WO2016042654A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2016042654A1
WO2016042654A1 PCT/JP2014/074806 JP2014074806W WO2016042654A1 WO 2016042654 A1 WO2016042654 A1 WO 2016042654A1 JP 2014074806 W JP2014074806 W JP 2014074806W WO 2016042654 A1 WO2016042654 A1 WO 2016042654A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
target
time constant
vehicle control
control device
Prior art date
Application number
PCT/JP2014/074806
Other languages
French (fr)
Japanese (ja)
Inventor
悠一朗 新▲崎▼
吉野 太容
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/074806 priority Critical patent/WO2016042654A1/en
Publication of WO2016042654A1 publication Critical patent/WO2016042654A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • JP 2011-207240A discloses a vehicle control device that sets a target drive force and sets a target transmission ratio of a continuously variable transmission and a target torque of an engine so as to realize the set target drive force.
  • the target engine is operated so that the engine operates on the optimum fuel consumption line.
  • Delay compensation is applied to the torque and the target gear ratio. Further, when the current running state is neither steady running nor slow acceleration / deceleration running, delay compensation is not performed in order to improve responsiveness.
  • the engine torque may be increased and the continuously variable transmission may be upshifted according to the depression of the accelerator pedal.
  • delay compensation is not performed in such a scene, the change in the transmission ratio of the continuously variable transmission is delayed with respect to the change in engine torque, the actual driving force overshoots the target driving force, There is a risk of discomfort to the driver.
  • the present invention was invented to solve such problems, and aims to prevent the driving force from overshooting regardless of the running state and to suppress the driver from feeling uncomfortable. To do.
  • a vehicle control apparatus sets a target driving force according to a driving state and controls a torque of a driving source and a gear ratio of a continuously variable transmission so as to realize the target driving force.
  • a control unit is provided that controls the torque of the drive source based on the transient characteristic of the target driving force according to the driving state and the response characteristic of the continuously variable transmission.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment.
  • FIG. 2 is a control block diagram for explaining a method for setting the target gear ratio and the target engine torque according to this embodiment.
  • FIG. 3 is a control block diagram for explaining a method for setting the target gear ratio and the target engine torque according to this embodiment.
  • FIG. 4 is a map for calculating the increasing driving force response time constant.
  • FIG. 5 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is not used.
  • FIG. 6 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is used.
  • FIG. 7 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is not used.
  • FIG. 8 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is used.
  • the gear ratio is a value obtained by dividing the input rotational speed of the continuously variable transmission 12 by the output rotational speed, and a gear shift that increases the gear ratio is referred to as a downshift, and a gearshift that decreases the gear ratio is referred to as an upshift.
  • the continuously variable transmission 12 includes a primary pulley 13, a secondary pulley 14, and a V belt 15 wound around them.
  • the primary pulley 13 changes the contact radius with the V-belt 15 by changing the groove width in accordance with the hydraulic pressure Ppri.
  • the secondary pulley 14 changes the contact radius with the V belt 15 by changing the groove width in accordance with the hydraulic pressure Psec.
  • the continuously variable transmission 12 changes the ratio between the input rotational speed and the output rotational speed, that is, the gear ratio steplessly in accordance with the control of the hydraulic pressure Ppri and the hydraulic pressure Psec.
  • the hydraulic pressure Ppri and the hydraulic pressure Psec are generated by the hydraulic pressure supply device 16.
  • the secondary pulley 14 is coupled to the drive wheels via a final gear 18 and a differential 19.
  • the engine 1 includes an intake throttle device 3 that adjusts the intake air amount.
  • the intake throttle device 3 includes an intake throttle 4 provided in the intake passage 2 of the engine 1 and an electric motor 5 that changes the opening of the intake throttle 4 according to an input signal.
  • the hydraulic pressure supply device 16 and the intake throttle device 3 operate according to a command signal output from the controller 10.
  • the controller 10 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 10 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the controller 10 includes a throttle opening sensor 20 that detects a throttle opening TVO of the intake throttle 4, an accelerator opening sensor 21 that detects an accelerator opening APO of an accelerator pedal 7 that is operated by a driver, and an engine speed Ne.
  • An engine speed sensor 22 that performs the operation, a primary pulley speed sensor 23 that detects the primary pulley speed Npri, a vehicle speed sensor 24 that detects the vehicle speed VSP, a mode changeover switch 25 that switches the control mode of the continuously variable transmission 12, and the accelerator pedal 7.
  • a detection signal from the idle switch 26 for detecting whether or not the pedal is depressed is input.
  • the controller 10 controls the driving force of the vehicle by controlling the opening degree of the intake throttle 4 and the shift control of the continuously variable transmission 12 via the hydraulic pressure supply device 16 in accordance with these detection signals.
  • the controller 10 controls the engine 1 and the continuously variable transmission 12 by switching between the linear sports shift mode and the normal shift mode according to the operation of the mode switch 25 by the driver.
  • the linear sports shift mode is a control mode that prioritizes changes in the rotational speed of the engine 1.
  • the gear ratio of the continuously variable transmission 12 is changed stepwise so that the vehicle speed VSP increases while the engine rotational speed Ne is gradually increased and decreased repeatedly, and the speed of the continuously variable transmission 12 is simulated.
  • a stepped shift is executed.
  • the normal shift mode is a control mode that prioritizes reduction of fuel consumption and shift shock of the engine 1.
  • the transmission ratio of the continuously variable transmission 12 is changed steplessly.
  • the acceleration request determination unit 30 determines an acceleration request by the driver based on a signal from the accelerator opening sensor 21. When the accelerator opening APO is greater than or equal to the first predetermined opening APO1 and the increase amount ⁇ APO per unit time of the accelerator opening APO is larger than the first predetermined increase ⁇ APO1, the acceleration request determination unit 30 It is determined that The acceleration request determination unit 30 sets the acceleration request determination flag to “1” when an acceleration request is made, and sets the acceleration request determination flag to “0” when no acceleration request is made. After the acceleration request determination flag becomes “1”, when the accelerator opening APO becomes small, for example, when the increase amount ⁇ APO per unit time of the accelerator opening APO becomes a negative value, the acceleration request The determination flag is “0”.
  • the reacceleration request determination unit 31 determines a reacceleration request by the driver based on a signal from the accelerator opening sensor 21.
  • the reacceleration request determination unit 31 reaccelerates when the accelerator opening APO increase amount ⁇ APO per unit time is larger than the first predetermined increase amount ⁇ APO1 and the accelerator opening APO becomes equal to or greater than the second predetermined opening APO2. Determine that a request has been made.
  • the second predetermined opening APO2 is an opening larger than the first predetermined opening APO1, and is an opening that can be determined that the accelerator pedal 7 has been depressed.
  • the reacceleration request determination unit 31 sets the reacceleration request determination flag to “0” at the moment when the reacceleration request is made, and otherwise sets the reacceleration request determination flag to “1”. That is, the reacceleration request determination flag becomes “0” at the moment when the reacceleration request is made, and immediately after that, “1”.
  • a plurality of opening degrees are set as the predetermined opening, and the reacceleration request determination unit 31 determines that the increase amount ⁇ APO per unit time of the accelerator opening APO is the first. When the accelerator opening APO is greater than or equal to the predetermined opening greater than the predetermined increment ⁇ APO1, it is determined that a reacceleration request has been made.
  • the linear sports shift request determination unit 32 determines whether or not the linear sports shift mode is selected based on the mode switching signal of the mode switch 25.
  • the linear sports shift request determining unit 32 sets the linear sports shift flag to “1” when the linear sports shift mode is selected, and when the linear sports shift mode is not selected, that is, the normal shift mode is selected. If it is, the linear sports shift flag is set to “0”.
  • the vehicle speed switching determination unit 33 switches the vehicle speed switching determination flag based on the linear sports shift flag, the acceleration request determination flag, and the reacceleration request determination flag.
  • the vehicle speed switching determination unit 33 sets the vehicle speed switching determination flag to “1” when the linear sports shift flag is “1” and the acceleration request determination flag and the reacceleration request determination flag are both “1”. Otherwise, the vehicle speed switching determination flag is set to “0”. That is, when the linear sports shift flag is “0”, the vehicle speed switching determination flag is “0”. Even if the linear sports shift flag is “1”, if the acceleration request is not made, the acceleration request determination flag is “0”, so the vehicle speed switching determination flag is “0”.
  • the vehicle speed switching determination flag is “1”. 1 ". Further, when the linear sports shift flag is “1” and a reacceleration request is made, the reacceleration request flag becomes “0” at the moment when the reacceleration request is made. After that, when the reacceleration request flag becomes “1” again, the vehicle speed switching determination flag becomes “1”.
  • the vehicle speed selection unit 34 selects the vehicle speed VSP detected by the vehicle speed sensor 24 when the vehicle speed switching determination flag is “0”, and switches when the vehicle speed switching determination flag is switched from “0” to “1”.
  • the vehicle speed VSP at the time is stored, and the stored vehicle speed VSP is selected while the vehicle speed switching determination flag is held at “1”.
  • the target driving force setting unit 35 sets the target driving force basic value Ftb from the map based on the vehicle speed VSP selected by the vehicle speed selecting unit 34 and the accelerator opening APO.
  • the target output calculation unit 36 calculates the target output Pt by multiplying the target driving force basic value Ftb set by the target driving force setting unit 35 and the vehicle speed VSP detected by the vehicle speed sensor 24.
  • the target engine speed setting unit 37 sets the target engine speed Net from the map based on the target output Pt.
  • the target output rotation speed calculation unit 38 calculates the rotation speed Nsec of the secondary pulley 14 of the continuously variable transmission 12 based on the vehicle speed VSP detected by the vehicle speed sensor 24.
  • the target gear ratio calculation unit 39 calculates the target gear ratio it by dividing the target engine rotational speed Net by the rotational speed Nsec of the secondary pulley 14.
  • the target through speed ratio calculating unit 41 multiplies the target speed ratio it and the final gear ratio if to calculate the target through speed ratio it.
  • the downshift time constant selection unit 42 selects the downshift time constant td based on the linear sports shift flag.
  • the downshift time constant selection unit 42 selects the sudden downshift time constant as the downshift time constant td when the linear sports shift flag is “1”. Further, the downshift time constant selection unit 42 selects the normal downshift time constant as the downshift time constant td when the linear sports shift flag is “0”.
  • the first upshift time constant selection unit 43 selects the first upshift time constant tu1 based on the idle signal of the idle switch 26.
  • the first upshift time constant selection unit 43 selects the foot upshift time constant as the first upshift time constant tu1 when the accelerator pedal 7 is not depressed and the idle switch 26 is ON.
  • the first upshift time constant selection unit 43 selects the foot upshift time constant as the first upshift time constant tu1.
  • the second upshift time constant selection unit 44 selects the second upshift time constant tu2 based on the linear sports shift flag. When the linear sports shift flag is “1”, the second upshift time constant selection unit 44 selects the linear sports upshift time constant as the second upshift time constant tu2. When the linear sports shift flag is “0”, the second upshift time constant selection unit 44 selects the first upshift time constant tu1 as the second upshift time constant tu2.
  • the shift determination unit 45 compares the target through speed ratio isth calculated this time by the target through speed ratio calculation unit 41 with the target through speed ratio response ithr previously calculated by the target through speed ratio response calculation unit 47 described later. .
  • the shift determination unit 45 determines that the shift is an upshift when the currently calculated target through speed ratio isth is smaller than the previously calculated target through speed ratio response ithr.
  • the shift determination unit 45 determines that the shift is a downshift when the currently calculated target through speed ratio ith is greater than the previously calculated target through speed ratio response ithr.
  • the shift determination unit 45 outputs a shift signal Ss corresponding to upshift or downshift.
  • the shift time constant selection unit 46 selects a shift time constant ts based on the shift signal Ss.
  • the shift time constant selection unit 46 selects the downshift time constant td as the shift time constant ts in the case of downshift.
  • the shift time constant selection unit 46 selects the second upshift time constant tu2 as the shift time constant ts in the case of an upshift.
  • the target through speed ratio response calculation unit 47 performs delay compensation (first-order delay compensation) on the target through speed ratio ith using the transfer function Gr (s) of Equation (1), and the target through speed ratio response ithr (response Characteristic).
  • s is a Laplace operator.
  • Gr (s) 1 / (1 + s ⁇ ts) (1)
  • the first driving force time constant calculation unit 48 multiplies the time constant calculated from the map of FIG. 4 by the first predetermined coefficient based on the current vehicle speed VSP detected by the vehicle speed sensor 24 and the accelerator opening APO, An increasing side driving force time constant tfi, which is a time constant on the driving force increasing side, is calculated.
  • the first predetermined coefficient is a preset value.
  • the second driving force time constant calculation unit 49 multiplies the time constant calculated from the map of FIG. 4 by the second predetermined coefficient based on the current vehicle speed VSP detected by the vehicle speed sensor 24 and the accelerator opening APO, A decreasing side driving force time constant tfd, which is a time constant on the driving force decreasing side, is calculated.
  • the second predetermined coefficient is a value larger than the first predetermined coefficient.
  • the third driving force time constant calculation unit 50 multiplies the time constant calculated from the map of FIG. 4 by the third predetermined coefficient based on the current vehicle speed VSP detected by the vehicle speed sensor 24 and the accelerator opening APO, A linear sports driving force time constant tfs that is a time constant of the linear sports shift mode is calculated.
  • the third predetermined coefficient is a value smaller than the first predetermined coefficient.
  • the driving force determination unit 51 compares the target driving force basic value Ftb calculated this time with the target driving force response Ftr previously calculated by the target driving force response calculation unit 55 described later. The driving force determination unit 51 determines that the driving force decreases when the target driving force basic value Ftb calculated this time is smaller than the previously calculated target driving force response Ftr. The driving force determination unit 51 determines that the driving force increases when the target driving force basic value Ftb calculated this time is larger than the target driving force response Ftr calculated last time. The driving force determination unit 51 outputs a driving force signal Sf corresponding to the increase or decrease of the driving force.
  • the first driving force time constant selection unit 52 selects the first driving force time constant tf1 based on the driving force signal Sf.
  • the first driving force time constant selection unit 52 selects the linear sports driving force time constant tfs as the first driving force time constant tf1 when the driving force signal Sf is an increase signal indicating that the driving force increases. To do.
  • the driving force signal Sf is a decrease signal indicating that the driving force decreases
  • the first driving force time constant selection unit 52 selects the decreasing driving force time constant tfd as the first driving force time constant tf1. To do.
  • the second driving force time constant selection unit 53 selects the second driving force time constant tf2 based on the driving force signal Sf.
  • the second driving force time constant selection unit 53 selects the increasing driving force time constant tfi as the second driving force time constant tf2 when the driving force signal Sf is an increase signal.
  • the second driving force time constant selection unit 53 selects the decreasing driving force time constant tfd as the second driving force time constant tf2 when the driving force signal Sf is a decrease signal.
  • the third driving force time constant selection unit 54 selects the driving force time constant tf based on the linear sports shift flag.
  • the third driving force time constant selection unit 54 selects the first driving force time constant tf1 as the driving force time constant tf when the linear sports shift flag is “1”.
  • the third driving force time constant selection unit 54 selects the second driving force time constant tf2 as the driving force time constant tf when the linear sports shift flag is “0”.
  • the target driving force response calculation unit 55 performs delay compensation (first-order delay compensation) on the target driving force basic value Ftb using the transfer function Gf (s) of Expression (2), and performs the target driving force response Ftr (transient characteristic). ) Is calculated.
  • Gf (s) 1 / (1 + s ⁇ tf) (2)
  • the target engine torque basic value calculation unit 56 calculates the target engine torque basic value Tetb by dividing the target driving force response Ftr by the target through speed ratio response ithr.
  • the engine torque time constant selection unit 57 selects the engine torque time constant te based on the accelerator opening APO.
  • the engine torque time constant selection unit 57 selects the first predetermined engine torque time constant as the engine torque time constant te when the accelerator opening APO is increasing.
  • the engine torque time constant selection unit 57 selects the second predetermined engine torque time constant as the engine torque time constant te when the accelerator opening APO is not increased.
  • the first predetermined engine torque time constant and the second predetermined engine torque time constant are set in advance, and the first predetermined engine torque time constant is smaller than the second predetermined engine torque time constant.
  • the target engine torque calculation unit 58 calculates the target engine torque Tet by performing advance compensation on the target engine torque basic value Tetb using the transfer function Gt (s) of Expression (3).
  • the time constant tp is a preset value and is smaller than the first predetermined engine torque time constant and the second predetermined engine torque time constant.
  • Gt (s) (1 + s ⁇ te) / (1 + s ⁇ tp) (3)
  • the target through speed ratio response itr and the target driving force response Ftr are set, the target engine torque Tet is calculated based on these responses, and the intake throttle 4 is calculated based on the target engine torque Tet. Is controlled.
  • FIG. 5 shows changes in driving force, gear ratio, and engine torque when the present embodiment is not used, and the driving state is changed at time t0.
  • FIG. 6 shows changes in driving force, gear ratio, and engine torque when this embodiment is used, and the operating state is changed at time t0.
  • the target driving force target driving force response Ftr
  • the target gear ratio target gear ratio
  • the target engine torque are indicated by broken lines.
  • the target driving force is changed stepwise, and delay compensation is performed on the target gear ratio and target engine torque so that the operating point of the engine 1 is on the optimum fuel consumption line.
  • the transmission ratio is changed by adjusting the hydraulic pressure Ppri of the primary pulley 13 and the hydraulic pressure Psec of the secondary pulley 14, so the response of the continuously variable transmission 12 is the response (increase) of the engine 1. It is slower than that.
  • the target engine torque is set in accordance with the response of the continuously variable transmission 12 with respect to the target driving force that changes stepwise, so that the response of the driving force is delayed.
  • a target driving force response Ftr obtained by performing first-order lag compensation on the target driving force basic value Ftb is set, and the target driving force response Ftr and the target through are set so that the driving force becomes the target driving force response Ftr.
  • a target engine torque Tet is set based on the speed ratio response ithr. Therefore, a driving force corresponding to the target driving force response Ftr is generated, and the driving force response is accelerated.
  • FIG. 7 shows changes in driving force, gear ratio, and engine torque when this embodiment is not used, and the operating state is changed at time t0.
  • FIG. 8 shows changes in driving force, gear ratio, and engine torque when this embodiment is used, and the operating state is changed at time t0. 7 and 8, the target driving force (target driving force response Ftr), the target speed ratio, and the target engine torque are indicated by broken lines.
  • the target driving force is changed stepwise, priority is given to responsiveness, and the target gear ratio and target engine torque are set without delay compensation.
  • the response of the driving force becomes faster, but the response of the continuously variable transmission 12 is slower than the response of the engine 1, so that the engine torque increases before the continuously variable transmission 12 upshifts, and the drive The power overshoots the target driving force, giving the driver a sense of incongruity.
  • a target driving force response Ftr obtained by performing first-order lag compensation on the target driving force basic value Ftb is set, and the target engine torque Tet is calculated based on the target driving force response Ftr and the target through speed ratio response ithr. Is set. Therefore, a driving force corresponding to the target driving force response Ftr is generated, the driving force can be prevented from overshooting, and the driver can be prevented from feeling uncomfortable.
  • advance compensation is performed on the target engine torque basic value Tetb, the target engine torque Tet is calculated, and the engine 1 is controlled based on the target engine torque Tet. Thereby, it is possible to suppress the actual engine torque from deviating from the target engine torque Tet.
  • the driving force time constant tf is calculated based on the accelerator opening APO and the vehicle speed VSP, and the target driving force response Ftr is set using the driving force time constant tf.
  • the target driving force response Ftr is set using the driving force time constant tf set according to the driving state of the vehicle, and the engine 1 is controlled so as to become the target driving force response Ftr. It is possible to suppress the actual driving force from deviating from the response Ftr.
  • the shift time constant ts is calculated based on the driving state
  • the target through speed ratio response ithr is set using the shift time constant ts
  • the target driving force response Ftr is calculated using the target through speed ratio response ithr. Set.
  • the engine 1 is controlled to become the target driving force response Ftr, it is possible to suppress the actual driving force from deviating from the target driving force response Ftr.
  • a map is provided for each time constant, and each map is based on each provided map.
  • a time constant may be calculated.
  • the engine torque time constant te may be calculated according to acceleration or deceleration.
  • the engine torque time constant te is decreased as the load on the engine 1 increases, for example, the acceleration increases. Thereby, the response of the driving force can be improved according to the response characteristic of the engine torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A vehicle control device which sets a target driving force according to the operating condition and controls the torque of a drive source and the speed ratio of a continuously variable transmission so as to achieve the target driving force, the vehicle control device being provided with a control unit that controls the torque of the drive source on the basis of the transient characteristics of the target driving force corresponding to the operating condition and the response characteristics of the continuously variable transmission.

Description

車両制御装置、及び車両の制御方法Vehicle control apparatus and vehicle control method
 本発明は車両制御装置、及び車両の制御方法に関するものである。 The present invention relates to a vehicle control device and a vehicle control method.
 目標駆動力を設定し、設定した目標駆動力を実現するように無段変速機の目標変速比、及びエンジンの目標トルクを設定する車両制御装置がJP2011-207240Aに開示されている。 JP 2011-207240A discloses a vehicle control device that sets a target drive force and sets a target transmission ratio of a continuously variable transmission and a target torque of an engine so as to realize the set target drive force.
 上記車両制御装置では、現在の走行状態が定常走行、緩加減速走行(緩加速走行、または緩減速走行)のいずれかである場合には、エンジンが最適燃費線上で動作するように、目標エンジントルク、及び目標変速比に遅れ補償が施される。また、現在の走行状態が定常走行、緩加減速走行のいずれでもない場合には、応答性を向上するために、遅れ補償は施されない。 In the vehicle control device, when the current running state is either steady running or slow acceleration / deceleration running (slow acceleration running or slow deceleration running), the target engine is operated so that the engine operates on the optimum fuel consumption line. Delay compensation is applied to the torque and the target gear ratio. Further, when the current running state is neither steady running nor slow acceleration / deceleration running, delay compensation is not performed in order to improve responsiveness.
 車両において、例えばコースト走行中にアクセルペダルが踏み込まれた場合など、アクセルペダルの踏み込みに応じて、エンジントルクを増加させるとともに、無段変速機をアップシフトすることがある。しかし、このようなシーンで遅れ補償を施さない場合には、エンジントルクの変化に対して無段変速機の変速比の変化が遅れ、実際の駆動力が目標駆動力に対してオーバーシュートし、運転者に違和感を与えるおそれがある。 In a vehicle, for example, when the accelerator pedal is depressed during coasting, the engine torque may be increased and the continuously variable transmission may be upshifted according to the depression of the accelerator pedal. However, when delay compensation is not performed in such a scene, the change in the transmission ratio of the continuously variable transmission is delayed with respect to the change in engine torque, the actual driving force overshoots the target driving force, There is a risk of discomfort to the driver.
 本発明はこのような問題点を解決するために発明されたもので、走行状態にかかわらず、駆動力がオーバーシュートすることを防止し、運転者に違和感を与えることを抑制することを目的とする。 The present invention was invented to solve such problems, and aims to prevent the driving force from overshooting regardless of the running state and to suppress the driver from feeling uncomfortable. To do.
 本発明のある態様に係る車両制御装置は、運転状態に応じて目標駆動力を設定し、目標駆動力を実現するよう駆動源のトルクと無段変速機の変速比とを制御する車両制御装置であって、運転状態に応じた目標駆動力の過渡特性と、無段変速機の応答特性とに基づいて駆動源のトルクを制御する制御部を備える。 A vehicle control apparatus according to an aspect of the present invention sets a target driving force according to a driving state and controls a torque of a driving source and a gear ratio of a continuously variable transmission so as to realize the target driving force. A control unit is provided that controls the torque of the drive source based on the transient characteristic of the target driving force according to the driving state and the response characteristic of the continuously variable transmission.
図1は本実施形態の車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment. 図2は本実施形態の目標変速比、目標エンジントルクの設定方法を説明する制御ブロック図である。FIG. 2 is a control block diagram for explaining a method for setting the target gear ratio and the target engine torque according to this embodiment. 図3は本実施形態の目標変速比、目標エンジントルクの設定方法を説明する制御ブロック図である。FIG. 3 is a control block diagram for explaining a method for setting the target gear ratio and the target engine torque according to this embodiment. 図4は増加側駆動力応答時定数を算出するためのマップである。FIG. 4 is a map for calculating the increasing driving force response time constant. 図5は本実施形態を用いない場合の駆動力、変速比、エンジントルクの変化を示す図である。FIG. 5 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is not used. 図6は本実施形態を用いた場合の駆動力、変速比、エンジントルクの変化を示す図である。FIG. 6 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is used. 図7は本実施形態を用いない場合の駆動力、変速比、エンジントルクの変化を示す図である。FIG. 7 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is not used. 図8は本実施形態を用いた場合の駆動力、変速比、エンジントルクの変化を示す図である。FIG. 8 is a diagram showing changes in driving force, gear ratio, and engine torque when this embodiment is used.
 以下、添付図面を参照しながら本発明の実施形態について説明する。なお、以下において変速比は、無段変速機12の入力回転速度を出力回転速度で除算した値であり、変速比が大きくなる変速をダウンシフト、変速比が小さくなる変速をアップシフトという。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the gear ratio is a value obtained by dividing the input rotational speed of the continuously variable transmission 12 by the output rotational speed, and a gear shift that increases the gear ratio is referred to as a downshift, and a gearshift that decreases the gear ratio is referred to as an upshift.
 図1を参照すると、車両のエンジン1の出力はトルクコンバータ11を介して無段変速機12に入力される。無段変速機12はプライマリプーリ13とセカンダリプーリ14と、これらに掛け回されたVベルト15とを備える。プライマリプーリ13は油圧Ppriに応じて溝幅を変化させることで、Vベルト15との接触半径を変化させる。セカンダリプーリ14は油圧Psecに応じて溝幅を変化させることで、Vベルト15との接触半径を変化させる。結果として、無段変速機12は油圧Ppriと油圧Psecの制御に応じて、入力回転速度と出力回転速度の比、すなわち変速比を無段階に変化させる。油圧Ppriと油圧Psecは油圧供給装置16により生成される。 Referring to FIG. 1, the output of the vehicle engine 1 is input to the continuously variable transmission 12 via the torque converter 11. The continuously variable transmission 12 includes a primary pulley 13, a secondary pulley 14, and a V belt 15 wound around them. The primary pulley 13 changes the contact radius with the V-belt 15 by changing the groove width in accordance with the hydraulic pressure Ppri. The secondary pulley 14 changes the contact radius with the V belt 15 by changing the groove width in accordance with the hydraulic pressure Psec. As a result, the continuously variable transmission 12 changes the ratio between the input rotational speed and the output rotational speed, that is, the gear ratio steplessly in accordance with the control of the hydraulic pressure Ppri and the hydraulic pressure Psec. The hydraulic pressure Ppri and the hydraulic pressure Psec are generated by the hydraulic pressure supply device 16.
 セカンダリプーリ14はファイナルギヤ18とディファレンシャル19を介して駆動輪に結合する。 The secondary pulley 14 is coupled to the drive wheels via a final gear 18 and a differential 19.
 エンジン1は吸気量を調整する吸気スロットル装置3を備える。吸気スロットル装置3は、エンジン1の吸気通路2に設けた吸気スロットル4と、吸気スロットル4の開度を入力信号に応じて変化させる電動モータ5を備える。 The engine 1 includes an intake throttle device 3 that adjusts the intake air amount. The intake throttle device 3 includes an intake throttle 4 provided in the intake passage 2 of the engine 1 and an electric motor 5 that changes the opening of the intake throttle 4 according to an input signal.
 油圧供給装置16と吸気スロットル装置3はコントローラ10が出力する指令信号に応じて作動する。 The hydraulic pressure supply device 16 and the intake throttle device 3 operate according to a command signal output from the controller 10.
 コントローラ10は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/O インタフェース)を備えたマイクロコンピュータで構成される。コントローラ10を複数のマイクロコンピュータで構成することも可能である。 The controller 10 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 10 with a plurality of microcomputers.
 コントローラ10には吸気スロットル4のスロットル開度TVOを検出するスロットル開度センサ20、運転者によって操作されるアクセルペダル7のアクセル開度APOを検出するアクセル開度センサ21、エンジン回転速度Neを検出するエンジン回転速度センサ22、プライマリプーリ回転速度Npriを検出するプライマリプーリ回転速度センサ23、車速VSPを検出する車速センサ24、無段変速機12の制御モードを切り替えるモード切替スイッチ25、及びアクセルペダル7の踏み込みの有無を検出するアイドルスイッチ26からの検出信号が入力される。 The controller 10 includes a throttle opening sensor 20 that detects a throttle opening TVO of the intake throttle 4, an accelerator opening sensor 21 that detects an accelerator opening APO of an accelerator pedal 7 that is operated by a driver, and an engine speed Ne. An engine speed sensor 22 that performs the operation, a primary pulley speed sensor 23 that detects the primary pulley speed Npri, a vehicle speed sensor 24 that detects the vehicle speed VSP, a mode changeover switch 25 that switches the control mode of the continuously variable transmission 12, and the accelerator pedal 7. A detection signal from the idle switch 26 for detecting whether or not the pedal is depressed is input.
 コントローラ10はこれらの検出信号に応じて、吸気スロットル4の開度制御と、油圧供給装置16を介した無段変速機12の変速制御を行うことで、車両の駆動力を制御する。 The controller 10 controls the driving force of the vehicle by controlling the opening degree of the intake throttle 4 and the shift control of the continuously variable transmission 12 via the hydraulic pressure supply device 16 in accordance with these detection signals.
 コントローラ10は、運転者によるモード切替スイッチ25の操作に応じて、リニアスポーツ変速モードと通常変速モードとを切り替えてエンジン1、及び無段変速機12を制御する。リニアスポーツ変速モードは、エンジン1の回転速度変化を優先する制御モードである。リニアスポーツ変速モードでは、エンジン回転速度Neの漸増、及び急減が繰り返し行われながら、車速VSPが増大するように無段変速機12の変速比が段階的に変更され、無段変速機12において疑似有段変速が実行される。通常変速モードは、エンジン1の燃費、変速ショックの低減を優先する制御モードである。通常変速モードでは、無段変速機12の変速比が無段階で変更される。 The controller 10 controls the engine 1 and the continuously variable transmission 12 by switching between the linear sports shift mode and the normal shift mode according to the operation of the mode switch 25 by the driver. The linear sports shift mode is a control mode that prioritizes changes in the rotational speed of the engine 1. In the linear sports shift mode, the gear ratio of the continuously variable transmission 12 is changed stepwise so that the vehicle speed VSP increases while the engine rotational speed Ne is gradually increased and decreased repeatedly, and the speed of the continuously variable transmission 12 is simulated. A stepped shift is executed. The normal shift mode is a control mode that prioritizes reduction of fuel consumption and shift shock of the engine 1. In the normal transmission mode, the transmission ratio of the continuously variable transmission 12 is changed steplessly.
 次に本実施形態の目標変速比it、目標エンジントルクTetの設定方法について図2、図3の制御ブロック図を用いて説明する。以下で説明する制御は、コントローラ10によって実行される。 Next, a method for setting the target speed ratio it and the target engine torque Tet according to this embodiment will be described with reference to the control block diagrams of FIGS. The control described below is executed by the controller 10.
 加速要求判定部30は、アクセル開度センサ21からの信号に基づいて運転者による加速要求を判定する。加速要求判定部30は、アクセル開度APOが第1所定開度APO1以上であり、かつアクセル開度APOの単位時間あたりの増加量ΔAPOが第1所定増加量ΔAPO1よりも大きくなると、加速要求がされていると判定する。加速要求判定部30は、加速要求がされている場合には、加速要求判定フラグを「1」にし、加速要求がされていない場合には、加速要求判定フラグを「0」にする。なお、加速要求判定フラグが「1」になった後は、アクセル開度APOが小さくなる場合、例えばアクセル開度APOの単位時間あたりの増加量ΔAPOが負の値となった場合に、加速要求判定フラグは「0」になる。 The acceleration request determination unit 30 determines an acceleration request by the driver based on a signal from the accelerator opening sensor 21. When the accelerator opening APO is greater than or equal to the first predetermined opening APO1 and the increase amount ΔAPO per unit time of the accelerator opening APO is larger than the first predetermined increase ΔAPO1, the acceleration request determination unit 30 It is determined that The acceleration request determination unit 30 sets the acceleration request determination flag to “1” when an acceleration request is made, and sets the acceleration request determination flag to “0” when no acceleration request is made. After the acceleration request determination flag becomes “1”, when the accelerator opening APO becomes small, for example, when the increase amount ΔAPO per unit time of the accelerator opening APO becomes a negative value, the acceleration request The determination flag is “0”.
 再加速要求判定部31は、アクセル開度センサ21からの信号に基づいて運転者による再加速要求を判定する。再加速要求判定部31は、アクセル開度APOの単位時間あたりの増加量ΔAPOが第1所定増加量ΔAPO1よりも大きく、アクセル開度APOが第2所定開度APO2以上となった時に、再加速要求がされていると判定する。第2所定開度APO2は、第1所定開度APO1よりも大きい開度であり、アクセルペダル7が踏み増しされたと判定可能な開度である。再加速要求判定部31は、再加速要求がされた瞬間に、再加速要求判定フラグを「0」にし、それ以外の場合には、再加速要求判定フラグを「1」にする。つまり、再加速要求判定フラグは、再加速要求がされた瞬間に「0」となり、その後すぐに「1」となる。なお、所定開度は、第2所定開度APO2の他にも複数の開度が設定されており、再加速要求判定部31は、アクセル開度APOの単位時間あたりの増加量ΔAPOが第1所定増加量ΔAPO1よりも大きく、アクセル開度APOが所定開度以上となった時に、再加速要求がされていると判定する。 The reacceleration request determination unit 31 determines a reacceleration request by the driver based on a signal from the accelerator opening sensor 21. The reacceleration request determination unit 31 reaccelerates when the accelerator opening APO increase amount ΔAPO per unit time is larger than the first predetermined increase amount ΔAPO1 and the accelerator opening APO becomes equal to or greater than the second predetermined opening APO2. Determine that a request has been made. The second predetermined opening APO2 is an opening larger than the first predetermined opening APO1, and is an opening that can be determined that the accelerator pedal 7 has been depressed. The reacceleration request determination unit 31 sets the reacceleration request determination flag to “0” at the moment when the reacceleration request is made, and otherwise sets the reacceleration request determination flag to “1”. That is, the reacceleration request determination flag becomes “0” at the moment when the reacceleration request is made, and immediately after that, “1”. In addition to the second predetermined opening APO2, a plurality of opening degrees are set as the predetermined opening, and the reacceleration request determination unit 31 determines that the increase amount ΔAPO per unit time of the accelerator opening APO is the first. When the accelerator opening APO is greater than or equal to the predetermined opening greater than the predetermined increment ΔAPO1, it is determined that a reacceleration request has been made.
 リニアスポーツ変速要求判定部32は、モード切替スイッチ25のモード切替信号に基づいてリニアスポーツ変速モードが選択されているかどうか判定する。リニアスポーツ変速要求判定部32は、リニアスポーツ変速モードが選択されている場合には、リニアスポーツ変速フラグを「1」にし、リニアスポーツ変速モードが選択されていない場合、つまり通常変速モードが選択されている場合には、リニアスポーツ変速フラグを「0」にする。 The linear sports shift request determination unit 32 determines whether or not the linear sports shift mode is selected based on the mode switching signal of the mode switch 25. The linear sports shift request determining unit 32 sets the linear sports shift flag to “1” when the linear sports shift mode is selected, and when the linear sports shift mode is not selected, that is, the normal shift mode is selected. If it is, the linear sports shift flag is set to “0”.
 車速切替判定部33は、リニアスポーツ変速フラグ、加速要求判定フラグ、及び再加速要求判定フラグに基づいて車速切替判定フラグを切り替える。車速切替判定部33は、リニアスポーツ変速フラグが「1」であり、加速要求判定フラグ、及び再加速要求判定フラグが共に「1」である場合に、車速切替判定フラグを「1」にし、それ以外の場合には車速切替判定フラグを「0」にする。つまり、リニアスポーツ変速フラグが「0」の場合には、車速切替判定フラグは「0」である。また、リニアスポーツ変速フラグが「1」であっても、加速要求がされていない場合には、加速要求判定フラグが「0」であるので、車速切替判定フラグは「0」である。また、リニアスポーツ変速フラグが「1」であり、加速要求がされると加速要求判定フラグが「1」となり、再加速要求判定フラグも「1」となっているので、車速切替判定フラグは「1」となる。さらに、リニアスポーツ変速フラグが「1」であり、再加速要求がされると、再加速要求がされた瞬間に、再加速要求フラグが「0」になるので、車速切替判定フラグも「0」になり、その後、再び再加速要求フラグが「1」になると、車速切替判定フラグは「1」になる。 The vehicle speed switching determination unit 33 switches the vehicle speed switching determination flag based on the linear sports shift flag, the acceleration request determination flag, and the reacceleration request determination flag. The vehicle speed switching determination unit 33 sets the vehicle speed switching determination flag to “1” when the linear sports shift flag is “1” and the acceleration request determination flag and the reacceleration request determination flag are both “1”. Otherwise, the vehicle speed switching determination flag is set to “0”. That is, when the linear sports shift flag is “0”, the vehicle speed switching determination flag is “0”. Even if the linear sports shift flag is “1”, if the acceleration request is not made, the acceleration request determination flag is “0”, so the vehicle speed switching determination flag is “0”. Further, since the linear sports shift flag is “1”, an acceleration request is made and the acceleration request determination flag is “1”, and the reacceleration request determination flag is also “1”, the vehicle speed switching determination flag is “1”. 1 ". Further, when the linear sports shift flag is “1” and a reacceleration request is made, the reacceleration request flag becomes “0” at the moment when the reacceleration request is made. After that, when the reacceleration request flag becomes “1” again, the vehicle speed switching determination flag becomes “1”.
 車速選択部34は、車速切替判定フラグが「0」の場合には、車速センサ24によって検出された車速VSPを選択し、車速切替判定フラグが「0」から「1」に切り替わると、切り替わった時の車速VSPを記憶し、車速切替判定フラグが「1」に保持されている間は、記憶した車速VSPを選択する。 The vehicle speed selection unit 34 selects the vehicle speed VSP detected by the vehicle speed sensor 24 when the vehicle speed switching determination flag is “0”, and switches when the vehicle speed switching determination flag is switched from “0” to “1”. The vehicle speed VSP at the time is stored, and the stored vehicle speed VSP is selected while the vehicle speed switching determination flag is held at “1”.
 目標駆動力設定部35は、車速選択部34によって選択した車速VSPと、アクセル開度APOとに基づいてマップから目標駆動力基本値Ftbを設定する。 The target driving force setting unit 35 sets the target driving force basic value Ftb from the map based on the vehicle speed VSP selected by the vehicle speed selecting unit 34 and the accelerator opening APO.
 目標出力算出部36は、目標駆動力設定部35によって設定された目標駆動力基本値Ftbと、車速センサ24によって検出された車速VSPとを乗算し、目標出力Ptを算出する。 The target output calculation unit 36 calculates the target output Pt by multiplying the target driving force basic value Ftb set by the target driving force setting unit 35 and the vehicle speed VSP detected by the vehicle speed sensor 24.
 目標エンジン回転速度設定部37は、目標出力Ptに基づいてマップから目標エンジン回転速度Netを設定する。 The target engine speed setting unit 37 sets the target engine speed Net from the map based on the target output Pt.
 目標出力回転速度算出部38は、車速センサ24によって検出した車速VSPに基づいて無段変速機12のセカンダリプーリ14の回転速度Nsecを算出する。 The target output rotation speed calculation unit 38 calculates the rotation speed Nsec of the secondary pulley 14 of the continuously variable transmission 12 based on the vehicle speed VSP detected by the vehicle speed sensor 24.
 目標変速比算出部39は、目標エンジン回転速度Netをセカンダリプーリ14の回転速度Nsecで除算することで、目標変速比itを算出する。 The target gear ratio calculation unit 39 calculates the target gear ratio it by dividing the target engine rotational speed Net by the rotational speed Nsec of the secondary pulley 14.
 次に、目標エンジントルク設定部40について図3を用いて説明する。 Next, the target engine torque setting unit 40 will be described with reference to FIG.
 目標スルー変速比算出部41は、目標変速比itとファイナルギヤ比ifとを乗算して目標スルー変速比ithを算出する。 The target through speed ratio calculating unit 41 multiplies the target speed ratio it and the final gear ratio if to calculate the target through speed ratio it.
 ダウンシフト時定数選択部42は、リニアスポーツ変速フラグに基づいてダウンシフト時定数tdを選択する。ダウンシフト時定数選択部42は、リニアスポーツ変速フラグが「1」の場合には、急踏ダウンシフト時定数をダウンシフト時定数tdとして選択する。また、ダウンシフト時定数選択部42は、リニアスポーツ変速フラグが「0」の場合には、通常ダウンシフト時定数をダウンシフト時定数tdとして選択する。 The downshift time constant selection unit 42 selects the downshift time constant td based on the linear sports shift flag. The downshift time constant selection unit 42 selects the sudden downshift time constant as the downshift time constant td when the linear sports shift flag is “1”. Further, the downshift time constant selection unit 42 selects the normal downshift time constant as the downshift time constant td when the linear sports shift flag is “0”.
 第1アップシフト時定数選択部43は、アイドルスイッチ26のアイドル信号に基づいて第1アップシフト時定数tu1を選択する。第1アップシフト時定数選択部43は、アクセルペダル7が踏まれておらず、アイドルスイッチ26がONの場合に、足離しアップシフト時定数を第1アップシフト時定数tu1として選択する。第1アップシフト時定数選択部43は、アクセルペダル7が踏み込まれており、アイドルスイッチ26がOFFの場合に、足戻しアップシフト時定数を第1アップシフト時定数tu1として選択する。 The first upshift time constant selection unit 43 selects the first upshift time constant tu1 based on the idle signal of the idle switch 26. The first upshift time constant selection unit 43 selects the foot upshift time constant as the first upshift time constant tu1 when the accelerator pedal 7 is not depressed and the idle switch 26 is ON. When the accelerator pedal 7 is depressed and the idle switch 26 is OFF, the first upshift time constant selection unit 43 selects the foot upshift time constant as the first upshift time constant tu1.
 第2アップシフト時定数選択部44は、リニアスポーツ変速フラグに基づいて第2アップシフト時定数tu2を選択する。第2アップシフト時定数選択部44は、リニアスポーツ変速フラグが「1」の場合には、リニアスポーツアップシフト時定数を第2アップシフト時定数tu2として選択する。第2アップシフト時定数選択部44は、リニアスポーツ変速フラグが「0」の場合には、第1アップシフト時定数tu1を第2アップシフト時定数tu2として選択する。 The second upshift time constant selection unit 44 selects the second upshift time constant tu2 based on the linear sports shift flag. When the linear sports shift flag is “1”, the second upshift time constant selection unit 44 selects the linear sports upshift time constant as the second upshift time constant tu2. When the linear sports shift flag is “0”, the second upshift time constant selection unit 44 selects the first upshift time constant tu1 as the second upshift time constant tu2.
 変速判定部45は、目標スルー変速比算出部41で今回算出された目標スルー変速比ithと、後述する目標スルー変速比応答算出部47によって前回算出された目標スルー変速比応答ithrとを比較する。変速判定部45は、今回算出された目標スルー変速比ithが前回算出された目標スルー変速比応答ithrよりも小さい場合には、アップシフトであると判定する。変速判定部45は、今回算出された目標スルー変速比ithが前回算出された目標スルー変速比応答ithrよりも大きい場合には、ダウンシフトであると判定する。変速判定部45は、アップシフト、またはダウンシフトに応じた変速信号Ssを出力する。 The shift determination unit 45 compares the target through speed ratio isth calculated this time by the target through speed ratio calculation unit 41 with the target through speed ratio response ithr previously calculated by the target through speed ratio response calculation unit 47 described later. . The shift determination unit 45 determines that the shift is an upshift when the currently calculated target through speed ratio isth is smaller than the previously calculated target through speed ratio response ithr. The shift determination unit 45 determines that the shift is a downshift when the currently calculated target through speed ratio ith is greater than the previously calculated target through speed ratio response ithr. The shift determination unit 45 outputs a shift signal Ss corresponding to upshift or downshift.
 変速時定数選択部46は、変速信号Ssに基づいて変速時定数tsを選択する。変速時定数選択部46は、ダウンシフトの場合にはダウンシフト時定数tdを変速時定数tsとして選択する。変速時定数選択部46は、アップシフトの場合には第2アップシフト時定数tu2を変速時定数tsとして選択する。 The shift time constant selection unit 46 selects a shift time constant ts based on the shift signal Ss. The shift time constant selection unit 46 selects the downshift time constant td as the shift time constant ts in the case of downshift. The shift time constant selection unit 46 selects the second upshift time constant tu2 as the shift time constant ts in the case of an upshift.
 目標スルー変速比応答算出部47は、式(1)の伝達関数Gr(s)を用いて目標スルー変速比ithに対して遅れ補償(一次遅れ補償)を施し、目標スルー変速比応答ithr(応答特性)を算出する。sはラプラス演算子である。
 Gr(s)=1/(1+s・ts)・・・(1)
The target through speed ratio response calculation unit 47 performs delay compensation (first-order delay compensation) on the target through speed ratio ith using the transfer function Gr (s) of Equation (1), and the target through speed ratio response ithr (response Characteristic). s is a Laplace operator.
Gr (s) = 1 / (1 + s · ts) (1)
 第1駆動力時定数算出部48は、車速センサ24によって検出された現在の車速VSP、及びアクセル開度APOに基づいて図4のマップから算出する時定数に第1所定係数を乗算して、駆動力増加側の時定数である増加側駆動力時定数tfiを算出する。第1所定係数は予め設定された値である。 The first driving force time constant calculation unit 48 multiplies the time constant calculated from the map of FIG. 4 by the first predetermined coefficient based on the current vehicle speed VSP detected by the vehicle speed sensor 24 and the accelerator opening APO, An increasing side driving force time constant tfi, which is a time constant on the driving force increasing side, is calculated. The first predetermined coefficient is a preset value.
 第2駆動力時定数算出部49は、車速センサ24によって検出された現在の車速VSP、及びアクセル開度APOに基づいて図4のマップから算出する時定数に第2所定係数を乗算して、駆動力減少側の時定数である減少側駆動力時定数tfdを算出する。第2所定係数は、第1所定係数よりも大きい値である。 The second driving force time constant calculation unit 49 multiplies the time constant calculated from the map of FIG. 4 by the second predetermined coefficient based on the current vehicle speed VSP detected by the vehicle speed sensor 24 and the accelerator opening APO, A decreasing side driving force time constant tfd, which is a time constant on the driving force decreasing side, is calculated. The second predetermined coefficient is a value larger than the first predetermined coefficient.
 第3駆動力時定数算出部50は、車速センサ24によって検出された現在の車速VSP、及びアクセル開度APOに基づいて図4のマップから算出する時定数に第3所定係数を乗算して、リニアスポーツ変速モードの時定数であるリニアスポーツ駆動力時定数tfsを算出する。第3所定係数は、第1所定係数よりも小さい値である。 The third driving force time constant calculation unit 50 multiplies the time constant calculated from the map of FIG. 4 by the third predetermined coefficient based on the current vehicle speed VSP detected by the vehicle speed sensor 24 and the accelerator opening APO, A linear sports driving force time constant tfs that is a time constant of the linear sports shift mode is calculated. The third predetermined coefficient is a value smaller than the first predetermined coefficient.
 駆動力判定部51は、今回算出された目標駆動力基本値Ftbと、後述する目標駆動力応答算出部55によって前回算出された目標駆動力応答Ftrとを比較する。駆動力判定部51は、今回算出された目標駆動力基本値Ftbが前回算出された目標駆動力応答Ftrよりも小さい場合には駆動力が減少すると判定する。駆動力判定部51は、今回算出された目標駆動力基本値Ftbが前回算出された目標駆動力応答Ftrよりも大きい場合には駆動力が増加すると判定する。駆動力判定部51は、駆動力の増加、または減少に応じた駆動力信号Sfを出力する。 The driving force determination unit 51 compares the target driving force basic value Ftb calculated this time with the target driving force response Ftr previously calculated by the target driving force response calculation unit 55 described later. The driving force determination unit 51 determines that the driving force decreases when the target driving force basic value Ftb calculated this time is smaller than the previously calculated target driving force response Ftr. The driving force determination unit 51 determines that the driving force increases when the target driving force basic value Ftb calculated this time is larger than the target driving force response Ftr calculated last time. The driving force determination unit 51 outputs a driving force signal Sf corresponding to the increase or decrease of the driving force.
 第1駆動力時定数選択部52は、駆動力信号Sfに基づいて第1駆動力時定数tf1を選択する。第1駆動力時定数選択部52は、駆動力信号Sfが、駆動力が増加することを示す増加信号である場合には、リニアスポーツ駆動力時定数tfsを第1駆動力時定数tf1として選択する。第1駆動力時定数選択部52は、駆動力信号Sfが、駆動力が減少することを示す減少信号である場合には、減少側駆動力時定数tfdを第1駆動力時定数tf1として選択する。 The first driving force time constant selection unit 52 selects the first driving force time constant tf1 based on the driving force signal Sf. The first driving force time constant selection unit 52 selects the linear sports driving force time constant tfs as the first driving force time constant tf1 when the driving force signal Sf is an increase signal indicating that the driving force increases. To do. When the driving force signal Sf is a decrease signal indicating that the driving force decreases, the first driving force time constant selection unit 52 selects the decreasing driving force time constant tfd as the first driving force time constant tf1. To do.
 第2駆動力時定数選択部53は、駆動力信号Sfに基づいて第2駆動力時定数tf2を選択する。第2駆動力時定数選択部53は、駆動力信号Sfが増加信号である場合には、増加側駆動力時定数tfiを第2駆動力時定数tf2として選択する。第2駆動力時定数選択部53は、駆動力信号Sfが減少信号である場合には、減少側駆動力時定数tfdを第2駆動力時定数tf2として選択する。 The second driving force time constant selection unit 53 selects the second driving force time constant tf2 based on the driving force signal Sf. The second driving force time constant selection unit 53 selects the increasing driving force time constant tfi as the second driving force time constant tf2 when the driving force signal Sf is an increase signal. The second driving force time constant selection unit 53 selects the decreasing driving force time constant tfd as the second driving force time constant tf2 when the driving force signal Sf is a decrease signal.
 第3駆動力時定数選択部54は、リニアスポーツ変速フラグに基づいて駆動力時定数tfを選択する。第3駆動力時定数選択部54は、リニアスポーツ変速フラグが「1」の場合には第1駆動力時定数tf1を駆動力時定数tfとして選択する。第3駆動力時定数選択部54は、リニアスポーツ変速フラグが「0」の場合には第2駆動力時定数tf2を駆動力時定数tfとして選択する。 The third driving force time constant selection unit 54 selects the driving force time constant tf based on the linear sports shift flag. The third driving force time constant selection unit 54 selects the first driving force time constant tf1 as the driving force time constant tf when the linear sports shift flag is “1”. The third driving force time constant selection unit 54 selects the second driving force time constant tf2 as the driving force time constant tf when the linear sports shift flag is “0”.
 目標駆動力応答算出部55は、式(2)の伝達関数Gf(s)を用いて目標駆動力基本値Ftbに対して遅れ補償(一次遅れ補償)を施して目標駆動力応答Ftr(過渡特性)を算出する。
    Gf(s)=1/(1+s・tf)・・・(2)
The target driving force response calculation unit 55 performs delay compensation (first-order delay compensation) on the target driving force basic value Ftb using the transfer function Gf (s) of Expression (2), and performs the target driving force response Ftr (transient characteristic). ) Is calculated.
Gf (s) = 1 / (1 + s · tf) (2)
 目標エンジントルク基本値算出部56は、目標駆動力応答Ftrを目標スルー変速比応答ithrで除算することで、目標エンジントルク基本値Tetbを算出する。 The target engine torque basic value calculation unit 56 calculates the target engine torque basic value Tetb by dividing the target driving force response Ftr by the target through speed ratio response ithr.
 エンジントルク時定数選択部57は、アクセル開度APOに基づいてエンジントルク時定数teを選択する。エンジントルク時定数選択部57は、アクセル開度APOが増加している場合には第1所定エンジントルク時定数をエンジントルク時定数teとして選択する。エンジントルク時定数選択部57は、アクセル開度APOが増加していない場合には、第2所定エンジントルク時定数をエンジントルク時定数teとして選択する。第1所定エンジントルク時定数、及び第2所定エンジントルク時定数は、予め設定されており、第1所定エンジントルク時定数は、第2所定エンジントルク時定数より小さい。 The engine torque time constant selection unit 57 selects the engine torque time constant te based on the accelerator opening APO. The engine torque time constant selection unit 57 selects the first predetermined engine torque time constant as the engine torque time constant te when the accelerator opening APO is increasing. The engine torque time constant selection unit 57 selects the second predetermined engine torque time constant as the engine torque time constant te when the accelerator opening APO is not increased. The first predetermined engine torque time constant and the second predetermined engine torque time constant are set in advance, and the first predetermined engine torque time constant is smaller than the second predetermined engine torque time constant.
 目標エンジントルク算出部58は、式(3)の伝達関数Gt(s)を用いて目標エンジントルク基本値Tetbに対して進み補償を施して目標エンジントルクTetを算出する。時定数tpは、予め設定された値であり、第1所定エンジントルク時定数、及び第2所定エンジントルク時定数よりも小さい。
 Gt(s)=(1+s・te)/(1+s・tp)・・・(3)
The target engine torque calculation unit 58 calculates the target engine torque Tet by performing advance compensation on the target engine torque basic value Tetb using the transfer function Gt (s) of Expression (3). The time constant tp is a preset value and is smaller than the first predetermined engine torque time constant and the second predetermined engine torque time constant.
Gt (s) = (1 + s · te) / (1 + s · tp) (3)
 このように、本実施形態では、目標スルー変速比応答ithr、及び目標駆動力応答Ftrを設定し、これらの応答に基づいて目標エンジントルクTetを算出し、目標エンジントルクTetに基づいて吸気スロットル4が制御される。 Thus, in the present embodiment, the target through speed ratio response itr and the target driving force response Ftr are set, the target engine torque Tet is calculated based on these responses, and the intake throttle 4 is calculated based on the target engine torque Tet. Is controlled.
 本発明の実施形態の効果について説明する。 The effect of the embodiment of the present invention will be described.
 車両の運転状態が定常走行、または緩加減速走行であり、無段変速機12がダウンシフトし、エンジントルクが増加する場合について図5、図6を用いて説明する。図5は本実施形態を用いない場合の駆動力、変速比、及びエンジントルクの変化を示し、時間t0において運転状態が変更される。図6は本実施形態を用いた場合の駆動力、変速比、及びエンジントルクの変化を示し、時間t0において運転状態が変更される。図5、図6では、目標駆動力(目標駆動力応答Ftr)、目標変速比、目標エンジントルクを破線で示す。 The case where the driving state of the vehicle is steady running or slow acceleration / deceleration running, the continuously variable transmission 12 is downshifted, and the engine torque increases will be described with reference to FIGS. FIG. 5 shows changes in driving force, gear ratio, and engine torque when the present embodiment is not used, and the driving state is changed at time t0. FIG. 6 shows changes in driving force, gear ratio, and engine torque when this embodiment is used, and the operating state is changed at time t0. 5 and 6, the target driving force (target driving force response Ftr), the target gear ratio, and the target engine torque are indicated by broken lines.
 本実施形態を用いない場合には、目標駆動力がステップ的に変更され、エンジン1の動作点が最適燃費線上になるように、目標変速比、及び目標エンジントルクに遅れ補償が施される。無段変速機12では、プライマリプーリ13の油圧Ppri、及びセカンダリプーリ14の油圧Psecを調整することで変速比が変更されるので、無段変速機12の応答はエンジン1の応答(増加)に対して遅くなる。本実施形態を用いない場合には、ステップ的に変化する目標駆動力に対して、無段変速機12の応答に合わせて目標エンジントルクが設定されるので、駆動力の応答が遅くなる。 When this embodiment is not used, the target driving force is changed stepwise, and delay compensation is performed on the target gear ratio and target engine torque so that the operating point of the engine 1 is on the optimum fuel consumption line. In the continuously variable transmission 12, the transmission ratio is changed by adjusting the hydraulic pressure Ppri of the primary pulley 13 and the hydraulic pressure Psec of the secondary pulley 14, so the response of the continuously variable transmission 12 is the response (increase) of the engine 1. It is slower than that. When the present embodiment is not used, the target engine torque is set in accordance with the response of the continuously variable transmission 12 with respect to the target driving force that changes stepwise, so that the response of the driving force is delayed.
 本実施形態では、目標駆動力基本値Ftbに対して一次遅れ補償を施した目標駆動力応答Ftrが設定され、駆動力が目標駆動力応答Ftrとなるように、目標駆動力応答Ftrと目標スルー変速比応答ithrとに基づいて目標エンジントルクTetが設定される。そのため、目標駆動力応答Ftrに応じた駆動力が発生し、駆動力の応答が早くなる。 In the present embodiment, a target driving force response Ftr obtained by performing first-order lag compensation on the target driving force basic value Ftb is set, and the target driving force response Ftr and the target through are set so that the driving force becomes the target driving force response Ftr. A target engine torque Tet is set based on the speed ratio response ithr. Therefore, a driving force corresponding to the target driving force response Ftr is generated, and the driving force response is accelerated.
 また、車両の運転状態が定常走行、及び緩加減速走行ではなく、無段変速機12がアップシフトし、エンジントルクが増加する場合について図7、図8を用いて説明する。図7は本実施形態を用いない場合の駆動力、変速比、及びエンジントルクの変化を示し、時間t0において運転状態が変更される。図8は本実施形態を用いた場合の駆動力、変速比、及びエンジントルクの変化を示し、時間t0において運転状態が変更される。図7、図8では、目標駆動力(目標駆動力応答Ftr)、目標変速比、目標エンジントルクを破線で示す。 Further, a case where the driving state of the vehicle is not steady running or slow acceleration / deceleration running, and the continuously variable transmission 12 is upshifted to increase the engine torque will be described with reference to FIGS. FIG. 7 shows changes in driving force, gear ratio, and engine torque when this embodiment is not used, and the operating state is changed at time t0. FIG. 8 shows changes in driving force, gear ratio, and engine torque when this embodiment is used, and the operating state is changed at time t0. 7 and 8, the target driving force (target driving force response Ftr), the target speed ratio, and the target engine torque are indicated by broken lines.
 本実施形態を用いない場合には、目標駆動力がステップ的に変更され、応答性を優先し、遅れ補償を施さずに、目標変速比、及び目標エンジントルクが設定される。このような場合、駆動力の応答は早くなるが、無段変速機12の応答はエンジン1の応答に対して遅いので、無段変速機12がアップシフトする前にエンジントルクが大きくなり、駆動力が目標駆動力に対してオーバーシュートし、運転者に違和感を与える。 When this embodiment is not used, the target driving force is changed stepwise, priority is given to responsiveness, and the target gear ratio and target engine torque are set without delay compensation. In such a case, the response of the driving force becomes faster, but the response of the continuously variable transmission 12 is slower than the response of the engine 1, so that the engine torque increases before the continuously variable transmission 12 upshifts, and the drive The power overshoots the target driving force, giving the driver a sense of incongruity.
 本実施形態では、目標駆動力基本値Ftbに対して一次遅れ補償を施した目標駆動力応答Ftrが設定され、目標駆動力応答Ftrと目標スルー変速比応答ithrとに基づいて目標エンジントルクTetが設定される。そのため、目標駆動力応答Ftrに応じた駆動力が発生し、駆動力がオーバーシュートすることを防止することができ、運転者に違和感を与えることを防止することができる。 In the present embodiment, a target driving force response Ftr obtained by performing first-order lag compensation on the target driving force basic value Ftb is set, and the target engine torque Tet is calculated based on the target driving force response Ftr and the target through speed ratio response ithr. Is set. Therefore, a driving force corresponding to the target driving force response Ftr is generated, the driving force can be prevented from overshooting, and the driver can be prevented from feeling uncomfortable.
 本実施形態では、目標エンジントルク基本値Tetbに対して進み補償を施し、目標エンジントルクTetを算出し、目標エンジントルクTetに基づいてエンジン1を制御する。これにより、目標エンジントルクTetに対して実際のエンジントルクが乖離することを抑制することができる。 In this embodiment, advance compensation is performed on the target engine torque basic value Tetb, the target engine torque Tet is calculated, and the engine 1 is controlled based on the target engine torque Tet. Thereby, it is possible to suppress the actual engine torque from deviating from the target engine torque Tet.
 本実施形態では、加速要求がある場合には、エンジントルク時定数teを小さくする。これにより、加速要求がある場合に、駆動力の応答性を向上することができる。 In this embodiment, when there is an acceleration request, the engine torque time constant te is reduced. Thereby, when there is an acceleration request, the responsiveness of the driving force can be improved.
 本実施形態では、アクセル開度APOと、車速VSPとに基づいて駆動力時定数tfを算出し、駆動力時定数tfを用いて目標駆動力応答Ftrを設定する。このように、車両の運転状態に応じて設定した駆動力時定数tfを用いて目標駆動力応答Ftrが設定され、目標駆動力応答Ftrとなるようにエンジン1が制御されるので、目標駆動力応答Ftrに対して実際の駆動力が乖離することを抑制することができる。 In this embodiment, the driving force time constant tf is calculated based on the accelerator opening APO and the vehicle speed VSP, and the target driving force response Ftr is set using the driving force time constant tf. Thus, the target driving force response Ftr is set using the driving force time constant tf set according to the driving state of the vehicle, and the engine 1 is controlled so as to become the target driving force response Ftr. It is possible to suppress the actual driving force from deviating from the response Ftr.
 本実施形態では、運転状態に基づいて変速時定数tsを算出し、変速時定数tsを用いて目標スルー変速比応答ithrを設定し、目標スルー変速比応答ithrを用いて目標駆動力応答Ftrを設定する。そして、目標駆動力応答Ftrとなるようにエンジン1が制御されるので、目標駆動力応答Ftrに対して実際の駆動力が乖離することを抑制することができる。 In the present embodiment, the shift time constant ts is calculated based on the driving state, the target through speed ratio response ithr is set using the shift time constant ts, and the target driving force response Ftr is calculated using the target through speed ratio response ithr. Set. And since the engine 1 is controlled to become the target driving force response Ftr, it is possible to suppress the actual driving force from deviating from the target driving force response Ftr.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 増加側駆動力応答時定数、減少側駆動力応答時定数、及びリニアスポーツ変速モード駆動力応答時定数を算出する場合に、各時定数に対してマップを設け、設けた各マップに基づいて各時定数を算出してもよい。 When calculating the increasing side driving force response time constant, the decreasing side driving force response time constant, and the linear sports shift mode driving force response time constant, a map is provided for each time constant, and each map is based on each provided map. A time constant may be calculated.
 エンジントルク時定数teを加速度、または減速度に応じて算出してもよい。この場合、加速度が大きいなど、エンジン1の負荷が大きくなるほどエンジントルク時定数teを小さくする。これにより、エンジントルクの応答特性に応じて、駆動力の応答性を向上することができる。 The engine torque time constant te may be calculated according to acceleration or deceleration. In this case, the engine torque time constant te is decreased as the load on the engine 1 increases, for example, the acceleration increases. Thereby, the response of the driving force can be improved according to the response characteristic of the engine torque.

Claims (6)

  1.  運転状態に応じて目標駆動力を設定し、前記目標駆動力を実現するよう駆動源のトルクと無段変速機の変速比とを制御する車両制御装置であって、
     前記運転状態に応じた前記目標駆動力の過渡特性と、前記無段変速機の応答特性とに基づいて前記駆動源のトルクを制御する制御手段を備える車両制御装置。
    A vehicle control device that sets a target driving force according to a driving state and controls a torque of a driving source and a gear ratio of a continuously variable transmission so as to realize the target driving force,
    A vehicle control device comprising control means for controlling torque of the drive source based on a transient characteristic of the target driving force according to the driving state and a response characteristic of the continuously variable transmission.
  2.  請求項1に記載の車両制御装置であって、
     前記制御手段は、前記目標駆動力の過渡特性と、前記無段変速機の応答特性とに基づいて算出した目標トルクに対して進み補償を施し、進み補償を施した目標トルクに基づいて前記駆動源のトルクを制御する車両制御装置。
    The vehicle control device according to claim 1,
    The control means performs advance compensation on a target torque calculated based on a transient characteristic of the target drive force and a response characteristic of the continuously variable transmission, and the drive based on the target torque subjected to advance compensation. A vehicle control device for controlling the torque of the power source.
  3.  請求項2に記載の車両制御装置であって、
     前記進み補償は、前記駆動源の負荷が大きくなると進み補償量が小さくなる車両制御装置。
    The vehicle control device according to claim 2,
    The advance compensation is a vehicle control device in which the advance compensation amount decreases as the load of the drive source increases.
  4.  請求項1から3のいずれか1つに記載の車両制御装置であって、
     前記目標駆動力の過渡特性は、アクセルペダル開度と車速とに基づいた時定数に基づいて設定される車両制御装置。
    The vehicle control device according to any one of claims 1 to 3,
    The transient characteristic of the target driving force is a vehicle control device that is set based on a time constant based on an accelerator pedal opening and a vehicle speed.
  5.  請求項1から4のいずれか1つに記載の車両制御装置であって、
     前記無段変速機の応答特性は、前記運転状態に基づいた時定数に基づいて設定される車両制御装置。
    The vehicle control device according to any one of claims 1 to 4,
    The response characteristic of the continuously variable transmission is a vehicle control device set based on a time constant based on the driving state.
  6.  運転状態に応じて目標駆動力を設定し、前記目標駆動力を実現するよう駆動源のトルクと無段変速機の変速比とを制御する車両の制御方法であって、
     前記運転状態に応じた前記目標駆動力の過渡特性と、前記無段変速機の応答特性とに基づいて前記駆動源のトルクを制御する車両の制御方法。
    A vehicle control method for setting a target driving force according to a driving state and controlling a torque of a driving source and a gear ratio of a continuously variable transmission so as to realize the target driving force,
    A vehicle control method for controlling a torque of the drive source based on a transient characteristic of the target driving force according to the driving state and a response characteristic of the continuously variable transmission.
PCT/JP2014/074806 2014-09-19 2014-09-19 Vehicle control device and vehicle control method WO2016042654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074806 WO2016042654A1 (en) 2014-09-19 2014-09-19 Vehicle control device and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074806 WO2016042654A1 (en) 2014-09-19 2014-09-19 Vehicle control device and vehicle control method

Publications (1)

Publication Number Publication Date
WO2016042654A1 true WO2016042654A1 (en) 2016-03-24

Family

ID=55532717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074806 WO2016042654A1 (en) 2014-09-19 2014-09-19 Vehicle control device and vehicle control method

Country Status (1)

Country Link
WO (1) WO2016042654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092903A1 (en) * 2016-11-21 2018-05-24 ジヤトコ株式会社 Shift control device and shift control method for continuously variable transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052818A (en) * 1998-08-07 2000-02-22 Nissan Motor Co Ltd Driving force controller for vehicle
JP2002213599A (en) * 2001-01-19 2002-07-31 Nissan Motor Co Ltd Speed change control system for vehicle continuously variable transmission with vehicle speed control system
JP2004124965A (en) * 2002-09-30 2004-04-22 Jatco Ltd Controller for belt type continuously variable transmission
JP2008106699A (en) * 2006-10-26 2008-05-08 Nissan Motor Co Ltd Control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052818A (en) * 1998-08-07 2000-02-22 Nissan Motor Co Ltd Driving force controller for vehicle
JP2002213599A (en) * 2001-01-19 2002-07-31 Nissan Motor Co Ltd Speed change control system for vehicle continuously variable transmission with vehicle speed control system
JP2004124965A (en) * 2002-09-30 2004-04-22 Jatco Ltd Controller for belt type continuously variable transmission
JP2008106699A (en) * 2006-10-26 2008-05-08 Nissan Motor Co Ltd Control device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092903A1 (en) * 2016-11-21 2018-05-24 ジヤトコ株式会社 Shift control device and shift control method for continuously variable transmission
CN109690145A (en) * 2016-11-21 2019-04-26 加特可株式会社 The speed-change control device and shifting control method of stepless transmission

Similar Documents

Publication Publication Date Title
EP2436954B1 (en) Continuously variable transmission and shift control method thereof
KR101315559B1 (en) Continuously variable transmission
JP4923080B2 (en) Continuously variable transmission and control method thereof
US10183670B2 (en) Control device for continuously variable transmission of vehicle
JP5854015B2 (en) Shift control device for continuously variable transmission for vehicle
JP2010090956A (en) Device and method for controlling continuously variable transmission
KR102104066B1 (en) Control device for continuously variable transmission and control method for continuously variable transmission
JP5743876B2 (en) Shift control device for continuously variable transmission
JP2010230118A (en) Continuously variable transmission and method of controlling the same
WO2014083937A1 (en) Vehicle control apparatus, and method of controlling same
JP5025630B2 (en) Vehicle control device
JP2013194810A (en) Transmission control device of continuously variable transmission
US8554427B2 (en) Control apparatus for continuously variable transmission
JP5140147B2 (en) Vehicle driving force control device
JPH1151170A (en) Gear change ratio controller of continuously variable transmission
WO2016042654A1 (en) Vehicle control device and vehicle control method
JP5977446B2 (en) Transmission and control method of transmission
JP3425841B2 (en) Control device for continuously variable transmission
JPWO2015053072A1 (en) Control device for continuously variable transmission with auxiliary transmission
JP5977271B2 (en) Continuously variable transmission and control method thereof
JP4461823B2 (en) Shift control device for continuously variable transmission
JP4214100B2 (en) Shift control device for continuously variable automatic transmission
JP6982544B2 (en) Vehicle control device and vehicle control method
JP7004435B2 (en) Transmission control device
JP4340434B2 (en) Shift control device for continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP