WO2016048033A1 - 하이브리드 차량용 공조장치 - Google Patents

하이브리드 차량용 공조장치 Download PDF

Info

Publication number
WO2016048033A1
WO2016048033A1 PCT/KR2015/010017 KR2015010017W WO2016048033A1 WO 2016048033 A1 WO2016048033 A1 WO 2016048033A1 KR 2015010017 W KR2015010017 W KR 2015010017W WO 2016048033 A1 WO2016048033 A1 WO 2016048033A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
engine
target discharge
control unit
equation
Prior art date
Application number
PCT/KR2015/010017
Other languages
English (en)
French (fr)
Inventor
유상준
백창현
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to CN201810648351.1A priority Critical patent/CN108819671B/zh
Priority to US15/110,118 priority patent/US10131202B2/en
Priority to DE112015000200.6T priority patent/DE112015000200B4/de
Priority to CN201580002933.7A priority patent/CN105980177B/zh
Priority claimed from KR1020150134437A external-priority patent/KR102405177B1/ko
Publication of WO2016048033A1 publication Critical patent/WO2016048033A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers

Definitions

  • the present invention relates to an air conditioner for a hybrid vehicle, and more particularly, it is possible to compensate the temperature in the cabin to an optimal state by correcting the opening position of the temp door in an optimal state in the "motor driving mode".
  • the engine is restarted according to the engine coolant temperature in the “motor drive mode”, but the engine restart time is changed according to the “target discharge temperature” and the “tempored door opening position” to prevent unnecessary restart of the engine.
  • a hybrid vehicle air conditioning apparatus that can achieve the effect of improved fuel economy.
  • a hybrid vehicle is a vehicle that uses an electric motor and an internal combustion engine in parallel, and when the driving load of the vehicle is large, for example, when the vehicle is driven at high speed or when driving uphill, the engine is switched to the “engine drive mode”.
  • Such a hybrid vehicle minimizes the use of an engine, thereby reducing unnecessary fuel consumption and reducing exhaust gas emissions. Therefore, it increases fuel economy of the vehicle and reduces air pollution.
  • this technique is such that when the engine is stopped (A) and the engine coolant temperature is reduced (B), the opening direction of the temp door is further opened (E) in proportion to the “engine coolant decrease temperature”.
  • the “in-vehicle discharge air temperature” can be further increased (F), thereby “engine coolant temperature decrease” and thus the “heater core temperature decrease” when the engine is stopped. Nevertheless, it is possible to compensate for the temperature drop in the vehicle interior, and as a result, the temperature inside the vehicle vehicle can be maintained in a comfortable state regardless of the engine condition.
  • the technique restarts the engine when the temperature of the engine coolant drops excessively below the predetermined "lower limit value" during the "motor drive mode", and after restarting the engine.
  • the engine is configured to stop the engine again when the temperature of the engine coolant rises above the predetermined upper limit.
  • the engine coolant temperature can be kept constant between the predetermined “lower limit” and "upper limit". The reason for this is to prevent excessive temperature drop of the engine coolant and to maintain constant heating performance in the cabin.
  • this conventional technique is a structure that corrects the opening angle of the temp door based only on the "engine cooling water reduction temperature” in the "motor drive mode", and therefore, the actual "in-vehicle discharge air in the" motor drive mode ".
  • the opening angle of the temp door can not be precisely controlled in accordance with the change in temperature, and because of this disadvantage, the "indoor discharge air temperature” cannot be compensated more precisely in the "motor driving mode”.
  • in-vehicle discharge air temperature change is not only “engine coolant temperature” but also “blower air flow”, “evaporator temperature”, “internal and external air temperature” and “insolation”. It is influenced by various factors such as.
  • the conventional technique of correcting and controlling the opening angle of the temp door based only on the "engine cooling water reduction temperature” has the disadvantage that the opening angle of the temp door cannot be precisely corrected in accordance with the "in-vehicle discharge air temperature change”.
  • the conventional technology is a structure in which the engine is unconditionally restarted when the engine coolant temperature is lower than or equal to a predetermined "lower limit value" in the "motor drive mode", and thus, "engine restart phenomenon” in the "motor drive mode". This is a disadvantage that occurs frequently.
  • the “target discharge temperature” is set low so that the engine is below the “low limit value”.
  • the present invention has been made to solve the above-mentioned conventional problems.
  • the object of the present invention is to precisely determine the opening angle of the temporal door based on the "actual discharge air temperature change" in the interior of the vehicle in the "motor driving mode".
  • the present invention provides a hybrid vehicle air conditioner capable of correcting the opening angle of the temp door in an optimal state in accordance with the "change of the discharge air temperature in the vehicle interior” in the "motor driving mode".
  • Another object of the present invention is to configure the opening angle of the temp door in the "motor drive mode” so that it can be optimally corrected according to the "change of the discharge air temperature in the cabin," so that the "motor drive mode”
  • the indoor discharge air temperature ” can be compensated more precisely, and through this, it is possible to provide a hybrid vehicle air conditioner capable of optimally controlling the temperature in the vehicle interior in the“ motor driving mode ”.
  • Still another object of the present invention is to control the engine re-start point in consideration of the "target discharge temperature" during the "motor drive mode", thereby to optimize the "in-vehicle discharge air temperature” in accordance with the "target discharge temperature”.
  • the present invention provides a hybrid vehicle air conditioner which can be controlled in a state and at the same time minimizes engine restart, thereby preventing unnecessary restart of the engine.
  • Still another object of the present invention is to control the engine restarting time in conjunction with the "temporal opening angle" in the "motor drive mode", so that the "temporal opening angle” control alone without the engine restarting is carried out.
  • the present invention provides a hybrid vehicle air conditioner capable of sufficiently compensating the discharged air temperature, thereby preventing unnecessary restarting of the engine.
  • Still another object of the present invention is to provide an air conditioning apparatus for a hybrid vehicle, which is configured to prevent unnecessary restarting of the engine, thereby preventing frequent restarting of the engine and thereby improving fuel efficiency of the vehicle. .
  • the hybrid vehicle air conditioner after entering the motor driving mode, when the coolant temperature of the engine is lowered below the lower limit, restarts the engine, the engine coolant temperature is the upper limit value
  • the hybrid vehicle air conditioner comprising a control unit for stopping the engine restarted when it is raised above, the control unit, the lower limit value and the upper limit value to the target discharge temperature calculated by the internal and external air temperature conditions and the user set temperature
  • the engine restart mode may be controlled to be actively changed according to the target discharge temperature in the motor driving mode.
  • control unit calculates the lower limit value by calculating the target discharge temperature and the first predetermined compensation value below [Equation 1], and the upper limit value is below the target discharge temperature and the second predetermined compensation value. It is characterized by calculating by calculating in [Equation 2].
  • the first compensation value and the second compensation value are constant values for compensating for a measurement error of the engine coolant temperature, and the second compensation value has a larger size than the first compensation value.
  • control unit may be configured only when the temporal door for adjusting the discharge air temperature in the cabin is at the maximum warm air passage (Max Warm). And restarting the engine.
  • the opening position of the temp door is corrected in response to the "change of the discharge air temperature” in the cabin, but the influence of the "actual discharge air temperature change” is affected. Since the state is corrected in consideration of various factors, there is an effect that the opening position of the temp door can be corrected in an optimal state according to the "actual discharge air temperature change".
  • the opening angle of the temp door can be corrected optimally in accordance with the "actual discharge air temperature change" in the "motor drive mode"
  • the "in-vehicle discharge air temperature” is more precisely adjusted in the "motor drive mode”.
  • the temperature inside the vehicle can be optimally controlled in the “motor driving mode”.
  • the engine restart time is variably controlled according to the "target discharge temperature”. Discharge temperature can be compensated in an optimal state while at the same time minimizing the restart of the engine, thereby preventing unnecessary restart of the engine.
  • the engine restarting time is controlled in connection with the "tempdoor opening angle", so that the "tempdoor opening” is performed without restarting the engine. Even with each control, it is possible to sufficiently compensate the "in-vehicle discharge air temperature", and as a result, it is possible to prevent unnecessary restarting of the engine.
  • 1 is a graph showing the state of the engine coolant temperature, the air conditioner and the discharge air temperature inside the vehicle when the conventional hybrid vehicle is controlled from the "engine drive mode" to the "motor drive mode".
  • FIG. 2 is a graph illustrating another example of a conventional hybrid vehicle in which the engine coolant temperature, the air conditioner, and the discharge air temperature in the cabin are controlled when the engine is driven from the engine driving mode to the motor driving mode.
  • FIG. 3 is a graph illustrating a state in which an engine is controlled on and off according to an engine coolant temperature when a conventional hybrid vehicle is controlled in a “motor driving mode”;
  • FIG. 4 is a view showing the configuration of an air conditioning apparatus for a hybrid vehicle according to the present invention.
  • FIG. 5 is a graph showing a state in which the engine is turned on (ON), off (OFF) control according to the engine coolant temperature when the hybrid vehicle according to the present invention is controlled in the "motor drive mode",
  • FIG. 6 is a graph illustrating a state in which an engine is controlled on and off according to an engine coolant temperature and an opening angle of a temp door when a hybrid vehicle is controlled in a “motor driving mode” according to the present invention
  • FIG. 7 is a flowchart showing an operation example of the air conditioner for a hybrid vehicle according to the present invention, which shows an operation example of compensating the opening position of the temporal door in the "motor driving mode";
  • Fig. 8 is a flowchart showing an example of the operation of the hybrid vehicle air conditioner according to the present invention, and is a diagram showing an example of the operation of controlling the engine restart in the “motor driving mode”.
  • the air conditioner of the hybrid vehicle includes an air conditioner case 1, and the air conditioner case 1 is provided with a blower 3, an evaporator 5, and a heater core 7.
  • the blower 3 sucks internal and external air and blows it into the inner passage 1a of the air conditioning case 1, and the evaporator 5 cools the air blown into the inner passage 1a, and the heater core 7 The air blown into the inner passage 1a is heated.
  • the heater core 7 receives the high temperature cooling water from the engine 8. Accordingly, the supplied high temperature cooling water is exchanged with the surrounding air. This heats the air blown into a vehicle interior.
  • the air conditioner includes a temporal door (Temp. Door) 9 provided in the inner passage 1a of the air conditioner case 1.
  • the temp door 9 is installed at the branch point of the cold air passage 1b and the hot air passage 1c, and rotates between the cold air passage 1b and the hot air passage 1c, and the cold air passage 1b and the hot air passage ( Adjust the opening amount of 1c). Therefore, the amount of cold air and the amount of warm air supplied into the vehicle cabin are adjusted.
  • the temperature of the heater core 7 also drops due to the lowered coolant temperature (C). Therefore, the temperature of the air discharged into the compartment becomes low (D). As a result, the heating efficiency in the vehicle interior is lowered.
  • the air conditioner of the present invention the discharge air temperature detecting means 10 for detecting the actual air temperature discharged into the vehicle cabin.
  • the discharge air temperature sensing means 10 includes a temperature sensor installed in specific vents among the air discharge vents in the vehicle compartment.
  • a center vent temperature sensor installed in the center vent of the center part of the cabin, or a floor vent installed in the floor vent of the floor surface of the cabin. It consists of a temperature sensor.
  • the discharge air temperature detecting means 10 directly detects the actual air temperature discharged into the vehicle compartment, and then inputs the detected “discharge air temperature” data to the controller 20 to be described later.
  • the air conditioner of the present invention includes a control unit 20.
  • the control unit 20 includes a microprocessor and includes a calculation unit 22.
  • the calculation unit 22 when the vehicle is switched from the "engine drive mode” to the “motor drive mode” while the "in-vehicle discharge air temperature” data is input from the discharge air temperature sensing means 10, the "motor drive mode".
  • a predetermined time interval for example, a second interval from the time of the conversion to "", the "temperature deviation (E_now)" between the “target discharge temperature” and “in-vehicle discharge air temperature” at the present time and The temperature difference (E_prev) between the "target discharge temperature” and the "in-vehicle discharge air temperature” 5 seconds ago is calculated.
  • the "target discharge temperature” is a value calculated for automatically controlling the evaporator 5, the PTC heater 7a, the various doors D, and the like in an optimal state, and includes the “user set temperature” and the “evaporator.” Temperature ”,“ outside temperature ”,“ betting temperature ”,“ insolation ”, and so on,“ target discharge temperature ”includes“ factor value ”that causes“ in-vehicle discharge air temperature change ”. For example, "user set temperature”, “evaporator temperature”, “outside temperature” "betting temperature” and “insolation” are indirectly included.
  • the control unit 20 after entering the "motor drive mode", the "between the target discharge temperature” and “in-vehicle discharge air temperature” at the present time at a time interval (5 seconds interval) preset in the calculation unit 22;
  • the temperature deviation (E_now) and the “temperature deviation (E_prev)" between the “target discharge temperature” and “in-vehicle discharge air temperature” of the previous point are calculated, the two calculated “temperature deviations (E_now), (E_prev) "And, the” Temp door opening position (T_prev) "of the previous time point (5 seconds ago) is processed by [Equation 1] below and the temp door for cold and hot air passages (1b, 1c) (9) Finally, the open position correction value T-_now is calculated.
  • T-_now T_prev + Cp ⁇ -E_prev) + Gi ⁇ E_now]
  • T-_now is the temporal opening position correction value (V)
  • T_prev is the temporal door opening position (V)
  • Cp is the proportional gain
  • Gp is the constant value for the temperature deviation
  • E_now is the target discharge temperature at the current time
  • E_prev is the temperature deviation between target discharge temperature and discharge air temperature (°C)
  • Gi is integral gain
  • Cp, Gp, Gi a constant value, which is built in the control unit 20 in advance, is determined based on the results of several tests.
  • Equation 1 is a value calculated by considering both the “target discharge temperature”, “in-vehicle discharge air temperature”, and “temperature deviation” between them for the present time and the previous time. After entering the “Motor Drive Mode”, the actual “in-vehicle discharge air temperature change” generated by the “discharge air temperature change factor” can be measured, thereby compensating for the “in-vehicle discharge air temperature change”. It is possible to calculate the "opening position correction value (T-_now)" of the optimal tempored door (9).
  • [Expression 1] represents the opening position correction value T-_now of the temporal door 9 as the applied voltage value V of the temporal door 9 to the cold and hot air passages 1b and 1c. Is calculated.
  • the control unit 20 determines the position of the temporal door 9 according to the calculated "tempor door opening position correction value T-_now". Calibrate and control the opening position.
  • the opening position of the temporal door 9 can be corrected in consideration of all “discharge air temperature change factors".
  • the “blower air flow” and “evaporator temperature” and “user set temperature”, “internal and outdoor air temperature” and “insolation”, which have a direct influence on the “discharge air temperature change”, can be corrected to the considered values. .
  • control unit 20 calculates the “tempdoor opening position” even if the opening position correction value T-_now of the temp door 9 is calculated in real time after entering the “motor driving mode”.
  • the opening position of the temp door 9 is not unconditionally corrected according to the "correction value T-_now.”
  • the “entry conditions” include conditions in which the engine coolant temperature is equal to or less than the “target discharge temperature”, conditions in which the temporal door 9 is controlled to the maximum warm position, and the hot air passage 1c is opened to the maximum. In-vehicle discharge air temperature is below the "target discharge temperature”.
  • the control unit 20 has a condition in which the engine coolant temperature is equal to or less than the "target discharge temperature”, a condition in which the temp door 9 is controlled to the maximum heating position, and "in-vehicle discharge air temperature” is equal to or less than the "target discharge temperature”. Only when the conditions are satisfied, it is configured to correct the opening position of the temp door 9 according to the "temp door opening position correction value T-_now" calculated by the [Equation 1].
  • the engine coolant temperature is equal to or less than the "first entry reference temperature” plus the preset "first temperature compensation value” in addition to the "target discharge temperature”
  • the temp door 9 is the maximum heating.
  • control unit 20 controls the condition that the engine coolant temperature is equal to or lower than the "first entry reference temperature” in which the "target discharge temperature” is added to the “first temperature compensation value” and the temp door 9 is controlled to the maximum heating position.
  • [Equation 1] only when both conditions and “in-vehicle discharge air temperature” are equal to or less than “target entry temperature” minus “second entry reference temperature” minus “second temperature compensation value” It is configured to correct the opening position of the temp door 9 according to the "temp door opening position correction value T-_now".
  • the "first temperature compensation value” is a temperature in consideration of the measurement error of the engine coolant temperature, and is set to 5 ° C
  • the “second temperature compensation value” is a measurement error of "in-vehicle discharge air temperature”. As temperature which considered, it is preferable to set at 2 degreeC.
  • the control unit 20 after entering the "motor drive mode", in the state of compensating control of the opening position of the temp door 9, the "motor drive mode” is released (OFF), or the predetermined "release condition” If, for example, the engine coolant temperature satisfies the condition above the "releasing reference temperature” plus the "third temperature compensation value” preset to the "target discharge temperature", the temp door according to [Equation 1] (9) is configured to stop the opening position compensation control.
  • the "third temperature compensation value” is preferably set to 10 ° C.
  • the controller 20 when entering the "motor drive mode", the engine 8 when the temperature of the engine coolant is lowered below the “lower limit value (L)"
  • the engine 8 is restarted, and the engine 8 is stopped again when the temperature of the engine coolant rises above the "upper limit U” after the engine 8 is restarted.
  • the "lower limit value (L)" for restarting the engine 8 is the sum of the "current target discharge temperature (M)” and the “first compensation value ( ⁇ )” as shown in [Calculation 2] below.
  • the “upper limit value U” calculated by (g) and for stopping the re-operation of the engine 8 is equal to the "current target discharge temperature M” and the “second” as in [Calculation 3] below. It is calculated by the sum of the compensation values ⁇ , and these [Calculation Formula 2] and [Calculation Formula 3] are built in the control unit 20.
  • the control unit 20 calculates the "current target discharge temperature (M)", "the first compensation value ( ⁇ )” and the “second compensation value ( ⁇ )” in advance. Equation 2] and [Calculation Equation 3] are checked in real time to calculate the “lower limit value (L)” and “upper limit value (U)” in real time, and then the calculated “lower limit value (L)” and “upper limit value (U)”. Is compared to the “engine coolant temperature” in real time to control the restart and shutdown of the engine 8 in real time.
  • the first compensation value ⁇ and the second compensation value ⁇ are for compensating for the measurement error of the engine coolant temperature, and the second compensation value ⁇ is larger than the first compensation value ⁇ . It is determined based on several test results.
  • the engine 8 after entering the "motor drive mode", the engine 8 is restarted according to the temperature of the engine coolant, but as shown in FIGS. 5 and 6, the engine 8 is restarted.
  • the lower limit value (L) and the upper limit value (U), which are reference values, are changed on the basis of the "current target discharge temperature (M)" to restart the engine 8 in the "motor drive mode". It can be actively changed according to this "target discharge temperature”.
  • the restart point of the engine 8 is actively Variable control.
  • the engine 8 is restarted in response to the low "target discharge temperature”. Can be delayed.
  • control unit 20 when entering the "motor drive mode", when the temperature of the engine coolant drops (X) below the "lower limit value L", the engine 8 Do not restart it unconditionally.
  • the temp door 9 opens the hot air passage 1c to the maximum (Y Is configured to restart the engine 8 only.
  • the engine 8 is then restarted to control the "discharge air temperature” so that the engine 8 can be restarted. While delaying the operation as much as possible, the "indoor discharge air temperature" can be compensated sufficiently.
  • controller 20 does not unconditionally restart the engine 8 even after the engine coolant temperature is lowered (X) below the lower limit L after entering the motor drive mode.
  • the engine 8 is configured to be restarted only when the target discharge temperature is equal to or less than the value obtained by adding the preset temperature compensation value to the interior discharge air temperature.
  • a temperature compensation value is set to 2 degreeC.
  • the control unit 20 variably controls the "lower limit value L” and "upper limit value U", which are the criteria for restarting the engine 8, but the "motor drive mode". Is turned off or the above "release conditions” are met, for example, the engine coolant temperature is above the "release reference temperature” plus the "third temperature compensation value” preset to the "target discharge temperature”. Is satisfied, it is configured to stop the variable control of the "lower limit value L" and "upper limit value U" and return to the original state.
  • control unit 20 determines again whether both the engine coolant temperature and the state of the air conditioning apparatus satisfies the predetermined "entry conditions" (S104).
  • the control unit 20 has a predetermined time interval from the entry point of the "motor driving mode", for example, a second interval, and the "target” of the present time point.
  • the control unit 20 When the calculation of the "temperature deviations E_now and E_prev” is completed, the control unit 20 includes two “temperature deviations E_now and E_prev” and the "temp door opening position T_prev” at the previous point. ”Is computed by [Calculation Formula 1] (S107), and the opening position correction value T-_now of the tempored door 9 with respect to the cold and hot air passages 1b and 1c is calculated (S109).
  • the opening position of the temp door 9 is corrected in consideration of the "target discharge temperature” and the “discharge air temperature change factor”.
  • the opening position of the temp door 9 is corrected to the optimum state in accordance with the "actual cabin discharge air temperature change” caused by the "target discharge temperature” and the “discharge air temperature change factor”.
  • the "in-vehicle discharge air temperature” can be compensated more precisely in the "motor drive mode", and accordingly, the temperature in the cabin can be controlled to the optimum state in the "motor drive mode”.
  • control unit 20 after entering the "motor drive mode", in the state of compensating control of the opening position of the temp door 9, the "motor drive mode” is released (OFF), or the predetermined "release condition” It is determined again to satisfy (S113).
  • control unit 20 determines again whether both the engine coolant temperature and the state of the air conditioning apparatus satisfies the predetermined "entry conditions" (S204).
  • control unit 20 calculates the "current target discharge temperature M" and the "first compensation value ⁇ " from the entry point of the "motor drive mode”.
  • Formula 2 calculates the "lower limit value L" in real time (S205).
  • control unit 20 compares and determines whether the "engine cooling water temperature” is reduced to "lower limit value L" below (S209).
  • control unit 20 calculates and processes "current target discharge temperature M" and "second compensation value ⁇ " by [Calculation Formula 3] (S213). ), The "upper limit value U” is calculated in real time (S215).
  • control unit 20 compares and determines whether the "engine cooling water temperature” has risen above the "upper limit value U" (S217).
  • the control unit 20 stops the engine 8 (S219). Then, while the engine 8 is stopped, the consumption of fuel is limited, thereby improving fuel economy of the vehicle.
  • control unit 20 after entering the "motor drive mode", the "motor drive mode” is released (OFF) in the state of variably controlling the "lower limit value L” and "upper limit value U", or It is determined again whether the "release condition" is satisfied (S221).
  • the opening position of the tempored door 9 is corrected in response to the "change of discharge air temperature” in the vehicle compartment, but the influence on the "actual discharge air temperature change” is affected. Since it is a structure for correcting in consideration of various factors that give, the opening position of the temporal door 9 can be corrected to an optimal state in accordance with the "actual discharge air temperature change".
  • the opening angle of the temp door 9 can be corrected in an optimum state according to the "actual discharge air temperature change" in the "motor drive mode", the "in-vehicle discharge air temperature” in the "motor drive mode". Can be compensated more precisely, so that the temperature inside the vehicle can be optimally controlled in the "motor drive mode".
  • the engine 8 is restarted according to the engine coolant temperature, but the engine 8 is restarted in a variable manner according to the "target discharge temperature”.
  • the air temperature ” can be compensated in an optimal state in accordance with the“ target discharge temperature ”while at the same time minimizing the restart of the engine 8, thereby preventing unnecessary restart of the engine 8.
  • the engine 8 is restarted according to the engine coolant temperature, and the engine 8 is restarted so as to control the restart time of the engine 8 in conjunction with the "tempdoor opening angle". It is possible to sufficiently compensate the "in-vehicle discharge air temperature" only by controlling the "tempored door opening angle” without restarting the vehicle, and as a result, unnecessary restarting of the engine 8 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

본 발명은 하이브리드 차량용 공조장치에 관한 것으로서, "모터 구동모드"시에 템프도어의 개도위치를 최적의 상태로 보정하여 차실내의 온도를 최적의 상태로 보상할 수 있고, 아울러, "모터 구동모드"시에 엔진 냉각수 온도에 따라 엔진을 재작동시키되, 엔진의 재작동 시점을 "목표토출온도"와 "템프도어 개도위치"에 따라 가변시킴으로써, 엔진의 불필요한 재작동을 방지하고, 이를 통해, 연비 개선의 효과를 도모할 수 있도록 하는 것을 목적으로 한다. 이러한 목적을 달성하기 위하여 본 발명은, 모터 구동모드로 진입한 후, 엔진의 냉각수 온도가 하한치 이하로 저하될 시에는 엔진을 재작동시키고, 엔진의 냉각수 온도가 상한치 이상으로 상승될 시에는 재작동된 엔진을 정지시키는 제어부를 포함하는 하이브리드 차량용 공조장치에 있어서, 제어부는, 하한치와 상한치를 내외기 온도조건과 사용자 설정온도에 의해 산출된 목표토출온도에 따라 가변시켜, 모터 구동모드 시에 엔진의 재작동 시점이 목표토출온도에 따라 능동적으로 가변될 수 있게 제어한다.

Description

하이브리드 차량용 공조장치
본 발명은 하이브리드 차량용 공조장치에 관한 것으로서, 보다 상세하게는, “모터 구동모드”시에 템프도어의 개도위치를 최적의 상태로 보정하여 차실내의 온도를 최적의 상태로 보상할 수 있고, 아울러, “모터 구동모드”시에 엔진 냉각수 온도에 따라 엔진을 재작동시키되, 엔진의 재작동 시점을 “목표토출온도”와 “템프도어 개도위치”에 따라 가변시킴으로써, 엔진의 불필요한 재작동을 방지하고, 이를 통해, 연비 개선의 효과를 도모할 수 있는 하이브리드 차량용 공조장치에 관한 것이다.
하이브리드(Hybrid) 차량은, 전기모터와 내연기관을 병행하여 사용하는 차량으로서, 차량의 주행부하가 클 경우, 예를 들면, 고속주행시나 오르막길 주행시에는 “엔진 구동모드”로 전환되면서 엔진을 사용한다.
반대로, 차량의 주행부하가 작을 경우, 예를 들면, 저속주행이나 정차시에는 “모터 구동모드”로 전환되면서 전기모터를 사용한다.
이러한 하이브리드 차량은, 엔진의 사용을 최소화하므로, 불필요한 연료소비를 줄일 수 있고, 배기가스의 배출도 저감시킬 수 있다. 따라서, 차량의 연비를 높이고 대기오염을 줄여준다.
그런데, 이러한 종래의 하이브리드 차량은, 엔진이 빈번하게 정지되므로, 차실내의 난방을 위한 공조장치도 작동이 제한된다는 단점이 있으며, 이러한 단점 때문에 차실내의 난방효율이 급격히 저하된다는 문제점이 있다.
즉, 하이브리드 차량은, 도 1에 도시된 바와 같이, 주행부하가 줄어들어 “엔진 구동모드”에서 “모터 구동모드”로 전환되면, 엔진이 정지하게 된다(A). 그 결과, 엔진의 냉각수 온도도 저감된다(B).
이로써, 공조장치의 히터코어에는 온도가 낮아진 냉각수가 공급되어 히터코어의 온도를 떨어뜨린다(C). 따라서, 차실내로 토출되는 공기의 온도가 낮아진다(D). 이에 따라, 차실내의 난방효율이 저하되고, 그 결과, 차실내의 쾌적성이 현저하게 떨어진다는 문제점이 지적되고 있다.
한편, 이를 감안하여, 엔진이 정지되어 히터코어의 온도가 저하되더라도, 차실내의 온도저하를 방지하는 기술이 제안되고 있다.
이 기술은, 도 2에 도시된 바와 같이, 차량이 “엔진 구동모드”에서 “모터 구동모드”로 전환되어 엔진이 정지할 시에(A), 엔진의 정지로 인한 "엔진 냉각수 온도 저감"에 따라 템프도어의 개도각(E)을 보정하는 기술이다.
특히, 이 기술은, 엔진이 정지(A)되어 엔진 냉각수 온도가 저감(B)될 시에, “엔진 냉각수 감소온도”에 비례하여 템프도어의 개도각을 온기통로를 더 개방(E)하는 방향으로 보정한다.
따라서, 엔진 정지시 “엔진 냉각수 온도감소”에 대응하여 "차실내 토출공기온도”를 더 높일 수 있다(F). 이로써, 엔진 정지시 “엔진 냉각수 온도 저하”와 그에 따른 “히터코어 온도저하”에도 불구하고 차실내의 온도하강을 보상할 수 있다. 그 결과, 차실내의 온도를 엔진의 상태에 관계없이 쾌적한 상태로 유지시킬 수 있다.
한편, 이 기술은, 도 3에 도시된 바와 같이, “모터 구동모드”중에, 엔진 냉각수의 온도가 미리 정해진 “하한치”이하로 과도하게 저하될 시에는 엔진을 재작동시키고, 엔진의 재작동 후, 엔진 냉각수의 온도가 미리 정해진 “상한치”이상으로 상승될 시에는 엔진을 다시 정지시키도록 구성된다.
따라서, 엔진 냉각수 온도가, 미리 정해진 “하한치”와 “상한치”사이를 일정하게 유지할 수 있게 한다. 이렇게 구성한 이유는, 엔진 냉각수의 과도한 온도저하 현상을 방지하여 차실내의 난방성능을 일정하게 유지시키기 위함이다.
그런데, 이러한 종래의 기술은, “모터 구동모드”시에, “엔진 냉각수 감소온도”만을 근거로 템프도어의 개도각을 보정하는 구조이므로, “모터 구동모드”시에 실제의 "차실내 토출공기온도 변화"에 맞춰 템프도어의 개도각을 정밀하게 제어할 수 없다는 단점이 있으며, 이러한 단점 때문에 “모터 구동모드”시 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 없다는 문제점이 있다.
즉, “모터 구동모드”시에, “차실내 토출공기온도 변화(저감)”는, “엔진 냉각수 온도”뿐만이 아니라, “블로어 풍량”과 “증발기 온도”와 “내외기온도”와 “일사량”등과 같은 여러 인자(因子)에 영향받는다.
따라서, “엔진 냉각수 감소온도”만을 근거로 템프도어의 개도각을 보정 제어하는 종래의 기술로는, 템프도어의 개도각을 “차실내 토출공기온도 변화”에 맞춰 정밀하게 보정할 수 없다는 단점이 있다.
그리고 이러한 단점 때문에 “모터 구동모드”시에 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 없다는 문제점이 있으며, 이러한 문제점 때문에 “모터 구동모드”시에 차실내의 온도를 쾌적하게 유지시킬 수 없다는 결점이 지적되고 있다.
이 밖에도, 종래의 기술은, “모터 구동모드”시에, 엔진 냉각수 온도가 미리 정해진 “하한치”이하이면, 무조건 엔진을 재작동시키는 구조이므로, “모터 구동모드”시에 “엔진 재작동 현상”이 빈번하게 발생된다는 단점이 있다.
특히, 사용자 설정에 의한 “목표토출온도”에 관계없이 “엔진 냉각수 온도”가 “하한치”이하이면, 무조건 엔진을 재작동시키는 구조이므로, “목표토출온도”가 낮게 설정되어 “하한치”이하의 엔진 냉각수 온도에서도 “차실내 토출공기온도”를 충분히 보상할 수 있음에도 불구하고 차량의 엔진을 불필요하게 재작동시킨다는 단점이 있다.
또한, “템프도어 개도각”에 관계없이 “엔진 냉각수 온도”가 “하한치”이하이면, 무조건 엔진을 재작동시키는 구조이므로, 엔진의 재작동 없이 “템프도어 개도각”제어만으로도 “차실내 토출공기온도”를 충분히 보상할 수 있음에도 불구하고 차량의 엔진을 불필요하게 재작동시킨다는 단점이 있다.
그리고 이러한 단점 때문에, “모터 구동모드”시에 “엔진 재작동 현상”이 빈번하게 발생된다는 문제점이 있으며, 이러한 문제점 때문에 차량의 연비가 저하된다는 결점이 지적되고 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 그 목적은, “모터 구동모드”시에, 차실내의 “실제 토출공기온도 변화”를 근거로 템프도어의 개도각을 정밀하게 보정 제어할 수 있도록 구성함으로써, “모터 구동모드”시에 템프도어의 개도각을 “차실내 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있는 하이브리드 차량용 공조장치를 제공하는 데 있다.
본 발명의 다른 목적은, “모터 구동모드”시에 템프도어의 개도각을 “차실내 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있도록 구성함으로써, “모터 구동모드”시에 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 있고, 이를 통해, “모터 구동모드”시에 차실내의 온도를 최적의 상태로 제어할 수 있는 하이브리드 차량용 공조장치를 제공하는 데 있다.
본 발명의 또 다른 목적은, “모터 구동모드”시에, “목표토출온도”를 고려하여 엔진의 재작동 시점을 제어함으로써, “목표토출온도”에 맞춰 “차실내 토출공기온도”를 최적의 상태로 제어할 수 있으면서 동시에 엔진의 재작동은 최소화시킬 수 있고, 이를 통해 엔진의 불필요한 재작동을 방지할 수 있는 하이브리드 차량용 공조장치를 제공하는 데 있다.
본 발명의 또 다른 목적은, “모터 구동모드”시에, “템프도어 개도각”과 연계하여 엔진의 재작동 시점을 제어함으로써, 엔진의 재작동 없이 “템프도어 개도각”제어만으로도 “차실내 토출공기온도”를 충분히 보상할 수 있고, 이를 통해 엔진의 불필요한 재작동을 방지할 수 있는 하이브리드 차량용 공조장치를 제공하는 데 있다.
본 발명의 또 다른 목적은, 엔진의 불필요한 재작동을 방지할 수 있도록 구성함으로써, 엔진의 빈번한 재작동을 방지하고, 이를 통해, 차량의 연비를 개선시킬 수 있는 하이브리드 차량용 공조장치를 제공하는 데 있다.
이러한 목적을 달성하기 위하여, 본 발명에 따른 하이브리드 차량용 공조장치는, 모터 구동모드로 진입한 후, 상기 엔진의 냉각수 온도가 하한치 이하로 저하될 시에는 엔진을 재작동시키고, 엔진의 냉각수 온도가 상한치 이상으로 상승될 시에는 재작동된 상기 엔진을 정지시키는 제어부를 포함하는 하이브리드 차량용 공조장치에 있어서, 상기 제어부는, 상기 하한치와 상한치를 내외기 온도조건과 사용자 설정온도에 의해 산출된 목표토출온도에 따라 가변시켜, 상기 모터 구동모드 시에 상기 엔진의 재작동 시점이 상기 목표토출온도에 따라 능동적으로 가변될 수 있게 제어하는 것을 특징으로 한다.
바람직하게는, 상기 제어부가, 상기 하한치는 상기 목표토출온도와 미리 정해진 제 1보상치를 아래의 [식 1]로 연산하여 산출하고, 상기 상한치는 상기 목표토출온도와 미리 정해진 제 2보상치를 아래의 [식 2]로 연산하여 산출하는 것을 특징으로 한다.
[식 1]
하한치(L) = 목표토출온도(M) + 제 1보상치(α)
[식 2]
상한치(U) = 목표토출온도(M) + 제 2보상치(β)
그리고 상기 제 1보상치와 제 2보상치는, 엔진 냉각수 온도의 측정오차를 보상하기 위한 상수값으로서, 상기 제 2보상치가 상기 제 1보상치보다 더 큰 크기를 갖는 것을 특징으로 한다.
그리고 상기 제어부는, 모터 구동모드 시에, 상기 엔진 냉각수 온도가 상기 하한치 이하로 저하되더라도, 차실내의 토출공기온도 조절을 위한 템프도어가 온풍통로를 최대로 개방한 상태(Max Warm)일 경우에만 상기 엔진을 재작동시키는 것을 특징으로 한다.
본 발명에 따른 하이브리드 차량용 공조장치에 의하면, “모터 구동모드”시에, 차실내의 “토출공기온도 변화”에 대응하여 템프도어의 개도위치를 보정하되, “실제 토출공기온도 변화”에 영향을 주는 여러요인들을 고려하여 보정하는 구조이므로, 템프도어의 개도위치를 “실제 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있는 효과가 있다.
또한, “모터 구동모드”시에 템프도어의 개도각을 “실제 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있으므로, “모터 구동모드”시에 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 있고, 이를 통해, “모터 구동모드”시에 차실내의 온도를 최적의 상태로 제어할 수 있는 효과가 있다.
또한, “모터 구동모드”시에, 엔진 냉각수 온도에 따라 엔진을 재작동시키되, 엔진의 재작동 시점을 “목표토출온도”에 따라 가변 제어하는 구조이므로, “차실내 토출공기온도”를 “목표토출온도”에 맞춰 최적의 상태로 보상할 수 있으면서도 동시에 엔진의 재작동은 최소화시킬 수 있고, 이를 통해, 엔진의 불필요한 재작동을 방지할 수 있는 효과가 있다.
또한, “모터 구동모드”시에, 엔진 냉각수 온도에 따라 엔진을 재작동시키되, 엔진의 재작동 시점을 “템프도어 개도각”과 연계하여 제어하는 구조이므로, 엔진의 재작동 없이 “템프도어 개도각”제어만으로도 “차실내 토출공기온도”를 충분히 보상할 수 있게 하고, 그 결과, 엔진의 불필요한 재작동을 방지할 수 있는 효과가 있다.
또한, 엔진의 불필요한 재작동을 방지할 수 있는 구조이므로, 엔진의 빈번한 재작동을 방지하고, 이를 통해, 차량의 연비를 개선시킬 수 있는 효과가 있다.
도 1은 종래의 하이브리드 차량이 “엔진 구동모드”에서 “모터 구동모드”로 제어될 시에 엔진 냉각수 온도와 공조장치와 차실내 토출공기온도의 상태를 나타내는 그래프,
도 2는 종래의 하이브리드 차량의 다른예로서, “엔진 구동모드”에서 “모터 구동모드”로 제어될 시에 엔진 냉각수 온도와 공조장치와 차실내 토출공기온도의 상태를 나타내는 그래프,
도 3은 종래의 하이브리드 차량이 “모터 구동모드”로 제어될 시에 엔진 냉각수 온도에 따라 엔진이 온(ON),오프(OFF) 제어되는 상태를 나타내는 그래프,
도 4는 본 발명에 따른 하이브리드 차량용 공조장치의 구성을 나타내는 도면,
도 5는 본 발명에 따른 하이브리드 차량이 “모터 구동모드”로 제어될 시에 엔진 냉각수 온도에 따라 엔진이 온(ON),오프(OFF) 제어되는 상태를 나타내는 그래프,
도 6은 본 발명에 따른 하이브리드 차량이 “모터 구동모드”로 제어될 시에 엔진 냉각수 온도와 템프도어의 개도각에 따라 엔진이 온(ON),오프(OFF) 제어되는 상태를 나타내는 그래프,
도 7은 본 발명에 따른 하이브리드 차량용 공조장치의 작동예를 나타내는 플로우챠트로서, “모터 구동모드”시에, 템프도어의 개도위치를 보상하는 작동예를 나타내는 도면,
도 8은 본 발명에 따른 하이브리드 차량용 공조장치의 작동예를 나타내는 플로우챠트로서, “모터 구동모드”시에, 엔진의 재작동을 제어하는 작동예를 나타내는 도면이다.
이하, 본 발명에 따른 하이브리드 차량용 공조장치의 바람직한 실시예를 첨부한 도면에 의거하여 상세히 설명한다(종래와 동일한 구성요소는 동일한 부호를 사용하여 설명한다).
먼저, 본 발명에 따른 하이브리드 차량용 공조장치의 특징부를 살펴보기에 앞서, 도 4를 참조하여 하이브리드 차량의 공조장치에 대해 간략하게 설명한다.
하이브리드 차량의 공조장치는, 공조케이스(1)를 구비하며, 공조케이스(1)에는 블로어(3)와 증발기(5)와 히터코어(7)가 설치된다.
블로어(3)는 내,외기를 흡입하여 공조케이스(1)의 내부통로(1a)로 송풍하고, 증발기(5)는 내부통로(1a)로 송풍되는 공기를 냉각시키며, 히터코어(7)는 내부통로(1a)로 송풍되는 공기를 가열한다.
특히, 히터코어(7)는, 엔진(8)으로부터 고온의 냉각수를 공급받는다. 따라서, 공급받은 고온의 냉각수와 주변의 공기를 열교환시킨다. 이로써, 차실내로 송풍되는 공기를 가열한다.
그리고, 공조장치는, 공조케이스(1)의 내부통로(1a)에 설치되는 템프도어(Temp. Door)(9)를 구비한다.
템프도어(9)는, 냉풍통로(1b)와 온풍통로(1c)의 분기점에 설치되며, 냉풍통로(1b)와 온풍통로(1c) 사이에서 회전운동하면서 상기 냉풍통로(1b)와 온풍통로(1c)의 개도량을 조절한다. 따라서, 차실내로 공급되는 냉풍량과 온풍량을 조절한다.
한편, 이러한 하이브리드 차량의 공조장치는, 도 2에 도시된 바와 같이, 차량이 “엔진 구동모드”에서 “모터 구동모드”로 전환되어 엔진(8)이 정지되면(A), 엔진(8)의 냉각수 온도가 낮아진다(B).
그리고 낮아진 냉각수 온도 때문에 히터코어(7)의 온도도 떨어진다(C). 따라서, 차실내로 토출되는 공기의 온도가 낮아진다(D). 그 결과, 차실내의 난방효율이 저하된다.
다음으로, 본 발명에 따른 하이브리드 차량용 공조장치의 특징부를 도 4 내지 도 8을 참조하여 상세하게 살펴보면 다음과 같다.
먼저, 도 4를 참조하면, 본 발명의 공조장치는, 차실내로 토출되는 실제의 공기온도를 감지하는 토출공기온도 감지수단(10)을 구비한다.
토출공기온도 감지수단(10)은, 차실내의 각 공기 토출 벤트(Vent)들 중, 특정한 벤트들에 설치되는 온도센서로 구성된다.
예를 들면, 차실내의 각 공기 토출 벤트들 중, 차실내 중앙부분의 센터 벤트(Center Vent)에 설치되는 센터 벤트 온도센서 또는 차실내 바닥면부분의 플로어 벤트(Floor Vent)에 설치되는 플로어 벤트 온도센서로 구성된다.
이러한 토출공기온도 감지수단(10)은, 차실내로 토출되는 실제의 공기온도를 직접 감지한 다음, 감지된 “토출공기온도”데이터를 후술하는 제어부(20)에 입력시킨다.
그리고 본 발명의 공조장치는, 제어부(20)를 구비한다. 제어부(20)는, 마이크로 프로세서를 갖추고 있는 것으로, 연산부(22)를 포함한다.
연산부(22)는, 토출공기온도 감지수단(10)으로부터 “차실내 토출공기온도”데이터가 입력된 상태에서, 차량이 “엔진 구동모드”에서 “모터 구동모드”로 전환되면, “모터 구동모드”로 전환된 시점으로부터 미리 설정된 시간 간격을 두고, 예를 들면, 초”간격을 두고, 현재시점의 “목표토출온도”와 “차실내 토출공기온도”간의 "온도편차(E_now)" 및, 이전시점, 즉, 5초 전의 “목표토출온도”와 “차실내 토출공기온도”간의 "온도편차(E_prev)"을 연산 처리한다.
참고로, “목표토출온도”는, 증발기(5)와 PTC 히터(7a)와 각종 도어(D) 등을 최적의 상태로 자동 제어하기 위해 산출된 값으로서, “사용자 설정온도”와, "증발기 온도"와, “외기온도”와, “내기온도”와, “일사량”등을 근거로 산출되며, 이렇게 산출된 “목표토출온도”에는 “차실내 토출공기온도 변화”를 유발하는 “인자값”들, 즉, “사용자 설정온도”와, "증발기 온도"와, “외기온도”“내기온도”와, “일사량”등이 간접적으로 포함되어 있다.
한편, 제어부(20)는, “모터 구동모드”의 진입 후, 연산부(22)에서 미리 설정된 시간 간격(5초 간격)으로 현재시점의 “목표토출온도”와 “차실내 토출공기온도”간의 "온도편차(E_now)"와, 이전시점의 “목표토출온도”와 “차실내 토출공기온도”간의 "온도편차(E_prev)"가 산출되면, 산출된 두 개의 "온도편차(E_now), (E_prev)" 와, 이전시점(5초 이전)의 “템프도어 개도위치(T_prev)”를 미리 내장된 아래의 [연산식 1]로 연산 처리하여 냉,온풍통로(1b, 1c)에 대한 템프도어(9)의 개도위치 보정값(T-_now)을 최종적으로 산출한다.
[연산식 1]
T-_now = T_prev + Cp ××- E_prev) + Gi ×E_now]
(T-_now는 템프도어 개도위치 보정값(V), T_prev는 이전시점의 템프도어 개도위치(V), Cp는 비례 게인, Gp는 온도편차에 대한 상수값, E_now는 현재시점의 목표토출온도와 토출공기온도 간의 온도편차(℃), E_prev는 이전시점의 목표토출온도와 토출공기온도 간의 온도편차(℃), Gi는 적분 게인)
여기서, Cp, Gp, Gi, 상수값으로서, 제어부(20)에 미리 내장되어 있으며, 여러번의 시험결과에 근거하여 정해진다.
[연산식 1]은, “목표토출온도”와, “차실내 토출공기온도”와, 현재시점과 이전시점에 대한 이들 간의 “온도편차”를 모두 고려하여 연산한 값으로서, 이를 이용하면, “모터 구동모드”진입 후, “토출공기온도변화 인자”들로 인해 발생된 실제의 ”차실내 토출공기온도 변화”를 측정할 수 있고, 이를 통해, 실제의 ”차실내 토출공기온도 변화”를 보상할 수 있는 최적의 템프도어(9)의 “개도위치 보정값(T-_now)”을 산출할 수 있게 된다.
여기서, [연산식 1]은, 템프도어(9)의 개도위치 보정값(T-_now)을, 냉,온풍통로(1b, 1c)에 대한 템프도어(9)의 인가전압값(V)으로 산출된다.
한편, 제어부(20)는, 템프도어(9)의 개도위치 보정값(T-_now)이 산출되면, 산출된 “템프도어 개도위치 보정값(T-_now)”에 따라 템프도어(9)의 개도위치를 보정 제어한다.
따라서, “모터 구동모드”시에, 템프도어(9)의 개도위치가 “토출공기온도변화 인자”들을 모두 고려하여 보정될 수 있게 한다. 특히, “토출공기온도변화”에 직접적인 영향을 끼치는 “블로어 풍량”과 “증발기 온도”와 “사용자 설정온도”와 “내외기온도”와 “일사량”등이 모두 고려된 값으로 보정될 수 있게 한다.
이로써, “모터 구동모드”시에 템프도어(9)의 개도위치를, 실제의 “차실내 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있게 한다. 그 결과, “모터 구동모드”시에 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 있다. 이에 따라, “모터 구동모드”시에 차실내의 온도를 최적의 상태로 제어할 수 있게 된다.
다시, 도 4를 참조하면, 제어부(20)는, “모터 구동모드”진입 후에, 템프도어(9)의 개도위치 보정값(T-_now)이 실시간으로 산출되더라도, 산출된 “템프도어 개도위치 보정값(T-_now)”에 따라 템프도어(9)의 개도위치를 무조건 보정하지 않는다.
다만, 미리 설정된 “진입조건”들이 모두 만족될 경우에 한정해서만, 템프도어(9)의 개도위치를 보정하도록 구성된다.
상기 “진입조건”들은, 엔진 냉각수 온도가 “목표토출온도”이하인 조건과, 템프도어(9)가 최대난방(Max Warm) 위치로 제어되어 온풍통로(1c)를 최대로 개방한 조건과, “차실내 토출공기온도”가 “목표토출온도”이하인 조건이다.
따라서, 제어부(20)는, 엔진 냉각수 온도가 “목표토출온도”이하인 조건과, 템프도어(9)가 최대난방 위치로 제어되는 조건과, “차실내 토출공기온도”가 “목표토출온도”이하인 조건이 모두 만족될 경우에만, [연산식 1]에 의해 산출된 “템프도어 개도위치 보정값(T-_now)”에 따라 템프도어(9)의 개도위치를 보정하도록 구성된다.
이렇게 구성한 이유는, 엔진 냉각수 온도가 “목표토출온도”를 초과한 경우에는, 엔진 냉각수 온도가 충분히 높으므로, 템프도어(9)의 개도위치를 보상 제어할 필요가 없기 때문이다.
또한, “차실내 토출공기온도”가 “목표토출온도”를 초과한 경우에는, "차실내 토출공기온도"가 충분히 높으므로, 템프도어(9)의 개도위치를 보상 제어할 필요가 없기 때문이다.
또한, 템프도어(9)가 최대난방 위치로 제어되는 조건이 아닌 경우에는, [연산식 1]을 이용하지 않고, 온풍통로(1c)에 대한 템프도어(9)의 개도각 제어만으로도 “차실내 토출공기온도”를 충분히 보상할 수 있기 때문이다.
상기 “진입조건”들의 다른 예로서, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 1온도보상치”를 더한 “제 1진입기준온도”이하인 조건과, 템프도어(9)가 최대난방 위치로 제어되는 조건과, “차실내 토출공기온도”가 “목표토출온도”에 미리 설정된 “제 2온도보상치”만큼 뺀 “제 2진입기준온도”이하인 조건이 있다.
따라서, 제어부(20)는, 엔진 냉각수 온도가 “목표토출온도”에 “제 1온도보상치”를 더한 “제 1진입기준온도”이하인 조건과, 템프도어(9)가 최대난방 위치로 제어되는 조건과, “차실내 토출공기온도”가 “목표토출온도”에 “제 2온도보상치”만큼 뺀 “제 2진입기준온도”이하인 조건에 모두 만족될 경우에만, [연산식 1]에 의해 산출된 “템프도어 개도위치 보정값(T-_now)”에 따라 템프도어(9)의 개도위치를 보정하도록 구성된다.
여기서, 상기 “제 1온도보상치”는, 엔진 냉각수 온도의 측정오차를 감안한 온도로서, 5℃로 설정되고, 상기 “제 2온도보상치”는, “차실내 토출공기온도”의 측정오차를 감안한 온도로서, 2℃로 설정되는 것이 바람직하다.
한편, 제어부(20)는, “모터 구동모드”진입 후에, 템프도어(9)의 개도위치를 보상 제어하는 상태에서, “모터 구동모드”가 해제(OFF)되거나, 또는 미리 설정된 “해제조건”에 만족되면, 예를 들어, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 3온도보상치”를 더한 “해제기준온도”이상인 조건에 만족되면, [연산식 1]에 의한- 템프도어(9)의 개도위치 보상 제어를 중단하도록 구성된다. 여기서, 상기 “제 3온도보상치”는, 10℃로 설정되는 것이 바람직하다.
다시, 도 4와 도 5와 도 6을 참조하면, 상기 제어부(20)는, “모터 구동모드”진입 후에, 엔진 냉각수의 온도가 “하한치(L)”이하로 저하될 시에는 엔진(8)을 재작동시키고, 엔진(8)의 재작동 후, 엔진 냉각수의 온도가 “상한치(U)”이상으로 상승될 시에는 엔진(8)을 다시 정지시키도록 구성된다.
이때, 엔진(8)을 재작동시키기 위한 “하한치(L)”는, 아래의 [연산식 2]에서와 같이 “현재 목표토출온도(M)”과 “제 1보상치(α)”의 합(合)에 의해 산출되고, 엔진(8)의 재작동을 정지시키기 위한 “상한치(U)”는, 아래의 [연산식 3]에서와 같이 “현재 목표토출온도(M)”과 “제 2보상치(β)”의 합(合)에 의해 산출되며, 이러한 [연산식 2]과 [연산식 3]은 제어부(20)에 내장되어 있다.
제어부(20)는, “모터 구동모드”진입 후에, “현재 목표토출온도(M)”과 “제 1보상치(α)”와 “제 2보상치(β)”를, 미리 내장된 [연산식 2]과 [연산식 3]을 통해 실시간으로 체크하여 “하한치(L)”와 “상한치(U)”를 실시간으로 산출한 다음, 산출된 “하한치(L)”와 “상한치(U)”를 “엔진 냉각수 온도”와 실시간으로 비교하여 엔진(8)의 재작동과 정지를 실시간으로 제어한다.
[연산식 2]
하한치(L) = 현재 목표토출온도(M) + 제 1보상치(α)
[연산식 3]
상한치(U) = 현재 목표토출온도(M) + 제 2보상치(β)
여기서, 제 1보상치(α)와 제 2보상치(β)는, 엔진 냉각수 온도의 측정오차를 보상하기 위한 것으로, 제 2보상치(β)가 제 1보상치(α)보다 더 큰 크기를 가지며, 여러번의 시험결과에 근거하여 정해진다.
이와 같은 구성의 본 발명에 의하면, “모터 구동모드”진입 후에, 엔진 냉각수의 온도에 따라 엔진(8)의 재작동시키되, 도 5와 도 6에 도시된 바와 같이, 엔진(8)의 재작동의 기준이 되는 “하한치(L)”와 “상한치(U)”를, “현재 목표토출온도(M)”를 근거로 가변시킴으로써, “모터 구동모드”시에, 엔진(8)의 재작동 시점이 “목표토출온도”에 따라 능동적으로 가변될 수 있게 한다.
따라서, 오직 하나의 “하한치(L)”와 “상한치(U)”를 기준으로 엔진(8)의 재작동 시점이 제어되는 종래의 기술과는 달리, 엔진(8)의 재작동 시점이 능동적으로 가변 제어된다.
이로써, “목표토출온도”가 낮게 설정되어 비교적 낮은 엔진 냉각수 온도에서도 “차실내 토출공기온도”를 충분히 보상할 수 있을 경우, 낮은 “목표토출온도”에 대응하여 엔진(8)의 재작동 시점을 지연시킬 수 있다.
그 결과, “차실내 토출공기온도”를 “목표토출온도”에 맞춰 최적의 상태로 제어할 수 있으면서 동시에 엔진(8)의 재작동은 최소화시킬 수 있다. 이에 따라, 엔진(8)의 불필요하고 빈번한 재작동을 최대한 방지하고, 이를 통해, 차량의 연비를 현저하게 개선시킬 수 있다.
다시, 도 4와 도 6을 참조하면, 제어부(20)는, “모터 구동모드”진입 후에, 엔진 냉각수의 온도가 “하한치(L)”이하로 저하(X)될 시에, 엔진(8)을 무조건 재작동시키지 않는다.
다만, 템프도어(9)가 최대난방(Max Warm) 위치로 제어되어 온풍통로(1c)를 최대로 개방하였는지를 판단한 후, 템프도어(9)가 온풍통로(1c)를 최대로 개방하였을 경우(Y)에만 비로소 엔진(8)을 재작동시키도록 구성된다.
이렇게 구성한 이유는, 엔진 냉각수의 온도가 “하한치(L)”이하로 저하(X)될 시라도, 온풍통로(1c)에 대한 템프도어(9)의 개도각 제어를 통해 “차실내 토출공기온도”를 충분히 보상할 수 있기 때문이다.
따라서, 템프도어(9)의 개도각 제어를 통한 “토출공기온도 보상”을 완료한 다음, 그 이후에 엔진(8)을 재작동시켜 “토출공기온도”를 제어함으로써, 엔진(8)의 재작동을 최대한 지연시키면서 동시에 “차실내 토출공기온도”는 충분히 보상할 수 있게 한다.
그 결과, 엔진(8)의 불필요한 재작동과 빈번한 재작동을 방지하고, 이를 통해, 차량의 연비를 현저하게 개선시킬 수 있게 된다.
또한, 제어부(20)는, 모터 구동모드 진입 후에, 상기 엔진 냉각수 온도가 상기 하한치(L) 이하로 저하(X)되더라도, 엔진(8)을 무조건 재작동시키지 않는다.
다만, 목표토출온도가 차실내 토출공기온도에 미리 설정된 온도보상치를 더한 값 이하인 경우에만, 비로소 엔진(8)을 재작동시키도록 구성된다. 여기서, 온도보상치는, 2℃로 설정되는 것이 바람직하다.
한편, 제어부(20)는, “모터 구동모드”진입 후에, 엔진(8)의 재작동의 기준이 되는 “하한치(L)”와 “상한치(U)”를, 가변 제어하되, “모터 구동모드”가 해제(OFF)되거나, 또는 상기 “해제조건”에 만족되면, 예를 들어, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 3온도보상치”를 더한 “해제기준온도”이상인 조건에 만족되면, “하한치(L)”와 “상한치(U)”의 가변 제어를 중단하고, 원래의 상태로 복귀시키도록 구성된다.
다음으로, 이와 같은 구성을 갖는 본 발명의 작동예를 도 4와 도 7과 도 8을 참조하여 설명한다.
먼저, “모터 구동모드”시에, 템프도어(9)의 개도위치를 보상하는 작동예를 설명한다.
도 4와 도 7을 참조하면, 난방모드 상태에서(S101), 차량이 “엔진 구동모드”에서 “모터 구동모드”로 전환되었는지를 판단한다(S103).
판단 결과, “모터 구동모드”로 전환되었으면, 제어부(20)는, 엔진 냉각수 온도와 공조장치의 상태가 미리 설정된 “진입조건”들에 모두 만족하는지를 다시 판단한다(S104).
즉, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 1온도보상치”를 더한 “제 1진입기준온도”이하인 조건과, 템프도어(9)가 최대난방 위치로 제어되는 조건과, “차실내 토출공기온도”가 “목표토출온도”에 미리 설정된 “제 2온도보상치”만큼 뺀 “제 2진입기준온도”이하인 조건이 모두 만족되는 지를 판단한다.
판단 결과, 이들 “진입조건”들이 모두 만족되면, 제어부(20)는, “모터 구동모드”의 진입시점으로부터 미리 설정된 시간 간격을 두고, 예를 들면, 초”간격을 두고, 현재시점의 “목표토출온도”와 “차실내 토출공기온도”간의 "온도편차(E_now)" 및, 이전시점의 “목표토출온도”와 “차실내 토출공기온도”간의 "온도편차(E_prev)"을 연산 처리한다(S105).
그리고 "온도편차(E_now), (E_prev)"의 연산이 완료되면, 제어부(20)는, 두 개의 "온도편차(E_now), (E_prev)" 와, 이전시점의 “템프도어 개도위치(T_prev)”를 [연산식 1]로 연산 처리하여(S107), 냉,온풍통로(1b, 1c)에 대한 템프도어(9)의 개도위치 보정값(T-_now)을 산출한다(S109).
그리고 템프도어(9)의 개도위치 보정값(T-_now)이 산출되면, 산출된 템프도어(9)의 개도위치 보정값(T-_now)에 의거하여 템프도어(9)의 개도위치를 실시간으로 보정한다(S111).
그러면, 템프도어(9)의 개도위치가 “목표토출온도”와 “토출공기온도변화 인자”들을 고려하여 보정된다. 이로써, 템프도어(9)의 개도위치가 “목표토출온도”와 “토출공기온도변화 인자”들로 인한 “실제 차실내 토출공기온도 변화”에 맞춰 최적의 상태로 보정된다.
그 결과, “모터 구동모드”시에 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 있고, 이에 따라, “모터 구동모드”시에 차실내의 온도를 최적의 상태로 제어할 수 있게 된다.
한편, 제어부(20)는, “모터 구동모드”진입 후에, 템프도어(9)의 개도위치를 보상 제어하는 상태에서, “모터 구동모드”가 해제(OFF)되거나, 또는 미리 설정된 “해제조건”에 만족되는 지를 다시 판단한다(S113).
즉, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 3온도보상치”를 더한 “해제기준온도”이상인 조건에 만족되는 지를 판단한다.
판단 결과, “모터 구동모드”가 해제(OFF)되거나, 또는 상기 “해제조건”이 만족되면, 제어부(20)는, [연산식 1]에 의한- 템프도어(9)의 개도위치 보상 제어를 해제한다(S115).
다음으로, “모터 구동모드”시에, 엔진(8)의 재작동을 제어하는 작동예를 도 4와 도 8을 참조하여 설명한다.
먼저, 난방모드 상태에서(S201), 차량이 “엔진 구동모드”에서 “모터 구동모드”로 전환되었는지를 판단한다(S203).
판단 결과, “모터 구동모드”로 전환되었으면, 제어부(20)는, 엔진 냉각수 온도와 공조장치의 상태가 미리 설정된 “진입조건”들에 모두 만족하는지를 다시 판단한다(S204).
즉, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 1온도보상치”를 더한 “제 1진입기준온도”이하인 조건과, 템프도어(9)가 최대난방 위치로 제어되는 조건과, “차실내 토출공기온도”가 “목표토출온도”에 미리 설정된 “제 2온도보상치”만큼 뺀 “제 2진입기준온도”이하인 조건이 모두 만족되는 지를 판단한다.
판단 결과, 이들 “진입조건”들이 모두 만족되면, 제어부(20)는, “모터 구동모드”의 진입시점으로부터 “현재 목표토출온도(M)”와 “제 1보상치(α)”를 [연산식 2]로 연산 처리하여(S205), “하한치(L)”를 실시간으로 산출한다(S207).
그리고 “하한치(L)”의 실시간 산출이 완료되면, 제어부(20)는, “엔진 냉각수 온도”가 “하한치(L)”가 이하로 저감되었는지를 비교 판단한다(S209).
판단 결과, “하한치(L)”이하로 저감되었으면, 제어부(20)는, 엔진(8)을 재작동시킨다(S211).
그러면, 엔진(8)이 재작동되면서 “엔진 냉각수 온도”가 상승되고, 그 결과, 차실내의 토출공기온도가 상승되면서 차실내의 난방성능을 높인다.
한편, 엔진(8)이 재작동된 상태에서, 제어부(20)는, “현재 목표토출온도(M)”와 “제 2보상치(β)”를 [연산식 3]으로 연산 처리하여(S213), “상한치(U)”를 실시간으로 산출한다(S215).
그리고 “상한치(U)”의 실시간 산출이 완료되면, 제어부(20)는, “엔진 냉각수 온도”가 “상한치(U)”이상으로 상승되었는지를 비교 판단한다(S217).
판단 결과, “상한치(U)”이상으로 상승되었으면, 제어부(20)는, 엔진(8)을 정지시킨다(S219). 그러면, 엔진(8)이 정지되면서 연료의 소모가 제한되고, 이로써 차량의 연비가 개선된다.
한편, 제어부(20)는, “모터 구동모드”진입 후에, 상기 “하한치(L)”와 “상한치(U)”를 가변 제어하는 상태에서, “모터 구동모드”가 해제(OFF)되거나, 또는 상기 “해제조건”에 만족되는 지를 다시 판단한다(S221).
즉, 엔진 냉각수 온도가 “목표토출온도”에 미리 설정된 “제 3온도보상치”를 더한 “해제기준온도”이상인 조건에 만족되는 지를 판단한다.
판단 결과, “모터 구동모드”가 해제(OFF)되거나, 또는 상기 “해제조건”이 만족되면, 제어부(20)는, “하한치(L)”와 “상한치(U)”의 가변 제어를 중단한다(S223).
이와 같은 구성의 본 발명에 의하면, “모터 구동모드”시에, 차실내의 “토출공기온도 변화”에 대응하여 템프도어(9)의 개도위치를 보정하되, “실제 토출공기온도 변화”에 영향을 주는 여러요인들을 고려하여 보정하는 구조이므로, 템프도어(9)의 개도위치를 “실제 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있다.
또한, “모터 구동모드”시에 템프도어(9)의 개도각을 “실제 토출공기온도 변화”에 맞춰 최적의 상태로 보정할 수 있으므로, “모터 구동모드”시에 “차실내 토출공기온도”를 보다 정밀하게 보상할 수 있고, 이를 통해, “모터 구동모드”시에 차실내의 온도를 최적의 상태로 제어할 수 있다.
또한, “모터 구동모드”시에, 엔진 냉각수 온도에 따라 엔진(8)을 재작동시키되, 엔진(8)의 재작동 시점을 “목표토출온도”에 따라 가변 제어하는 구조이므로, “차실내 토출공기온도”를 “목표토출온도”에 맞춰 최적의 상태로 보상할 수 있으면서도 동시에 엔진(8)의 재작동은 최소화시킬 수 있고, 이를 통해, 엔진(8)의 불필요한 재작동을 방지할 수 있다.
또한, “모터 구동모드”시에, 엔진 냉각수 온도에 따라 엔진(8)을 재작동시키되, 엔진(8)의 재작동 시점을 “템프도어 개도각”과 연계하여 제어하는 구조이므로, 엔진(8)의 재작동 없이 “템프도어 개도각”제어만으로도 “차실내 토출공기온도”를 충분히 보상할 수 있게 하고, 그 결과, 엔진(8)의 불필요한 재작동을 방지할 수 있다.
또한, 엔진(8)의 불필요한 재작동을 방지할 수 있는 구조이므로, 엔진(8)의 빈번한 재작동을 방지하고, 이를 통해, 차량의 연비를 개선시킬 수 있다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주내에서 적절하게 변경 가능한 것이다.

Claims (12)

  1. 모터 구동모드로 진입한 후, 상기 엔진(8)의 냉각수 온도가 하한치(L) 이하로 저하될 시에는 엔진(8)을 재작동시키고, 엔진(8)의 냉각수 온도가 상한치(U) 이상으로 상승될 시에는 재작동된 상기 엔진(8)을 정지시키는 제어부(20)를 포함하는 하이브리드 차량용 공조장치에 있어서,
    상기 제어부(20)는,
    상기 하한치(L)와 상한치(U)를 내외기 온도조건과 사용자 설정온도에 의해 산출된 목표토출온도에 따라 가변시켜, 상기 모터 구동모드 시에 상기 엔진(8)의 재작동 시점이 상기 목표토출온도에 따라 능동적으로 가변될 수 있게 제어하는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  2. 제 1항에 있어서,
    상기 제어부(20)가,
    상기 하한치(L)는 상기 목표토출온도(M)와 미리 정해진 제 1보상치(α)를 아래의 [식 1]로 연산하여 산출하고,
    상기 상한치(U)는 상기 목표토출온도(M)와 미리 정해진 제 2보상치(β)를 아래의 [식 2]로 연산하여 산출하는 것을 특징으로 하는 하이브리드 차량용 공조장치.
    [식 1]
    하한치(L) = 목표토출온도(M) + 제 1보상치(α)
    [식 2]
    상한치(U) = 목표토출온도(M) + 제 2보상치(β)
  3. 제 2항에 있어서,
    상기 제 1보상치(α)와 제 2보상치(β)는, 엔진 냉각수 온도의 측정오차를 보상하기 위한 상수값으로서, 상기 제 2보상치(β)가 상기 제 1보상치(α)보다 더 큰 크기를 갖는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 제어부(20)는,
    모터 구동모드 시에, 템프도어(9)의 개도위치에 따라 상기 엔진(8)을 재작동시키는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  5. 제 4항에 있어서,
    상기 제어부(20)는,
    모터 구동모드 시에, 상기 엔진 냉각수 온도가 상기 하한치(L) 이하로 저하(X)되더라도, 상기 템프도어(9)가 최대난방(Max Warm) 위치일 경우에만 상기 엔진(8)을 재작동시키는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  6. 제 4항에 있어서,
    상기 제어부(20)는,
    모터 구동모드 시에, 상기 엔진 냉각수 온도가 상기 하한치(L) 이하로 저하(X)되더라도, 상기 목표토출온도가 차실내 토출공기온도에 미리 설정된 온도보상치를 더한 값 이하인 경우에만, 상기 엔진(8)을 재작동시키는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  7. 제 4항에 있어서,
    차실내로 토출되는 실제 공기온도를 감지하는 토출공기온도 감지수단(10)과;
    모터 구동모드의 진입 시에, 상기 모터 구동모드의 진입시점으로부터 미리 설정된 시간 간격을 두고, 현재시점의 목표토출온도와 토출공기온도 감지수단(10)의 차실내 토출공기온도 간의 온도편차(E_now) 및, 이전시점의 목표토출온도와 토출공기온도 감지수단(10)의 차실내 토출공기온도 간의 "온도편차(E_prev)"을 연산 처리하는 연산부(22)를 포함하며;
    상기 제어부(20)는,
    모터 구동모드의 진입 후, 상기 연산부(22)에서 미리 설정된 시간 간격으로 산출된 두 개의 온도편차(E_now), (E_prev) 와, 이전시점의 템프도어 개도위치(T_prev)를 미리 내장된 아래의 [식 3]으로 연산 처리하여 냉,온풍통로(1b, 1c)에 대한 템프도어(9)의 개도위치 보정값(T-_now)을 산출하고, 산출된 템프도어(9)의 개도위치 보정값(T-_now)을 근거로 상기 템프도어(9)의 개도위치를 보정하는 것을 특징으로 하는 하이브리드 차량용 공조장치.
    [식 3]
    T-_now = T_prev + Cp ××- E_prev) + Gi ×E_now]
    (T-_now는 템프도어 개도위치 보정값(V), T_prev는 이전시점의 템프도어 개도위치(V), Cp는 비례 게인, Gp는 온도편차에 대한 상수값, E_now는 현재시점의 목표토출온도와 토출공기온도 간의 온도편차(℃), E_prev는 이전시점의 목표토출온도와 토출공기온도 간의 온도편차(℃), Gi는 적분 게인)
  8. 제 7항에 있어서,
    상기 제어부(20)는,
    상기 모터 구동모드 진입하더라도, 미리 설정된 진입조건들이 모두 만족되는 경우에 한정하여, 상기 [식 1], [식 2], [식 3]에 의한 상기 하한치(L)와 상한치(U)의 가변과, 상기 템프도어(9)의 개도위치 보정이 가능하도록 제어하는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  9. 제 8항에 있어서,
    상기 제어부(20)에 내장된 상기 진입조건들은, 상기 엔진 냉각수 온도가 목표토출온도 이하인 조건과, 상기 템프도어(9)가 최대난방(Max Warm) 위치인 조건과, 상기 차실내 토출공기온도가 목표토출온도 이하인 조건이며;
    상기 제어부(20)는, 상기 모터 구동모드 진입 후, 상기 엔진 냉각수 온도가 목표토출온도 이하인 조건과, 상기 템프도어(9)가 최대난방 위치인 조건과, 상기 차실내 토출공기온도가 목표토출온도 이하인 조건이 모두 만족될 경우에만, 상기 [식 1], [식 2], [식 3]에 의한 상기 하한치(L)와 상한치(U)의 가변 제어와, 상기 템프도어(9)의 개도위치 보정 제어가 가능한 것을 특징으로 하는 하이브리드 차량용 공조장치.
  10. 제 8항에 있어서,
    상기 제어부(20)에 내장된 상기 진입조건들은, 상기 엔진 냉각수 온도가 목표토출온도에 미리 설정된 제 1온도보상치를 더한 제 1진입기준온도 이하인 조건과, 상기 템프도어(9)가 최대난방 위치인 조건과, 상기 차실내 토출공기온도가 목표토출온도에 미리 설정된 제 2온도보상치 만큼 뺀 제 2진입기준온도 이하인 조건이며;
    상기 제어부(20)는, 상기 모터 구동모드 진입 후, 상기 엔진 냉각수 온도가 상기 제 1진입기준온도 이하인 조건과, 상기 템프도어(9)가 최대난방 위치인 조건과, 상기 차실내 토출공기온도가 상기 제 2진입기준온도 이하인 조건이 모두 만족될 경우에만, 상기 [식 1], [식 2], [식 3]에 의한 상기 하한치(L)와 상한치(U)의 가변 제어와, 상기 템프도어(9)의 개도위치 보정 제어가 가능한 것을 특징으로 하는 하이브리드 차량용 공조장치.
  11. 제 8항에 있어서,
    상기 제어부(20)는,
    상기 모터 구동모드 진입 후, 상기 하한치(L)와 상한치(U)의 가변 제어하고, 상기 템프도어(9)의 개도위치를 보정 제어하는 상태에서, 상기 모터 구동모드가 해제(OFF)되거나, 또는 미리 설정된 해제조건에 만족되면, 상기 하한치(L)와 상한치(U)의 가변 제어와 상기 템프도어(9)의 개도위치 보정 제어를 해제하는 것을 특징으로 하는 하이브리드 차량용 공조장치.
  12. 제 11항에 있어서,
    상기 제어부(20)에 내장된 해제조건은, 상기 엔진 냉각수 온도가 목표토출온도에 미리 설정된 제 3온도보상치를 더한 해제기준온도 이상인 조건이며;
    상기 제어부(20)는, 상기 엔진 냉각수 온도가 상기 해제기준온도 이상인 조건에 만족되면, 상기 하한치(L)와 상한치(U)의 가변 제어와 상기 템프도어(9)의 개도위치 보정 제어를 해제하는 것을 특징으로 하는 하이브리드 차량용 공조장치.
PCT/KR2015/010017 2014-09-23 2015-09-23 하이브리드 차량용 공조장치 WO2016048033A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201810648351.1A CN108819671B (zh) 2014-09-23 2015-09-23 用于混合动力车辆的空调设备
US15/110,118 US10131202B2 (en) 2014-09-23 2015-09-23 Air conditioning system for hybrid vehicles
DE112015000200.6T DE112015000200B4 (de) 2014-09-23 2015-09-23 Verfahren für ein Klimaanlagensystem für Hybridfahrzeuge
CN201580002933.7A CN105980177B (zh) 2014-09-23 2015-09-23 用于混合动力车辆的空调设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0126658 2014-09-23
KR20140126658 2014-09-23
KR10-2015-0134437 2015-09-23
KR1020150134437A KR102405177B1 (ko) 2014-09-23 2015-09-23 하이브리드 차량용 공조장치

Publications (1)

Publication Number Publication Date
WO2016048033A1 true WO2016048033A1 (ko) 2016-03-31

Family

ID=55581467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010017 WO2016048033A1 (ko) 2014-09-23 2015-09-23 하이브리드 차량용 공조장치

Country Status (1)

Country Link
WO (1) WO2016048033A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255917A (ja) * 2009-08-03 2009-11-05 Toyota Motor Corp ハイブリッド車両
KR20090126745A (ko) * 2008-06-05 2009-12-09 현대자동차주식회사 하이브리드 차량의 아이들 스톱시 공조시스템 제어방법
KR20110032082A (ko) * 2009-09-22 2011-03-30 한라공조주식회사 하이브리드 차량용 공조장치
KR20120060112A (ko) * 2010-12-01 2012-06-11 현대자동차주식회사 하이브리드 차량의 엔진 제어방법
KR101154207B1 (ko) * 2006-05-15 2012-06-18 현대자동차주식회사 하이브리드 차량용 난방시스템 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154207B1 (ko) * 2006-05-15 2012-06-18 현대자동차주식회사 하이브리드 차량용 난방시스템 제어방법
KR20090126745A (ko) * 2008-06-05 2009-12-09 현대자동차주식회사 하이브리드 차량의 아이들 스톱시 공조시스템 제어방법
JP2009255917A (ja) * 2009-08-03 2009-11-05 Toyota Motor Corp ハイブリッド車両
KR20110032082A (ko) * 2009-09-22 2011-03-30 한라공조주식회사 하이브리드 차량용 공조장치
KR20120060112A (ko) * 2010-12-01 2012-06-11 현대자동차주식회사 하이브리드 차량의 엔진 제어방법

Similar Documents

Publication Publication Date Title
KR102405177B1 (ko) 하이브리드 차량용 공조장치
WO2014193126A1 (ko) 차량용 공조장치
WO2014002137A1 (ja) 鉄道車両用全熱交換換気システム
WO2014069860A1 (ko) 차량의 창유리 디포깅 장치 및 이를 이용한 창유리 디포깅 방법
US20110016899A1 (en) Temperature control apparatus for in-vehicle electric storage device
WO2014017750A1 (ko) 복합 냉난방 공조장치의 종합 운전 제어방법
US9315089B2 (en) Vehicle air-conditioning control apparatus with idling stop function
WO2016048033A1 (ko) 하이브리드 차량용 공조장치
KR101198099B1 (ko) 하이브리드 차량용 공조장치
WO2019103333A1 (ko) 차량용 공조장치
WO2016048032A1 (ko) 하이브리드 차량용 공조장치
JPH07247060A (ja) エレベータの換気制御装置
JPH07227047A (ja) オルタネータ制御装置
WO2023003269A1 (ko) 차량의 열관리 시스템
KR101774814B1 (ko) 차량용 공조장치
KR101275072B1 (ko) 액티브 에어 플랩 차량의 공조장치
KR101198101B1 (ko) 하이브리드 차량용 공조장치
WO2023200211A1 (ko) 차량용 공조장치
KR101384561B1 (ko) 차량용 공조장치
WO2023058971A1 (ko) 차량용 공조장치
KR20160039720A (ko) 차량용 공조장치
JPH02212241A (ja) 車両用防曇装置
JP4367899B2 (ja) 自動車塗装用乾燥炉
KR100471263B1 (ko) 디젤 엔진에서 히터 제어방법
KR20130021911A (ko) 차량용 공조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120150002006

Country of ref document: DE

Ref document number: 112015000200

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15110118

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15844546

Country of ref document: EP

Kind code of ref document: A1