WO2016047431A1 - Coated film - Google Patents

Coated film Download PDF

Info

Publication number
WO2016047431A1
WO2016047431A1 PCT/JP2015/075437 JP2015075437W WO2016047431A1 WO 2016047431 A1 WO2016047431 A1 WO 2016047431A1 JP 2015075437 W JP2015075437 W JP 2015075437W WO 2016047431 A1 WO2016047431 A1 WO 2016047431A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating
resin
meth
compounds
Prior art date
Application number
PCT/JP2015/075437
Other languages
French (fr)
Japanese (ja)
Inventor
好晃 東條
泰史 川崎
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020167019626A priority Critical patent/KR101893786B1/en
Priority to CN201580011316.3A priority patent/CN106061733A/en
Publication of WO2016047431A1 publication Critical patent/WO2016047431A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the present invention relates to a coating film, and particularly relates to a coating film that is preferably used as a prism sheet or a microlens member used in a backlight unit of a liquid crystal display and has good adhesion to various functional layers. Is.
  • liquid crystal displays have been widely used as display devices for televisions, personal computers, digital cameras, mobile phones and the like. Since these liquid crystal displays do not have a light emitting function by a liquid crystal display unit alone, a method of displaying by irradiating light using a backlight from the back side is widespread.
  • the backlight system has a structure called an edge light type or a direct type. Recently, there is a tendency to reduce the thickness of liquid crystal displays, and an edge light type is increasingly used.
  • the edge light type is generally configured in the order of a reflection sheet, a light guide plate, a light diffusion sheet, and a prism sheet. As the flow of light, the light incident on the light guide plate from the backlight is reflected by the reflection sheet and emitted from the surface of the light guide plate. The light beam emitted from the light guide plate enters the light diffusion sheet, is diffused and emitted by the light diffusion sheet, and then enters the next existing prism sheet. The light beam is condensed in the normal direction by the prism sheet and emitted toward the liquid crystal layer.
  • the prism sheet used in this configuration is for improving the optical efficiency of the backlight and improving the luminance.
  • a polyester film is generally used in consideration of transparency and mechanical properties.
  • these intermediate layers are easily adhesive.
  • a coating layer is provided.
  • the easily adhesive coating layer for example, polyester resin, acrylic resin, and urethane resin are known (Patent Documents 1 to 3).
  • an active energy ray-curable coating material is introduced into a prism mold, irradiated with active energy rays while sandwiched between the film, the resin is cured, and the prism mold is removed to remove the prism layer.
  • the method of forming is mentioned.
  • solventless active energy ray-curable resin it is necessary to use a solventless active energy ray-curable resin in order to form the prism type with precision.
  • solventless resins are less permeable and swellable to the easy-adhesion layer laminated on the film than solvent-based resins, and the adhesion tends to be insufficient.
  • a coating layer made of a specific urethane resin has been proposed, and improvement in adhesion has been achieved.
  • adhesion has not always been sufficient for solventless resins.
  • Patent Document 5 a coating layer mainly composed of a urethane resin and an oxazoline compound has been proposed.
  • Patent Document 5 a coating layer mainly composed of a urethane resin and an oxazoline compound.
  • JP-A-8-281890 Japanese Patent Laid-Open No. 11-286092 JP 2000-229395 A Japanese Patent Laid-Open No. 2-158633 JP 2010-13550 A
  • the present invention has been made in view of the above circumstances, and the problem to be solved is that it has good adhesion to various functional layers, particularly solventless resins, such as a backlight unit of a liquid crystal display.
  • An object of the present invention is to provide a coating film that can be suitably used as a prism sheet or a microlens member.
  • the gist of the present invention is that at least one surface of the film has a coating layer formed of a coating resin containing a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin, and a crosslinking agent. It exists in the characteristic coating film.
  • the present invention it is possible to provide a coating film having excellent adhesion to various functional layers, particularly functional layers such as a prism layer and a microlens layer, and its industrial value is high.
  • polyester film, polycarbonate film, fluororesin film, polyimide film, triacetyl cellulose film, polyolefin film, polyacrylate film, polystyrene examples thereof include a film, a polyvinyl chloride film, a polyvinyl alcohol film, an ethylene vinyl acetate copolymer film, an ethylene-vinyl alcohol copolymer film, and a nylon film.
  • polyester film, polycarbonate film, fluororesin film, and polyimide film are preferably used, and polyester is further considered in view of transparency, moldability, and versatility. A film is used more suitably.
  • the film constituting the coated film of the present invention may have a single-layer structure or a multilayer structure, and may have a multilayer structure of four or more layers as long as the gist of the present invention is not exceeded other than the two-layer or three-layer structure. There is no particular limitation.
  • the polyester may be a homopolyester or a copolyester.
  • a homopolyester those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Typical polyester includes polyethylene terephthalate and the like.
  • examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid).
  • examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexanedimethanol, neopentyl glycol and the like.
  • the polymerization catalyst for polyester is not particularly limited, and conventionally known compounds can be used. Examples thereof include antimony compounds, titanium compounds, germanium compounds, manganese compounds, aluminum compounds, magnesium compounds, calcium compounds and the like. Among these, titanium compounds and germanium compounds are preferable because they have high catalytic activity, can be polymerized in a small amount, and the amount of metal remaining in the film is small, so that the brightness of the film becomes high. Furthermore, since a germanium compound is expensive, it is more preferable to use a titanium compound.
  • the titanium element content is preferably 50 ppm or less, more preferably 1 to 20 ppm, still more preferably 2 to 10 ppm. If the content of the titanium compound is too high, the polyester may be deteriorated in the process of melt-extruding the polyester, resulting in a strong yellowish film. If the content is too low, the polymerization efficiency is poor and the cost is low. In some cases, a film having a sufficient strength or a sufficient strength cannot be obtained. Moreover, when using the polyester by a titanium compound, it is preferable to use a phosphorus compound in order to reduce the activity of a titanium compound for the purpose of suppressing deterioration in the step of melt extrusion.
  • the phosphorus element content is preferably in the range of 1 to 300 ppm, more preferably 3 to 200 ppm, still more preferably 5 to 100 ppm, based on the amount of polyester to be melt-extruded. If the content of the phosphorus compound is too large, it may cause gelation or foreign matter. If the content is too small, the activity of the titanium compound cannot be lowered sufficiently, and the yellowish It may be a film.
  • polycarbonate film a conventionally known polycarbonate can be used, but a type containing a bisphenol A structure is particularly preferable.
  • fluororesin film a conventionally known fluororesin can be used.
  • fluororesin film a conventionally known fluororesin can be used.
  • polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Examples include coalescence.
  • an ultraviolet absorber can be contained in order to improve the weather resistance of the film and prevent deterioration of the liquid crystal.
  • the ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the film production process.
  • an organic ultraviolet absorber there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • an organic type ultraviolet absorber For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
  • particles can be blended mainly for the purpose of imparting slipperiness and preventing scratches in each process.
  • the kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness.
  • Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid.
  • examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin.
  • precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed during the film production process.
  • the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the average particle diameter of the particles is preferably 5 ⁇ m or less, more preferably in the range of 0.01 to 3 ⁇ m.
  • the particle content in the film is preferably less than 5% by weight, more preferably in the range of 0.0003 to 3% by weight.
  • the transparency of the film becomes high and the film becomes a good film, but the slipperiness may be insufficient. There are cases where improvement is required.
  • the particle content in the film is preferably less than 5% by weight, more preferably in the range of 0.0003 to 3% by weight.
  • the method for adding particles to the film is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at an arbitrary stage for producing a film constituting each layer, but it is preferably added after completion of esterification or transesterification.
  • antioxidants In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, heat stabilizers, lubricants, dyes, pigments and the like can be added to the film as necessary.
  • the thickness of the film is not particularly limited as long as it can be formed as a film, but is 10 to 350 ⁇ m, more preferably 20 to 300 ⁇ m.
  • the production example of the film in the present invention will be specifically described, it is not limited to the following production example.
  • the resin is melted, formed into a sheet, and stretched for the purpose of increasing the strength and the film is formed.
  • the polyester film mentioned above is manufactured is introduced.
  • a method of obtaining an unstretched film by cooling and solidifying a molten film extruded from a die with a cooling roll using pellets obtained by drying a polyester raw material is preferable.
  • an electrostatic application adhesion method or a liquid application adhesion method is preferably employed.
  • the obtained unstretched film is stretched in the biaxial direction.
  • the unstretched film is stretched in one direction by a roll or a tenter type stretching machine.
  • the stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
  • the film is stretched in the direction perpendicular to the first stretching direction.
  • the stretching temperature is usually 70 to 170 ° C.
  • the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there.
  • heat treatment is performed at a temperature of 180 to 250 ° C. under tension or under relaxation within 30% to obtain a biaxially oriented film.
  • a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
  • the simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film.
  • a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
  • the coating layer it may be provided by in-line coating, which treats the film surface during the film formation process, or may be applied off-system on a once manufactured film. More preferably, it is formed by in-line coating.
  • In-line coating is a method in which coating is performed in the film manufacturing process, and specifically, a method in which coating is performed at any stage from melt extrusion of a resin to heat fixing after stretching and winding up. Usually, it is coated on any of an unstretched sheet obtained by melting and quenching, a stretched uniaxially stretched film, a biaxially stretched film before heat setting, and a film after heat setting and before winding.
  • an unstretched sheet obtained by melting and quenching, a stretched uniaxially stretched film, a biaxially stretched film before heat setting, and a film after heat setting and before winding.
  • a method of stretching in the transverse direction after coating a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction) is particularly excellent. According to such a method, film formation and coating layer formation can be performed at the same time, so there is an advantage in manufacturing cost.
  • the thickness of the coating layer can be changed by the stretching ratio. Compared to offline coating, thin film coating can be performed more easily. Further, by providing the coating layer on the film before stretching, the coating layer can be stretched together with the base film, whereby the coating layer can be firmly adhered to the base film. Furthermore, in the manufacture of biaxially stretched films, the film can be restrained in the vertical and horizontal directions by stretching while gripping the film edges with clips, etc., and flatness is not generated in the heat setting process.
  • High temperature can be applied while maintaining Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer can be improved, and the coating layer and the base film can be more firmly adhered to each other. Furthermore, it can be set as a firm coating layer, and performances such as adhesion to various functional layers that can be formed on the coating layer and wet heat resistance can be improved.
  • a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin, and a group of crosslinking agents such as a carbodiimide compound, an isocyanate compound, an oxazoline compound, a melamine compound, and an epoxy compound. It is an essential requirement to have a coating layer formed from a coating solution containing one or more selected crosslinking agents.
  • the coating layer is a functional layer, in particular, a curable resin layer using active energy rays, and in particular, a solvent-free active energy ray-curable composition such as a prism layer or a microlens layer.
  • a curable resin layer using active energy rays and in particular, a solvent-free active energy ray-curable composition
  • the materials used for the prism layer and microlens layer are made to have a higher refractive index. There is a tendency.
  • the present inventors have found that by using a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin, a high degree of adhesion can be expressed.
  • the presumed mechanism for the expression of high adhesion is that the carbon-carbon double bond by the (meth) acryloyl group present in the coating layer and the carbon-carbon double in the compound used for formation as a functional layer on the coating layer. It reacts with a bond to form a covalent bond.
  • resins containing (meth) acryloyl groups but also composite resins with urethane resins, not only improved adhesion to the functional layer, but also improved adhesion to the film as the substrate. It is speculated that the adhesion of the film as a whole can be improved.
  • the resin containing a (meth) acryloyl group is not particularly limited as long as it is a resin containing a (meth) acryloyl group, and examples thereof include conventionally known resins such as an epoxy resin, a polyester resin, and an acrylic resin.
  • an epoxy resin is preferable from the viewpoint of easy synthesis and introduction of many (meth) acryloyl groups.
  • aromatic-containing epoxy resins are preferable from the viewpoint of excellent durability such as water resistance and solvent resistance, and among them, novolac type epoxy resins and bisphenol type epoxy resins are more preferable. In view of the introduction of acryloyl group, novolac type epoxy resin is more preferable.
  • Examples of the novolak type epoxy resin include a cresol novolak type and a phenol novolak type
  • examples of the bisphenol type epoxy resin include a bisphenol A type, a bisphenol F type, and a bisphenol S type.
  • cresol novolac type epoxy resins and bisphenol A type epoxy resins are more preferable in consideration of versatility and resin flexibility.
  • epoxy resin may be used by a single kind or may be used together with multiple types.
  • a conventionally known urethane resin can be used as the resin containing the (meth) acryloyl group and the urethane resin for forming the composite resin.
  • urethane resin is prepared by reaction of polyol and isocyanate.
  • the polyol include polyester polyols, polycarbonate polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination.
  • polyester polyols are more preferable.
  • polycarbonate polyols are more preferable.
  • Polyester polyols include polycarboxylic acids (terephthalic acid, isophthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, etc.) or their acid anhydrides.
  • polycarboxylic acids terephthalic acid, isophthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, etc.
  • polyhydric alcohol ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl- , 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexane Diol, 1,9-nonanediol
  • the polyvalent carboxylic acid is preferably an aromatic carboxylic acid, and among them, considering the coating appearance and the adhesion to the film substrate, Terephthalic acid and isophthalic acid are more preferable. In particular, in view of the coating appearance and applicability to in-line coating, those having a certain degree of flexibility are preferable, and it is optimal to use terephthalic acid and isophthalic acid in combination.
  • the molar ratio of terephthalic acid: isophthalic acid used in combination is preferably 1 to 10: 1 to 10, more preferably 1 to 5: 1 to 5, further preferably 1 to 3: 1 to 3, particularly The range is preferably 1-2: 1-2.
  • polyhydric alcohol those having a short molecular chain such as ethylene glycol, diethylene glycol and propylene glycol are preferable in order to increase the aromatic ratio of the carboxylic acid component, and further, considering the flexibility of the resin, diethylene glycol is contained. Those are preferred. In view of durability, coating appearance, and flexibility, it is more preferable to use ethylene glycol and diethylene glycol in combination.
  • the molar ratio of ethylene glycol: diethylene glycol used in combination is preferably 1 to 10: 1 to 10, more preferably 1 to 5: 1 to 5, further preferably 1 to 3: 1 to 3, particularly preferably. Is in the range of 1-2: 1-2.
  • Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction.
  • Polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Examples thereof include diol, neopentyl glycol, 3-methyl-1,5-pentanediol, and 3,3-dimethylol heptane.
  • Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate.
  • Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
  • polyether polyols examples include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and the like.
  • polyisocyanate compound used for obtaining the urethane resin examples include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′.
  • aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′.
  • -Aliphatic diisocyanates having aromatic rings such as tetramethylxylylene diisocyanate, aliphatic diisocyanates such as methylene diisocyanate, propylene diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl Methanzi Isocyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination. Among these, in consideration of yellowing, it is preferable not to be an aromatic isocyanate.
  • a chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
  • chain extender having two hydroxyl groups examples include aliphatic glycols such as ethylene glycol, propylene glycol and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, and esters such as neopentyl glycol hydroxypivalate. And glycols such as glycols.
  • chain extender having two amino groups examples include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropylidenecyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1, 3-Bisaminomethylcyclohexane Alicyclic diamines, and the like of.
  • aromatic diamines
  • Urethane resin may use a solvent as a medium, but preferably uses water as a medium.
  • a forced emulsification type using an emulsifier there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type.
  • a self-emulsification type in which an ionic group is introduced into the structure of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
  • examples of the ionic group to be introduced include various groups such as a carboxyl group, a sulfonic acid, a phosphoric acid, a phosphonic acid, a quaternary ammonium salt, and the carboxyl group is preferable.
  • a method for introducing a carboxyl group into a urethane resin various methods can be taken in each stage of the polymerization reaction.
  • a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender.
  • a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
  • dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin. Can do.
  • the carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
  • the carboxyl group from which the neutralizing agent has been removed in the drying step after coating can be used as a crosslinking reaction point by another crosslinking agent.
  • another crosslinking agent it is possible to further improve the durability, solvent resistance, water resistance, blocking resistance, and the like of the obtained coating layer, as well as excellent stability in a liquid state before coating.
  • a composite resin of a resin containing a (meth) acryloyl group and a urethane resin for example, it can be produced by mixing and stirring a resin containing a (meth) acryloyl group and a urethane resin in a solvent such as water. It is.
  • the urethane resin is a type containing a hydrophilic group
  • a resin alone containing a (meth) acryloyl group or It can be synthesized by mixing and stirring a resin containing a (meth) acryloyl group dispersed or dissolved in a solvent.
  • the resin containing a (meth) acryloyl group When the resin containing a (meth) acryloyl group has no or few hydrophilic groups, it becomes hydrophobic and is preferably mixed with a dispersion or solution of a urethane resin in a state of being dispersed or dissolved using an organic solvent. In that case, for example, by removing the organic solvent in which the resin containing the (meth) acryloyl group is dispersed or dissolved by reducing the pressure, the resin containing the hydrophobic (meth) acryloyl group is the core. It becomes possible to obtain a composite resin emulsion having a core-shell structure in which a hydrophilic urethane resin becomes a shell.
  • the core-shell structure is more preferable because it provides liquid stabilization and can be stably present even when mixed with other components and can be used widely.
  • the core and the shell are not bonded, when the emulsion is broken by solvent removal by drying after coating, the core and the shell can move freely separately.
  • the (meth) acryloyl group in the portion can also appear on the surface of the coating layer, which can be advantageous for improving the adhesion with various functional layers that can be formed on the coating layer.
  • the proportion of (meth) acryloyl groups in the composite resin is usually in the range of 1 to 50% by weight, preferably 3 to 30% by weight, more preferably 5 to 25% by weight, and still more preferably 8 to 20% by weight. By using in the said range, adhesiveness with the various functional layers formed on a coating layer can be improved.
  • the weight ratio of (meth) acryloyl group-containing resin: urethane resin is usually in the range of 1 to 5: 1 to 5, preferably 1 to 3: 1 to 3, more preferably 1 to 2: 1 to 2. .
  • adhesiveness with the various functional layers formed on a coating layer and the adhesiveness with the polyester film which is a base material can be improved.
  • the use within the above range is preferable from the viewpoint of synthesis.
  • the cross-linking agent used for forming the coating layer is used for improving adhesion and coating strength.
  • crosslinking agent examples include carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds, melamine compounds, silane coupling compounds, hydrazide compounds, aziridine compounds, and the like.
  • carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds, and melamine compounds are preferred, carbodiimide compounds, isocyanate compounds, and oxazoline compounds are more preferred, and carbodiimide compounds. Is more preferable.
  • two or more kinds of crosslinking agents can be used in combination for improving the coating appearance, transparency and adhesion.
  • a crosslinking agent selected from carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds and melamine compounds is preferably used in combination, and one of the two or more types is a carbodiimide type.
  • an isocyanate compound and an oxazoline compound it is more preferable to use an isocyanate compound and an oxazoline compound, an isocyanate compound and an epoxy compound, an oxazoline compound and an epoxy compound, and a case where one of two or more types is a carbodiimide compound, More preferably, an isocyanate compound and an oxazoline compound, or an oxazoline compound and an epoxy compound are used in combination.
  • a carbodiimide-based compound is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule. For better adhesion, etc., two or more carbodiimide structures are included in the molecule. More preferred are polycarbodiimide compounds having
  • the carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used.
  • the diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used.
  • tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
  • the content of the carbodiimide group contained in the carbodiimide-based compound is a carbodiimide equivalent (weight of the carbodiimide compound to give 1 mol of carbodiimide group [g]), and is usually 100 to 1000, preferably 250 to 800, more preferably 300. It is in the range of -700, more preferably in the range of 350-650. By using it within the above range, adhesion to various functional layers is improved.
  • the isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate.
  • isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate
  • Alicyclic isocyanates such as bets are exemplified.
  • polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination.
  • isocyanates aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
  • the blocking agent When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol.
  • active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ⁇ -caprolactam and ⁇ -valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
  • the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
  • the oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer.
  • alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene
  • Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alky
  • the content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, still more preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use within the above range is preferable because adhesion to various functional layers is improved.
  • the epoxy compound is a compound having an epoxy group in the molecule, and examples thereof include condensates of epichlorohydrin with ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and the like hydroxyl groups and amino groups, There are polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like.
  • polyepoxy compound examples include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane.
  • polyglycidyl ether and diepoxy compound examples include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether.
  • Polypropylene glycol diglycidyl ether polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
  • the melamine compound is a compound having a melamine skeleton in the compound.
  • an alkylolized melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and these Mixtures can be used.
  • alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used.
  • a melamine compound either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used.
  • a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
  • cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
  • the coating layer it is preferable to use various polymers other than those described above in combination in order to improve the coating appearance, transparency, adhesion and the like.
  • polymers include polyurethane resins not containing (meth) acryloyl group-containing resins, polyester resins, acrylic resins, polyvinyls (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymers, etc.), polyalkylene glycols , Polyalkyleneimine, methylcellulose, hydroxycellulose, starches and the like.
  • the average particle diameter of the particles is preferably in the range of 0.001 ⁇ m to 1.0 ⁇ m, more preferably 0.005 ⁇ m to 0.5 ⁇ m, and still more preferably 0.01 ⁇ m to 0.2 ⁇ m, from the viewpoint of film transparency.
  • the particles to be used include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
  • silica particles are preferred from the viewpoint of dispersibility in the coating layer and transparency of the resulting coating film.
  • an antifoaming agent a coating property improver, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, and an antioxidant are formed as necessary for forming the coating layer.
  • Foaming agents, dyes, pigments and the like may be used in combination.
  • the composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin is usually 10 to 90% by weight, preferably 15 to 85% by weight, more The range is preferably 20 to 80% by weight. When it is out of the above range, the adhesion may not be sufficient depending on the functional layer provided on the coating layer.
  • the crosslinking agent is usually in the range of 5 to 85% by weight, preferably 10 to 80% by weight, more preferably 15 to 75% by weight. When it is outside the above range, depending on the functional layer provided on the coating layer, the adhesion may not be sufficient, or the strength and durability of the coating layer may not be sufficient.
  • the particles cannot be unequivocally changed depending on the particle size and the film characteristics, so that the slipping property and the blocking characteristics cannot be generally stated, but preferably 25% by weight or less, More preferably, it is in the range of 1 to 15% by weight, still more preferably 3 to 10% by weight. When it exceeds 25%, the transparency of the coating layer may be lowered or the adhesion may be lowered.
  • the coated film of the present invention it is also possible to provide a coating layer on the surface opposite to the surface on which the coating layer is provided.
  • the opposite surface can be a coating layer according to the application, and conventionally known components can be used as its constituent components. Examples thereof include polymers such as polyester resins, acrylic resins, urethane resins, carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds, melamine compounds, and the like, and these materials may be used alone. A plurality of types may be used in combination.
  • a coating layer (the same coating layer on both sides of the film) formed from a coating resin containing a composite resin composed of a resin and a urethane resin containing a (meth) acryloyl group as described above, and a crosslinking agent. Also good.
  • the analysis of the components in the coating layer can be performed, for example, by analysis of TOF-SIMS, ESCA, fluorescent X-rays and the like.
  • the coating layer is provided by in-line coating
  • the above-mentioned series of compounds is used as an aqueous solution or aqueous dispersion, and the coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight as a guide is applied on the film. It is preferable to produce a coated film.
  • a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
  • the thickness of the coating layer is preferably in the range of 0.002 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m, still more preferably 0.005 to 0.3 ⁇ m, and particularly preferably 0.01 to 0.2 ⁇ m. is there.
  • the film thickness is out of the above range, adhesion, coating appearance, and blocking characteristics may be deteriorated.
  • a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, or the like can be used.
  • the drying and curing conditions for forming the coating layer on the film are not particularly limited.
  • the coating layer is usually at 80 to 200 ° C. for 3 to 40 seconds, preferably 100.
  • Heat treatment is preferably performed at about 180 ° C. for 3 to 40 seconds as a guide.
  • the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
  • heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination as necessary.
  • the film may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
  • the application layer of the coating film of the present invention is generally provided with various functional layers.
  • the functional layers it is usually a solvent-free type, so it is difficult to ensure adhesion, for example, a prism.
  • An optical functional layer such as a layer or a microlens layer can be provided.
  • the resin used for this purpose is difficult to ensure adhesion, the application of the present invention in such a field is difficult.
  • a film is preferred.
  • Examples of the shape of the prism layer include those having a triangular section with a thickness of 10 to 500 ⁇ m, a pitch of prism rows of 10 to 500 ⁇ m, and an apex angle of 40 ° to 100 °.
  • Examples of the shape of the microlens layer include a hemispherical shape having a thickness of 10 to 500 ⁇ m and a diameter of 10 to 500 ⁇ m, but it may be shaped like a cone or a polygonal pyramid.
  • the optical functional layer is generally formed from an active energy ray-curable compound of a solventless type (a solvent content is usually 5% by weight or less, preferably 3% by weight or less, and more preferably contains no solvent).
  • a solvent content is usually 5% by weight or less, preferably 3% by weight or less, and more preferably contains no solvent.
  • a composition containing an active energy ray-curable (meth) acrylate is generally used.
  • an active energy ray-curable monofunctional (meth) acrylate is used.
  • the active energy ray-curable monofunctional (meth) acrylate is not particularly limited.
  • Aromatic (meth) acrylates such as alkoxyalkyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, amino group-containing (meth) such as diaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate
  • Ethylene oxide modified (meth) acrylates such as acrylate, methoxyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenylphenol ethylene oxide modified (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) Examples include acrylate and (meth) acrylic acid.
  • the active energy ray-curable difunctional (meth) acrylate is not particularly limited, but for example, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, alkanediol di (meth) acrylate such as tricyclodecane dimethylol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate Bisphenol-modified di (meth) acrylate such as bisphenol F ethylene oxide-modified di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, urethane di (meth) acrylate DOO, epoxy di (meth) acrylate.
  • the active energy ray-curable polyfunctional (meth) acrylate is not particularly limited, and examples thereof include dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra (meth) acrylate.
  • Isocyanuric acid modified tri (meth) such as pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, isocyanuric acid ethylene oxide modified tri (meth) acrylate, ⁇ -caprolactone modified tris (acryloxyethyl) isocyanurate
  • pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer pentaerythritol triacrylate toluene diisocyanate Tan prepolymers
  • urethane acrylates such as dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, and the like.
  • the compound used for forming the optical functional layer uses a material having a high refractive index. It is preferable.
  • the refractive index of the optical functional layer for increasing the brightness is preferably 1.57 or more.
  • the refractive index of the polyester film more preferably used in the present invention is around 1.65. Therefore, the refractive index range of the active energy ray-curable resin layer such as an optical functional layer is usually 1.57 to 1. .65, preferably 1.58 to 1.64, more preferably 1.59 to 1.63. By setting it within the above range, the luminance can be increased.
  • a method using a compound having a large aromatic structure, a sulfur atom, a halogen atom, or a metal compound in addition to the above-described general compound can be mentioned.
  • the method using a compound having a large aromatic structure or a sulfur atom is particularly preferable from the viewpoint of the environment because the refractive index of the optical functional layer can be made uniform.
  • Examples of the compound having a large aromatic structure include condensed polycyclic aromatic structures such as naphthalene, anthracene, phenanthrene, naphthacene, benzo [a] anthracene, benzo [a] phenanthrene, pyrene, benzo [c] phenanthrene, and perylene. , A compound having a biphenyl structure, a compound having a fluorene structure, and the like.
  • substituents may be introduced into the condensed polycyclic aromatic structure, biphenyl structure, and fluorene structure. Particularly, those having a benzene ring-containing substituent such as a phenyl group have a higher refractive index. Since it can be made high, it is preferable. It is also possible to introduce atoms that increase the refractive index, such as sulfur atoms and halogen atoms. Furthermore, in order to improve the adhesion to the coating layer, various functional groups such as an ester group, an amide group, a hydroxyl group, an amino group, and an ether group can be introduced (hereinafter, these are abbreviated as a specific structure). To do).
  • the content in the active energy ray-curable resin layer having the above specific structure cannot be generally specified, but is usually in the range of 20 to 80% by weight, preferably 25 to 70% by weight, more preferably 30 to 60% by weight. It is. By using in the above range, it is possible to form a curable resin layer (optical functional layer) having high luminance.
  • the content of the compound having the specific structure in the active energy ray-curable resin layer is usually in the range of 10 to 95% by weight, preferably 20 to 90% by weight, more preferably 25 to 80% by weight. is there. By using in the above range, it is possible to form a curable resin layer (optical functional layer) having high luminance.
  • components in the functional layer are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents.
  • inorganic or organic fine particles include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents.
  • solvent when the film is dried after film formation in the wet coating method, an arbitrary amount of solvent can be added.
  • the coating film was peeled off from the mold member to obtain a coating film on which a prism layer (refractive index 1.59) was formed.
  • the prism layer was subjected to 10 ⁇ 10 cross-cutting, and then a 18 mm wide tape (cello tape manufactured by Nichiban Co., Ltd.) (Registered trademark) CT-18) is attached, and the peeled surface is observed after abrupt peeling at a 180 degree peel angle. A if the peel area is less than 5%, A if the peel area is less than 5%, and B if less than 20%.
  • polyester (A) The polyester used in the examples and comparative examples was prepared as follows. ⁇ Method for producing polyester (A)> 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the resulting polyester, and 100 ppm of magnesium acetate tetrahydrate with respect to the resulting polyester as the catalyst at 260 ° C. in a nitrogen atmosphere at 260 ° C. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to 0.3 kPa in absolute pressure, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.
  • polyester (C) is obtained using the same method as the production method of polyester (A), except that 0.3 part by weight of silica particles having an average particle diameter of 2 ⁇ m is added before melt polymerization. It was.
  • Examples of compounds constituting the coating layer are as follows.
  • isophorone diisocyanate terephthalic acid: isophthalic acid: ethylene glycol: diethylene glycol: dimethylol introduced with acryloyl group
  • Carbodiimide compounds (IIA) Carbodiimide compound Carbodilite (carbodiimide equivalent: 430) (Nisshinbo Co., Ltd.)
  • Carbodiimide compounds (IIC) Carbodiimide compound Carbodilite (carbodiimide equivalent: 380) (Nisshinbo Co., Ltd.)
  • Isocyanate compounds 1000 parts of hexamethylene diisocyanate was stirred at 60 ° C., and 0.1 part of tetramethylammonium capryate was added as a catalyst. After 4 hours, 0.2 part of phosphoric acid was added to stop the reaction, and an isocyanurate type polyisocyanate composition was obtained. 100 parts of the obtained isocyanurate type polyisocyanate composition, 42.3 parts of methoxypolyethylene glycol having a number average molecular weight of 400, and 29.5 parts of propylene glycol monomethyl ether acetate were charged and maintained at 80 ° C. for 7 hours.
  • Block polyisocyanate obtained by adding 58.9 parts of n-butanol and maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 part of 2-ethylhexyl acid phosphate.
  • Epoxy compounds (IIF) Polyglycerol polyglycidyl ether.
  • Melamine compounds (IIG) Hexamethoxymethylol melamine.
  • Example 2 In Example 1, except having changed a coating agent composition into the coating agent composition shown in Table 1, it manufactured like Example 1 and obtained the coating film. The obtained coated film was as shown in Table 2 and had good adhesion.
  • Example 1 In Example 1, it manufactured similarly to Example 1 except not providing a coating layer, and obtained the coating film. When the obtained coated film was evaluated, as shown in Table 2, the adhesion of the coated film was poor.
  • Comparative Examples 2 to 10 In Example 1, except having changed a coating agent composition into the coating agent composition shown in Table 1, it manufactured like Example 1 and obtained the coating film. When the obtained coating film was evaluated, it was as shown in Table 2 and had poor adhesion.
  • the coated film of the present invention can be suitably used for applications that require good adhesion to a prism layer or a microlens layer, such as a backlight unit of a liquid crystal display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

Provided is a coated film having excellent adhesive properties with various types of functional layers stacked on the film, making it possible to favorably use the coated film in applications requiring favorable adhesion with prism layers and micro lens layers used in, for example, backlight units of liquid crystal displays. The coated film comprises a coating layer formed from a coating solution, the coating solution containing a composite resin comprising a resin having a (meth)acryloyl group and a urethane resin, and a crosslinking agent, on at least one surface of the film.

Description

塗布フィルムCoating film
 本発明は、塗布フィルムに関するものであり、特に、液晶ディスプレイのバックライトユニット等に用いられるプリズムシートやマイクロレンズ用部材として好適に用いられ、各種の機能層との密着性が良好な塗布フィルムに関するものである。 The present invention relates to a coating film, and particularly relates to a coating film that is preferably used as a prism sheet or a microlens member used in a backlight unit of a liquid crystal display and has good adhesion to various functional layers. Is.
 近年、液晶ディスプレイがテレビ、パソコン、デジタルカメラ、携帯電話等の表示装置として広く用いられている。これらの液晶ディスプレイは、液晶表示ユニット単独では発光機能を有していないので、裏側からバックライトを使用して光を照射することにより表示させる方式が普及している。 In recent years, liquid crystal displays have been widely used as display devices for televisions, personal computers, digital cameras, mobile phones and the like. Since these liquid crystal displays do not have a light emitting function by a liquid crystal display unit alone, a method of displaying by irradiating light using a backlight from the back side is widespread.
 バックライト方式には、エッジライト型あるいは直下型と呼ばれる構造がある。最近は液晶ディスプレイを薄型化する傾向があり、エッジライト型を採用する場合が多くなってきている。エッジライト型は、一般的には、反射シート、導光板、光拡散シート、プリズムシートの順で構成されている。光線の流れとしては、バックライトから導光板に入射した光線が反射シートで反射され、導光板の表面から出射される。導光板から出射された光線は光拡散シートに入射し、光拡散シートで拡散・出射され、次に存在するプリズムシートに入射する。プリズムシートで光線は法線方向に集光させられ、液晶層に向けて出射される。 The backlight system has a structure called an edge light type or a direct type. Recently, there is a tendency to reduce the thickness of liquid crystal displays, and an edge light type is increasingly used. The edge light type is generally configured in the order of a reflection sheet, a light guide plate, a light diffusion sheet, and a prism sheet. As the flow of light, the light incident on the light guide plate from the backlight is reflected by the reflection sheet and emitted from the surface of the light guide plate. The light beam emitted from the light guide plate enters the light diffusion sheet, is diffused and emitted by the light diffusion sheet, and then enters the next existing prism sheet. The light beam is condensed in the normal direction by the prism sheet and emitted toward the liquid crystal layer.
 本構成で使用されるプリズムシートは、バックライトの光学的な効率を改善して輝度を向上させるためのものである。透明基材フィルムとしては、透明性、機械特性を考慮してポリエステルフィルムが一般的に使用され、基材のフィルムとプリズム層との密着性を向上させるために、これらの中間層として易接着性の塗布層が設けられる場合が一般的である。易接着性の塗布層としては、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂が知られている(特許文献1~3)。 The prism sheet used in this configuration is for improving the optical efficiency of the backlight and improving the luminance. As the transparent base film, a polyester film is generally used in consideration of transparency and mechanical properties. In order to improve the adhesion between the base film and the prism layer, these intermediate layers are easily adhesive. In general, a coating layer is provided. As the easily adhesive coating layer, for example, polyester resin, acrylic resin, and urethane resin are known (Patent Documents 1 to 3).
 プリズム層の形成方法としては、例えば、活性エネルギー線硬化性塗料をプリズム型に導入し、フィルムと挟み込んだ状態で活性エネルギー線を照射し、樹脂を硬化させ、プリズム型を取り除くことにより、フィルム上に形成する方法が挙げられる。このような手法の場合、プリズム型が精巧に形成されるためには、無溶剤型の活性エネルギー線硬化性樹脂を使用する必要がある。しかし、無溶剤型の樹脂は、溶剤系に比べて、フィルム上に積層された易接着層への浸透、膨潤効果が低く、密着性が不十分となりやすい。特定のウレタン樹脂からなる塗布層が提案されており、密着性の向上が図られているが、無溶剤型の樹脂に対しては、このような塗布層でも密着性が必ずしも十分ではなくなってきている(特許文献4)。 As a method for forming the prism layer, for example, an active energy ray-curable coating material is introduced into a prism mold, irradiated with active energy rays while sandwiched between the film, the resin is cured, and the prism mold is removed to remove the prism layer. The method of forming is mentioned. In the case of such a method, it is necessary to use a solventless active energy ray-curable resin in order to form the prism type with precision. However, solventless resins are less permeable and swellable to the easy-adhesion layer laminated on the film than solvent-based resins, and the adhesion tends to be insufficient. A coating layer made of a specific urethane resin has been proposed, and improvement in adhesion has been achieved. However, even with such a coating layer, adhesion has not always been sufficient for solventless resins. (Patent Document 4).
 無溶剤型の樹脂に対する、密着性を改善させるために、ウレタン樹脂とオキサゾリン化合物とを主成分とする塗布層が提案されている(特許文献5)。しかしながら、現在のバックライトの本数の低下、消費電力の低下要望等から派生するプリズムの高輝度化に対応するプリズム樹脂、すなわち高屈折率化したプリズム樹脂への密着性が十分でない場合がある。 In order to improve adhesion to a solventless resin, a coating layer mainly composed of a urethane resin and an oxazoline compound has been proposed (Patent Document 5). However, there is a case where the adhesiveness to the prism resin corresponding to the increase in the brightness of the prism derived from the decrease in the number of backlights and the demand for reduction in power consumption, that is, the prism resin having a higher refractive index, is not sufficient.
特開平8-281890号公報JP-A-8-281890 特開平11-286092号公報Japanese Patent Laid-Open No. 11-286092 特開2000-229395号公報JP 2000-229395 A 特開平2-158633号公報Japanese Patent Laid-Open No. 2-158633 特開2010-13550号公報JP 2010-13550 A
 本発明は、上記実情に鑑みなされたものであって、その解決課題は、各種の機能層、特に無溶剤型の樹脂に良好な密着性を有し、例えば、液晶ディスプレイのバックライトユニット等に用いられるプリズムシートやマイクロレンズ用部材として好適に利用することができる塗布フィルムを提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved is that it has good adhesion to various functional layers, particularly solventless resins, such as a backlight unit of a liquid crystal display. An object of the present invention is to provide a coating film that can be suitably used as a prism sheet or a microlens member.
 本発明者らは、上記実情に鑑み、鋭意検討した結果、特定の構成からなる塗布フィルムを用いれば、上述の課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that the above-described problems can be easily solved by using a coating film having a specific configuration, and have completed the present invention.
 すなわち、本発明の要旨は、フィルムの少なくとも片面に、(メタ)アクリロイル基を含有する樹脂とウレタン樹脂とからなる複合樹脂、および架橋剤を含有する塗布液から形成された塗布層を有することを特徴とする塗布フィルムに存する。 That is, the gist of the present invention is that at least one surface of the film has a coating layer formed of a coating resin containing a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin, and a crosslinking agent. It exists in the characteristic coating film.
 本発明によれば、各種の機能層、特にプリズム層やマイクロレンズ層等の機能層に対して、密着性に優れた塗布フィルムを提供することができ、その工業的価値は高い。 According to the present invention, it is possible to provide a coating film having excellent adhesion to various functional layers, particularly functional layers such as a prism layer and a microlens layer, and its industrial value is high.
 本発明の塗布フィルムのフィルム基材としては従来公知のものを使用することができ、例えば、ポリエステルフィルム、ポリカーボネートフィルム、フッ素樹脂フィルム、ポリイミドフィルム、トリアセチルセルロースフィルム、ポリオレフィンフィルム、ポリアクリレートフィルム、ポリスチレンフィルム、ポリ塩化ビニルフィルム、ポリビニルアルコールフィルム、エチレン酢酸ビニル共重合体フィルム、エチレン-ビニルアルコール共重合体フィルム、ナイロンフィルム等が挙げられる。特に、各種の用途へ展開するために、耐熱性があることが好ましく、ポリエステルフィルム、ポリカーボネートフィルム、フッ素樹脂フィルム、ポリイミドフィルムが好適に用いられ、さらに透明性や成形性、汎用性を考慮するとポリエステルフィルムがより好適に用いられる。 As the film substrate of the coated film of the present invention, conventionally known ones can be used. For example, polyester film, polycarbonate film, fluororesin film, polyimide film, triacetyl cellulose film, polyolefin film, polyacrylate film, polystyrene Examples thereof include a film, a polyvinyl chloride film, a polyvinyl alcohol film, an ethylene vinyl acetate copolymer film, an ethylene-vinyl alcohol copolymer film, and a nylon film. In particular, in order to develop into various applications, it is preferable to have heat resistance, and polyester film, polycarbonate film, fluororesin film, and polyimide film are preferably used, and polyester is further considered in view of transparency, moldability, and versatility. A film is used more suitably.
 本発明の塗布フィルムを構成するフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。 The film constituting the coated film of the present invention may have a single-layer structure or a multilayer structure, and may have a multilayer structure of four or more layers as long as the gist of the present invention is not exceeded other than the two-layer or three-layer structure. There is no particular limitation.
 ポリエステルフィルムとして、該当ポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p-オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4-シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。 As the polyester film, the polyester may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid). One or two or more types can be mentioned, and examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexanedimethanol, neopentyl glycol and the like.
 ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。この中でも、チタン化合物やゲルマニウム化合物は触媒活性が高く、少量で重合を行うことが可能であり、フィルム中に残留する金属量が少ないことから、フィルムの輝度が高くなるため好ましい。さらに、ゲルマニウム化合物は高価であることから、チタン化合物を用いることがより好ましい。 The polymerization catalyst for polyester is not particularly limited, and conventionally known compounds can be used. Examples thereof include antimony compounds, titanium compounds, germanium compounds, manganese compounds, aluminum compounds, magnesium compounds, calcium compounds and the like. Among these, titanium compounds and germanium compounds are preferable because they have high catalytic activity, can be polymerized in a small amount, and the amount of metal remaining in the film is small, so that the brightness of the film becomes high. Furthermore, since a germanium compound is expensive, it is more preferable to use a titanium compound.
 チタン化合物を用いたポリエステルの場合、チタン元素含有量は、好ましくは50ppm以下、より好ましくは1~20ppm、さらに好ましくは2~10ppmの範囲である。チタン化合物の含有量が多すぎる場合は、ポリエステルを溶融押出する工程でポリエステルの劣化が促進され黄色味が強いフィルムとなる場合があり、また、含有量が少なすぎる場合は、重合効率が悪くコストアップや十分な強度を有するフィルムが得られない場合がある。また、チタン化合物によるポリエステルを用いる場合、溶融押出する工程での劣化抑制の目的で、チタン化合物の活性を下げるためにリン化合物を使用することが好ましい。 In the case of a polyester using a titanium compound, the titanium element content is preferably 50 ppm or less, more preferably 1 to 20 ppm, still more preferably 2 to 10 ppm. If the content of the titanium compound is too high, the polyester may be deteriorated in the process of melt-extruding the polyester, resulting in a strong yellowish film. If the content is too low, the polymerization efficiency is poor and the cost is low. In some cases, a film having a sufficient strength or a sufficient strength cannot be obtained. Moreover, when using the polyester by a titanium compound, it is preferable to use a phosphorus compound in order to reduce the activity of a titanium compound for the purpose of suppressing deterioration in the step of melt extrusion.
 リン化合物としては、ポリエステルの生産性や熱安定性を考慮すると正リン酸が好ましい。リン元素含有量は、溶融押出するポリエステル量に対して、好ましくは1~300ppm、より好ましくは3~200ppm、さらに好ましくは5~100ppmの範囲である。リン化合物の含有量が多すぎる場合は、ゲル化や異物の原因となる可能性があり、また、含有量が少なすぎる場合は、チタン化合物の活性を十分に下げることができず、黄色味のあるフィルムとなる場合がある。 As the phosphorus compound, normal phosphoric acid is preferable in view of the productivity and thermal stability of the polyester. The phosphorus element content is preferably in the range of 1 to 300 ppm, more preferably 3 to 200 ppm, still more preferably 5 to 100 ppm, based on the amount of polyester to be melt-extruded. If the content of the phosphorus compound is too large, it may cause gelation or foreign matter. If the content is too small, the activity of the titanium compound cannot be lowered sufficiently, and the yellowish It may be a film.
 ポリカーボネートフィルムとして、当該ポリカーボネートは、従来公知のものを使用することができるが、特にビスフェノールA構造を含有するタイプが好ましい。 As the polycarbonate film, a conventionally known polycarbonate can be used, but a type containing a bisphenol A structure is particularly preferable.
 フッ素樹脂フィルムとして、当該フッ素樹脂は、従来公知のものを使用することができるが、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等が挙げられる。 As the fluororesin film, a conventionally known fluororesin can be used. For example, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Examples include coalescence.
 フィルム中にはフィルムの耐候性の向上、液晶等の劣化防止のために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線を吸収する化合物で、フィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。 In the film, an ultraviolet absorber can be contained in order to improve the weather resistance of the film and prevent deterioration of the liquid crystal. The ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the film production process.
 紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点からは有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、特に限定されないが、例えば、環状イミノエステル系、ベンゾトリアゾール系、ベンゾフェノン系などが挙げられる。耐久性の観点からは環状イミノエステル系、ベンゾトリアゾール系がより好ましい。また、紫外線吸収剤を2種類以上併用して用いることも可能である。 As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Although it does not specifically limit as an organic type ultraviolet absorber, For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
 フィルム中には、易滑性の付与および各工程での傷発生防止を主たる目的として、粒子を配合することも可能である。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、フィルムの製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。 In the film, particles can be blended mainly for the purpose of imparting slipperiness and preventing scratches in each process. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Furthermore, it is also possible to use precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed during the film production process.
 使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。 The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.
 また、粒子の平均粒径は、好ましくは5μm以下、より好ましくは0.01~3μmの範囲である。平均粒径を上記範囲で用いることにより、フィルムに適度な表面粗度を与え、また、後工程における種々の機能層等を形成させる場合にも不具合が生じにくい。 Further, the average particle diameter of the particles is preferably 5 μm or less, more preferably in the range of 0.01 to 3 μm. By using the average particle diameter within the above range, an appropriate surface roughness is imparted to the film, and in the case where various functional layers and the like are formed in a subsequent process, problems are unlikely to occur.
 さらにフィルム中の粒子含有量は、好ましくは5重量%未満、より好ましくは0.0003~3重量%の範囲である。粒子が無い場合、あるいは少ない場合は、フィルムの透明性が高くなり、良好なフィルムとなるが、滑り性が不十分となる場合があるため、塗布層中に粒子を入れることにより、滑り性を向上させる等の工夫が必要な場合がある。また、粒子含有量が多すぎる場合には機能層を形成してもヘーズが十分に下がらず、フィルムの透明性が不十分な場合がある。 Furthermore, the particle content in the film is preferably less than 5% by weight, more preferably in the range of 0.0003 to 3% by weight. When there are no or few particles, the transparency of the film becomes high and the film becomes a good film, but the slipperiness may be insufficient. There are cases where improvement is required. Moreover, when there is too much particle content, even if a functional layer is formed, haze will not fully fall, and transparency of a film may be inadequate.
 フィルム中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するフィルムを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。 The method for adding particles to the film is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at an arbitrary stage for producing a film constituting each layer, but it is preferably added after completion of esterification or transesterification.
 なお、フィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, heat stabilizers, lubricants, dyes, pigments and the like can be added to the film as necessary.
 フィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、10~350μm、より好ましくは20~300μmの範囲である。 The thickness of the film is not particularly limited as long as it can be formed as a film, but is 10 to 350 μm, more preferably 20 to 300 μm.
 次に本発明におけるフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。一般的には、樹脂を溶融し、シート化して、強度を上げる等の目的で延伸を行い、フィルムを作成する。一例として、先に述べたポリエステルフィルムを製造する場合を紹介する。ポリエステル原料を乾燥したペレットを押出機を用いて、ダイから押し出された溶融フィルムを冷却ロールで冷却固化して未延伸フィルムを得る方法が好ましい。この場合、フィルムの平面性を向上させるためフィルムと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。次に得られた未延伸フィルムは二軸方向に延伸される。その場合、まず、前記の未延伸フィルムを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~110℃であり、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70~170℃であり、延伸倍率は通常3.0~7倍、好ましくは3.5~6倍である。そして、引き続き180~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。 Next, although the production example of the film in the present invention will be specifically described, it is not limited to the following production example. In general, the resin is melted, formed into a sheet, and stretched for the purpose of increasing the strength and the film is formed. As an example, the case where the polyester film mentioned above is manufactured is introduced. A method of obtaining an unstretched film by cooling and solidifying a molten film extruded from a die with a cooling roll using pellets obtained by drying a polyester raw material is preferable. In this case, in order to improve the flatness of the film, it is preferable to improve the adhesion between the film and the rotary cooling drum, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed. Next, the obtained unstretched film is stretched in the biaxial direction. In that case, first, the unstretched film is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction perpendicular to the first stretching direction. In this case, the stretching temperature is usually 70 to 170 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there. Subsequently, heat treatment is performed at a temperature of 180 to 250 ° C. under tension or under relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
 また、フィルムの製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4~50倍、好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き、170~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。 Also, the simultaneous biaxial stretching method can be adopted for the production of the film. The simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
 次に塗布層の形成について説明する。塗布層に関しては、フィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。より好ましくはインラインコーティングにより形成されるものである。 Next, the formation of the coating layer will be described. Regarding the coating layer, it may be provided by in-line coating, which treats the film surface during the film formation process, or may be applied off-system on a once manufactured film. More preferably, it is formed by in-line coating.
 インラインコーティングは、フィルム製造の工程内でコーティングを行う方法であり、具体的には、樹脂を溶融押出ししてから延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルム、熱固定後で巻上前のフィルムの何れかにコーティングする。以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布層形成を同時に行うことができるため製造コスト上のメリットがあり、また、コーティング後に延伸を行うために、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。また、延伸前にフィルム上に塗布層を設けることにより、塗布層を基材フィルムと共に延伸することができ、それにより塗布層を基材フィルムに強固に密着させることができる。さらに、二軸延伸フィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦および横方向に拘束することができ、熱固定工程において、しわ等が入らず平面性を維持したまま高温をかけることができる。それゆえ、塗布後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、塗布層と基材フィルムをより強固に密着させることができ、さらには、強固な塗布層とすることができ、塗布層上に形成され得る各種の機能層との密着性や耐湿熱性等の性能を向上させることができる。 In-line coating is a method in which coating is performed in the film manufacturing process, and specifically, a method in which coating is performed at any stage from melt extrusion of a resin to heat fixing after stretching and winding up. Usually, it is coated on any of an unstretched sheet obtained by melting and quenching, a stretched uniaxially stretched film, a biaxially stretched film before heat setting, and a film after heat setting and before winding. Although not limited to the following, for example, in sequential biaxial stretching, a method of stretching in the transverse direction after coating a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction) is particularly excellent. According to such a method, film formation and coating layer formation can be performed at the same time, so there is an advantage in manufacturing cost. In addition, in order to perform stretching after coating, the thickness of the coating layer can be changed by the stretching ratio. Compared to offline coating, thin film coating can be performed more easily. Further, by providing the coating layer on the film before stretching, the coating layer can be stretched together with the base film, whereby the coating layer can be firmly adhered to the base film. Furthermore, in the manufacture of biaxially stretched films, the film can be restrained in the vertical and horizontal directions by stretching while gripping the film edges with clips, etc., and flatness is not generated in the heat setting process. High temperature can be applied while maintaining Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer can be improved, and the coating layer and the base film can be more firmly adhered to each other. Furthermore, it can be set as a firm coating layer, and performances such as adhesion to various functional layers that can be formed on the coating layer and wet heat resistance can be improved.
 本発明においては、(メタ)アクリロイル基を含有する樹脂とウレタン樹脂とからなる複合樹脂、および、例えば、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物、メラミン化合物、エポキシ化合物等の架橋剤の群より選ばれる1種類以上の架橋剤を含有する塗布液から形成された塗布層を有することを必須の要件とするものである。 In the present invention, a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin, and a group of crosslinking agents such as a carbodiimide compound, an isocyanate compound, an oxazoline compound, a melamine compound, and an epoxy compound. It is an essential requirement to have a coating layer formed from a coating solution containing one or more selected crosslinking agents.
 本発明における塗布層は、種々の機能層、特に活性エネルギー線による硬化性樹脂層、その中でも特に、プリズム層やマイクロレンズ層のような、通常、無溶剤型の活性エネルギー線硬化性の組成物から形成される、一般的には密着性を確保しにくい硬化性樹脂層との密着性向上に最適である。特に近年においては、小消費電力化の流れもあり、プリズムシートやマイクロレンズシートの輝度を従来よりも向上させる必要があり、そのために、プリズム層やマイクロレンズ層に用いる材料を高屈折率化する傾向にある。それらの硬化性樹脂層の高屈折率化のためには、芳香族を多く含有する化合物を用いる手法が取られている。しかし、一方で、芳香族の含有量が多くなると、その相互作用の少なさから、塗布層との密着性の低下につながってしまうという問題が発生する。そのために、芳香族の含有量を多く、屈折率が高い、すわなち、輝度を高くする設計でも密着性が十分に確保できる塗布層を有する塗布フィルムが望まれている。 In the present invention, the coating layer is a functional layer, in particular, a curable resin layer using active energy rays, and in particular, a solvent-free active energy ray-curable composition such as a prism layer or a microlens layer. It is most suitable for improving the adhesion with a curable resin layer that is generally formed from Particularly in recent years, there is a trend toward lower power consumption, and it is necessary to improve the brightness of the prism sheet and microlens sheet as compared with the prior art. Therefore, the materials used for the prism layer and microlens layer are made to have a higher refractive index. There is a tendency. In order to increase the refractive index of these curable resin layers, a technique using a compound containing a large amount of aromatics has been taken. However, on the other hand, when the aromatic content is increased, there is a problem that the adhesiveness with the coating layer is lowered due to the small interaction. Therefore, a coating film having a coating layer that can sufficiently ensure adhesion even in a design with a high aromatic content, a high refractive index, that is, a high brightness is desired.
 本発明者らは、(メタ)アクリロイル基を含有する樹脂とウレタン樹脂とからなる複合樹脂を使用することでより、高度な密着性を発現させることができることを見いだした。高度な密着性発現の推測メカニズムは、塗布層中に存在する(メタ)アクリロイル基による炭素-炭素二重結合と、塗布層上に機能層として、形成に用いられる化合物中の炭素-炭素二重結合とを反応させ、共有結合を形成させるというものである。(メタ)アクリロイル基を含有する樹脂のみならず、ウレタン樹脂との複合樹脂を使用することで、機能層との密着性の向上ばかりでなく、基材であるフィルムとの密着性の向上も達成でき、フィルム全体として、密着性の向上が図れると推測している。 The present inventors have found that by using a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin, a high degree of adhesion can be expressed. The presumed mechanism for the expression of high adhesion is that the carbon-carbon double bond by the (meth) acryloyl group present in the coating layer and the carbon-carbon double in the compound used for formation as a functional layer on the coating layer. It reacts with a bond to form a covalent bond. By using not only resins containing (meth) acryloyl groups but also composite resins with urethane resins, not only improved adhesion to the functional layer, but also improved adhesion to the film as the substrate. It is speculated that the adhesion of the film as a whole can be improved.
 (メタ)アクリロイル基を含有する樹脂としては、(メタ)アクリロイル基を含有する樹脂であれば特に制限はなく、例えば、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂等の従来公知の樹脂が挙げられる。これらの中でも合成しやすく、多くの(メタ)アクリロイル基を導入できるという観点から、エポキシ樹脂が好ましい。エポキシ樹脂の中でも、耐水性や耐溶剤性等、耐久性に優れるという観点において、芳香族含有のエポキシ樹脂が好ましく、さらにその中でも、ノボラック型エポキシ樹脂やビスフェノール型エポキシ樹脂がより好ましく、(メタ)アクリロイル基導入の観点も考慮すると、ノボラック型エポキシ樹脂がさらに好ましい。 The resin containing a (meth) acryloyl group is not particularly limited as long as it is a resin containing a (meth) acryloyl group, and examples thereof include conventionally known resins such as an epoxy resin, a polyester resin, and an acrylic resin. Among these, an epoxy resin is preferable from the viewpoint of easy synthesis and introduction of many (meth) acryloyl groups. Among the epoxy resins, aromatic-containing epoxy resins are preferable from the viewpoint of excellent durability such as water resistance and solvent resistance, and among them, novolac type epoxy resins and bisphenol type epoxy resins are more preferable. In view of the introduction of acryloyl group, novolac type epoxy resin is more preferable.
 ノボラック型エポキシ樹脂としては、例えば、クレゾールノボラック型、フェノールノボラック型が挙げられ、ビスフェノール型エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型等が挙げられる。汎用性や樹脂の柔軟性を考慮すると、これらの中でも、クレゾールノボラック型エポキシ樹脂およびビスフェノールA型エポキシ樹脂がより好ましい。また、エポキシ樹脂は、単一種類で用いても、複数種併用しても良い。 Examples of the novolak type epoxy resin include a cresol novolak type and a phenol novolak type, and examples of the bisphenol type epoxy resin include a bisphenol A type, a bisphenol F type, and a bisphenol S type. Among these, cresol novolac type epoxy resins and bisphenol A type epoxy resins are more preferable in consideration of versatility and resin flexibility. Moreover, epoxy resin may be used by a single kind or may be used together with multiple types.
 (メタ)アクリロイル基を含有する樹脂と複合樹脂とするためのウレタン樹脂とは従来公知のウレタン樹脂を使用することができる。通常ウレタン樹脂はポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリエステルポリオール類、ポリカーボネートポリオール類、ポリエーテルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。ポリエステルフィルム基材との密着性を考慮した場合、上記の中でも、ポリエステルポリオール類がより好ましい。また、耐水性を考慮した場合、上記の中でも、ポリカーボネートポリオール類がより好ましい。 A conventionally known urethane resin can be used as the resin containing the (meth) acryloyl group and the urethane resin for forming the composite resin. Usually, urethane resin is prepared by reaction of polyol and isocyanate. Examples of the polyol include polyester polyols, polycarbonate polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination. In view of the adhesion to the polyester film substrate, among the above, polyester polyols are more preferable. Moreover, when considering water resistance, among the above, polycarbonate polyols are more preferable.
 ポリエステルポリオール類としては、多価カルボン酸(テレフタル酸、イソフタル酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、1,8-オクタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)の反応から得られるものが挙げられる。 Polyester polyols include polycarboxylic acids (terephthalic acid, isophthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, etc.) or their acid anhydrides. And polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl- , 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, Cyclohexanediol, bishydroxymethylcyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyl dialkanolamine, lactone diol, etc.).
 これらの中でも、耐水性、耐溶剤性等の耐久性の観点から、多価カルボン酸としては、芳香族カルボン酸によるものが好ましく、中でも、塗布外観やフィルム基材との密着性を考慮すると、テレフタル酸やイソフタル酸がより好ましい。また、特に、塗布外観およびインラインコートへの適用性を考慮すると柔軟性がある程度良いものが好ましく、テレフタル酸とイソフタル酸を併用することが最適である。 Among these, from the viewpoint of durability such as water resistance and solvent resistance, the polyvalent carboxylic acid is preferably an aromatic carboxylic acid, and among them, considering the coating appearance and the adhesion to the film substrate, Terephthalic acid and isophthalic acid are more preferable. In particular, in view of the coating appearance and applicability to in-line coating, those having a certain degree of flexibility are preferable, and it is optimal to use terephthalic acid and isophthalic acid in combination.
 また、併用するテレフタル酸:イソフタル酸のモル比率としては、1~10:1~10が好ましく、より好ましくは1~5:1~5、さらに好ましくは1~3:1~3の範囲、特に好ましくは1~2:1~2の範囲である。 The molar ratio of terephthalic acid: isophthalic acid used in combination is preferably 1 to 10: 1 to 10, more preferably 1 to 5: 1 to 5, further preferably 1 to 3: 1 to 3, particularly The range is preferably 1-2: 1-2.
 さらに、多価アルコールとしては、カルボン酸成分の芳香族比率を高くするためにエチレングリコール、ジエチレングリコールやプロピレングリコール等、分子鎖が短いものが好ましく、さらに、樹脂の柔軟性も考慮するとジエチレングリコールを含有するものが好ましい。耐久性、塗布外観、柔軟性を総合的に考慮すると、エチレングリコールとジエチレングリコールを併用することがより好ましい。 Furthermore, as the polyhydric alcohol, those having a short molecular chain such as ethylene glycol, diethylene glycol and propylene glycol are preferable in order to increase the aromatic ratio of the carboxylic acid component, and further, considering the flexibility of the resin, diethylene glycol is contained. Those are preferred. In view of durability, coating appearance, and flexibility, it is more preferable to use ethylene glycol and diethylene glycol in combination.
 また、併用するエチレングリコール:ジエチレングリコールのモル比率としては、1~10:1~10が好ましく、より好ましくは1~5:1~5、さらに好ましくは1~3:1~3の範囲、特に好ましくは1~2:1~2の範囲である。 The molar ratio of ethylene glycol: diethylene glycol used in combination is preferably 1 to 10: 1 to 10, more preferably 1 to 5: 1 to 5, further preferably 1 to 3: 1 to 3, particularly preferably. Is in the range of 1-2: 1-2.
 ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン等が挙げられる。 Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. Polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Examples thereof include diol, neopentyl glycol, 3-methyl-1,5-pentanediol, and 3,3-dimethylol heptane.
 カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。 Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
 ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。 Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and the like.
 ウレタン樹脂を得るために使用されるポリイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。これらの中でも、黄変性を考慮すると、芳香族イソシアネートではない方が好ましい。 Examples of the polyisocyanate compound used for obtaining the urethane resin include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, α ′. -Aliphatic diisocyanates having aromatic rings such as tetramethylxylylene diisocyanate, aliphatic diisocyanates such as methylene diisocyanate, propylene diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl Methanzi Isocyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination. Among these, in consideration of yellowing, it is preferable not to be an aromatic isocyanate.
 ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。 A chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
 水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン等の脂肪族ジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロピリデンシクロヘキシル-4,4’-ジアミン、1,4-ジアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。 Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, and esters such as neopentyl glycol hydroxypivalate. And glycols such as glycols. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropylidenecyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1, 3-Bisaminomethylcyclohexane Alicyclic diamines, and the like of.
 ウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ウレタン樹脂の構造中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性、密着性に優れており好ましい。 Urethane resin may use a solvent as a medium, but preferably uses water as a medium. In order to disperse or dissolve the urethane resin in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type. In particular, a self-emulsification type in which an ionic group is introduced into the structure of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
 また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。 In addition, examples of the ionic group to be introduced include various groups such as a carboxyl group, a sulfonic acid, a phosphoric acid, a phosphonic acid, a quaternary ammonium salt, and the carboxyl group is preferable.
 ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。 As a method for introducing a carboxyl group into a urethane resin, various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
 例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸等を共重合させることができる。 For example, dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin. Can do.
 またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。 The carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
 かかるポリウレタン樹脂は、塗布後の乾燥工程において中和剤が外れたカルボキシル基を、他の架橋剤による架橋反応点として用いることができる。これにより、塗布前の液の状態での安定性に優れる上、得られる塗布層の耐久性、耐溶剤性、耐水性、耐ブロッキング性等をさらに改善することが可能となる。 In such a polyurethane resin, the carboxyl group from which the neutralizing agent has been removed in the drying step after coating can be used as a crosslinking reaction point by another crosslinking agent. Thereby, it is possible to further improve the durability, solvent resistance, water resistance, blocking resistance, and the like of the obtained coating layer, as well as excellent stability in a liquid state before coating.
 (メタ)アクリロイル基を含有する樹脂とウレタン樹脂との複合樹脂化に関しては、例えば、(メタ)アクリロイル基を含有する樹脂とウレタン樹脂とを水等の溶媒中で混合、攪拌することで製造可能である。 With regard to making a composite resin of a resin containing a (meth) acryloyl group and a urethane resin, for example, it can be produced by mixing and stirring a resin containing a (meth) acryloyl group and a urethane resin in a solvent such as water. It is.
 より具体的には、例えば、ウレタン樹脂に親水基を含有させたタイプであれば、水媒体中にウレタン樹脂を分散あるいは溶解させた状態で、(メタ)アクリロイル基を含有する樹脂単独、あるいは、溶媒で分散あるいは溶解させた(メタ)アクリロイル基を含有する樹脂を混合させ、攪拌することで合成可能である。 More specifically, for example, if the urethane resin is a type containing a hydrophilic group, in a state where the urethane resin is dispersed or dissolved in an aqueous medium, a resin alone containing a (meth) acryloyl group, or It can be synthesized by mixing and stirring a resin containing a (meth) acryloyl group dispersed or dissolved in a solvent.
 (メタ)アクリロイル基を含有する樹脂に親水性基がないか、あるいは少ない場合は疎水的となり、有機溶媒を用いて分散あるいは溶解した状態でウレタン樹脂の分散あるいは溶解体と混合するのが好ましいが、その場合、例えば、減圧することにより、(メタ)アクリロイル基を含有する樹脂を分散あるいは溶解していた有機溶媒を除くことによれば、疎水的な(メタ)アクリロイル基を含有する樹脂がコア、親水的なウレタン樹脂がシェルとなる、コア・シェル構造を有する複合樹脂エマルジョンとすることが可能となる。 When the resin containing a (meth) acryloyl group has no or few hydrophilic groups, it becomes hydrophobic and is preferably mixed with a dispersion or solution of a urethane resin in a state of being dispersed or dissolved using an organic solvent. In that case, for example, by removing the organic solvent in which the resin containing the (meth) acryloyl group is dispersed or dissolved by reducing the pressure, the resin containing the hydrophobic (meth) acryloyl group is the core. It becomes possible to obtain a composite resin emulsion having a core-shell structure in which a hydrophilic urethane resin becomes a shell.
 コア・シェル構造とすることで、液の安定化が付与され、さらに、他成分との混合でも安定的に存在しうることとなり、幅広く使用することができるため、より好ましい。 The core-shell structure is more preferable because it provides liquid stabilization and can be stably present even when mixed with other components and can be used widely.
 また、上記例の方法によれば、コアとシェルは結合していないので、塗布後、乾燥による溶媒除去でエマルションが壊れたときに、コアとシェルは別々に自由に動くことが可能となり、コア部分にある(メタ)アクリロイル基が塗布層の表面に出ることもでき、塗布層上に形成されうる各種の機能層との密着性向上に有利なものとなりうる。 Also, according to the method of the above example, since the core and the shell are not bonded, when the emulsion is broken by solvent removal by drying after coating, the core and the shell can move freely separately. The (meth) acryloyl group in the portion can also appear on the surface of the coating layer, which can be advantageous for improving the adhesion with various functional layers that can be formed on the coating layer.
 複合樹脂中の(メタ)アクリロイル基の割合は、通常1~50重量%、好ましくは3~30重量%、より好ましくは5~25重量%、さらに好ましくは8~20重量%の範囲である。上記範囲で使用することで、塗布層の上に形成される各種の機能層との密着性を向上させられる。 The proportion of (meth) acryloyl groups in the composite resin is usually in the range of 1 to 50% by weight, preferably 3 to 30% by weight, more preferably 5 to 25% by weight, and still more preferably 8 to 20% by weight. By using in the said range, adhesiveness with the various functional layers formed on a coating layer can be improved.
 (メタ)アクリロイル基を含有する樹脂:ウレタン樹脂の重量比は、通常1~5:1~5、好ましくは1~3:1~3、さらに好ましくは1~2:1~2の範囲である。上記範囲で使用することで、塗布層の上に形成される各種の機能層との密着性や基材であるポリエステルフィルムとの密着性を向上させられる。また、複合樹脂として、コア・シェル構造を形成するのであれば、上記の範囲での使用が合成上も好ましい。 The weight ratio of (meth) acryloyl group-containing resin: urethane resin is usually in the range of 1 to 5: 1 to 5, preferably 1 to 3: 1 to 3, more preferably 1 to 2: 1 to 2. . By using in the said range, adhesiveness with the various functional layers formed on a coating layer and the adhesiveness with the polyester film which is a base material can be improved. Moreover, if a core-shell structure is formed as a composite resin, the use within the above range is preferable from the viewpoint of synthesis.
 塗布層の形成に使用される架橋剤は、密着性向上や、塗膜強度向上のために用いられる。 The cross-linking agent used for forming the coating layer is used for improving adhesion and coating strength.
 架橋剤の具体例としては、例えば、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物、エポキシ化合物、メラミン化合物、シランカップリング化合物、ヒドラジド化合物、アジリジン化合物等が挙げられる。上記の中でも密着性が向上するという観点から、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物、エポキシ化合物、メラミン化合物の使用が好ましく、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物がより好ましく、カルボジイミド系化合物がさらに好ましい。 Specific examples of the crosslinking agent include carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds, melamine compounds, silane coupling compounds, hydrazide compounds, aziridine compounds, and the like. Among these, from the viewpoint of improving adhesion, carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds, and melamine compounds are preferred, carbodiimide compounds, isocyanate compounds, and oxazoline compounds are more preferred, and carbodiimide compounds. Is more preferable.
 また、塗布層の形成には、塗布外観、透明性、密着性の向上等のため、架橋剤を2種類以上併用することも可能である。架橋剤を2種類以上併用する場合は、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物、エポキシ化合物、メラミン化合物より選ばれる架橋剤を併用することが好ましく、2種類以上のうちの1種をカルボジイミド系化合物とする場合や、イソシアネート系化合物とオキサゾリン化合物、イソシアネート系化合物とエポキシ化合物、オキサゾリン化合物とエポキシ化合物を併用することがより好ましく、2種類以上のうちの1種をカルボジイミド系化合物とする場合や、イソシアネート系化合物とオキサゾリン化合物、オキサゾリン化合物とエポキシ化合物を併用することがさらに好ましい。 Also, in forming the coating layer, two or more kinds of crosslinking agents can be used in combination for improving the coating appearance, transparency and adhesion. When two or more types of crosslinking agents are used in combination, a crosslinking agent selected from carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds and melamine compounds is preferably used in combination, and one of the two or more types is a carbodiimide type. In the case of a compound, it is more preferable to use an isocyanate compound and an oxazoline compound, an isocyanate compound and an epoxy compound, an oxazoline compound and an epoxy compound, and a case where one of two or more types is a carbodiimide compound, More preferably, an isocyanate compound and an oxazoline compound, or an oxazoline compound and an epoxy compound are used in combination.
 カルボジイミド系化合物とは、カルボジイミド構造を有する化合物のことであり、分子内にカルボジイミド構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上のカルボジイミド構造を有するポリカルボジイミド系化合物がより好ましい。 A carbodiimide-based compound is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule. For better adhesion, etc., two or more carbodiimide structures are included in the molecule. More preferred are polycarbodiimide compounds having
 カルボジイミド系化合物は従来公知の技術で合成することができ、一般的にはジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。 The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
 さらに本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上するために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。 Furthermore, in order not to lose the effect of the present invention, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound, adding a surfactant, polyalkylene oxide, quaternary ammonium salt of dialkylamino alcohol, You may add and use hydrophilic monomers, such as a hydroxyalkyl sulfonate.
 カルボジイミド系化合物に含有されるカルボジイミド基の含有量は、カルボジイミド当量(カルボジイミド基1molを与えるためのカルボジイミド化合物の重さ[g])で、通常100~1000、好ましくは250~800、より好ましくは300~700、さらに好ましくは350~650の範囲である。上記範囲内で使用することにより、各種の機能層への密着性が向上する。 The content of the carbodiimide group contained in the carbodiimide-based compound is a carbodiimide equivalent (weight of the carbodiimide compound to give 1 mol of carbodiimide group [g]), and is usually 100 to 1000, preferably 250 to 800, more preferably 300. It is in the range of -700, more preferably in the range of 350-650. By using it within the above range, adhesion to various functional layers is improved.
 イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 The isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
 ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ε-caprolactam and δ-valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
 また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。 In addition, the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
 オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。 The oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
 付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。 Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
 他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 The other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide (As the alkyl group, unsaturated amides such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); Vinyl esters such as vinyl and vinyl propionate; Vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; Halogen-containing α, β-unsaturated such as vinyl chloride, vinylidene chloride and vinyl fluoride Monomers: α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene can be used, and one or more of these monomers can be used.
 オキサゾリン化合物に含有されるオキサゾリン基の含有量は、オキサゾリン基量で、通常0.5~10mmol/g、好ましくは1~9mmol/g、より好ましくは3~8mmol/g、さらに好ましくは4~6mmol/gの範囲である。上記範囲での使用が、各種の機能層への密着性が向上し好ましい。 The content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, still more preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use within the above range is preferable because adhesion to various functional layers is improved.
 エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。 The epoxy compound is a compound having an epoxy group in the molecule, and examples thereof include condensates of epichlorohydrin with ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and the like hydroxyl groups and amino groups, There are polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N′-tetraglycidyl-m-xylyl. Examples include range amine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
 メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 The melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolized melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and these Mixtures can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
 なお、これら架橋剤は、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。 These cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
 塗布層形成には、塗布外観、透明性、密着性等の向上のために、上述した以外の各種のポリマーを併用することが好ましい。 In forming the coating layer, it is preferable to use various polymers other than those described above in combination in order to improve the coating appearance, transparency, adhesion and the like.
 ポリマーの具体例としては、(メタ)アクリロイル基を含有する樹脂を含まないポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ポリビニル(ポリビニルアルコール、ポリ塩化ビニル、塩化ビニル酢酸ビニル共重合体等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。 Specific examples of polymers include polyurethane resins not containing (meth) acryloyl group-containing resins, polyester resins, acrylic resins, polyvinyls (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymers, etc.), polyalkylene glycols , Polyalkyleneimine, methylcellulose, hydroxycellulose, starches and the like.
 また、滑り性やブロッキングを改良するために、塗布層の形成に粒子を併用することが好ましい。粒子の平均粒径はフィルムの透明性の観点から、好ましくは0.001μm~1.0μm、より好ましくは0.005μm~0.5μm、さらに好ましくは0.01μm~0.2μmの範囲である。 Also, in order to improve slipperiness and blocking, it is preferable to use particles in combination with the formation of the coating layer. The average particle diameter of the particles is preferably in the range of 0.001 μm to 1.0 μm, more preferably 0.005 μm to 0.5 μm, and still more preferably 0.01 μm to 0.2 μm, from the viewpoint of film transparency.
 使用する粒子としては、例えば、シリカ、アルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等を挙げることができる。特に、塗布層への分散性や得られる塗膜の透明性の観点からは、シリカ粒子が好適である。 Examples of the particles to be used include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles. In particular, silica particles are preferred from the viewpoint of dispersibility in the coating layer and transparency of the resulting coating film.
 さらに本発明の主旨を損なわない範囲において、塗布層の形成には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等を併用してもよい。 Further, in the range not impairing the gist of the present invention, an antifoaming agent, a coating property improver, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, and an antioxidant are formed as necessary for forming the coating layer. , Foaming agents, dyes, pigments and the like may be used in combination.
 塗布層を形成する塗布液中の全不揮発成分に対する割合として、(メタ)アクリロイル基を含有する樹脂およびウレタン樹脂からなる複合樹脂は、通常10~90重量%、好ましくは15~85重量%、より好ましくは20~80重量%の範囲である。上記範囲を外れる場合は、塗布層の上に設ける機能層によっては密着性が十分ではない場合がある。 As a ratio with respect to the total nonvolatile components in the coating solution for forming the coating layer, the composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin is usually 10 to 90% by weight, preferably 15 to 85% by weight, more The range is preferably 20 to 80% by weight. When it is out of the above range, the adhesion may not be sufficient depending on the functional layer provided on the coating layer.
 塗布層を形成する塗布液中の全不揮発成分に対する割合として、架橋剤は、通常5~85重量%、好ましくは10~80重量%、より好ましくは15~75重量%の範囲である。上記範囲を外れる場合は、塗布層の上に設ける機能層によっては密着性が十分ではない場合や塗布層の強度や耐久性が十分ではない場合がある。 As a ratio with respect to the total nonvolatile components in the coating liquid for forming the coating layer, the crosslinking agent is usually in the range of 5 to 85% by weight, preferably 10 to 80% by weight, more preferably 15 to 75% by weight. When it is outside the above range, depending on the functional layer provided on the coating layer, the adhesion may not be sufficient, or the strength and durability of the coating layer may not be sufficient.
 塗布層を形成する塗布液中の全不揮発成分に対する割合として、粒子は、粒径やフィルムの特性によっても滑り性やブロッキング特性は変化するので一概には言えないが、好ましくは25重量%以下、より好ましくは1~15重量%、さらに好ましくは3~10%重量の範囲であることが好ましい。25%を超える場合は塗布層の透明性が低下する場合や密着性が低下する場合がある。 As a ratio with respect to all the non-volatile components in the coating solution for forming the coating layer, the particles cannot be unequivocally changed depending on the particle size and the film characteristics, so that the slipping property and the blocking characteristics cannot be generally stated, but preferably 25% by weight or less, More preferably, it is in the range of 1 to 15% by weight, still more preferably 3 to 10% by weight. When it exceeds 25%, the transparency of the coating layer may be lowered or the adhesion may be lowered.
 本発明の塗布フィルムにおいて、上述した塗布層を設けた面と反対側の面にも塗布層を設けることも可能である。反対側の面は用途に応じた塗布層にすることができ、その構成成分としては、従来公知のものを使用することができる。例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等のポリマー、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物、エポキシ化合物、メラミン化合物等の架橋剤等が挙げられ、これらの材料を単独で用いてもよいし、複数種を併用して用いてもよい。また、上述したような(メタ)アクリロイル基を含有する樹脂およびウレタン樹脂からなる複合樹脂、および架橋剤を含有する塗布液から形成された塗布層(フィルムの両面に同一の塗布層)であってもよい。 In the coated film of the present invention, it is also possible to provide a coating layer on the surface opposite to the surface on which the coating layer is provided. The opposite surface can be a coating layer according to the application, and conventionally known components can be used as its constituent components. Examples thereof include polymers such as polyester resins, acrylic resins, urethane resins, carbodiimide compounds, isocyanate compounds, oxazoline compounds, epoxy compounds, melamine compounds, and the like, and these materials may be used alone. A plurality of types may be used in combination. Moreover, it is a coating layer (the same coating layer on both sides of the film) formed from a coating resin containing a composite resin composed of a resin and a urethane resin containing a (meth) acryloyl group as described above, and a crosslinking agent. Also good.
 塗布層中の成分の分析は、例えば、TOF-SIMS、ESCA、蛍光X線等の分析によって行うことができる。 The analysis of the components in the coating layer can be performed, for example, by analysis of TOF-SIMS, ESCA, fluorescent X-rays and the like.
 インラインコーティングによって塗布層を設ける場合は、上述の一連の化合物を水溶液または水分散体として、固形分濃度が0.1~50重量%程度を目安に調整した塗布液をフィルム上に塗布する要領にて塗布フィルムを製造するのが好ましい。また、本発明の主旨を損なわない範囲において、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。 When the coating layer is provided by in-line coating, the above-mentioned series of compounds is used as an aqueous solution or aqueous dispersion, and the coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight as a guide is applied on the film. It is preferable to produce a coated film. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
 塗布層の膜厚は、好ましくは0.002~1μm、より好ましくは0.005~0.5μm、さらに好ましくは0.005~0.3μm、特に好ましくは0.01~0.2μmの範囲である。膜厚が上記範囲より外れる場合は、密着性、塗布外観、ブロッキング特性が悪化する場合がある。 The thickness of the coating layer is preferably in the range of 0.002 to 1 μm, more preferably 0.005 to 0.5 μm, still more preferably 0.005 to 0.3 μm, and particularly preferably 0.01 to 0.2 μm. is there. When the film thickness is out of the above range, adhesion, coating appearance, and blocking characteristics may be deteriorated.
 塗布層を設ける方法はリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。 As a method of providing the coating layer, a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, or the like can be used.
 フィルム上に塗布層を形成する際の乾燥および硬化条件に関しては特に限定されるわけではなく、例えば、オフラインコーティングにより塗布層を設ける場合、通常、80~200℃で3~40秒間、好ましくは100~180℃で3~40秒間を目安として熱処理を行うのが良い。 The drying and curing conditions for forming the coating layer on the film are not particularly limited. For example, when the coating layer is provided by off-line coating, it is usually at 80 to 200 ° C. for 3 to 40 seconds, preferably 100. Heat treatment is preferably performed at about 180 ° C. for 3 to 40 seconds as a guide.
 一方、インラインコーティングにより塗布層を設ける場合、通常、70~280℃で3~200秒間を目安として熱処理を行うのが良い。 On the other hand, when the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
 また、オフラインコーティングあるいはインラインコーティングに係わらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。また、フィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。 In addition, regardless of off-line coating or in-line coating, heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination as necessary. The film may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
 本発明の塗布フィルムの塗布層上には、各種の機能層を設ける用途が一般的であり、機能層の中でも、通常、無溶剤型であるがゆえに、密着性を確保するのが難しい例えばプリズム層やマイクロレンズ層などの光学的機能層を設けることができることが特徴である。特に、輝度向上のために、光学的機能層の屈折率を高くすることが広く行われているが、そのために用いる樹脂は密着性を確保しにくいので、そのような分野においては本発明の塗布フィルムは好適である。 The application layer of the coating film of the present invention is generally provided with various functional layers. Among the functional layers, it is usually a solvent-free type, so it is difficult to ensure adhesion, for example, a prism. An optical functional layer such as a layer or a microlens layer can be provided. In particular, in order to improve luminance, it is widely practiced to increase the refractive index of the optical functional layer. However, since the resin used for this purpose is difficult to ensure adhesion, the application of the present invention in such a field is difficult. A film is preferred.
 プリズム層の形状としては、例えば、厚さ10~500μm、プリズム列のピッチ10~500μm、頂角40°~100°の断面三角形状のものが挙げられる。マイクロレンズ層の形状としては、例えば、厚さ10~500μm、直径10~500μmの半球状のものが挙げられるが、円錐、多角錘のような形状をしていても良い。 Examples of the shape of the prism layer include those having a triangular section with a thickness of 10 to 500 μm, a pitch of prism rows of 10 to 500 μm, and an apex angle of 40 ° to 100 °. Examples of the shape of the microlens layer include a hemispherical shape having a thickness of 10 to 500 μm and a diameter of 10 to 500 μm, but it may be shaped like a cone or a polygonal pyramid.
 光学的機能層は、一般的には無溶剤型(溶剤の含有量が通常5重量%以下、好ましくは3重量%以下、さらに好ましくは溶剤を含有しない)の活性エネルギー線硬化性化合物から形成される。 The optical functional layer is generally formed from an active energy ray-curable compound of a solventless type (a solvent content is usually 5% by weight or less, preferably 3% by weight or less, and more preferably contains no solvent). The
 光学的機能層を形成する化合物としては、活性エネルギー線硬化性の(メタ)アクリレートを含む組成物が一般的に用いられており、例えば、公知の活性エネルギー線硬化性の単官能(メタ)アクリレート、二官能(メタ)アクリレート、多官能(メタ)アクリレートを一種類以上混合したもの、あるいはこれら以外に本実施形態の目的を損なわない範囲において、その他の成分をさらに添加したものを用いることができる。 As the compound for forming the optical functional layer, a composition containing an active energy ray-curable (meth) acrylate is generally used. For example, a known active energy ray-curable monofunctional (meth) acrylate is used. , Bifunctional (meth) acrylate, a mixture of one or more polyfunctional (meth) acrylates, or a mixture in which other components are further added, as long as the object of the present embodiment is not impaired. .
 活性エネルギー線硬化性の単官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばメチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等ヒドロキシアルキル(メタ)アクリレート、メトキシエチル(メタ)アクリート、エトキシエチル(メタ)アクリレート、メトキシプロピル(メタ)アクリレート、エトキシプロピル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族(メタ)アクリレート、ジアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリール(メタ)アクリレート、フェニルフェノールエチレンオキサイド変性(メタ)アクリレート等のエチレンオキサイド変性(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(メタ)アクリル酸等が挙げられる。 The active energy ray-curable monofunctional (meth) acrylate is not particularly limited. For example, methyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, alkyl (meth) acrylate such as isobornyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, etc. Alkyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, ethoxypropyl (meth) acrylate, etc. Aromatic (meth) acrylates such as alkoxyalkyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, amino group-containing (meth) such as diaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate Ethylene oxide modified (meth) acrylates such as acrylate, methoxyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenylphenol ethylene oxide modified (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) Examples include acrylate and (meth) acrylic acid.
 活性エネルギー線硬化性の二官能(メタ)アクリレートとしては、特に限定されるものではないが、例えば1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールFエチレンオキサイド変性ジ(メタ)アクリレート等のビスフェノール変性ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ウレタンジ(メタ)アクリレート、エポキシジ(メタ)アクリレート等が挙げられる。 The active energy ray-curable difunctional (meth) acrylate is not particularly limited, but for example, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, alkanediol di (meth) acrylate such as tricyclodecane dimethylol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate Bisphenol-modified di (meth) acrylate such as bisphenol F ethylene oxide-modified di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, urethane di (meth) acrylate DOO, epoxy di (meth) acrylate.
 活性エネルギー線硬化性の多官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ε-カプロラクトン変性トリス(アクロキシエチル)イソシアヌレート等のイソシアヌル酸変性トリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタンアクリレート等が挙げられる。 The active energy ray-curable polyfunctional (meth) acrylate is not particularly limited, and examples thereof include dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra (meth) acrylate. , Isocyanuric acid modified tri (meth) such as pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, isocyanuric acid ethylene oxide modified tri (meth) acrylate, ε-caprolactone modified tris (acryloxyethyl) isocyanurate Acrylate, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate Tan prepolymers, urethane acrylates such as dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, and the like.
 上記の化合物例に加えて、高輝度化するためには、光学的機能層の屈折率を高くする必要があり、そのために光学的機能層の形成に用いる化合物は屈折率が高い材料を使用することが好ましい。 In addition to the above compound examples, in order to increase the luminance, it is necessary to increase the refractive index of the optical functional layer. For this reason, the compound used for forming the optical functional layer uses a material having a high refractive index. It is preferable.
 高輝度化のための光学的機能層の屈折率としては、1.57以上であることが好ましい。本発明の塗布フィルムにおいては、屈折率は高い方が、輝度が向上する傾向にある。本発明においてより好適に用いられるポリエステルフィルムの屈折率は1.65付近であり、それゆえ、光学的機能層等の活性エネルギー線硬化性樹脂層の屈折率の範囲は、通常1.57~1.65、好ましくは1.58~1.64、さらに好ましくは1.59~1.63の範囲である。上記範囲にすることで、輝度を高くすることができる。 The refractive index of the optical functional layer for increasing the brightness is preferably 1.57 or more. In the coated film of the present invention, the higher the refractive index, the more the luminance tends to improve. The refractive index of the polyester film more preferably used in the present invention is around 1.65. Therefore, the refractive index range of the active energy ray-curable resin layer such as an optical functional layer is usually 1.57 to 1. .65, preferably 1.58 to 1.64, more preferably 1.59 to 1.63. By setting it within the above range, the luminance can be increased.
 屈折率を前記の範囲にするためには、上述した一般的な化合物に加え、芳香族構造を多く有する化合物、硫黄原子、ハロゲン原子、金属化合物を使用する方法が挙げられる。その中でも特に、光学的機能層の屈折率が均一化でき、環境上の観点から、芳香族構造を多く有する化合物や硫黄原子を用いる方法が好ましい。 In order to set the refractive index within the above range, a method using a compound having a large aromatic structure, a sulfur atom, a halogen atom, or a metal compound in addition to the above-described general compound can be mentioned. Among them, the method using a compound having a large aromatic structure or a sulfur atom is particularly preferable from the viewpoint of the environment because the refractive index of the optical functional layer can be made uniform.
 芳香族構造を多く有する化合物としては、例えば、ナフタレン、アントラセン、フェナントレン、ナフタセン、ベンゾ[a]アントラセン、ベンゾ[a]フェナントレン、ピレン、ベンゾ[c]フェナントレン、ペリレン等の縮合多環式芳香族構造を有する化合物、ビフェニル構造を有する化合物、フルオレン構造を有する化合物等が挙げられる。 Examples of the compound having a large aromatic structure include condensed polycyclic aromatic structures such as naphthalene, anthracene, phenanthrene, naphthacene, benzo [a] anthracene, benzo [a] phenanthrene, pyrene, benzo [c] phenanthrene, and perylene. , A compound having a biphenyl structure, a compound having a fluorene structure, and the like.
 縮合多環式芳香族構造、ビフェニル構造、フルオレン構造には各種の置換基が導入されていてもよく、特にフェニル基等、ベンゼン環を含有する置換基が導入されているものは屈折率をより高くすることができるため好ましい。また、硫黄原子やハロゲン原子等、屈折率を高くする原子を導入することも可能である。さらに、塗布層との密着性を向上させるために、エステル基、アミド基、水酸基、アミノ基、エーテル基等、各種の官能基を導入することも可能である(以下、これらを特定構造と略記する)。 Various substituents may be introduced into the condensed polycyclic aromatic structure, biphenyl structure, and fluorene structure. Particularly, those having a benzene ring-containing substituent such as a phenyl group have a higher refractive index. Since it can be made high, it is preferable. It is also possible to introduce atoms that increase the refractive index, such as sulfur atoms and halogen atoms. Furthermore, in order to improve the adhesion to the coating layer, various functional groups such as an ester group, an amide group, a hydroxyl group, an amino group, and an ether group can be introduced (hereinafter, these are abbreviated as a specific structure). To do).
 上記の特定構造の活性エネルギー線硬化性樹脂層中の含有量は、一概には言えないが、通常20~80重量%、好ましくは25~70重量%、さらに好ましくは30~60重量%の範囲である。上記範囲で使用することにより、輝度が高い硬化性樹脂層(光学的機能層)を形成することが可能である。 The content in the active energy ray-curable resin layer having the above specific structure cannot be generally specified, but is usually in the range of 20 to 80% by weight, preferably 25 to 70% by weight, more preferably 30 to 60% by weight. It is. By using in the above range, it is possible to form a curable resin layer (optical functional layer) having high luminance.
 また、上記の特定構造を含む化合物の活性エネルギー線硬化性樹脂層中の含有量は、通常10重量~95重量%、好ましくは20~90重量%、さらに好ましくは25~80重量%の範囲である。上記範囲で使用することにより、輝度が高い硬化性樹脂層(光学的機能層)を形成することが可能である。 In addition, the content of the compound having the specific structure in the active energy ray-curable resin layer is usually in the range of 10 to 95% by weight, preferably 20 to 90% by weight, more preferably 25 to 80% by weight. is there. By using in the above range, it is possible to form a curable resin layer (optical functional layer) having high luminance.
 機能層における、その他の成分は特に限定されるものではない。例えば、無機又は有機の微粒子、重合開始剤、重合禁止剤、酸化防止剤、帯電防止剤、分散剤、界面活性剤、光安定剤及びレベリング剤等が挙げられる。また、ウェットコーティング法において成膜後乾燥させる場合には、任意の量の溶媒を添加することができる。 Other components in the functional layer are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents. In addition, when the film is dried after film formation in the wet coating method, an arbitrary amount of solvent can be added.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. The measurement method and evaluation method used in the present invention are as follows.
(1)ポリエステルの極限粘度の測定方法:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measuring method of intrinsic viscosity of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)平均粒径の測定方法:
 TEM(株式会社日立ハイテクノロジーズ製 H-7650、加速電圧100V)を使用して塗布層を観察し、粒子10個の粒径の平均値を平均粒径とした。
(2) Measuring method of average particle diameter:
The coating layer was observed using TEM (H-7650 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 100 V), and the average value of the particle diameters of 10 particles was defined as the average particle diameter.
(3)複合樹脂中の(メタ)アクリロイル基の含有量:
 複合樹脂を減圧乾燥後、NMR(Bruker Biospin社製 AVANCEIII600)を用いて、Hと13Cの各ピークを帰属し、計算により求めた。
(3) Content of (meth) acryloyl group in composite resin:
After drying the composite resin under reduced pressure, each peak of 1 H and 13 C was assigned and determined by calculation using NMR (AVANCE III600 manufactured by Bruker Biospin).
(4)塗布層の膜厚測定方法:
 塗布層の表面をRuOで染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuOで染色し、塗布層断面をTEM(株式会社日立ハイテクノロジーズ製 H-7650、加速電圧100V)を用いて測定し、10箇所の平均値を塗布層の膜厚とした。
(4) Method for measuring the thickness of the coating layer:
The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by the ultrathin section method was stained with RuO 4 , and the cross section of the coating layer was measured using TEM (H-7650 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 100 V), and the average value at 10 positions was applied. It was set as the film thickness of the layer.
(5)密着性の評価方法:
 プリズム層形成のために、ピッチ50μm、頂角65°のプリズム列が多数並列している型部材に、2-ビフェノキシエチルアクリレート30重量部、4,4'-(9-フルオレニリデン)ビス(2-フェノキシエチルアクリレート)18重量部、エチレングリコール変性ビスフェノールAアクリレート(エチレングリコール鎖=8)44重量部、トリメチロールプロパントリアクリレート5重量部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド3重量部からなる樹脂組成物を配置し、その上から塗布層が樹脂組成物と接触する向きに塗布フィルムを重ね、ローラーにより樹脂組成物を均一に引き伸ばし、紫外線照射装置から紫外線を照射し、樹脂組成ぶつを硬化させた。次いで、塗布フィルムを型部材から剥がし、プリズム層(屈折率1.59)が形成された塗布フィルムを得た。得られた塗布フィルムのプリズム層が形成された面を沸騰水に一時間含浸させた後、プリズム層に10×10のクロスカットをして、その上に18mm幅のテープ(ニチバン株式会社製セロテープ(登録商標)CT-18)を貼り付け、180度の剥離角度で急激にはがした後の剥離面を観察し、剥離面積が5%未満ならばA、5%以上20%未満ならB、20%以上50%未満ならC、50%以上ならばDとした(密着性1)。同様の方法で、2-ビフェノキシエチルアクリレート20重量部、4,4’-(9-フルオレニリデン)ビス(2-フェノキシエチルアクリレート)27重量部、エチレングリコール変性ビスフェノールAアクリレート(エチレングリコール鎖=8)50重量部、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド3重量部からなる組成物(プリズム層の屈折率1.60)の密着性を評価した(密着性2)。
(5) Evaluation method of adhesion:
In order to form a prism layer, a mold member in which a large number of prism rows having a pitch of 50 μm and an apex angle of 65 ° are arranged side by side, 30 parts by weight of 2-biphenoxyethyl acrylate, 4,4 ′-(9-fluorenylidene) bis (2 -Phenoxyethyl acrylate) 18 parts by weight, ethylene glycol modified bisphenol A acrylate (ethylene glycol chain = 8) 44 parts by weight, trimethylolpropane triacrylate 5 parts by weight, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide 3 parts by weight The resin composition consisting of the parts is placed, the coating film is stacked in such a direction that the coating layer comes into contact with the resin composition, the resin composition is uniformly stretched by a roller, and irradiated with ultraviolet rays from an ultraviolet irradiation device, the resin composition The bump was cured. Subsequently, the coating film was peeled off from the mold member to obtain a coating film on which a prism layer (refractive index 1.59) was formed. After impregnating the surface of the obtained coated film on which the prism layer was formed with boiling water for 1 hour, the prism layer was subjected to 10 × 10 cross-cutting, and then a 18 mm wide tape (cello tape manufactured by Nichiban Co., Ltd.) (Registered trademark) CT-18) is attached, and the peeled surface is observed after abrupt peeling at a 180 degree peel angle. A if the peel area is less than 5%, A if the peel area is less than 5%, and B if less than 20%. If it is 20% or more and less than 50%, it is C, and if it is 50% or more, it is D (adhesion 1). In the same manner, 2-biphenoxyethyl acrylate 20 parts by weight, 4,4 ′-(9-fluorenylidene) bis (2-phenoxyethyl acrylate) 27 parts by weight, ethylene glycol-modified bisphenol A acrylate (ethylene glycol chain = 8) Adhesion of a composition (prism layer refractive index 1.60) comprising 50 parts by weight and 3 parts by weight of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide was evaluated (adhesion 2).
 実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
 テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63のポリエステル(A)を得た。
The polyester used in the examples and comparative examples was prepared as follows.
<Method for producing polyester (A)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the resulting polyester, and 100 ppm of magnesium acetate tetrahydrate with respect to the resulting polyester as the catalyst at 260 ° C. in a nitrogen atmosphere at 260 ° C. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to 0.3 kPa in absolute pressure, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.
<ポリエステル(B)の製造方法>
 テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64のポリエステル(B)を得た。
<Method for producing polyester (B)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and magnesium acetate tetrahydrate as a catalyst were subjected to an esterification reaction at 225 ° C. in a nitrogen atmosphere at 900 ppm with respect to the produced polyester. Subsequently, 3500 ppm of orthophosphoric acid was added to the produced polyester, and 70 ppm of germanium dioxide was added to the produced polyester. The temperature was raised to 280 ° C. over 2 hours and 30 minutes, and the pressure was reduced to an absolute pressure of 0.4 kPa. After 85 minutes of melt polycondensation, polyester (B) having an intrinsic viscosity of 0.64 was obtained.
<ポリエステル(C)の製造方法>
 ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(C)を得た。
<Method for producing polyester (C)>
In the production method of polyester (A), polyester (C) is obtained using the same method as the production method of polyester (A), except that 0.3 part by weight of silica particles having an average particle diameter of 2 μm is added before melt polymerization. It was.
 塗布層を構成する化合物例は以下のとおりである。
(化合物例)
・アクリロイル基を含有する樹脂およびウレタン樹脂からなる複合樹脂:(I)
 アクリロイル基を導入したクレゾールノボラック型エポキシ樹脂(アクリロイル基:クレゾールノボラック型エポキシ樹脂単量体=1:1.1(mol%))およびイソホロンジイソシアネート:テレフタル酸:イソフタル酸:エチレングリコール:ジエチレングリコール:ジメチロールプロパン酸=12:19:18:21:25:5(mol%)から形成されるポリエステル系ウレタン樹脂を固形分重量比で1.0:1.0で混合分散させてコア・シェル構造(コアにアクリロイル基を含有する樹脂、シェルにウレタン樹脂)とした水分散複合樹脂(アクリロイル基の複合樹脂に対する重量比率:14重量%(固形分比率))。
Examples of compounds constituting the coating layer are as follows.
(Example compounds)
-Composite resin consisting of resin containing acryloyl group and urethane resin: (I)
Cresol novolak type epoxy resin (acryloyl group: cresol novolak type epoxy resin monomer = 1: 1.1 (mol%)) and isophorone diisocyanate: terephthalic acid: isophthalic acid: ethylene glycol: diethylene glycol: dimethylol introduced with acryloyl group Polyester urethane resin formed from propanoic acid = 12: 19: 18: 21: 25: 5 (mol%) is mixed and dispersed at a solid content weight ratio of 1.0: 1.0 to form a core-shell structure (core A water-dispersed composite resin (a weight ratio of the acryloyl group to the composite resin: 14% by weight (solid content ratio)).
・カルボジイミド系化合物:(IIA)
 カルボジイミド系化合物 カルボジライト(カルボジイミド当量:430)(日清紡株式会社製)
・ Carbodiimide compounds: (IIA)
Carbodiimide compound Carbodilite (carbodiimide equivalent: 430) (Nisshinbo Co., Ltd.)
・カルボジイミド系化合物:(IIB)
 カルボジイミド系化合物 カルボジライト(カルボジイミド当量:600)(日清紡株式会社製)
・ Carbodiimide compounds: (IIB)
Carbodiimide compound Carbodilite (carbodiimide equivalent: 600) (Nisshinbo Co., Ltd.)
・カルボジイミド系化合物:(IIC)
 カルボジイミド系化合物 カルボジライト(カルボジイミド当量:380)(日清紡株式会社製)
・ Carbodiimide compounds: (IIC)
Carbodiimide compound Carbodilite (carbodiimide equivalent: 380) (Nisshinbo Co., Ltd.)
・イソシアネート系化合物:(IID)
 ヘキサメチレンジイソシアネート1000部を60℃で攪拌し、触媒としてテトラメチルアンモニウム・カプリエート0.1部を加えた。4時間後、リン酸0.2部を添加して反応を停止させ、イソシアヌレート型ポリイソシアネート組成物を得た。得られたイソシアヌレート型ポリイソシアネート組成物100部、数平均分子量400のメトキシポリエチレングリコール42.3部、プロピレングリコールモノメチルエーテルアセテート29.5部を仕込み、80℃で7時間保持した。その後反応液温度を60℃に保持し、イソブタノイル酢酸メチル35.8部、マロン酸ジエチル32.2部、ナトリウムメトキシドの28%メタノール溶液0.88部を添加し、4時間保持した。n-ブタノール58.9部を添加し、反応液温度80℃で2時間保持し、その後、2-エチルヘキシルアシッドホスフェート0.86部を添加して得られたブロックポリイソシアネート。
・ Isocyanate compounds: (IID)
1000 parts of hexamethylene diisocyanate was stirred at 60 ° C., and 0.1 part of tetramethylammonium capryate was added as a catalyst. After 4 hours, 0.2 part of phosphoric acid was added to stop the reaction, and an isocyanurate type polyisocyanate composition was obtained. 100 parts of the obtained isocyanurate type polyisocyanate composition, 42.3 parts of methoxypolyethylene glycol having a number average molecular weight of 400, and 29.5 parts of propylene glycol monomethyl ether acetate were charged and maintained at 80 ° C. for 7 hours. Thereafter, the reaction solution temperature was kept at 60 ° C., 35.8 parts of methyl isobutanoyl acetate, 32.2 parts of diethyl malonate, and 0.88 part of 28% methanol solution of sodium methoxide were added and kept for 4 hours. Block polyisocyanate obtained by adding 58.9 parts of n-butanol and maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 part of 2-ethylhexyl acid phosphate.
・オキサゾリン化合物:(IIE)
 オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー エポクロス(オキサゾリン基量=4.5mmol/g、株式会社日本触媒製))
・エポキシ化合物:(IIF)
 ポリグリセロールポリグリシジルエーテル。
・メラミン化合物:(IIG)
 ヘキサメトキシメチロールメラミン。
・ Oxazoline compounds: (IIE)
Acrylic polymer Epocross having oxazoline group and polyalkylene oxide chain (oxazoline group amount = 4.5 mmol / g, manufactured by Nippon Shokubai Co., Ltd.))
・ Epoxy compounds: (IIF)
Polyglycerol polyglycidyl ether.
・ Melamine compounds: (IIG)
Hexamethoxymethylol melamine.
・ウレタン樹脂:(IIIA)
 イソホロンジイソシアネート:テレフタル酸:イソフタル酸:エチレングリコール:ジエチレングリコール:ジメチロールプロパン酸=12:19:18:21:25:5(mol%)から形成されるポリエステル系ウレタン樹脂の水分散体。
-Urethane resin: (IIIA)
An aqueous dispersion of a polyester-based urethane resin formed from isophorone diisocyanate: terephthalic acid: isophthalic acid: ethylene glycol: diethylene glycol: dimethylolpropanoic acid = 12: 19: 18: 21: 25: 5 (mol%).
・ポリエステル樹脂:(IIIB)
 下記組成で共重合したポリエステル樹脂の水分散体
 モノマー組成:(酸成分)テレフタル酸:イソフタル酸:5-ソジウムスルホイソフタル酸/(ジオール成分)エチレングリコール:1,4-ブタンジオール:ジエチレングリコール=56:40:4/70:20:10(mol%)。
・ Polyester resin: (IIIB)
Aqueous dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) terephthalic acid: isophthalic acid: 5-sodium sulfoisophthalic acid / (diol component) ethylene glycol: 1,4-butanediol: diethylene glycol = 56 : 40: 4/70: 20: 10 (mol%).
・粒子:(IV)
 平均粒径0.07μmのシリカゾル
・ Particles: (IV)
Silica sol with an average particle size of 0.07 μm
実施例1:
 ポリエステル(A)、(B)、(C)をそれぞれ89%、5%、6%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ95%、5%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1:38:1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、この縦延伸フィルムの両面に、下記表1に示す塗布液1を塗布し、テンターに導き、横方向に120℃で4.0倍延伸し、225℃で熱処理を行った後、横方向に2%弛緩し、塗布層の膜厚(乾燥後)が0.02μmの塗布層を有する厚さ250μmの塗布フィルムを得た。得られた塗布フィルムを評価したところ、プリズム層との密着性は良好であった。この塗布フィルムの特性を下記表2に示す。
Example 1:
A mixed raw material in which polyesters (A), (B), and (C) are mixed at a ratio of 89%, 5%, and 6%, respectively, is used as a raw material for the outermost layer (surface layer), and polyesters (A) and (B) are each 95 %, 5% mixed raw materials were used as intermediate layer raw materials, each was supplied to two extruders, melted at 285 ° C., and then on a cooling roll set at 40 ° C. Coextruded with a layer structure of layers (surface layer / intermediate layer / surface layer = 1: 38: 1 discharge amount) and cooled and solidified to obtain an unstretched sheet. Next, the film was stretched 3.4 times in the longitudinal direction at a film temperature of 85 ° C. using the difference in peripheral speed of the roll, and then the coating liquid 1 shown in Table 1 below was applied to both sides of the longitudinally stretched film, and led to a tenter. Thickness having a coating layer in which the film is stretched 4.0 times at 120 ° C. in the transverse direction and heat-treated at 225 ° C. and then relaxed by 2% in the transverse direction and the coating layer thickness (after drying) is 0.02 μm. A 250 μm coated film was obtained. When the obtained coated film was evaluated, the adhesion with the prism layer was good. The properties of this coated film are shown in Table 2 below.
実施例2~21:
 実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、塗布フィルムを得た。得られた塗布フィルムは表2に示すとおりであり密着性は良好であった。
Examples 2 to 21:
In Example 1, except having changed a coating agent composition into the coating agent composition shown in Table 1, it manufactured like Example 1 and obtained the coating film. The obtained coated film was as shown in Table 2 and had good adhesion.
比較例1:
 実施例1において、塗布層を設けないこと以外は実施例1と同様にして製造し、塗布フィルムを得た。得られた塗布フィルムを評価したところ、表2に示すとおり、塗布フィルムの密着性は悪いものであった。
Comparative Example 1:
In Example 1, it manufactured similarly to Example 1 except not providing a coating layer, and obtained the coating film. When the obtained coated film was evaluated, as shown in Table 2, the adhesion of the coated film was poor.
比較例2~10:
 実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、塗布フィルムを得た。得られた塗布フィルムを評価したところ、表2に示すとおりであり、密着性が悪いものであった。
Comparative Examples 2 to 10:
In Example 1, except having changed a coating agent composition into the coating agent composition shown in Table 1, it manufactured like Example 1 and obtained the coating film. When the obtained coating film was evaluated, it was as shown in Table 2 and had poor adhesion.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明の塗布フィルムは、例えば、液晶ディスプレイのバックライトユニット等、プリズム層やマイクロレンズ層と良好な密着性が必要な用途に好適に利用することができる。
 
The coated film of the present invention can be suitably used for applications that require good adhesion to a prism layer or a microlens layer, such as a backlight unit of a liquid crystal display.

Claims (7)

  1.  フィルムの少なくとも片面に、(メタ)アクリロイル基を含有する樹脂とウレタン樹脂とからなる複合樹脂、および架橋剤を含有する塗布液から形成された塗布層を有することを特徴とする塗布フィルム。 A coating film comprising a coating layer formed from a coating liquid containing a composite resin composed of a resin containing a (meth) acryloyl group and a urethane resin and a crosslinking agent on at least one surface of the film.
  2.  複合樹脂中の(メタ)アクリロイル基の割合が1~50重量%、(メタ)アクリロイル基を含有する樹脂:ウレタン樹脂の重量比が1~5:1~5である請求項1に記載の塗布フィルム。 2. The coating according to claim 1, wherein the ratio of (meth) acryloyl groups in the composite resin is 1 to 50% by weight, and the weight ratio of the resin containing (meth) acryloyl groups: urethane resin is 1 to 5: 1 to 5. the film.
  3.  複合樹脂が、コアにアクリロイル基を含有する樹脂、シェルにウレタン樹脂)としたコア・シェル構造の水分散複合樹脂である請求項1又は2に記載の塗布フィルム。 The coated film according to claim 1 or 2, wherein the composite resin is a water-dispersed composite resin having a core-shell structure in which a core contains an acryloyl group-containing resin and a shell is a urethane resin.
  4.  架橋剤が、カルボジイミド系化合物、イソシアネート系化合物、オキサゾリン化合物、メラミン化合物、エポキシ化合物等の架橋剤の群より選ばれる1種類以上である請求項1~3の何れかに記載の塗布フィルム。 4. The coated film according to claim 1, wherein the crosslinking agent is at least one selected from the group of crosslinking agents such as carbodiimide compounds, isocyanate compounds, oxazoline compounds, melamine compounds, and epoxy compounds.
  5.  フィルムがポリエステルフィルムである請求項1~3の何れかに記載の塗布フィルム。 The coated film according to any one of claims 1 to 3, wherein the film is a polyester film.
  6.  塗布層表面に炭素-炭素二重結合を有する化合物からなる無溶剤型の活性エネルギー線硬化性塗料を使用して機能層が形成されるために使用される請求項1~5の何れかに記載の塗布フィルム。 6. The functional layer according to claim 1, which is used for forming a functional layer using a solventless active energy ray-curable coating material comprising a compound having a carbon-carbon double bond on the surface of the coating layer. Coating film.
  7.  請求項1~6の何れかに記載の塗布フィルムの塗布層表面に炭素-炭素二重結合を有する化合物からなる無溶剤型の活性エネルギー線硬化性塗料から形成された屈折率1.57以上の光学的機能層を有することを特徴とする塗布フィルム。 A refractive index of 1.57 or more formed from a solventless active energy ray-curable coating comprising a compound having a carbon-carbon double bond on the surface of the coating layer of the coating film according to any one of claims 1 to 6. A coated film comprising an optical functional layer.
PCT/JP2015/075437 2014-09-24 2015-09-08 Coated film WO2016047431A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167019626A KR101893786B1 (en) 2014-09-24 2015-09-08 Coated film
CN201580011316.3A CN106061733A (en) 2014-09-24 2015-09-08 Coated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-193210 2014-09-24
JP2014193210A JP6507544B2 (en) 2014-09-24 2014-09-24 Laminated film

Publications (1)

Publication Number Publication Date
WO2016047431A1 true WO2016047431A1 (en) 2016-03-31

Family

ID=55580959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075437 WO2016047431A1 (en) 2014-09-24 2015-09-08 Coated film

Country Status (4)

Country Link
JP (1) JP6507544B2 (en)
KR (1) KR101893786B1 (en)
CN (1) CN106061733A (en)
WO (1) WO2016047431A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859817B2 (en) * 2017-04-07 2021-04-14 トヨタ自動車株式会社 Composite resin and coating base material
JP7139746B2 (en) * 2018-07-18 2022-09-21 三菱ケミカル株式会社 Unsaturated group-containing polyester resin, primer composition, base film with primer layer, and prism sheet
JP7193383B2 (en) * 2019-03-08 2022-12-20 オリンパス株式会社 Medical device and method of manufacturing medical device
CN116102971A (en) * 2022-12-29 2023-05-12 上海绘兰材料科技有限公司 Resin composition for photocuring dirt-resistant micro-permeable membrane, and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285941A (en) * 1985-10-11 1987-04-20 ニツカン工業株式会社 Coverlay film
JPH09101620A (en) * 1995-08-01 1997-04-15 Toray Ind Inc Photosensitive resin composition for printing plate and printing plate material
JP2005031102A (en) * 2003-05-12 2005-02-03 Sumitomo Bakelite Co Ltd Photosensitive resin composition, layered product and flexible wiring board
WO2013140893A1 (en) * 2012-03-22 2013-09-26 Dic株式会社 Aqueous resin composition and cured article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544792B2 (en) 1988-12-12 1996-10-16 ダイアホイルヘキスト株式会社 Laminated film
JPH08281890A (en) 1995-04-10 1996-10-29 Toray Ind Inc Laminated polyester film and sublimation type thermal transfer material
JPH1045860A (en) * 1996-05-29 1998-02-17 Sekisui Chem Co Ltd Urethane-base aqueous composition
JPH11286092A (en) 1998-04-02 1999-10-19 Toray Ind Inc Laminated polyester film and manufacture thereof
JP2000229395A (en) 1999-02-12 2000-08-22 Toyobo Co Ltd Optical easy adhesive film
JP2002012821A (en) * 2000-06-30 2002-01-15 Unitika Ltd Coating agent and ultraviolet light absorbing film using the same
JP4457322B2 (en) 2008-07-03 2010-04-28 東洋紡績株式会社 Easy-adhesive polyester film for optics
JP5271293B2 (en) * 2010-02-07 2013-08-21 三菱樹脂株式会社 Laminated polyester film
CN103619588B (en) * 2011-06-30 2016-03-09 三菱树脂株式会社 Coated film
JP5739783B2 (en) * 2011-06-30 2015-06-24 三菱樹脂株式会社 Laminated polyester film
JP5963033B2 (en) * 2013-12-20 2016-08-03 Dic株式会社 Coating agent and laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285941A (en) * 1985-10-11 1987-04-20 ニツカン工業株式会社 Coverlay film
JPH09101620A (en) * 1995-08-01 1997-04-15 Toray Ind Inc Photosensitive resin composition for printing plate and printing plate material
JP2005031102A (en) * 2003-05-12 2005-02-03 Sumitomo Bakelite Co Ltd Photosensitive resin composition, layered product and flexible wiring board
WO2013140893A1 (en) * 2012-03-22 2013-09-26 Dic株式会社 Aqueous resin composition and cured article

Also Published As

Publication number Publication date
JP6507544B2 (en) 2019-05-08
JP2016064517A (en) 2016-04-28
KR101893786B1 (en) 2018-08-31
KR20160102013A (en) 2016-08-26
CN106061733A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5882440B2 (en) Laminated polyester film
JP5739783B2 (en) Laminated polyester film
WO2013002002A1 (en) Coating film
WO2013125288A1 (en) Coated film
KR101893786B1 (en) Coated film
JP2014037109A (en) Laminated polyester film
WO2015015900A1 (en) Coating film
JP6508378B2 (en) Laminated polyester film
JP5894241B2 (en) Laminated polyester film
JP5795032B2 (en) Laminated polyester film
JP5793552B2 (en) Laminated polyester film
WO2016035749A1 (en) Coated film
JP2019137072A (en) Laminate film and manufacturing method
JP5342632B2 (en) Laminated polyester film
JP5342631B2 (en) Laminated polyester film
JP5830208B2 (en) Laminated polyester film
WO2014097715A1 (en) Coated film
JP5714034B2 (en) Laminated polyester film
JP6052845B2 (en) Laminated polyester film
JP6269741B2 (en) Laminated polyethylene terephthalate film
JP5830207B2 (en) Laminated polyester film
JP5764276B2 (en) Laminated polyester film
JP5783657B2 (en) Laminated polyester film
JP2015024596A (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019626

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844468

Country of ref document: EP

Kind code of ref document: A1