WO2016045571A1 - Polynucleotide-polypeptide aggregates and uses thereof - Google Patents

Polynucleotide-polypeptide aggregates and uses thereof Download PDF

Info

Publication number
WO2016045571A1
WO2016045571A1 PCT/CN2015/090225 CN2015090225W WO2016045571A1 WO 2016045571 A1 WO2016045571 A1 WO 2016045571A1 CN 2015090225 W CN2015090225 W CN 2015090225W WO 2016045571 A1 WO2016045571 A1 WO 2016045571A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
nucleic acid
aggregates
reaction
Prior art date
Application number
PCT/CN2015/090225
Other languages
French (fr)
Inventor
Joseph Tin Yum WONG
Chun Man KWOK
Original Assignee
The Hong Kong University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong University Of Science And Technology filed Critical The Hong Kong University Of Science And Technology
Publication of WO2016045571A1 publication Critical patent/WO2016045571A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens

Definitions

  • Sequential manipulations of polynucleotides which are commonly facilitated by polynucleotide-manipulating systems, are generally interlude with polynucleotide-purifying procedures between successive polynucleotide manipulations.
  • Chromatographic-based polynucleotide-purifying procedures e.g., silica-based resins, chromatographic resins
  • Chromatographic based polynucleotide-purification commonly involves separation of dissociated polynucleotides through capture on nucleotide-binding resins, followed by washings and elution of the bound polynucleotides.
  • Chromatographic-based polynucleotide-purifying procedures commonly involve multiple steps of buffers, multiple accessories, and multiple changes.
  • Organic solvent-partitioning of polynucleotides is another conventional set of interlude polynucleotide-purifying procedures between successive polynucleotide manipulations.
  • Organic solvent-partitioning commonly involves solvent-aqueous phase partitioning of polynucleotides from other constituents in polynucleotide-containing medium (e.g., cell lysates, agarose gel) into the aqueous phase. Further purification of polynucleotides from the solvent are required and can commonly include chromatographic- based techniques (Thomas et al., 1992) and salt-solvent (alcoholic) precipitation.
  • Solvent-partitioning generally demands multiple steps in separating the polynucleotide-enriched phase from the non-enriched phase, very often through multiple transferring and gathering. Procedures based on solvent-partitioning are generally very labor-demanding and repetitive, requiring multiple changes of solvents and accessories. Many chemical solvents (e.g., phenol, chloroform) are also regulated substances with low sustainability values.
  • Chemical precipitation of polynucleotides are conventional techniques used in molecular biology and can be a stand-alone interlude polynucleotide-purifying procedure or can be incorporated with other interlude polynucleotide-purifying procedures. However, multiple steps are required to remove the precipitating agents before the use of the precipitated polynucleotides in polynucleotide manipulations.
  • Salt-solvent precipitation e.g., salt-alcohol precipitation
  • polynucleotides a widely used conventional technique set, also demands the pre-adjustments of polynucleotides-containing solutions to high salt concentrations before addition of alcoholic solvent, followed by sedimentation to collect the precipitates.
  • salt-polynucleotide precipitates are then collected and washed repetitively, going through multiple steps of sedimentation and decanting to rid of excess salts, before air-dried and re-suspension.
  • Salt-alcohol precipitations are highly labor-demanding and repetitive, and requiring multiple steps in salt concentration pre-adjustment, in subsequent washing, decanting and re-suspension of the precipitates.
  • Alcohol solvents, organic solvents and high salt concentrations if persist, can be inhibitory to many polynucleotide-manipulating reactions (Bruinsma et al., 2012) .
  • Many alcoholic solvents e.g., ethanol
  • Interlude polynucleotide-purification procedures which are not limited to the aforementioned examples, features generally in sequential polynucleotide manipulations, including those facilitated by polynucleotide-manipulating systems, representing interruptions of laboratory workflow. These interlude polynucleotide purification procedures are generally labor-demanding and repetitive, requiring multiple steps for the changes of buffers and in many cases, involving regulated solvents.
  • a new set of technical practices in which sequential polynucleotide manipulations can be accomplished without interlude polynucleotide-purifying procedures, and with increase sustainability values, is called for to the advancements of the field.
  • the present invention fulfills this and other related needs.
  • the invention relates to the discovery that polynucleotide-aggregating proteins can bind to polynucleotides, especially double stranded DNA molecules, to form polynucleotide-polypeptide aggregates, which can then be rapidly and easily removed from an environment where a polynucleotide of interest may be present with a variety of other molecules of distinct chemical and biological nature.
  • This method allows for easy isolation of polynucleotides without the need of using chemical precipitation or extraction, enabling one to further manipulate the polynucleotide in a streamlined process.
  • the present invention provides a method for isolating a polynucleotide.
  • the method comprises these steps: (i) adding a polynucleotide-aggregating protein into a sample containing the polynucleotide under conditions permissible for forming polynucleotide-polypeptide aggregates; and (ii) separating the polynucleotide-polypeptide aggregates from the sample, thereby isolating the polynucleotide.
  • the polynucleotide-aggregating protein is hh ⁇ -synuclein, hhDPSp, or hhCbpAp.
  • the sample is a cell or virus lysate or a melted agarose gel solution.
  • the separating of step (ii) comprises precipitating the polynucleotide-polypeptide aggregates by centrifugation.
  • this method further comprises a step (iii) of placing the polynucleotide-polypeptide aggregates from step (ii) in a reaction mixture for further manipulation of the polynucleotide.
  • the further manipulation comprises a reaction of amplifying the polynucleotide, such as a polymerase chain reaction (PCR) .
  • the further manipulation comprises a reaction of enzymatically digesting the polynucleotide.
  • the further manipulation comprises a reaction of ligation of the polynucleotide.
  • the further manipulation comprises a hybridization reaction of the polynucleotide.
  • the present invention provides a composition comprising polynucleotide-polypeptide aggregates formed by a polynucleotide and a polynucleotide-aggregating protein.
  • the aggregates are readily separated from a liquid sample upon centrifugation, precipitation, or filtration and can then be used in performing a further manipulation step of the polynucleotide contained in the aggregates.
  • the polynucleotide-aggregating protein is hh ⁇ -synuclein, hhDPSp, or hhCbpAp.
  • the polynucleotide and the polynucleotide-binding protein are heterogeneous to each other.
  • the composition is a reaction mixture for an amplification reaction of the polynucleotide, for example, the amplification reaction is PCR.
  • the composition is a reaction mixture for an enzymatic digestion of the polynucleotide.
  • the composition is a reaction mixture for ligation of the polynucleotide.
  • the composition is a reaction mixture for a hybridization reaction of the polynucleotide.
  • FIG. 1A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the nucleic acid-polypeptide composites collected after mixing mammalian cell lysates with: lane 1, hh ⁇ -synuclein; lane 2, hhDPSp; lane 3, hhCbpAp. Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 1B illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the products of PCR with different nucleic acid-polypeptide composites (as shown in FIG. 1A) : lane 1, nucleic acid-hh ⁇ -synuclein composites; lane 2, nucleic acid-hhDPSp composites; lane 3, nucleic acid-hhCbpAp composites. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 2A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the expected PCR product (0.7 kbp) for ligation (lane 1) .
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 2B illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the products of PCR using post-ligation reactions as PCR templates: lane 1, TA-cloning vector only; lane 2, TA-cloning vector and nucleic acids purified with resin-based column; lane 3, TA-cloning vector and nucleic acid-hh ⁇ -synuclein composites; lane 4, TA-cloning vector and nucleic acid-hhDPSp composites; lane 5, TA-cloning vector and nucleic acid-hhCbpAp composites) .
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 2C illustrates an ethidium bromide-stained agarose gel showing the restriction enzymes (KpnI and PstI) -digested vector (pQE-1, 3.5 kbp) for ligation (lane 1) .
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 2D illustrates an ethidium bromide-stained agarose gel showing the restriction enzymes (KpnI and PstI) -digested insert DNA (0.7 kbp) for ligation (lane 1) .
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 2E illustrates an ethidium bromide-stained agarose gel showing the products of PCR using bacterial colony as PCR templates: lane 1, pQE-1-cloning vector only; lane 2, pQE-1-cloning vector and DNA purified with resin-based column; lane 3, pQE-1-cloning vector and DNA-hh ⁇ -synuclein composites; lane 4, pQE-1-cloning vector and DNA-hhDPSp composites; lane 5, pQE-1-cloning vector and DNA-hhCbpAp composites) .
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 3A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the 4.2 kbp-DNA used for southern blot hybridization.
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 3B illustrates the image of southern blot of the agarose gel of FIG. 3A.
  • Hybridization is carried out with biotinylated probes prepared with different nucleic acid-polypeptide composites; lane 1, Resin-based column-purified nucleic acids; lane 2, nucleic acid-hh ⁇ -synuclein composites; lane 3, nucleic acid-hhDPSp composites; lane 4, nucleic acid-hhCbpAp composites.
  • FIG. 4A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the input nucleic acids (8.9 kbp, 100 ng) (Lane 1) ; supernatant of nucleic acid-hh ⁇ -synuclein composites after centrifugation (Lane 2) ; pellet of nucleic acid-hh ⁇ -synuclein composites after centrifugation (Lane 3) . Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 4B illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the input nucleic acids (8.9 kbp, 100 ng) (Lane 1) ; supernatant of nucleic acid-hhDPSp composites after centrifugation (Lane 2) ; pellet of nucleic acid-hhDPSp composites after centrifugation (Lane 3) .
  • Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis.
  • Lane M contains the 1kb plus ladder (Invitrogen) .
  • FIG. 4C illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the input nucleic acids (8.9 kbp, 100 ng) (Lane 1) ; supernatant of nucleic acid-hhCbpAp composites after centrifugation (Lane 2) ; pellet of nucleic acid-hhCbpAp composites after centrifugation (Lane 3) .
  • Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis.
  • Lane M contains the 1kb plus DNA ladder (Invitrogen) .
  • FIG. 5 Workflow improvements for sequential nucleic acid manipulations, through relinquishments of intervening nucleic acid-purifying procedures.
  • A diagrammatically representing workflow of prior sequential nucleic acid manipulations with intervening nucleic acid-purifying procedures.
  • B diagrammatically representing workflow of sequential nucleic acid manipulations mediated by manipulating nucleic acids in nucleic acid-polypeptide composites, without intervening nucleic acid-purifying procedures.
  • C diagrammatically representing workflow of sequential nucleic acid-manipulations with nucleic acid-polypeptide composites.
  • FIG. 6 diagrammatically represents workflow improvements for sequential polynucleotide manipulations, through relinquishments of interlude polynucleotide-purifying procedures.
  • A. diagrammatically represents workflow of prior sequential polynucleotide manipulations with interlude polynucleotide-purifying procedures.
  • B. diagrammatically represents workflow of sequential polynucleotide manipulations mediated by manipulating polynucleotides in polynucleotide-polypeptide aggregates, without interlude polynucleotide-purifying procedures.
  • nucleic acid and “polynucleotide” are interchangeable with each other in this disclosure and refer to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single-or double-stranded form.
  • DNA deoxyribonucleic acids
  • RNA ribonucleic acids
  • nucleic acid or polynucleotide encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides.
  • nucleic acid or polynucleotide is used interchangeably with gene, cDNA, and mRNA encoded by a gene.
  • gene means the segment of DNA involved in producing a polypeptide chain. It may include regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons) .
  • An “expression cassette” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular polynucleotide sequence in a host cell.
  • An expression cassette may be part of a plasmid, viral genome, or nucleic acid fragment.
  • an expression cassette includes a polynucleotide to be transcribed (e.g., one encoding IL-33) , operably linked to a promoter.
  • polynucleotide manipulation refers to any processing at a molecular level of a polynucleotide of interest. It includes reproduction/synthesis of the polynucleotide (such as copying by way of a primer extension reaction or amplification by way of a polymerase chain reaction, PCR) and chemical or enzymatic modification of the polynucleotide (such as ligation of the polynucleotide to another molecular moiety, e.g., another polynucleotide or polypeptide or a detectable moiety, removal of a moiety of the polynucleotide, or cleavage of the polynucleotide chain by an enzyme, e.g., an endonuclease) .
  • an enzyme e.g., an endonuclease
  • amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
  • Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
  • Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an ⁇ carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
  • Amino acid mimetics refers to chemical compounds having a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
  • Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
  • Polypeptide, ” “peptide, ” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. All three terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full-length proteins, wherein the amino acid residues are linked by covalent peptide bonds.
  • a “polynucleotide-aggregating protein” or “polynucleotide-aggregating polypeptide” is a protein or polypeptide that is capable of binding to a polynucleotide, e.g., a double-stranded DNA molecule, to form a polynucleotide-polypeptide aggregate, or a nucleic acid-polypeptide composite, which may be insoluble or of reduced solubility and can be readily isolated by centrifugation or filtration.
  • a “polynucleotide-aggregating protein” is capable of binding to a polynucleotide on a non-sequence specific basis, i.e., the protein binds to the polynucleotide regardless of the nucleotide sequence of the polynucleotide molecule, to form an insoluble macromolecule aggregate, which can be readily separated from a liquid environment by centrifugation or filtration.
  • Exemplary polynucleotide-aggregating proteins include hh ⁇ -synuclein, hhDPSp, and hhCbpAp, as well as other DNA-binding proteins such as histones and protamines.
  • polynucleotide-protein aggregates may form between proteins and DNA or RNA molecules.
  • a “polynucleotide-aggregating protein” may be a naturally occurring protein isolated from a natural source (e.g., a prokaryotic or eukaryotic cell) or may be a protein modified from its naturally occurring version, including in the form of a recombinantly produced protein.
  • the polynucleotide and the polynucleotide-aggregating protein that form polynucleotide-polypeptide aggregates can be from the same origin or same organism, whereas in other cases, the polynucleotide and the polynucleotide-aggregating protein that form polynucleotide-polypeptide aggregates are heterologous to each other, in other words, the polynucleotide are from one origin (e.g., from one organism such as a bacterium, a virus, or a eukaryotic cell) and the polynucleotide-aggregating protein are from another distinct origin, e.g., from another different organism.
  • the polynucleotide-aggregating protein are from another distinct origin, e.g., from another different organism.
  • a recombinantly produced polynucleotide is heterologous to a recombinantly produced polynucleotide-aggregating protein.
  • Polynucleotide-polypeptide aggregates are aggregates or composites formed by a polynucleotide and a polynucleotide-aggregating protein. Typically, they are insoluble macromolecular composites, comprising non-covalently bound polynucleotides and polypeptides. Such aggregates can be formed without the need for organic solvents, high salt concentrations, or detergents (Ceci et al., 2004; Cherny et al., 2004; Cosgriff et al., 2010) .
  • polynucleotide-polypeptide aggregates can form efficiently in a low salt (e.g., no more than 400 mM NaCl) environment with neutral or slightly acidic pH (e.g., pH 5-8, preferably 6-7) .
  • a low salt e.g., no more than 400 mM NaCl
  • neutral or slightly acidic pH e.g., pH 5-8, preferably 6-7
  • polynucleotide-polypeptide aggregates can be formed by placing a polynucleotide-aggregating protein into a sample containing a polynucleotide under conditions permissible for the formation of aggregates of the polynucleotide and the polypeptide.
  • the polynucleotide-polypeptide aggregates so formed can be readily separated from the remainder of the sample, allowing for rapid and easy isolation of the polynucleotide without the need to employ conventional nucleic acid purification techniques, which often involve the use of one or more chemicals and tends to interrupt an otherwise continuous molecular manipulation of the polynucleotide.
  • the present invention provides novel methods and compositions useful for rapid and efficient isolation of polynucleotides for further manipulation of the polynucleotides.
  • This new isolation method achieved by way of forming and concentrating the polynucleotide-polypeptide aggregates, effectively separates polynucleotides from an environment where the polynucleotides are present with various molecules of distinct chemical nature.
  • This method preserves the continuous workflow practice in sequential polynucleotide manipulations, as polynucleotides are held through sequential polynucleotide manipulation steps in the polynucleotide-polypeptide aggregates, without the interlude polynucleotide purifying procedures commonly used in the pertinent field of biomedical research.
  • the present invention provides a new method for rapid isolation of polynucleotides by way of formation and separation of polynucleotide-polypeptide aggregates from an environment where the polynucleotides may be present along with other molecules.
  • the relative ease of isolating the polynucleotide-polypeptide aggregates eliminates the need for chemicals typically used in extraction or precipitation of nucleic acids, this method is thus particularly useful for streamlining a process comprising sequential steps of manipulating nucleic acids without interrupting the workflow practice in molecular biological systems.
  • nucleic acids are held through continuous steps in polynucleotide-polypeptide aggregates, circumventing the need for intervening nucleic acid purifying procedures commonly employed in the pertinent research field. As such, the present invention significantly improves workflow in nucleic acid manipulations.
  • sequential cloning of targeted polymerase chain reaction (PCR) products into TA-cloning vector is carried out, following sequential formation of nucleic acid-polypeptide composites from pre-cleared cell lysates, followed by targeted PCR with PCR templates of nucleic acid-polypeptide composites, followed by ligation of the TA-vector with PCR products of the PCR products-protein composites, and then the delivery of ligated PCR products in nucleic acid-polypeptide composites into bacterial hosts and amplification of the cloned nucleic acids (EXAMPLE 1) .
  • PCR polymerase chain reaction
  • This embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in common manipulations of nucleic acids, during which nucleic acids are held through sequential nucleic acid-manipulating manipulations in nucleic acid-polypeptide composites.
  • the workflow practice is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in the pertinent research field.
  • sequential cloning and ligation of electrophoretically-separated PCR products into TA-cloning vector and restriction enzymes-digestion vector are carried out, following sequential formation of nucleic acid-polypeptide composites from gel-purified PCR product (see EXAMPLE 2 and EXAMPLE 3) , followed by ligation of the PCR products of the nucleic acid-polypeptide composites, followed by the transfer of nucleic acid-polypeptide composites into bacterial hosts and amplification of the cloned nucleic acid (EXAMPLE 2 and EXAMPLE 3) .
  • This embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in sequential manipulations of nucleic acids, during which nucleic acids are held in nucleic acid-polypeptide composites.
  • This workflow practice in sequential manipulations of nucleic acids, which are commonly facilitated by molecular biological systems, is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in the pertinent research field.
  • sequential cloning and ligation of electrophoretically-fractionated enzyme-digested nucleic acids into sticky-end-cloning vector is carried out, following sequential formation of nucleic acid-polypeptide composites from gel-purified nucleic acids, followed by sticky-ends (cohesive) ligation reaction with nucleic acids in nucleic acid-polypeptide composites, followed by the transfer of nucleic acid-polypeptide composites into bacterial hosts and amplification of the cloned nucleic acids.
  • This embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in sequential manipulations of nucleic acids, during which nucleic acids are held in nucleic acid- polypeptide composites.
  • This workflow practice in sequential manipulations of nucleic acids, which are commonly facilitated by molecular biological systems, is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in prior arts (EXAMPLE 4) .
  • _successful southern blot hybridization is carried out after probe labelling of the nucleic acids of the nucleic acid-polypeptide-composites, and delivery of the labelled probes to the hybridization medium containing the filter imprinted with gel-fractionated nucleic acid templates (EXAMPLE 4,FIG. 3B) .
  • the present embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in sequential manipulations of nucleic acids, during which nucleic acids are held in nucleic acid-polypeptide composites.
  • This workflow practice in sequential manipulations of nucleic acids, which are commonly facilitated by molecular biological systems, is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in the pertinent field.
  • total amount of DNAs are isolated from solution, using nucleic acid-polypeptide aggregation as the isolation method.
  • nucleic acid manipulations are generally modular and the present invention can be incorporated in common nucleic acid manipulations for simplifications of experimental workflow through circumvention of intervening nucleic acid-purifying procedures typically employed in the pertinent research field.
  • the present invention provides a new method of rapid isolation of polynucleotides from a sample where other molecules might be present.
  • a polynucleotide-aggregating protein is added to the sample, which is typically a liquid sample or a liquid-containing sample with the polynucleotides dissolved in the liquid, and binds to the polynucleotides via non-covalent linkages such as Van de Waals force, hydrogen bond, electrostatic attraction to form polynucleotide-polypeptide aggregates.
  • the aggregates often exhibit substantially reduce solubility or may become insoluble in the liquid environment where the polynucleotides are present, such that the aggregates can be readily isolated from the liquid environment by mechanical means such as centrifugation or filtration.
  • centrifugation at relative centrifugal force of 50-50,000g, or 100-10,000g, or 200-10,000, 15,000, 20,000, or 25,000g for a time duration of at least 5-10 seconds, at least 20-30 seconds, or from 10, 20, 30 seconds to 1, 2, 3, 4, 5 or 10 minutes will be effective for isolating the polynucleotide-polypeptide aggregates.
  • RCF relative centrifugal force
  • RCF of 200g for 2 minutes, or 16,000g for 5-10 seconds sufficiently pellets at least 50, 60, 70, 80, 90%or more of the aggregates for separation from the liquid portion of the sample.
  • Filtration with filter material having filter or pore size ranging 0.10-500 ⁇ m, 0.20-250 ⁇ m, 0.50-100 ⁇ m, or 1-50 ⁇ m can also effectively isolate the aggregates.
  • filtration using pore size range of 0.45-50 ⁇ m effectively separate the aggregates (e.g., at least 50, 60, 70, 80, 90%or more) from the rest of the fluid sample.
  • isolation of the aggregates can be facilitated by using a recombinant polynucleotide-aggregating protein comprising a first partner in a known binding pair, such that the aggregates can be readily separated from a liquid environment where they are present when passing through a solid support on the surface of which the second partner of the binding pair is immobilized.
  • the polynucleotide-polypeptide aggregates can also be isolated from a liquid sample in an affinity-based method, for example, by immobilized metal affinity chromatography (e.g., using nickel beads or nickel coated microtiter plate (e.g., HIS-select High sensitivity nickel coated plate from Sigma-Aldrich) ) , as the polynucleotide-aggregating proteins used here all possess 6xHis tag.
  • immobilized metal affinity chromatography e.g., using nickel beads or nickel coated microtiter plate (e.g., HIS-select High sensitivity nickel coated plate from Sigma-Aldrich)
  • nickel beads or nickel coated microtiter plate e.g., HIS-select High sensitivity nickel coated plate from Sigma-Aldrich
  • a polynucleotide-aggregating protein is one isolated or derived from a natural source, e.g., a naturally occurring nuclear protein that is known to bind to nucleic acids.
  • exemplary polynucleotide-aggregating proteins include hh ⁇ -synuclein, hhDPSp, and hhCbpAp (GenBank Accession numbers: NP_000336; CAA49169.1; and YP_489273.1) .
  • Additional polynucleotide-aggregating proteins include dinoflagellate histone-like protein HCc3 (Accession number: AAM97522) (Wong et al., 2003) , various histones (Histone H1 and histone H2B from calf thymus, purchased from Roche) and protamine (Protamine from salmon, purchased from Sigma-Aldrich) .
  • a polynucleotide-aggregating protein may be recombinantly produced and/or may be modified for ease of use.
  • the polynucleotide-aggregating protein may be recombinantly or chemically modified to have an altered amino acid sequence or to have an added moiety to facilitate detection (e.g., a detectable moiety) or isolation (e.g., an affinity tag) .
  • the polynucleotide-aggregating protein may contain one or more non-natural amino acid residues (e.g., D-amino acids) for the purpose of enhanced stability (e.g., increased resistance to proteases or improved bioavailability) or enhanced affinity to nucleic acids.
  • a “tag” can be engineered into the protein sequence such that it can be easily purified, detected, and/or imaged.
  • Any one of the “tags” known and used in the field of recombinant proteins can be chosen for this purpose: a peptide tag such as an AviTag, a peptide allowing biotinylation by the enzyme BirA and so the protein can be isolated by streptavidin (GLNDIFEAQKIEWHE) , a Calmodulin-tag, a peptide bound by the protein calmodulin (KRRWKKNFIAVSAANRFKKISSSGAL) , a polyglutamate tag, a peptide binding efficiently to anion-exchange resin such as Mono-Q (EEEEEE) , an E-tag, a peptide recognized by an antibody (GAPVPYPDPLEPR) , a FLAG-tag, a peptide recognized
  • the integrin ⁇ fragment may also include one or more D-amino acids or include chemical modifications such as glycosylation, PEGylation, crosslinking, and the like.
  • insoluble polynucleotide-polypeptide aggregates For a protein that has the potential to bind DNA or RNA, its ability of forming and participating as a part of insoluble polynucleotide-polypeptide aggregates defines its role as a polynucleotide-aggregating protein. In other words, whether it is a polynucleotide-aggregating protein can be verified in a binding assay in which it forms insoluble aggregates with one or more polynucleotides. Typically, such insoluble aggregates are formed under low salt, neutral to slightly acidic conditions (e.g., no greater than 400 mM Na + , for example NaCl, pH 6-7) at room temperature and can be precipitated (greater than 80%weight) under RCF of 5,000-7,000g for 5-20 seconds.
  • slightly acidic conditions e.g., no greater than 400 mM Na + , for example NaCl, pH 6-7
  • the present invention takes advantage of insoluble aggregates formed by polynucleotide and polynucleotide-aggregating proteins to rapidly isolate polynucleotides from a liquid sample where other molecules may be present, without the need of precipitation by organic solvents or high salts nor any interruption of workflow.
  • any liquid sample containing or suspected of containing a polynucleotide of interest may be used in the isolation method for rapid isolation of polynucleotide.
  • Exemplary samples include biological samples taken from a patient (e.g., blood, serum, plasma samples or any other bodily fluid samples) , cell or tissue culture samples, food/beverage samples, environmental samples (including air, soil, water samples) , or samples that have been processed in any experimental procedures (e.g., cell lysates, melted gel solutions, polynucleotide synthesis reactions, or polynucleotide digestion reactions) , whereas exemplary polynucleotides may be of bacterial, viral, mammalian, plant, and other origins.
  • one or more polynucleotide aggregating proteins may be added to the liquid sample.
  • the conditions under which such aggregates can form are mild: there is no requirement for organic solvents, high salt concentrations, or detergents.
  • the temperature range can be from slightly chilled to room temperature to slightly elevated, e.g., ranging from 5-80°C, 10-60 °C, 15-50 °C, 10-30 °C, 10-20 °C, or 20-25 °C.
  • the pH of the liquid environment can range from about 5-9, 6-8, 6-7, or 6.5-7.5.
  • the molar ratio of polynucleotide to polypeptide to form the polynucleotide-polypeptide aggregates ranges from the low end of 1: 2 to 2: 1 (e.g., 1: 1) to the high end of 500: 1 to 5000: 1 (e.g., 1000: 1) .
  • the process of aggregate formation can complete in a relatively short time span, e.g., from 10 seconds to 5-10 minutes, usually within 30 seconds to 1-2 minute.
  • centrifugation is a commonly use method to quickly retain the aggregates while removing the remainder of the sample. Centrifugation at relative centrifugal force (RCF) of 50-50,000g, or 100-10,000g, or 200-10,000, 15,000, 20,000, or 25,000g for a time duration of at least 5-10 seconds, at least 20-30 seconds, or from 10, 20, 30 seconds to 1, 2, 3, 4, 5 or 10 minutes will be effective for isolating the polynucleotide-polypeptide aggregates.
  • RCF relative centrifugal force
  • RCF of 200g for 2 minutes, or 16,000g for 5-10 seconds sufficiently pellets at least 50, 60, 70, 80, 90%or more of the aggregates for separation from the liquid portion of the sample.
  • a simple precipitation process in some cases can be adequately effective for isolation of the polynucleotide-polypeptide aggregates.
  • the insoluble aggregates Upon completion of precipitation, the insoluble aggregates will be present at the lowest point of a liquid environment due to gravity. The liquid portion can then be carefully discarded without disturbing the precipitates, which include the insoluble aggregates.
  • filtration Another alternative to rapidly isolate the polynucleotide-polypeptide aggregates is by way of filtration.
  • Any porous material such as filter paper can be used for this purpose.
  • Suitable filtration material of pore size ranging 0.10-500 ⁇ m, 0.20-250 ⁇ m, 0.50-100 ⁇ m, or 1-50 ⁇ m can also effectively isolate the aggregates.
  • filtration using pore size range of 0.45-50 ⁇ m effectively separates the aggregates (e.g., at least 50, 60, 70, 80, 90%or more) from the rest of the fluid sample.
  • the isolation process is typically carried out at room temperature (e.g., 15-20 or 25°C, 25°C, 37°C, 45°C, 55°C, 65°C, 75°C. (with percentage DNA recovery>80%) but can also be performed at a slightly chilled temperature (e.g., 2-10°C, such as 4°C) or at a slightly elevated temperature (e.g., 30-75°C, such as 37°C, 45°C, 55°C, 65°C, or 75°C) .
  • room temperature e.g. 15-20 or 25°C, 25°C, 37°C, 45°C, 55°C, 65°C, 75°C. (with percentage DNA recovery>80%) but can also be performed at a slightly chilled temperature (e.g., 2-10°C, such as 4°C) or at a slightly elevated temperature (e.g., 30-75°C, such as 37°C, 45°C, 55°C, 65°C, or 75°C) .
  • the polynucleotide-aggregating protein used in the isolation process may be recombinantly produced to contain a binding partner of a known molecular binding pair to allow easy isolation of the polynucleotide-polypeptide aggregates formed by the protein.
  • suitable tags are mentioned in an earlier section.
  • the polynucleotide-aggregating protein may be designed to include an affinity tag such as 6xHis or streptavidin, such that the polynucleotide-polypeptide aggregates containing this protein can be easily removed from a sample using substrate of immobilized nickel or biotin.
  • the affinity tag in the recombinantly produced polynucleotide-aggregating protein is cleavable due to a protease cleavage site being placed between the tag the polynucleotide-aggregating protein, which would further allow a quick release of the polynucleotide-polypeptide aggregates from the substrate after isolation of the aggregates from the sample.
  • 80%or more of the polynucleotide (s) present in a sample is typically recovered by way of isolating the aggregates.
  • the rapid and expedient polynucleotide isolation method of this invention one is able to perform a series of manipulation of the polynucleotide of interest without the need to interrupt the work flow. Subsequent to the isolation step, further manipulation of the polynucleotide of interest may include synthesis or amplification of the polynucleotide, ligation or chemical modification of the polynucleotide, and cleavage or digestion of the polynucleotide.
  • Synthesis of the polynucleotide includes any polymerase-mediated reaction in which the polynucleotide is in essence “copied” or “reproduced” using free nucleotides (which may include naturally occurring nucleotides or modified nucleotides) .
  • Example of such synthesis include primer extension reaction and polymerase chain reaction as well as DNA being transcribed into RNA and RNA being reverse transcribed into DNA.
  • Polynucleotide sequencing reactions are a variation of a primer-directed polynucleotide synthesis and can also be performed as a part of the polynucleotide manipulation series following quick isolation of polynucleotides using the method of this invention.
  • Ligation or chemical modification of the polynucleotide includes any enzymatic or chemical reaction that resulting the addition of a moiety to the polynucleotide or removal of a moiety from the polynucleotide.
  • Examples of such modification include ligation of the polynucleotide with another molecule (asmall molecule or a macromolecule such as another polynucleotide, a protein etc. ) .
  • Cleavage or digestion of the polynucleotide includes the shortening of the polynucleotide chain by any enzymatic or chemical reaction or mechanical force.
  • Examples of cleavage or digestion include endonuclease or exonuclease digestion of DNA or alkaline digestion of RNA.
  • the polynucleotide-aggregating polypeptides used include human ⁇ -synuclein (Cherny et al., 2004; Goers et al., 2003; Hegde and Rao, 2007; Padmaraju et al., 2011) , the Escherichia coli Dps (DNA-binding polypeptides from starved cells) (Ceci et al., 2004) , and CbpA (curved DNA-binding polypeptide A) (Cosgriff et al., 2010) .
  • human ⁇ -synuclein Choerny et al., 2004; Goers et al., 2003; Hegde and Rao, 2007; Padmaraju et al., 2011
  • Escherichia coli Dps DNA-binding polypeptides from starved cells
  • CbpA curved DNA-binding polypeptide A
  • polynucleotide-aggregating polypeptides are not limited to the examples used and the specific conditions have to be empirically-derived.
  • recombinant PAPs are tagged with 6xHis tag in bacteria, purified with Ni-NTA affinity isolation system (Qiagen Corporation) according to manufacturer’s protocols.
  • concentrations of polynucleotide-aggregating polypeptides after mixing with the polynucleotide-containing samples were in the range of 11.95–86.03 ⁇ g/ml (0.63–2.54 ⁇ M) with extrapolated polypeptide-to-DNA ratios (in mass) to be in the range of 1.79–12.90.
  • Concentrations of polynucleotide-aggregating polypeptides in the stock preparations, in the present examples are in the range of 100 to 280 ng/ ⁇ l (5.8-20.8 ⁇ M) .
  • polynucleotide-polypeptide aggregates are formed upon mixing polynucleotide-aggregating polypeptides with polynucleotide-containing mediums (ambient room temperatures, unless otherwise stated) .
  • Polynucleotide-polypeptide aggregates can be collected from fluid mediums by common methods of particle isolation. In the present examples, collection of the polynucleotide-polypeptide aggregates was carried out by brief sedimentation (minimum of 30 seconds) in a benchtop centrifuge, applied immediately or after 10 minutes of mixing, followed by decanting of supernatant.
  • polynucleotide-polypeptide aggregates for the formation and restraining polynucleotide-polypeptide aggregates, and hence the formulation of polynucleotide-aggregating polypeptides provided for polynucleotide-manipulating systems, have to be derived empirically for specific polynucleotide-aggregating polypeptides and applications.
  • Protocols of polynucleotide manipulation used in the present examples are carried out according to established methods (Sambrook and Russell, 2001) .
  • Pre-cleared cell-lysates of cultured mammalian cells (HL-60, 5 x 10 6 cells) used were prepared by detergent lysis-proteinase K method (Laird et al., 1991) .
  • the melted agarose used was low melting temperature agarose (SeaPlaque Agarose, Lonza) that would melt at ⁇ 65°C according to manufacturer product instructions.
  • Applications of the present invention are not limited by these examples.
  • PCR Polymerase chain reaction
  • PCR is a common technique used for the amplification of target polynucleotide stretch, including readouts from biological assays.
  • southern blot hybridization was carried out as described in manufacturer’s protocols (Amersham Hybond-N+, Detector TM PCR DNA Biotinylation Kit, KPL Inc., Detector TM HRP Chemiluminescent Blotting Kit, KPL Inc., FIG. 3B) .
  • DNA (linearized plasmid DNA, 100 ng, 4.2 kbp) samples were first separated on an agarose gel (1%w/v) (FIG. 3A) and transferred on nylon membrane (Amersham Hybond-N+, GE Healthcare) by capillary actions.
  • DNA fragment ( ⁇ 700 bp) used for probe preparation was first electrophoretically separated on 1%w/v agarose gel before mixing with NAPs to harvest polynucleotide-polypeptide aggregates.
  • Hybridization probe labeling and subsequent detection of chemiluminsecent signals were carried out using PCR-based Detector TM PCR DNA Biotinylation Kit (KPL, Inc. ) and DNA Detector TM HPR Chemiluminsecent Blotting Kit (KPL, Inc. ) , according to manufacturers’ protocols.
  • the polynucleotides used are purified by the commercial available system (GTpure Plasmid Miniprep Isolation System, Gene Tech) .
  • the 4.2 kbp-DNA used was a linearized form of the plasmid pQE-1 (3.5 kbp, Qiagen Corporation) containing a GFP gene ( ⁇ 700 bp) .
  • All PCR and thermal cycles experiments are carried out with the GeneAmp PCR System 9700 (Applied Biosystems) .
  • the PCR was run as follows: 94°C for 2 mins, 30 cycles of 94 °C for 15 sec, 60 °C for 15 sec, 72 °C for 1 min, and 72 °Cfor 7 mins.
  • DNA-protein aggregates are treated with proteinase K (0.3 unit per sample, 30 mins at 55 °C) . All chemicals were from Sigma-Aldrich unless provided by commercial systems or stated otherwise. Commercial kits used are not limited to the particular brands used in the examples. DNA markers used are “1 kb plus DNA ladder” from Invitrogen Corporation.
  • Example 1 Polynucleotides-polypeptide aggregates-mediated sequential polynucleotide manipulations of PCR with from pre-cleared cell lysates, ligation of PCR products, and cloning.
  • Polynucleotide-polypeptide aggregates formed in pre-cleared cell lysates with different polynucleotide-aggregating polypeptides (hh ⁇ -synuclein, hhDPSp, hhCbpAp) (FIG. 1A) were used directly in PCR reactions and PCR products of expected size (646 bp for amplifying a fragment from the actin gene) was obtained (FIG. 1B) . Cloning and sequencing of the PCR product confirms its identity. Sedimentation of the PCR reaction demonstrated PCR products-polypeptide aggregates formed with the originally-added polynucleotide-aggregating polypeptides.
  • Polynucleotides of polynucleotides-polypeptide aggregates, formed between PCR products and polynucleotides-aggregating polypeptides, are used successfully in TA ligation reaction. Successful ligation of the targeted polynucleotide was carried out from PCR with pre-cleared cell lysate, without any polynucleotide-purifying procedures. Successful ligations of PCR products are demonstrated by sequencing of cloned plasmid.
  • Example 2 Polynucleotides-polypeptide aggregates-mediated cloning of PCR products.
  • the nucleic acids (PCR product, ⁇ 700 bp) used are first purified by the commercial available system (GTpure Plasmid Miniprep Isolation System, Gene Tech) (FIG. 2A) , followed by mixing with different polynucleotide-aggregating polypeptides to form polynucleotide-polypeptide aggregates.
  • TA ligation mixtures (10 ⁇ l) are then added directly to the polynucleotide-polypeptide aggregates (collected by centrifugation) , containing the PCR products.
  • the ligation mixture, containing the polynucleotide-polypeptide aggregates was used for transformation into bacteria.
  • Example 3 Polynucleotides-polypeptide aggregates-mediated cloning and sticky-end ligation of compatible DNA.
  • the gel portion containing the restriction enzyme digested (KpnI and PstI) insert DNA ( ⁇ 730 bp, FIG. 2D) and vector DNA (pQE1vector, 4.2kbp, Qiagen, FIG. 2C) is melted in the presence of polynucleotides-aggregating polypeptide solution (hh ⁇ -synuclein, hhDPSp or hhCbpAp) . Equal volume (to the gel slice) of polynucleotide aggregating polypeptides was added to the gel slice and incubated at 65°C for 10 mins.
  • T4 DNA ligase and diluted ligation buffer (total 10 ⁇ l) are then added directly to the polynucleotide (vector and insert DNA) -polypeptide aggregates (collected by centrifugation) .
  • Ligation reaction was performed at 22°C for 10 mins.
  • the ligation mixture (4 ⁇ l) was used for transformation into bacteria (80 ⁇ l chemically competent cells) .
  • Successful ligation of restriction enzyme digested-DNA (with sticky ends) into the cloning vector was demonstrated by colony PCR (FIG. 2E) and DNA sequencing (Applied Biosystems) of the isolated plasmids.
  • Polynucleotides in polynucleotides-polypeptide aggregates, formed between restriction enzyme digested-polynucleotides in melted agarose and polynucleotides-aggregating polypeptides, are successfully ligated to ligation vectors in sticky-ends (cohesive) ligation reaction, without any interlude polynucleotide-purifying procedures.
  • Example 4 Southern hybridization with labelled probes prepared from polynucleotide-polypeptide aggregates.
  • Nucleic acids ( ⁇ 700bp DNA) were first mixed with 20 ng/ ⁇ l polynucleotide-aggregating protein (hh ⁇ -synuclein, hhDPSp or hhCbpAp) and the collected polynucleotide-polypeptide aggregates are used directly in probe labeling reaction mixtures. After labeling reactions, the labeling reactions containing polynucleotide-protein aggregates are denatured at 95°C and added directly to hybridization reactions without requiring polynucleotides purifying procedures. Positive signals are observed with southern blot hybridization (FIG. 3B) .
  • polynucleotide-aggregating protein hh ⁇ -synuclein, hhDPSp or hhCbpAp
  • Double-stranded DNA stimulates the fibrillation of alpha-synuclein in vitro and is associated with the mature fibrils: an electron microscopy study. J Mol Biol 344, 929-938.
  • Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryot Cell 2, 646-650.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided novel methods and compositions for rapid polynucleotide purification useful in a streamlined process of polynucleotide manipulation.

Description

POLYNUCLEOTIDE-POLYPEPTIDE AGGREGATES AND USES THEREOF
REFERENCE TO ELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No. 62/071,389, filed on September 23, 2014, the contents of which are hereby incorporated by reference in the entirety for all purposes.
BACKGROUND OF THE INVENTION
Sequential manipulations of polynucleotides, which are commonly facilitated by polynucleotide-manipulating systems, are generally interlude with polynucleotide-purifying procedures between successive polynucleotide manipulations.
Chromatographic-based polynucleotide-purifying procedures (e.g., silica-based resins, chromatographic resins) is a conventional set of interlude polynucleotide-purifying procedures between successive polynucleotide manipulations, including those used in polynucleotide-manipulating systems. Chromatographic based polynucleotide-purification commonly involves separation of dissociated polynucleotides through capture on nucleotide-binding resins, followed by washings and elution of the bound polynucleotides. The procedure commonly requires adjustment of dissociated polynucleotide solution with binding buffers, before capture of polynucleotides, followed by washing and elution to release the bound polynucleotides from the resin (Kristyanne et al., 2003; Woodard et al., 1996) . Chromatographic-based polynucleotide-purifying procedures commonly involve multiple steps of buffers, multiple accessories, and multiple changes.
Organic solvent-partitioning of polynucleotides is another conventional set of interlude polynucleotide-purifying procedures between successive polynucleotide manipulations. Organic solvent-partitioning commonly involves solvent-aqueous phase partitioning of polynucleotides from other constituents in polynucleotide-containing medium (e.g., cell lysates, agarose gel) into the aqueous phase. Further purification of polynucleotides from the solvent are required and can commonly include chromatographic- based techniques (Thomas et al., 1992) and salt-solvent (alcoholic) precipitation. Solvent-partitioning generally demands multiple steps in separating the polynucleotide-enriched phase from the non-enriched phase, very often through multiple transferring and gathering. Procedures based on solvent-partitioning are generally very labor-demanding and repetitive, requiring multiple changes of solvents and accessories. Many chemical solvents (e.g., phenol, chloroform) are also regulated substances with low sustainability values.
Chemical precipitation of polynucleotides are conventional techniques used in molecular biology and can be a stand-alone interlude polynucleotide-purifying procedure or can be incorporated with other interlude polynucleotide-purifying procedures. However, multiple steps are required to remove the precipitating agents before the use of the precipitated polynucleotides in polynucleotide manipulations. Salt-solvent precipitation (e.g., salt-alcohol precipitation) of polynucleotides, a widely used conventional technique set, also demands the pre-adjustments of polynucleotides-containing solutions to high salt concentrations before addition of alcoholic solvent, followed by sedimentation to collect the precipitates. The salt-polynucleotide precipitates are then collected and washed repetitively, going through multiple steps of sedimentation and decanting to rid of excess salts, before air-dried and re-suspension. Salt-alcohol precipitations are highly labor-demanding and repetitive, and requiring multiple steps in salt concentration pre-adjustment, in subsequent washing, decanting and re-suspension of the precipitates. Alcohol solvents, organic solvents and high salt concentrations, if persist, can be inhibitory to many polynucleotide-manipulating reactions (Bruinsma et al., 2012) . Many alcoholic solvents (e.g., ethanol) are also regulated substances.
Interlude polynucleotide-purification procedures, which are not limited to the aforementioned examples, features generally in sequential polynucleotide manipulations, including those facilitated by polynucleotide-manipulating systems, representing interruptions of laboratory workflow. These interlude polynucleotide purification procedures are generally labor-demanding and repetitive, requiring multiple steps for the changes of buffers and in many cases, involving regulated solvents. A new set of technical practices in which sequential polynucleotide manipulations can be accomplished without interlude polynucleotide-purifying procedures, and with increase sustainability values, is called for to the advancements of the field. The present invention fulfills this and other related needs.
BRIEF SUMMARY OF THE INVENTION
The invention relates to the discovery that polynucleotide-aggregating proteins can bind to polynucleotides, especially double stranded DNA molecules, to form polynucleotide-polypeptide aggregates, which can then be rapidly and easily removed from an environment where a polynucleotide of interest may be present with a variety of other molecules of distinct chemical and biological nature. This method allows for easy isolation of polynucleotides without the need of using chemical precipitation or extraction, enabling one to further manipulate the polynucleotide in a streamlined process.
Thus, in the first aspect, the present invention provides a method for isolating a polynucleotide. The method comprises these steps: (i) adding a polynucleotide-aggregating protein into a sample containing the polynucleotide under conditions permissible for forming polynucleotide-polypeptide aggregates; and (ii) separating the polynucleotide-polypeptide aggregates from the sample, thereby isolating the polynucleotide.
In some embodiments, the polynucleotide-aggregating protein is hhα-synuclein, hhDPSp, or hhCbpAp. In some embodiments, the sample is a cell or virus lysate or a melted agarose gel solution. In some embodiments, the separating of step (ii) comprises precipitating the polynucleotide-polypeptide aggregates by centrifugation.
In some embodiments, this method further comprises a step (iii) of placing the polynucleotide-polypeptide aggregates from step (ii) in a reaction mixture for further manipulation of the polynucleotide. In some embodiments, the further manipulation comprises a reaction of amplifying the polynucleotide, such as a polymerase chain reaction (PCR) . In some embodiments, the further manipulation comprises a reaction of enzymatically digesting the polynucleotide. In some embodiments, the further manipulation comprises a reaction of ligation of the polynucleotide. In some embodiments, the further manipulation comprises a hybridization reaction of the polynucleotide.
In a second aspect, the present invention provides a composition comprising polynucleotide-polypeptide aggregates formed by a polynucleotide and a polynucleotide-aggregating protein. Often, the aggregates are readily separated from a liquid sample upon centrifugation, precipitation, or filtration and can then be used in performing a further manipulation step of the polynucleotide contained in the aggregates.
In some embodiments, the polynucleotide-aggregating protein is hhα-synuclein, hhDPSp, or hhCbpAp. In some embodiments, the polynucleotide and the polynucleotide-binding protein are heterogeneous to each other. In some embodiments, the composition is a reaction mixture for an amplification reaction of the polynucleotide, for example, the amplification reaction is PCR. In some embodiments, the composition is a reaction mixture for an enzymatic digestion of the polynucleotide. In some embodiments, the composition is a reaction mixture for ligation of the polynucleotide. In some embodiments, the composition is a reaction mixture for a hybridization reaction of the polynucleotide.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the nucleic acid-polypeptide composites collected after mixing mammalian cell lysates with: lane 1, hhα-synuclein; lane 2, hhDPSp; lane 3, hhCbpAp. Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 1B illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the products of PCR with different nucleic acid-polypeptide composites (as shown in FIG. 1A) : lane 1, nucleic acid-hhα-synuclein composites; lane 2, nucleic acid-hhDPSp composites; lane 3, nucleic acid-hhCbpAp composites. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 2A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the expected PCR product (0.7 kbp) for ligation (lane 1) . Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 2B illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the products of PCR using post-ligation reactions as PCR templates: lane 1, TA-cloning vector only; lane 2, TA-cloning vector and nucleic acids purified with resin-based column; lane 3, TA-cloning vector and nucleic acid-hhα-synuclein composites; lane 4, TA-cloning vector and nucleic acid-hhDPSp composites; lane 5, TA-cloning vector and nucleic acid-hhCbpAp composites) . Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 2C illustrates an ethidium bromide-stained agarose gel showing the restriction enzymes (KpnI and PstI) -digested vector (pQE-1, 3.5 kbp) for ligation (lane 1) . Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 2D illustrates an ethidium bromide-stained agarose gel showing the restriction enzymes (KpnI and PstI) -digested insert DNA (0.7 kbp) for ligation (lane 1) . Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 2E illustrates an ethidium bromide-stained agarose gel showing the products of PCR using bacterial colony as PCR templates: lane 1, pQE-1-cloning vector only; lane 2, pQE-1-cloning vector and DNA purified with resin-based column; lane 3, pQE-1-cloning vector and DNA-hhα-synuclein composites; lane 4, pQE-1-cloning vector and DNA-hhDPSp composites; lane 5, pQE-1-cloning vector and DNA-hhCbpAp composites) . Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 3A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the 4.2 kbp-DNA used for southern blot hybridization. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 3B illustrates the image of southern blot of the agarose gel of FIG. 3A. Hybridization is carried out with biotinylated probes prepared with different nucleic acid-polypeptide composites; lane 1, Resin-based column-purified nucleic acids; lane 2, nucleic acid-hhα-synuclein composites; lane 3, nucleic acid-hhDPSp composites; lane 4, nucleic acid-hhCbpAp composites.
FIG. 4A illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the input nucleic acids (8.9 kbp, 100 ng) (Lane 1) ; supernatant of nucleic acid-hhα-synuclein composites after centrifugation (Lane 2) ; pellet of nucleic acid-hhα-synuclein composites after centrifugation (Lane 3) . Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 4B illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the input nucleic acids (8.9 kbp, 100 ng) (Lane 1) ; supernatant of nucleic acid-hhDPSp composites after centrifugation (Lane 2) ; pellet of nucleic acid-hhDPSp composites after centrifugation (Lane 3) . Nucleic acid-polypeptide composites were treated with  proteinase K before loading for agarose gel electrophoresis. Lane M contains the 1kb plus ladder (Invitrogen) .
FIG. 4C illustrates the fluorescent image of an ethidium bromide-stained agarose gel showing the input nucleic acids (8.9 kbp, 100 ng) (Lane 1) ; supernatant of nucleic acid-hhCbpAp composites after centrifugation (Lane 2) ; pellet of nucleic acid-hhCbpAp composites after centrifugation (Lane 3) . Nucleic acid-polypeptide composites were treated with proteinase K before loading for agarose gel electrophoresis. Lane M contains the 1kb plus DNA ladder (Invitrogen) .
FIG. 5 Workflow improvements for sequential nucleic acid manipulations, through relinquishments of intervening nucleic acid-purifying procedures. A. diagrammatically representing workflow of prior sequential nucleic acid manipulations with intervening nucleic acid-purifying procedures. B. diagrammatically representing workflow of sequential nucleic acid manipulations mediated by manipulating nucleic acids in nucleic acid-polypeptide composites, without intervening nucleic acid-purifying procedures. C. diagrammatically representing workflow of sequential nucleic acid-manipulations with nucleic acid-polypeptide composites.
FIG. 6 diagrammatically represents workflow improvements for sequential polynucleotide manipulations, through relinquishments of interlude polynucleotide-purifying procedures. A. diagrammatically represents workflow of prior sequential polynucleotide manipulations with interlude polynucleotide-purifying procedures. B. diagrammatically represents workflow of sequential polynucleotide manipulations mediated by manipulating polynucleotides in polynucleotide-polypeptide aggregates, without interlude polynucleotide-purifying procedures.
DEFINITIONS
The terms “nucleic acid” and “polynucleotide” are interchangeable with each other in this disclosure and refer to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single-or double-stranded form. Unless specifically limited, the term “nucleic acid” or “polynucleotide” encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless  otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) , alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19: 5081 (1991) ; Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985) ; and Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994) ) . Furthermore, the term nucleic acid or polynucleotide is used interchangeably with gene, cDNA, and mRNA encoded by a gene.
The term “gene” means the segment of DNA involved in producing a polypeptide chain. It may include regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons) .
An “expression cassette” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular polynucleotide sequence in a host cell. An expression cassette may be part of a plasmid, viral genome, or nucleic acid fragment. Typically, an expression cassette includes a polynucleotide to be transcribed (e.g., one encoding IL-33) , operably linked to a promoter.
The term “polynucleotide manipulation” refers to any processing at a molecular level of a polynucleotide of interest. It includes reproduction/synthesis of the polynucleotide (such as copying by way of a primer extension reaction or amplification by way of a polymerase chain reaction, PCR) and chemical or enzymatic modification of the polynucleotide (such as ligation of the polynucleotide to another molecular moiety, e.g., another polynucleotide or polypeptide or a detectable moiety, removal of a moiety of the polynucleotide, or cleavage of the polynucleotide chain by an enzyme, e.g., an endonuclease) .
The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is  bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. “Amino acid mimetics” refers to chemical compounds having a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
There are various known methods in the art that permit the incorporation of an unnatural amino acid derivative or analog into a polypeptide chain in a site-specific manner, see, e.g., WO 02/086075.
Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
“Polypeptide, ” “peptide, ” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. All three terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full-length proteins, wherein the amino acid residues are linked by covalent peptide bonds.
As used herein, a “polynucleotide-aggregating protein” or “polynucleotide-aggregating polypeptide” is a protein or polypeptide that is capable of binding to a polynucleotide, e.g., a double-stranded DNA molecule, to form a polynucleotide-polypeptide aggregate, or a nucleic acid-polypeptide composite, which may be insoluble or of reduced solubility and can be readily isolated by centrifugation or filtration. A “polynucleotide-aggregating protein” is capable of binding to a polynucleotide on a non-sequence specific basis, i.e., the protein binds to the polynucleotide regardless of the nucleotide sequence of the polynucleotide molecule, to form an insoluble macromolecule aggregate, which can be readily separated from a liquid environment by centrifugation or filtration. Exemplary polynucleotide-aggregating proteins include hhα-synuclein, hhDPSp, and hhCbpAp, as well  as other DNA-binding proteins such as histones and protamines. Such polynucleotide-protein aggregates may form between proteins and DNA or RNA molecules. A “polynucleotide-aggregating protein” may be a naturally occurring protein isolated from a natural source (e.g., a prokaryotic or eukaryotic cell) or may be a protein modified from its naturally occurring version, including in the form of a recombinantly produced protein. While in some cases, the polynucleotide and the polynucleotide-aggregating protein that form polynucleotide-polypeptide aggregates can be from the same origin or same organism, whereas in other cases, the polynucleotide and the polynucleotide-aggregating protein that form polynucleotide-polypeptide aggregates are heterologous to each other, in other words, the polynucleotide are from one origin (e.g., from one organism such as a bacterium, a virus, or a eukaryotic cell) and the polynucleotide-aggregating protein are from another distinct origin, e.g., from another different organism. A recombinantly produced polynucleotide is heterologous to a recombinantly produced polynucleotide-aggregating protein. “Polynucleotide-polypeptide aggregates, ” as used in this application, are aggregates or composites formed by a polynucleotide and a polynucleotide-aggregating protein. Typically, they are insoluble macromolecular composites, comprising non-covalently bound polynucleotides and polypeptides. Such aggregates can be formed without the need for organic solvents, high salt concentrations, or detergents (Ceci et al., 2004; Cherny et al., 2004; Cosgriff et al., 2010) . For instance, in some cases polynucleotide-polypeptide aggregates can form efficiently in a low salt (e.g., no more than 400 mM NaCl) environment with neutral or slightly acidic pH (e.g., pH 5-8, preferably 6-7) .
DETAILED DESCRIPTION OF THE INVENTION
I. INTRODUCTION
This present inventors discovered that polynucleotide-polypeptide aggregates can be formed by placing a polynucleotide-aggregating protein into a sample containing a polynucleotide under conditions permissible for the formation of aggregates of the polynucleotide and the polypeptide. The polynucleotide-polypeptide aggregates so formed can be readily separated from the remainder of the sample, allowing for rapid and easy isolation of the polynucleotide without the need to employ conventional nucleic acid purification techniques, which often involve the use of one or more chemicals and tends to interrupt an otherwise continuous molecular manipulation of the polynucleotide. Thus, the  present invention provides novel methods and compositions useful for rapid and efficient isolation of polynucleotides for further manipulation of the polynucleotides.
This new isolation method, achieved by way of forming and concentrating the polynucleotide-polypeptide aggregates, effectively separates polynucleotides from an environment where the polynucleotides are present with various molecules of distinct chemical nature. This method preserves the continuous workflow practice in sequential polynucleotide manipulations, as polynucleotides are held through sequential polynucleotide manipulation steps in the polynucleotide-polypeptide aggregates, without the interlude polynucleotide purifying procedures commonly used in the pertinent field of biomedical research.
II. GENERAL DESCRIPTION OF THE INVENTION
The present invention provides a new method for rapid isolation of polynucleotides by way of formation and separation of polynucleotide-polypeptide aggregates from an environment where the polynucleotides may be present along with other molecules. The relative ease of isolating the polynucleotide-polypeptide aggregates (e.g., by centrifugation) eliminates the need for chemicals typically used in extraction or precipitation of nucleic acids, this method is thus particularly useful for streamlining a process comprising sequential steps of manipulating nucleic acids without interrupting the workflow practice in molecular biological systems. During the sequential manipulation process, nucleic acids are held through continuous steps in polynucleotide-polypeptide aggregates, circumventing the need for intervening nucleic acid purifying procedures commonly employed in the pertinent research field. As such, the present invention significantly improves workflow in nucleic acid manipulations.
In one embodiment of the present invention, sequential cloning of targeted polymerase chain reaction (PCR) products into TA-cloning vector is carried out, following sequential formation of nucleic acid-polypeptide composites from pre-cleared cell lysates, followed by targeted PCR with PCR templates of nucleic acid-polypeptide composites, followed by ligation of the TA-vector with PCR products of the PCR products-protein composites, and then the delivery of ligated PCR products in nucleic acid-polypeptide composites into bacterial hosts and amplification of the cloned nucleic acids (EXAMPLE 1) .
This embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in common manipulations of nucleic acids, during which nucleic acids are held through sequential nucleic acid-manipulating manipulations in nucleic acid-polypeptide composites. The workflow practice is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in the pertinent research field.
In another embodiment of the present invention, sequential cloning and ligation of electrophoretically-separated PCR products into TA-cloning vector and restriction enzymes-digestion vector (directional cloning) are carried out, following sequential formation of nucleic acid-polypeptide composites from gel-purified PCR product (see EXAMPLE 2 and EXAMPLE 3) , followed by ligation of the PCR products of the nucleic acid-polypeptide composites, followed by the transfer of nucleic acid-polypeptide composites into bacterial hosts and amplification of the cloned nucleic acid (EXAMPLE 2 and EXAMPLE 3) .
This embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in sequential manipulations of nucleic acids, during which nucleic acids are held in nucleic acid-polypeptide composites. This workflow practice in sequential manipulations of nucleic acids, which are commonly facilitated by molecular biological systems, is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in the pertinent research field.
In yet another embodiment of the present invention, sequential cloning and ligation of electrophoretically-fractionated enzyme-digested nucleic acids into sticky-end-cloning vector is carried out, following sequential formation of nucleic acid-polypeptide composites from gel-purified nucleic acids, followed by sticky-ends (cohesive) ligation reaction with nucleic acids in nucleic acid-polypeptide composites, followed by the transfer of nucleic acid-polypeptide composites into bacterial hosts and amplification of the cloned nucleic acids.
This embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in sequential manipulations of nucleic acids, during which nucleic acids are held in nucleic acid- polypeptide composites. This workflow practice in sequential manipulations of nucleic acids, which are commonly facilitated by molecular biological systems, is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in prior arts (EXAMPLE 4) .
In yet another embodiment of the present invention, _successful southern blot hybridization is carried out after probe labelling of the nucleic acids of the nucleic acid-polypeptide-composites, and delivery of the labelled probes to the hybridization medium containing the filter imprinted with gel-fractionated nucleic acid templates (EXAMPLE 4,FIG. 3B) .
The present embodiment serves as an example for demonstrating manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in sequential manipulations of nucleic acids, during which nucleic acids are held in nucleic acid-polypeptide composites. This workflow practice in sequential manipulations of nucleic acids, which are commonly facilitated by molecular biological systems, is substantially simplified as sequential nucleic acid manipulations are carried out without any intervening nucleic acid-purifying procedures that are commonly demanded in the pertinent field.
In yet another embodiment of the present invention, total amount of DNAs are isolated from solution, using nucleic acid-polypeptide aggregation as the isolation method.
The aforementioned embodiments demonstrate manipulating nucleic acids in nucleic acid-polypeptide composites as a workflow practice in common manipulations of nucleic acids, during which nucleic acids are held in nucleic acid-polypeptide composites. Nucleic acid manipulations are generally modular and the present invention can be incorporated in common nucleic acid manipulations for simplifications of experimental workflow through circumvention of intervening nucleic acid-purifying procedures typically employed in the pertinent research field.
Diagrammatic representations of manipulating nucleic acids of nucleic acid-polypeptide composites as a laboratory practice in sequential nucleic acid manipulations, without intervening nucleic acid purification procedures, are summarized in FIG. 6.
Elimination of intervening nucleic acid-purifying procedures, especially elimination of the associated use of organic solvents, would also be conducive to the simplification and  automation of the overall molecular biological systems that are previously associated with the handling of the intervening nucleic acid-purifying procedures (FIG. 6) .
III. POLYNUCLEOTIDE-AGGREGATING PROTEINS
The present invention provides a new method of rapid isolation of polynucleotides from a sample where other molecules might be present. A polynucleotide-aggregating protein is added to the sample, which is typically a liquid sample or a liquid-containing sample with the polynucleotides dissolved in the liquid, and binds to the polynucleotides via non-covalent linkages such as Van de Waals force, hydrogen bond, electrostatic attraction to form polynucleotide-polypeptide aggregates. The aggregates often exhibit substantially reduce solubility or may become insoluble in the liquid environment where the polynucleotides are present, such that the aggregates can be readily isolated from the liquid environment by mechanical means such as centrifugation or filtration. In most cases, centrifugation at relative centrifugal force (RCF) of 50-50,000g, or 100-10,000g, or 200-10,000, 15,000, 20,000, or 25,000g for a time duration of at least 5-10 seconds, at least 20-30 seconds, or from 10, 20, 30 seconds to 1, 2, 3, 4, 5 or 10 minutes will be effective for isolating the polynucleotide-polypeptide aggregates. In one example, RCF of 200g for 2 minutes, or 16,000g for 5-10 seconds sufficiently pellets at least 50, 60, 70, 80, 90%or more of the aggregates for separation from the liquid portion of the sample. Filtration with filter material having filter or pore size ranging 0.10-500 μm, 0.20-250 μm, 0.50-100 μm, or 1-50 μm can also effectively isolate the aggregates. In some examples, filtration using pore size range of 0.45-50 μm effectively separate the aggregates (e.g., at least 50, 60, 70, 80, 90%or more) from the rest of the fluid sample. In addition, isolation of the aggregates can be facilitated by using a recombinant polynucleotide-aggregating protein comprising a first partner in a known binding pair, such that the aggregates can be readily separated from a liquid environment where they are present when passing through a solid support on the surface of which the second partner of the binding pair is immobilized. The polynucleotide-polypeptide aggregates can also be isolated from a liquid sample in an affinity-based method, for example, by immobilized metal affinity chromatography (e.g., using nickel beads or nickel coated microtiter plate (e.g., HIS-select High sensitivity nickel coated plate from Sigma-Aldrich) ) , as the polynucleotide-aggregating proteins used here all possess 6xHis tag.
Often, a polynucleotide-aggregating protein is one isolated or derived from a natural source, e.g., a naturally occurring nuclear protein that is known to bind to nucleic acids. Exemplary polynucleotide-aggregating proteins include hhα-synuclein, hhDPSp, and hhCbpAp (GenBank Accession numbers: NP_000336; CAA49169.1; and YP_489273.1) . Additional polynucleotide-aggregating proteins include dinoflagellate histone-like protein HCc3 (Accession number: AAM97522) (Wong et al., 2003) , various histones (Histone H1 and histone H2B from calf thymus, purchased from Roche) and protamine (Protamine from salmon, purchased from Sigma-Aldrich) . For use in the practice of the method of this invention, a polynucleotide-aggregating protein may be recombinantly produced and/or may be modified for ease of use. For instance, the polynucleotide-aggregating protein may be recombinantly or chemically modified to have an altered amino acid sequence or to have an added moiety to facilitate detection (e.g., a detectable moiety) or isolation (e.g., an affinity tag) . Furthermore, the polynucleotide-aggregating protein may contain one or more non-natural amino acid residues (e.g., D-amino acids) for the purpose of enhanced stability (e.g., increased resistance to proteases or improved bioavailability) or enhanced affinity to nucleic acids. The suitability of these polynucleotide-aggregating proteins, whether naturally occurring or modified, for use in the method of this invention can be verified in a binding assay where a suitable protein can be shown to bind to nucleic acids adequately to form polynucleotide-polypeptide aggregates in order to permit efficient isolation.
Furthermore, when a polynucleotide-aggregating protein is recombinantly produced for use in the method of this invention, a “tag” can be engineered into the protein sequence such that it can be easily purified, detected, and/or imaged. Any one of the “tags” known and used in the field of recombinant proteins can be chosen for this purpose: a peptide tag such as an AviTag, a peptide allowing biotinylation by the enzyme BirA and so the protein can be isolated by streptavidin (GLNDIFEAQKIEWHE) , a Calmodulin-tag, a peptide bound by the protein calmodulin (KRRWKKNFIAVSAANRFKKISSSGAL) , a polyglutamate tag, a peptide binding efficiently to anion-exchange resin such as Mono-Q (EEEEEE) , an E-tag, a peptide recognized by an antibody (GAPVPYPDPLEPR) , a FLAG-tag, a peptide recognized by an antibody (DYKDDDDK) , an HA-tag, a peptide recognized by an antibody (YPYDVPDYA) , a His-tag, 5-10 histidines bound by a nickel or cobalt chelate (HHHHHH) , a Myc-tag, a short peptide recognized by an antibody (EQKLISEEDL) , an S-tag  (KETAAAKFERQHMDS) , an SBP-tag, a peptide that specifically binds to streptavidin (MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP) , a Softag 1 for mammalian expression (SLAELLNAGLGGS) , a Softag 3 for prokaryotic expression (TQDPSRVG) , a Strep-tag, a peptide that binds to streptavidin or the modified streptavidin called streptactin (Strep-tag II: WSHPQFEK) , a TC tag, a tetracysteine tag that is recognized by FlAsH and ReAsH biarsenical compounds (CCPGCC) , a V5 tag, a peptide recognized by an antibody (GKPIPNPLLGLDST) , a VSV-tag, a peptide recognized by an antibody (YTDIEMNRLGK) , an Xpress tag (DLYDDDDK) ; or a covalent peptide tags such as an Isopeptag, a peptide that binds covalently to pilin-C protein (TDKDMTITFTNKKDAE) , a SpyTag, a peptide that binds covalently to SpyCatcher protein (AHIVMVDAYKPTK) ; or a protein tag such as a BCCP tag (Biotin Carboxyl Carrier Protein) , a protein domain biotinylated by BirA enabling recognition by streptavidin, a Glutathione-S-transferase (GST) tag, a protein that binds to immobilized glutathione, a Green fluorescent protein (GFP) tag, a protein that is spontaneously fluorescent and can be bound by nanobodies, a Maltose binding protein (MBP) tag, a protein that binds to amylose agarose, a Nus-tag, a Thioredoxin-tag, an Fc-tag, derived from immunoglobulin Fc domain, allow dimerization and solubilization. Can be used for purification on Protein-ASepharose; as well as other types of tags such as the Ty tag. Furthermore, the integrin β fragment may also include one or more D-amino acids or include chemical modifications such as glycosylation, PEGylation, crosslinking, and the like.
For a protein that has the potential to bind DNA or RNA, its ability of forming and participating as a part of insoluble polynucleotide-polypeptide aggregates defines its role as a polynucleotide-aggregating protein. In other words, whether it is a polynucleotide-aggregating protein can be verified in a binding assay in which it forms insoluble aggregates with one or more polynucleotides. Typically, such insoluble aggregates are formed under low salt, neutral to slightly acidic conditions (e.g., no greater than 400 mM Na+, for example NaCl, pH 6-7) at room temperature and can be precipitated (greater than 80%weight) under RCF of 5,000-7,000g for 5-20 seconds.
IV. FORMATION AND ISOLATION OF POLYNUCLEOTIDE-POLYPEPTIDE AGGREGATES
The present invention takes advantage of insoluble aggregates formed by polynucleotide and polynucleotide-aggregating proteins to rapidly isolate polynucleotides from a liquid sample where other molecules may be present, without the need of precipitation by organic solvents or high salts nor any interruption of workflow. Essentially any liquid sample containing or suspected of containing a polynucleotide of interest may be used in the isolation method for rapid isolation of polynucleotide. Exemplary samples include biological samples taken from a patient (e.g., blood, serum, plasma samples or any other bodily fluid samples) , cell or tissue culture samples, food/beverage samples, environmental samples (including air, soil, water samples) , or samples that have been processed in any experimental procedures (e.g., cell lysates, melted gel solutions, polynucleotide synthesis reactions, or polynucleotide digestion reactions) , whereas exemplary polynucleotides may be of bacterial, viral, mammalian, plant, and other origins.
To form the desired polynucleotide-polypeptide aggregates, one or more polynucleotide aggregating proteins may be added to the liquid sample. Generally, the conditions under which such aggregates can form are mild: there is no requirement for organic solvents, high salt concentrations, or detergents. The temperature range can be from slightly chilled to room temperature to slightly elevated, e.g., ranging from 5-80℃, 10-60 ℃, 15-50 ℃, 10-30 ℃, 10-20 ℃, or 20-25 ℃. The pH of the liquid environment can range from about 5-9, 6-8, 6-7, or 6.5-7.5. Typically, the molar ratio of polynucleotide to polypeptide to form the polynucleotide-polypeptide aggregates ranges from the low end of 1: 2 to 2: 1 (e.g., 1: 1) to the high end of 500: 1 to 5000: 1 (e.g., 1000: 1) . The process of aggregate formation can complete in a relatively short time span, e.g., from 10 seconds to 5-10 minutes, usually within 30 seconds to 1-2 minute.
Once the polynucleotide-polypeptide aggregates has formed, a number of methods may be employed to isolate the aggregates from the rest of the sample. Since the aggregates are insoluble macromolecule composites, centrifugation is a commonly use method to quickly retain the aggregates while removing the remainder of the sample. Centrifugation at relative centrifugal force (RCF) of 50-50,000g, or 100-10,000g, or 200-10,000, 15,000, 20,000, or 25,000g for a time duration of at least 5-10 seconds, at least 20-30 seconds, or  from 10, 20, 30 seconds to 1, 2, 3, 4, 5 or 10 minutes will be effective for isolating the polynucleotide-polypeptide aggregates. In one example, RCF of 200g for 2 minutes, or 16,000g for 5-10 seconds sufficiently pellets at least 50, 60, 70, 80, 90%or more of the aggregates for separation from the liquid portion of the sample. Similarly, a simple precipitation process in some cases can be adequately effective for isolation of the polynucleotide-polypeptide aggregates. Upon completion of precipitation, the insoluble aggregates will be present at the lowest point of a liquid environment due to gravity. The liquid portion can then be carefully discarded without disturbing the precipitates, which include the insoluble aggregates.
Another alternative to rapidly isolate the polynucleotide-polypeptide aggregates is by way of filtration. Any porous material such as filter paper can be used for this purpose. Suitable filtration material of pore size ranging 0.10-500 μm, 0.20-250 μm, 0.50-100 μm, or 1-50 μm can also effectively isolate the aggregates. In some examples, filtration using pore size range of 0.45-50 μm effectively separates the aggregates (e.g., at least 50, 60, 70, 80, 90%or more) from the rest of the fluid sample. The isolation process, either by centrifugation, precipitation, or filtration, is typically carried out at room temperature (e.g., 15-20 or 25℃, 25℃, 37℃, 45℃, 55℃, 65℃, 75℃. (with percentage DNA recovery>80%) but can also be performed at a slightly chilled temperature (e.g., 2-10℃, such as 4℃) or at a slightly elevated temperature (e.g., 30-75℃, such as 37℃, 45℃, 55℃, 65℃, or 75℃) .
In addition, the polynucleotide-aggregating protein used in the isolation process may be recombinantly produced to contain a binding partner of a known molecular binding pair to allow easy isolation of the polynucleotide-polypeptide aggregates formed by the protein. Some of the suitable tags are mentioned in an earlier section. For example, the polynucleotide-aggregating protein may be designed to include an affinity tag such as 6xHis or streptavidin, such that the polynucleotide-polypeptide aggregates containing this protein can be easily removed from a sample using substrate of immobilized nickel or biotin. Optionally, the affinity tag in the recombinantly produced polynucleotide-aggregating protein is cleavable due to a protease cleavage site being placed between the tag the polynucleotide-aggregating protein, which would further allow a quick release of the polynucleotide-polypeptide aggregates from the substrate after isolation of the aggregates from the sample. In using any of the above methods for isolating the polynucleotide-polypeptide aggregates,  80%or more of the polynucleotide (s) present in a sample is typically recovered by way of isolating the aggregates.
V. FURTHER MANIPULATION OF POLYNUCLEOTIDES
Using the rapid and expedient polynucleotide isolation method of this invention, one is able to perform a series of manipulation of the polynucleotide of interest without the need to interrupt the work flow. Subsequent to the isolation step, further manipulation of the polynucleotide of interest may include synthesis or amplification of the polynucleotide, ligation or chemical modification of the polynucleotide, and cleavage or digestion of the polynucleotide.
Synthesis of the polynucleotide includes any polymerase-mediated reaction in which the polynucleotide is in essence “copied” or “reproduced” using free nucleotides (which may include naturally occurring nucleotides or modified nucleotides) . Example of such synthesis include primer extension reaction and polymerase chain reaction as well as DNA being transcribed into RNA and RNA being reverse transcribed into DNA. Polynucleotide sequencing reactions are a variation of a primer-directed polynucleotide synthesis and can also be performed as a part of the polynucleotide manipulation series following quick isolation of polynucleotides using the method of this invention.
Ligation or chemical modification of the polynucleotide includes any enzymatic or chemical reaction that resulting the addition of a moiety to the polynucleotide or removal of a moiety from the polynucleotide. Examples of such modification include ligation of the polynucleotide with another molecule (asmall molecule or a macromolecule such as another polynucleotide, a protein etc. ) .
Cleavage or digestion of the polynucleotide includes the shortening of the polynucleotide chain by any enzymatic or chemical reaction or mechanical force. Examples of cleavage or digestion include endonuclease or exonuclease digestion of DNA or alkaline digestion of RNA.
EXAMPLES
The following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of non-critical parameters that could be changed or modified to yield essentially the same or similar results.
Methods
In the present examples, the polynucleotide-aggregating polypeptides used include human α-synuclein (Cherny et al., 2004; Goers et al., 2003; Hegde and Rao, 2007; Padmaraju et al., 2011) , the Escherichia coli Dps (DNA-binding polypeptides from starved cells) (Ceci et al., 2004) , and CbpA (curved DNA-binding polypeptide A) (Cosgriff et al., 2010) .
The preparation methods of polynucleotide-aggregating polypeptides are not limited to the examples used and the specific conditions have to be empirically-derived. In this instance, recombinant PAPs are tagged with 6xHis tag in bacteria, purified with Ni-NTA affinity isolation system (Qiagen Corporation) according to manufacturer’s protocols. In the following (above) examples, the concentrations of polynucleotide-aggregating polypeptides after mixing with the polynucleotide-containing samples were in the range of 11.95–86.03 μg/ml (0.63–2.54 μM) with extrapolated polypeptide-to-DNA ratios (in mass) to be in the range of 1.79–12.90. Concentrations of polynucleotide-aggregating polypeptides in the stock preparations, in the present examples, are in the range of 100 to 280 ng/μl (5.8-20.8 μM) .
In the present examples, polynucleotide-polypeptide aggregates are formed upon mixing polynucleotide-aggregating polypeptides with polynucleotide-containing mediums (ambient room temperatures, unless otherwise stated) . Polynucleotide-polypeptide aggregates can be collected from fluid mediums by common methods of particle isolation. In the present examples, collection of the polynucleotide-polypeptide aggregates was carried out by brief sedimentation (minimum of 30 seconds) in a benchtop centrifuge, applied immediately or after 10 minutes of mixing, followed by decanting of supernatant. Although no high salt concentrations, organic solvents, or alcohols are required, the particular formative conditions of polynucleotide-polypeptide aggregates for the formation and restraining polynucleotide-polypeptide aggregates, and hence the formulation of polynucleotide-aggregating polypeptides provided for polynucleotide-manipulating systems,  have to be derived empirically for specific polynucleotide-aggregating polypeptides and applications.
Protocols of polynucleotide manipulation used in the present examples are carried out according to established methods (Sambrook and Russell, 2001) . Pre-cleared cell-lysates of cultured mammalian cells (HL-60, 5 x 106 cells) used were prepared by detergent lysis-proteinase K method (Laird et al., 1991) . The melted agarose used was low melting temperature agarose (SeaPlaque Agarose, Lonza) that would melt at≥65℃ according to manufacturer product instructions. Applications of the present invention are not limited by these examples.
The term "Polymerase chain reaction" or "PCR" as used herein refers to the process to amplify polynucleotides, as described in U.S. Pat. Nos. 4,683,105 and 4,683,202 both owned by Roche Molecular. PCR is a common technique used for the amplification of target polynucleotide stretch, including readouts from biological assays. In the following (above) examples, southern blot hybridization was carried out as described in manufacturer’s protocols (Amersham Hybond-N+, DetectorTM PCR DNA Biotinylation Kit, KPL Inc., DetectorTM HRP Chemiluminescent Blotting Kit, KPL Inc., FIG. 3B) . DNA (linearized plasmid DNA, 100 ng, 4.2 kbp) samples were first separated on an agarose gel (1%w/v) (FIG. 3A) and transferred on nylon membrane (Amersham Hybond-N+, GE Healthcare) by capillary actions. DNA fragment (~700 bp) used for probe preparation was first electrophoretically separated on 1%w/v agarose gel before mixing with NAPs to harvest polynucleotide-polypeptide aggregates. Hybridization probe labeling and subsequent detection of chemiluminsecent signals were carried out using PCR-based DetectorTM PCR DNA Biotinylation Kit (KPL, Inc. ) and DNA DetectorTM HPR Chemiluminsecent Blotting Kit (KPL, Inc. ) , according to manufacturers’ protocols.
In the following examples, the polynucleotides used are purified by the commercial available system (GTpure Plasmid Miniprep Isolation System, Gene Tech) . The 4.2 kbp-DNA used was a linearized form of the plasmid pQE-1 (3.5 kbp, Qiagen Corporation) containing a GFP gene (~700 bp) . All PCR and thermal cycles experiments are carried out with the GeneAmp PCR System 9700 (Applied Biosystems) . The PCR was run as follows: 94℃ for 2 mins, 30 cycles of 94 ℃ for 15 sec, 60 ℃ for 15 sec, 72 ℃ for 1 min, and 72 ℃for 7 mins. Before subjected to agarose gel electrophoresis, DNA-protein aggregates are  treated with proteinase K (0.3 unit per sample, 30 mins at 55 ℃) . All chemicals were from Sigma-Aldrich unless provided by commercial systems or stated otherwise. Commercial kits used are not limited to the particular brands used in the examples. DNA markers used are “1 kb plus DNA ladder” from Invitrogen Corporation.
Example 1: Polynucleotides-polypeptide aggregates-mediated sequential polynucleotide manipulations of PCR with from pre-cleared cell lysates, ligation of PCR products, and cloning.
Polynucleotide-polypeptide aggregates formed in pre-cleared cell lysates with different polynucleotide-aggregating polypeptides (hhα-synuclein, hhDPSp, hhCbpAp) (FIG. 1A) were used directly in PCR reactions and PCR products of expected size (646 bp for amplifying a fragment from the actin gene) was obtained (FIG. 1B) . Cloning and sequencing of the PCR product confirms its identity. Sedimentation of the PCR reaction demonstrated PCR products-polypeptide aggregates formed with the originally-added polynucleotide-aggregating polypeptides. Polynucleotides of polynucleotides-polypeptide aggregates, formed between PCR products and polynucleotides-aggregating polypeptides, are used successfully in TA ligation reaction. Successful ligation of the targeted polynucleotide was carried out from PCR with pre-cleared cell lysate, without any polynucleotide-purifying procedures. Successful ligations of PCR products are demonstrated by sequencing of cloned plasmid.
Example 2: Polynucleotides-polypeptide aggregates-mediated cloning of PCR products.
The nucleic acids (PCR product, ~700 bp) used are first purified by the commercial available system (GTpure Plasmid Miniprep Isolation System, Gene Tech) (FIG. 2A) , followed by mixing with different polynucleotide-aggregating polypeptides to form polynucleotide-polypeptide aggregates. TA ligation mixtures (10 μl) are then added directly to the polynucleotide-polypeptide aggregates (collected by centrifugation) , containing the PCR products. The ligation mixture, containing the polynucleotide-polypeptide aggregates, was used for transformation into bacteria. Successful ligation of PCR product into the cloning vector was demonstrated by PCR and DNA sequencing (Applied Biosystems) of the isolated plasmids (FIG. 2B) . Polynucleotides of polynucleotides-polypeptide aggregates, formed between PCR products in melted agarose and polynucleotides-aggregating polypeptides, are used successfully in TA ligation reaction, without any polynucleotide-purifying procedures.
Example 3: Polynucleotides-polypeptide aggregates-mediated cloning and sticky-end ligation of compatible DNA.
The gel portion containing the restriction enzyme digested (KpnI and PstI) insert DNA (~ 730 bp, FIG. 2D) and vector DNA (pQE1vector, 4.2kbp, Qiagen, FIG. 2C) is melted in the presence of polynucleotides-aggregating polypeptide solution (hhα-synuclein, hhDPSp or hhCbpAp) . Equal volume (to the gel slice) of polynucleotide aggregating polypeptides was added to the gel slice and incubated at 65℃ for 10 mins. T4 DNA ligase and diluted ligation buffer (total 10 μl) are then added directly to the polynucleotide (vector and insert DNA) -polypeptide aggregates (collected by centrifugation) . Ligation reaction was performed at 22℃ for 10 mins. The ligation mixture (4 μl) was used for transformation into bacteria (80 μl chemically competent cells) . Successful ligation of restriction enzyme digested-DNA (with sticky ends) into the cloning vector was demonstrated by colony PCR (FIG. 2E) and DNA sequencing (Applied Biosystems) of the isolated plasmids. Polynucleotides in polynucleotides-polypeptide aggregates, formed between restriction enzyme digested-polynucleotides in melted agarose and polynucleotides-aggregating polypeptides, are successfully ligated to ligation vectors in sticky-ends (cohesive) ligation reaction, without any interlude polynucleotide-purifying procedures.
Example 4: Southern hybridization with labelled probes prepared from polynucleotide-polypeptide aggregates.
Nucleic acids (~700bp DNA) were first mixed with 20 ng/μl polynucleotide-aggregating protein (hhα-synuclein, hhDPSp or hhCbpAp) and the collected polynucleotide-polypeptide aggregates are used directly in probe labeling reaction mixtures. After labeling reactions, the labeling reactions containing polynucleotide-protein aggregates are denatured at 95℃ and added directly to hybridization reactions without requiring polynucleotides purifying procedures. Positive signals are observed with southern blot hybridization (FIG. 3B) .
All patents, patent applications, and other publications, including GenBank Accession Numbers, cited in this application are incorporated by reference in the entirety for all purposes.
List of References
Bruinsma, M., et al. (2012) . Removal of PCR Inhibitors, U.S.P. Office, ed. (Exact Science Corporation) .
Ceci, P., et al. (2004) . DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 32, 5935-5944.
Cherny, D., et al. (2004) . Double-stranded DNA stimulates the fibrillation of alpha-synuclein in vitro and is associated with the mature fibrils: an electron microscopy study. J Mol Biol 344, 929-938.
Cosgriff, S., et al. (2010) . Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA. Mol Microbiol 77, 1289-1300.
Goers, J., et al. (2003) . Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42, 8465-8471.
Hegde, M.L., and Rao, K.S. (2007) . DNA induces folding in alpha-synuclein: understanding the mechanism using chaperone property of osmolytes. Arch Biochem Biophys 464, 57-69.
Kristyanne, E., et al. (2003) . Ion exchange method for DNA purification (Edge Biosystems, Inc. (Gaithersburg, MD) ) .
Laird, P.W., et al. (1991) . Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19, 4293.
Padmaraju, V., et al. (2011) . Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. J Alzheimers Dis 24 Suppl 2, 211-221.
Sambrook, J., and Russell, D.W. (2001) . Appendix 8: Commonly used Techniques in molecular cloning. In Molecular Cloning: A Laboratory Manual, J. Sambrook, and D.W. Russell, eds. (New York, USA, Cold Spring Harbor University Press) , pp. A8.9-A8.12.
Thomas, S., et al. (1992) . Use of silica gel for DNA extraction with organic solvents, U.S.P. Office, ed. (University Of Kansas) .
Wong, J.T.Y., et al. (2003) . Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryot Cell 2, 646-650.
Woodard, D.L., et al. (1996) . Silicate compounds for DNA purification (Becton Dickinson and Company, Franklin Lakes, N.J. ) .

Claims (18)

  1. A method for isolating a polynucleotide, comprising:
    (i) adding a polynucleotide-aggregating protein into a sample containing the polynucleotide under conditions permissible for forming polynucleotide-polypeptide aggregates; and
    (ii) separating the polynucleotide-polypeptide aggregates from the sample, thereby isolating the polynucleotide.
  2. The method of claim 1, wherein the polynucleotide-aggregating protein is hhα-synuclein, hhDPSp, or hhCbpAp.
  3. The method of claim 1, wherein the sample is a cell or virus lysate or a melted agarose gel solution.
  4. The method of claim 1, wherein the separating comprising precipitating the polynucleotide-polypeptide aggregates by centrifugation.
  5. The method of claim 1, further comprising:
    (iii) placing the polynucleotide-polypeptide aggregates from step (ii) in a reaction mixture for further manipulation of the polynucleotide.
  6. The method of claim 5, wherein the further manipulation comprises a reaction of amplifying the polynucleotide.
  7. The method of claim 6, wherein the reaction of amplification is a polymerase chain reaction (PCR) .
  8. The method of claim 5, wherein the further manipulation comprises a reaction of enzymatically digesting the polynucleotide.
  9. The method of claim 5, wherein the further manipulation comprises a reaction of ligation of the polynucleotide.
  10. The method of claim 5, wherein the further manipulation comprises a hybridization reaction of the polynucleotide.
  11. A composition comprising polynucleotide-polypeptide aggregates formed by a polynucleotide and a polynucleotide-aggregating protein.
  12. The composition of claim 11, wherein the polynucleotide-aggregating protein is hhα-synuclein, hhDPSp, or hhCbpAp.
  13. The composition of claim 11, wherein the polynucleotide and the polynucleotide-binding protein are heterogeneous to each other.
  14. The composition of claim 11, wherein the composition is a reaction mixture for an amplification reaction of the polynucleotide.
  15. The composition of claim 14, wherein the amplification reaction is PCR.
  16. The composition of claim 11, wherein the composition is a reaction mixture for an enzymatic digestion of the polynucleotide.
  17. The composition of claim 11, wherein the composition is a reaction mixture for ligation of the polynucleotide.
  18. The composition of claim 11, wherein the composition is a reaction mixture for a hybridization reaction of the polynucleotide.
PCT/CN2015/090225 2014-09-23 2015-09-22 Polynucleotide-polypeptide aggregates and uses thereof WO2016045571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462071389P 2014-09-23 2014-09-23
US62/071,389 2014-09-23

Publications (1)

Publication Number Publication Date
WO2016045571A1 true WO2016045571A1 (en) 2016-03-31

Family

ID=55580312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090225 WO2016045571A1 (en) 2014-09-23 2015-09-22 Polynucleotide-polypeptide aggregates and uses thereof

Country Status (1)

Country Link
WO (1) WO2016045571A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048515A (en) * 2004-08-31 2007-10-03 荣研化学株式会社 Nucleic acid analysis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048515A (en) * 2004-08-31 2007-10-03 荣研化学株式会社 Nucleic acid analysis method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CECI, PIERPAOLO ET AL.: "DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus", NUCLEIC ACIDS RESEARCH, vol. 32, no. 19, 8 November 2004 (2004-11-08), pages 5935 - 5944 *
CHERNY, DMITRY ET AL.: "Double-stranded DNA Stimulates the Fibrillation of a-Synuclein in vitro and is Associated with the Mature Fibrils: An Electron Microscopy Study", J. MOL. BIOL., no. 344, 31 December 2004 (2004-12-31), pages 929 - 938, XP004635839, DOI: doi:10.1016/j.jmb.2004.09.096 *
COSGRIFF, SARAH ET AL.: "Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA", MOLECULAR MICROBIOLOGY, vol. 77, no. 5, 30 July 2010 (2010-07-30), pages 1289 - 1300 *
HEDGE, MURALIDHAR L. ET AL.: "Challenges and complexities of a-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson's disease", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, no. 418, 31 December 2003 (2003-12-31), pages 169 - 178 *
HEGDE, MURALIDHAR L. ET AL.: "DNA induces folding in alpha-synuclein: Understanding the mechanism using chaperone property of osmolytes", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, no. 464, 26 April 2007 (2007-04-26), pages 57 - 69 *
PADMARAJU, VASUDEVARAJU ET AL.: "Role of Advanced Glycation on Aggregation and DNA Binding Properties of alpha-Synuclein", JOURNAL OF ALZHEIMER'S DISEASE, no. 24, 31 March 2011 (2011-03-31), pages 211 - 221 *

Similar Documents

Publication Publication Date Title
US7560228B2 (en) Solid-phase nucleic acid isolation
JP7499761B2 (en) pore
CN102796728B (en) Methods and compositions for DNA fragmentation and tagging by transposases
JP5954808B2 (en) Method for isolating specific genomic regions using endogenous DNA sequence specific binding molecules
US11261480B2 (en) Nucleic acid preparation method
KR20190091499A (en) Heat-resistant reverse transcriptase mutant
WO2017090684A1 (en) Dna polymerase mutant
US20240076717A1 (en) Methods and compositions for selective cleavage of nucleic acids with recombinant nucleases
JP2020523012A5 (en)
US8981067B2 (en) Composition, method and kit for obtaining purified recombinant proteins
JP2000146911A (en) Method for separating nucleic acid
WO2016045571A1 (en) Polynucleotide-polypeptide aggregates and uses thereof
US20170291918A1 (en) Method for purifying protein
WO2001062976A1 (en) Rapid nucleic acid separation, isolation and purification methods
CN108192907B (en) Thermostable DNA amplification fusion enzyme
CN114645033B (en) Nucleoside triphosphate hydrolase and purification method and application thereof
JP2006211984A (en) Method for amplifying nucleic acid utilizing emulsion, and kit for nucleic acid amplification reaction
WO2022210748A1 (en) Novel polypeptide having ability to form complex with guide rna
WO2024083883A1 (en) Methods and products for removal of uracil containing polynucleotides
CN107266526B (en) Method for purifying target protein
KR100225465B1 (en) Process for preparing farnesyl transferase marked with histidine
CN117701531A (en) Expression and purification method and application of LbCPf1 protein
JP2019106938A (en) Nucleic acid recovery method and nucleic acid recovery kit
CN116949014A (en) UdgX-SSBE3 protein and method for capturing specific nucleic acid by using same
CN116926170A (en) Nucleic acid detection method based on sulfur modified nucleic acid and sulfur modified nucleic acid recognition protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845382

Country of ref document: EP

Kind code of ref document: A1