WO2024063216A1 - Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby - Google Patents

Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby Download PDF

Info

Publication number
WO2024063216A1
WO2024063216A1 PCT/KR2022/020262 KR2022020262W WO2024063216A1 WO 2024063216 A1 WO2024063216 A1 WO 2024063216A1 KR 2022020262 W KR2022020262 W KR 2022020262W WO 2024063216 A1 WO2024063216 A1 WO 2024063216A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
buffer layer
substrate
coating
manufacturing
Prior art date
Application number
PCT/KR2022/020262
Other languages
French (fr)
Korean (ko)
Inventor
이용희
안치원
김은지
오연화
정상희
강일석
이규한
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2024063216A1 publication Critical patent/WO2024063216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof

Definitions

  • the present invention relates to a method for manufacturing a flexible micro supercapacitor, and a flexible micro supercapacitor with a polymer buffer layer manufactured thereby. More specifically, the present invention relates to a flexible micro supercapacitor with high reproducibility and yield by utilizing fine patterning technology capable of large area. It is about technology for manufacturing supercapacitors.
  • the present invention relates to a flexible micro-supercapacitor with improved electrochemical performance and flexible durability using a polymer buffer layer.
  • inkjet printing and patterning using a laser beam were used.
  • the inkjet printing method has the advantage of being able to mass-produce large-area substrates and has high material efficiency, but has the disadvantage of requiring an additional process to produce ink.
  • the patterning method using a laser beam had a limitation in that the gap between a pair of electrodes could only be formed at the micrometer level because the size of the laser beam was at least 100 micrometers. Therefore, mass processing technology for flexible micro supercapacitors with precise patterning technology, high yield, and high reproducibility is needed.
  • the non-patent document Hydrous RuO2-Decorated Mxene Coordinating with Silver nanowire Inks Enabling Fully Printed Micro-supercapacitors with Extraordinary Volumetric Performance (Advanced Energy Materials (2019, 9; 15, 1803987)), which is a prior art document, uses a screen printing method.
  • the fabricated Maxine micro supercapacitor is disclosed.
  • a flexible micro supercapacitor is produced by screen printing the produced screen printing ink on a paper substrate.
  • the viscosity of the produced ink solution and the absorbency of the substrate must be guaranteed, and the printing characteristics vary accordingly, and the following conditions are required for screen printing.
  • ink must be able to be continuously extruded through the screen mash of the mask used, and the shape of the pattern must be maintained after extrusion.
  • Additives are essential to satisfy the above conditions, and in addition to these limitations, there is a problem that there is a limit to printing fine line widths due to the nature of screen printing.
  • Non-patent Document 1 Hydrous RuO2-Decorated Mxene Coordinating with Silver nanowire Inks Enabling Fully Printed Micro-supercapacitors with Extraordinary Volumetric Performance (Advanced Energy Materials (2019, 9; 15, 1803987))
  • the purpose of the present invention to solve the above problems is to provide a method for manufacturing a large-area flexible micro-supercapacitor with precise patterning technology, high yield, and high reproducibility, and a flexible micro-supercapacitor with a polymer buffer layer manufactured thereby. is to provide.
  • the configuration of the present invention for achieving the above object includes a mask deposition step of depositing a photoresist mask on an upper portion of a substrate coated with a polyimide (PI) film; A surface treatment step of treating the surface of the substrate deposited with the mask with active gas plasma; A MXene coating step of coating MXene on the top of the surface-treated substrate; A photoresist removal step of forming a MXene pattern by removing the photoresist of the MXene-coated substrate through a lift-off process; A buffer layer coating step of coating a buffer layer on the upper part of the substrate on which the MXene pattern is formed; and a peeling step of peeling the polyimide film from the substrate.
  • PI polyimide
  • the photoresist mask in the mask deposition step may be a negative type.
  • the active gas in the surface treatment step may be oxygen (O 2 ).
  • MXene in the MXene coating step, MXene may be synthesized prior to coating the MXene.
  • the MXene can be obtained by etching the MAX phase under lithium fluoride (LiF) and hydrogen chloride (HCl) 6M conditions.
  • the method of coating the MXene in the MXene coating step may be performed by spin coating.
  • heating may be performed in an oven at a temperature of 50 to 100°C.
  • the buffer layer may use the same type of polymer as the gel polymer electrolyte (GPE).
  • GPE gel polymer electrolyte
  • the buffer layer uses PVA (polyvinyl alcohol) as a buffer layer when using an aqueous electrolyte (PVA/H2SO4), and when using an organic electrolyte (PVDF/IL), PVDF (polyvinylidene fluoride) is used as a buffer layer.
  • PVA polyvinyl alcohol
  • PVDF polyvinylidene fluoride
  • the substrate may be a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer).
  • the photoresist removal step may be performed by removing the photoresist mask with acetone in an ultrasonic cleaner to produce a MXene pattern.
  • the peeling step may peel the polyimide film from the substrate to form a flexible device that is a combination of the polyimide film and the MXene pattern.
  • a large-area flexible micro-supercapacitor with high yield and high reproducibility can be manufactured in a one-step process without the need for additional additives and without complex processes such as inkjetting and transferring the solution.
  • the electrochemical performance and flexible durability of a flexible micro supercapacitor can be improved without causing dispersibility issues by using a polymer buffer layer.
  • a micro supercapacitor applicable to various applications in which shape is changed, such as roll-up displays and wearable electronic devices, by forming patterned MXene on the surface of a flexible material film.
  • a flexible micro supercapacitor with improved electrochemical performance and flexibility durability can be provided by using a polymer buffer layer.
  • FIG. 1 is a flowchart showing a schematic configuration of a method for manufacturing a flexible micro supercapacitor according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a method of manufacturing a flexible micro supercapacitor according to an embodiment of the present invention.
  • Figure 3 is an image of a MXene pattern formed on a wafer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 4 is an image showing the difference between the substrate before and after coating the buffer layer of the supercapacitor in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 5 is a graph showing the performance of the supercapacitor according to the components of the buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 6 is a graph showing electrochemical characteristics calculated from CV (Cyclic voltammetry) curves of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 7 is a graph showing electrochemical characteristics calculated from the GCD (Galvanostatic charge-discharge) curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 8 is a graph showing CV characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 9 is a graph showing GCD characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 10 is a graph showing the internal resistance according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 11 is a graph showing recovery characteristics calculated from the CV curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 12 is a graph showing recovery characteristics calculated from the GCD curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 13 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the CV curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 14 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the GCD curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 15a is a graph showing the durability according to the radius of curvature of a substrate without a buffer layer coated in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 15b is a graph showing durability according to the radius of curvature of a substrate coated with a buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • the most preferred embodiment according to the present invention includes a mask deposition step of depositing a photoresist mask on an upper part of a substrate coated with a polyimide (PI) film; A surface treatment step of treating the surface of the substrate deposited with the mask with active gas plasma; A MXene coating step of coating MXene on the top of the surface-treated substrate; A photoresist removal step of forming a MXene pattern by removing the photoresist of the MXene-coated substrate through a lift-off process; A buffer layer coating step of coating a buffer layer on the upper part of the substrate on which the MXene pattern is formed; Characterized by comprising a peeling step of peeling the polyimide film from the substrate.
  • PI polyimide
  • FIG. 1 is a flowchart showing a schematic configuration of a method for manufacturing a flexible micro supercapacitor according to an embodiment of the present invention.
  • the flexible micro supercapacitor manufacturing method 100 deposits a photoresist mask on the top of the substrate coated with a polyimide (PI) film in the mask deposition step (S110), and performs a surface treatment step ( After treating the surface of the substrate deposited with the mask with active gas plasma in S120), MXene is coated on the top of the surface-treated substrate in the MXene coating step (S130), and in the photoresist removal step (S140), lift- The photoresist of the MXene-coated substrate is removed in an off process to form a MXene pattern. Thereafter, in the buffer layer coating step (S150), a buffer layer is coated on the upper part of the substrate on which the MXene pattern is formed, and in the peeling step (S160), the polyimide film is peeled from the substrate.
  • PI polyimi
  • the substrate of the mask deposition step (S110) may be a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer), but is not limited thereto.
  • the photoresist mask of the mask deposition step (S110) may be a negative type, but is not limited thereto.
  • the active gas in the surface treatment step (S120) may be oxygen (O 2 ), but is not limited thereto.
  • MXene can be synthesized before coating MXene.
  • the MXene may be obtained by etching the MAX phase under lithium fluoride (LiF) and hydrogen chloride (HCl) 6M conditions, but is not limited thereto.
  • the method of coating the MXene in the MXene coating step (S130) may be performed by spin coating, but is not limited thereto. During spin coating, coating can be arranged at 1000 to 1500 rpm. After coating the MXene on the substrate in the MXene coating step (S130), heating may be performed in an oven.
  • the photoresist mask is removed using acetone as a solvent while leaving the substrate after heating in the MXene coating step (S130) in an ultrasonic cleaner for 1 to 10 minutes. This allows you to create the Maxine pattern you want.
  • the buffer layer may use the same type of polymer as the gel polymer electrolyte.
  • the polymer buffer layer preferably uses one or more polymers selected from the group including ethylene oxide (PEO), methyl methacrylate (PMMA), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), and polyvinylidene fluoride (PVDF). there is.
  • the buffer layer uses 10 wt% of polyvinyl alcohol (PVA) as a buffer layer when using an aqueous electrolyte (PVA/H 2 SO 4 ), and when using an organic electrolyte (PVDF/IL), the buffer layer uses 10 wt% of polyvinyl alcohol (PVA) as a buffer layer.
  • PVA polyvinyl alcohol
  • PVDF polyvinylidene fluoride
  • the peeling step (S160) may peel the polyimide film from the substrate to form a flexible device that is a combination of the polyimide film and the MXene pattern.
  • the flexible micro supercapacitor manufacturing method 100 as described above is capable of implementing fine patterns of 50 ⁇ m or less, and it is possible to manufacture micro supercapacitors having a large number of fine patterns of 100 or more at a time using the simple method described above. Additionally, compared to the transfer method, it has high reproducibility and yield, and can improve the electrochemical performance and flexible durability of the supercapacitor without causing dispersion issues through the buffer layer.
  • FIG. 2 is a schematic diagram of a method of manufacturing a flexible micro supercapacitor according to an embodiment of the present invention.
  • a photoresist mask (PR) is deposited on a polyimide (PI) film-coated substrate (a) to form (b).
  • the photoresist mask and polyimide film surface of (b) are plasma treated to form (c), and MXene is coated on the plasma treated top of (c) to form (d).
  • the photoresist mask is removed through a lift-off process to obtain (e), which forms a MXene pattern, and (f) is formed by coating a buffer layer on top of (e).
  • the polyimide film can be peeled off from the silicon substrate to finally form (g), a flexible micro supercapacitor.
  • a negative photoresist mask is deposited on the upper part of the substrate coated with the polyimide (PI) film.
  • the substrate is a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer).
  • the silicon dioxide layer may be formed by oxidizing the surface of a silicon wafer (Si wafer).
  • the photoresist mask was formed so that the width of the perforated portion where the microelectrode was formed was 50 ⁇ m, the gap between the perforated portions where the microelectrode was formed was 50 ⁇ m, and the thickness was 3.5 ⁇ m.
  • the width of the perforations in the area where the microelectrodes are formed was 45 to 55 ⁇ m
  • the gap between the perforations in the area where the microelectrodes were formed was 45 to 55 ⁇ m
  • the thickness was 3 to 5 ⁇ m.
  • the surface of the substrate deposited with the mask was treated with activated gas (O2) plasma.
  • the substrate was treated with oxygen plasma of 100 W and 20 sccm for 1 minute to form a substrate whose surface was treated to be hydrophilic.
  • MXene coating step S130
  • MXene was coated on the top of the surface-treated substrate.
  • the MAX phase was formed by etching under lithium fluoride (LiF) and hydrogen chloride (HCl) 6M conditions.
  • the method of coating MXene was spin coating, and coating was performed under the conditions of 1000 ⁇ 1500 rpm for 10 minutes. After coating the MXene on the substrate, heating was performed in an oven at a temperature of 50 to 100°C.
  • the photoresist removal step (S140) the photoresist of the MXene-coated substrate was removed using a lift-off process to form a MXene pattern.
  • the desired MXene pattern could be produced by removing the photoresist mask using acetone as a solvent while keeping the substrate after heating in the MXene coating step (S130) in an ultrasonic cleaner for 1 to 10 minutes.
  • a buffer layer is coated on the upper part of the substrate on which the MXene pattern is formed, and in the peeling step (S160), the polyimide film is peeled from the substrate.
  • 10 wt% PVA polyvinyl alcohol
  • the polyimide film was peeled from the substrate to form a flexible supercapacitor device that is a combination of the polyimide film and the MXene pattern.
  • Figure 3 is an image of the MXene pattern 320 on the wafer 310 in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. As shown in Figure 3, 107 MXene patterns 320 can be manufactured with an 8-inch level wafer 310, and since a plurality of MXene patterns 320 can be formed in a large area, manufacturing efficiency is improved. can be significantly increased.
  • Figure 4 is an image showing the difference between the substrate before and after coating the buffer layer of the supercapacitor in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • (a) and (b) both use an aqueous electrolyte, but are divided into (a) without a buffer layer coated and (b) with a buffer layer coated.
  • (b) shows improved wettability as a result of coating with the same type of polymer as the gel polymer electrolyte, which minimizes the dead zone that reduces ionic conductivity.
  • the capacitance can be improved by maximizing the edge effect of the MXene.
  • speed characteristics can be improved by lowering the interfacial resistance between the electrolyte and the electrode. Specific figures related to this will be described later.
  • Figure 5 is a graph showing the performance of the supercapacitor according to the components of the buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 5(a) is a graph showing the results of applying a different type of polymer than the gel electrolyte. Referring to (a), you can see that the capacitor characteristics disappear when the buffer layer is coated with a different type of polymer. On the other hand, in case (b) where the same type of polymer is applied, it can be seen from the graph that the capacitor characteristics are improved compared to the existing device without a buffer layer coated.
  • Figure 6 is a graph showing electrochemical characteristics calculated from CV (Cyclic voltammetry) curves of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • an aqueous electrolyte PVA/H 2 SO 4 , 1M
  • 10 wt% PVA was used as a polymer buffer layer.
  • the PVA polymer penetrates between the MXene sheets, reducing the dead zone of electrolyte ions and increasing the active ion area at the electrode.
  • the capacitance increased by 22.1% from 971.4 F/cm 3 to 1186.1 F/cm 3 (10 mV/s) when coating the buffer layer, and additionally, the ion from the MXene sheet As the mobility was improved, the capacitance improved from 265.9 F/cm 3 (27.4% retention) to 462.9 F/cm 3 (39.0% retention) at a scan speed of 2 V/s.
  • the capacitor characteristics were improved as a result of coating the buffer layer.
  • Figure 7 is a graph showing electrochemical characteristics calculated from the GCD (Galvanostatic charge-discharge) curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • GCD Globalvanostatic charge-discharge
  • an aqueous electrolyte PVA/H 2 SO 4 1M
  • 10 wt% PVA was used as a polymer buffer layer.
  • the capacitance was calculated using the GCD curve, and when the buffer layer was coated, it increased by 36.0% from 1093 F/cm 3 to 1487.3 F/cm 3 .
  • (b) which shows the GCD characteristics of each substrate coated with a buffer layer and one without a buffer layer, it can be seen that the capacitor characteristics have improved.
  • Figure 8 is a graph showing CV characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • We attempted to confirm the effect of the buffer layer by analyzing the degree of capacitance reduction according to the radius of curvature of the micro-supercapacitor device before and after buffer layer coating.
  • the capacitance in the flat state is 946.3 F/cm 3 and is 291.2 F/cm 3 at a radius of curvature of 3.87 mm, which is 30.7% of the initial value.
  • the capacitance in the unfolded state was 1226.7 F/cm 3 and was 914.5 F/cm 3 at a radius of curvature of 3.87 mm, maintaining a capacitance of 74.5% of the initial value.
  • the capacitance capacity has an inflection point at a curvature radius of 5.27 mm, and the capacity decrease is not significant at a curvature radius of 5.27 mm or less and remains at a constant level.
  • the capacitance capacity continues to decrease even after the inflection point of the curvature radius of 5.27 mm.
  • Figure 9 is a graph showing GCD characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. As in Figure 8, the GCD curve also showed a similar tendency of electrochemical characteristics. Referring to (a), when the buffer layer is not coated, the capacitance in the flat state is 1093.1 F/cm 3 and is 318.6 F/cm 3 at a radius of curvature of 3.87 mm, which is 29.1% of the initial value.
  • the capacitance in the unfolded state was 1487.3 F/cm 3 and 1137.1 F/cm 3 at a radius of curvature of 3.87 mm, maintaining a capacitance of 76.5% of the initial value.
  • the change in capacity is not significant when the radius of curvature is 5.27 mm or less, which can be seen as an effect of the role of the buffer layer.
  • the capacity remains even after the inflection point with a radius of curvature of 5.27 mm or less. It can be seen that this continues to deteriorate.
  • Figure 10 is a graph showing the internal resistance according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • the ESR equivalent series resistance
  • Figure 11 is a graph showing recovery characteristics calculated from the CV curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • the micro supercapacitor device before and after buffer layer coating shows capacitance of 946.3 F/cm 3 and 1226.7 F/cm 3 in the unfolded state, respectively, and 291.2 F/cm 3 in the bent state, respectively. , 914.5 F/cm 3 It can be seen that the capacity has decreased to a certain level by 30.7% and 74.5%.
  • Figure 12 is a graph showing recovery characteristics calculated from the GCD curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • the capacitance capacity decreases from 1093.1 F/cm 3 in the unfolded state before coating the buffer layer to 318.6 F/cm 3 , which is 29.1% after bending.
  • the capacitance capacity upon recovery was 643.4 F/cm 3 , meaning that the recovery level only reached about 58.8%.
  • Figure 13 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the CV curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • this is the result of an experiment at a speed of 10mv/s for each supercapacitor.
  • the capacitance capacity decreased by 24.4% from the initial capacitance capacity of 971.4 F/cm 3 to 237.4 F/cm 3 .
  • (b) and (c) are graphs showing the CV curves of the substrate before and after buffer layer coating. Comparing (b) and (c), it can be seen that the cycle characteristics of (c) coated with the buffer layer are improved, increasing durability.
  • Figure 14 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the GCD curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • the capacitance capacity decreased by 19.7% from the initial capacitance capacity of 1095.2 F/cm 3 to 216.3 F/cm 3 .
  • the capacitance capacity is maintained up to 87.7% from 1490.6 F/cm 3 to 1307.5 F/cm 3 .
  • (b) and (c) are graphs showing the change in voltage over time of the substrate before and after buffer layer coating. Comparing (b) and (c), it can be seen that the cycle characteristics of (c) coated with the buffer layer are improved and durability is increased.
  • Figure 15a is a graph showing the durability according to the radius of curvature of a substrate without a buffer layer coated in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • Figure 15b is a graph showing durability according to the radius of curvature of a substrate coated with a buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • each graph shows the capacitance value according to the scan speed of the substrate according to the radius of curvature in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. It's a graph. Comparing (a) and (c), it can be seen that the decrease in capacitance capacity value is large as the radius of curvature decreases in both (a) and (c). However, in the case of (c) coated with a buffer layer, it can be seen that it has a higher capacitance capacity compared to (a), and through this, it can be seen that the substrate coated with the buffer layer shows better durability.
  • each graph is a graph showing the capacitance value of capacitance according to the current density according to the radius of curvature in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
  • the decrease in capacitance capacity value is large as the radius of curvature decreases in both (b) and (d).
  • the substrate with the buffer layer coated shows better durability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

One embodiment of the present invention provides a method for manufacturing a large-area flexible micro-supercapacitor with precise patterning technology, high yield, and high reproducibility, and a flexible micro-supercapacitor having a polymer buffer layer manufactured thereby. The method for manufacturing a flexible micro-supercapacitor according to an embodiment of the present invention comprises: a mask deposition step of depositing a photoresist mask on the top of a substrate coated with a polyimide (PI) film; a surface treatment step of treating the surface of the mask-deposited substrate with an active gas plasma; a MXene coating step of coating the top of the surface-treated substrate with MXene; a photoresist removal step of removing photoresist from the MXene-coated substrate by means of a lift-off process to form a MXene pattern; a buffer layer coating step of coating the top of the MXene patterned-formed substrate with a buffer layer; and a peeling step of peeling the polyimide film from the substrate.

Description

유연 마이크로 슈퍼커패시터 제조 방법, 및 이에 의해 제조된 폴리머 버퍼 레이어를 구비한 유연 마이크로 슈퍼커패시터Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor with polymer buffer layer manufactured thereby
본 발명은 유연 마이크로 슈퍼커패시터 제조 방법, 및 이에 의해 제조된 폴리머 버퍼 레이어를 구비한 유연 마이크로 슈퍼커패시터에 관한 것으로, 더욱 상세하게는 대면적화가 가능한 미세 패터닝 기술을 활용하여 재현성과 수율이 높은 유연 마이크로 슈퍼커패시터를 제작하기 위한 기술에 관한 것이다. The present invention relates to a method for manufacturing a flexible micro supercapacitor, and a flexible micro supercapacitor with a polymer buffer layer manufactured thereby. More specifically, the present invention relates to a flexible micro supercapacitor with high reproducibility and yield by utilizing fine patterning technology capable of large area. It is about technology for manufacturing supercapacitors.
또한, 본 발명은 폴리머 버퍼 레이어로 전기화학 성능 및 유연 내구성이 향상된 유연 마이크로 슈퍼커패시터에 관한 것이다.Additionally, the present invention relates to a flexible micro-supercapacitor with improved electrochemical performance and flexible durability using a polymer buffer layer.
최근, 대면적 어플리케이션에서 비용 효용성을 위한, 롤 업 디스플레이, 스마트 센서, 투명 RFID(radio frequency identification) 그리고 웨어러블 전자기기에 이르기까지, 유연 전자기기에 대한 관심이 높아지고 있다. 특히, 웨어러블 센서 등 유연 전자기기가 출시되며 이러한 장치에 전력을 공급하기 위한 유연하면서도 성능이 뛰어난 2차 전지와 슈퍼커패시터의 수요가 증가하고 있다. 차세대 유연 전자기기의 에너지 공급원으로 마이크로 슈퍼커패시터가 주목받고 있으며, 아직까지 이에 적합한 플렉서블 에너지 저장 디바이스에 대한 연구가 미흡한 상황이다. Recently, interest in flexible electronics has been growing for cost-effectiveness in large-area applications, ranging from roll-up displays, smart sensors, transparent radio frequency identification (RFID), and wearable electronics. In particular, as flexible electronic devices such as wearable sensors are released, the demand for flexible and high-performance secondary batteries and supercapacitors to supply power to these devices is increasing. Micro-supercapacitors are attracting attention as an energy source for next-generation flexible electronic devices, but research on flexible energy storage devices suitable for them is still insufficient.
종래에는 맥신(MXene)을 이용하여 슈퍼커패시터를 제조할 때 잉크젯 프린팅 방식과 레이저 빔을 이용한 패터닝 방식을 사용하였다. 잉크젯 프린팅 방식은 대면적 기판을 대량 생산 가능하고 재료효율이 높은 장점이 있으나, 잉크 제작을 위한 추가 공정이 필요하다는 단점이 있다. 레이저 빔을 이용한 패터닝 방식은 레이저 빔의 크기가 최소 100 마이크로미터이기 때문에 한 쌍의 전극 사이의 간격이 마이크로미터 단위까지만 형성할 수 있는 한계가 있었다. 따라서, 정밀한 패터닝 기술과 높은 수율, 높은 재현성을 갖는 플렉서블 마이크로 슈퍼커패시터의 대량 공정 기술이 필요하다.Conventionally, when manufacturing supercapacitors using MXene, inkjet printing and patterning using a laser beam were used. The inkjet printing method has the advantage of being able to mass-produce large-area substrates and has high material efficiency, but has the disadvantage of requiring an additional process to produce ink. The patterning method using a laser beam had a limitation in that the gap between a pair of electrodes could only be formed at the micrometer level because the size of the laser beam was at least 100 micrometers. Therefore, mass processing technology for flexible micro supercapacitors with precise patterning technology, high yield, and high reproducibility is needed.
이와 관련하여, 선행기술문헌인 비특허문헌 Hydrous RuO2-Decorated Mxene Coordinating with Silver nanowire Inks Enabling Fully Printed Micro-supercapacitors with Extraordinary Volumetric Performance(Advanced Energy Materials (2019, 9; 15, 1803987))에 스크린 프린팅 방법으로 제작된 맥신 마이크로 슈퍼커패시터가 개시되어 있다. 상기 선행기술문헌에서는 제작한 스크린 프린팅용 잉크를 종이 기판에 스크린 프린팅하여 유연 마이크로 슈퍼커패시터를 제작한다. 상기의 선행기술문헌에서는 제작한 잉크 용액의 점성 및 기판의 흡수성이 보장되어야 하며, 이에 따라 프린팅 특성이 달라지며, 스크린 프린팅을 위하여 다음과 같은 조건이 요구된다. 먼저, 사용하는 마스크의 스크린 매시(screen mash)를 통해 잉크가 지속적으로 압출될 수 있어야 하며, 압출 후에 패턴의 모양을 유지할 수 있어야 한다. 상기의 조건을 만족하기 위해 첨가물(additive)이 필수적이며, 이러한 제한 사항 외에도 스크린 프린팅 특성 상 미세한 선폭의 프린팅에 한계가 있다는 문제점이 있다.In this regard, the non-patent document Hydrous RuO2-Decorated Mxene Coordinating with Silver nanowire Inks Enabling Fully Printed Micro-supercapacitors with Extraordinary Volumetric Performance (Advanced Energy Materials (2019, 9; 15, 1803987)), which is a prior art document, uses a screen printing method. The fabricated Maxine micro supercapacitor is disclosed. In the prior art literature, a flexible micro supercapacitor is produced by screen printing the produced screen printing ink on a paper substrate. In the above prior art literature, the viscosity of the produced ink solution and the absorbency of the substrate must be guaranteed, and the printing characteristics vary accordingly, and the following conditions are required for screen printing. First, ink must be able to be continuously extruded through the screen mash of the mask used, and the shape of the pattern must be maintained after extrusion. Additives are essential to satisfy the above conditions, and in addition to these limitations, there is a problem that there is a limit to printing fine line widths due to the nature of screen printing.
(비특허문헌 1) Hydrous RuO2-Decorated Mxene Coordinating with Silver nanowire Inks Enabling Fully Printed Micro-supercapacitors with Extraordinary Volumetric Performance(Advanced Energy Materials (2019, 9; 15, 1803987))(Non-patent Document 1) Hydrous RuO2-Decorated Mxene Coordinating with Silver nanowire Inks Enabling Fully Printed Micro-supercapacitors with Extraordinary Volumetric Performance (Advanced Energy Materials (2019, 9; 15, 1803987))
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 정밀한 패터닝 기술과 높은 수율, 높은 재현성을 갖는 대면적의 유연 마이크로 슈퍼커패시터 제조 방법, 및 이에 의해 제조된 폴리머 버퍼 레이어를 구비한 유연 마이크로 슈퍼커패시터를 제공하는 것이다.The purpose of the present invention to solve the above problems is to provide a method for manufacturing a large-area flexible micro-supercapacitor with precise patterning technology, high yield, and high reproducibility, and a flexible micro-supercapacitor with a polymer buffer layer manufactured thereby. is to provide.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 폴리이미드(PI) 필름이 코팅된 기판 상부에 포토레지스트(photoresist) 마스크를 증착하는 마스크증착 단계; 활성가스 플라즈마로 상기 마스크로 증착된 기판의 표면을 처리하는 표면처리 단계; 상기 표면 처리된 기판의 상부에 맥신(MXene)을 코팅하는 맥신코팅 단계; 리프트-오프(lift-off) 공정으로 상기 맥신 코팅한 기판의 포토레지스트를 제거하여 맥신 패턴을 형성시키는 포토레지스트제거 단계; 상기 맥신 패턴이 형성된 기판 상부에 버퍼 레이어를 코팅하는 버퍼레이어코팅 단계; 상기 폴리이미드 필름을 상기 기판에서 박리하는 박리 단계를 포함한다.The configuration of the present invention for achieving the above object includes a mask deposition step of depositing a photoresist mask on an upper portion of a substrate coated with a polyimide (PI) film; A surface treatment step of treating the surface of the substrate deposited with the mask with active gas plasma; A MXene coating step of coating MXene on the top of the surface-treated substrate; A photoresist removal step of forming a MXene pattern by removing the photoresist of the MXene-coated substrate through a lift-off process; A buffer layer coating step of coating a buffer layer on the upper part of the substrate on which the MXene pattern is formed; and a peeling step of peeling the polyimide film from the substrate.
본 발명의 실시 예에 있어서, 상기 마스크증착 단계의 포토레지스트 마스크는 네거티브 형일 수 있다.In an embodiment of the present invention, the photoresist mask in the mask deposition step may be a negative type.
본 발명의 실시 예에 있어서, 상기 표면처리 단계의 활성가스는 산소(O2)일 수 있다.In an embodiment of the present invention, the active gas in the surface treatment step may be oxygen (O 2 ).
본 발명의 실시 예에 있어서, 상기 맥신코팅 단계는 맥신을 코팅하기 이전에 맥신을 합성할 수 있다.In an embodiment of the present invention, in the MXene coating step, MXene may be synthesized prior to coating the MXene.
본 발명의 실시 예에 있어서, 상기 맥신은 맥스(MAX) 상을 플루오린화 리튬(LiF), 염화수소(HCl) 6M 조건에서 에칭(etching)하여 획득될 수 있다.In an embodiment of the present invention, the MXene can be obtained by etching the MAX phase under lithium fluoride (LiF) and hydrogen chloride (HCl) 6M conditions.
본 발명의 실시 예에 있어서, 상기 맥신코팅 단계의 맥신을 코팅하는 방식은 스핀 코팅 방식으로 수행될 수 있다.In an embodiment of the present invention, the method of coating the MXene in the MXene coating step may be performed by spin coating.
본 발명의 실시 예에 있어서, 상기 맥신코팅 단계에서 상기 기판 상에 상기 맥신을 코팅하고 난 후에 오븐에서 50 내지 100℃의 온도에서 가열을 수행할 수 있다.In an embodiment of the present invention, after coating the MXene on the substrate in the MXene coating step, heating may be performed in an oven at a temperature of 50 to 100°C.
본 발명의 실시 예에 있어서, 상기 버퍼 레이어는 겔 폴리머 전해질(GPE)과 동일한 종류의 폴리머를 사용할 수 있다.In an embodiment of the present invention, the buffer layer may use the same type of polymer as the gel polymer electrolyte (GPE).
본 발명의 실시 예에 있어서, 상기 버퍼 레이어는 수계 전해질 (PVA/H2SO4) 사용시, 버퍼 레이어로 PVA(polyvinyl alcohol)를 사용하고, 유기계 전해질 (PVDF/IL) 사용시, 버퍼 레이어로 PVDF(polyvinylidene fluoride)를 사용할 수 있다.In an embodiment of the present invention, the buffer layer uses PVA (polyvinyl alcohol) as a buffer layer when using an aqueous electrolyte (PVA/H2SO4), and when using an organic electrolyte (PVDF/IL), PVDF (polyvinylidene fluoride) is used as a buffer layer. can be used.
본 발명의 실시 예에 있어서, 상기 기판은, 실리콘 웨이퍼(Si wafer) 상 형성된 이산화규소(SiO2) 레이어일 수 있다.In an embodiment of the present invention, the substrate may be a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer).
본 발명의 실시 예에 있어서, 상기 포토레지스트제거 단계는 초음파 세척기에서 아세톤으로 포토레지스트 마스크를 제거하여 맥신 패턴을 제작할 수 있다.In an embodiment of the present invention, the photoresist removal step may be performed by removing the photoresist mask with acetone in an ultrasonic cleaner to produce a MXene pattern.
본 발명의 실시 예에 있어서, 상기 박리 단계는 상기 폴리이미드 필름을 상기 기판에서 박리하여 상기 폴리이미드 필름과 상기 맥신 패턴의 결합체인 유연 소자를 형성시킬 수 있다.In an embodiment of the present invention, the peeling step may peel the polyimide film from the substrate to form a flexible device that is a combination of the polyimide film and the MXene pattern.
본 발명의 일실시예에 따르면, 부가적인 첨가제가 필요 없으며, 용액의 잉크젯화 및 전사 방법 등의 복잡한 공정 없이 원스텝 공정으로 높은 수율과 높은 재현성을 갖는 대면적의 유연 마이크로 슈퍼커패시터를 제작할 수 있다. According to one embodiment of the present invention, a large-area flexible micro-supercapacitor with high yield and high reproducibility can be manufactured in a one-step process without the need for additional additives and without complex processes such as inkjetting and transferring the solution.
본 발명의 일실시예에 따르면, 보다 단순화된 공정으로 한번에 100개 이상의 대량으로 미세 패턴을 갖는 유연 마이크로 슈퍼커패시터를 제작할 수 있다. According to one embodiment of the present invention, it is possible to manufacture flexible micro-supercapacitors with fine patterns in large quantities of 100 or more at a time using a more simplified process.
본 발명의 일실시예에 따르면, 폴리머 버퍼 레이어를 사용하여 분산성의 이슈를 발생시키지 않으면서도 유연 마이크로 슈퍼커패시터의 전기화학 성능과 유연 내구성을 향상시킬 수 있다. According to one embodiment of the present invention, the electrochemical performance and flexible durability of a flexible micro supercapacitor can be improved without causing dispersibility issues by using a polymer buffer layer.
본 발명의 일실시예에 따르면, 유연한 소재의 필름의 표면에 패턴화된 맥신을 형성시켜 롤업 디스플레이, 웨어러블 전자기기와 같이 형상 변형되는 다양한 어플리케이션에 적용 가능한 마이크로 슈퍼커패시터를 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a micro supercapacitor applicable to various applications in which shape is changed, such as roll-up displays and wearable electronic devices, by forming patterned MXene on the surface of a flexible material film.
본 발명의 일실시예에 따르면, 폴리머 버퍼 레이어를 이용하여 전기화학 성능 및 유연 내구성이 향상된 유연 마이크로 슈퍼커패시터를 제공할 수 있다.According to one embodiment of the present invention, a flexible micro supercapacitor with improved electrochemical performance and flexibility durability can be provided by using a polymer buffer layer.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the effects described above, and should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도1은 본 발명의 일 실시예에 따른, 유연 마이크로 슈퍼커패시터의 제조 방법에 대한 개략적인 구성을 나타내는 흐름도이다.1 is a flowchart showing a schematic configuration of a method for manufacturing a flexible micro supercapacitor according to an embodiment of the present invention.
도2는 본 발명의 일 실시예에 따른, 유연 마이크로 슈퍼커패시터의 제조 방법에 대한 개략도이다.Figure 2 is a schematic diagram of a method of manufacturing a flexible micro supercapacitor according to an embodiment of the present invention.
도3은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 웨이퍼 상에 형성된 맥신 패턴에 대한 이미지이다.Figure 3 is an image of a MXene pattern formed on a wafer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도4는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 슈퍼커패시터의 버퍼 레이어 코팅 전/후 기판의 차이를 나타내는 이미지이다.Figure 4 is an image showing the difference between the substrate before and after coating the buffer layer of the supercapacitor in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도5는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어의 성분에 따른 슈퍼커패시터의 성능을 나타내는 그래프이다.Figure 5 is a graph showing the performance of the supercapacitor according to the components of the buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도6는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 CV(Cyclic voltammetry) 곡선으로 계산한 전기화학 특성을 나타내는 그래프이다.Figure 6 is a graph showing electrochemical characteristics calculated from CV (Cyclic voltammetry) curves of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도7은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 GCD(Galvanostatic charge-discharge) 곡선으로 계산한 전기화학 특성을 나타내는 그래프이다.Figure 7 is a graph showing electrochemical characteristics calculated from the GCD (Galvanostatic charge-discharge) curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도8은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩(bending) 정도에 따른 CV특성을 나타내는 그래프이다.Figure 8 is a graph showing CV characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도9는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩(bending) 정도에 따른 GCD특성을 나타내는 그래프이다.Figure 9 is a graph showing GCD characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도10은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩(bending) 정도에 따른 내부저항을 나타내는 그래프이다.Figure 10 is a graph showing the internal resistance according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도11은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 CV 곡선으로 계산한 리커버리(recovery) 특성을 나타내는 그래프이다.Figure 11 is a graph showing recovery characteristics calculated from the CV curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도12는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 GCD 곡선으로 계산한 리커버리(recovery) 특성을 나타내는 그래프이다.Figure 12 is a graph showing recovery characteristics calculated from the GCD curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도13은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩 횟수에 따른 슈퍼커패시터의 내구성을 CV 곡선으로부터 계산한 그래프이다. Figure 13 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the CV curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도14는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩 횟수에 따른 슈퍼커패시터의 내구성을 GCD 곡선으로부터 계산한 그래프이다.Figure 14 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the GCD curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도15a는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어가 코팅되지 않은 기판의 곡률 반경에 따른 내구성을 나타내는 그래프이다. Figure 15a is a graph showing the durability according to the radius of curvature of a substrate without a buffer layer coated in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도15b는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어가 코팅된 기판의 곡률 반경에 따른 내구성을 나타내는 그래프이다.Figure 15b is a graph showing durability according to the radius of curvature of a substrate coated with a buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
본 발명에 따른 가장 바람직한 일 실시예는 폴리이미드(PI) 필름이 코팅된 기판 상부에 포토레지스트(photoresist) 마스크를 증착하는 마스크증착 단계; 활성가스 플라즈마로 상기 마스크로 증착된 기판의 표면을 처리하는 표면처리 단계; 상기 표면 처리된 기판의 상부에 맥신(MXene)을 코팅하는 맥신코팅 단계; 리프트-오프(lift-off) 공정으로 상기 맥신 코팅한 기판의 포토레지스트를 제거하여 맥신 패턴을 형성시키는 포토레지스트제거 단계; 상기 맥신 패턴이 형성된 기판 상부에 버퍼 레이어를 코팅하는 버퍼레이어코팅 단계; 상기 폴리이미드 필름을 상기 기판에서 박리하는 박리 단계를 포함하는 것을 특징으로 한다.The most preferred embodiment according to the present invention includes a mask deposition step of depositing a photoresist mask on an upper part of a substrate coated with a polyimide (PI) film; A surface treatment step of treating the surface of the substrate deposited with the mask with active gas plasma; A MXene coating step of coating MXene on the top of the surface-treated substrate; A photoresist removal step of forming a MXene pattern by removing the photoresist of the MXene-coated substrate through a lift-off process; A buffer layer coating step of coating a buffer layer on the upper part of the substrate on which the MXene pattern is formed; Characterized by comprising a peeling step of peeling the polyimide film from the substrate.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the attached drawings. However, the present invention may be implemented in various different forms and, therefore, is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this means not only "directly connected" but also "indirectly connected" with another member in between. "Includes cases where it is. Additionally, when a part is said to “include” a certain component, this does not mean that other components are excluded, but that other components can be added, unless specifically stated to the contrary.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to indicate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
도1은 본 발명의 일 실시예에 따른, 유연 마이크로 슈퍼커패시터의 제조방법에 대한 개략적인 구성을 나타내는 흐름도이다. 도1을 참조하면, 상기 유연 마이크로 슈퍼커패시터 제조 방법(100)은 마스크증착 단계(S110)에서 폴리이미드(PI) 필름이 코팅된 기판 상부에 포토레지스트(photoresist) 마스크를 증착하고, 표면처리 단계(S120)에서 활성가스 플라즈마로 상기 마스크로 증착된 기판의 표면을 처리한 후, 맥신코팅 단계(S130)에서 상기 표면 처리된 기판의 상부에 맥신을 코팅하고, 포토레지스트제거 단계(S140)에서 리프트-오프 공정으로 상기 맥신 코팅한 기판의 포토레지스트를 제거하여 맥신 패턴을 형성시킨다. 그 후, 버퍼레이어코팅 단계(S150)에서 상기 맥신 패턴이 형성된 기판 상부에 버퍼 레이어를 코팅하고, 박리 단계(S160)에서 상기 폴리이미드 필름을 상기 기판에서 박리한다.Figure 1 is a flowchart showing a schematic configuration of a method for manufacturing a flexible micro supercapacitor according to an embodiment of the present invention. Referring to FIG. 1, the flexible micro supercapacitor manufacturing method 100 deposits a photoresist mask on the top of the substrate coated with a polyimide (PI) film in the mask deposition step (S110), and performs a surface treatment step ( After treating the surface of the substrate deposited with the mask with active gas plasma in S120), MXene is coated on the top of the surface-treated substrate in the MXene coating step (S130), and in the photoresist removal step (S140), lift- The photoresist of the MXene-coated substrate is removed in an off process to form a MXene pattern. Thereafter, in the buffer layer coating step (S150), a buffer layer is coated on the upper part of the substrate on which the MXene pattern is formed, and in the peeling step (S160), the polyimide film is peeled from the substrate.
상기 마스크증착 단계(S110)의 기판은 실리콘 웨이퍼(Si wafer) 상 형성된 이산화규소(SiO2)레이어일 수 있지만, 이에 한정되는 것은 아니다. The substrate of the mask deposition step (S110) may be a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer), but is not limited thereto.
상기 마스크증착 단계(S110)의 포토레지스트 마스크는 네거티브 형일 수 있으나 이에 한정되는 것은 아니다. The photoresist mask of the mask deposition step (S110) may be a negative type, but is not limited thereto.
상기 표면처리 단계(S120)의 활성가스는 산소(O2)일 수 있으나, 이에 한정되는 것은 아니다. The active gas in the surface treatment step (S120) may be oxygen (O 2 ), but is not limited thereto.
상기 맥신코팅 단계(S130)는 맥신을 코팅하기 이전에 맥신을 합성할 수 있다. 상기 맥신은 맥스(MAX) 상을 플루오린화 리튬(LiF), 염화수소(HCl) 6M 조건에서 에칭(etching)하여 획득될 수 있으나, 이에 한정되는 것은 아니다. 상기 맥신코팅 단계(S130)의 맥신을 코팅하는 방식은 스핀 코팅으로 수행될 수 있으나, 이에 한정되는 것은 아니다. 스핀 코팅 시, 1000~1500rpm에서 코팅이 이루어지도록 마련될 수 있다. 상기 맥신코팅 단계(S130)에서 상기 기판 상에 상기 맥신을 코팅하고 난 후에 오븐에서 가열을 수행할 수 있다.In the MXene coating step (S130), MXene can be synthesized before coating MXene. The MXene may be obtained by etching the MAX phase under lithium fluoride (LiF) and hydrogen chloride (HCl) 6M conditions, but is not limited thereto. The method of coating the MXene in the MXene coating step (S130) may be performed by spin coating, but is not limited thereto. During spin coating, coating can be arranged at 1000 to 1500 rpm. After coating the MXene on the substrate in the MXene coating step (S130), heating may be performed in an oven.
상기 포토레지스트제거 단계(S140)는 본 발명의 일실시예에서 상기 맥신코팅 단계(S130)에서 가열이 수행되고 난 후의 기판을 초음파 세척기에서 1~10분간 머무르게 하면서 아세톤을 용제로 포토레지스트 마스크를 제거하여 원하는 맥신 패턴을 제작할 수 있다.In the photoresist removal step (S140), in one embodiment of the present invention, the photoresist mask is removed using acetone as a solvent while leaving the substrate after heating in the MXene coating step (S130) in an ultrasonic cleaner for 1 to 10 minutes. This allows you to create the Maxine pattern you want.
상기 버퍼레이어코팅 단계(S150)에서 상기 버퍼 레이어는 겔 폴리머 전해질과 동일한 종류의 폴리머를 사용할 수 있다. 상기 폴리머 버퍼 레이어는 바람직하게는, PEO(ethylene oxide), PMMA(methyl methacrylate), PAN(Polyacrylonitrile), PVA(polyvinyl alcohol), PVDF(polyvinylidene fluoride)를 포함하는 그룹에서 선택된 어느 하나 이상의 폴리머를 사용할 수 있다. 본 발명의 일실시예에서 상기 버퍼 레이어는 수계 전해질 (PVA/H2SO4) 사용시, 버퍼 레이어로 10wt%의 PVA(polyvinyl alcohol)를 사용하고, 유기계 전해질 (PVDF/IL) 사용시, 버퍼 레이어로 10wt%의 PVDF(polyvinylidene fluoride)를 사용할 수 있으나, 이에 한정되는 것은 아니다. In the buffer layer coating step (S150), the buffer layer may use the same type of polymer as the gel polymer electrolyte. The polymer buffer layer preferably uses one or more polymers selected from the group including ethylene oxide (PEO), methyl methacrylate (PMMA), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), and polyvinylidene fluoride (PVDF). there is. In one embodiment of the present invention, the buffer layer uses 10 wt% of polyvinyl alcohol (PVA) as a buffer layer when using an aqueous electrolyte (PVA/H 2 SO 4 ), and when using an organic electrolyte (PVDF/IL), the buffer layer uses 10 wt% of polyvinyl alcohol (PVA) as a buffer layer. 10 wt% of PVDF (polyvinylidene fluoride) can be used, but is not limited to this.
상기 박리 단계(S160)는 상기 폴리이미드 필름을 상기 기판에서 박리하여 상기 폴리이미드 필름과 상기 맥신 패턴의 결합체인 유연 소자를 형성시킬 수 있다. The peeling step (S160) may peel the polyimide film from the substrate to form a flexible device that is a combination of the polyimide film and the MXene pattern.
상기와 같은 유연 마이크로 슈퍼커패시터 제조 방법(100)은 50㎛ 이하의 미세 패턴 구현이 가능하고 상기와 같은 간단한 방법으로 한번에 100개 이상의 대량의 미세 패턴을 갖는 마이크로 슈퍼커패시터 제작이 가능하다. 또한, 전사 방법과 비교하여, 높은 재현성과 수율을 가지며, 상기 버퍼 레이어를 통해 분산성의 이슈 발생 없이, 슈퍼커패시터의 전기화학 성능과 유연 내구성을 향상시킬 수 있다.The flexible micro supercapacitor manufacturing method 100 as described above is capable of implementing fine patterns of 50 μm or less, and it is possible to manufacture micro supercapacitors having a large number of fine patterns of 100 or more at a time using the simple method described above. Additionally, compared to the transfer method, it has high reproducibility and yield, and can improve the electrochemical performance and flexible durability of the supercapacitor without causing dispersion issues through the buffer layer.
도2는 본 발명의 일 실시예에 따른, 유연 마이크로 슈퍼커패시터의 제조방법에 대한 개략도이다. 도 2의 제조 방법에서, 우선 폴리이미드(PI) 필름이 코팅된 기판 (a)에 포토레지스트 마스크(PR)를 증착하여 (b)를 형성한다. (b)의 포토레지스트 마스크와 폴리이미드 필름 표면을 플라즈마 처리하여 (c)를 형성하며, 플라즈마 처리된 (c)의 상부에 맥신(MXene)을 코팅하여 (d)를 형성한다. (d)에서 리프트-오프 공정을 통해 포토레지스트 마스크를 제거하여 맥신 패턴을 형성하는 (e)를 얻고, (e)의 상단에 버퍼 레이어를 코팅하여 (f)를 형성한 후, (f)의 폴리이미드 필름을 실리콘 기판으로부터 박리하여 최종적으로 유연 마이크로 슈퍼커패시터인 (g)를 형성할 수 있다. Figure 2 is a schematic diagram of a method of manufacturing a flexible micro supercapacitor according to an embodiment of the present invention. In the manufacturing method of FIG. 2, first, a photoresist mask (PR) is deposited on a polyimide (PI) film-coated substrate (a) to form (b). The photoresist mask and polyimide film surface of (b) are plasma treated to form (c), and MXene is coated on the plasma treated top of (c) to form (d). In (d), the photoresist mask is removed through a lift-off process to obtain (e), which forms a MXene pattern, and (f) is formed by coating a buffer layer on top of (e). The polyimide film can be peeled off from the silicon substrate to finally form (g), a flexible micro supercapacitor.
제조예Manufacturing example
본 발명의 일실시예에 따라, 우선 마스크증착 단계(S110)에서 폴리이미드(PI) 필름이 코팅된 기판 상부에 네거티브형 포토레지스트(photoresist) 마스크를 증착한다. 이 때 기판은 실리콘 웨이퍼(Si wafer) 상 형성된 이산화규소(SiO2) 레이어이다. 이산화규소 레이어는 실리콘 웨이퍼(Si wafer)의 표면이 산화되어 형성될 수 있다. 이 때 상기 포토레지스트 마스크는 미세전극이 형성되는 부분 타공부의 폭이 50㎛, 미세전극이 형성되는 부분의 타공부간 간격이 50㎛, 두께는 3.5㎛로 형성되었다. 미세전극이 형성되는 부분의 타공부의 폭은 45~55㎛, 미세전극이 형성되는 부분의 타공부간 간격은 45~55㎛, 두께는 3~5㎛로 형성되었다. According to one embodiment of the present invention, first, in the mask deposition step (S110), a negative photoresist mask is deposited on the upper part of the substrate coated with the polyimide (PI) film. At this time, the substrate is a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer). The silicon dioxide layer may be formed by oxidizing the surface of a silicon wafer (Si wafer). At this time, the photoresist mask was formed so that the width of the perforated portion where the microelectrode was formed was 50 μm, the gap between the perforated portions where the microelectrode was formed was 50 μm, and the thickness was 3.5 μm. The width of the perforations in the area where the microelectrodes are formed was 45 to 55㎛, the gap between the perforations in the area where the microelectrodes were formed was 45 to 55㎛, and the thickness was 3 to 5㎛.
상기 표면처리 단계(S120)에서 활성가스(O2) 플라즈마로 상기 마스크로 증착된 기판의 표면을 처리하였다. 상기 표면처리 단계(S120)에서는 산소 플라즈마 100W, 20sccm로 1분간 처리하여 친수성으로 표면이 처리된 기판을 형성하였다.In the surface treatment step (S120), the surface of the substrate deposited with the mask was treated with activated gas (O2) plasma. In the surface treatment step (S120), the substrate was treated with oxygen plasma of 100 W and 20 sccm for 1 minute to form a substrate whose surface was treated to be hydrophilic.
그 후 맥신코팅 단계(S130)에서 상기 표면 처리된 기판의 상부에 맥신을 코팅하였다. 맥신을 코팅하기 이전에 맥신을 합성시, 맥스(MAX) 상을 플루오린화 리튬(LiF), 염화수소(HCl) 6M 조건에서 에칭(etching)하여 형성하였다. 본 단계에서 맥신을 코팅하는 방식은 스핀 코팅으로 수행되었으며, 스핀 코팅 시, 1000~1500rpm, 10분의 조건 하에서 코팅이 수행되었다. 상기 기판 상에 상기 맥신을 코팅하고 난 후에 오븐에서 50 내지 100℃의 온도에서 가열을 수행되었다. Afterwards, in the MXene coating step (S130), MXene was coated on the top of the surface-treated substrate. When synthesizing MXene before coating MXene, the MAX phase was formed by etching under lithium fluoride (LiF) and hydrogen chloride (HCl) 6M conditions. In this step, the method of coating MXene was spin coating, and coating was performed under the conditions of 1000~1500 rpm for 10 minutes. After coating the MXene on the substrate, heating was performed in an oven at a temperature of 50 to 100°C.
포토레지스트 제거 단계(S140)에서는 리프트-오프 공정으로 상기 맥신 코팅한 기판의 포토레지스트를 제거하여 맥신 패턴을 형성시켰다. 이 때에는, 상기 맥신코팅 단계(S130)에서 가열이 수행되고 난 후의 기판을 초음파 세척기에서 1~10분간 머무르게 하면서 아세톤을 용제로 포토레지스트 마스크를 제거하여 원하는 맥신 패턴을 제작할 수 있었다. In the photoresist removal step (S140), the photoresist of the MXene-coated substrate was removed using a lift-off process to form a MXene pattern. At this time, the desired MXene pattern could be produced by removing the photoresist mask using acetone as a solvent while keeping the substrate after heating in the MXene coating step (S130) in an ultrasonic cleaner for 1 to 10 minutes.
버퍼레이어코팅 단계(S150)에서 상기 맥신 패턴이 형성된 기판 상부에 버퍼 레이어를 코팅하고, 박리 단계(S160)에서 상기 폴리이미드 필름을 상기 기판에서 박리한다. 이때 버퍼 레이어로 10wt%의 PVA(polyvinyl alcohol)를 사용하였다. In the buffer layer coating step (S150), a buffer layer is coated on the upper part of the substrate on which the MXene pattern is formed, and in the peeling step (S160), the polyimide film is peeled from the substrate. At this time, 10 wt% PVA (polyvinyl alcohol) was used as a buffer layer.
그 후 박리 단계(S160)에서는 상기 폴리이미드 필름을 상기 기판에서 박리하여 상기 폴리이미드 필름과 상기 맥신 패턴의 결합체인 유연 슈퍼커패시터 소자를 형성하였다. Thereafter, in the peeling step (S160), the polyimide film was peeled from the substrate to form a flexible supercapacitor device that is a combination of the polyimide film and the MXene pattern.
도3은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 웨이퍼(310) 상의 맥신 패턴(320)에 대한 이미지이다. 도3에서 보는 바와 같이, 8인치 레벨의 웨이퍼(310)로 107개의 맥신 패턴(320)을 제조할 수 있으며, 이와 같이 대면적에 복수 개의 맥신 패턴(320)을 형성시킬 수 있으므로, 제조 효율을 현저히 증대시킬 수 있다. Figure 3 is an image of the MXene pattern 320 on the wafer 310 in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. As shown in Figure 3, 107 MXene patterns 320 can be manufactured with an 8-inch level wafer 310, and since a plurality of MXene patterns 320 can be formed in a large area, manufacturing efficiency is improved. can be significantly increased.
도4는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 슈퍼커패시터의 버퍼 레이어 코팅 전/후 기판의 차이를 나타내는 이미지이다. 도4에서 (a)와 (b) 모두 수계 전해질을 사용하였으나 버퍼 레이어가 코팅되지 않은 (a)와 버퍼 레이어가 코팅된 (b)로 나누어진다. (a)와 비교하여 볼 때, (b)는 겔 폴리머 전해질과 동일한 종류의 폴리머로 코팅한 결과 젖음성(wettability)이 향상된 것을 알 수 있으며, 이는 이온 전도율을 떨어뜨리는 데드존(dead zone)을 최소화하고 맥신의 엣지 효과(edge effect)를 극대화하여 커패시턴스를 향상시킬 수 있다. 또한, 전해질과 전극간의 계면 저항을 낮춤으로써 속도 특성을 향상시킬 수 있다. 이와 관련된 구체적인 수치는 후술하도록 한다.Figure 4 is an image showing the difference between the substrate before and after coating the buffer layer of the supercapacitor in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. In Figure 4, (a) and (b) both use an aqueous electrolyte, but are divided into (a) without a buffer layer coated and (b) with a buffer layer coated. Compared to (a), (b) shows improved wettability as a result of coating with the same type of polymer as the gel polymer electrolyte, which minimizes the dead zone that reduces ionic conductivity. And the capacitance can be improved by maximizing the edge effect of the MXene. Additionally, speed characteristics can be improved by lowering the interfacial resistance between the electrolyte and the electrode. Specific figures related to this will be described later.
도5는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어의 성분에 따른 슈퍼커패시터의 성능을 나타내는 그래프이다. 도 5의 (a)는 겔 전해질과 다른 종류의 폴리머를 적용한 결과를 나타내는 그래프이다. (a)를 참조하면 다른 종류의 폴리머로 버퍼 레이어를 코팅할 시 커패시터의 특성이 사라지는 것을 볼 수 있다. 이와 달리, 같은 종류의 폴리머를 적용한 (b)의 경우, 그래프상 버퍼 레이어를 코팅하지 않은 기존 소자와 비교하여 커패시터 특성이 향상된 것을 확인할 수 있다.Figure 5 is a graph showing the performance of the supercapacitor according to the components of the buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. Figure 5(a) is a graph showing the results of applying a different type of polymer than the gel electrolyte. Referring to (a), you can see that the capacitor characteristics disappear when the buffer layer is coated with a different type of polymer. On the other hand, in case (b) where the same type of polymer is applied, it can be seen from the graph that the capacitor characteristics are improved compared to the existing device without a buffer layer coated.
도6는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 CV(Cyclic voltammetry) 곡선으로 계산한 전기화학 특성을 나타내는 그래프이다. 도6는 모두 수계 전해질(PVA/H2SO4, 1M)을 사용하였으며, 이 때 폴리머 버퍼레이어로 10wt% PVA를 사용하였다. 버퍼 레이어 코팅 후 PVA 폴리머가 맥신 시트 사이로 침투되면서 전해질 이온의 데드존을 감소시켜, 전극에서 활성 이온 구역이 증가한다. CV 곡선으로 커패시턴스(capacitance)를 계산한 결과 (a)를 참조하면 버퍼 레이어 코팅 시 커패시턴스가 971.4 F/cm3에서 1186.1 F/cm3(10 mV/s) 22.1% 증가 하였으며 추가적으로, 맥신 시트에서 이온의 이동성이 향상되어, 2 V/s의 스캔속도에서 커패시턴스가 265.9 F/cm3(27.4% retention) 에서 462.9 F/cm3(39.0% retention)으로 속도 특성이 향상되었다. 버퍼 레이어가 코팅된 기판과 아닌 기판의 CV 특성을 나타내는 (b)를 참조하면, 버퍼 레이어를 코팅한 결과 커패시터 특성이 향상된 것을 확인할 수 있다.Figure 6 is a graph showing electrochemical characteristics calculated from CV (Cyclic voltammetry) curves of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. In Figure 6, an aqueous electrolyte (PVA/H 2 SO 4 , 1M) was used, and 10 wt% PVA was used as a polymer buffer layer. After coating the buffer layer, the PVA polymer penetrates between the MXene sheets, reducing the dead zone of electrolyte ions and increasing the active ion area at the electrode. Referring to (a), the result of calculating the capacitance using the CV curve, the capacitance increased by 22.1% from 971.4 F/cm 3 to 1186.1 F/cm 3 (10 mV/s) when coating the buffer layer, and additionally, the ion from the MXene sheet As the mobility was improved, the capacitance improved from 265.9 F/cm 3 (27.4% retention) to 462.9 F/cm 3 (39.0% retention) at a scan speed of 2 V/s. Referring to (b), which shows the CV characteristics of a substrate with and without a buffer layer coated, it can be seen that the capacitor characteristics were improved as a result of coating the buffer layer.
도7은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 GCD(Galvanostatic charge-discharge) 곡선으로 계산한 전기화학 특성을 나타내는 그래프이다. 도7은 모두 수계 전해질(PVA/H2SO4 1M)을 사용하였으며, 이 때 폴리머 버퍼레이어로 10wt% PVA를 사용하였다. GCD곡선으로 커패시턴스를 계산한 결과 (a)를 참조하면 버퍼 레이어 코팅 시, 1093 F/cm3에서 1487.3 F/cm3으로 36.0% 증가하였다. 버퍼 레이어가 코팅된 기판과 아닌 기판 각각의 GCD 특성을 나타내는 (b)를 참조하면 커패시터 특성이 향상된 것을 확인할 수 있다.Figure 7 is a graph showing electrochemical characteristics calculated from the GCD (Galvanostatic charge-discharge) curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. In Figure 7, an aqueous electrolyte (PVA/H 2 SO 4 1M) was used, and 10 wt% PVA was used as a polymer buffer layer. Referring to (a), the capacitance was calculated using the GCD curve, and when the buffer layer was coated, it increased by 36.0% from 1093 F/cm 3 to 1487.3 F/cm 3 . Referring to (b), which shows the GCD characteristics of each substrate coated with a buffer layer and one without a buffer layer, it can be seen that the capacitor characteristics have improved.
도8은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩(bending) 정도에 따른 CV특성을 나타내는 그래프이다. 버퍼 레이어 코팅 전후의 마이크로 슈퍼커패시터 소자의 곡률 반경에 따라 커패시턴스 감소 정도를 분석하여, 버퍼 레이어의 효과를 확인하고자 하였다. (a)를 참조하면 버퍼 레이어를 코팅하지 않았을 때, 펴진 상태(flat)에서의 커패시턴스 946.3 F/cm3가 곡률 반경 3.87mm에서 291.2 F/cm3로 초기 값 대비 30.7%의 커패시턴스를 보인다. 반면, 버퍼 레이어를 코팅하였을 때, 펴진 상태에서의 커패시턴스 1226.7 F/cm3가 곡률 반경 3.87mm에서 914.5 F/cm3로 초기 값 대비 74.5%의 커패시턴스를 유지하였다. 또한, 커패시턴스 용량은 곡률 반경 5.27mm 에서 변곡 포인트가 존재하며, 5.27mm 이하의 곡률 반경에서 용량저하가 크지 않고, 일정 수준을 유지한다. 반면, 버퍼 레이어를 코팅하지 않은 소자의 경우 곡률 반경 5.27 mm의 변곡 포인트 이후에도 커패시턴스 용량 저하가 지속됨을 확인할 수 있다. (b)와 (c)에서는 슈퍼커패시터의 벤딩(bending) 정도를 달리하면서(펴진 상태, 3.87mm, 4.25mm, 5.27mm, 6.53mm, 8.58mm) 전압에 따른 전류의 밀도를 측정하였다. 보는 바와 같이, 버퍼 레이어가 코팅된 (c)는 (b)와 달리 슈퍼커패시터의 성능이 유지됨을 확인할 수 있으며, 형상 변형에도 맥신 패턴의 손상이 방지되면서 슈퍼커패시터 기능이 구현됨을 확인할 수 있다.Figure 8 is a graph showing CV characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. We attempted to confirm the effect of the buffer layer by analyzing the degree of capacitance reduction according to the radius of curvature of the micro-supercapacitor device before and after buffer layer coating. Referring to (a), when the buffer layer is not coated, the capacitance in the flat state is 946.3 F/cm 3 and is 291.2 F/cm 3 at a radius of curvature of 3.87 mm, which is 30.7% of the initial value. On the other hand, when the buffer layer was coated, the capacitance in the unfolded state was 1226.7 F/cm 3 and was 914.5 F/cm 3 at a radius of curvature of 3.87 mm, maintaining a capacitance of 74.5% of the initial value. In addition, the capacitance capacity has an inflection point at a curvature radius of 5.27 mm, and the capacity decrease is not significant at a curvature radius of 5.27 mm or less and remains at a constant level. On the other hand, in the case of the device without a buffer layer coating, it can be seen that the capacitance capacity continues to decrease even after the inflection point of the curvature radius of 5.27 mm. In (b) and (c), the current density according to voltage was measured while varying the degree of bending of the supercapacitor (unfolded state, 3.87mm, 4.25mm, 5.27mm, 6.53mm, 8.58mm). As can be seen, unlike (b), in (c) coated with a buffer layer, it can be seen that the performance of the supercapacitor is maintained, and damage to the MXene pattern is prevented despite shape deformation, and the supercapacitor function is implemented.
도9는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩(bending) 정도에 따른 GCD특성을 나타내는 그래프이다. 도8과 마찬가지로 GCD 곡선에서도 비슷한 전기화학 특성의 경향성을 보였다. (a)를 참조하면 버퍼 레이어를 코팅하지 않았을 때, 펴진 상태(flat)에서의 커패시턴스 1093.1 F/cm3가 곡률 반경 3.87mm에서 318.6 F/cm3로 초기 값 대비 29.1%의 커패시턴스를 보인다. 반면, 버퍼 레이어를 코팅하였을 때, 펴진 상태에서의 커패시턴스 1487.3 F/cm3가 곡률 반경 3.87mm에서 1137.1 F/cm3로 초기 값 대비 76.5%의 커패시턴스를 유지하였다. 버퍼 레이어 코팅 후, 곡률 반경이 5.27mm 이하에서는 용량 변화가 크지 않으며, 버퍼 레이어 역할에 의한 효과로 볼 수 있는 반면, 버퍼 레이어를 코팅하지 않은 소자의 경우, 곡률 반경 5.27mm 이하의 변곡 포인트 이후에도 용량이 계속 저하됨을 확인할 수 있다. (b)와 (c)에서는 슈퍼커패시터의 벤딩(bending) 정도를 달리하면서(펴진 상태, 3.87mm, 4.25mm, 5.27mm, 6.53mm, 8.58mm) 시간에 따른 전압의 변화를 측정하였다. 보는 바와 같이, 버퍼 레이어가 코팅된 (c)는 (b)와 달리 슈퍼커패시터의 성능이 유지됨을 확인할 수 있으며, 형상 변형에도 맥신 패턴의 손상이 방지되면서 슈퍼커패시터 기능이 구현됨을 확인할 수 있다.Figure 9 is a graph showing GCD characteristics according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. As in Figure 8, the GCD curve also showed a similar tendency of electrochemical characteristics. Referring to (a), when the buffer layer is not coated, the capacitance in the flat state is 1093.1 F/cm 3 and is 318.6 F/cm 3 at a radius of curvature of 3.87 mm, which is 29.1% of the initial value. On the other hand, when the buffer layer was coated, the capacitance in the unfolded state was 1487.3 F/cm 3 and 1137.1 F/cm 3 at a radius of curvature of 3.87 mm, maintaining a capacitance of 76.5% of the initial value. After coating the buffer layer, the change in capacity is not significant when the radius of curvature is 5.27 mm or less, which can be seen as an effect of the role of the buffer layer. On the other hand, in the case of devices without coating the buffer layer, the capacity remains even after the inflection point with a radius of curvature of 5.27 mm or less. It can be seen that this continues to deteriorate. In (b) and (c), the change in voltage over time was measured while varying the degree of bending of the supercapacitor (unfolded state, 3.87mm, 4.25mm, 5.27mm, 6.53mm, 8.58mm). As can be seen, unlike (b), in (c) coated with a buffer layer, it can be seen that the performance of the supercapacitor is maintained, and damage to the MXene pattern is prevented despite shape deformation, and the supercapacitor function is implemented.
도10은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩(bending) 정도에 따른 내부저항을 나타내는 그래프이다. (a)를 참초하면 곡률 반경(펴진 상태, 8.58mm, 6.53mm, 5.27mm, 4.25mm, 3.87mm)이 감소함에 따라, 버퍼 레이어 코팅 전, ESR (equivalent series resistance) 내부 저항(439.7Ω, 460.2Ω, 480.2Ω, 566.8Ω, 613.5Ω, 641.4Ω)이 큰 폭으로 증가한다. 반면, 버퍼 레이어 코팅 후, ESR 내부 저항(270.0Ω, 327.5Ω, 339.9Ω, 367.4Ω, 393.1Ω, 395.1Ω)의 증가를 감소시키는 효과가 있음을 확인할 수 있다. (b)와 (c)에서는 슈퍼커패시터의 벤딩(bending) 정도를 달리하면서(펴진 상태, 3.87mm, 4.25mm, 5.27mm, 6.53mm, 8.58mm) 임피던스 실수부에 따른 임피던스 허수부의 변화를 측정하였다. 보는 바와 같이, 버퍼 레이어가 코팅된 (c)는 (b)와 달리 곡률 반경에 따른 ESR 내부저항의 증가량이 감소함을 그래프를 통해 확인할 수 있다.Figure 10 is a graph showing the internal resistance according to the degree of bending of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. Referring to (a), as the radius of curvature (unfolded state, 8.58mm, 6.53mm, 5.27mm, 4.25mm, 3.87mm) decreases, the ESR (equivalent series resistance) internal resistance (439.7Ω, 460.2) before buffer layer coating. Ω, 480.2Ω, 566.8Ω, 613.5Ω, 641.4Ω) increases significantly. On the other hand, it can be seen that after coating the buffer layer, there is an effect of reducing the increase in ESR internal resistance (270.0Ω, 327.5Ω, 339.9Ω, 367.4Ω, 393.1Ω, 395.1Ω). In (b) and (c), the change in the imaginary part of the impedance according to the real part of the impedance was measured while varying the degree of bending of the supercapacitor (unfolded state, 3.87mm, 4.25mm, 5.27mm, 6.53mm, 8.58mm). . As can be seen, the graph shows that in (c), where the buffer layer is coated, unlike (b), the increase in ESR internal resistance according to the radius of curvature decreases.
도11은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 CV 곡선으로 계산한 리커버리(recovery) 특성을 나타내는 그래프이다. (a)를 참조하면, 버퍼 레이어 코팅 전/후 마이크로 슈퍼커패시터 소자에서, 펴진 상태에서 각각 946.3 F/cm3, 1226.7 F/cm3 커패시턴스의 용량을 보이며, 벤딩 하였을 때, 각각 291.2 F/cm3, 914.5 F/cm3으로 30.7%, 74.5%로 일정 수준 용량이 저하 하였음을 볼 수 있다. 이후 리커버리 하였을 때, 버퍼 레이어를 코팅한 소자의 경우 1293.9 F/cm3의 105.5% 회복한 반면, 버퍼 레이어를 적용하지 않은 소자의 경우 580.4 F/cm3으로 펴진 상태의 커패시턴스에 61.3% 밖에 미치지 못한 결과를 내는 것을 확인할 수 있다. (b)와 (c)에서는 버퍼 레이어 코팅 전/후의 CV 곡선을 나타낸 그래프이다. 결론적으로 버퍼 레이어 코팅 후 리커버리 특성이 향상되며, CV 곡선으로 용량을 계산한 결과, 벤딩 후에는 용량이 감소하나 버퍼 레이어 코팅 시엔 리커버리 하였을 때 원래 수준으로 회복함을 확인할 수 있다.Figure 11 is a graph showing recovery characteristics calculated from the CV curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. Referring to (a), the micro supercapacitor device before and after buffer layer coating shows capacitance of 946.3 F/cm 3 and 1226.7 F/cm 3 in the unfolded state, respectively, and 291.2 F/cm 3 in the bent state, respectively. , 914.5 F/cm 3 It can be seen that the capacity has decreased to a certain level by 30.7% and 74.5%. After recovery, the device coated with a buffer layer recovered 105.5% of 1293.9 F/cm 3 , while the device without a buffer layer recovered 580.4 F/cm 3 , which is only 61.3% of the capacitance in the unfolded state. You can see that it produces results. (b) and (c) are graphs showing the CV curves before and after buffer layer coating. In conclusion, the recovery characteristics are improved after coating the buffer layer, and as a result of calculating the capacity with the CV curve, it can be confirmed that the capacity decreases after bending, but returns to the original level when recovering when coating the buffer layer.
도12는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 GCD 곡선으로 계산한 리커버리(recovery) 특성을 나타내는 그래프이다. (a)를 참조하면, 버퍼 레이어 코팅 전 펴진 상태 커패시턴스 용량 1093.1 F/cm3 에서 벤딩 후 29.1%인 318.6 F/cm3까지 커패시턴스 용량이 줄어듬을 확인할 수 있다. 이후, 리커버리 하였을 때의 커패시턴스 용량도 643.4 F/cm3으로 회복 수준이 58.8% 정도 밖에 미치지 못함을 확인할 수 있다. 버퍼 레이어 코팅 후, 펴진 상태 커패시턴스 용량1487.3 F/cm3에서 벤딩 후 76.4%인 1137.1 F/cm3까지 성능을 유지하며, 이는 버퍼 레이어에 의한 유연 내구성 향상 효과로 판단할 수 있다. 이후, 리커버리 시에도 커패시턴스 용량이 1402.1 F/cm3로 94.2% 성능이 회복됨을 확인할 수 있다. (b)와 (c)는 버퍼 레이어 코팅 전/후 기판의 시간에 따른 전압의 변화량을 나타낸 그래프이다. 결론적으로 버퍼 레이어 도입 후 벤딩 시에도 리커버리 특성이 향상되어 내구성이 증가함을 (b)와 (c)를 통해서도 확인할 수 있다.Figure 12 is a graph showing recovery characteristics calculated from the GCD curve of the substrate before and after buffer layer coating in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. Referring to (a), it can be seen that the capacitance capacity decreases from 1093.1 F/cm 3 in the unfolded state before coating the buffer layer to 318.6 F/cm 3 , which is 29.1% after bending. Afterwards, it can be seen that the capacitance capacity upon recovery was 643.4 F/cm 3 , meaning that the recovery level only reached about 58.8%. After coating the buffer layer, the performance is maintained from the capacitance capacity of 1487.3 F/cm 3 in the unfolded state to 1137.1 F/cm 3 (76.4%) after bending, which can be judged as an effect of improving flexibility and durability by the buffer layer. Afterwards, it can be seen that 94.2% performance is recovered even during recovery, with a capacitance capacity of 1402.1 F/cm 3 . (b) and (c) are graphs showing the change in voltage over time of the substrate before and after buffer layer coating. In conclusion, it can be confirmed through (b) and (c) that the recovery characteristics are improved and durability increases even during bending after the introduction of the buffer layer.
도13은 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩 횟수에 따른 슈퍼커패시터의 내구성을 CV 곡선으로부터 계산한 그래프이다. 여기서, 각각의 슈퍼커패시터에 대하여 10mv/s의 속도로 실험한 결과이다. (a)를 참조하면, 버퍼 레이어 코팅 전, 10,000번의 벤딩을 반복하였을 때, 초기 커패시턴스 용량971.4 F/cm3에서 237.4 F/cm3으로 24.4%까지 커패시턴스 용량의 감소를 보인다. 이와 달리 버퍼 레이어 코팅 후, 10,000번의 벤딩을 반복하였을 때 초기 커패시턴스 용량 1188.2 F/cm3에서 1073.1 F/cm3으로 90.3%까지 커패시턴스 용량을 유지함을 확인할 수 있다. (b)와 (c)는 버퍼 레이어 코팅 전/후 기판의 CV 곡선을 나타낸 그래프이다. (b)와 (c)를 비교해보면, 버퍼 레이어가 코팅된 (c)의 사이클(Cycle) 특성이 향상되어 내구성이 증가함을 확인할 수 있다.Figure 13 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the CV curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. Here, this is the result of an experiment at a speed of 10mv/s for each supercapacitor. Referring to (a), when bending was repeated 10,000 times before buffer layer coating, the capacitance capacity decreased by 24.4% from the initial capacitance capacity of 971.4 F/cm 3 to 237.4 F/cm 3 . In contrast, after coating the buffer layer, when bending was repeated 10,000 times, it was confirmed that the capacitance capacity was maintained by 90.3% from the initial capacitance capacity of 1188.2 F/cm 3 to 1073.1 F/cm 3 . (b) and (c) are graphs showing the CV curves of the substrate before and after buffer layer coating. Comparing (b) and (c), it can be seen that the cycle characteristics of (c) coated with the buffer layer are improved, increasing durability.
도14는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어 코팅 전/후 기판의 벤딩 횟수에 따른 슈퍼커패시터의 내구성을 GCD 곡선으로부터 계산한 그래프이다. (a)를 참조하면, 버퍼 레이어 코팅 전, 10,000번의 벤딩을 반복하였을 때, 초기 커패시턴스 용량 1095.2 F/cm3에서 216.3 F/cm3까지 19.7%까지 커패시턴스 용량의 감소를 보인다. 이와 달리 버퍼 레이어 코팅 후, 1490.6 F/cm3에서 1307.5 F/cm3으로 87.7%까지 커패시턴스 용량을 유지함을 확인할 수 있다. (b)와 (c)는 버퍼 레이어 코팅 전/후 기판의 시간에 따른 전압의 변화량을 나타낸 그래프이다. (b)와 (c)를 비교해보면 버퍼 레이어가 코팅된 (c)의 사이클 특성이 향상되어 내구성이 증가함을 확인할 수 있다.Figure 14 is a graph calculating the durability of the supercapacitor according to the number of bending times of the substrate before and after buffer layer coating from the GCD curve in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. Referring to (a), when bending was repeated 10,000 times before buffer layer coating, the capacitance capacity decreased by 19.7% from the initial capacitance capacity of 1095.2 F/cm 3 to 216.3 F/cm 3 . In contrast, after coating the buffer layer, it can be confirmed that the capacitance capacity is maintained up to 87.7% from 1490.6 F/cm 3 to 1307.5 F/cm 3 . (b) and (c) are graphs showing the change in voltage over time of the substrate before and after buffer layer coating. Comparing (b) and (c), it can be seen that the cycle characteristics of (c) coated with the buffer layer are improved and durability is increased.
도15a는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어가 코팅되지 않은 기판의 곡률 반경에 따른 내구성을 나타내는 그래프이다. Figure 15a is a graph showing the durability according to the radius of curvature of a substrate without a buffer layer coated in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도 15b는 본 발명의 일 실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서, 버퍼 레이어가 코팅된 기판의 곡률 반경에 따른 내구성을 나타내는 그래프이다.Figure 15b is a graph showing durability according to the radius of curvature of a substrate coated with a buffer layer in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention.
도15a의 (a)와 도15b의 (c), 각각의 그래프는 본 발명의 일실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서 기판의 스캔 속도에 따른 커패시턴스의 용량값을 곡률 반경에 따라 나타낸 그래프이다. (a)와 (c)를 비교하면 (a)와 (c) 모두 곡률 반경이 감소함에 따라 커패시턴스 용량값의 감소치가 크다는 것을 확인할 수 있다. 하지만, 버퍼 레이어가 코팅된 (c)의 경우 (a)와 비교하여 더 높은 커패시턴스 용량을 가지는 것을 확인할 수 있고, 이를 통해 버퍼 레이어가 코팅된 기판이 더 나은 내구성을 보여주는 것을 확인할 수 있다.15A (a) and 15B (c), each graph shows the capacitance value according to the scan speed of the substrate according to the radius of curvature in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. It's a graph. Comparing (a) and (c), it can be seen that the decrease in capacitance capacity value is large as the radius of curvature decreases in both (a) and (c). However, in the case of (c) coated with a buffer layer, it can be seen that it has a higher capacitance capacity compared to (a), and through this, it can be seen that the substrate coated with the buffer layer shows better durability.
도 15a의 (b)와 도15b의 (d), 각각의 그래프는 본 발명의 일실시예에 따른 유연 마이크로 슈퍼커패시터 제조 방법에 있어서 전류 밀도에 따른 커패시턴스의 용량값을 곡률 반경에 따라 나타낸 그래프이다. (b)와 (d)를 비교하면 (b)와 (d) 모두 곡률반경이 감소함에 따라 커패시턴스 용량값의 감소치가 크다는 것을 확인할 수 있다. 하지만, 버퍼 레이어가 코팅된 (d)의 경우 (b)와 비교하여 더 높은 커패시턴스의 용량을 가지는 것을 확인할 수 있고, 이를 통해 버퍼 레이어가 코팅된 기판이 더 나은 내구성을 보여주는 것을 확인할 수 있다.15A (b) and 15B (d), each graph is a graph showing the capacitance value of capacitance according to the current density according to the radius of curvature in the flexible micro supercapacitor manufacturing method according to an embodiment of the present invention. . Comparing (b) and (d), it can be seen that the decrease in capacitance capacity value is large as the radius of curvature decreases in both (b) and (d). However, in the case of (d) with the buffer layer coated, it can be seen that it has a higher capacitance capacity compared to (b), and through this, it can be seen that the substrate with the buffer layer coated shows better durability.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. will be. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the patent claims described below, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention.

Claims (12)

  1. 폴리이미드(PI) 필름이 코팅된 기판 상부에 포토레지스트(photoresist) 마스크를 증착하는 마스크증착 단계; A mask deposition step of depositing a photoresist mask on the top of a substrate coated with a polyimide (PI) film;
    활성가스 플라즈마로 상기 마스크로 증착된 기판의 표면을 처리하는 표면처리 단계;A surface treatment step of treating the surface of the substrate deposited with the mask with active gas plasma;
    상기 표면 처리된 기판의 상부에 맥신(MXene)을 코팅하는 맥신코팅 단계;A MXene coating step of coating MXene on the top of the surface-treated substrate;
    리프트-오프(lift-off) 공정으로 상기 맥신 코팅한 기판의 포토레지스트를 제거하여 맥신 패턴을 형성시키는 포토레지스트제거 단계;A photoresist removal step of forming a MXene pattern by removing the photoresist of the MXene-coated substrate through a lift-off process;
    상기 맥신 패턴이 형성된 기판 상부에 버퍼 레이어를 코팅하는 버퍼레이어코팅 단계; A buffer layer coating step of coating a buffer layer on the upper part of the substrate on which the MXene pattern is formed;
    상기 폴리이미드 필름을 상기 기판에서 박리하는 박리 단계를 포함하는 유연 마이크로 슈퍼커패시터 제조 방법.A method of manufacturing a flexible micro-supercapacitor comprising a peeling step of peeling the polyimide film from the substrate.
  2. 제1항에 있어서,According to paragraph 1,
    상기 마스크증착 단계의 포토레지스트 마스크는 네거티브 형인 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.A method of manufacturing a flexible micro supercapacitor, wherein the photoresist mask in the mask deposition step is of a negative type.
  3. 제1항에 있어서,According to paragraph 1,
    상기 표면처리 단계의 활성가스는 산소(O2)인 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.A method of manufacturing a flexible micro supercapacitor, characterized in that the active gas in the surface treatment step is oxygen (O 2 ).
  4. 제1항에 있어서,According to paragraph 1,
    상기 맥신코팅 단계는 맥신을 코팅하기 이전에 맥신을 합성하는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.The MXene coating step is a method of manufacturing a flexible micro supercapacitor, characterized in that MXene is synthesized before coating the MXene.
  5. 제4항에 있어서,According to paragraph 4,
    상기 맥신은 맥스(MAX) 상을 플루오린화 리튬(LiF), 염화수소(HCl) 6M 조건에서 에칭(etching)하여 획득되는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.The MXene is a method of manufacturing a flexible micro supercapacitor, characterized in that the MAX phase is obtained by etching the MAX phase under 6M conditions of lithium fluoride (LiF) and hydrogen chloride (HCl).
  6. 제5항에 있어서,According to clause 5,
    상기 맥신코팅 단계의 맥신을 코팅하는 방식은 스핀 코팅 방식으로 수행되는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.A method of manufacturing a flexible micro supercapacitor, wherein the method of coating the MXene in the MXene coating step is performed by spin coating.
  7. 제6항에 있어서,According to clause 6,
    상기 맥신코팅 단계에서 상기 기판 상에 상기 맥신을 코팅하고 난 후에 오븐에서 50 내지 100℃의 온도에서 가열을 수행하는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.A method of manufacturing a flexible micro supercapacitor, characterized in that heating is performed at a temperature of 50 to 100° C. in an oven after coating the MXene on the substrate in the MXene coating step.
  8. 제1항에 있어서,According to paragraph 1,
    상기 버퍼 레이어는 겔 폴리머 전해질과 동일한 종류의 폴리머를 사용하는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.A method of manufacturing a flexible micro supercapacitor, wherein the buffer layer uses the same type of polymer as the gel polymer electrolyte.
  9. 제8항에 있어서,According to clause 8,
    상기 버퍼 레이어는 수계 전해질 (PVA/H2SO4) 사용시, 버퍼 레이어로 PVA(polyvinyl alcohol)를 사용하고, 유기계 전해질 (PVDF/IL) 사용시, 버퍼 레이어로 PVDF(polyvinylidene fluoride)를 사용하는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.The buffer layer is characterized in that when using an aqueous electrolyte (PVA/H 2 SO 4 ), PVA (polyvinyl alcohol) is used as a buffer layer, and when using an organic electrolyte (PVDF/IL), PVDF (polyvinylidene fluoride) is used as a buffer layer. Method for manufacturing flexible micro supercapacitors.
  10. 제1항에 있어서,According to paragraph 1,
    상기 기판은, 실리콘 웨이퍼(Si wafer) 상 형성된 이산화규소(SiO2) 레이어인 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.The substrate is a silicon dioxide (SiO 2 ) layer formed on a silicon wafer (Si wafer). A method of manufacturing a flexible micro supercapacitor.
  11. 제1항에 있어서,According to paragraph 1,
    상기 포토레지스트제거 단계는 초음파 세척기에서 아세톤으로 포토레지스트 마스크를 제거하여 맥신 패턴을 제작하는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.The photoresist removal step is a method of manufacturing a flexible micro supercapacitor, characterized in that the photoresist mask is removed with acetone in an ultrasonic cleaner to produce a MXene pattern.
  12. 제1항에 있어서,According to paragraph 1,
    상기 박리 단계는 상기 폴리이미드 필름을 상기 기판에서 박리하여 상기 폴리이미드 필름과 상기 맥신 패턴의 결합체인 유연 소자를 형성시키는 것을 특징으로 하는, 유연 마이크로 슈퍼커패시터 제조 방법.The peeling step is characterized in that the polyimide film is peeled from the substrate to form a flexible device that is a combination of the polyimide film and the MXene pattern.
PCT/KR2022/020262 2022-09-19 2022-12-13 Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby WO2024063216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0117864 2022-09-19
KR1020220117864A KR20240039376A (en) 2022-09-19 2022-09-19 Method for manufacturing flexible microsupercapacitor, and large area flexible microsupercapacitor provided with polymer buffer layer

Publications (1)

Publication Number Publication Date
WO2024063216A1 true WO2024063216A1 (en) 2024-03-28

Family

ID=90454479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020262 WO2024063216A1 (en) 2022-09-19 2022-12-13 Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby

Country Status (2)

Country Link
KR (1) KR20240039376A (en)
WO (1) WO2024063216A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017042A (en) * 2009-07-08 2011-01-27 Mitsubishi Materials Corp Method for forming pattern of metal oxide thin film
KR102129314B1 (en) * 2018-10-01 2020-07-02 한양대학교 산학협력단 MXen/Carbon Nanotube Composites and Fiber-typed Asymmetric Supercapacitors Using the Same
KR20220073431A (en) * 2020-11-26 2022-06-03 울산과학기술원 Method of manufacturing form factor-free flexible supercapacitor and the same manufactured thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017042A (en) * 2009-07-08 2011-01-27 Mitsubishi Materials Corp Method for forming pattern of metal oxide thin film
KR102129314B1 (en) * 2018-10-01 2020-07-02 한양대학교 산학협력단 MXen/Carbon Nanotube Composites and Fiber-typed Asymmetric Supercapacitors Using the Same
KR20220073431A (en) * 2020-11-26 2022-06-03 울산과학기술원 Method of manufacturing form factor-free flexible supercapacitor and the same manufactured thereby

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG QIU, KURRA NARENDRA, MALESKI KATHLEEN, LEI YONGJIU, LIANG HANFENG, ZHANG YIZHOU, GOGOTSI YURY, ALSHAREEF HUSAM N.: "On‐Chip MXene Microsupercapacitors for AC‐Line Filtering Applications", ADVANCED ENERGY MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, DE , pages 1901061, XP055977113, ISSN: 1614-6832, DOI: 10.1002/aenm.201901061 *
KIM EUNJI; SONG JINKYU; SONG TAE-EUN; KIM HYERI; KIM YONG-JAE; OH YEON-WHA; JUNG SANGHEE; KANG IL-SEOK; GOGOTSI YURY; HAN HEE; AHN: "Scalable fabrication of MXene-based flexible micro-supercapacitor with outstanding volumetric capacitance", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 450, 3 August 2022 (2022-08-03), AMSTERDAM, NL , XP087181596, ISSN: 1385-8947, DOI: 10.1016/j.cej.2022.138456 *

Also Published As

Publication number Publication date
KR20240039376A (en) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2010068050A9 (en) Method for preparing solar cell electrodes, solar cell substrates prepared thereby, and solar cells
KR101624303B1 (en) Electrode of polymer nanofiber coated with aluminum thin film and manufacturing method thereof
WO2011046415A2 (en) Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll transfer equipment for graphene
WO2014204206A1 (en) Conductive film and touch panel including the same
WO2013165101A1 (en) Hybrid electrode using silver nanowires and graphene, and preparation method thereof
WO2021045431A1 (en) Method for manufacturing anode for lithium secondary battery
WO2017030421A1 (en) Hydrogen sensor production method and hydrogen sensor produced thereby
WO2015167302A1 (en) Method for manufacturing electrode structure for flexible energy storage device, electrode structure manufactured thereby, and energy storage device including same
WO2015102459A1 (en) Graphene transfer method and graphene transfer apparatus using vacuum heat treatment
WO2012002723A2 (en) Transparent conductive film, method for manufacturing same, and transparent electrode and device using same
WO2015008905A1 (en) Graphene/silicon nanowire molecular sensor or method for manufacturing same and method for identifying molecule using same
WO2012091487A2 (en) Electrode, and electronic device comprising same
CN112216419B (en) Normal-temperature low-pressure transfer printing method for flexible conductive film
WO2018004259A2 (en) Method for manufacturing ion-conducting membrane
WO2017171294A1 (en) Method for manufacturing electrode
WO2013012195A2 (en) Method for manufacturing substrate and method or manufacturing electronic device using same
US20110111202A1 (en) Multilayer film structure, and method and apparatus for transferring nano-carbon material
WO2024063216A1 (en) Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby
CN112366095A (en) Preparation method of horizontal ordered carbon nanotube array micro supercapacitor
KR101592371B1 (en) Method for transferring highly conductive pedot:pss based electrode
CN112951622A (en) Preparation method of miniature super capacitor capable of being used for kHZ alternating current linear filtering
WO2018113056A1 (en) Method for manufacturing flexible substrate and flexible panel using screen printing machine
WO2020091198A1 (en) Method for forming pattern of non-etching printed microelectrodes
WO2013032191A9 (en) Non-volatile polymer memory device including a buffer layer, and method for manufacturing same
WO2013051761A1 (en) Transparent polymer structure including a graphene layer and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959646

Country of ref document: EP

Kind code of ref document: A1