WO2016047819A1 - Method for manufacturing polymeric membrane - Google Patents

Method for manufacturing polymeric membrane Download PDF

Info

Publication number
WO2016047819A1
WO2016047819A1 PCT/KR2014/008854 KR2014008854W WO2016047819A1 WO 2016047819 A1 WO2016047819 A1 WO 2016047819A1 KR 2014008854 W KR2014008854 W KR 2014008854W WO 2016047819 A1 WO2016047819 A1 WO 2016047819A1
Authority
WO
WIPO (PCT)
Prior art keywords
pvdf
film
polymer
producing
polymer membrane
Prior art date
Application number
PCT/KR2014/008854
Other languages
French (fr)
Korean (ko)
Inventor
최승태
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Publication of WO2016047819A1 publication Critical patent/WO2016047819A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a method for producing a roll-to-roll type polymer membrane capable of mass production of PVDF-based polymer membranes by controlling the adhesion of the thin film.
  • an electroactive polymer is a promising material that can obtain a strain (several to several tens of percent) that is tens of times larger than that of conventional ferroelectric ceramics (up to 0.2%) under electrical stimulation.
  • EAP can be easily manufactured in various forms, attracting a lot of attention as a variety of sensors and actuators.
  • the light and flexible nature of the EAP increases the potential for use as sensors and drivers in flexible electronics in the future.
  • It is also called an artificial muscle because it can simulate a biological muscle with high fracture toughness, large strain, and high vibration damping, and is also called an artificial muscle.
  • Various researches have been conducted in the field of robots.
  • EAP can be classified into electronic EAP and ionic EAP according to the driving method.
  • Electronic EAP has the disadvantage of high driving speed and high driving voltage by using the force of electron under electric field.
  • Representative electronic EAP actuators include dielectric elastomer actuators and PVDF-based ferroelectric polymer actuators.
  • the film thickness is, for example, 10 ⁇ m
  • a driving voltage of 200 V to 1500 V is required.
  • the thickness of the PVDF-based ferroelectric polymer film should be made thinner to about 1 ⁇ m, while the PVDF-based ferroelectric polymer film may be used to produce a desired level of power.
  • Several layers must be laminated.
  • hot extrusion or solution casting is mainly used.
  • high temperature extrusion methods cannot produce thin PVDF-based ferroelectric polymer films.
  • the solution casting method is mainly to produce a PVDF-based ferroelectric polymer film on a glass substrate, according to the Republic of Korea Patent Publication No. 10-2013-0101833 "PVDF-based polymer film manufacturing method and method of manufacturing a laminated polymer actuator using the same" PVDF-based ferroelectric polymer films with a thickness of 1 m can be prepared.
  • this technique is not suitable for mass production because it manufactures a thin film on a glass plate. Therefore, in the technical field, it is urgent to develop a technology capable of mass-producing PVDF-based polymers in a thin film form.
  • an embodiment of the present invention is to provide a method for producing a roll-to-roll type polymer membrane that can mass-produce a PVDF-based polymer membrane by controlling the adhesion of the thin film.
  • a method of manufacturing a polymer film the first step of applying a PVDF-based polymer solution dissolved in a solvent on a carrier film; Obtaining a PVDF-based polymer membrane by volatilizing a solvent in the PVDF-based polymer solution coated on the carrier film; A third step of laminating a support film on the dried PVDF-based polymer film; Dipping the PVDF-based polymer film through the lamination into a liquid; And a fifth step of separating the PVDF-based polymer film and the support film from the carrier film. It may include.
  • the PVDF-based polymer may be a ferroelectric polymer.
  • ferroelectric polymer may be PVDF or P (VDF-TrFE).
  • the PVDF-based polymer may be a relaxed ferroelectric polymer.
  • the relaxed ferroelectric polymer may be P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE).
  • the solvent may be any one of a polar solvent such as methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), and dimethylformamide (DMF).
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • DMF dimethylformamide
  • the method may further include attaching a cover film to protect the PVDF-based polymer after the annealing process.
  • the method of applying the PVDF-based polymer solution in the second step may be formed by any one of the coating methods.
  • the carrier film may be a polymer film subjected to hydrophilic treatment on the surface.
  • the carrier film may be a PET film coated with SiO 2 .
  • the second step may be to uniformly volatilize the solvent by making a constant flow of gas over the applied solvent.
  • the second step may be to uniformly volatilize the solvent by making a constant flow of the inert gas of any one of N 2 , O 2 and Ar over the applied solvent.
  • the support film may be made of a silicone elastomer.
  • silicone elastomer-based polymer may be polydimethylsiloxane (PDMS).
  • the support film may be manufactured by coating PDMS (polydimethylsiloxane) on a polymer film such as polyethylene terephthalate (PET).
  • PDMS polydimethylsiloxane
  • PET polyethylene terephthalate
  • the liquid may be distilled water.
  • the liquid may be isopropyl alcohol (IPA).
  • the method may further include an electrical poling process of the PVDF-based polymer after the fifth step.
  • first to fifth steps may be produced by a roll-to-roll method of the PVDF-based polymer membrane.
  • the PVDF-based polymer solution may be uniformly applied onto the carrier film using a slot die.
  • the first to fifth step may proceed the process at a high temperature (50 ⁇ 90 °C).
  • the manufacturing method of the polymer membrane according to the embodiment of the present invention it is possible to mass-produce the PVDF-based polymer membrane by controlling the adhesion of the thin film.
  • the PVDF-based polymer can be mass-produced in a film form having a thickness of about 1 ⁇ m.
  • PVDF-based polymer film can be laminated through a lamination process.
  • the driving voltage can be lowered while maintaining the performance of the device.
  • PVDF-based relaxed ferroelectric polymer actuators can be used in a variety of portable electronic devices when the driving voltage is reduced by manufacturing a laminated structure because the displacement of the ferroelectric polymer actuator is possible.
  • FIG. 1 is a flow chart of a method for producing a polymer membrane according to an embodiment of the present invention.
  • FIG. 2 is a view showing a PVDF-based film coating process according to an embodiment of the present invention.
  • FIG. 3 is a view showing a solvent evaporation process according to an embodiment of the present invention.
  • FIG. 4 is a view showing a lamination process of the support film according to an embodiment of the present invention.
  • FIG. 5 is a view showing a hydration process for controlling the adhesive force according to an embodiment of the present invention.
  • an electroactive polymer is a promising material that can obtain a strain (several to several tens of percent) that is tens of times larger than that of conventional ferroelectric ceramics (up to 0.2%) under electrical stimulation.
  • EAP can be easily manufactured in various forms, attracting a lot of attention as a variety of sensors and actuators.
  • the light and flexible nature of the EAP enhances its potential for use as sensors and drivers in future flexible electronics.
  • It is also called an artificial muscle because it can simulate a biological muscle having high fracture toughness, large strain, high vibration damping, and the like, and is also called an artificial muscle.
  • Various researches are being conducted in the field of biomimetic robots.
  • EAP can be divided into Ionic EAP and Electronic EAP. Since Ionic EAP is deformed by the movement of ions by an applied current, the driving voltage is low but the response speed is slow. In addition, Ionic EAP mainly uses an electrolyte, and it is not easy to increase the response speed due to physical limitations on the diffusion and movement speed of ions in the electrolyte. Since the sealing of the electrolyte is required, reliability improvement should be made first for commercialization. Electronic EAP, on the other hand, has a fast response ( ⁇ 10 -2 s) due to the Maxwell stress caused by the applied electric field ( ⁇ 10 -2 s), but it is strong to 50-150 V / ⁇ m to create a few% strain. Since the electric field is required, the driving voltage is high. In order to commercialize such electronic EAP detectors and drivers using hand-held electronics with limited voltage, a drop in operating voltage is essential.
  • P (VDF-TrFE-CFE) poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)
  • P (VDF-TrFE-CTFE) poly (vinylidene fluoride-), a relaxed ferroelectric polymer. trifluoroethylene-chlorotrifluoroethylene)
  • P (VDF-TrFE-CFE) is composed of a combination of three single molecule VDF, TrFE, and CFE.
  • the third single molecule, CFE introduces a defect in the arrangement of the ferroelectric polymer, P (VDF-TrFE), which causes the all-trans chains to be coherent with all-trans chains interrupted by trans and gauche bonds).
  • PVDF polyvinylidene fluoride
  • the thickness of the Electronic EAP should be made as thin as possible, and to produce a desired level of power, a multilayer polymer driver having several layers of the Electronic EAP should be developed. At this time, the + and-electrodes should be stacked alternately between each electronic EAP layer.
  • PVDF-based relaxed ferroelectric polymers that can be displaced are dissolved in polar solvents such as methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK) and dimethylformamide (DMF), and then the solution is shaped into the desired shape.
  • the solvent is volatilized into a solid, which is called a solution casting method.
  • spin coating a kind of solution casting method, is used or a solution is applied with an applicator.
  • the solution casting method is to be applied to the laminated structure, a problem arises in which the solvent penetrates into the lower layer and damages the lower structure during fabrication of the upper layer.
  • PVDF-based polymer membranes must be manufactured and laminated individually.
  • a method of preparing a polymer membrane according to an embodiment of the present invention is based on a roll-to-roll process and uses an adhesion-controlled film transfer technique. It provides technology to mass-produce PVDF-based polymer in the form of thin film.
  • the method of manufacturing a polymer membrane according to an embodiment of the present invention PVDF-based film coating, solvent evaporation, the support film (15) the first process consisting of lamination, liquid 16 immersion secondary process such as distilled water, and the carrier film (13) It can be divided into three steps of separation.
  • a method of manufacturing a polymer film according to an embodiment of the present invention specifically includes a PVDF-based film coating step (S100), an evaporation of solvent agent.
  • Step 3 (S300), Hydration for adhesion control Step 4 (S400) and carrier film 13 separation (Debonding of carrier film) includes a fifth step (S500).
  • the first step S100 is to uniformly apply a PVDF-based polymer solution 14 dissolved in a solvent onto a carrier film.
  • slot die coating As a representative method for applying the PVDF-based polymer solution 14 on the carrier film 13 in the first step (S100) is a slot die coating (slot die coating) that can produce a more sophisticated film than other methods. Slot die coating is squeezed out through the grooves on the target material. When the coating is 100% solids, the process is called injection. In this case the line speed is faster than the injection. This allows the coating material to be coated significantly thinner than the width of the coating groove.
  • reverse roll coating, gap coating, Meyer rod coating, Gravure coating, immersion coating, curtain coating and air knife Coating methods such as air knife coating can be used.
  • Reverse Roll Coating is tailored on an application roller with precise setting between metering roller gaps where the coating material is placed on the application roller.
  • the coating material is removed from the coating material on the application roller by the material when the material passes the attention of the support roller below.
  • the coating material in the tank passes through the space above the material while continuously moving down.
  • the amount of accumulation thus depends on the velocity of the target material and the width of the space.
  • Air knife coating is a method of blowing air to apply a water-soluble coating material to the surface of the target material. This process is used for typical water-based products and is noisy.
  • the carrier film 13 moves in the direction of the arrow by the rotational operation of the roll 11.
  • the roll 11 rotates in the direction of the arrow shown in the roll 11 of FIG.
  • the PVDF-based polymer solution 14 is applied to the carrier film 13 moving by the roll 11.
  • the PVDF based polymer solution 14 is discharged by the slot die 17 and applied to the carrier film 13.
  • the slot die 17 is disposed on one side of the roll 11 to discharge the PVDF-based polymer solution 14 to the carrier film 13.
  • the second step S200 is performed by volatilizing a solvent in a PVDF-based polymer solution 14 coated on a carrier film 13 under a well controlled environment, thereby providing a uniform PVDF-based polymer film 12. To get it.
  • the carrier film 13 coated with the PVDF-based polymer solution 14 is rotated along the left and right rolls installed at predetermined intervals, and the PVDF-based polymer solution 14 The solvent is volatilized at.
  • the left roll 11 and the right roll 11 rotate in the same direction as the arrow direction shown in the roll 11 in FIG. 3.
  • the third step S300 is laminating a support film on the dried PVDF-based polymer film 12.
  • the support film 15 is wound on the roll 11 while laminating the support film 15 on the PVDF-based polymer film 12 dried in the third step S300.
  • the fourth step S400 is performed by submerging the liquid 16 such as distilled water in order to weaken the interfacial bonding force between the PVDF-based polymer membrane 12 and the carrier film 13. This allows the molecules to diffuse.
  • a liquid such as deionized water, isopropyl alcohol, or the like may be used.
  • the fifth step S500 is a step of removing the PVDF-based polymer film 12 and the support film 15 from the carrier film 13.
  • the PVDF-based polymer film 12 and the support film 15 are detached from the carrier film 13 in the fifth step S500, the PVDF-based polymer film 12 remains on the support film 15 to enable transfer. Becomes
  • the VDF-based polymer film 12 and the support film 15 are separated from the carrier film 13 while passing through them.
  • the left and right pair of rolls 11 rotate in opposite directions to each other as shown by the arrow direction shown in the roll of FIG.
  • a PVDF-based polymer membrane 12 and a carrier film 13 are used to produce a large amount of PVDF-based polymer membranes using a roll-to-roll method.
  • IPA isopropyl alcohol
  • hydrophilic treatment is performed on the surface of the carrier film 13.
  • Hydrophilic treatment can produce a hydrophilic surface mainly by coating an oxide film.
  • SiO 2 may be coated on a polyethylene terephthalate (PET) film to be used as a carrier film.
  • PET polyethylene terephthalate
  • the surface of the support film 15 has an appropriate adhesive strength with the PVDF-based polymer film 12 even when immersed, and should be prepared so as not to reduce the adhesive force.
  • the adhesion between the PVDF-based polymer film 12 and the support film 15 is too large, a problem occurs when trying to transfer the PVDF-based polymer film. Therefore, it is very important to fabricate the support film to have a proper interfacial bonding force with the PVDF-based polymer.
  • Such a support film may be manufactured by applying a polymer having an appropriate adhesive strength of a silicone elastomer series, such as polydimethylsiloxane (PDMS, polydimethylsiloxane) on a PET film.
  • PDMS polydimethylsiloxane
  • an annealing process may be added after the fifth step S500 in order to improve the crystallinity of the PVDF-based polymer film.
  • This annealing process is mainly performed for a long time at a temperature higher than the Curie temperature and lower than the melting temperature of the PVDF-based polymer membrane.
  • the crystallinity of the PVDF-based polymer membrane can be increased, thereby improving the driving performance of the driver using the PVDF-based polymer membrane.
  • a cover film may be attached to protect the PVDF-based polymer after the annealing process is finished.
  • the method of manufacturing the polymer membrane according to the embodiment of the present invention uses a support film having an appropriate adhesive force to separate the PVDF based polymer membrane having a thickness of about 1 ⁇ m from the carrier film and to facilitate the treatment.
  • the adhesion between the film and the carrier film is weakened to facilitate separation.
  • the thin film thus manufactured can be transferred by a lamination method, which is useful for manufacturing a multilayer polymer device.

Abstract

A method for manufacturing polymeric membrane according to an embodiment of the present invention comprises: a first step for applying a polyvinylidene fluoride (PVDF)-based polymeric solution dissolved in a solvent, onto a carrier film; a second step for volatilizing the PVDF-based solvent in the PVDF-based polymeric solution applied on the carrier film to obtain a PVDF-based polymeric membrane; a third step for laminating a support film on the dried PVDF-based polymeric membrane; a fourth step for immersing the laminated PVDF-based polymeric membrane in a liquid; and a fifth step for separating the PVDF-based polymeric membrane and the support film from the carrier film.

Description

고분자 막의 제조방법Manufacturing method of polymer membrane
본 발명은 박막의 접착력을 제어하여 PVDF 기반의 고분자 막을 대량 생산할 수 있는 롤투롤 방식의 고분자 막의 제조방법에 관한 것이다.The present invention relates to a method for producing a roll-to-roll type polymer membrane capable of mass production of PVDF-based polymer membranes by controlling the adhesion of the thin film.
일반적으로 EAP(electroactive polymer)는 전기적 자극 하에서 기존의 강유전 세라믹(ferroelectric ceramic)에서 얻을 수 있는 변형률(최대 0.2 %)보다 수십 배나 큰 변형률(수 % ~ 수십 %)을 얻을 수 있는 유망한 재료이다. 또한, EAP는 많은 고분자 재료와 마찬가지로 여러 가지 형태로 쉽게 제조가 가능하여, 다양한 감지기(sensor) 및 구동기(actuator)로서 많은 관심을 불러일으키고 있다. 특히, EAP의 가볍고 유연한 특성은 향후 유연한 전자기기(flexible electronics)에서 감지기 및 구동기로서의 사용 가능성을 높여준다. 또한, 높은 파괴 인성(fracture toughness), 대 변형률, 높은 진동 감쇠(vibration damping) 등의 특성을 갖는 생체 근육(biological muscle)을 모사할 수 있어 인공 근육(artificial muscle)이라고도 불리며, 생체모사 로봇(biomimetic robot) 분야에서 다양하게 연구가 진행되고 있다. EAP는 구동 방식에 따라 크게 electronic EAP와 ionic EAP로 구분할 수 있다. Electronic EAP는 electric field 하에서 전자가 받는 힘을 이용하는 방식으로 구동속도가 빠른 반면 구동전압이 높은 단점이 있다. 대표적인 electronic EAP actuator로는 dielectric elastomer actuator 및 PVDF-based ferroelectric polymer actuator를 들 수 있다. 특히, P(VDF-TrFE-CFE) [poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)] 또는 P(VDF-TrFE-CTFE) [poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)]를 사용한 relaxor ferroelectric polymer actuator는 20~150 V/μm 정도의 전기장(electric field) 하에서 최대 5~7 % 수준의 스트레인(strain)을 유발한다. 그러므로, 필름(film)의 두께가 예를 들어 10 μm일 경우 200V ~ 1500V 수준의 구동전압이 필요하게 된다. 이러한 구동전압을 휴대용 전자기기에 사용 가능한 수준으로 낮추기 위해서는 PVDF-based ferroelectric polymer film의 두께를 약 1 μm 내외로 얇게 만들어야 함과 동시에 원하는 수준의 파워(power)를 내기 위해서는 PVDF-based ferroelectric polymer film을 여러 층 적층하여야 한다. PVDF-based ferroelectric polymer를 film 형태로 제조하는 방법으로는 고온압출 혹은 용액주조법이 주로 사용된다. 하지만 고온압출 방법으로는 얇은 PVDF-based ferroelectric polymer film을 제조할 수 없다. 또한, 용액주조법은 주로 유리기판위에 PVDF-based ferroelectric polymer film을 제작하게 되는데, 대한민국 공개특허공보 제10-2013-0101833호 "PVDF계 폴리머 필름 제조방법 및 이를 이용한 적층형 폴리머 액츄에이터 제조방법"에 따르면 약 1 m 수준의 두께를 갖는 PVDF-based ferroelectric polymer film을 제조할 수 있다. 하지만, 이러한 기술은 유리평판 위에 박막을 제조하기 때문에 대량생산에 적합하지 않은 방법이라 할 수 있다. 이에 해당 기술분야에서는 PVDF 기반의 고분자를 박막 형태로 대량 생산할 수 있는 기술의 개발이 시급한 실정이다.In general, an electroactive polymer (EAP) is a promising material that can obtain a strain (several to several tens of percent) that is tens of times larger than that of conventional ferroelectric ceramics (up to 0.2%) under electrical stimulation. In addition, like many polymer materials, EAP can be easily manufactured in various forms, attracting a lot of attention as a variety of sensors and actuators. In particular, the light and flexible nature of the EAP increases the potential for use as sensors and drivers in flexible electronics in the future. It is also called an artificial muscle because it can simulate a biological muscle with high fracture toughness, large strain, and high vibration damping, and is also called an artificial muscle. Various researches have been conducted in the field of robots. EAP can be classified into electronic EAP and ionic EAP according to the driving method. Electronic EAP has the disadvantage of high driving speed and high driving voltage by using the force of electron under electric field. Representative electronic EAP actuators include dielectric elastomer actuators and PVDF-based ferroelectric polymer actuators. In particular, relaxor ferroelectric polymer actuators using P (VDF-TrFE-CFE) [poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)] or P (VDF-TrFE-CTFE) [poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)] It causes strains up to 5-7% under an electric field of 150 V / μm. Therefore, when the film thickness is, for example, 10 μm, a driving voltage of 200 V to 1500 V is required. In order to reduce the driving voltage to a level that can be used in portable electronic devices, the thickness of the PVDF-based ferroelectric polymer film should be made thinner to about 1 μm, while the PVDF-based ferroelectric polymer film may be used to produce a desired level of power. Several layers must be laminated. For the production of PVDF-based ferroelectric polymer in the form of a film, hot extrusion or solution casting is mainly used. However, high temperature extrusion methods cannot produce thin PVDF-based ferroelectric polymer films. In addition, the solution casting method is mainly to produce a PVDF-based ferroelectric polymer film on a glass substrate, according to the Republic of Korea Patent Publication No. 10-2013-0101833 "PVDF-based polymer film manufacturing method and method of manufacturing a laminated polymer actuator using the same" PVDF-based ferroelectric polymer films with a thickness of 1 m can be prepared. However, this technique is not suitable for mass production because it manufactures a thin film on a glass plate. Therefore, in the technical field, it is urgent to develop a technology capable of mass-producing PVDF-based polymers in a thin film form.
전술한 문제를 해결하기 위하여, 본 발명의 실시예는 박막의 접착력을 제어하여 PVDF 기반의 고분자 막을 대량 생산할 수 있는 롤투롤 방식의 고분자 막의 제조방법을 제공하고자 한다.In order to solve the above problems, an embodiment of the present invention is to provide a method for producing a roll-to-roll type polymer membrane that can mass-produce a PVDF-based polymer membrane by controlling the adhesion of the thin film.
전술한 목적을 이루기 위해, 본 발명의 실시예에 따른 고분자 막의 제조방법은, 용매에 녹인 PVDF 기반의 고분자 용액을 캐리어 필름 위에 도포하는 제1단계; 상기 캐리어 필름 위에 도포된 PVDF 기반의 고분자 용액에서 용매를 휘발시켜 PVDF 기반의 고분자 막을 얻는 제2단계; 상기 건조된 PVDF 기반의 고분자 막 위에 서포트 필름을 라미네이션 하는 제3단계; 상기 라미네이션 과정을 거친 PVDF 기반의 고분자 막을 액체 속에 담그는 제4단계; 및 상기 PVDF 기반의 고분자 막과 서포트 필름을 캐리어 필름으로부터 떼어내는 제5단계; 를 포함할 수 있다.In order to achieve the above object, a method of manufacturing a polymer film according to an embodiment of the present invention, the first step of applying a PVDF-based polymer solution dissolved in a solvent on a carrier film; Obtaining a PVDF-based polymer membrane by volatilizing a solvent in the PVDF-based polymer solution coated on the carrier film; A third step of laminating a support film on the dried PVDF-based polymer film; Dipping the PVDF-based polymer film through the lamination into a liquid; And a fifth step of separating the PVDF-based polymer film and the support film from the carrier film. It may include.
또한, 상기 PVDF 기반의 고분자는 강유전 고분자(ferroelectric polymer)일 수 있다.In addition, the PVDF-based polymer may be a ferroelectric polymer.
또한, 상기 강유전 고분자는 PVDF 또는 P(VDF-TrFE)일 수 있다.In addition, the ferroelectric polymer may be PVDF or P (VDF-TrFE).
또한, 상기 PVDF 기반의 고분자는 완화형 강유전 고분자(relaxor ferroelectric polymer)일 수 있다.In addition, the PVDF-based polymer may be a relaxed ferroelectric polymer.
또한, 상기 완화형 강유전 고분자는 P(VDF-TrFE-CFE) 또는 P(VDF-TrFE-CTFE)일 수 있다.In addition, the relaxed ferroelectric polymer may be P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE).
또한, 상기 용매는 MIBK(methyl isobutyl ketone), MEK(methyl ethyl ketone) 및 DMF(dimethylformamide)와 같은 극성 용매(polar solvent) 중 어느 하나일 수 있다.In addition, the solvent may be any one of a polar solvent such as methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), and dimethylformamide (DMF).
또한, 상기 제5단계 후 PVDF 기반의 고분자 막의 결정도를 향상시키기 위한 풀림(annealing) 공정을 더 포함할 수 있다.The method may further include an annealing process for improving the crystallinity of the PVDF-based polymer film after the fifth step.
또한, 상기 풀림 공정 후 PVDF 기반의 고분자를 보호하기 위해 커버 필름(cover film)을 부착하는 공정을 더 포함할 수 있다.The method may further include attaching a cover film to protect the PVDF-based polymer after the annealing process.
또한, 상기 제2단계에서 PVDF 기반의 고분자 용액을 도포하는 방법은, 그라비어 코팅(Gravure coating), 리버스롤 코팅(reverse roll coating), 갭 코팅(gap coating), 메이어 로드 코팅(Meyer rod coating), 슬롯 다이 코팅(slot die coating), 이머젼 코팅(immersion coating), 커튼 코팅(curtain coating) 및 에어 나이프 코팅(air knife coating) 중 어느 하나의 코팅 방법으로 이루어질 수 있다.In addition, the method of applying the PVDF-based polymer solution in the second step, gravure coating (Gravure coating), reverse roll coating (gap coating), gap coating (gap coating), Meyer rod coating (Meyer rod coating), Slot die coating, immersion coating, curtain coating and air knife coating may be formed by any one of the coating methods.
또한, 상기 캐리어 필름은 표면에 친수처리(hydrophilic treatment)가 된 고분자 필름일 수 있다.In addition, the carrier film may be a polymer film subjected to hydrophilic treatment on the surface.
또한, 상기 캐리어 필름은 SiO2가 코팅된 PET 필름일 수 있다.In addition, the carrier film may be a PET film coated with SiO 2 .
또한, 상기 제2단계는 도포된 용매 위로 일정한 기체의 유동을 만들어 주어 용매를 균일하게 휘발시키는 것일 수 있다.In addition, the second step may be to uniformly volatilize the solvent by making a constant flow of gas over the applied solvent.
또한, 상기 제2단계는 도포된 용매 위로 N2, O2 및 Ar 중 어느 하나의 불활성 기체의 일정한 유동을 만들어 주어 용매를 균일하게 휘발시키는 것일 수 있다.In addition, the second step may be to uniformly volatilize the solvent by making a constant flow of the inert gas of any one of N 2 , O 2 and Ar over the applied solvent.
또한, 상기 서포트 필름은 실리콘 엘라스토머(silicone elastomer)로 제작될 수 있다.In addition, the support film may be made of a silicone elastomer.
또한, 상기 실리콘 엘라스토머(silicone elastomer) 계열의 고분자는 PDMS(polydimethylsiloxane)일 수 있다.In addition, the silicone elastomer-based polymer may be polydimethylsiloxane (PDMS).
또한, 상기 서포트 필름은 PET(polyethylene terephthalate)와 같은 고분자 필름 위에 실리콘 엘라스토머를 코팅하여 제작할 수 있다.In addition, the support film may be prepared by coating a silicone elastomer on a polymer film such as polyethylene terephthalate (PET).
또한, 상기 서포트 필름은 PET(polyethylene terephthalate)와 같은 고분자 필름 위에 PDMS (polydimethylsiloxane)를 코팅하여 제작할 수 있다.In addition, the support film may be manufactured by coating PDMS (polydimethylsiloxane) on a polymer film such as polyethylene terephthalate (PET).
또한, 상기 제4단계에서 액체는 증류수(distilled water)일 수 있다.In addition, in the fourth step, the liquid may be distilled water.
또한, 상기 제4단계에서 액체는 탈염수(deionized water)일 수 있다.In addition, in the fourth step, the liquid may be deionized water.
또한, 상기 제4단계에서 액체는 이소프로필 알코올(IPA, isopropyl alcohol)일 수 있다.In addition, in the fourth step, the liquid may be isopropyl alcohol (IPA).
또한, 상기 제5단계 후 PVDF 기반의 고분자의 폴링(electrical poling) 공정을 더 포함할 수 있다.In addition, the method may further include an electrical poling process of the PVDF-based polymer after the fifth step.
또한, 상기 제1단계 내지 제5단계는 PVDF 기반의 고분자 막을 롤투롤(roll-to-roll) 방법으로 제조할 수 있다.In addition, the first to fifth steps may be produced by a roll-to-roll method of the PVDF-based polymer membrane.
또한, 상기 제1단계에서 슬롯 다이를 이용하여 캐리어 필름 위에 PVDF 기반의 고분자 용액을 균일하게 도포할 수 있다.In addition, in the first step, the PVDF-based polymer solution may be uniformly applied onto the carrier film using a slot die.
또한, 상기 제1단계 내지 제5단계는 고온(50~90 ℃)에서 공정을 진행할 수 있다.In addition, the first to fifth step may proceed the process at a high temperature (50 ~ 90 ℃).
본 발명의 실시예에 따른 고분자 막의 제조방법에 의하면, 박막의 접착력을 제어하여 PVDF 기반의 고분자 막을 대량 생산할 수 있다.According to the manufacturing method of the polymer membrane according to the embodiment of the present invention, it is possible to mass-produce the PVDF-based polymer membrane by controlling the adhesion of the thin film.
또한, PVDF 기반의 고분자를 두께 1 ㎛ 내외의 막 형태로 대량생산할 수 있다.In addition, the PVDF-based polymer can be mass-produced in a film form having a thickness of about 1 μm.
또한, PVDF 기반의 고분자 막을 라미네이션 공정을 통해 적층할 수 있다.In addition, PVDF-based polymer film can be laminated through a lamination process.
또한, 단일 PVDF 기반의 고분자의 두께를 줄이고 다층으로 적층함으로써, 소자의 성능은 그대로 유지하면서 구동전압을 낮출 수 있다.In addition, by reducing the thickness of a single PVDF-based polymer and stacking in multiple layers, the driving voltage can be lowered while maintaining the performance of the device.
또한, PVDF 및 PVDF 기반의 고분자와 같은 고분자를 활용하여 다층 전기활성 고분자 액츄에이터(multilayered EAP actuator), 센서(sensor), 커패시터(capacitor) 등의 제조에 사용할 수 있다.In addition, by using a polymer such as PVDF and PVDF-based polymers, it can be used for the manufacture of multilayer electroactive polymer actuators (sensors), sensors (capacitors) and the like.
또한, PVDF 기반의 완화형 강유전 고분자 액츄에이터(relaxor ferroelectric polymer actuator)는 대변위 구동이 가능하므로 적층구조로 제작하여 구동전압을 낮출 경우 휴대용 전자기기에 다양하게 사용할 수 있다.In addition, PVDF-based relaxed ferroelectric polymer actuators can be used in a variety of portable electronic devices when the driving voltage is reduced by manufacturing a laminated structure because the displacement of the ferroelectric polymer actuator is possible.
도 1은 본 발명의 바람직한 일 실시예에 따른 고분자 막의 제조방법의 순서도이다.1 is a flow chart of a method for producing a polymer membrane according to an embodiment of the present invention.
도 2는 본 발명의 바람직한 일 실시예에 따른 PVDF 기반의 막 코팅 과정을 나타내는 도면이다.2 is a view showing a PVDF-based film coating process according to an embodiment of the present invention.
도 3은 본 발명의 바람직한 일 실시예에 따른 용매 증발 과정을 나타내는 도면이다.3 is a view showing a solvent evaporation process according to an embodiment of the present invention.
도 4는 본 발명의 바람직한 일 실시예에 따른 서포트 필름의 라미레이션 과정을 나타내는 도면이다.4 is a view showing a lamination process of the support film according to an embodiment of the present invention.
도 5는 본 발명의 바람직한 일 실시예에 따른 접착력 제어를 위한 수화 과정을 나타내는 도면이다.5 is a view showing a hydration process for controlling the adhesive force according to an embodiment of the present invention.
도 6은 본 발명의 바람직한 일 실시예에 따른 캐리어 필름의 분리 과정을 나타내는 도면이다.6 is a view showing a separation process of a carrier film according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible, even if shown on different drawings. In addition, the following will describe a preferred embodiment of the present invention, but the technical idea of the present invention is not limited thereto and may be variously modified and modified by those skilled in the art.
일반적으로 EAP(electroactive polymer)는 전기적 자극 하에서 기존의 강유전 세라믹(ferroelectric ceramic)에서 얻을 수 있는 변형률(최대 0.2 %)보다 수십 배나 큰 변형률(수 % ~ 수십 %)을 얻을 수 있는 유망한 재료이다. 또한, EAP는 많은 고분자 재료와 마찬가지로 여러 가지 형태로 쉽게 제조가 가능하여, 다양한 감지기(sensor) 및 구동기(actuator)로서 많은 관심을 불러일으키고 있다. 특히, EAP의 가볍고 유연한 특성은 향 후 유연한 전자기기(flexible electronics)에서 감지기 및 구동기로서의 사용 가능성을 높여준다. 또한, 높은 파괴 인성(fracture toughness), 대 변형률, 높은 진동 감쇠(vibration damping), 등의 특성을 갖는 생체 근육(biological muscle)을 모사할 수 있어 인공 근육(artificial muscle)이라고도 불리며, 생체모사 로봇(biomimetic robot) 분야에서 다양하게 연구가 진행되고 있다.In general, an electroactive polymer (EAP) is a promising material that can obtain a strain (several to several tens of percent) that is tens of times larger than that of conventional ferroelectric ceramics (up to 0.2%) under electrical stimulation. In addition, like many polymer materials, EAP can be easily manufactured in various forms, attracting a lot of attention as a variety of sensors and actuators. In particular, the light and flexible nature of the EAP enhances its potential for use as sensors and drivers in future flexible electronics. It is also called an artificial muscle because it can simulate a biological muscle having high fracture toughness, large strain, high vibration damping, and the like, and is also called an artificial muscle. Various researches are being conducted in the field of biomimetic robots.
EAP는 크게 Ionic EAP와 Electronic EAP로 나눌 수 있다. Ionic EAP는 인가된 전류에 의해 이온들이 이동함으로써 변형이 발생하므로, 구동전압은 낮으나 응답속도가 느린 단점이 있다. 또한, Ionic EAP는 주로 전해질을 사용하며, 전해질 내에서 이온의 확산 및 이동 속도에 대한 물리적 한계 때문에 응답속도를 높이는 것이 쉽지 않으며, 전해질의 밀봉이 필요하므로 상용화를 위해서는 신뢰성 향상이 우선적으로 이루어져야 한다. 반면, Electronic EAP는 인가된 전기장에 의한 맥스웰(Maxwell) 응력이 변형을 유발하므로, 응답속도가 빠르나(< 10-2 s), 수 % 수준의 변형률을 만들기 위해 50~150 V/㎛ 정도의 강한 전기장을 필요로 하므로 구동전압이 높은 단점이 있다. 이러한 Electronic EAP 감지기 및 구동기를 사용 전압이 제한적인 휴대용 전자기기(hand-held electronics) 등에 상용화하기 위해서는 동작전압의 강하가 필수적이라고 할 수 있다.EAP can be divided into Ionic EAP and Electronic EAP. Since Ionic EAP is deformed by the movement of ions by an applied current, the driving voltage is low but the response speed is slow. In addition, Ionic EAP mainly uses an electrolyte, and it is not easy to increase the response speed due to physical limitations on the diffusion and movement speed of ions in the electrolyte. Since the sealing of the electrolyte is required, reliability improvement should be made first for commercialization. Electronic EAP, on the other hand, has a fast response (<10 -2 s) due to the Maxwell stress caused by the applied electric field (<10 -2 s), but it is strong to 50-150 V / μm to create a few% strain. Since the electric field is required, the driving voltage is high. In order to commercialize such electronic EAP detectors and drivers using hand-held electronics with limited voltage, a drop in operating voltage is essential.
Electronic EAP의 대표적인 예로서 완화형 강유전 고분자(relaxor ferroelectric polymer)인 P(VDF-TrFE-CFE) [poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)] 및 P(VDF-TrFE-CTFE) [poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)]를 들 수 있다. P(VDF-TrFE-CFE)는 3개의 단분자 VDF, TrFE, 및 CFE의 조합으로 구성되어 있다. 여기서 3번째 단분자인 CFE는 강유전 고분자인 P(VDF-TrFE)의 배열에 결함을 도입하게 되고, 이러한 결함은 일관성 있는 분극영역(all-trans chains)을 나노 극성영역 (all-trans chains interrupted by trans and gauche bonds)으로 분할하게 된다.Representative examples of Electronic EAP are P (VDF-TrFE-CFE) [poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)] and P (VDF-TrFE-CTFE) [poly (vinylidene fluoride-), a relaxed ferroelectric polymer. trifluoroethylene-chlorotrifluoroethylene)]. P (VDF-TrFE-CFE) is composed of a combination of three single molecule VDF, TrFE, and CFE. Here, the third single molecule, CFE, introduces a defect in the arrangement of the ferroelectric polymer, P (VDF-TrFE), which causes the all-trans chains to be coherent with all-trans chains interrupted by trans and gauche bonds).
이러한 나노 극성영역은 전기장 하에서 상변이(phase transition)을 일으켜 큰 변형률을 유발하게 된다. 그러나, 현재 제작 가능한 PVDF(poly vinylidene fluoride) 기반의 EAP 막의 두께는 약 20 ㎛ 수준이며, 여기에 예를 들어 1 %의 변형률을 만들기 위해서는 600 V ~ 800 V 수준의 구동전압이 필요하다.These nanopolar regions cause phase transitions under electric fields, causing large strains. However, currently available polyvinylidene fluoride (PVDF) -based EAP films have a thickness of about 20 μm, for example, a driving voltage of 600 V to 800 V is required to produce a strain of 1%.
따라서, Electronic EAP를 사용한 구동기의 구동전압을 낮추기 위해서는 Electronic EAP의 두께를 가능한 얇게 만들어야 함과 동시에, 원하는 수준의 동력을 내기 위해서는 Electronic EAP 여러 층이 적층된 적층형 고분자 구동기를 개발하여야 한다. 이때, 각 electronic EAP 층 사이에 + 및 - 전극이 교차로 적층되어야 한다.Therefore, in order to reduce the driving voltage of the driver using the Electronic EAP, the thickness of the Electronic EAP should be made as thin as possible, and to produce a desired level of power, a multilayer polymer driver having several layers of the Electronic EAP should be developed. At this time, the + and-electrodes should be stacked alternately between each electronic EAP layer.
대변위 구동이 가능한 PVDF 기반의 완화형 강유전 고분자는 MIBK(methyl isobutyl ketone), MEK(methyl ethyl ketone) 및 DMF (dimethylformamide)와 같은 극성 용매(polar solvent)에 녹인 다음, 용액을 원하는 형상으로 만들고, 용매를 휘발시켜 고체로 만들게 되는데, 이를 용액주물법(solution casting method)이라 한다. PVDF 기반의 EAP를 막 형태로 만들기 위해서 용액주물법의 일종인 스핀 코팅(spin coating) 방법을 사용하거나, 도포용 도구(applicator)로 용액을 도포하게 된다. 그러나 이러한 용액주물법을 적층형 구조에도 적용하고자 할 때, 상부 층의 제작 시에 하부 층으로 용매가 침투하여 하부 구조를 손상시키는 문제점이 발생하게 된다. 이러한 단점을 극복하기 위해서는 PVDF 기반의 고분자 막을 개별적으로 제작하여 적층하여야만 한다.PVDF-based relaxed ferroelectric polymers that can be displaced are dissolved in polar solvents such as methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK) and dimethylformamide (DMF), and then the solution is shaped into the desired shape. The solvent is volatilized into a solid, which is called a solution casting method. In order to make PVDF-based EAP into a film form, spin coating, a kind of solution casting method, is used or a solution is applied with an applicator. However, when the solution casting method is to be applied to the laminated structure, a problem arises in which the solvent penetrates into the lower layer and damages the lower structure during fabrication of the upper layer. To overcome this disadvantage, PVDF-based polymer membranes must be manufactured and laminated individually.
하지만, 현재 최소 약 8 ㎛ 두께의 PVDF 기반의 고분자 막은 제조가 가능하나, 1~2 ㎛ 두께의 막은 제조도 어렵고 이를 취급하는 것은 더욱 힘들다. 이를 극복하기 위해 최근에, 접착력 제어를 이용한 제조법인 adhesion-mediated film fabrication(AMFF) 기술을 개발하여 1~2 ㎛ 두께의 PVDF 기반의 고분자 박막을 제작하고 적층할 수 있는 방법이 개발된 바 있다. 하지만 AMFF 기술은 유리기판을 사용하는 방법으로서 PVDF 기반의 고분자 막을 대량생산하기에는 어려운 점이 있다.However, at least about 8 μm thick PVDF-based polymer membranes can be manufactured, but 1 ~ 2 μm thick membranes are difficult to manufacture and more difficult to handle. In order to overcome this, recently, a method of manufacturing and stacking a PVDF-based polymer thin film having a thickness of 1 to 2 μm by developing adhesion-mediated film fabrication (AMFF) technology, which is a manufacturing method using adhesion control, has been developed. However, AMFF technology uses glass substrates, which makes it difficult to mass-produce PVDF-based polymer membranes.
이러한 기술적인 문제를 해결하기 위해 본 발명의 실시예에 따른 고분자 막의 제조방법은, 롤투롤(roll-to-roll) 공정에 기반하며 접착력 제어 박막 전사 기술(adhesion-controlled film transfer technique)을 사용하여 PVDF 기반의 고분자(PVDF-based polymer)를 박막의 형태로 대량 생산할 수 있는 기술을 제공한다.In order to solve this technical problem, a method of preparing a polymer membrane according to an embodiment of the present invention is based on a roll-to-roll process and uses an adhesion-controlled film transfer technique. It provides technology to mass-produce PVDF-based polymer in the form of thin film.
본 발명의 실시예에 따른 고분자 막의 제조방법은, PVDF 기반의 필름 코팅, 용매 증발, 서포트 필름(15) 라미네이션으로 이루어지는 1차 과정과, 증류수 등과 같은 액체(16) 침수 2차 과정과, 캐리어 필름(13) 분리 3차 과정으로 나눌 수 있다.The method of manufacturing a polymer membrane according to an embodiment of the present invention, PVDF-based film coating, solvent evaporation, the support film (15) the first process consisting of lamination, liquid 16 immersion secondary process such as distilled water, and the carrier film (13) It can be divided into three steps of separation.
도 1은 본 발명의 바람직한 일 실시예에 따른 고분자 막의 제조방법의 순서도이다. 도 1에 도시된 바와 같이 본 발명의 실시예에 따른 고분자 막의 제조방법은, 구체적으로 PVDF 기반의 막 코팅(PVDF-based film coating) 제1단계(S100), 용매의 증발(Evaporation of solvent) 제2단계(S200), 서포트 필름(15)의 라미네이션(Lamination of support film) 제3단계(S300), 접착력 제어를 위한 수화(Hydration for adhesion control) 제4단계(S400) 및 캐리어 필름(13) 분리(Debonding of carrier film) 제5단계(S500)를 포함한다.1 is a flow chart of a method for producing a polymer membrane according to an embodiment of the present invention. As shown in FIG. 1, a method of manufacturing a polymer film according to an embodiment of the present invention specifically includes a PVDF-based film coating step (S100), an evaporation of solvent agent. Step 2 (S200), Lamination of support film 15 (Lamination of support film) Step 3 (S300), Hydration for adhesion control Step 4 (S400) and carrier film 13 separation (Debonding of carrier film) includes a fifth step (S500).
도 2는 본 발명의 바람직한 일 실시예에 따른 PVDF 기반의 막 코팅 과정을 나타내는 도면이다. 도 2에 도시된 바와 같이 제1단계(S100)는 용매에 녹인 PVDF 기반의 고분자 용액(14)을 캐리어 필름(carrier film) 위에 균일하게 도포하는 단계이다.2 is a view showing a PVDF-based film coating process according to an embodiment of the present invention. As shown in FIG. 2, the first step S100 is to uniformly apply a PVDF-based polymer solution 14 dissolved in a solvent onto a carrier film.
제1단계(S100)에서 캐리어 필름(13) 위에 PVDF 기반의 고분자 용액(14)을 도포하는 대표적인 방법으로 다른 방법에 비해 보다 정교한 막의 제작이 가능한 슬롯 다이 코팅(slot die coating)을 들 수 있다. 슬롯 다이 코팅(slot die coating)은, 대상물질위의 홈을 거쳐 짜내어진다. 그 코팅물질이 100% 고체일 때, 그 과정은 사출로 불려진다. 이러한 경우에 라인 속도는 사출보다 더 빠르다. 이것은 코팅물질이 코팅 홈의 너비보다 상당히 얇게 코팅할 수 있다. 이 외에도 리버스 롤 코팅(reverse roll coating), 갭 코팅(gap coating), 메이어 로드 코팅(Meyer rod coating), 그라비어 코팅(Gravure coating), 이머젼 코팅(immersion coating), 커튼 코팅(curtain coating) 및 에어 나이프 코팅(air knife coating) 등의 코팅 방법을 사용할 수 있다.As a representative method for applying the PVDF-based polymer solution 14 on the carrier film 13 in the first step (S100) is a slot die coating (slot die coating) that can produce a more sophisticated film than other methods. Slot die coating is squeezed out through the grooves on the target material. When the coating is 100% solids, the process is called injection. In this case the line speed is faster than the injection. This allows the coating material to be coated significantly thinner than the width of the coating groove. In addition, reverse roll coating, gap coating, Meyer rod coating, Gravure coating, immersion coating, curtain coating and air knife Coating methods such as air knife coating can be used.
리버스 롤 코팅(Reverse Roll Coating)은, 코팅원료가 어플리케이션 롤러(Application roller) 위에 놓여있는 미터링 롤러(Metering roller) 틈사이의 정밀한 세팅으로 어플리케이션 롤러(Application roller) 위에서 분량이 맞추어진다. 이 코팅원료는 대상물질이 아래의 서포트 롤러(support roller) 주의를 통과할 때 대상물질에 의해서 어플리케이션 롤러(application roller)에 있던 코팅원료가 제거된다.Reverse Roll Coating is tailored on an application roller with precise setting between metering roller gaps where the coating material is placed on the application roller. The coating material is removed from the coating material on the application roller by the material when the material passes the attention of the support roller below.
이머젼 코팅(immersion coating)은, 대상물질이 탕에서 나올 때 코팅이 탕 속에서 역류할 수 있도록 대상물질이 일반적으로 낮은 점도의 코팅 원료의 탕 안으로 담겨지게 된다. 이 과정은 흡수성이 있는 대상물질에 자주 사용되어 진다.Immersion coatings are generally immersed in a bath of low viscosity coating material so that the coating can flow back into the bath as it exits the bath. This process is often used for absorbent materials.
커튼 코팅(curtain coating)은, 탱크 안에 있는 코팅 원료는 아래로 연속적으로 이동하면서 대상물질 위에 공간을 통과 한다. 따라서 쌓이는 양은 대상물질의 속도와 공간의 폭에 좌우된다.In curtain coating, the coating material in the tank passes through the space above the material while continuously moving down. The amount of accumulation thus depends on the velocity of the target material and the width of the space.
에어 나이프 코팅(air knife coating)은, 수용성 코팅물질을 대상물질 표면에 도포하는데 공기를 불어서 코팅하는 방법이다. 이 과정은 전형적인 물 기반의 제품(water-based products)을 위해 사용되어지고, 소음이 많이 난다.Air knife coating is a method of blowing air to apply a water-soluble coating material to the surface of the target material. This process is used for typical water-based products and is noisy.
제1단계(S100)에서 캐리어 필름(13)은 롤(11)의 회전 작동에 의해 화살표 방향으로 이동한다. 롤(11)은 도 2의 롤(11)에 도시된 화살표 방향으로 회전한다. 롤(11)에 의해 이동하는 캐리어 필름(13)에는 PVDF 기반의 고분자 용액(14)이 도포된다. PVDF 기반의 고분자 용액(14)은 슬롯 다이(17)에 의해 토출되어 캐리어 필름(13)에 도포된다. 슬롯 다이(17)는 캐리어 필름(13)에 PVDF 기반의 고분자 용액(14)을 토출할 수 있도록 롤(11) 일측에 배치된다.In the first step S100, the carrier film 13 moves in the direction of the arrow by the rotational operation of the roll 11. The roll 11 rotates in the direction of the arrow shown in the roll 11 of FIG. The PVDF-based polymer solution 14 is applied to the carrier film 13 moving by the roll 11. The PVDF based polymer solution 14 is discharged by the slot die 17 and applied to the carrier film 13. The slot die 17 is disposed on one side of the roll 11 to discharge the PVDF-based polymer solution 14 to the carrier film 13.
도 3은 본 발명의 바람직한 일 실시예에 따른 용매 증발 과정을 나타내는 도면이다. 도 3에 도시된 바와 같이 제2단계(S200)는 잘 제어된 환경 하에서 캐리어 필름(13) 위에 도포된 PVDF 기반의 고분자 용액(14)에서 용매를 휘발시켜 균일한 PVDF 기반의 고분자 막(12)을 얻는 단계이다.3 is a view showing a solvent evaporation process according to an embodiment of the present invention. As shown in FIG. 3, the second step S200 is performed by volatilizing a solvent in a PVDF-based polymer solution 14 coated on a carrier film 13 under a well controlled environment, thereby providing a uniform PVDF-based polymer film 12. To get it.
제2단계(S200)에서 캐리어 필름(13) 위에 도포된 PVDF 기반의 고분자 용액(14)에서 용매(solvent)를 제거함으로써, PVDF 기반의 고분자 고체 막을 얻을 수 있게 된다. 이때, 용매가 휘발되는 조건에 따라 PVDF 기반 고분자 막의 품질이 결정되므로 잘 조절된 환경 하에서 용매를 휘발시켜야만 한다. 캐리어 필름(13) 위에 도포된 용액 위로 N2, O2 및 Ar 등과 같은 불활성 기체의 일정한 유동을 만들어 주어 용매를 균일하게 휘발시킨다.By removing the solvent from the PVDF-based polymer solution 14 applied on the carrier film 13 in the second step (S200), it is possible to obtain a PVDF-based polymer solid film. At this time, since the quality of the PVDF-based polymer membrane is determined by the conditions under which the solvent is volatilized, the solvent must be volatilized under a well controlled environment. A uniform flow of inert gas such as N 2 , O 2 , Ar, etc. is made over the solution applied on the carrier film 13 to uniformly volatilize the solvent.
제2단계(S200)에서 PVDF 기반의 고분자 용액(14)이 도포된 캐리어 필름(13)은 일정 간격을 두고 설치된 좌, 우측 롤(roll)을 따라 회전하는 과정에서 PVDF 기반의 고분자 용액(14)에서 용매가 휘발된다. 좌측 롤(11)과 우측 롤(11)은 도 3에 롤(11)에 도시된 화살표 방향과 같이 동일한 방향으로 회전한다.In the second step (S200), the carrier film 13 coated with the PVDF-based polymer solution 14 is rotated along the left and right rolls installed at predetermined intervals, and the PVDF-based polymer solution 14 The solvent is volatilized at. The left roll 11 and the right roll 11 rotate in the same direction as the arrow direction shown in the roll 11 in FIG. 3.
도 4는 본 발명의 바람직한 일 실시예에 따른 서포트 필름의 라미레이션 과정을 나타내는 도면이다. 도 4에 도시된 바와 같이 제3단계(S300)는 건조된 PVDF 기반의 고분자 막(12) 위에 서포트 필름(support film)을 라미네이션(lamination) 하는 단계이다.4 is a view showing a lamination process of the support film according to an embodiment of the present invention. As shown in FIG. 4, the third step S300 is laminating a support film on the dried PVDF-based polymer film 12.
제3단계(S300)에서 건조된 PVDF 기반의 고분자 막(12) 위에 서포트 필름(15)을 라미네이션(lamination)하면서 롤(11)에 감는다.The support film 15 is wound on the roll 11 while laminating the support film 15 on the PVDF-based polymer film 12 dried in the third step S300.
구체적으로 제3단계(S300)에서 상하 한쌍의 롤(11) 사이로 PVDF 기반의 고분자 막(12)과 캐리어 필름(13)이 결합된 상태로 통과한다. 이때, 다른 롤(11)에서 PVDF 기반의 고분자 막(12) 위에 서포트 필름(15)이 라미네이션 되도록 서포트 필름(15)이 상하 한쌍의 롤(11) 사이로 공급된다. 상하 한쌍의 롤(11)을 통과하면서 서포트 필름(15)이 라미네이션된 PVDF 기반의 고분자 막(12)은 상하 한쌍의 롤(11) 일측에 구비된 롤(11)에 감기게 된다.In detail, in the third step S300, the PVDF-based polymer film 12 and the carrier film 13 pass through a pair of upper and lower rolls 11. At this time, the support film 15 is supplied between the upper and lower pairs of rolls 11 so that the support film 15 is laminated on the PVDF-based polymer film 12 in another roll 11. The PVDF-based polymer film 12, on which the support film 15 is laminated while passing through the upper and lower pairs of rolls 11, is wound on the rolls 11 provided on one side of the upper and lower pairs of rolls 11.
도 5는 본 발명의 바람직한 일 실시예에 따른 접착력 제어를 위한 수화 과정을 나타내는 도면이다. 도 5에 도시된 바와 같이 제4단계(S400)는 PVDF 기반의 고분자 막(12)과 캐리어 필름(13) 사이의 계면 접합력을 약화시키기 위해 증류수 등과 같은 액체(16)에 침수시킴으로써 계면을 따라 물 분자가 확산되도록 하는 단계이다.5 is a view showing a hydration process for controlling the adhesive force according to an embodiment of the present invention. As shown in FIG. 5, the fourth step S400 is performed by submerging the liquid 16 such as distilled water in order to weaken the interfacial bonding force between the PVDF-based polymer membrane 12 and the carrier film 13. This allows the molecules to diffuse.
제4단계(S400)에서 라미네이션(lamination) 과정을 거친 롤(11)에 감긴 PVDF 기반의 고분자 막(12)을 증류수(distilled water)에 약 2시간가량 침수 시킨다. 침수 과정에서 수분 분자가 친수성을 가지고 있는 캐리어 필름(13)과 PVDF 기반의 고분자 막(12)과 사이의 계면으로 침투하여 계면의 접합력을 약화시킨다.In the fourth step (S400), the PVDF-based polymer membrane 12 wound on the roll 11 subjected to the lamination process is immersed in distilled water for about 2 hours. During the immersion process, moisture molecules penetrate into the interface between the carrier film 13 having the hydrophilicity and the PVDF-based polymer membrane 12, thereby weakening the bonding force of the interface.
한편, 제4단계(S400)에서 증류수(distilled water) 외에 탈염수(deionized water), 이소프로필 알코올(IPA, isopropyl alcohol) 등과 같은 액체를 사용할 수 있다.Meanwhile, in the fourth step S400, in addition to distilled water, a liquid such as deionized water, isopropyl alcohol, or the like may be used.
도 6은 본 발명의 바람직한 일 실시예에 따른 캐리어 필름의 분리 과정을 나타내는 도면이다. 도 6에 도시된 바와 같이 제5단계(S500)는 PVDF 기반의 고분자 막(12)과 서포트 필름(15)을 캐리어 필름(13)으로부터 떼어내는 단계이다.6 is a view showing a separation process of a carrier film according to an embodiment of the present invention. As shown in FIG. 6, the fifth step S500 is a step of removing the PVDF-based polymer film 12 and the support film 15 from the carrier film 13.
제5단계(S500)에서 PVDF 기반의 고분자 막(12)과 서포트 필름(15)을 캐리어 필름(13)으로부터 떼어내면 서포트 필름(15) 위에 PVDF 기반의 고분자 막(12)이 남아서 전사가 가능한 상태가 된다.When the PVDF-based polymer film 12 and the support film 15 are detached from the carrier film 13 in the fifth step S500, the PVDF-based polymer film 12 remains on the support film 15 to enable transfer. Becomes
구체적으로 제5단계(S500)에서 증류수에 침수된 롤(11)에 감긴 서포트 필름(15)과, PVDF 기반의 고분자 막(12)과, 캐리어 필름(13)을 도 6과 같이 좌우 한쌍의 롤(11) 사이로 통과 시키면서 VDF 기반의 고분자 막(12)과 서포트 필름(15)을 캐리어 필름(13)으로부터 떼어낸다. 좌우 한쌍의 롤(11)은 도 6의 롤에 도시된 화살표 방향과 같이 서로 역 방향으로 회전한다.Specifically, the support film 15 wound on the roll 11 immersed in distilled water in the fifth step (S500), the PVDF-based polymer film 12, and the carrier film 13, a pair of left and right as shown in FIG. The VDF-based polymer film 12 and the support film 15 are separated from the carrier film 13 while passing through them. The left and right pair of rolls 11 rotate in opposite directions to each other as shown by the arrow direction shown in the roll of FIG.
이와 같이 본 발명의 실시예에 따른 고분자 막의 제조방법에서는 롤투롤(Roll-to-roll) 방식을 이용하여 PVDF 기반의 고분자 막을 대량으로 생산하기 위해 PVDF 기반의 고분자 막(12)과 캐리어 필름(13) 사이의 접착력이 증류수(distilled water), 탈염수(deionized water) 및 이소프로필 알코올(IPA, isopropyl alcohol) 등과 액체에 침수 후에 PVDF 기반의 고분자 막(12)과 서포트 필름(15) 사이의 접착력보다 작아지도록 제어한다. 이를 위해서 캐리어 필름(13)의 표면에 친수 처리(hydrophilic treatment)를 한다.As described above, in the method of manufacturing a polymer membrane according to an embodiment of the present invention, a PVDF-based polymer membrane 12 and a carrier film 13 are used to produce a large amount of PVDF-based polymer membranes using a roll-to-roll method. Adhesion between distilled water, deionized water, isopropyl alcohol (IPA) and the like and less than that between PVDF-based polymer film 12 and support film 15 after immersion in liquid Control to lose. To this end, hydrophilic treatment is performed on the surface of the carrier film 13.
친수 처리는 주로 산화막을 입힘으로써 친수 표면을 만들 수 있다. 예컨대 폴리에틸렌 테레프타레이트(PET, polyethylene terephthalate) 필름 위에 SiO2를 코팅(coating)하여 캐리어 필름으로 사용할 수 있다.Hydrophilic treatment can produce a hydrophilic surface mainly by coating an oxide film. For example, SiO 2 may be coated on a polyethylene terephthalate (PET) film to be used as a carrier film.
반면, 서포트 필름(15)의 표면은 침수 시에도 PVDF 기반의 고분자 막(12)과 적절한 접착력을 가지며, 접착력의 저하가 발생하지 않도록 준비해야 한다. 그러나 PVDF 기반의 고분자 막(12)과 서포트 필름(15) 사이의 접착력이 너무 크면, PVDF 기반의 고분자 막을 전사하고자 할 때 문제가 발생하게 된다. 그러므로, PVDF 기반의 고분자와 적절한 계면 접합력을 갖도록 서포트 필름을 제작하는 것이 매우 중요하다. 이러한 서포트 필름은 PET 필름 위에 폴리디메틸실록산(PDMS, polydimethylsiloxane)과 같이 실리콘 엘라스토머(silicone elastomer) 계열의 적절한 접착력을 갖는 고분자를 도포하여 제작할 수 있다.On the other hand, the surface of the support film 15 has an appropriate adhesive strength with the PVDF-based polymer film 12 even when immersed, and should be prepared so as not to reduce the adhesive force. However, if the adhesion between the PVDF-based polymer film 12 and the support film 15 is too large, a problem occurs when trying to transfer the PVDF-based polymer film. Therefore, it is very important to fabricate the support film to have a proper interfacial bonding force with the PVDF-based polymer. Such a support film may be manufactured by applying a polymer having an appropriate adhesive strength of a silicone elastomer series, such as polydimethylsiloxane (PDMS, polydimethylsiloxane) on a PET film.
또한, PVDF 기반의 고분자 막의 결정도(crystallinity)를 향상시키기 위해 위의 제5단계(S500) 후에 풀림(annealing) 공정을 추가할 수 있다. 이러한 풀림 공정은 주로 PVDF 기반의 고분자 막의 퀴리 온도(Curie temperature)보다는 높고 용융 온도(melting temperature)보다는 낮은 온도에서 장시간 진행하게 된다.In addition, an annealing process may be added after the fifth step S500 in order to improve the crystallinity of the PVDF-based polymer film. This annealing process is mainly performed for a long time at a temperature higher than the Curie temperature and lower than the melting temperature of the PVDF-based polymer membrane.
풀림 공정의 시간과 온도를 최적화함으로써, PVDF 기반의 고분자 막의 결정성을 높이고, 이로 인해 PVDF 기반의 고분자 막을 사용한 구동기의 구동성능을 향상시킬 수 있다. 또한, 풀림 공정이 끝난 후에 PVDF 기반의 고분자를 보호하기 위해 커버 필름(cover film)을 부착할 수도 있다.By optimizing the time and temperature of the annealing process, the crystallinity of the PVDF-based polymer membrane can be increased, thereby improving the driving performance of the driver using the PVDF-based polymer membrane. In addition, a cover film may be attached to protect the PVDF-based polymer after the annealing process is finished.
살펴본 바와 같이 본 발명의 실시예에 따른 고분자 막의 제조방법은, 두께 1 ㎛ 내외의 PVDF 기반의 고분자 막을 캐리어 필름으로부터 떼어내고 처리를 용이하게 하기 위해서 적절한 접착력을 갖는 서포트 필름을 사용한다. 또한, 수화 공정을 사용함으로써 필름과 캐리어 필름 사이의 접착력을 약화시켜 분리가 용이하게 이루어지게 한다. 이렇게 제작된 박막은 라미네이션 방법으로 전사가 가능해 적층형 고분자 소자의 제작에 유용하다.As described above, the method of manufacturing the polymer membrane according to the embodiment of the present invention uses a support film having an appropriate adhesive force to separate the PVDF based polymer membrane having a thickness of about 1 μm from the carrier film and to facilitate the treatment. In addition, by using a hydration process, the adhesion between the film and the carrier film is weakened to facilitate separation. The thin film thus manufactured can be transferred by a lamination method, which is useful for manufacturing a multilayer polymer device.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications, changes, and substitutions may be made by those skilled in the art without departing from the essential characteristics of the present invention. will be. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. . The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (24)

  1. 용매에 녹인 PVDF 기반의 고분자 용액을 캐리어 필름 위에 도포하는 제1단계;A first step of applying a PVDF-based polymer solution dissolved in a solvent on a carrier film;
    상기 캐리어 필름 위에 도포된 PVDF 기반의 고분자 용액에서 용매를 휘발시켜 PVDF 기반의 고분자 막을 얻는 제2단계;Obtaining a PVDF-based polymer membrane by volatilizing a solvent in the PVDF-based polymer solution coated on the carrier film;
    상기 건조된 PVDF 기반의 고분자 막 위에 서포트 필름을 라미네이션 하는 제3단계;A third step of laminating a support film on the dried PVDF-based polymer film;
    상기 라미네이션 과정을 거친 PVDF 기반의 고분자 막을 액체 속에 담그는 제4단계; 및Dipping the PVDF-based polymer film through the lamination into a liquid; And
    상기 PVDF 기반의 고분자 막과 서포트 필름을 캐리어 필름으로부터 떼어내는 제5단계;A fifth step of separating the PVDF-based polymer film and the support film from the carrier film;
    를 포함하는 고분자 막의 제조방법.Method for producing a polymer membrane comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 PVDF 기반의 고분자는,The PVDF-based polymer,
    강유전 고분자(ferroelectric polymer)인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that the ferroelectric polymer (ferroelectric polymer).
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 강유전 고분자는,The ferroelectric polymer,
    PVDF 또는 P(VDF-TrFE)인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that PVDF or P (VDF-TrFE).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 PVDF 기반의 고분자는,The PVDF-based polymer,
    완화형 강유전 고분자(relaxor ferroelectric polymer)인 것을 특징으로 하는 고분자 막의 제조방법.A method for producing a polymer membrane, characterized in that it is a relaxed ferroelectric polymer.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 완화형 강유전 고분자는,The relaxed ferroelectric polymer,
    P(VDF-TrFE-CFE) 또는 P(VDF-TrFE-CTFE)인 것을 특징으로 하는 고분자 막의 제조방법.P (VDF-TrFE-CFE) or P (VDF-TrFE-CTFE) method for producing a polymer membrane.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 용매는,The solvent,
    MIBK(methyl isobutyl ketone), MEK(methyl ethyl ketone) 및 DMF (dimethylformamide)와 같은 극성 용매(polar solvent) 중 어느 하나인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that any one of a polar solvent such as MIBK (methyl isobutyl ketone), MEK (methyl ethyl ketone) and DMF (dimethylformamide).
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제5단계 후,After the fifth step,
    PVDF 기반의 고분자 막의 결정도를 향상시키기 위한 풀림(annealing) 공정을 더 포함하는 고분자 막의 제조방법.A method of manufacturing a polymer membrane further comprising an annealing process to improve the crystallinity of the PVDF-based polymer membrane.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 풀림 공정 후,After the annealing process,
    PVDF 기반의 고분자를 보호하기 위해 커버 필름(cover film)을 부착하는 공정을 더 포함하는 고분자 막의 제조방법.A method of manufacturing a polymer film further comprising attaching a cover film to protect the PVDF-based polymer.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 제2단계에서 PVDF 기반의 고분자 용액을 도포하는 방법은,The method of applying the PVDF-based polymer solution in the second step,
    그라비어 코팅(Gravure coating), 리버스롤 코팅(reverse roll coating), 갭 코팅(gap coating), 메이어 로드 코팅(Meyer rod coating), 슬롯 다이 코팅(slot die coating), 이머젼 코팅(immersion coating), 커튼 코팅(curtain coating) 및 에어 나이프 코팅(air knife coating) 중 어느 하나의 코팅 방법으로 이루어지는 것을 특징으로 하는 고분자 막의 제조방법.Gravure coating, reverse roll coating, gap coating, Meyer rod coating, slot die coating, immersion coating, curtain coating (Curtain coating) and air knife coating (air knife coating) method of producing a polymer membrane, characterized in that consisting of any one of the coating method.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 캐리어 필름은,The carrier film,
    표면에 친수처리(hydrophilic treatment)가 된 고분자 필름인 것을 특징으로 하는 고분자 막의 제조방법.A method of producing a polymer membrane, characterized in that the polymer film subjected to hydrophilic treatment (surface).
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 캐리어 필름은,The carrier film,
    SiO2가 코팅된 PET 필름인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer film, characterized in that the PET film coated with SiO 2 .
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 제2단계는,The second step,
    도포된 용매 위로 일정한 기체의 유동을 만들어 주어 용매를 균일하게 휘발시키는 것을 특징으로 하는 고분자 막의 제조방법.A method of producing a polymer membrane, characterized in that the solvent is uniformly volatilized by making a constant flow of gas over the applied solvent.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 제2단계는,The second step,
    도포된 용매 위로 N2, O2 및 Ar 중 어느 하나의 불활성 기체의 일정한 유동을 만들어 주어 용매를 균일하게 휘발시키는 것을 특징으로 하는 고분자 막의 제조방법.Method of producing a polymer membrane, characterized in that to make a uniform flow of the inert gas of any one of N 2 , O 2 and Ar over the applied solvent to uniformly volatilize the solvent.
  14. 청구항 1에 있어서,The method according to claim 1,
    상기 서포트 필름은,The support film,
    실리콘 엘라스토머(silicone elastomer)로 제작되는 것을 특징으로 하는 고분자 막의 제조방법.A method for producing a polymer membrane, characterized in that it is made of a silicone elastomer (silicone elastomer).
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 실리콘 엘라스토머(silicone elastomer) 계열의 고분자는,The polymer of the silicone elastomer (silicone elastomer) series,
    PDMS(polydimethylsiloxane)인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that the PDMS (polydimethylsiloxane).
  16. 청구항 1에 있어서,The method according to claim 1,
    상기 서포트 필름은,The support film,
    PET(polyethylene terephthalate)와 같은 고분자 필름 위에 실리콘 엘라스토머를 코팅하여 제작하는 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that the coating by producing a silicone elastomer on a polymer film such as polyethylene terephthalate (PET).
  17. 청구항 1에 있어서,The method according to claim 1,
    상기 서포트 필름은,The support film,
    PET(polyethylene terephthalate)와 같은 고분자 필름 위에 PDMS (polydimethylsiloxane)를 코팅하여 제작하는 것을 특징으로 하는 고분자 막의 제조방법.A method for producing a polymer membrane, characterized in that the PDMS (polydimethylsiloxane) is coated on the polymer film such as polyethylene terephthalate (PET).
  18. 청구항 1에 있어서,The method according to claim 1,
    상기 제4단계에서 액체는,The liquid in the fourth step,
    증류수(distilled water)인 것을 특징으로 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that distilled water (distilled water).
  19. 청구항 1에 있어서,The method according to claim 1,
    상기 제4단계에서 액체는,The liquid in the fourth step,
    탈염수(deionized water)인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that the deionized water (deionized water).
  20. 청구항 1에 있어서,The method according to claim 1,
    상기 제4단계에서 액체는,The liquid in the fourth step,
    이소프로필 알코올(IPA, isopropyl alcohol)인 것을 특징으로 하는 고분자 막의 제조방법.Method for producing a polymer membrane, characterized in that the isopropyl alcohol (IPA, isopropyl alcohol).
  21. 청구항 1에 있어서,The method according to claim 1,
    상기 제5단계 후,After the fifth step,
    PVDF 기반의 고분자의 폴링(electrical poling) 공정을 더 포함하는 것을 특징으로 하는 고분자 막의 제조방법.A method for producing a polymer film, further comprising an electrical poling process of the PVDF-based polymer.
  22. 청구항 1에 있어서,The method according to claim 1,
    상기 제1단계 내지 제5단계는,The first to fifth steps,
    PVDF 기반의 고분자 막을 롤투롤(roll-to-roll) 방법으로 제조하는 것을 특징으로 하는 고분자 막의 제조방법.A process for producing a polymer membrane, characterized in that the PVDF-based polymer membrane is produced by a roll-to-roll method.
  23. 청구항 1에 있어서,The method according to claim 1,
    상기 제1단계에서 슬롯 다이를 이용하여 캐리어 필름 위에 PVDF 기반의 고분자 용액을 균일하게 도포하는 것을 특징으로 하는 고분자 막의 제조방법.Method of producing a polymer film, characterized in that to uniformly apply the PVDF-based polymer solution on the carrier film using a slot die in the first step.
  24. 청구항 1에 있어서,The method according to claim 1,
    상기 제1단계 내지 제5단계는,The first to fifth steps,
    PVDF 기반의 고분자 막을 고온(50~90 ℃)에서 제조하는 것을 특징으로 하는 고분자 막의 제조방법.A method for producing a polymer membrane, characterized in that the PVDF-based polymer membrane is produced at a high temperature (50 ~ 90 ℃).
PCT/KR2014/008854 2014-09-22 2014-09-23 Method for manufacturing polymeric membrane WO2016047819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140126121A KR20160034746A (en) 2014-09-22 2014-09-22 Fabrication method of polymer films
KR10-2014-0126121 2014-09-22

Publications (1)

Publication Number Publication Date
WO2016047819A1 true WO2016047819A1 (en) 2016-03-31

Family

ID=55581334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008854 WO2016047819A1 (en) 2014-09-22 2014-09-23 Method for manufacturing polymeric membrane

Country Status (2)

Country Link
KR (1) KR20160034746A (en)
WO (1) WO2016047819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183164A (en) * 2016-12-08 2018-06-19 乐金显示有限公司 Tactile sensor, the display device comprising the element and the method for manufacturing the element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864494B1 (en) * 2016-09-27 2018-06-29 울산과학기술원 Porous ferroelectric thin film, manufacturing method of the same
KR102302666B1 (en) * 2021-02-18 2021-09-16 최현준 urethane film manufacturing method
KR102302668B1 (en) * 2021-02-18 2021-09-16 남상진 urethane film manufacturing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255704A (en) * 2003-02-26 2004-09-16 Teijin Dupont Films Japan Ltd Release film
JP2010045059A (en) * 2008-04-21 2010-02-25 Agency For Science Technology & Research Ferroelectric poly (vinylidene fluoride) film on substrate, and method for formation thereof
KR20100046641A (en) * 2008-10-28 2010-05-07 한국과학기술연구원 Method of forming a pattern array of ferroelectric pvdf thin film by using a polymer binder
KR20130101833A (en) * 2012-03-06 2013-09-16 삼성전자주식회사 Manufacturing method of pvdf-based polymer and manufacturing method of multilayered polymer actuator using the same
KR20130135509A (en) * 2012-06-01 2013-12-11 주식회사 엘지화학 Multi-layered film and method for preparing the same
KR20140097872A (en) * 2013-01-30 2014-08-07 인하대학교 산학협력단 PREPARATION METHOD OF β-PHASE PVDF FILM USING SPRAY COATING

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255704A (en) * 2003-02-26 2004-09-16 Teijin Dupont Films Japan Ltd Release film
JP2010045059A (en) * 2008-04-21 2010-02-25 Agency For Science Technology & Research Ferroelectric poly (vinylidene fluoride) film on substrate, and method for formation thereof
KR20100046641A (en) * 2008-10-28 2010-05-07 한국과학기술연구원 Method of forming a pattern array of ferroelectric pvdf thin film by using a polymer binder
KR20130101833A (en) * 2012-03-06 2013-09-16 삼성전자주식회사 Manufacturing method of pvdf-based polymer and manufacturing method of multilayered polymer actuator using the same
KR20130135509A (en) * 2012-06-01 2013-12-11 주식회사 엘지화학 Multi-layered film and method for preparing the same
KR20140097872A (en) * 2013-01-30 2014-08-07 인하대학교 산학협력단 PREPARATION METHOD OF β-PHASE PVDF FILM USING SPRAY COATING

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183164A (en) * 2016-12-08 2018-06-19 乐金显示有限公司 Tactile sensor, the display device comprising the element and the method for manufacturing the element
US10790438B2 (en) * 2016-12-08 2020-09-29 Lg Display Co., Ltd. Touch sensitive element, display device comprising the same, and method for manufacturing the same
CN108183164B (en) * 2016-12-08 2022-02-22 乐金显示有限公司 Touch sensitive element, display device comprising such an element and method of manufacturing such an element

Also Published As

Publication number Publication date
KR20160034746A (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016047819A1 (en) Method for manufacturing polymeric membrane
KR20130101833A (en) Manufacturing method of pvdf-based polymer and manufacturing method of multilayered polymer actuator using the same
WO2013042819A1 (en) Production method for a graphene thin film
CN101175553B (en) A method of fabricating a polymeric membrane having at least one pore
EP3367423B1 (en) Method for obtaining multilayer graphene
US20070004229A1 (en) Lamination of organic semiconductors
WO2019022402A2 (en) Method for manufacturing lithium electrode
CN112194120B (en) Defect-free direct dry delamination of CVD graphene using poled ferroelectric polymers
CN110867533B (en) Polyimide film stripping method based on multilayer graphene as sacrificial layer
WO2005048669A1 (en) Flexible devices
CN110953982B (en) Thin film device and preparation method thereof, flexible strain sensor and preparation method thereof
US9227220B1 (en) Method for patterning materials on a substrate
JP4231248B2 (en) Organic transistor and manufacturing method thereof
KR101440484B1 (en) Preparation method of β-phase PVDF film using spray coating
JP7238546B2 (en) Piezoelectric laminated sheet, method for producing piezoelectric laminated sheet, piezoelectric sensor, and method for producing piezoelectric sensor
WO2021029458A1 (en) Flexible electrode substrate including porous electrode, and method for manufacturing same
Sanchez et al. Texture control in lead zirconate titanate multilayer thin films
WO2024063216A1 (en) Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby
WO2020096211A1 (en) Biosensor electrode manufacturing method and biosensor electrode
CN115322424B (en) Organic electric polarization composite film and manufacturing method thereof
WO2017034292A1 (en) Method of manufacturing pattern of dispersed particles using electric field on nonconductive substrate
KR102593058B1 (en) Electrical Interconnections for Multilayered Metal-Polymer Structures by Using CO2 Laser-Drilled Vias and Conductive Silver Nanowire Ink
WO2022060011A1 (en) Separator manufacturing apparatus and separator manufacturing method
WO2021221255A1 (en) Triboelectric generator comprising stretchable electrode
WO2021256715A1 (en) Composition for surface modification of substrate comprising polyethersulfone and surface modification method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902638

Country of ref document: EP

Kind code of ref document: A1