendichtring. Aufgrund hoher Um- fangsgeschwindigkeiten und Form- und Lageabweichungen und
Mangelschmierung kann es bei dem Radialwellendichtring zu erhöhtem Verschleiß an der Dichtlippe kommen. Die Dichtlippe kann allerdings mit speziellen Füllstoffen verstärkt sein, um eine Eignung für hohe Umfangsgeschwindigkeit zu erzielen. Die Füllstoffe können allerdings zu einem erhöhten Verschleiß auf der Wellenoberfläche führen, was zusätzliche teure Bearbei¬ tungsschritte wie härten, schleifen, und polieren notwendig macht. Um eine Beschädigung bei der Montage des Wellendicht- rings zu verhindern, ist eine Montagehilfe bzw. eine speziel¬ le Geometrie an der Welle notwendig.
Derartige Probleme lassen sich durch die Verwendung der
Gleitringdichtung verringern und/oder vermeiden. Das Dichtsystem einer Gleitringdichtung ist bei üblicher Schmierung verschleißfrei und eignet sich gut für das Abdichten von Was- ser/Glykol-Kühlmedien bei hohen Drehzahlen (> 20.000 /min). Durch geschickte Gestaltung der Dichtungsgeometrie lässt sich ein unabhängig vom Systemdruck wirkendes Dichtungssystem erreichen. Das Dichtsystem wirkt axial auf einen Gegenring aus einer gesinterten technischen Spezialkeramik . Dichtsysteme wie z.B. Wellendichtring wirken direkt radial auf die Motorwelle und führen somit zu einem Verschleiß an dieser, was wiederum u.U. einen Austausch notwendig macht. Bei einer
Gleitringdichtung gibt es keinen Verschleiß an der Motorwelle. Eine Gleitringdichtung lässt sich einfach montieren und demontieren . Die Erfindung wird nachfolgend beispielhaft mittels Figuren beschrieben. In den Figuren werden für gleichartige Elemente gleiche Bezugszeichen verwendet. Dabei zeigt:
FIG 1 eine elektrische Maschine mit einer Gleitring- dichtung;
FIG 2 einen Ausschnitt der ersten elektrischen Maschine ;
FIG 3 eine Radialwellendichtung;
FIG 4 eine Gleitringdichtung und
FIG 5 die elektrische Maschine mit einer Darstellung des Flusses des Kühlmediums. Die Darstellung nach FIG 1 zeigt eine elektrische Maschine 1 mit einem Gehäuse 101. In dem Gehäuse 101 befindet sich ein Stator 2 und ein Rotor 4, wobei der Rotor 4 um eine Achse 3 über Lager 8 und 8λ drehbar ist. Der Stator 2 weist ein
Blechpaket 16 auf und der Rotor ein Blechpaket 16 λ. Die elektrische Maschine ist eine Asynchronmaschine mit einem Kurzschlussring 17. Eine Welle 5 des Rotors 4 weist eine axi¬ ale Bohrung 6 auf, in welche ein Flussleitelement 7 zur Füh¬ rung eines Kühlmittels ragt, wobei das Flussleitelement 7 ein Einlassrohr 9 aufweist. Mit Kühlmittel gespeist wird das Ein¬ lassrohr 9 durch einen Kühlmitteleintritt 34, in einem das Rohr 9 tragenden Träger 37, welcher ein stationäres Element darstellt. Das Kühlmittel verlässt die elektrische Maschine 1 wieder über einen Kühlmittelaustritt 33, der an einen hohlzy- lindrischen Raum 32 anschließt. Die Abdichtung der Öffnung der Welle 6 zu weiteren Teilen des Rotors 4 und zum Stator 2 gelingt mittels der Gleitringdichtung 40, welche in Figur 4 im Detail gezeigt ist. Ein Fluss des Kühlmediums in der Welle 5 ist in Figur 5 dargestellt.
Die Darstellung nach FIG 2 zeigt neben Elementen aus FIG 1 die Gleitringdichtung 40 (siehe FIG 4) mit einem Gleitring 41 und einem Gegenring 42. Der Gleitring 41 ist mit der Welle 5 verbunden, wobei ein erster Dichtring 48 zwischen Welle 5 und Gleitring 41 vorhanden ist. Der Gleitring 41 weist beispielsweise in einem Kunststoff gebundene Kohle auf, um eine gute Gleitwirkung zu erzielen. Der Gegenring 42 ist mit dem Träger 37 verbunden, wobei zwischen dem Träger 37 und dem Gegenring 42 ein zweiter Dichtring 49 vorhanden ist. Die Dichtringe 48 und 49 sind beispielsweise O-Ringe. Der Gegenring 42 weist beispielsweise SiC auf. Der Gegenring 42 verfügt insbesondere eine Drehmomentstütze 21 und Einzelfedern 22, damit der Ge¬ genring 42 an dem Gleitring 41 anliegt. Neben einer
Leckagekammer 46 weist die elektrische Maschine auch einen Hohlraum 55 auf, wobei ein Sensor 56 die Feuchte in dem Hohlraum 55 misst. Der gemessene Sensorwert wird in einer Auswer¬ teeinrichtung 57 ausgewertet. Der Sensor kann auch im Bereich von Wickelköpfen des Stators positioniert sein, was in der Figur 2 allerdings nicht dargestellt ist. Über ein Kugelven¬ til 47 kann zusätzlich Kühlmittel aus der elektrischen Maschine ausgeführt werden. Die Darstellung nach FIG 3 zeigt als Alternative zur Gleit¬ ringdichtung eine Radialwellendichtung 53 nach dem Stand der Technik. Die Radialwellendichtung 53 weist eine Winkelverstärkung 54 und eine Feder 52 auf, welche die Dichtung auf die Welle 5 presst.
Die Darstellung nach FIG 4 zeigt eine Gleitringdichtung (40), bei welcher der Gleitring 41 über einen gummielastischen Aufnehmer 43 mit der Welle verbunden ist. Der Gleitring 41 grenzt flächig an den Gegenring 42 an, wobei der Gegenring 42 über einen gummielastischen Faltbalg 44 mit einem Träger 37 verbunden ist. Dieser Träger ist stationär und rotatorisch nicht über Lager bewegbar. Der Faltbalg 44 ist insbesondere ein Elastomerbalg. Eine Feder 45, insbesondere eine Spiralfe¬ der, drückt den Gegenring 42 an den Gleitring 41. Die Feder 45 ist insbesondere eine Einzelfeder. Die Feder 45 stützt sich dabei zumindest indirekt am Träger 37 ab. Die darge¬ stellte entlastete Gleitringdichtung kann als vormontierte Einheit verbaut werden. FIG 5 zeigt die elektrische Maschine 1, mit dem Fluss des
Kühlmediums. Der Rotor 4 ist um die Drehachse 3 drehbar gela¬ gert, indem die Welle 5 über die Lager 8, 8' im Gehäuse 101 gelagert ist. Das Lager 8 und 8λ ist in diesem Ausführungs¬ beispiel ein Kugellager. Auch andere Lager wie Tonnenlager, Nadellager, etc. sind verwendbar, aber nicht dargestellt. Zur Kühlung wird eine Kühlflüssigkeit als Kühlmittel 15 verwen¬ det, die aus Wasser und Glysantin G30® im Verhältnis 50:50 besteht, oder diese Stoffe aufweist. Die Welle 5 des Rotors 4 weist eine axiale Bohrung 6 auf. Ein Flussleitelement 7 erstreckt sich von einem offenen Ende der Welle 5 so in die axiale Bohrung 6, dass die Kühlflüssigkeit 15 aus dem Flussleitelement 7 in die axiale Bohrung 6 fließen kann. Das Flussleitelement 7 weist ein Einlassrohr 9 auf, das in bzw. an einem Träger 37 des Flussleitelementes 7 befestigt ist. Der Träger 37 ist am Gehäuse 101 der elektrischen Maschine 1 befestigt.
Zur Kühlung der elektrischen Maschine 51 fließt die Kühlflüs¬ sigkeit 15 durch den Kühlmitteleintritt 34 in das Einlassrohr 9. Im Einlassrohr 9 fließt das Kühlmittel 15 in Richtung ei¬ nes verschlossenen Endes der axialen Bohrung 6, wo sie aus dem Einlassrohr 9 austritt und durch ein Übertragungselement 13 umgelenkt wird. Das Übertragungselement 13 weist hierzu eine Ausnehmung 14 auf, die rotationssymmetrisch zur Drehachse 3 ausgebildet ist, so dass die Kühlflüssigkeit nur geringe durch das Umlenken der Kühlflüssigkeit verursachte Turbulen- zen aufweist. Das Übertragungselement 13 ist aus Aluminium, so dass es eine Abwärme, die es an der Berandung 12 der axia¬ len Bohrung 6 oder an dem verschlossenen Ende der axialen Bohrung 6 aufgenommen hat, im guten Maße auf die Kühlflüssig¬ keit 15 übertragen kann. Die Welle 5 wurde in herkömmlicher Weise aus einem Stahl gefertigt. Aufgrund des größeren Wär¬ meausdehnungskoeffizienten des Übertragungselements 13 gegenüber dem herkömmlichen Stahl der Welle 5 wird das Übertragungselement gegen die Berandung 12 der axialen Bohrung 6 ge- presst, so dass mit zunehmender Temperatur ein besserer Wär- meübergang zwischen der Berandung 12 der axialen Bohrung 6 und dem Übertragungselement 13 vorhanden ist. Nachdem die Kühlmittelflüssigkeit 15 durch das Übertragungselement 13 um¬ gelenkt wurde, fließt die Kühlflüssigkeit 15 in den hohlzy¬ linderförmigen Kanal 31, der durch die Berandung 12 der axia- len Bohrung 6 und die äußere Oberfläche 10 des Einlassrohrs 9 gebildet ist. An einem offenen Ende der Welle 5 fließt dann die Kühlflüssigkeit 15 aus dem hohlzylinderförmigen Kanal 31 in den hohlzylinderförmigen Raum 32. Von dort verlässt die Kühlflüssigkeit 15 den hohlzylinderförmigen Raum 32 durch ei- nen Kühlmittelaustritt 33, der sich mit einem Teil seines
Querschnitts durch einen Ausschnitt einer radialen Berandung des hohlzylinderförmigen Raums 32 in den hohlzylinderförmigen Raum 32 erstreckt. Der Stator 2 weist ein Blechpaket 16 und der Rotor 4 ein Blechpaket 16 λ auf. Der Rotor 4 weist ferner Kupferstäbe 23 auf, die in Nuten 25 des Blechpakets 16 λ angeordnet sind. Die Kupferstäbe 23 sind durch aus Aluminium angegossene Kurz- schlussringe 17 kurzgeschlossen. In der FIG 5 ist ein Restquerschnitt in radialer Richtung neben den Kupferstäben 23 in einer anderen Schraffur gezeichnet als die Kurzschlussringe 17. Die Restquerschnitte der Nuten 25 können unabhängig von einem Angießen der Kurzschlussringe 17 ausgegossen werden oder beim Angießen der Kurzschlussringe 17 mit Aluminium 24 ausgegossen werden.
Die angegossenen Kurzschlussringe 17 weisen einen Befesti¬ gungsbereich 18 auf. Dieser ist direkt an der Welle 5 ange- bunden. Das heißt, dass eine Oberfläche des Kurzschlussrings 17 in der Nähe des Befestigungsbereichs 18 die Oberfläche der Welle 5 berührt. Um diesen Kontakt zwischen dem Kurzschluss¬ ring 17 und der Welle 5 über einen großen Temperaturbereich sicherzustellen, ist ein Schrumpfring 19 so am Kurzschluss- ring 17 angeordnet, dass der Befestigungsbereich 18 sich zwischen dem Schrumpfring 19 und der Welle 5 befindet. Der
Schrumpfring 19 ist aus einem Stahl, der sich mit zunehmender Temperatur weniger stark ausdehnt als das Aluminium des Kurzschlussrings 17. Der Schrumpfring 19 wird beim Auswuchten des Rotors für das Anbringen von Wuchtbohrungen 20 genutzt. Die
Anzahl und die Tiefe der Wuchtbohrungen 20 sowie deren Anordnung am Schrumpfring ist abhängig von der individuellen Unwucht des Rotors 4. Wenn sich nun die Bestandteile des Rotors 4, insbesondere die Kurzschlussstäbe 23, im Betrieb der elektrischen Maschine 1 erwärmen, wird die Abwärme über die gute Wärmeleitfähigkeit der Kupferstäbe 23 in die Kurzschlussringe 17 transportiert und von den Kurzschlussringen 17 über deren Befestigungsbe- reich 18 in die Welle 5.
Dies ist für einen der Kurzschlussringe 17 in FIG 5 durch Pfeil 35 wiedergegeben, der eine Richtung der Wärmeübertra- gung in das Übertragungselement 13 andeutet. Von dem Übertra¬ gungselement 13 nimmt die Kühlflüssigkeit 15 die Abwärme auf und kann sie zu einem Kühlmittelaustritt 33 transportieren. Bei dem anderen der Kurzschlussringe 17 wird die Wärme von der Welle 5 direkt auf die Kühlflüssigkeit 15 übertragen, wie dies der Pfeil 36 andeutet.
Das Einlassrohr 9 ist ein Druckgussteil aus Aluminium. Durch die gute Wärmeleitfähigkeit des Aluminiums wird eine gleich- mäßigere Kühlung der Welle 5 entlang der Drehachse 3 er¬ reicht. Die Abwärme, die die Kühlflüssigkeit 15 im hohlzylin- derförmigen Kanal 31 aufnimmt, kann nämlich durch die gute Wärmeleitfähigkeit des Einlassrohrs 9 in höherem Maße auf die Kühlflüssigkeit 15 innerhalb des Einlassrohrs 9 übertragen werden. So unterstützt die relativ kalte Kühlflüssigkeit 15 innerhalb des Einlassrohrs 9 in der Nähe des offenen Endes der axialen Bohrung 6 die Kühlflüssigkeit 15 im hohlzylinder- förmigen Kanal 31, indem sie von dieser durch das Aluminium des Einlassrohrs 9 schon eine gewisse Menge der Abwärme auf- nimmt.

Claims

Patentansprüche
1. Elektrische Maschine (1,51), aufweisend
einen Stator (2),
- einen drehbar gelagerten Rotor (4) mit einer Welle (5), wobei die Welle (5) eine axiale Bohrung (6) aufweist, ein Flussleitelement (7), das sich so in die axiale Boh¬ rung (6) erstreckt, dass ein Kühlmittel (15), insbesondere eine Kühlflüssigkeit (15), aus dem Flussleitelement (7) in die axiale Bohrung (6) fließen kann oder in das Flussleit¬ element (7) aus der axialen Bohrung (6) fließen kann, eine Gleitringdichtung (40), welche die rotatorisch bewegbare Welle (5) mit der axialen Bohrung (6) zu einem dazu rotatorisch stationärem Element (37) abdichtet.
2. Elektrische Maschine (1,51) nach Anspruch 1, wobei die Gleitringdichtung (40) einen Gleitring (41) und einen Gegenring (42) aufweist, wobei der Gleitring (41) mit der Welle (5) verbunden ist und der Gegenring (42) mit dem zum Rotor (4) stationären Element (37) .
3. Elektrische Maschine (1,51) nach Anspruch 2, wobei ein erster Dichtring (48) den Gleitring (41) zur Welle (4) abdichtet .
4. Elektrische Maschine (1,51) nach Anspruch 2 oder 3, wobei ein zweiter Dichtring (49) den Gegenring (42) zum stationären Element (37) abdichtet.
5. Elektrische Maschine (1,51) nach einem der vorhergehenden Ansprüche, wobei die Kühlflüssigkeit (15) Wasser und/oder Glycol aufweist.
6. Elektrische Maschine (1,51) nach einem der vorhergehenden Ansprüche, wobei der Gleitring (42) der Gleitringdichtung (40) zum Gegenring (42) axial wirkend angeordnet ist.
7. Elektrische Maschine (1,51) nach einem der vorhergehenden Ansprüche, wobei der Gegenring ( 42 ) der Gleitringdichtung (40) eine gesinterte Keramik aufweist.
8. Elektrische Maschine (1,51) nach einem der vorhergehenden Ansprüche, wobei ein Feuchtigkeitssensor (56) in einem Hohlraum (55) vorgesehen ist.
9. Verfahren zum Betrieb einer elektrischen Maschine (1,51) nach Anspruch 8, wobei ein Wert für eine Feuchtigkeit in ei¬ nem Hohlraum (55) der elektrischen Maschine (1,51) ermittelt wird .
10. Verfahren nach Anspruch 9, wobei der Wert an eine Auswer- teeinrichtung (57) übermittelt wird, wobei mittels der Aus¬ werteeinrichtung (57) ermittelt wird, ob die Gleitringdichtung (40) auszutauschen ist.
PCT/EP2015/071463 2014-09-30 2015-09-18 Flüssigkeitsgekühlte elektrische maschine WO2016050534A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2017110526A RU2670601C9 (ru) 2014-09-30 2015-09-18 Электрическая машина с жидкостным охлаждением
BR112017004942A BR112017004942A2 (pt) 2014-09-30 2015-09-18 máquina elétrica, e, método para operar uma máquina elétrica.
EP15774527.4A EP3161358A1 (de) 2014-09-30 2015-09-18 Flüssigkeitsgekühlte elektrische maschine
US15/515,476 US20180269743A1 (en) 2014-09-30 2015-09-18 Liquid-cooled electric machine
CN201580040834.8A CN106662255B (zh) 2014-09-30 2015-09-18 液体冷却的电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014219739.2 2014-09-30
DE102014219739 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016050534A1 true WO2016050534A1 (de) 2016-04-07

Family

ID=54249442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/071463 WO2016050534A1 (de) 2014-09-30 2015-09-18 Flüssigkeitsgekühlte elektrische maschine

Country Status (6)

Country Link
US (1) US20180269743A1 (de)
EP (1) EP3161358A1 (de)
CN (1) CN106662255B (de)
BR (1) BR112017004942A2 (de)
RU (1) RU2670601C9 (de)
WO (1) WO2016050534A1 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124252A1 (ja) 2016-12-29 2018-07-05 イーグル工業株式会社 メカニカルシール
CN109163100A (zh) * 2018-11-06 2019-01-08 深圳市创世纪机械有限公司 主轴的气密封结构
DE102017211318A1 (de) * 2017-07-04 2019-01-10 Audi Ag Elektrische Maschine
WO2019122551A1 (fr) * 2017-12-21 2019-06-27 Psa Automobiles Sa Arbre refroidit et procede de fabrication d'un arbre
EP3530989A1 (de) 2018-02-23 2019-08-28 Valeo Siemens eAutomotive Germany GmbH Anordnung mit einer elektrischen maschine und einem getriebe und fahrzeug
DE102018218811A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218815A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218820A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218817A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218818A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218813A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
EP3474424B1 (de) 2017-10-23 2020-09-09 Audi Ag Elektrische maschine und kraftfahrzeug
CN112533821A (zh) * 2018-05-31 2021-03-19 驭浪有限责任公司 陀螺船横摇稳定器
DE102019133677A1 (de) * 2019-12-10 2021-06-10 Audi Ag Elektrische Antriebseinheit
DE102019216356B4 (de) 2019-10-24 2022-02-24 Zf Friedrichshafen Ag Fluid-Kühleinrichtung für ein Kraftfahrzeug mit einer Vorrichtung zum Ablassen eines Leckagekühlfluids
CN108462318B (zh) * 2017-02-22 2022-04-26 蔚来(安徽)控股有限公司 电机冷却结构、动力电机及电驱动***
DE102021203302A1 (de) 2021-03-31 2022-10-06 Valeo Siemens Eautomotive Germany Gmbh Elektrische Maschine mit einem Radialwellendichtring
US11591052B2 (en) 2020-03-02 2023-02-28 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11780542B2 (en) 2020-09-30 2023-10-10 Wavetamer Llc Gyroscopic roll stabilizer with flywheel shaft through passage
US11807344B2 (en) 2020-09-30 2023-11-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel cavity seal arrangement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086743B (zh) * 2017-05-22 2023-03-28 哈尔滨电气动力装备有限公司 油润滑的高温气冷堆核电厂主冷却风机电动机
CN108199532B (zh) * 2018-01-18 2019-07-05 郑州轻工业学院 一种电机低温冷却机构
CN108566041A (zh) * 2018-01-31 2018-09-21 湖北环电磁装备工程技术有限公司 无框式永磁同步电机直驱的卷板机
CN109378940A (zh) * 2018-11-23 2019-02-22 河北新四达电机股份有限公司 内定子电机水冷却装置及水冷却方法
JP2020188560A (ja) * 2019-05-13 2020-11-19 株式会社エクセディ 回転電機
JP2020188625A (ja) * 2019-05-16 2020-11-19 本田技研工業株式会社 回転電機
CN111654134A (zh) * 2019-11-19 2020-09-11 摩登汽车有限公司 电机转子中心轴、电机和电动汽车
IT202000011128A1 (it) * 2020-05-14 2021-11-14 Umbra Meccanotecnica Tenuta meccanica con superfici di scivolo aventi diametro minimo.
CN111564927B (zh) * 2020-05-18 2022-05-10 珠海格力电器股份有限公司 空心轴密封环、空心轴、转子结构、电机及电动汽车
CN112467911A (zh) * 2020-10-28 2021-03-09 恒大恒驰新能源汽车研究院(上海)有限公司 转轴结构及驱动电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540010A1 (de) * 1975-09-09 1977-03-10 Siemens Ag Leckfluessigkeitsabdichtung von lagern fluessigkeitsgekuehlter hohler wellen elektrischer maschinen
DE3621600A1 (de) * 1986-06-27 1988-01-21 Battelle Institut E V Pumpe zum transport gasfoermiger medien
US20110308300A1 (en) * 2010-06-17 2011-12-22 General Electric Company Seal leakage and seal oil contamination detection in generator

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2522231A (en) * 1945-05-08 1950-09-12 Henrite Products Corp Sealing means for moving shafts
DE1613265B1 (de) * 1967-08-24 1971-01-07 Licentia Gmbh Kuehlfluessigkeitsdurchstroemter,in der Hohlwelle des Laeufers einer elektrischen Maschine angeordneter Kuehlkoerper
FR1574604A (de) * 1967-08-24 1969-07-11
JPS4925561B1 (de) * 1968-11-25 1974-07-02
DE2510196C2 (de) * 1975-03-08 1976-10-21 Gutehoffnungshuette Sterkrade Gleitringe fuer eine gasgesperrte, beruehrungsfreie wellendichtung
SU1032548A1 (ru) * 1981-06-11 1983-07-30 Научно-Исследовательский Проектно-Конструкторский И Технологический Институт Тяжелого Электромашиностроения Харьковского Завода "Электротяжмаш" Им.В.И.Ленина Устройство подвода жидкости к ротору с полым валом
SU1744764A1 (ru) * 1989-05-19 1992-06-30 Научно-Производственное Объединение "Свема" Устройство защиты электрической машины от увлажнени
AT403864B (de) * 1994-06-13 1998-06-25 Abb Daimler Benz Transp Kühlsystem für eine elektrische maschine
JPH08149758A (ja) * 1994-11-14 1996-06-07 Toyo Electric Mfg Co Ltd 回転電機の漏液検出器
JPH08290788A (ja) * 1995-04-24 1996-11-05 Caterpillar Inc 泥シールドを持つ履帯の端面シール
EP0903500B1 (de) * 1997-09-19 2001-03-14 TCG UNITECH Aktiengesellschaft Elektrisch betriebene Kühlmittelpumpe
US6183208B1 (en) * 1997-10-03 2001-02-06 Roper Holdings, Inc. Immersible motor system
US6565095B2 (en) * 2001-07-12 2003-05-20 Honeywell International, Inc. Face seal with internal drain
SE524513C2 (sv) * 2002-12-20 2004-08-17 Metso Paper Inc Tätningsanordning för tätning mellan en axeltapp och ett lagerhus samt anordning för avvattning och/eller tvättning av materialsuspensioner
JP4481690B2 (ja) * 2004-03-19 2010-06-16 イーグル工業株式会社 メカニカルシール装置
JP4895118B2 (ja) * 2007-04-05 2012-03-14 東洋電機製造株式会社 モータ
US20130209777A1 (en) * 2007-04-25 2013-08-15 Nippon Pillar Packing Co., Ltd. Ceramics sliding member for use in pure water
US8915453B1 (en) * 2007-06-01 2014-12-23 Raymond C. Sherry Expansion nozzle with continuous rotating stem
US8049386B2 (en) * 2009-05-08 2011-11-01 Hamilton Sundstrand Corporation Seal cartridge
US8629592B2 (en) * 2009-06-25 2014-01-14 General Electric Company Hermetic sealing assembly and electrical device including the same
DE102009049093A1 (de) * 2009-10-01 2011-04-07 Kaco Gmbh + Co. Kg Gleitringdichtung
DE102012203697A1 (de) * 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Elektrische Maschine mit einem Rotor zur Kühlung der elektrischen Maschine
EP3159583B1 (de) * 2012-10-04 2020-09-09 Eagle Industry Co., Ltd. Mechanische dichtung
EP2940353B1 (de) * 2012-12-25 2020-01-15 Eagle Industry Co., Ltd. Gleitkomponente
WO2014173425A1 (en) * 2013-04-22 2014-10-30 Carl Freudenberg Kg Slide ring seal
JP5354558B1 (ja) * 2013-04-24 2013-11-27 東洋電機製造株式会社 回転子の液冷却装置
JPWO2014192761A1 (ja) * 2013-05-27 2017-02-23 イーグル工業株式会社 メカニカルシール装置
KR20150074524A (ko) * 2013-12-24 2015-07-02 주식회사 만도 랙 타입 전동식 파워 스티어링 시스템
KR20150131523A (ko) * 2014-05-15 2015-11-25 현대모비스 주식회사 차량용 램프의 습기제거장치
DE102015218521A1 (de) * 2015-09-25 2016-09-29 Magna powertrain gmbh & co kg Elektrische Maschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540010A1 (de) * 1975-09-09 1977-03-10 Siemens Ag Leckfluessigkeitsabdichtung von lagern fluessigkeitsgekuehlter hohler wellen elektrischer maschinen
DE3621600A1 (de) * 1986-06-27 1988-01-21 Battelle Institut E V Pumpe zum transport gasfoermiger medien
US20110308300A1 (en) * 2010-06-17 2011-12-22 General Electric Company Seal leakage and seal oil contamination detection in generator

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543033B2 (en) 2016-12-29 2023-01-03 Eagle Industry Co., Ltd. Mechanical seal
WO2018124252A1 (ja) 2016-12-29 2018-07-05 イーグル工業株式会社 メカニカルシール
CN108462318B (zh) * 2017-02-22 2022-04-26 蔚来(安徽)控股有限公司 电机冷却结构、动力电机及电驱动***
DE102017211318B4 (de) * 2017-07-04 2020-08-20 Audi Ag Elektrische Maschine
DE102017211318A1 (de) * 2017-07-04 2019-01-10 Audi Ag Elektrische Maschine
EP3474424B1 (de) 2017-10-23 2020-09-09 Audi Ag Elektrische maschine und kraftfahrzeug
WO2019122551A1 (fr) * 2017-12-21 2019-06-27 Psa Automobiles Sa Arbre refroidit et procede de fabrication d'un arbre
FR3076118A1 (fr) * 2017-12-21 2019-06-28 Psa Automobiles Sa Arbre refroidi et procede de fabrication d’un arbre
US11781641B2 (en) 2018-02-23 2023-10-10 Valeo Siemens Eautomotive Germany Gmbh Arrangement comprising an electric machine and a gearbox and vehicle
EP3530989A1 (de) 2018-02-23 2019-08-28 Valeo Siemens eAutomotive Germany GmbH Anordnung mit einer elektrischen maschine und einem getriebe und fahrzeug
WO2019161948A1 (en) 2018-02-23 2019-08-29 Valeo Siemens Eautomotive Germany Gmbh Arrangement comprising an electric machine and a gearbox and vehicle
JP7165213B2 (ja) 2018-05-31 2022-11-02 ウェーブテイマー エルエルシー ジャイロスコープ式ロールスタビライザ
CN112533821A (zh) * 2018-05-31 2021-03-19 驭浪有限责任公司 陀螺船横摇稳定器
US11891157B2 (en) 2018-05-31 2024-02-06 Wavetamer Llc Gyroscopic boat roll stabilizer
US11873065B2 (en) 2018-05-31 2024-01-16 Wavetamer Llc Gyroscopic boat roll stabilizer
US11649017B2 (en) 2018-05-31 2023-05-16 Wavetamer Llc Gyroscopic boat roll stabilizer
US11427289B2 (en) 2018-05-31 2022-08-30 Wavetamer Llc Gyroscopic boat roll stabilizer
EP3784560A4 (de) * 2018-05-31 2022-05-04 Wavetamer LLC Gyroskopischer bootsrollenstabilisator
JP2021526102A (ja) * 2018-05-31 2021-09-30 ウェーブテイマー エルエルシーWaveTamer LLC ジャイロスコープ式ロールスタビライザ
EP3784561A4 (de) * 2018-05-31 2021-07-21 Wave Tamer LLC Gyroskopischer bootsrollenstabilisator
DE102018218818A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218811A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
WO2020094514A1 (de) 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
DE102018218813A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
WO2020094510A1 (de) 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
WO2020094513A1 (de) 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
DE102018218820A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
WO2020094512A1 (de) 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
WO2020094516A1 (de) 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
WO2020094515A1 (de) 2018-11-05 2020-05-14 Zf Friedrichshafen Ag Elektrische maschine mit einer fluid-kühleinrichtung
DE102018218815A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
DE102018218817A1 (de) 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Elektrische Maschine mit einer Fluid-Kühleinrichtung
CN109163100A (zh) * 2018-11-06 2019-01-08 深圳市创世纪机械有限公司 主轴的气密封结构
CN109163100B (zh) * 2018-11-06 2024-06-11 深圳市创世纪机械有限公司 主轴的气密封结构
DE102019216356B4 (de) 2019-10-24 2022-02-24 Zf Friedrichshafen Ag Fluid-Kühleinrichtung für ein Kraftfahrzeug mit einer Vorrichtung zum Ablassen eines Leckagekühlfluids
DE102019133677A1 (de) * 2019-12-10 2021-06-10 Audi Ag Elektrische Antriebseinheit
US11591052B2 (en) 2020-03-02 2023-02-28 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11873064B2 (en) 2020-03-02 2024-01-16 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11780542B2 (en) 2020-09-30 2023-10-10 Wavetamer Llc Gyroscopic roll stabilizer with flywheel shaft through passage
US11807344B2 (en) 2020-09-30 2023-11-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel cavity seal arrangement
DE102021203302A1 (de) 2021-03-31 2022-10-06 Valeo Siemens Eautomotive Germany Gmbh Elektrische Maschine mit einem Radialwellendichtring

Also Published As

Publication number Publication date
EP3161358A1 (de) 2017-05-03
CN106662255A (zh) 2017-05-10
CN106662255B (zh) 2019-02-05
US20180269743A1 (en) 2018-09-20
RU2670601C9 (ru) 2018-11-22
BR112017004942A2 (pt) 2017-12-05
RU2670601C1 (ru) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2016050534A1 (de) Flüssigkeitsgekühlte elektrische maschine
EP2807732B1 (de) Elektrische maschine mit einem rotor zur kühlung der elektrischen maschine
DE102013226851A1 (de) Rotatorische dynamoelektrische Maschine mit einem Kühlsystem
DE10047387B4 (de) Elektrisch angetriebene Kühlmittelpumpe
DE4229395C2 (de) Oberflächengekühlte, geschlossene elektrische Maschine
EP3480929B1 (de) Gekühltes gehäuse für den stator eines direktantriebs
WO2005112228A1 (de) Elektrische maschine mit wasserkühlung
DE102015215667A1 (de) Flüssigkeitskühlung einer elektrischen Maschine
DE102015223462A1 (de) Rotor, flüssigkeitsgekühlte, elektrische Maschine sowie Fahrzeug
EP4205269A1 (de) Elektrische maschinenanordnung
EP3326272B1 (de) Elektrische maschine
WO2017186381A1 (de) Elektrische maschine
WO2020216507A1 (de) Elektrische maschine mit drehmomentabstützung im gehäuse
EP0688090B1 (de) Kühlsystem für einen Motor
DE102006015571A1 (de) Elektromaschine mit Wälzlagerung
EP2507897A2 (de) Doppelwandiger gusskörper für eine flüssigkeitsgekühlte elektrische maschine
WO2018211088A1 (de) Elektrische maschine, insbesondere für ein fahrzeug
EP0589187A1 (de) Oberflächengekühlte, geschlossene elektrische Maschine
EP0585644B1 (de) Oberflächengekühlte, geschlossene elektrische Maschine
DE102017103631A1 (de) Elektrische Maschine hoher Leistungsdichte sowie Kraftfahrzeug
DE102016217120A1 (de) Elektrische Maschine mit einer Baueinheit und einem Kühlmantel
DE102007036032A1 (de) Unterwassermotor mit Wärmetauscher
DE102019208293A1 (de) Welle für eine elektrische Maschine
DE102018206401A1 (de) Elektromotor und Verfahren zur Herstellung desselben
DE19921452C1 (de) Vorrichtung zur Kühlung einer elektrischen Maschine mit einem Stator und einem Rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774527

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015774527

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774527

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017004942

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15515476

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017110526

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017004942

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170313