WO2017124844A1 - 确定极化码传输块大小的方法和通信设备 - Google Patents

确定极化码传输块大小的方法和通信设备 Download PDF

Info

Publication number
WO2017124844A1
WO2017124844A1 PCT/CN2016/108803 CN2016108803W WO2017124844A1 WO 2017124844 A1 WO2017124844 A1 WO 2017124844A1 CN 2016108803 W CN2016108803 W CN 2016108803W WO 2017124844 A1 WO2017124844 A1 WO 2017124844A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
block size
transport block
mapping relationship
relationship information
Prior art date
Application number
PCT/CN2016/108803
Other languages
English (en)
French (fr)
Inventor
沈晖
李斌
陈凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017124844A1 publication Critical patent/WO2017124844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/27Evaluation or update of window size, e.g. using information derived from acknowledged [ACK] packets

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a communication device for determining a size of a polarization code transmission block.
  • the Polar code is an encoding method that can achieve Shannon capacity and has low coding and decoding complexity.
  • B N is an N ⁇ N transposed matrix, such as a bit reversal matrix. Is the Kronecker power of F 2 , defined as
  • Some of the bits are used to carry information, called information bits.
  • the set of sequence numbers of these information bits is denoted as A; the other part of the bits is set to a fixed value pre-agreed by the transceiver, which is called a fixed bit, and the sequence number is used.
  • a complementary set a represents C.
  • these fixed bits are usually set to zero. In fact, only the transceiver terminal needs to be pre-agreed, and the fixed bit sequence can be arbitrarily set.
  • the encoded bit sequence of the Polar code can be obtained by the following method:
  • a row vector of length K ie Represents the number of elements in the set, that is, K represents the number of elements in the set A, and also represents the number of information bits to be encoded, Is a submatrix obtained from the rows corresponding to the indices in the set A in the matrix G N , Is a K ⁇ N matrix.
  • the selection of set A determines the performance of the Polar code.
  • the scheduling and resource management module determines the size of the transport block according to the channel state information fed back by the receiving end and the information of the available physical channel resources; the transport block size and the cyclic redundancy check code (Cyclic Redundancy) Check, CRC) bit sum can be on The number of information bits described.
  • the encoder encodes the sequence of messages to be transmitted according to the transport block size.
  • the decoder also decodes the received channel accordingly based on the transport block size.
  • the scheduling and resource management module may obtain a transport block index (TBS Index) according to the current MCS index lookup mapping relationship information 1, and then look up the above mapping relationship information 2 to determine the current transport block size.
  • the embodiment of the present application provides a method and a communication device for determining a size of a polarization code transmission block, which can effectively determine a transmission block size of a Polar code.
  • a method for determining a size of a polarization code transmission block including:
  • the mapping relationship information in the first mapping relationship information set includes the correspondence between the transport block size index and the transport block size under different transmission resources corresponding to the polarization code rate of each mapping relationship.
  • the embodiment of the present application determines the current transport block size by using the current code rate of the polarization code, the current transport block size index, the current transmission resource, and the mapping relationship information set, and implements the determination of the transport block size at the current code rate, thereby enabling Encoding or decoding according to the transport block size.
  • the determination of the transport block size at the current code rate is implemented without increasing the signaling of the air interface transmission, and then the encoding or decoding can be performed according to the transport block size.
  • mapping relationship information in the first mapping relationship information set in the embodiment of the present application corresponds to a code rate
  • the shot relationship information may be in the form of a table.
  • a mapping relationship information may be a correspondence between different transport block size indexes and transport block sizes under different transmission resources at a code rate, in other words, one
  • the mapping relationship information may be a table of correspondences between different transport block sizes and transmission resources under different transport block size indexes.
  • the first mapping relationship information set may include a mapping relationship information, and the code rate corresponding to the one mapping relationship information may be referred to as a base code rate; the first mapping relationship information set may also include multiple mapping relationship information, and the multiple mapping relationship information corresponds to Multiple code rates. Different mapping relationship information has different code rates. In other words, the plurality of mapping relationship information has a one-to-one correspondence with a plurality of code rates.
  • mapping relationship information in the embodiment of the present application is pre-stored information of the coded code end of the polarization code, and the mapping relationship information may have multiple representation forms, as long as the mapping relationship information includes the polarization code of the mapping relationship.
  • the corresponding relationship between the transport block size and the transmission resource in the different transport block size indexes may be corresponding to the rate, which is not limited by the embodiment of the present application.
  • determining the current code rate of the polarization code and the current transport block size index includes:
  • the second mapping relationship information includes different modulation coding order indexes, and a code rate and a transport block size index corresponding to each modulation coding order index.
  • the current modulation coding order index can be obtained in the existing manner, which is not limited by the embodiment of the present application. That is, in the embodiment of the present application, the current modulation coding order index and the preset second mapping relationship information may be first obtained, and then the current modulation is obtained according to the current modulation coding order index and the preset second mapping relationship information.
  • the current bit rate of the polarization code corresponding to the coding order index and the current transport block size index may be first obtained, and then the current modulation is obtained according to the current modulation coding order index and the preset second mapping relationship information.
  • the second mapping relationship information includes a different modulation coding order index, and a code rate and a transport block size index corresponding to each modulation coding order index.
  • the specific form of the mapping relationship information is limited.
  • the first mapping relationship information set includes first mapping relationship information corresponding to a first polarization code rate
  • Determining the current transport block size according to the current code rate of the polarization code, the current transport block size index, and the current transmission resource of the current transport block and the preset first mapping relationship information set including:
  • the transport block size corresponding to the current transport block size index and the current transmission resource in the first mapping relationship information is determined as the current transport block size.
  • the first mapping relationship information set includes first mapping relationship information corresponding to a first polarization code rate
  • Determining the current transport block size according to the current code rate of the polarization code, the current transport block size index, and the current transmission resource of the current transport block and the preset first mapping relationship information set including:
  • the information according to the first mapping relationship is The current transport block size index and the transport block size corresponding to the current transmission resource, and the ratio of the current code rate to the first polarization code rate, determining the current transport block size, including: determining the current according to any one of the following formulas Transport block size:
  • TBS 0 floor((R 0 /R 1 )*TBS 1 )
  • TBS 0 ceil((R 0 /R 1 )*TBS 1 )
  • R 0 represents the current code rate
  • R 1 represents the first polarization code rate
  • TBS 0 represents the current transport block size
  • TBS 1 represents the current mapping block size index and current in the first mapping relationship information.
  • the transport block size corresponding to the transmission resource, floor(A) represents the largest integer not greater than A, and ceil(A) represents the smallest integer greater than A.
  • the first mapping relationship information at the base code rate is pre-stored in the codec end.
  • the embodiment of the present application uses only one mapping relationship information (table), reduces the size of the determined transport block size table, and can store the mapping relationship information using less space, and can efficiently determine the polarization code transport block. the size of.
  • the first mapping relationship information set includes multiple mapping relationship information that is in one-to-one correspondence with multiple different code rates.
  • Determining the current transport block size according to the current code rate of the polarization code, the current transport block size index, and the allocated current transmission resource, and the first mapping relationship information set including:
  • the transport block size corresponding to the current transport block size index and the allocated current transmission resource in the current mapping relationship information is determined as the current transport block size.
  • the coding end information is pre-stored with mapping relationship information at various code rates.
  • the code rate may be a number greater than 0 and less than 1. Since the value greater than 0 and less than 1 has an infinite number, in practical applications, a limited number of mapping relationship information may be pre-stored according to actual conditions. For example, mapping relationship information and the like at a code rate that is frequently used may be stored, which is not limited by the embodiment of the present application.
  • mapping relationship information (table) at each code rate is stored in the embodiment of the present application, and the mapping relationship information corresponding to the current code rate can be determined by the current code rate, and then the mapping relationship information is directly determined.
  • the size of the transport block is not calculated, and the mapping relationship information can be searched to directly determine the transport block size, and the size of the transport block of the polarized code can be determined simply and efficiently.
  • a communication device for determining a size of a polarization code transmission block is provided, the communication device being capable of implementing any of the first aspect and its implementation, the operation of each module in the communication device and/or The functions are respectively used for the first aspect of the implementation and the corresponding method features in the implementation manner, and are not described herein for brevity.
  • a communication device for determining a size of a polarization code transmission block, the communication device comprising a memory and a processor storing instructions, wherein the processor executes the instructions as in the first aspect and various implementations thereof Any of the methods of determining the transport block size.
  • a processing apparatus is provided that is applied to a communication system.
  • the processing device can be one or more processors or chips. In other possible cases, the processing device may also be a physical device or a virtual device in a communication system.
  • the processing device is configured to perform the method of determining a transport block size in any of the first aspect described above and various implementations thereof.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computing unit, a processing unit or a processor of a communication device, causing the communication device to perform the first A method of determining a transport block size in any of the aspects and various implementations thereof.
  • a computer readable storage medium storing a program causing a communication device to perform any one of the first aspect described above and various implementations thereof to determine a transport block size method.
  • the current code rate of the polarization code and the current transport block are adopted in the embodiment of the present application.
  • the size index, the current transmission resource, and the mapping relationship information set determine the current transport block size, implement the determination of the transport block size at the current code rate, and further encode or decode according to the transport block size.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a communication device implemented by the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a transport block size according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a communication device for determining a transport block size, in accordance with one embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device for determining a transport block size according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the base station may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or Is an evolved base station in the LTE system (Evolutional Node B, eNB or eNodeB), or the base station may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB evolved base station in the LTE system
  • the base station may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network.
  • the terminal may be a communication with one or more core networks via a radio access network (RAN), and the terminal may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, Mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • FIG. 1 illustrates a wireless communication system 100 in accordance with various embodiments described herein.
  • System 100 includes a base station 102 that can include multiple antenna groups.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • additional groups may include antennas 112 and 114.
  • Two antennas are shown for each antenna group, however more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include various components associated with signal transmission and reception, such as processors, modulators, multiplexers, demodulation , demultiplexer or antenna.
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with substantially any number of access terminals similar to access terminals 116 and 122. Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment. As shown, access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
  • FDD Frequency Division Duplex
  • the forward link 118 can utilize different frequency bands than those used by the reverse link 120, and the forward link 124 can be utilized and reversed. Different frequency bands used by link 126.
  • TDD Time Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can be used in total. Same frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio for forward links 118 and 124 of access terminals 116 and 122.
  • the base station 102 transmits to the randomly dispersed access terminals 116 and 122 in the relevant coverage area by the base station as compared to all of the access terminals transmitted by the base station, the mobile devices in the adjacent cells are subject to Less interference.
  • base station 102, access terminal 116, and/or access terminal 122 may be transmitting wireless communication devices and/or receiving wireless communication devices.
  • the transmitting wireless communication device can encode the data for transmission.
  • the transmitting wireless communication device can have, for example, generate, obtain, store in memory, etc., a certain number of information bits to be transmitted over the channel to the receiving wireless communication device.
  • Such information bits may be included in a transport block or a plurality of transport blocks of data, which may be segmented to produce a plurality of code blocks.
  • the transmitting wireless communication device can encode each code block using a polar code encoder to improve the reliability of data transmission, thereby ensuring communication quality.
  • System 200 includes a wireless communication device 202 that is shown to transmit data via a channel. Although shown as transmitting data, the wireless communication device 202 can also receive data via a channel, for example, the wireless communication device 202 can transmit and receive data simultaneously, and the wireless communication device 202 can transmit and receive data at different times, or a combination thereof, and the like.
  • the wireless communication device 202 can be, for example, a base station, such as the base station 102 of FIG. 1, etc.; an access terminal, such as the access terminal 116 of FIG. 1, the access terminal 122 of FIG. 1, and the like.
  • the wireless communication device 202 can include a polarization encoder 204, a rate matching device 205, and a transmitter 206.
  • the wireless communication device 202 may also include a receiver that may be present separately or integrated with the transmitter 206 to form a transceiver.
  • the polarization encoder 204 is used to encode data to be transmitted from the wireless communication device 202, specifically, packet coding, and then the process is described in detail to obtain a target packet codeword.
  • the rate matching device 205 is configured to perform interleaving, rate matching, and the like on the target block codeword to generate interleaved output bits.
  • transmitter 206 can then transmit on the channel after processing by rate matching device 205 Rate-matched output bits.
  • transmitter 206 can transmit relevant data to other different wireless communication devices.
  • FIG. 3 is a schematic flowchart of a method for determining a transport block size according to an embodiment of the present application.
  • the method shown in FIG. 3 can be performed by a communication device, which can be, for example, an encoding device, a decoding device, or a transmitting end or a receiving end, and the communication device can be a base station or a terminal.
  • a communication device which can be, for example, an encoding device, a decoding device, or a transmitting end or a receiving end, and the communication device can be a base station or a terminal. This embodiment of the present application does not limit this.
  • the method 300 shown in FIG. 3 includes:
  • the current transport block size is determined according to the current code rate of the polarization code, the current transport block size index, the current transmission resource, and the preset first mapping relationship information set, where the first mapping relationship information set includes at least one mapping relationship.
  • each mapping relationship information in the mapping relationship information set includes a mapping relationship between a transport block size index and a transport block size under different transmission resources corresponding to a polarization code rate of each mapping relationship.
  • the embodiment of the present application determines the current transport block size by using the current code rate of the polarization code, the current transport block size index, the current transmission resource, and the mapping relationship information set, and implements the determination of the transport block size at the current code rate, thereby enabling Encoding or decoding according to the transport block size.
  • the determination of the transport block size at the current code rate is implemented without increasing the signaling of the air interface transmission, and then the encoding or decoding can be performed according to the transport block size.
  • the communication device may acquire the first mapping relationship information set in advance, and then first determine the current code rate of the polarization code and the current transport block size index, and then according to the current code rate of the polarization code and the current transport block size index. And a current transmission resource and a preset first mapping relationship information set, determining a current transmission block size, and further performing polarization code encoding or decoding according to the current transmission block size. Therefore, the embodiment of the present application determines the current transport block size by using the current code rate of the polarization code, the current transport block size index, the allocated current transmission resource, and the mapping relationship information set, and implements the transport block size under the current code rate of the polarization code. Ok.
  • the current transmission resource in the embodiment of the present application may also be referred to as a physical resource that transmits a current transport block.
  • the communication device can determine the size of the current transmission resource according to the existing method.
  • the current transmission resource and the like can be determined according to the indication of the PDSCH channel, which is not limited in this embodiment of the present application.
  • each mapping relationship information in the first mapping relationship information set in the embodiment of the present application corresponds to a code rate
  • the mapping relationship information may be in the form of a table, in other words, a mapping relationship
  • the information may be a correspondence between different transport block size indexes and transport block sizes under different transmission resources at a code rate.
  • one mapping relationship information may be different transport blocks under different transport block size indexes.
  • the first mapping relationship information set may include a mapping relationship information, and the code rate corresponding to the one mapping relationship information may be referred to as a base code rate; the first mapping relationship information set may also include multiple mapping relationship information, and the multiple mapping relationship information corresponds to Multiple code rates.
  • Different mapping relationship information has different code rates.
  • the plurality of mapping relationship information has a one-to-one correspondence with a plurality of code rates.
  • mapping relationship information in the embodiment of the present application is pre-stored information of the coded code end of the polarization code, and the mapping relationship information may have multiple representation forms, as long as the mapping relationship information includes the polarization code of the mapping relationship.
  • the corresponding relationship between the transport block size and the transmission resource in the different transport block size indexes may be corresponding to the rate, which is not limited by the embodiment of the present application.
  • the mapping relationship information may be a string of values, a form of a table, or the like.
  • the mapping relationship information is in the form of a table, as shown in Table 1, it is mapping relationship information at a certain code rate, for example, a code rate of 1/2.
  • the I TBS in Table 1 indicates the transport block size index number, and the value is 0-26; N PRB indicates the size of the transmission resource, for example, the number of physical resource blocks, and the value is 1-10; The value indicates the size of the corresponding transport block. For example, when I TBS is 0 and N PRB is 1, the corresponding transport block size is 16 bits. When I TBS is 1, and N PRB is 2, the corresponding transport block size is 56 bits or the like. It should be understood that Table 1 is only exemplary, and the value of the transport block size in Table 1 may be determined according to the actual situation, which is not limited by the embodiment of the present application.
  • the N PRB in Table 1 may also be other values. For example, the N PRB may also take values of 11, 12, etc., and the embodiment of the present application is not limited thereto.
  • the mapping relationship in the embodiment of the present application is a table
  • the embodiment of the present application determines the current transport block size by using the current code rate of the polarization code, the current transport block size index, the allocated current transmission resource, and the mapping relationship information set, and implements the transport block size under the current code rate of the polarization code.
  • the current code rate of the polarization code and the current transport block size index may be determined according to the existing method, and the current code may be determined according to the preset second mapping relationship information in the embodiment of the present application.
  • the rate and the current transport block size index, the embodiment of the present application is not limited thereto.
  • a current code rate of the polarization code corresponding to the current modulation coding order index is obtained according to a current modulation coding order index and a preset second mapping relationship information.
  • the current modulation coding order index can be obtained in the existing manner, which is not limited by the embodiment of the present application. That is, in the embodiment of the present application, the current modulation coding order index and the preset second mapping relationship information may be first obtained, and then the current modulation is obtained according to the current modulation coding order index and the preset second mapping relationship information.
  • the current bit rate of the polarization code corresponding to the coding order index and the current transport block size index may be first obtained, and then the current modulation is obtained according to the current modulation coding order index and the preset second mapping relationship information.
  • the second mapping relationship information includes a different modulation coding order index, and a code rate and a transport block size index corresponding to each modulation coding order index.
  • the specific form of the mapping relationship information is limited. For example, it may be a string of values, or may be in the form of a table.
  • the preset second mapping relationship information may be in the form of a table.
  • Table 2 is an index of modulation coding order (MCS).
  • the modulation coding order index is 0-9 in sequence, and the modulation coding order index 1- 9 corresponding modulation modes (Modulation) are BPSK, QPSK, QPSK, 16-QAM, 16-QAM, 64-QAM, 64-QAM, 64-QAM, 256-QAM, 256-QAM; corresponding code rates are sequential
  • the value is 1/2-5/6; the corresponding transport block size index I TBS is in the order of 1-10.
  • Table 2 is merely exemplary, and specific values of the items in Table 2 may be determined according to actual conditions, and embodiments of the present application are not limited thereto.
  • the following includes a mapping relationship information for the first mapping relationship information set, and the first mapping relationship information set includes a plurality of mapping relationship information, which respectively describe how to determine the size of the transport block in the embodiment of the present application.
  • the first mapping relationship information set includes one mapping relationship information, which is referred to herein as first mapping relationship information.
  • the first mapping relationship information set includes a first polarization code rate (ie, a base code rate).
  • first mapping relationship information includes a first polarization code rate (ie, a base code rate).
  • Block size corresponding to the current transport block size index and the current transmission resource in the first mapping relationship information is determined as the current transmission.
  • the first polarization code rate is 1/2
  • the first mapping relationship information is as shown in Table 1.
  • the transport block size corresponding to the current transport block size index and the current transmission resource in the first mapping relationship information may be determined as the current transport block size; for example, when the current transport block If the size of the current index is 5 and the current resource is 5 Physical Resource Blocks (PRBs), you can look up Table 1 to determine that the current transport block size is 424 bits.
  • PRBs Physical Resource Blocks
  • the transport block size corresponding to the current transport block size index and the allocated current transmission resource in the first mapping relationship information, and the current Determining the current transport block size by the ratio of the code rate to the first polarization code rate may include: determining the current transport block size according to any one of the following formulas:
  • TBS 0 floor ((R 0 / R 1) * TBS 1)
  • TBS 0 ceil((R 0 /R 1 )*TBS 1 )
  • R 0 represents the current code rate
  • R 1 represents the first polarization code rate
  • TBS 0 represents the current transport block size
  • TBS 1 represents the first mapping relationship information corresponding to the current transport block size index and the current transmission resource.
  • the transport block size, floor (A) represents the largest integer not greater than A
  • ceil (A) represents the smallest integer greater than A.
  • the first polarization code rate R 1 is 1/2, and the first mapping relationship information is as shown in Table 1.
  • the first mapping relationship information at the base code rate is pre-stored in the codec end.
  • the embodiment of the present application uses only one mapping relationship information (table), reduces the size of the determined transport block size table, and can store the mapping relationship information using less space, and can efficiently determine the polarization code transport block. the size of.
  • the second case that is, the first mapping relationship information set includes a plurality of mapping relationship information, that is, the mapping relationship information in this case includes the transport block size and the transmission resource under different transmission block size indexes under various code rates. Correspondence.
  • the first mapping relationship information set includes multiple mapping relationship information that is in one-to-one correspondence with multiple different code rates
  • current mapping relationship information corresponding to the current code rate may be determined from the first mapping relationship information set
  • the transport block size corresponding to the current transport block size index and the current transmission resource in the current mapping relationship information is determined as the current transport block size.
  • the coding end information is pre-stored with mapping relationship information at various code rates.
  • the code rate may be a number greater than 0 and less than 1. Since the value greater than 0 and less than 1 has an infinite number, in practical applications, a limited number of mapping relationship information may be pre-stored according to actual conditions. For example, mapping relationship information and the like at a code rate that is frequently used may be stored, which is not limited by the embodiment of the present application.
  • mapping relationship information at a code rate of 1/2 is given in Table 1
  • mapping relationship information at another code rate is given in Table 3 below, for example, a mapping relationship at a code rate of 4/7. information.
  • mapping relationship information at other code rates is not given here.
  • the current mapping relationship information corresponding to the current code rate in the first mapping relationship information set in the embodiment of the present application may be understood as: finding a code equal to the current code rate (or approximately equal to the current code rate according to the current code rate). Mapping relationship information under the rate) and as the current mapping relationship information.
  • Table 3 can be used as the current mapping relationship information according to 4/7, and the lookup table 3 determines that the transport block size is 1320 bits.
  • mapping relationship information (table) at each code rate is stored in the embodiment of the present application, and the mapping relationship information corresponding to the current code rate can be determined by the current code rate, and then the mapping relationship information is directly determined.
  • the size of the transport block is not calculated, and the mapping relationship information can be searched to directly determine the transport block size, and the size of the transport block of the polarized code can be determined simply and efficiently.
  • the method for determining the transport block size in the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 3.
  • the communication device for determining the transport block size in the embodiment of the present application is described below with reference to FIG. 4 to FIG.
  • the communication device can be used for the Polar code and the Polar code.
  • the communication device can be a base station or a terminal.
  • the communication device 400 shown in FIG. 4 can implement the various processes of determining the transport block size method involved in the embodiment of FIG. 3, and the operations and/or functions of the various modules in the communication device 400, respectively, in order to implement the For the corresponding process in the method embodiment, refer to the description in the foregoing method embodiment. To avoid repetition, the detailed description is omitted here.
  • the communication device 400 shown in FIG. 4 includes a first acquisition unit 410 and a second determination unit 420.
  • the first determining unit 410 is configured to determine a current code rate of the polarization code and a current transport block size index.
  • the second determining unit 420 is configured to use, according to a current code rate of the polarization code, a current transport block size index, a current transmission resource, and a pre- Setting a first mapping relationship information set to determine a current transport block size, where
  • the first mapping relationship information set includes at least one mapping relationship information, where each mapping relationship information in the first mapping relationship information set includes a transmission block corresponding to a polarization code rate of each mapping relationship, and a transmission block under different transmission resources. The correspondence between the size index and the transport block size.
  • the embodiment of the present application determines the current transport block size by using the current code rate of the polarization code, the current transport block size index, the current transmission resource, and the mapping relationship information set, and implements the determination of the transport block size at the current code rate, thereby enabling Encoding or decoding according to the transport block size.
  • the first determining unit 410 is specifically configured to acquire, according to the current modulation coding order index and the preset second mapping relationship information, the polarization code corresponding to the current modulation coding order index.
  • Current bit rate and current transport block size index are specifically configured to acquire, according to the current modulation coding order index and the preset second mapping relationship information, the polarization code corresponding to the current modulation coding order index.
  • the second mapping relationship information includes different modulation coding order indexes, and a code rate and a transport block size index corresponding to each modulation coding order index.
  • the first mapping relationship information set includes first mapping relationship information corresponding to a first polarization code rate
  • the second determining unit 420 is specifically configured to: when the current code rate is the same as the first code code rate, the transport block corresponding to the current transport block size index and the current transmission resource in the first mapping relationship information The size is determined as the current transport block size;
  • the second determining unit 420 is configured to: when the current code rate is different from the first polarization code rate, according to the current mapping block size index and the current transmission resource in the first mapping relationship information.
  • the second determining unit 420 is specifically configured to determine the current transport block size according to any one of the following formulas:
  • TBS 0 floor((R 0 /R 1 )*TBS 1 )
  • TBS 0 ceil((R 0 /R 1 )*TBS 1 )
  • R 0 represents the current code rate
  • R 1 represents the first polarization code rate
  • TBS 0 represents the current transport block size
  • TBS 1 represents the current transport block size index and the current transmission resource in the first mapping relationship information.
  • floor(A) represents the largest integer not greater than A
  • ceil(A) represents the smallest integer greater than A.
  • the first mapping relationship information set includes mapping relationship information at a plurality of different code rates
  • the second determining unit 420 is specifically configured to determine, from the first mapping relationship information set, current mapping relationship information corresponding to the current code rate, and the current mapping relationship information and the current transmission block size index and the allocated current transmission resource.
  • the corresponding transport block size is determined as the current transport block size.
  • FIG. 5 is a schematic block diagram of a communication device for determining a transport block size according to another embodiment of the present application.
  • the communication device can be used for the Polar code and the Polar code.
  • the communication device can be a base station or a terminal.
  • the communication device 500 shown in FIG. 5 can implement the processes of determining the transport block size method involved in the embodiment of FIG. 3, and the operations and/or functions of the various modules in the communication device 500, respectively, in order to implement the For the corresponding process in the method embodiment, refer to the description in the foregoing method embodiment. To avoid repetition, the detailed description is omitted here.
  • the communication device 500 shown in FIG. 5 includes a processor 510 and a memory 520.
  • the communication device 500 can also include a bus system 530.
  • the processor 510 and the memory 520 are connected by a bus system 530.
  • the memory 520 is configured to store instructions, and the processor 510 is configured to execute the instruction stored in the memory 520 to determine a current code rate of the polarization code and a current transport block size index; according to the current code rate of the polarization code, the current transport block size.
  • the relationship information includes a correspondence between a transport block size index and a transport block size under different transmission resources corresponding to a polarization code rate of each mapping relationship.
  • the embodiment of the present application determines the current transport block size by using the current code rate of the polarization code, the current transport block size index, the allocated current transmission resource, and the mapping relationship information set, and implements the determination of the transport block size at the current code rate. Furthermore, it is possible to encode or decode according to the transport block size.
  • Processor 510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the processor 510 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. Knot The steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc. In the storage medium.
  • the storage medium is located in the memory 520.
  • the processor 510 reads the information in the memory 520 and completes the steps of the foregoing method in combination with hardware.
  • the bus system 530 may include a power bus, a control bus, and a status signal bus in addition to the data bus. Wait. However, for clarity of description, various buses are labeled as bus system 530 in the figure.
  • the processor 510 is specifically configured to acquire, according to the current modulation coding order index and the preset second mapping relationship information, a current code rate of the polarization code corresponding to the current modulation coding order index. And the current transport block size index,
  • the second mapping relationship information includes different modulation coding order indexes, and a code rate and a transport block size index corresponding to each modulation coding order index.
  • the first mapping relationship information set includes first mapping relationship information corresponding to a first polarization code rate
  • the processor 510 is specifically configured to: when the current code rate is the same as the first polarization code rate, determine a transport block size corresponding to the current transport block size index and the current transmission resource in the first mapping relationship information. For the current transport block size;
  • the processor 510 is specifically configured to, according to the current code rate different from the first polarization code rate, the transport block corresponding to the current transport block size index and the current transmission resource in the first mapping relationship information.
  • the size, and the ratio of the current code rate to the first polarization code rate, determines the current transport block size.
  • the processor 510 when the current code rate is different from the first polarization code rate, the processor 510 is specifically configured to determine the current transport block size according to any one of the following formulas:
  • TBS 0 floor((R 0 /R 1 )*TBS 1 )
  • TBS 0 ceil((R 0 /R 1 )*TBS 1 )
  • R 0 represents the current code rate
  • R 1 represents the first polarization code rate
  • TBS 0 represents the current transport block size
  • TBS 1 represents the current transport block size index and the current transmission resource in the first mapping relationship information.
  • floor(A) represents the largest integer not greater than A
  • ceil(A) represents the smallest integer greater than A.
  • the first mapping relationship information set includes multiple different codes. Mapping relationship information,
  • the processor 510 is specifically configured to determine current mapping relationship information corresponding to the current code rate from the first mapping relationship information set, and compare the current mapping relationship information with the current transport block size index and the allocated current transmission resource.
  • the transport block size is determined as the current transport block size.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative Intentional, for example, the division of units is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or integrated into another system, or some features may be ignored. Or not.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种确定极化码传输块大小的方法和通信设备,该方法包括:确定极化码的当前码率和当前传输块大小索引;根据该极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,其中,该第一映射关系信息集合包括至少一个映射关系信息,该第一映射关系信息集合中的每个映射关系信息包括该每个映射关系的极化码码率对应的,不同传输资源下的传输块大小索引与传输块大小的对应关系。本申请实施例能够实现当前码率下传输块大小的确定,进而能够有效的进行极化码的编译码。

Description

确定极化码传输块大小的方法和通信设备
本申请要求于2016年01月18日提交中国专利局、申请号为201610031399.9、发明名称为“确定极化码传输块大小的方法和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种确定极化码传输块大小的方法和通信设备。
背景技术
通信***通常采用信道编码提高数据传输的可靠性,保证通信的质量。极化(Polar)码是可以取得香农容量且具有低编译码复杂度的编码方式。Polar码是一种线性块码。其生成矩阵为GN.,其编码过程为
Figure PCTCN2016108803-appb-000001
其中,
Figure PCTCN2016108803-appb-000002
是一个二进制的行矢量,
Figure PCTCN2016108803-appb-000003
码长N=2n,n≥0。
Figure PCTCN2016108803-appb-000004
BN是一个N×N转置矩阵,例如比特反转(bit reversal)矩阵。
Figure PCTCN2016108803-appb-000005
是F2的克罗内克幂(Kronecker power),定义为
Figure PCTCN2016108803-appb-000006
Polar码的编译码过程中,
Figure PCTCN2016108803-appb-000007
中的一部分比特用来携带信息,称为信息比特,这些信息比特的序号的集合记作A;另外的一部分比特置为收发端预先约定的固定值,称之为固定比特,其序号的集合用A的补集Ac表示。不失一般性,这些固定比特通常被设为0。实际上,只需要收发端预先约定,固定比特序列可以被任意设置。从而,Polar码的编码比特序列可通过如下方法得到:
Figure PCTCN2016108803-appb-000008
这里
Figure PCTCN2016108803-appb-000009
Figure PCTCN2016108803-appb-000010
中的信息比特集合,
Figure PCTCN2016108803-appb-000011
为长度K的行矢量,即
Figure PCTCN2016108803-appb-000012
表示集合中元素的数目,即K表示集合A中元素的数目,也表示待编码信息比特的数量,也
Figure PCTCN2016108803-appb-000013
是矩阵GN中由集合A中的索引对应的那些行得到的子矩阵,
Figure PCTCN2016108803-appb-000014
是一个K×N的矩阵。集合A的选取决定了Polar码的性能。
Polar码的编译码过程中,调度和资源管理模块根据接收端反馈的信道状态信息以及可使用的物理信道资源等信息,确定传输块的大小;传输块大小和循环冗余校验码(Cyclic Redundancy Check,CRC)比特之和可以为上 述的信息比特的数量。编码器根据传输块大小对待传输的消息序列进行编码。同样地,译码器也根据传输块大小对对接收到的信道进行相应的译码。
比如LTE***中,针对现有的Turbo码而言,由于Turbo码的母码是固定码率,码率是1/3;码长灵活变化。对于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)而言,MCS索引和传输块索引(TBS Index)具有映射关系信息1。传输块索引、传输资源大小NPRB和传输块大小具有映射关系信息2。那么,调度和资源管理模块可以根据当前的MCS索引查找映射关系信息1获得传输块索引(TBS Index),然后查找上述映射关系信息2确定当前的传输块大小。
然而,由于极化码的码率是可以变化的,在码率变化时,上述的映射关系信息也随之变化,因此,在Polar编译码时,无法有效的按照类似现有的Turbo码的方法确定传输块大小的方式来确定Polar的传输块。
因此,如何有效的确定Polar码的传输块大小,成为亟待解决的问题。
发明内容
本申请实施例提供一种确定极化码传输块大小的方法和通信设备,该方法能够有效的确定Polar码的传输块大小。
第一方面,提供了一种确定极化码传输块大小的方法,包括:
确定极化码的当前码率和当前传输块大小索引;
根据该极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,其中,该第一映射关系信息集合包括至少一个映射关系信息,该第一映射关系信息集合中的每个映射关系信息包括该每个映射关系的极化码码率对应的,不同传输资源下的传输块大小索引与传输块大小的对应关系。
因此,本申请实施例通过极化码的当前码率、当前传输块大小索引、当前传输资源和映射关系信息集合,确定当前传输块大小,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
也就是说本申请实施例,在不增加空口传输的信令的情况下,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
应理解,当前传输资源也可以称为传输当前传输块的物理资源。本申请实施例中的第一映射关系信息集合中的每个映射关系信息对应一个码率,映 射关系信息可以为表格的形式,换句话说,一个映射关系信息可以为在一个码率下的不同传输资源下的,不同的传输块大小索引与传输块大小的对应关系,换句话说,一个映射关系信息可以为不同传输块大小索引下的不同传输块大小与传输资源的对应关系的表格。第一映射关系信息集合可以包括一个映射关系信息,该一个映射关系信息对应的码率可以称为基码率;第一映射关系信息集合也可以包括多个映射关系信息,多个映射关系信息对应多个码率。不同的映射关系信息对应的码率不同,换句话说,多个映射关系信息与多个码率具有一一对应的关系。
应理解,本申请实施例中的映射关系信息,为极化码编译码端预先存储好的信息,该映射关系信息可以具有多种表现形式,只要映射关系信息包括该映射关系的极化码码率对应的,不同传输块大小索引下的传输块大小与传输资源的对应关系即可,本申请实施例并不对此做限定。
结合第一方面,在第一方面的一种实现方式中,该确定极化码的当前码率和当前传输块大小索引,包括:
根据当前调制编码阶数索引和预设的第二映射关系信息获取与该当前调制阶编码数索引对应的该极化码的当前码率和当前传输块大小索引,
其中,该第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引。
应理解,当前调制编码阶数索引可以按照现有的方式获取得到,本申请实施例并不对此做限定。也就是说本申请实施例中可以首先获取当前调制编码阶数索引和预设的第二映射关系信息,然后根据据当前调制编码阶数索引和预设的第二映射关系信息获取与该当前调制编码阶数索引对应的该极化码的当前码率和当前传输块大小索引。
在本申请实施中,只要第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引即可,本申请实施例并不对第二映射关系信息的具体形式做限定。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
该根据该极化码的当前码率、当前传输块大小索引以及传输当前传输块的当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,包括:
当该当前码率与该第一极化码码率相同时,将该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小确定为该当前传输块大小。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
该根据该极化码的当前码率、当前传输块大小索引以及传输当前传输块的当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,包括:
当该当前码率与该第一极化码码率不同时,根据该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定该当前传输块大小。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,当该当前码率与该第一极化码码率不同时,该根据该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定该当前传输块大小,包括:根据以下公式中的任意一个确定该当前传输块大小:
TBS0=floor((R0/R1)*TBS1)
TBS0=ceil((R0/R1)*TBS1)
其中,R0表示该当前码率,R1表示该第一极化码码率,TBS0表示该当前传输块大小,TBS1表示该第一映射关系信息中与该当前传输块大小索引和当前传输资源对应的传输块大小,floor(A)表示取不大于A的最大整数,ceil(A)表示取大于A的最小整数。
在这种情况下,编译码端均预先存储了基码率下的第一映射关系信息。这中情形下,本申请实施例只使用了一个映射关系信息(表格),减少确定传输块大小表的大小,能够使用较少空间存储该映射关系信息,能够高效的确定出极化码传输块的大小。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一映射关系信息集合包括与多个不同码率一一对应的多个映射关系信息,
该根据该极化码的当前码率、当前传输块大小索引和分配的当前传输资源,和该第一映射关系信息集合,确定当前传输块大小,包括:
从该第一映射关系信息集合中确定与该当前码率对应的当前映射关系 信息;
将该当前映射关系信息中与该当前传输块大小索引和分配的当前传输资源对应的传输块大小确定为该当前传输块大小。
应理解,在这种情况下,编译码端均预先存储了各种码率下的映射关系信息。其中码率可以为大于0且小于1的数,由于大于0小于1的数值具有无穷多个,所以,在实际应用中,可以根据实际情况预先存储有限个映射关系信息。例如,可以存储经常使用的码率下的映射关系信息等,本申请实施例并不对此做限定。
这种情形下,本申请实施例存储了各个码率下的映射关系信息(表格),通过当前码率就能确定出与该当前码率对应的映射关系信息,进而查找该映射关系信息直接确定出传输块大小,无需计算,能够查找映射关系信息直接确定出传输块大小,能够简便、高效的确定出极化码传输块的大小。
第二方面,提供了一种确定极化码传输块大小的通信设备,该通信设备能够实现第一方面及其实现方式中的任一实现方式,该通信设备中的各个模块的操作和/或功能,分别用于实现的第一方面及其实现方式中的相应方法特征,为了简洁,在此不再赘述。
第三方面,提供了一种确定极化码传输块大小的通信设备,该通信设备包括存储指令的存储器和处理器,其中,该处理器执行该指令进行如第一方面及其各种实现方式中的任一种确定传输块大小的方法。
第四方面,提供了一种处理装置,该处理装置应用于通信***中。该处理装置可以为一个或多个处理器或芯片。在其他可能情况下,该处理装置也可以为通信***中的实体装置或虚拟装置。该处理装置被配置用于执行上述第一方面及其各种实现方式中的任一种确定传输块大小的方法。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备的计算单元、处理单元或处理器运行时,使得该通信设备执行上述第一方面及其各种实现方式中的任一种确定传输块大小的方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得通信设备执行上述第一方面及其各种实现方式中的任一种确定传输块大小的方法。
基于上述技术方案,本申请实施例通过极化码的当前码率、当前传输块 大小索引、当前传输资源和映射关系信息集合,确定当前传输块大小,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
附图说明
图1是本申请一个实施例的无线通信***示意图。
图2是本申请实施的通信设备的示意框图。
图3是根据本申请一个实施例的确定传输块大小的方法的示意性流程图。
图4是根据本申请一个实施例的用于确定传输块大小的通信设备的示意框图。
图5是根据本申请另一实施例的用于确定传输块大小的通信设备的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例可应用于各种通信***,因此,下面的描述不限制于特定通信***。全球移动通讯(Global System of Mobile communication,简称“GSM”)***、码分多址(Code Division Multiple Access,简称“CDMA”)***、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)***、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)***、LTE频分双工(Frequency Division Duplex,简称“FDD”)***、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信***(Universal Mobile Telecommunication System,简称“UMTS”)等。在上述的***中的基站或者终端使用传统Turbo码、LDPC码编码处理的信息或者数据都可以使用本实施例中的Polar码编码。
其中,基站可以是用于与终端设备进行通信的设备,例如,可以是GSM***或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional  Node B,eNB或eNodeB),或者该基站可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备等。
终端可以是经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
图1示出了根据本文所述的各个实施例的无线通信***100。***100包括基站102,后者可包括多个天线组。例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制器、复用器、解调器、解复用器或天线等。
基站102可以与一个或多个接入终端,例如接入终端116和接入终端122通信。然而,可以理解,基站102可以与类似于接入终端116和122的基本上任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位***、PDA和/或用于在无线通信***100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终端122接收信息。在频分双工(Frequency Division Duplex,简称为“FDD”)***中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在时分双工(Time Division Duplex,简称为“TDD”)***中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共 同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端通信。在通过前向链路118和124的通信中,基站102的发射天线可利用波束成形来改善针对接入终端116和122的前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端发送相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端116和122发送时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端116和/或接入终端122可以是发送无线通信装置和/或接收无线通信装置。当发送数据时,发送无线通信装置可对数据进行编码以用于传输。具体地,发送无线通信装置可具有,例如生成、获得、在存储器中保存等,要通过信道发送至接收无线通信装置的一定数目的信息比特。这种信息比特可包含在数据的传输块或多个传输块中,其可被分段以产生多个码块。此外,发送无线通信装置可使用极性码编码器来对每个码块编码,以提高数据传输的可靠性,进而保证通信质量。
图2示出了在无线通信环境中适用本申请的传输数据的方法的***200的示意性框图。***200包括无线通信设备202,该无线通信设备202被显示为经由信道发送数据。尽管示出为发送数据,但无线通信设备202还可经由信道接收数据,例如,无线通信设备202可同时发送和接收数据,无线通信设备202可以在不同时刻发送和接收数据,或其组合等。无线通信设备202例如可以是基站,例如图1的基站102等;接入终端,例如图1的接入终端116、图1的接入终端122等。
无线通信设备202可包括极化编码器204,速率匹配装置205,发射机206。可选地,当无线通信设备202经由信道接收数据时,该无线通信设备202还可以包括一个接收机,该接收机可以单独存在,也可以与发射机206集成在一起形成一个收发机。
其中,极化编码器204用于对要从无线通信装置202传送的数据进行编码,具体地说是分组编码,随后对该过程进行详细说明,得到目标分组码字。
速率匹配装置205,用于对该目标分组码字进行交织和速率匹配等,以生成交织的输出比特。
此外,发射机206可随后在信道上传送经过速率匹配装置205处理后的 经过速率匹配的输出比特。例如,发射机206可以将相关数据发送到其它不同的无线通信装置。
图3是根据本申请一个实施例的确定传输块大小的方法示意性流程图。如图3所示的方法可以由通信设备执行,该通信设备,例如可以为编码设备,也可以为译码设备,也可为发送端或接收端,该通信设备可以是基站也可以是终端,本申请实施例并不对此做限定。
具体地,如图3所示的方法300包括:
310,确定极化码的当前码率和当前传输块大小索引。
320,根据该极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,该第一映射关系信息集合包括至少一个映射关系信息,该映射关系信息集合中的每个映射关系信息包括该每个映射关系的极化码码率对应的,不同传输资源下的,传输块大小索引与传输块大小的对应关系。
因此,本申请实施例通过极化码的当前码率、当前传输块大小索引、当前传输资源和映射关系信息集合,确定当前传输块大小,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
也就是说本申请实施例,在不增加空口传输的信令的情况下,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
具体而言,通信设备可以预先获取第一映射关系信息集合,然后首先要确定极化码的当前码率和当前传输块大小索引,然后根据该极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,进而根据该当前传输块大小进行极化码编码或译码。因此,本申请实施例通过极化码的当前码率、当前传输块大小索引、分配的当前传输资源和映射关系信息集合,确定当前传输块大小,实现了极化码当前码率下传输块大小的确定。
应理解,本申请实施例中的当前传输资源也可以称为传输当前传输块的物理资源。通信设备可以按照现有的方法确定当前传输资源的大小,例如,可以根据PDSCH信道的指示确定当前传输资源等,本申请实施例并不对此做限定。
应理解,本申请实施例中的第一映射关系信息集合中的每个映射关系信息对应一个码率,映射关系信息可以为表格的形式,换句话说,一个映射关 系信息可以为在一个码率下的不同传输资源下的,不同的传输块大小索引与传输块大小的对应关系,换句话说,一个映射关系信息可以为不同传输块大小索引下的不同传输块大小与传输资源的对应关系的表格。第一映射关系信息集合可以包括一个映射关系信息,该一个映射关系信息对应的码率可以称为基码率;第一映射关系信息集合也可以包括多个映射关系信息,多个映射关系信息对应多个码率。不同的映射关系信息对应的码率不同,换句话说,多个映射关系信息与多个码率具有一一对应的关系。
应理解,本申请实施例中的映射关系信息,为极化码编译码端预先存储好的信息,该映射关系信息可以具有多种表现形式,只要映射关系信息包括该映射关系的极化码码率对应的,不同传输块大小索引下的传输块大小与传输资源的对应关系即可,本申请实施例并不对此做限定。例如该映射关系信息可以是一串数值,也可以是表格的形式等。例如,当映射关系信息为表格的形式时,如表1所示,为在某一码率,例如,码率为1/2下的映射关系信息。其中,表1中的ITBS表示传输块大小索引号,取值为0-26;NPRB表示传输资源大小,例如表示物理资源块的个数,取值为1-10;表格中的其他取值表示对应传输块的大小,例如,当ITBS为0,且NPRB为1时,对应的传输块大小为16比特。当ITBS为1,且NPRB为2时,对应的传输块大小为56比特等。应理解,表1只是示例性的,表1中传输块大小的取值可以根据实际情况而定,本申请实施例并不对此做限定。表1中的NPRB还可以为其他取值,例如NPRB还可以取值为11、12…等,本申请实施例并不限于此。
表1
Figure PCTCN2016108803-appb-000015
Figure PCTCN2016108803-appb-000016
换句话说,当本申请实施例中的映射关系为表格时,在本申请实施例中然后首先要确定确定极化码的当前码率和当前传输块大小索引,然后根据该对极化码的当前码率、当前传输块大小索引,以及传输当前传输块的当前传输资源查找对应的表格,进而确定当前传输块大小,从而根据该当前传输块大小进行极化码编码或译码。因此,本申请实施例通过极化码的当前码率、当前传输块大小索引、分配的当前传输资源和映射关系信息集合,确定当前传输块大小,实现了极化码当前码率下传输块大小的确定。
还应理解,在310中,可以按照现有的方法确定极化码的当前码率和当前传输块大小索引,也可以按照本申请实施例中的预设的第二映射关系信息确定出当前码率和当前传输块大小索引,本申请实施例并不限于此。
可选地,作为另一实例例,在310中,根据当前调制编码阶数索引和预设的第二映射关系信息获取与该当前调制编码阶数索引对应的该极化码的当前码率和当前传输块大小索引,其中,该第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引。
应理解,当前调制编码阶数索引可以按照现有的方式获取得到,本申请实施例并不对此做限定。也就是说本申请实施例中可以首先获取当前调制编码阶数索引和预设的第二映射关系信息,然后根据据当前调制编码阶数索引和预设的第二映射关系信息获取与该当前调制编码阶数索引对应的该极化码的当前码率和当前传输块大小索引。
在本申请实施中,只要第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引即可,本申请实施例并不对第二映射关系信息的具体形式做限定。例如可以是一串数值,也可以是表格的形式等,例如,预设的第二映射关系信息可以是表格的形式, 例如,如表2所示,表2为在调制编码阶数索引(MCS index)、码率(Rate,R)和传输块大小索引(TBS Index,ITBS)的对应关系,其中,调制编码阶数索引的取值为依次为0-9,调制编码阶数索引1-9分别对应的调制方式(Modulation)为BPSK、QPSK、QPSK、16-QAM、16-QAM、64-QAM、64-QAM、64-QAM、256-QAM、256-QAM;对应的码率依次的取值为1/2-5/6;对应的传输块大小索引ITBS的取值依次为1-10。
应理解,表2只是示例性的,表2中各项的具体取值可以根据实际情况来确定,本申请实施例并不限于此。
表2
Figure PCTCN2016108803-appb-000017
下面将针对第一映射关系信息集合包括一个映射关系信息,和第一映射关系信息集合包括多个映射关系信息,这两种情况分别详细说明本申请实施例中如何确定传输块的大小。
第一种情况,即该第一映射关系信息集合包括一个映射关系信息,这里称为第一映射关系信息,例如,该第一映射关系信息集合包括第一极化码率(即基码率)对应的第一映射关系信息;
在320中,当该当前码率与该第一极化码码率相同时,将该第一映射关系信息中与该当前传输块大小索引和当前传输资源对应的传输块大小确定为该当前传输块大小;
例如,第一极化码率为1/2,第一映射关系信息为表1所示。当当前码 率也为1/2时,则可以将该第一映射关系信息中与该当前传输块大小索引和当前传输资源对应的传输块大小确定为该当前传输块大小;举例而言,当当前传输块大小索引为5,当前传输资源为5物理资源块(Physical Resource Block,PRB),则可以查找表1确定当前传输块大小为424比特。
可替代地,在320中,当该当前码率与该第一极化码码率不同时,根据该第一映射关系信息中与该当前传输块大小索引和当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定该当前传输块大小。
进一步地,当该当前码率与该第一极化码码率不同时,该根据该第一映射关系信息中与该当前传输块大小索引和分配的当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定该当前传输块大小,可以包括:根据以下公式中的任意一个确定该当前传输块大小:
TBS0=floor((R0/R1)*TBS1)
TBS0=ceil((R0/R1)*TBS1)
其中,R0表示当前码率,R1表示第一极化码码率,TBS0表示当前传输块大小,TBS1表示该第一映射关系信息中与该当前传输块大小索引和当前传输资源对应的传输块大小,floor(A)表示取不大于A的最大整数,ceil(A)表示取大于A的最小整数。
例如,第一极化码率R1为1/2,第一映射关系信息为表1所示。当当前码率R0为3/5,当前传输块大小索引为5,当前传输资源为5PRB时则可以根据上述公式确定当前传输块大小,具体而言,首先根据当前传输块大小索引5,当前资源为5PRB,则可以查找表1确定TBS1为424比特,进而,可以根据公式TBS0=floor((R0/R1)*TBS1)确定当前传输块大小TBS0为508比特。或者可以根据公式TBS0=ceil((R0/R1)*TBS1)确定当前传输块大小TBS0为509比特。
应理解,在这种情况下,编译码端均预先存储了基码率下的第一映射关系信息。这中情形下,本申请实施例只使用了一个映射关系信息(表格),减少确定传输块大小表的大小,能够使用较少空间存储该映射关系信息,能够高效的确定出极化码传输块的大小。
应注意,上述确定该当前传输块大小公式的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据实际情况,显然可以进行各种等价的修改 或变化,只要使用到当前码率、第一极化码码率的大小关系即可,例如,使用当前码率与第一极化码码率的差值、乘积等变形进行计算,这样的修改或变化也落入本申请实施例的范围内。
第二种情况,即第一映射关系信息集合包括多个映射关系信息,也就是说这种情况下映射关系信息包括各种码率下的、不同传输块大小索引下的传输块大小与传输资源的对应关系。
具体地,作为另一实施例,该第一映射关系信息集合包括与多个不同码率一一对应的多个映射关系信息,
在320中,可以从该第一映射关系信息集合中确定与该当前码率对应的当前映射关系信息;
将该当前映射关系信息中与该当前传输块大小索引和当前传输资源对应的传输块大小确定为该当前传输块大小。
应理解,在这种情况下,编译码端均预先存储了各种码率下的映射关系信息。其中码率可以为大于0且小于1的数,由于大于0小于1的数值具有无穷多个,所以,在实际应用中,可以根据实际情况预先存储有限个映射关系信息。例如,可以存储经常使用的码率下的映射关系信息等,本申请实施例并不对此做限定。
其中,表1中给出了码率为1/2下的映射关系信息,下面的表3中给出了另一个码率下的映射关系信息,例如为码率为4/7下的映射关系信息。为了简洁,这里不再给出其他码率下的映射关系信息。
应理解,本申请实施例中第一映射关系信息集合中与该当前码率对应的当前映射关系信息可以理解为,根据当前码率找出与当前码率(或近似与当前码率相等的码率)下的映射关系信息,并作为当前映射关系信息。
例如,当当前码率为4/7,当前传输块大小索引为5,当前资源为5PRB时,则可以根据4/7将表3作为当前映射关系信息,并查找表3确定出传输块大小为1320比特。
表3
Figure PCTCN2016108803-appb-000018
Figure PCTCN2016108803-appb-000019
这种情形下,本申请实施例存储了各个码率下的映射关系信息(表格),通过当前码率就能确定出与该当前码率对应的映射关系信息,进而查找该映射关系信息直接确定出传输块大小,无需计算,能够查找映射关系信息直接确定出传输块大小,能够简便、高效的确定出极化码传输块的大小。
应注意,上文中的表1至表3的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据实际情况,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
上文中结合图1至图3详细描述了本申请实施例的确定传输块大小的方法,下面结合图4至图5描述本申请实施例的的确定传输块大小的通信设备。
图4是根据本申请一个实施例的用于确定传输块大小的通信设备的示意框图。该通信设备可以用于Polar码编码也可以用于Polar码译码,例如该通信设备可以是基站也可以是终端,本申请实施例并不对此做限定。应理解,图4所示的通信设备400能够实现图3实施例中涉及的确定传输块大小方法的各个过程,通信设备400中的各个模块的操作和/或功能,分别为了实现图3中的方法实施例中的相应流程,具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
具体地,图4所示的通信设备400包括:第一获取单元410和第二确定单元420。
第一确定单元410用于确定极化码的当前码率和当前传输块大小索引.第二确定单元420用于根据该极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,其中, 该第一映射关系信息集合包括至少一个映射关系信息,该第一映射关系信息集合中的每个映射关系信息包括该每个映射关系的极化码码率对应的,不同传输资源下的传输块大小索引与传输块大小的对应关系。
因此,本申请实施例通过极化码的当前码率、当前传输块大小索引、当前传输资源和映射关系信息集合,确定当前传输块大小,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
进一步地,作为另一实施例,该第一确定单元410具体用于根据当前调制编码阶数索引和预设的第二映射关系信息获取与该当前调制编码阶数索引对应的该极化码的当前码率和当前传输块大小索引,
其中,该第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引。
可选地,作为另一实施例,该第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
该第二确定单元420具体用于当该当前码率与该第一极化码码率相同时,将该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小确定为该当前传输块大小;
或者,该第二确定单元420具体用于当该当前码率与该第一极化码码率不同时,根据该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定该当前传输块大小。
进一步地,作为另一实施例,当该当前码率与该第一极化码码率不同时,该第二确定单元420具体用于根据以下公式中的任意一个确定该当前传输块大小:
TBS0=floor((R0/R1)*TBS1)
TBS0=ceil((R0/R1)*TBS1)
其中,R0表示当前码率,R1表示第一极化码码率,TBS0表示当前传输块大小,TBS1表示该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小,floor(A)表示取不大于A的最大整数,ceil(A)表示取大于A的最小整数。
可替代地,作为另一实施例,该第一映射关系信息集合包括多个不同码率下的映射关系信息,
该第二确定单元420具体用于从该第一映射关系信息集合中确定与该当前码率对应的当前映射关系信息;将该当前映射关系信息与该当前传输块大小索引和分配的当前传输资源对应的传输块大小确定为该当前传输块大小。
图5是根据本申请另一实施例的用于确定传输块大小的通信设备的示意框图。该通信设备可以用于Polar码编码也可以用于Polar码译码,例如该通信设备可以是基站也可以是终端,本申请实施例并不对此做限定。应理解,图5所示的通信设备500能够实现图3实施例中涉及的确定传输块大小方法的各个过程,通信设备500中的各个模块的操作和/或功能,分别为了实现图3中的方法实施例中的相应流程,具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图5所示的通信设备500包括处理器510和存储器520。可选地,该通信设备500还可以包括总线***530。其中,处理器510和存储器520通过总线***530相连。该存储器520用于存储指令,该处理器510用于执行该存储器520存储的指令确定极化码的当前码率和当前传输块大小索引;根据该极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,其中,该第一映射关系信息集合包括至少一个映射关系信息,该第一映射关系信息集合中的每个映射关系信息包括该每个映射关系的极化码码率对应的,不同传输资源下的传输块大小索引与传输块大小的对应关系。
因此,本申请实施例通过极化码的当前码率、当前传输块大小索引、分配的当前传输资源和映射关系信息集合,确定当前传输块大小,实现了当前码率下传输块大小的确定,进而能够根据该传输块大小进行编码或译码。
上述本申请实施例揭示的方法可以应用于处理器510中,或者由处理器510实现。处理器510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器510可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结 合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器520,处理器510读取存储器520中的信息,结合其硬件完成上述方法的步骤,该总线***530除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***530。
进一步地,作为另一实施例,处理器510具体用于根据当前调制编码阶数索引和预设的第二映射关系信息获取与该当前调制编码阶数索引对应的该极化码的当前码率和当前传输块大小索引,
其中,该第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引。
可选地,作为另一实施例,该第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
该处理器510具体用于当该当前码率与该第一极化码码率相同时,将该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小确定为该当前传输块大小;
或者,该处理器510具体用于当该当前码率与该第一极化码码率不同时,根据该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定该当前传输块大小。
进一步地,作为另一实施例,当该当前码率与该第一极化码码率不同时,该处理器510具体用于根据以下公式中的任意一个确定该当前传输块大小:
TBS0=floor((R0/R1)*TBS1)
TBS0=ceil((R0/R1)*TBS1)
其中,R0表示当前码率,R1表示第一极化码码率,TBS0表示当前传输块大小,TBS1表示该第一映射关系信息中与该当前传输块大小索引和该当前传输资源对应的传输块大小,floor(A)表示取不大于A的最大整数,ceil(A)表示取大于A的最小整数。
可替代地,作为另一实施例,该第一映射关系信息集合包括多个不同码 率下的映射关系信息,
该处理器510具体用于从该第一映射关系信息集合中确定与该当前码率对应的当前映射关系信息;将该当前映射关系信息与该当前传输块大小索引和分配的当前传输资源对应的传输块大小确定为该当前传输块大小。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定 本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种确定极化码传输块大小的方法,其特征在于,包括:
    确定极化码的当前码率和当前传输块大小索引;
    根据所述极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,其中,所述第一映射关系信息集合包括至少一个映射关系信息,所述第一映射关系信息集合中的每个映射关系信息包括所述每个映射关系的极化码码率对应的,不同传输资源下的传输块大小索引与传输块大小的对应关系。
  2. 根据权利要求1所述的方法,其特征在于,
    所述确定极化码的当前码率和当前传输块大小索引,包括:
    根据当前调制编码阶数索引和预设的第二映射关系信息获取与所述当前调制阶编码数索引对应的所述极化码的当前码率和当前传输块大小索引,
    其中,所述第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
    所述根据所述极化码的当前码率、当前传输块大小索引以及传输当前传输块的当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,包括:
    当所述当前码率与所述第一极化码码率相同时,将所述第一映射关系信息中与所述当前传输块大小索引和所述当前传输资源对应的传输块大小确定为所述当前传输块大小。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
    所述根据所述极化码的当前码率、当前传输块大小索引以及传输当前传输块的当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,包括:
    当所述当前码率与所述第一极化码码率不同时,根据所述第一映射关系信息中与所述当前传输块大小索引和所述当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定所述当前传输块大小。
  5. 根据权利要求4所述的方法,其特征在于,
    所述当所述当前码率与所述第一极化码码率不同时,根据所述第一映射关系信息中与所述当前传输块大小索引和所述当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定所述当前传输块大小,包括:根据以下公式中的任意一个确定所述当前传输块大小:
    TBS0=floor((R0/R1)*TBS1)
    TBS0=ceil((R0/R1)*TBS1)
    其中,R0表示所述当前码率,R1表示所述第一极化码码率,TBS0表示所述当前传输块大小,TBS1表示所述第一映射关系信息中与所述当前传输块大小索引和当前传输资源对应的传输块大小,floor(A)表示取不大于A的最大整数,ceil(A)表示取大于A的最小整数。
  6. 根据权利要求1或2所述的方法,其特征在于,所述第一映射关系信息集合包括与多个不同码率一一对应的多个映射关系信息,
    所述根据所述极化码的当前码率、当前传输块大小索引和分配的当前传输资源,和所述第一映射关系信息集合,确定当前传输块大小,包括:
    从所述第一映射关系信息集合中确定与所述当前码率对应的当前映射关系信息;
    将所述当前映射关系信息中与所述当前传输块大小索引和分配的当前传输资源对应的传输块大小确定为所述当前传输块大小。
  7. 一种通信设备,其特征在于,包括:
    第一确定单元,用于确定极化码的当前码率和当前传输块大小索引;
    第二确定单元,用于根据所述极化码的当前码率、当前传输块大小索引、当前传输资源和预设的第一映射关系信息集合,确定当前传输块大小,其中,所述第一映射关系信息集合包括至少一个映射关系信息,所述第一映射关系信息集合中的每个映射关系信息包括所述每个映射关系的极化码码率对应的,不同传输资源下的传输块大小索引与传输块大小的对应关系。
  8. 根据权利要求7所述的通信设备,其特征在于,
    所述第一确定单元具体用于根据当前调制编码阶数索引和预设的第二映射关系信息获取与所述当前调制编码阶数索引对应的所述极化码的当前码率和当前传输块大小索引,
    其中,所述第二映射关系信息包括不同的调制编码阶数索引,和与每个调制编码阶数索引对应的码率和传输块大小索引。
  9. 根据权利要求7或8所述的通信设备,其特征在于,所述第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
    所述第二确定单元具体用于当所述当前码率与所述第一极化码码率相同时,将所述第一映射关系信息中与所述当前传输块大小索引和所述当前传输资源对应的传输块大小确定为所述当前传输块大小。
  10. 根据权利要求7或8所述的通信设备,其特征在于,所述第一映射关系信息集合包括第一极化码码率对应的第一映射关系信息;
    所述第二确定单元具体用于当所述当前码率与所述第一极化码码率不同时,根据所述第一映射关系信息中与所述当前传输块大小索引和所述当前传输资源对应的传输块大小,以及当前码率与第一极化码码率的比值,确定所述当前传输块大小。
  11. 根据权利要求10所述的通信设备,其特征在于,
    所述第二确定单元具体用于当所述当前码率与所述第一极化码码率不同时,根据以下公式中的任意一个确定所述当前传输块大小:
    TBS0=floor((R0/R1)*TBS1)
    TBS0=ceil((R0/R1)*TBS1)
    其中,R0表示当前码率,R1表示第一极化码码率,TBS0表示当前传输块大小,TBS1表示所述第一映射关系信息中与所述当前传输块大小索引和所述当前传输资源对应的传输块大小,floor(A)表示取不大于A的最大整数,ceil(A)表示取大于A的最小整数。
  12. 根据权利要求7或8所述的通信设备,其特征在于,所述第一映射关系信息集合包括多个不同码率下的映射关系信息,
    所述第二确定单元具体用于从所述第一映射关系信息集合中确定与所述当前码率对应的当前映射关系信息;将所述当前映射关系信息与所述当前传输块大小索引和分配的当前传输资源对应的传输块大小确定为所述当前传输块大小。
PCT/CN2016/108803 2016-01-18 2016-12-07 确定极化码传输块大小的方法和通信设备 WO2017124844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610031399.9 2016-01-18
CN201610031399.9A CN106982172B (zh) 2016-01-18 2016-01-18 确定极化码传输块大小的方法和通信设备

Publications (1)

Publication Number Publication Date
WO2017124844A1 true WO2017124844A1 (zh) 2017-07-27

Family

ID=59341017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108803 WO2017124844A1 (zh) 2016-01-18 2016-12-07 确定极化码传输块大小的方法和通信设备

Country Status (2)

Country Link
CN (1) CN106982172B (zh)
WO (1) WO2017124844A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111955026A (zh) * 2018-04-04 2020-11-17 中兴通讯股份有限公司 无线通信中确定传输块大小的方法、装置和***
US20210399742A1 (en) * 2017-01-09 2021-12-23 Zte Corporation Data processing method and device
CN114244470A (zh) * 2017-11-17 2022-03-25 中兴通讯股份有限公司 信道状态信息csi编码方法及装置、存储介质和处理器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391366A (zh) * 2017-08-11 2019-02-26 电信科学技术研究院 一种对数据进行交织的方法和交织器
CN109803426B (zh) * 2017-11-17 2023-04-07 华为技术有限公司 传输数据的方法和装置
WO2019100342A1 (zh) * 2017-11-24 2019-05-31 Oppo广东移动通信有限公司 传输信息的方法、分配资源的方法、终端设备和网络设备
CN110034843B (zh) 2018-01-12 2022-06-14 华为技术有限公司 信道编码方法和编码装置
CN110034845B (zh) * 2018-01-12 2021-09-14 华为技术有限公司 信息处理方法和无线传输设备
CN110611549B (zh) * 2018-06-15 2021-04-09 华为技术有限公司 一种确定传输块大小的方法、传输方法及装置
CN114915298A (zh) * 2021-02-10 2022-08-16 ***通信有限公司研究院 极化编码调制的信息位确定方法、映射生成方法及设备
CN115412198A (zh) * 2021-05-27 2022-11-29 ***通信有限公司研究院 Bipcm的映射关系生成方法、信息位集合确定方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621829A (zh) * 2009-07-27 2010-01-06 北京天碁科技有限公司 一种信道质量指示符上报的方法及装置
CN102104442A (zh) * 2009-12-17 2011-06-22 中兴通讯股份有限公司 一种修正信道质量指示的方法和装置
CN103534969A (zh) * 2013-03-21 2014-01-22 华为终端有限公司 数据传输方法、基站及用户设备
CN104641675A (zh) * 2012-10-08 2015-05-20 富士通株式会社 一种数据传输控制方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825669B (zh) * 2012-11-16 2017-10-24 华为技术有限公司 数据处理的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621829A (zh) * 2009-07-27 2010-01-06 北京天碁科技有限公司 一种信道质量指示符上报的方法及装置
CN102104442A (zh) * 2009-12-17 2011-06-22 中兴通讯股份有限公司 一种修正信道质量指示的方法和装置
CN104641675A (zh) * 2012-10-08 2015-05-20 富士通株式会社 一种数据传输控制方法和装置
CN103534969A (zh) * 2013-03-21 2014-01-22 华为终端有限公司 数据传输方法、基站及用户设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210399742A1 (en) * 2017-01-09 2021-12-23 Zte Corporation Data processing method and device
US11799498B2 (en) * 2017-01-09 2023-10-24 Zte Corporation Data processing method and device
US11909417B2 (en) 2017-01-09 2024-02-20 Zte Corporation Data processing method and device
CN114244470A (zh) * 2017-11-17 2022-03-25 中兴通讯股份有限公司 信道状态信息csi编码方法及装置、存储介质和处理器
CN114244470B (zh) * 2017-11-17 2023-11-21 中兴通讯股份有限公司 信道状态信息csi编码方法及装置、存储介质和处理器
CN111955026A (zh) * 2018-04-04 2020-11-17 中兴通讯股份有限公司 无线通信中确定传输块大小的方法、装置和***
CN111955026B (zh) * 2018-04-04 2024-05-28 中兴通讯股份有限公司 无线通信中确定传输块大小的方法、装置和***

Also Published As

Publication number Publication date
CN106982172A (zh) 2017-07-25
CN106982172B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
WO2017101631A1 (zh) 用于处理极化码的方法和通信设备
US10966118B2 (en) Channel encoding method and communication device
US10938422B2 (en) Polar code rate matching method and apparatus, and a communications apparatus
WO2018045849A1 (zh) 极化码的重传方法及装置
WO2018202057A1 (zh) 传输数据的方法、基站和终端设备
WO2019158031A1 (zh) 编码的方法、译码的方法、编码设备和译码设备
US10484137B2 (en) Polar code hybrid automatic repeat request method and apparatus
US10419161B2 (en) Method and communications device for transmitting information
US10264601B2 (en) Downlink control information transmission method and apparatus
WO2016145664A1 (zh) 传输信息的方法、终端设备、网络设备和装置
CN108365850B (zh) 编码方法、编码装置和通信装置
US11075653B2 (en) Polar code encoding and decoding method and apparatus
CN108599891B (zh) 编码方法、编码装置和通信装置
WO2019170161A1 (zh) 通知信道质量的方法和装置
JP2020518202A (ja) データ処理方法およびデータ処理装置
WO2018098691A1 (zh) 一种控制信道生成方法、控制信道检测方法及相关设备
WO2019154340A1 (zh) 编码方式的指示方法及设备
WO2018141271A1 (zh) 数据处理的方法和装置
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
WO2018202151A1 (zh) 通信方法和通信装置
WO2016070323A1 (zh) 通信方法、终端设备和基站
WO2018171538A1 (zh) 数据传输方法、网络设备及终端设备
WO2016070325A1 (zh) 通信方法、基站和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886104

Country of ref document: EP

Kind code of ref document: A1