WO2016041368A1 - 下行导频的发送方法、检测方法、装置及基站、终端 - Google Patents

下行导频的发送方法、检测方法、装置及基站、终端 Download PDF

Info

Publication number
WO2016041368A1
WO2016041368A1 PCT/CN2015/078895 CN2015078895W WO2016041368A1 WO 2016041368 A1 WO2016041368 A1 WO 2016041368A1 CN 2015078895 W CN2015078895 W CN 2015078895W WO 2016041368 A1 WO2016041368 A1 WO 2016041368A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
group
port
pilot signal
downlink measurement
Prior art date
Application number
PCT/CN2015/078895
Other languages
English (en)
French (fr)
Inventor
陈艺戬
鲁照华
李儒岳
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22153812.7A priority Critical patent/EP4009573A1/en
Priority to US15/511,339 priority patent/US10673586B2/en
Priority to EP15842269.1A priority patent/EP3197087B1/en
Publication of WO2016041368A1 publication Critical patent/WO2016041368A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the invention relates to the technical field of transmission and detection of downlink pilots, and in particular to a method, a detection method, a device, a base station and a terminal for transmitting a downlink pilot in the field of wireless communication.
  • the transmitting end In a wireless communication system, the transmitting end often takes multiple antennas to obtain a higher transmission rate. Multiple antennas can improve the signal-to-noise ratio and support more spatial multiplexing layers. Compared with the open-loop MIMO (Multi-input Multi-output) that does not use CSI (Channel State Information) at the transmitting end.
  • MIMO technology using CSI information (closed-loop MIMO precoding) has higher capacity and is a transmission technology widely used in the mainstream 4G standard.
  • the core idea of the closed-loop MIMO precoding technology is that the receiving end feeds back the channel information to the transmitting end, and the transmitting end uses some transmitting precoding techniques according to the obtained channel information, which greatly improves the transmission performance.
  • the precoding with the channel feature vector information can be directly used for precoding.
  • more accurate channel information is needed for interference cancellation. Therefore, the acquisition of channel information at the transmitting end plays a very important role.
  • the general procedure for obtaining the downlink channel information of the FDD (Frequency Division Duplexing) system is as follows:
  • the transmitting end sends a downlink channel measurement pilot signal (CSI-RS, Channel State Information-Reference Signals) to the receiving end.
  • CSI-RS downlink channel measurement pilot signal
  • each channel transmits a channel measurement pilot signal.
  • the channel measurement pilot signals transmitted by different antennas are staggered in the time-frequency domain or the code domain, and the orthogonality can be maintained without mutual interference, and each antenna corresponds to one CSI-RS port; the channel measurement Pilots are used to measure channel information.
  • CSI-RS transmission of the maximum 8 antenna port on the base station side is supported in LTE-A.
  • the base station also sends RRC (Radio Resource Control) signaling to configure relevant location information and transmission period information of the CSI-RS to the terminal.
  • the content of the transmission of the pilot signal on the base station side is determined by some pre-agreed rules, and the terminal can accurately know the content of the pilot signal transmission of each port at each time-frequency position on the base station side.
  • the terminal receives the configuration information of the channel measurement pilot signal CSI-RS sent by the base station side, and performs CSI-RS pilot signal reception and detection on the time-frequency resource position of each pilot port that is signaled, and each terminal on the terminal side
  • the receiving CSI-RS pilot signal is obtained on the receiving antenna, and the terminal and the base station perform the convention of transmitting the signal content of the pilot on each time-frequency resource position of each transmitting port, so that the terminal can accurately know the downlink pilot transmitting signal, and further
  • the terminal can perform downlink channel estimation according to the received pilot signal to obtain downlink channel response information between the terminal side receiving antenna and the base station side transmitting antenna port.
  • LS Least Square
  • MMSE Minimum Mean Square Error
  • IRC Interference Rejection Combining
  • the terminal can estimate the channel response between the receiving antenna and the multiple transmitting antenna ports according to the content of the transmitted pilot signal of each pilot port and the received pilot signal on each receiving antenna, so that the time-frequency resource location can be obtained.
  • the channel matrix in turn, can calculate the optimal CSI information according to the channel matrix.
  • the CSI generally includes three types of PMI (Precoding Matrix Indicator)/CQI (Channel Quality Indicator)/RI (Rank Indicator) information.
  • the precoding matrix, the channel quality information, and the number of transmission layers are recommended to the base station respectively.
  • the terminal feeds back the calculated CQI/PMI/RI information to the base station through the control channel of the uplink physical layer or the data channel of the uplink physical layer.
  • the base station determines the number of transmission layers based on the feedback information of the terminal, determines the coding modulation mode, and determines the transmission precoding.
  • the downlink channel information measurement pilot CSI-RS plays a very important role in the acquisition of channel state information, and often affects the accuracy of precoding information, channel quality information and transmission layer number information, and thus for MIMO. Transmission performance has a very large impact.
  • the downlink CSI-RS pilots used in the 4G standard are periodic CSI-RS pilots.
  • the time domain considering that the channel changes are not abruptly changed, there is a certain time domain correlation, and the correlation time is greater than one subframe. The duration is 1ms, so it is not necessary to send all subframes. Since all UEs can share CSI-RS, CSI-RS is generally sent periodically.
  • the so-called periodic pilot the concept is that the base station performs CSI-RS transmission according to a certain periodic interval, and the transmission position may have different subframe position offsets.
  • the CSI-RS period and the subframe offset in the LTE-A are defined as follows:
  • the specification in the standard 36.211 of LTE is as shown in the following table, that is, CSI-reference signal subframe configuration.
  • the I CSI-RS is a configuration parameter of the CSI-RS, which takes a value of 0-154. Different values correspond to different CSI-RS periods and subframe offsets.
  • the PRB pair can refer to the provisions in the LTE protocol 36.211. A typical case includes 12 frequency domain subcarriers and 14 time domain OFDM symbols.
  • CSI-RS Resource units
  • the average CSI-RS pilot occupies 1 RE in a PRB pair, and all ports belonging to a CSI-RS resource need to be limited to a pattern #i shown in FIG.
  • a set of CSI-RS supports a maximum of 8 ports. Therefore, when the port is 8, there are five kinds of position candidates.
  • the number of ports is 4, there are 10 types of positions that can be configured.
  • the number of ports is 2, there are 20 configurations.
  • the base station side transmits the CSI-RS pilot
  • the main reason is that multiple UEs in the cell share the CSI-RS pilot, and if the CSI-RS is to be used in the CSI-RS
  • Precoding can only be precoded according to the channel characteristics of the base station to 1 UE, which will affect the measurement of other UEs.
  • Other UEs cannot accurately detect the physical channel between the Nr root receiving antenna and the Nt root transmitting antenna.
  • Precoding based on the characteristics of other UE channels may make it impossible to accurately calculate and report its own CSI information.
  • the base station can also transmit a periodic pre-period.
  • Coded CSI-RS pilot The pre-coded CSI-RS is generally referred to as a beam measurement pilot.
  • Figure 3 shows a transmission strategy for periodic beam pilots. The energy of each beam pilot is concentrated in a certain direction to form a directional beam, and one beam measurement pilot is transmitted every interval of time. Round robin between a set of beam pilots.
  • aperiodic CSI-RS pilots have recently been proposed.
  • the aperiodic CSI-RS is an instant-triggered pilot that is generally transmitted for channel measurements of a specific UE or group of UEs and does not continue to transmit, but exists only in one subframe. Therefore, the non-periodic pilot trigger information is carried in the downlink control channel PDCCH or the enhanced downlink control channel Enhanced-PDCCH (ePDCCH).
  • ePDCCH enhanced downlink control channel
  • the pilot detection can be performed at the corresponding position.
  • the content of the aperiodic CSI-RS can be pre-acquired by the terminal, so it can be estimated.
  • the downlink channel response between the terminal receiving antenna and the base station transmitting antenna is obtained to obtain a channel matrix.
  • the resource pool is configured based on the resource pool to different user resources.
  • the aperiodic CSI-RS contention resource pool may be a set of periodic CSI-RS transmission resource locations.
  • the aperiodic CSI-RS is generally for a specific user, or a specific user group, rather than all users in the cell, so the aperiodic CSI-RS is a method that can support precoding, which can effectively reduce the number of ports, and can further Reduce the amount of calculation of CSI feedback. Therefore, the aperiodic CSI-RS can be selected to transmit in the form of precoded beam pilots or non-precoded non-beam pilots as needed.
  • the related art periodic CSI-RS, aperiodic CSI-RS, whether it is a beam pilot or a non-beam pilot, has a certain flexibility limitation in its transmission. Specifically, the flexibility is limited in the following aspects:
  • the plurality of pilot ports in the PRB pair a and the PRB pair b have the same transmission resource density (Resource Element, RE density) in the PRB pair;
  • Port i and Port j have the same pilot density in the PRB pair;
  • Port i and Port j have the same number of transmitted PRB pair numbers
  • Port i and Port j have the same transmitted PRB pair position
  • Port i and Port j have the same time domain density (periodic configuration) and have the same subframe offset.
  • the number of occupied REs in the CSI-RS pilot PRB pair in Subframe m and Subframe n is the same (the resource density in the PRB pair is the same);
  • the use of the inflexible CSI-RS design can simplify the design, but the performance is not very good.
  • CSI-RS has fixed transmission parameters that may perform poorly in some scenarios.
  • the technical problem to be solved by the present invention is to provide a more flexible downlink pilot transmission scheme.
  • a method for transmitting a downlink pilot includes:
  • the base station divides the resource to be sent the downlink measurement pilot signal into multiple resource groups, where
  • the resource includes any one of a subframe, a port, a physical resource block pair, and any combination of the PRB pairs;
  • the base station separately configures and/or separately agrees with the terminal the pilot transmission parameters of each resource group;
  • the base station transmits the downlink measurement pilot signal in multiple resource groups according to the pilot transmission parameters configured for each resource group and/or agreed with the terminal.
  • the resource is a plurality of subframes in the time domain in which the downlink measurement pilot signal is to be sent, and the divided resource group is a subframe group, and each of the subframe groups includes one or more subframes.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the time-frequency resource density includes a density of the PRB pair and/or an occupied resource unit RE density in the PRB pair;
  • the time-frequency resource location includes a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the resource is a plurality of ports to be sent downlink measurement pilot signals
  • the divided resource groups are port groups, and each port group includes one or more ports
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the time domain location is sent;
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the step of the base station dividing the resource to be sent the downlink measurement pilot signal into multiple resource groups includes:
  • the plurality of ports of the downlink measurement pilot signal to be transmitted are divided into a plurality of the port groups according to the subframe number.
  • the resource is a plurality of PRB pairs in the frequency domain to be sent downlink measurement pilot signals
  • the divided resource groups are resource block RB groups; each of the RB groups includes one or more PRB pairs;
  • the pilot transmission parameter includes one or more of the following parameters:
  • the transmission resource density of the downlink measurement pilot signal in the RB group
  • the step of the base station dividing the resource to be sent the downlink measurement pilot signal into multiple resource groups includes:
  • the resource is any combination of a subframe, a port, and a PRB pair, and each of the divided resource groups is an area;
  • the pilot transmission parameter includes a sending position/density of the downlink measurement pilot signal. / or send power.
  • the method further includes:
  • the base station notifies the terminal or configures the grouping information of the resource group with the terminal by configuring signaling.
  • a method for detecting a downlink pilot includes:
  • the terminal will send the downlink measurement pilot signal according to the base station configuration signaling and/or the agreement with the base station.
  • the resource is divided into multiple resource groups, where the resource includes any one of a subframe, a port, and a PRB pair, or any combination thereof;
  • the terminal performs detection of the downlink measurement pilot signal according to the pilot transmission parameters of the multiple resource groups.
  • the resource is a plurality of subframes of the downlink measurement pilot signal to be sent in the time domain, and the divided resource group is a subframe group, and each of the subframe groups includes one or more subframes;
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the time-frequency resource density includes a density of the PRB pair and/or an occupied resource unit RE density in the PRB pair;
  • the time-frequency resource location includes a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the resource is a plurality of ports to be sent downlink measurement pilot signals
  • the divided resource groups are port groups, and each port group includes one or more ports
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, Send time domain location;
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the step of the terminal dividing the resources of the downlink measurement pilot signal to be divided into multiple resource groups according to the base station configuration signaling and/or the agreement with the base station includes:
  • the plurality of ports of the downlink measurement pilot signal to be transmitted are divided into a plurality of the port groups according to the subframe number.
  • the resource is a plurality of PRB pairs of the downlink measurement pilot signal to be sent in the frequency domain
  • the divided resource group is a resource block RB group; each of the RB groups includes one or more PRB pairs;
  • the pilot transmission parameters include one or more of the following parameters:
  • the transmission resource density of the downlink measurement pilot signal in the RB group
  • the step of the terminal dividing the resources of the downlink measurement pilot signal to be divided into multiple resource groups according to the base station configuration signaling and/or the agreement with the base station includes:
  • the resource is any combination of a subframe, a port, and a PRB pair, and each of the divided resource groups is an area;
  • the pilot transmission parameter includes a sending position/density of the downlink measurement pilot signal. / or send power.
  • the step of determining, by the terminal, pilot transmission parameters of each of the resource groups includes:
  • the terminal determines the pilot transmission parameters of each resource group according to base station configuration signaling.
  • a downlink pilot transmitting device is disposed at a base station, including a dividing module, a setting module, and a transmitting Send module, where:
  • the dividing module is configured to: divide the resource to be sent the downlink measurement pilot signal into multiple resource groups; the resource includes any one of a subframe, a port, a physical resource block pair, and any combination of the PRB pairs;
  • the setting module is configured to separately configure and/or separately agree with the terminal to transmit pilot parameters of each resource group;
  • the sending module is configured to send a downlink measurement pilot signal in each resource group according to a pilot transmission parameter configured for each resource group and/or agreed with the terminal.
  • the resource is a plurality of subframes of the downlink measurement pilot signal to be sent in the time domain
  • the resource group divided by the dividing module is a subframe group, and each of the subframe groups includes one or more sub-frames. frame;
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the time-frequency resource density includes a density of the PRB pair and/or an occupied resource unit RE density in the PRB pair;
  • the time-frequency resource location includes a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the resource is a plurality of ports to be sent downlink measurement pilot signals
  • the resource group divided by the dividing module is a port group, and each port group includes one or more ports
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the time domain location is sent;
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the dividing module is configured to divide the resources of the downlink measurement pilot signal to be divided into multiple resource groups as follows:
  • the plurality of ports of the downlink measurement pilot signal to be transmitted are divided into a plurality of the port groups according to the subframe number.
  • the resource is a plurality of PRB pairs of the downlink measurement pilot signal to be sent in the frequency domain
  • the resource group divided by the dividing module is a resource block RB group; each of the RB groups includes one or more PRB pair;
  • the pilot transmission parameter includes one or more of the following parameters:
  • the transmission resource density of the downlink measurement pilot signal in the RB group
  • the dividing module is configured to divide the resources of the downlink measurement pilot signal to be divided into multiple resource groups as follows:
  • the resource is any combination of a subframe, a port, and a PRB pair, and each resource group divided by the dividing module is an area;
  • the pilot transmission parameter includes a transmission location/density and/or a transmission of the downlink measurement pilot signal Send power.
  • the device further includes an appointment module, wherein
  • the appointment module is configured to: notify the terminal by configuration signaling or agree with the terminal to group information of the resource group.
  • a downlink pilot detecting device is disposed at the terminal, and includes a grouping module, a parameter determining module and a detecting module, wherein:
  • the grouping module is configured to divide the resources of the downlink measurement pilot signal to be divided into multiple resource groups according to the base station configuration signaling and/or the agreement with the base station; the resources include subframes, ports, and PRB pairs. Any one or any combination thereof;
  • the parameter determining module is configured to: determine a pilot sending parameter of each of the resource groups;
  • the detecting module is configured to: perform downlink measurement pilot signal detection according to pilot transmission parameters of each resource group.
  • the resource is a plurality of subframes of a downlink measurement pilot signal to be sent in a time domain
  • the resource group divided by the grouping module is a subframe group, and each of the subframe groups includes one or more sub-frames. frame
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the time-frequency resource density includes a density of the PRB pair and/or an occupied resource unit RE density in the PRB pair;
  • the time-frequency resource location includes a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the resource is a plurality of ports to be sent downlink measurement pilot signals
  • the resource group divided by the grouping module is a port group, and each port group includes one or more ports
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the time domain location is sent;
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the grouping module is configured to divide the resources of the downlink measurement pilot signal to be divided into multiple resource groups according to the base station configuration signaling and/or the agreement with the base station as follows:
  • the plurality of ports of the downlink measurement pilot signal to be transmitted are divided into a plurality of the port groups according to the subframe number.
  • the resource is a plurality of PRB pairs in the frequency domain to be sent downlink measurement pilot signals, where the resource group divided by the grouping module is a resource block RB group; each of the RB groups includes one or more PRB pair;
  • the pilot transmission parameter includes one or more of the following parameters:
  • the transmission resource density of the downlink measurement pilot signal in the RB group
  • the grouping module is configured to divide the resources of the downlink measurement pilot signal to be divided into multiple resource groups according to the base station configuration signaling and/or the agreement with the base station as follows:
  • the resource is any combination of a subframe, a port, and a PRB pair, and each resource group divided by the grouping module is an area.
  • the pilot transmission parameters include a transmission location/density and/or transmission power of the downlink measurement pilot signal.
  • the parameter determining module is configured to determine pilot transmission parameters of each of the resource groups as follows:
  • the parameter determination module determines the pilot transmission parameters of each resource group according to base station configuration signaling.
  • a base station includes any of the above-described downlink pilot transmission devices.
  • a terminal includes any of the above-described detection devices for downlink pilots.
  • the technical solution of the present invention provides a more flexible pilot transmission scheme by grouping and separately setting pilot transmission parameters for each packet, and can adjust the transmission position of the pilot according to the actual situation during transmission to adapt to various needs.
  • FIG. 1 is a schematic diagram of subframe position transmission corresponding to a CSI-RS configuration example
  • FIG. 2 is a schematic diagram of a CSI-RS Pattern in LTE
  • 3 is a schematic diagram of a periodic beam measurement pilot
  • 4 is a time-frequency domain location diagram of an aperiodic CSI-RS
  • FIG. 5 is a schematic flowchart diagram of a downlink pilot transmission method according to Embodiment 1;
  • FIG. 6a is a schematic diagram of a subframe grouping for a periodic pilot in the first example of the first embodiment
  • 6b is a schematic diagram of a subframe grouping for a non-periodic pilot in the first example of the first embodiment
  • FIG. 7 is a schematic diagram of a port grouping method 1 in the second embodiment of the first embodiment
  • FIG. 8 is a schematic diagram of a port grouping method 2 in the second embodiment of the first embodiment
  • FIG. 9 is a schematic diagram of a port grouping method 3 in the second embodiment of the first embodiment.
  • FIG. 10 is a schematic diagram of an RB packet in Example 3 of Embodiment 1;
  • FIG. 11a and FIG. 11b are schematic diagrams showing two division manners of the two-dimensional resource division method 1 in the fourth embodiment of the first embodiment
  • 12a and 12b are schematic diagrams showing two division manners of the two-dimensional resource division method 2 in the fourth embodiment of the first embodiment
  • FIG. 13a and FIG. 13b are schematic diagrams showing two division manners of the two-dimensional resource division method 3 in the fourth embodiment of the first embodiment
  • FIG. 14 is a schematic diagram of a three-dimensional resource sub-region method in Example 4 of Embodiment 1;
  • FIG. 15 is a schematic structural diagram of a downlink pilot transmitting apparatus according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a downlink pilot detecting apparatus according to an embodiment of the present invention.
  • Embodiment 1 A method for transmitting a downlink pilot, as shown in FIG. 5, includes steps S110-S130:
  • the base station divides the resource to be sent the downlink measurement pilot signal into multiple resource groups.
  • the resource includes any one of a subframe, a port, and a PRB pair, or any combination thereof.
  • the base station separately configures and/or separately agrees with the terminal, the pilot transmission parameters of each resource group.
  • the base station sends a downlink measurement pilot signal in each resource group according to a pilot transmission parameter configured for each resource group and/or agreed with the terminal.
  • the base station may notify the terminal by configuring signaling or agree with the terminal to the resource group. Grouping information.
  • the pilot parameters are configured for the time domain subframe or the subframe group, where the resource is the M subframes of the downlink measurement pilot signal to be sent in the time domain, and the divided resource groups are
  • the sending method specifically includes steps S210-S230:
  • the base station divides the M subframes in the time domain to be sent the downlink measurement pilot signal into N subframe groups: a subframe group 1, a subframe group 2, and a subframe group N, where N is less than or equal to M.
  • Each subframe group may contain one or more subframes.
  • the packet information base station of the subframe group may be notified by signaling or agreed with the terminal.
  • the base station separately configures and/or agrees with each of the subframe groups on pilot transmission parameters of each of the subframe groups.
  • the pilot transmission parameter includes one or more of the following parameters:
  • time-frequency resource density may include a density of the PRB pair and/or an occupied RE density in the PRB pair;
  • the time-frequency resource location may include a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the base station performs the downlink measurement guide in each of the subframe groups according to the pilot transmission parameters configured for each of the subframe groups and/or each subframe group that is agreed with the terminal. Frequency signal transmission.
  • the pilot parameter is configured for the port or the port group, where the resource is the Y ports to be sent the downlink measurement pilot signal, and the divided resource group is the port group;
  • the sending method specifically includes steps S310-S330:
  • the base station divides the X ports to be sent the downlink measurement pilot signal into Y port groups: port group 1, port group 2, ... port group Y, where Y is less than or equal to X.
  • Each port group can Contains 1 or more ports.
  • the group information of the port group may be notified by the base station or agreed with the terminal.
  • the division of the port group may be determined according to a subframe number.
  • the base station separately configures and/or agrees with each of the port groups on a pilot transmission parameter of each of the port groups.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the transmission time domain position;
  • the base station performs the downlink measurement pilot signal transmission in each of the port groups according to the pilot transmission parameters configured for each port group and/or each port group agreed with the terminal. .
  • the pilot parameter is configured for the RB or the RB group, where the resource is the Q PRB pair of the downlink measurement pilot signal to be sent in the frequency domain, and the divided resource group is the resource block group.
  • the sending method specifically includes steps S410-S430:
  • the base station divides the Q PRB pairs in the frequency domain to be sent the measurement pilot signal into P RB groups: RB group 1, RB group 2, RB group P, where P is less than or equal to Q.
  • P is less than or equal to Q.
  • Each RB group can contain one or more PRB pairs.
  • the group information of the RB group may be notified by the base station or agreed with the terminal.
  • the division of the RB group may be determined according to a subframe number.
  • the base station separately configures and/or agrees with each of the RB groups on pilot transmission parameters of each of the RB groups.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the base station performs the downlink measurement pilot signal transmission in each of the RB groups according to the pilot transmission parameters configured for each of the RB groups and/or each of the RB groups agreed with the terminal.
  • the resource is any combination of a subframe, a port, and a PRB pair.
  • the grouping in this embodiment is a division of a multi-dimensional joint region, and each resource group that is divided may be referred to as a region.
  • the sending method specifically includes steps S510-S530:
  • the base station divides the M areas, the X subframe positions, and the Q RB positions of the downlink measurement pilot signal to be combined, and divides into K transmission areas.
  • the base station divides the X sub-frame positions of the downlink measurement pilot signals to be combined with the Q RB positions to be divided into K transmission areas.
  • the base station divides the M ports and the X subframe positions of the downlink measurement pilot signal to be combined, and divides into K transmission areas;
  • the base station divides the M ports and the Q RB positions to be sent the downlink measurement pilot signal into a combined location area, and divides into K transmission areas;
  • the K transmission areas are area 1, area 2, area K, respectively.
  • the area grouping information may be notified by the base station or agreed with the terminal.
  • the base station separately configures and/or agrees with each of the areas on pilot transmission parameters in each of the areas.
  • the pilot transmission parameters include a transmission location/density of the downlink measurement pilot signal and/or Transmit power.
  • the base station performs downlink measurement pilot signal transmission in each of the areas according to the configured pilot transmission parameters.
  • Example 1 TTI (Transmission Time Interval) packets are respectively configured with pilot parameters, and the base station side.
  • the base station divides the M subframes of the downlink measurement pilot signal to be transmitted in the time domain into N subframe groups: subframe group 1, subframe group 2, ... subframe group N, where N is less than or equal to M.
  • each subframe group Can contain one or more subframes.
  • the base station sends a periodic pilot to the terminal.
  • the base station does not expect to limit all the subframes of the transmission period pilots to have exactly the same pilot transmission parameters. Therefore, the base station groups the subframes.
  • FIG. 6a One is to divide the subframe 0 in each frame into the subframe group 1, and the subframe 5 is divided into the subframe group 2; The subframe 0 in the odd frame is divided into the subframe group 1, the subframe 5 is divided into the subframe group 2, the subframe 0 in the even frame is divided into the subframe group 3, and the subframe 5 is divided into the subframe group 4
  • the actual application is not limited to the example in Figure 6a, and can be designed by itself.
  • the base station can configure the foregoing grouping information to the terminal by using high-level control signaling.
  • the base station sends an aperiodic CSI-RS to the terminal, where the aperiodic CSI-RS trigger signaling indicates aperiodic CSI-RS transmission of multiple subframes, and the base station does not expect to limit all the subframes of the transmission period pilots to be identical.
  • the pilot sends the parameters. Therefore, the base station groups multiple subframes, and enumerates several simple grouping methods as shown in FIG. 6b. One is to divide subframe 0 and subframe 4 in the odd frame into subframe group 1, and subframe 2 is divided into subframes.
  • Subframe 2 is to divide the subframe 0 and the subframe 1 in the odd frame into the subframe group 1, the subframe 4 and the subframe 5 are divided into the subframe group 2; the other is to divide the subframe in the odd frame into 0 Divided into subframe group 1, subframe 2 is divided into subframe group 2, subframe 5 is divided into subframe group 3, and subframe 6 is divided into subframe group 4; the actual application is not limited to the example in FIG. 6b, and may be How the design is grouped.
  • the base station can configure the foregoing group information to the terminal through control signaling of the physical layer.
  • the base station and the terminal pre-approve a corresponding subframe grouping method when the number of aperiodic CSI-RS transmission subframes is M.
  • the base station and the terminal pre-arrange the subframe grouping method associated with the subframe ID: if the odd subframes are a group, and the even digital frames are a group.
  • Sub-Example 2 of Example 1 Sub-frame group pilot transmission parameter configuration:
  • the main method in this example is to perform pilot transmission parameter configuration for different subframe groups. As shown in the table below:
  • the density of the PRB pair here refers to the number of RBs/the total number of RBs of the bandwidth, and the maximum is 1.
  • each subframe group pilot transmits the PRB pair position
  • Subframe group 1 Subframe group 2
  • RB ID Mode 2 1 ALL RB ALL RB
  • Subframe group 1 Subframe group 2
  • Subframe group 3 Subframe group 4 RE density in the PRB pair 128RE/RB 32RE/RB 8RE/RB 16RE/RB
  • Pattern#i is a pre-agreed pilot transmission location of the transceiver.
  • Subframe group 1 Subframe group 2 Subframe group 3 Subframe group 4 Measuring the number of pilot ports 32 16 8 8
  • Subframe group 1 Subframe group 2 Subframe group 3 Subframe group 4
  • the base station performs pilot transmission in each subframe group according to the pilot transmission parameters of each subframe group configured for each subframe group and/or agreed with the terminal.
  • subframe group 1 is sent according to the following pilot parameter configuration:
  • Subframe group 2 is sent with the following pilot parameter configuration:
  • Subframe group 3 is sent with the following pilot parameter configuration:
  • Subframe group 4 is sent in the following pilot parameter configuration:
  • Example 2 Port parameters are respectively configured with pilot parameters, and the base station side.
  • the base station divides the X ports of the downlink measurement pilot signal to be sent into Y port groups: port group 1, Port group 2...port group Y, where Y is less than or equal to X.
  • Each port group may contain one or more ports.
  • Method 1 Block grouping method, each block is a group, as shown in Figure 7.
  • Branch grouping method The antenna port of each row is an antenna group as shown in FIG.
  • Polarization grouping method The antenna port of each polarization direction is an antenna group, as shown in FIG.
  • the base station may configure the port grouping information to the terminal by using the control signaling of the physical layer or configure the port grouping information to the terminal by using the high layer control signaling.
  • the base station may also perform port grouping information agreement with the terminal, and the agreement may be determined according to the antenna topology, the antenna polarization, and the total number of ports. Different antenna topologies, different antenna polarizations with different total antenna numbers have different targeted grouping conventions.
  • the method mainly described in this embodiment is to perform pilot transmission parameter configuration for different port groups. For example, as shown in the following table:
  • the density of the PRB pair here refers to the number of pilot transmission RBs/the total number of bandwidth RBs, and the maximum is 1.
  • Port group 1 Port group 2
  • Port group 3 Port group 4 RE density in the PRB pair 4RE/RB 2RE/RB 1RE/RB 2RE/RB
  • Table 18 Time domain location configuration of each port group pilot transmission
  • the delay here may refer to the delay of the subframe position where the CSI-RS trigger signaling is located.
  • Port group 1 Port group 2 Port group 3
  • Table 21 Relative power configuration of each pilot group measurement pilot
  • the base station performs pilot transmission in each port group according to the configuration of each port group and/or the terminal respectively transmitting pilot transmission parameters of each port group.
  • Port Group 1 is sent according to the following pilot parameter configuration:
  • Port group 2 is sent according to the following pilot parameter configuration:
  • Port group 3 is sent according to the following pilot parameter configuration:
  • Port group 4 is sent with the following pilot parameter configuration:
  • Example 3 RB packets are respectively configured with pilot parameters, and the base station side.
  • the base station divides the Q PRB pairs in the frequency domain to be sent the measurement pilot signal into P RB groups: RB group 1, RB group 2, ... RB group P, where P is less than or equal to Q.
  • Each RB group may contain one or more RBs.
  • Fig. 10 Taking three RB groups as an example, one is to divide every three consecutive RBs into RB groups 1, 2, and 3 (as shown in the left from Figure 10). One column is shown; one is to divide all RBs into RB groups 1, 2, 3, and the RBs in each group are continuous (as shown in the second column from the left in Figure 10); one is in each group. RBs are continuous, but RBs in RB group 1 are more than the other two groups (as shown in the third column from the left in Figure 10); one is to divide every six consecutive RBs into RB groups 1, 2, and 3, respectively.
  • Each group contains two consecutive RBs (as shown in the first column from the right in Fig. 10); the actual application is not limited to the example in Fig. 10, and it is possible to design how to group by itself.
  • the RB group information may be notified to the terminal by the base station through downlink physical layer control signaling or high layer configuration signaling.
  • the RB packet information may also be that the base station and the terminal perform some pre-agreed.
  • the RB packets within each subframe may be different. That is to say, the RB packet in the subframe needs to be combined with the subframe number to be determined.
  • the method mainly described in this example is to perform pilot transmission parameter configuration for different RB groups. That As shown in the following table:
  • Table 28 Number of pilot port measurements for each RB group
  • Table 30 Relative pilot power configuration for each RB group
  • Illustrated here is the power of the measured pilot total power in each RB relative to the data channel.
  • the base station performs pilot transmission in each RB group according to the configuration of each RB group and/or the pilot transmission parameters of each RB group respectively agreed with the terminal.
  • RB group 1 is sent according to the following pilot parameter configuration:
  • RB group 2 is sent according to the following pilot parameter configuration:
  • RB group 3 is sent according to the following pilot parameter configuration:
  • RB group 4 is sent in the following pilot parameter configuration:
  • Example 4 The pilot parameters are respectively configured in the multi-dimensional resource sub-area, and the base station side.
  • the method mainly performs pilot transmission area division in two dimensions of a port and a resource block RB, and does not perform area division for a subframe dimension.
  • Figures 11(a) and 11(b) show two simple examples of partitioning, which are divided into three regions and four regions.
  • the method mainly performs pilot transmission area division in two dimensions of a port and a subframe, and does not perform area division for a resource block RB dimension.
  • Figure 12(a) and Figure 12(b) show two examples of simple divisions.
  • the method mainly performs pilot transmission area division in two dimensions of RB and subframe, and does not perform area division for port dimensions.
  • Figures 13(a) and 13(b) show two examples of simple divisions.
  • the method mainly performs pilot transmission area division in two dimensions of RB and subframe and port.
  • FIG. 14 shows an example of a simple division manner, and eight areas are divided.
  • the area grouping information may be notified by the base station through physical layer control signaling or higher layer control signaling, or the base station and the terminal may make an agreement.
  • the base station performs pilot transmission in each area according to the configured pilot transmission position/density and/or transmission power.
  • Embodiment 2 A method for detecting a downlink pilot includes steps U110-130:
  • the terminal divides the resource to be sent the downlink measurement pilot signal into multiple resource groups according to the configuration of the base station configuration signaling and/or the base station; the resource includes any one of a subframe, a port, and a PRB pair or random combination.
  • the terminal determines a pilot sending parameter of each of the resource groups.
  • the terminal performs downlink measurement pilot signal detection according to pilot transmission parameters of each resource group.
  • the terminal may determine pilot transmission parameters of each resource group according to the base station configuration signaling.
  • the resource is a M subframe in which the downlink measurement pilot signal is to be sent in the time domain, and the divided resource group is a subframe group.
  • the detection method specifically includes the steps.
  • the terminal divides the M subframes of the downlink measurement pilot signal to be transmitted in the time domain into N subframe groups according to the base station configuration signaling and/or the agreed method with the base station: subframe group 1, subframe group 2, ... subframe Group N, where N is less than or equal to M.
  • Each subframe group may contain one or more subframes.
  • the terminal determines a pilot transmission parameter of each subframe group.
  • the pilot transmission parameter includes one or more of the following parameters:
  • time-frequency resource density may include a density of the PRB pair and/or an occupied RE density in the PRB pair;
  • the time-frequency resource location may include a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the terminal may determine pilot transmission parameters of each subframe group according to the base station configuration signaling.
  • the terminal performs the downlink measurement pilot signal detection according to the pilot transmission parameter of each of the subframe groups.
  • the resource is the X ports of the downlink measurement pilot signal to be sent, and the allocated resource group is a port group.
  • the detection method specifically includes the steps U310-U330. :
  • the terminal divides the X ports to be sent the downlink measurement pilot signal into Y port groups according to the base station configuration signaling and/or the agreed method of the base station: port group 1, port group 2, ... port group Y, where Y is less than or equal to X.
  • Each port group can contain one or more ports.
  • the port grouping information needs to be determined according to the subframe number.
  • the terminal determines a pilot sending parameter of each port group.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the transmission time domain position;
  • the terminal may determine pilot transmission parameters of each port group according to the base station configuration signaling.
  • the terminal performs the downlink measurement pilot signal detection according to the pilot transmission parameter of each port group.
  • the resource is the Q PRB pair to be sent the downlink measurement pilot signal
  • the divided resource group is the RB group.
  • the detection method specifically includes the step U410 ⁇ U430:
  • the terminal divides the Q PRB pairs to be sent the downlink measurement pilot signal into P subframe groups according to the base station configuration signaling and/or the agreed method with the base station: RB group 1, RB group 2, ... RB group P, where , P is less than or equal to Q.
  • Each RB group can contain one or more PRB pairs.
  • the division of the RB group may be determined according to the subframe number.
  • the terminal determines a pilot transmission parameter of each RB group.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the terminal may determine pilot transmission parameters of each RB group according to the base station configuration signaling.
  • the terminal performs the downlink measurement pilot signal detection in each of the RB groups according to the pilot transmission parameters of each RB group.
  • the resource is any combination of a subframe, a port, and a PRB pair.
  • the grouping in this embodiment is a division of a multi-dimensional joint region, and each resource group that is divided may be referred to as a region.
  • the detecting method specifically includes steps U510-U530:
  • the terminal sends the downlink measurement to be sent according to the base station configuration signaling and/or the agreed method with the base station.
  • the M regions of the pilot signal, the X subframe positions, and the Q RB positions are combined into a location area division, and are divided into K transmission areas;
  • the terminal divides the location areas of the M ports and the X subframe positions of the downlink measurement pilot signal to be transmitted according to the base station configuration signaling and/or the method of the base station, and divides into K transmission areas;
  • the terminal divides the X sub-frame positions and the Q RB positions of the downlink measurement pilot signal to be combined according to the base station configuration signaling and/or the agreed method of the base station, and divides into K transmission areas;
  • the terminal divides the location areas where the M ports and the Q RB positions of the downlink measurement pilot signal to be combined are divided into K transmission areas according to the base station configuration signaling and/or the method of the base station;
  • the K transmission areas are area 1, area 2, area K, respectively.
  • the terminal determines a pilot transmission parameter of each of the areas.
  • the pilot transmission parameter includes the downlink measurement pilot signal transmission position/density and/or transmission power.
  • the terminal performs the downlink measurement pilot signal detection in each of the areas according to the pilot transmission parameters of each of the areas.
  • Example 5 The TTI packet acquires pilot parameters respectively, and the terminal side.
  • Sub-Example 1 of Example 5 Sub-frame grouping information acquisition:
  • the terminal divides the M subframes of the measurement pilot signal to be transmitted in the time domain into N subframe groups according to the base station configuration signaling and/or the agreed method of the base station: the subframe group 1, the subframe group 2, the subframe group N, Where N is less than or equal to M.
  • Each subframe group may contain one or more subframes.
  • the terminal detects the physical layer control signaling or the high layer signaling of the base station, and obtains the subframe group information, thereby obtaining the total number of subframe groups, the number of subframes included in each subframe group, and the like.
  • the base station and the terminal pre-approve a corresponding subframe grouping method when the number of aperiodic CSI-RS transmission subframes is M.
  • the base station and the terminal pre-arrange the subframe grouping method associated with the subframe ID: if the odd subframes are a group, and the even digital frames are a group.
  • the terminal acquires subframe grouping information according to the agreed content.
  • Sub-Example 2 of Example 5 Sub-frame group pilot parameter information acquisition:
  • the method mainly described in this embodiment is that the terminal acquires various pilot transmission parameter configurations for different subframe groups. For example, as shown in the following table:
  • Table 38 Each subframe group pilot transmission PRB pair density configuration
  • the density of the PRB pair here refers to the number of RBs/the total number of RBs of the bandwidth, and the maximum is 1.
  • Table 39 Each subframe group pilot transmission PRB pair position configuration
  • Subframe group 1 Subframe group 2
  • RB ID Mode 2 1 ALL RB ALL RB
  • Table 40 Pilot density configuration in the PRB pair of each subframe group
  • Subframe group 1 Subframe group 2
  • Subframe group 3 Subframe group 4 RE density in the PRB pair 128RE/RB 32RE/RB 8RE/RB 16RE/RB
  • Pattern#i is a pre-agreed pilot transmission location of the transceiver.
  • Subframe group 1 Subframe group 2 Subframe group 3 Subframe group 4 Measuring the number of pilot ports 32 16 8 8
  • Subframe group 1 Subframe group 2
  • Subframe group 3 Subframe group 4 Measuring pilot port ID 0-31 16-31 0-7 8-15
  • Pilot detection is performed on the pilot transmission parameters (as pilot detection parameters) that have been determined in each subframe group.
  • subframe group 1 is detected by the following pilot parameter configuration:
  • Subframe group 2 is detected by the following pilot parameter configuration:
  • Subframe group 3 is detected by the following pilot parameter configuration:
  • Subframe group 4 is detected by the following pilot parameter configuration:
  • Example 6 The port group obtains the pilot parameters respectively, and the terminal side.
  • Sub-Example 1 of Example 6 Port packet information acquisition.
  • the terminal divides the X ports of the measurement pilot signal to be sent into Y port groups according to the base station configuration signaling and/or the agreed method with the base station: port group 1, port group 2, ... port group Y, where Y Less than or equal to X.
  • Each port group can contain one or more ports.
  • the terminal detects the physical layer control signaling or the high layer signaling of the base station, and obtains the port grouping information, thereby obtaining the total number of port groups, the number of ports included in each port group, and the like.
  • the terminal may also perform port grouping information agreement with the base station, and the agreement may be determined according to the antenna topology, the antenna polarization, and the total number of ports. Different antenna topologies, different antenna polarizations with different total antenna numbers have different targeted grouping conventions.
  • Sub-Example 2 of Example 6 Port group pilot parameter information acquisition.
  • the method mainly described in this embodiment is to acquire different port groups for pilot transmission parameter configuration. For example, as shown in the following table:
  • Table 49 PRB pair density configuration for each port group pilot transmission
  • the density of the PRB pair here refers to the number of pilot transmission RBs/the total number of bandwidth RBs, and the maximum is 1.
  • Table 50 PRB pair location configuration for each port group pilot transmission
  • Table 51 Pilot frequency configuration in the PRB pair for each port group pilot transmission
  • Port group 1 Port group 2
  • Port group 3 Port group 4 RE density in the PRB pair 4RE/RB 2RE/RB 1RE/RB 2RE/RB
  • Table 52 Pilot location configuration in the PRB pair for each port group pilot transmission
  • Table 54 Time domain location configuration of each port group pilot transmission
  • the delay here may refer to the delay of the subframe position where the CSI-RS trigger signaling is located.
  • Port group 1 Port group 2 Port group 3
  • Pilot detection is performed in each port group.
  • pilot parameter configuration is used for detection:
  • Port group 2 is tested according to the following pilot parameter configuration:
  • Port group 3 is detected according to the following pilot parameter configuration:
  • Port group 4 is tested according to the following pilot parameter configuration:
  • Example 7 The RB packet acquires pilot parameters respectively, and the terminal side.
  • the terminal divides the Q PRB pairs of the measurement pilot signals to be transmitted in the frequency domain into P subframe groups according to the base station configuration signaling and/or the method of the base station: RB group 1, RB group 2, ... RB group P, where P is less than or equal to Q.
  • Each RB group may contain one or more RBs.
  • the terminal detects the physical layer control signaling or the high layer signaling of the base station, and obtains the RB group information, thereby obtaining the total number of RB groups, the number of RBs included in each RB group, and the like.
  • the terminal may also perform RB packet information agreement with the base station, and the agreement may be determined according to the antenna topology, the antenna polarization, and the total number of ports. Different antenna topologies, different antenna polarizations with different total antenna numbers have different targeted RB grouping conventions
  • RB packets within each subframe may be different. That is to say, the RB packet in the subframe needs to be combined with the subframe number to be determined.
  • the method mainly described in this embodiment is to acquire different RB groups for pilot transmission parameter configuration. For example, as shown in the following table:
  • Table 62 Pilot density configuration in the PRB pair of each RB group
  • Table 63 Pilot location configuration in the PRB pair of each RB group
  • Table 66 Relative power configuration of pilots in PRB pairs of each RB group
  • Illustrated here is the power of the measured pilot total power in each RB relative to the data channel.
  • the terminal performs pilot detection in each RB group according to the acquired RB group pilot parameters.
  • RB group 1 is detected according to the following pilot parameter configuration:
  • RB group 2 is detected according to the following pilot parameter configuration:
  • RB group 3 is detected according to the following pilot parameter configuration:
  • RB group 4 is detected according to the following pilot parameter configuration:
  • Example 8 Multi-dimensional area grouping separately obtains pilot parameters, terminal side.
  • the terminal divides the M areas, the X subframe positions, and the Q RB positions of the measurement pilot signal to be sent according to the base station configuration signaling and/or the method of the base station, and divides the K transmission areas into Area 1, Area 2... Area K.
  • the terminal divides the M ports and the X subframe positions of the measurement pilot signal to be combined according to the base station configuration signaling and/or the method of the base station, and divides the K transmission areas into area 1, area 2, respectively. ... area K.
  • the terminal divides the X sub-frame positions and the Q RB positions of the measurement pilot signal to be transmitted according to the base station configuration signaling and/or the method of the base station, and divides the K transmission areas into area 1, respectively. 2... Area K.
  • the terminal divides the M ports and the Q RB positions of the measurement pilot signal to be combined according to the base station configuration signaling and/or the method of the base station, and divides the K transmission areas into area 1, area 2, respectively. ... area K.
  • the terminal detects the physical layer control signaling or the high layer signaling of the base station, and can obtain the area grouping information, thereby obtaining the total number of areas, the definition of each area, and the like.
  • the terminal may also perform RB packet information agreement with the base station, and the agreement may be determined according to the antenna topology, the antenna polarization, and the total number of ports. Different antenna topologies, different antenna polarizations with different total antenna numbers have different targeted RB grouping conventions.
  • the terminal performs pilot detection in each area according to the configured pilot transmission position/density and/or transmission power.
  • Embodiment 3 A downlink pilot transmitting apparatus, configured in a base station, includes:
  • the dividing module 1501 is configured to: divide the resource to be sent the downlink measurement pilot signal into multiple resource groups; the resource includes any one of a subframe, a port, a physical resource block pair, and any combination of the PRB pairs;
  • the setting module 1502 is configured to: separately configure and/or separately agree with the terminal, the pilot transmission parameters of each resource group;
  • the sending module 1503 is configured to: send the downlink measurement pilot signal in each resource group according to the pilot transmission parameters configured for each resource group and/or agreed with the terminal.
  • the resource is a plurality of subframes of a downlink measurement pilot signal to be sent in a time domain
  • the resource group divided by the dividing module is a subframe group, and each of the subframe groups Include one or more subframes
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the time-frequency resource density includes a density of the PRB pair and/or an occupied RE density in the PRB pair;
  • the time-frequency resource location includes a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the resource is a plurality of ports to be sent downlink measurement pilot signals
  • the resource group divided by the dividing module is a port group, and each port group includes one or more ports.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the time domain location is sent;
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the dividing module 1501 determines the division of the port group according to the subframe number.
  • the resource is a plurality of PRB pairs in the frequency domain to be sent downlink measurement pilot signals
  • the resource group divided by the dividing module is a resource block group
  • each of the RB groups Contains one or more PRB pairs
  • the pilot transmission parameter includes one or more of the following parameters:
  • the transmission resource density of the downlink measurement pilot signal in the RB group
  • the dividing module 1501 determines the division of the RB group according to the subframe number.
  • the resource is any combination of a subframe, a port, and a PRB pair, and each resource group divided by the dividing module 1501 is an area.
  • the pilot transmission parameters include a transmission location/density and/or transmission power of the downlink measurement pilot signal.
  • the device may further include:
  • the agreement module 1504 is configured to: notify the terminal by configuration signaling or agree with the terminal to group information of the resource group.
  • Embodiment 4 A downlink pilot detecting device, configured in the terminal, includes:
  • the packet module 1601 is configured to divide the resources of the downlink measurement pilot signal to be divided into multiple resource groups according to the base station configuration signaling and/or the agreement with the base station; the resources include a subframe, a port, and any of the PRBpair One or any combination thereof;
  • the parameter determining module 1602 is configured to: determine a pilot sending parameter of each of the resource groups;
  • the detecting module 1603 is configured to: perform downlink measurement pilot signal detection according to pilot transmission parameters of each resource group.
  • the resource is a plurality of subframes of a downlink measurement pilot signal to be sent in a time domain
  • the resource group divided by the packet module is a subframe group, and each of the subframe groups Include one or more subframes
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the time-frequency resource density includes a density of the PRB pair and/or an occupied RE density in the PRB pair;
  • the time-frequency resource location includes a location of the PRB pair and/or a location of the occupied RE within the PRB pair.
  • the resource is a plurality of ports to be sent downlink measurement pilot signals
  • the resource group divided by the grouping module is a port group, and each port group includes one or more ports.
  • the pilot transmission parameter includes one or more of the following parameters:
  • the downlink measurement pilot signal is a periodic pilot: a transmission period and an offset corresponding to the port;
  • the downlink measurement pilot signal is a non-periodic pilot: the number of repeated transmissions corresponding to the port, and the time domain location is sent;
  • the downlink measurement pilot signal transmission power is the downlink measurement pilot signal transmission power.
  • the grouping module 1601 determines the division of the port group according to the subframe number.
  • the resource is a plurality of PRB pairs in a frequency domain to be sent downlink measurement pilot signals
  • the resource group divided by the grouping module is a resource block group
  • each of the RB groups Contains one or more PRB pairs
  • the pilot transmission parameter includes one or more of the following parameters:
  • the transmission resource density of the downlink measurement pilot signal in the RB group
  • the grouping module 1601 determines the division of the RB group according to the subframe number.
  • the resource is any combination of a subframe, a port, and a PRB pair, and each resource group divided by the grouping module is an area.
  • the pilot transmission parameters include a transmission location/density and/or transmission power of the downlink measurement pilot signal.
  • the parameter determining module 1601 determines that the pilot sending parameter of each of the resource groups refers to:
  • the parameter determining module 1602 determines a pilot transmission for each resource group according to base station configuration signaling. parameter.
  • Embodiment 5 A base station, including the transmitting apparatus described in Embodiment 3.
  • Embodiment 6 A terminal comprising the detecting device of the fourth embodiment.
  • Embodiment 7 discloses a computer program, including program instructions, when the program instruction is executed by a base station, so that the base station can execute any of the above-mentioned downlink pilot transmission devices.
  • the embodiment of the invention discloses a carrier carrying the computer program.
  • Embodiment 8 The embodiment of the present invention discloses a computer program, including a program instruction, when the program instruction is executed by a terminal, so that the terminal can execute the detection device of any of the downlink pilots described above.
  • the embodiment of the invention discloses a carrier carrying the computer program.
  • the technical solution of the present invention can provide a more flexible downlink pilot transmission scheme. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行导频的发送方法、检测方法、装置以及终端和基站;所述发送方法包括:基站将待发送下行测量导频信号的资源划分为多个资源组;所述资源包括子帧、端口、物理资源块对PRB pair中的任一个或其任意组合;基站分别配置和/或与终端分别约定每个资源组的导频发送参数;基站分别根据为每个资源组配置和/或与终端约定的导频发送参数,在各资源组内发送下行测量导频信号。本发明技术方案能够提供更为灵活的下行导频传输方案。

Description

下行导频的发送方法、检测方法、装置及基站、终端 技术领域
本文涉及下行导频的发送和检测技术领域,尤其涉及无线通信领域中一种下行导频的发送方法、检测方法、装置及基站、终端。
背景技术
无线通信***中,发送端经常会采取使用多根天线以获取更高的传输速率。多根天线能够带来信噪比的提升以及支持更多的空间复用层数,相对于发送端不使用CSI(Channel State Information,信道状态信息)的开环MIMO(Multi-input Multi-output,多输入多输出)技术,使用CSI信息的MIMO技术(闭环MIMO预编码(Precoding))会有更高的容量,是目前主流的4G标准广泛使用的一种传输技术。闭环MIMO预编码技术的核心思想是接收端反馈信道信息给发送端,发送端根据获得的信道信息使用一些发射预编码技术,极大的提高传输性能。对于单用户MIMO中,可以直接使用与信道特征矢量信息比较匹配的预编码矢量进行发送预编码;对于多用户MIMO中,也需要比较准确的信道信息进行干扰消除。因此发送端信道信息的获取有着非常重要的作用。
在4G的一些技术如LTE/LTE-A,802.16m标准规范中,FDD(Frequency Division Duplexing,频分双工)***下行信道信息的获取的一般流程如下:
S1:发送端(基站)发送下行信道测量导频信号(CSI-RS,Channel State Information–Reference Signals)给接收端,一般来说每根天线发送一份信道测量导频信号。不同天线发送的信道测量导频信号在时频域或码域上位置是错开的,能够保持正交性不受到互相的干扰,每根天线分别对应一个CSI-RS端口(port);该信道测量导频用于测量信道信息。在LTE-A中支持基站侧最大8天线端口的CSI-RS发送。基站还发送RRC(Radio Resource Control,无线资源控制)信令配置CSI-RS的相关位置信息和发送周期信息给终端。基站侧导频信号的发送内容由预先约定的一些规则确定,终端能准确的获知基站侧每个端口在每个时频位置的导频信号发送内容。
S2:终端接收基站侧发送的信道测量导频信号CSI-RS的配置信息,在信令通知的各导频端口发送时频资源位置进行CSI-RS导频信号接收与检测,在终端侧每根接收天线上均获得接收的CSI-RS导频信号,由于终端与基站进行了各发送端口各时频资源位置上导频发送信号内容的约定,因此终端能够准确的获知下行导频发送信号,进而终端根据接收到的导频信号就可以进行下行信道估计获得终端侧接收天线与基站侧发送天线端口间的下行信道响应信息。在下行信道估计时需要考虑实际的导频信号接收时掺杂了噪声及干扰的影响,可以采用LS(Least Square,最小二乘),MMSE(Minimum Mean Square Error,最小均方误差),IRC(Interference Rejection Combining,干扰拒绝合并)等算法进行信道估计,最终得到各时频资源位置上域发送端口数匹配的下行信道矩阵。
S3:终端根据各导频端口的发送导频信号内容与各接收天线上的接收导频信号,可以估计接收天线与多个发射天线端口之间的信道响应,即可得到各个时频资源位置对应的信道矩阵,进而可以根据信道矩阵计算最优的CSI信息。CSI一般包括PMI(Precoding Matrix Indicator,预编码矩阵指示)/CQI(channel quality indicator,信道质量指示)/RI(Rank Indicator,秩指示)信息三种类型。分别向基站反馈推荐了预编码矩阵,信道质量信息和传输层数。终端通过上行物理层的控制信道或者上行物理层的数据信道将计算得到的CQI/PMI/RI信息反馈给基站。基站基于终端的反馈信息进行传输层数的确定,编码调制方式确定及发送预编码的确定。
可以看到其中下行信道信息测量导频CSI-RS在信道状态信息的获取过程中有着非常重要的作用,往往影响到预编码信息,信道质量信息和传输层数信息的准确性,进而对MIMO的传输性能有非常大的影响。
4G标准中采用的下行CSI-RS导频均为周期CSI-RS导频,在时域上,考虑到信道的变化并不是突然变化的,具有一定的时域相关性,相关时间大于一个子帧的持续时间1ms,因此不必要所有子帧都进行发送。由于所有UE可以共享CSI-RS,因此CSI-RS一般周期发送。所谓周期导频,其概念是基站按照某个周期间隔进行CSI-RS发送,发送位置可以有不同的子帧位置偏置,例如LTE-A中的CSI-RS周期及子帧偏置定义如下:
在LTE的标准36.211中的规定如下表所示,即CSI-RS子帧构造(CSI reference signal subframe configuration.)。
表1、CSI-RS子帧构造
Figure PCTCN2015078895-appb-000001
表中,ICSI-RS是CSI-RS的配置参数,取值0-154,不同的取值会对应不同的CSI-RS的周期和子帧偏置。图1示出了为部分CSI-RS配置示例对应的子帧位置发送示意图,分别对应ICSI-RS=0,ICSI-RS=2,ICSI-RS=5的配置。
在频域位置上,每个PRB(物理资源块)pair(对)内都存在CSI-RS,相同的Port在不同的PRB pair内的发送图样相同。CSI-RS的式样(pattern)如图2所示。PRB pair可以参考LTE协议36.211中的规定,典型的情况包括12个频域的子载波和14个时域OFDM符号。
LTE***中定义了一个PRB pair内有40个RE(资源单元)可以被用做CSI-RS,被分为了5个pattern,每个pattern包含8个RE,如图2所示。CSI-RS导频平均每个Port在一个PRB pair内占用1个RE,属于一份CSI-RS资源(resource)的所有Port需要限制在一个图2所示的图样#i内。目前一套CSI-RS支持的Port数最大为8,因此在Port为8时,有5种位置候选,在port数为4时,有10种位置可配置。Port数为2时,有20种配置。
相关技术的LTE-A***中基站端发射CSI-RS导频时一般是不能经过预编码处理的,主要原因是,小区内的多个UE共享CSI-RS导频,而如果要在CSI-RS上做预编码只能根据基站到1个UE的信道特征来进行预编码,会影响其他UE的测量,其他UE不能准确的测到Nr根接收天线和Nt根发送天线之间的物理信道,而根据其他UE信道的特性进行的预编码会使得其不能准确的计算上报自己的CSI信息。当然,在目前讨论的大规模天线通信***中,当天线数目非常多时,为了尽可能的节约导频开销和减少反馈复杂度,在一些多径散射比较小的场景,基站也是可以发送周期的预编码CSI-RS导频的, 一般称带预编码的CSI-RS为波束测量导频。图3给出了一种周期波束导频的发送策略,每个波束导频的能量集中在某个方向,形成方向性的波束,每间隔一段时间周期的发送一个波束测量导频。在一组波束导频之间进行轮循。
除了上面描述的周期CSI-RS导频,近期新提出了非周期CSI-RS导频。非周期CSI-RS是一种即时触发的导频,该导频一般动态的、针对特定UE或UE组的信道测量进行发送,不会持续发送,只存在于一个子帧中。因此在下行控制信道PDCCH或增强下行控制信道Enhanced-PDCCH(ePDCCH)中携带非周期导频触发信息。
终端获知了非周期CSI-RS的发送位置后可以在对应位置上进行导频检测,与周期CSI-RS一样,非周期CSI-RS的发送内容可以是可以由终端预先获取的,因此可以估计出终端接收天线与基站发送天线之间的下行信道响应,从而获取信道矩阵。
存在两种典型的非周期导频发送方式,一种是在需要使用非周期CSI-RS进行测量的用户的PDSCH中进行传输,另外一种是在小区内分配所有用户的非周期CSI-RS竞争资源池,再基于该资源池配置给不同用户资源。如图4所示,非周期CSI-RS竞争资源池可以是一套周期CSI-RS的发送资源位置。
注意到非周期CSI-RS一般是面向特定用户的,或特定的用户组,而不是小区内所有用户,因此非周期CSI-RS是可以支持预编码的方法,能够有效的降低Port数目,可以进一步降低CSI反馈的计算量。因此,非周期CSI-RS可以根据需要选择是以预编码的波束导频形式发送还是以非预编码的非波束导频形式发送。
相关技术的周期CSI-RS,非周期CSI-RS,不管是波束导频还是非波束导频,其发送都会有一定的灵活性限制,具体来说,其灵活性的限制体现在以下方面:
灵活性局限(1):PRB pair内的导频端口个数及发送pattern是相同的。
—PRB pair a和PRB pair b内有着相同的CSI-RS导频端口数;
—PRB pair a和PRB pair b内的多个导频端口在该PRB pair内有相同的发送资源密度(Resource Element,RE密度);
—PRB pair a和PRB pair b多个导频端口有相同的PRB pair内的发送Pattern(PRB pair内的发送位置)。
灵活性局限(2):所有的CSI-RS导频端口的发送密度是相同的。
—Port i和Port j在PRB pair内有相同的导频密度;
—Port i和Port j有着相同的发送PRB pair数目密度;
—Port i和Port j有着相同的发送PRB pair位置;
—Port i和Port j有相同的时域密度(周期配置)和并且有相同子帧偏置。
灵活性局限(3):周期CSI-RS导频的不同子帧上的有完全一样的发送特征。
—Subframe m和Subframe n中的CSI-RS导频端口数目及ID相同;
—Subframe m和Subframe n中的CSI-RS导频PRB pair内占用RE的个数相同(PRB pair内资源密度相同);
—Subframe m和Subframe n中的CSI-RS导频占用的PRB pair数目密度相同;
—Subframe m和Subframe n中的CSI-RS导频占用的PRB pair位置相同。
由于CSI-RS导频的服务对象是多种多样的,应用的信道对应的信道衰落也是有较大的差别、干扰环境和强度大小也不尽相同,同时基站侧也可能存在有不同的天线拓扑,因此,采用不灵活的CSI-RS设计虽然可以简化设计,但在性能方面的表现并不是非常的好。CSI-RS有固定的发送参数在部分scenario(方案)时应用性能可能表现不佳。
发明内容
本发明要解决的技术问题是提供更为灵活的下行导频传输方案。
为了解决上述问题,采用如下技术方案:
一种下行导频的发送方法,包括:
基站将待发送下行测量导频信号的资源划分为多个资源组,其中,所述 资源包括子帧、端口、物理资源块对PRB pair中的任一个或其任意组合;
所述基站分别配置和/或与终端分别约定每个资源组的导频发送参数;
所述基站分别根据为每个资源组配置和/或与终端约定的所述导频发送参数,在多个所述资源组内发送所述下行测量导频信号。
可选地,所述资源为时域待发送所述下行测量导频信号的多个子帧,所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
所述导频发送参数包括以下参数中的一种或多种:
所述下行测量导频信号所占用的时频资源密度和时频资源位置;
所述下行测量导频信号端口数目;
所述下行测量导频信号端口标识ID;
所述下行测量导频信号发送功率。
可选地,所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
可选地,所述资源为待发送下行测量导频信号的多个端口,所划分出的资源组为端口组,每个端口组包含一个或多个端口;
所述导频发送参数包括以下参数中的一种或多种:
该端口对应的所述下行测量导频信号所占用的时频资源密度;
该端口对应的占用的PRB pair的密度;
该端口对应的占用的PRB pair的位置;
该端口对应的PRB pair内的发送密度;
该端口对应的PRB pair内的发送位置;
如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
所述下行测量导频信号发送功率。
可选地,所述基站将待发送下行测量导频信号的资源划分为多个资源组的步骤包括:
根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
可选地,所述资源为频域待发送下行测量导频信号的多个PRB pair,所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRB pair;
所述导频发送参数包括以下参数中的一种或多种:
该RB组内下行测量导频信号的发送资源密度;
该RB组内下行测量导频信号的发送资源位置;
该RB组内下行测量导频信号的发送资源端口数目;
该RB组内下行测量导频信号的发送资源端口ID;
下行测量导频信号发送功率。
可选地,所述基站将待发送下行测量导频信号的资源划分为多个资源组的步骤包括:
根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
可选地,所述资源为子帧、端口、PRB pair的任意组合,划分出的每个资源组为一个区域;所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
可选地,该方法还包括:
基站通过配置信令通知终端或与终端约定所述资源组的分组信息。
一种下行导频的检测方法,包括:
终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号 的资源分为多个资源组,其中,所述资源包括子帧、端口、PRB pair中的任一个或其任意组合;
所述终端确定每个所述资源组的导频发送参数;
所述终端根据多个所述资源组的所述导频发送参数进行所述下行测量导频信号的检测。
可选地,所述资源为时域待发送下行测量导频信号的多个子帧,所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
所述导频发送参数包括以下参数中的一种或多种:
所述下行测量导频信号所占用的时频资源密度和时频资源位置;
所述下行测量导频信号端口数目;
所述下行测量导频信号端口标识ID;
所述下行测量导频信号发送功率。
可选地,所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
可选地,所述资源为待发送下行测量导频信号的多个端口,所划分出的资源组为端口组,每个端口组包含一个或多个端口;
所述导频发送参数包括以下参数中的一种或多种:
该端口对应的所述下行测量导频信号所占用的时频资源密度;
该端口对应的占用的PRB pair的密度;
该端口对应的占用的PRB pair的位置;
该端口对应的PRB pair内的发送密度;
该端口对应的PRB pair内的发送位置;
如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数, 发送时域位置;
所述下行测量导频信号发送功率。
可选地,所述终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组的步骤包括:
根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
可选地,所述资源为频域待发送下行测量导频信号的多个PRB pair,所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRB pair;所述导频发送参数包括以下参数中的一种或多种:
该RB组内下行测量导频信号的发送资源密度;
该RB组内下行测量导频信号的发送资源位置;
该RB组内下行测量导频信号的发送资源端口数目;
该RB组内下行测量导频信号的发送资源端口ID;
下行测量导频信号发送功率。
可选地,所述终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组的步骤包括:
根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
可选地,所述资源为子帧、端口、PRB pair的任意组合,划分出的每个资源组为一个区域;所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
可选地,所述终端确定每个所述资源组的导频发送参数的步骤包括:
所述终端根据基站配置信令确定每个资源组的所述导频发送参数。
一种下行导频的发送装置,设置于基站,包括划分模块、设置模块和发 送模块,其中:
所述划分模块设置成:将待发送下行测量导频信号的资源划分为多个资源组;所述资源包括子帧、端口、物理资源块对PRB pair中的任一个或其任意组合;
所述设置模块设置成:分别配置和/或与终端分别约定每个资源组的导频发送参数;
所述发送模块设置成:分别根据为每个资源组配置和/或与终端约定的导频发送参数,在各资源组内发送下行测量导频信号。
可选地,所述资源为时域待发送下行测量导频信号的多个子帧,所述划分模块所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
所述导频发送参数包括以下参数中的一种或多种:
所述下行测量导频信号所占用的时频资源密度和时频资源位置;
所述下行测量导频信号端口数目;
所述下行测量导频信号端口标识ID;
所述下行测量导频信号发送功率。
可选地,所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
可选地,所述资源为待发送下行测量导频信号的多个端口,所述划分模块所划分出的资源组为端口组,每个端口组包含一个或多个端口;
所述导频发送参数包括以下参数中的一种或多种:
该端口对应的所述下行测量导频信号所占用的时频资源密度;
该端口对应的占用的PRB pair的密度;
该端口对应的占用的PRB pair的位置;
该端口对应的PRB pair内的发送密度;
该端口对应的PRB pair内的发送位置;
如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
所述下行测量导频信号发送功率。
可选地,所述划分模块设置成按照如下方式将待发送下行测量导频信号的资源划分为多个资源组:
根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
可选地,所述资源为频域待发送下行测量导频信号的多个PRB pair,所述划分模块所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRB pair;
所述导频发送参数包括以下参数中的一种或多种:
该RB组内下行测量导频信号的发送资源密度;
该RB组内下行测量导频信号的发送资源位置;
该RB组内下行测量导频信号的发送资源端口数目;
该RB组内下行测量导频信号的发送资源端口ID;
下行测量导频信号发送功率。
可选地,所述划分模块设置成按照如下方式将待发送下行测量导频信号的资源划分为多个资源组:
根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
可选地,所述资源为子帧、端口、PRB pair的任意组合,所述划分模块所划分出的每个资源组为一个区域;
所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发 送功率。
可选地,该装置还包括约定模块,其中,
所述约定模块设置成:通过配置信令通知终端或与终端约定所述资源组的分组信息。
一种下行导频的检测装置,设置于终端,包括分组模块、参数确定模块和检测模块,其中:
所述分组模块设置成:根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组;所述资源包括子帧、端口、PRB pair中的任一个或其任意组合;
所述参数确定模块设置成:确定每个所述资源组的导频发送参数;
所述检测模块设置成:根据各资源组的导频发送参数进行下行测量导频信号检测。
可选地,所述资源为时域待发送下行测量导频信号的多个子帧,所述分组模块所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
所述导频发送参数包括以下参数中的一种或多种:
所述下行测量导频信号所占用的时频资源密度和时频资源位置;
所述下行测量导频信号端口数目;
所述下行测量导频信号端口标识ID;
所述下行测量导频信号发送功率。
可选地,所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
可选地,所述资源为待发送下行测量导频信号的多个端口,所述分组模块所划分出的资源组为端口组,每个端口组包含一个或多个端口;
所述导频发送参数包括以下参数中的一种或多种:
该端口对应的所述下行测量导频信号所占用的时频资源密度;
该端口对应的占用的PRB pair的密度;
该端口对应的占用的PRB pair的位置;
该端口对应的PRB pair内的发送密度;
该端口对应的PRB pair内的发送位置;
如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
所述下行测量导频信号发送功率。
可选地,所述分组模块设置成按照如下方式根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组:
根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
可选地,所述资源为频域待发送下行测量导频信号的多个PRB pair,所述分组模块所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRB pair;
所述导频发送参数包括以下参数中的一种或多种:
该RB组内下行测量导频信号的发送资源密度;
该RB组内下行测量导频信号的发送资源位置;
该RB组内下行测量导频信号的发送资源端口数目;
该RB组内下行测量导频信号的发送资源端口ID;
下行测量导频信号发送功率。
可选地,所述分组模块设置成按照如下方式根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组:
根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
可选地,所述资源为子帧、端口、PRB pair的任意组合,所述分组模块所划分出的每个资源组为一个区域;
所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
可选地,所述参数确定模块设置成按照如下方式确定每个所述资源组的导频发送参数:
所述参数确定模块根据基站配置信令确定每个资源组的所述导频发送参数。
一种基站,包括上述任意的下行导频的发送装置。
一种终端,包括上述任意的下行导频的检测装置。
本发明技术方案通过分组和分别为每个分组设置导频发送参数,提供了更加灵活的导频传输方案,可以根据传输时的实际情况调整导频的传输位置,适应各种不同的需要。
附图概述
图1是CSI-RS配置示例对应的子帧位置发送示意图;
图2是LTE中CSI-RS Pattern示意图;
图3是周期波束测量导频的示意图;
图4是非周期CSI-RS时频域位置图;
图5是实施例一的下行导频发送方法的流程示意图;
图6a是实施例一的例一中对于周期导频的子帧分组示意图;
图6b是实施例一的例一中对于非周期导频的子帧分组示意图;
图7是实施例一的例二中端口分组方法1的示意图;
图8是实施例一的例二中端口分组方法2的示意图;
图9是实施例一的例二中端口分组方法3的示意图;
图10是实施例一的例三中RB分组的示意图;
图11a和图11b是实施例一的例四中二维度资源分区域方法1的两种划分方式的示意图;
图12a和图12b是实施例一的例四中二维度资源分区域方法2的两种划分方式的示意图;
图13a和图13b是实施例一的例四中二维度资源分区域方法3的两种划分方式的示意图;
图14是实施例一的例四中三维度资源分区域方法的示意图;
图15是本发明实施例的下行导频的发送装置结构示意图;
图16是本发明实施例的下行导频的检测装置结构示意图。
本发明的较佳实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一、一种下行导频的发送方法,如图5所示,包括步骤S110~S130:
S110、基站将待发送下行测量导频信号的资源划分为多个资源组;所述资源包括子帧、端口、PRB pair中的任一个或其任意组合。
S120、基站分别配置和/或与终端分别约定每个资源组的导频发送参数。
S130、基站分别根据为每个资源组配置和/或与终端约定的导频发送参数,在各资源组内发送下行测量导频信号。
本实施例中,基站可以通过配置信令通知终端或与终端约定所述资源组 的分组信息。
本实施例的一种实施方式中,针对时域子帧或子帧组进行导频参数配置,所述资源为时域待发送下行测量导频信号的M个子帧,所划分出的资源组为子帧组;在本实施方式中,发送方法具体包括步骤S210~S230:
S210、基站将时域待发送下行测量导频信号的M个子帧分为N个子帧组:子帧组1,子帧组2……子帧组N,其中,N小于或等于M。每个子帧组可以包含1个或多个子帧。
进一步的,所述子帧组的分组信息基站可以通过信令通知或与终端进行约定。
S220、基站为每个所述子帧组分别配置和/或与终端分别约定每个所述子帧组的导频发送参数。所述导频发送参数包括以下参数中的一种或多种:
(1)所述下行测量导频信号所占用的时频资源密度和时频资源位置;
进一步的,所述时频资源密度可以包含PRB pair的密度和/或PRB pair内的占用RE密度;
进一步的,所述时频资源位置可以包含PRB pair的位置和/或PRB pair内的占用RE的位置(pattern)。
(2)所述下行测量导频信号端口数目;
(3)所述下行测量导频信号端口ID;
(4)所述下行测量导频信号发送功率。
S230、基站分别根据为每个所述子帧组配置和/或与终端约定的每个所述子帧组的所述导频发送参数,在各所述子帧组内进行所述下行测量导频信号发送。
本实施例的一种实施方式中,针对Port或Port组进行导频参数配置,所述资源为待发送下行测量导频信号的Y个端口,所划分出的资源组为端口组;在本实施方式中,发送方法具体包括步骤S310~S330:
S310、基站将待发送下行测量导频信号的X个端口分为Y个端口组:端口组1,端口组2……端口组Y,其中,Y小于或等于X。每个端口组可以 包含1个或多个端口。
进一步的,所述端口组的分组信息可以由基站通过信令通知或与终端进行约定。
进一步的,所述端口组的划分可以根据子帧号确定。
S320、基站为每个所述端口组分别配置和/或与终端分别约定每个所述端口组的导频发送参数。所述导频发送参数包括以下参数中的一种或多种:
(1)该端口对应的所述下行测量导频信号所占用的时频资源密度;
(2)该端口对应的占用的PRB pair的密度;
(3)该端口对应的占用的PRB pair的位置;
(4)该端口对应的PRB pair内的发送密度;
(5)该端口对应的PRB pair内的发送位置;
(6)如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
(7)如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
(8)所述下行测量导频信号发送功率。
S330、基站分别根据为每个所述端口组配置和/或与终端约定的每个所述端口组的所述导频发送参数,在各所述端口组内进行所述下行测量导频信号发送。
本实施例的一种实施方式中,针对RB或RB组进行导频参数配置,所述资源为频域待发送下行测量导频信号的Q个PRB pair,所划分出的资源组为资源块组;在本实施方式中,发送方法具体包括步骤S410~S430:
S410、基站将频域待发送测量导频信号的Q个PRB pair分为P个RB组:RB组1,RB组2……RB组P,其中,P小于或等于Q。每个RB组可以包含1个或多个PRB pair。
进一步的,所述RB组的分组信息可以由基站通过信令通知或与终端进行约定。
进一步的,所述RB组的划分可以根据子帧号确定。
S420、基站为每个所述RB组分别配置和/或与终端分别约定每个所述RB组的导频发送参数。所述导频发送参数包括以下参数中的一种或多种:
(1)该RB组内下行测量导频信号的发送资源密度;
(2)该RB组内下行测量导频信号的发送资源位置;
(3)该RB组内下行测量导频信号的发送资源端口数目;
(4)该RB组内下行测量导频信号的发送资源端口ID;
(5)下行测量导频信号发送功率。
S430、基站根据为每个所述RB组配置和/或与终端约定的每个所述RB组的所述导频发送参数,在各所述RB组内进行所述下行测量导频信号发送。
本实施例的一种实施方式中,所述资源为子帧、端口、PRB pair的任意组合,本实施方式的分组是多维联合区域的划分,可以将划分出的每个资源组称为一个区域;在本实施方式中,发送方法具体包括步骤S510~S530:
S510、基站将待发送下行测量导频信号的M个端口、X个子帧位置、Q个RB位置进行联合的位置区域划分,划分为K个发送区域;
或者
基站将待发送下行测量导频信号的X个子帧位置、Q个RB位置进行联合的位置区域划分,划分为K个发送区域;
或者
基站将待发送下行测量导频信号的M个端口、X个子帧位置进行联合的位置区域划分,划分为K个发送区域;
或者
基站将待发送下行测量导频信号的M个端口、Q个RB位置进行联合的位置区域划分,划分为K个发送区域;
所述K个发送区域分别为区域1,区域2……区域K。
进一步的,区域分组信息可以由基站通过信令通知或与终端进行约定。
S520、基站为每个所述区域分别配置和/或与终端分别约定各所述区域内导频发送参数;所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
S530、基站分别根据配置的导频发送参数在各所述区域内进行下行测量导频信号发送。
下面用几个例子具体说明本实施例。
例一:TTI(传输时间间隔)分组分别配置导频参数,基站侧。
例一的子例1:子帧分组:
基站将时域待发送下行测量导频信号的M子帧分为N个子帧组:子帧组1,子帧组2……子帧组N,其中,N小于或等于M.每个子帧组可以包含1个或多个子帧。
(一)周期导频的情况
基站给终端下发周期导频,对于该周期导频,基站不期望限制所有的发送周期导频的子帧有着完全相同的导频发送参数。因此基站将子帧进行分组,几种简单的分组方法如图6a所示,一种是将各帧中的子帧0划分到子帧组1,子帧5划分到子帧组2;另一种是将奇数帧中的子帧0划分到子帧组1,子帧5划分到子帧组2,偶数帧中的子帧0划分到子帧组3,子帧5划分到子帧组4;实际应用时不限于图6a中的示例,可自行设计如何分组。
基站可以通过高层的控制信令配置给终端上述分组信息。
(二)非周期导频的情况
基站给终端下发非周期CSI-RS,该非周期CSI-RS触发信令指示了多个子帧的非周期CSI-RS发送,基站不期望限制所有的发送周期导频的子帧有着完全相同的导频发送参数。因此基站将多个子帧进行分组,列举几种简单的分组方法如图6b所示,一种是将奇数帧中的子帧0和子帧4划分到子帧组1,子帧2划分到子帧组2;另一种是将奇数帧中的子帧0和子帧1划分到子帧组1,子帧4和子帧5划分到子帧组2;再一种是将奇数帧中的子帧0划分到子帧组1,子帧2划分到子帧组2,子帧5划分到子帧组3,子帧6划分到子帧组4;实际应用时不限于图6b中的示例,可自行设计如何分组。
基站可以通过物理层的控制信令配置给终端上述分组信息
或者基站与终端预先约定当非周期CSI-RS发送子帧个数为M时,对应的子帧分组方法。或者基站与终端预先约定与子帧ID关联的子帧分组方法:如奇数子帧为一组,偶数字帧为一组。又如子帧号Mod4=0为子帧组1,子帧号Mod4=1为子帧组2,子帧号Mod4=2为子帧组3,子帧号Mod4=3为子帧组4。
例一的子例2:子帧组导频发送参数配置:
本例中主要表述的方法是分别为不同子帧组进行导频发送参数配置。比如下表所示:
表2、导频发送PRB pair密度配置
Figure PCTCN2015078895-appb-000002
这里PRB pair的密度指的是RB数目/整个带宽RB数目,最大为1。
表3、各子帧组导频发送PRB pair位置
  子帧组1 子帧组2 子帧组3 子帧组4
PRB pair位置 RB ID Mode 4=0 RB ID Mode 2=1 ALL RB ALL RB
表4、各子帧组PRB pair内导频密度配置
  子帧组1 子帧组2 子帧组3 子帧组4
PRB pair内RE密度 128RE/RB 32RE/RB 8RE/RB 16RE/RB
表5、各子帧组PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000003
这里的Pattern#i是收发端预先约定的导频发送位置。
表6、各子帧组测量导频端口数目配置
  子帧组1 子帧组2 子帧组3 子帧组4
测量导频端口数目 32 16 8 8
表7、各子帧组测量导频端口ID配置
  子帧组1 子帧组2 子帧组3 子帧组4
测量导频端口ID 0-31 16-31 0-7 8-15
表8、各子帧组测量导频相对功率配置
Figure PCTCN2015078895-appb-000004
这里举例的是测量导频总功率相对数据信道的功率,且常用的一种假设是测量导频在端口间功率是平均分配的。
例一的子例3:导频发送:
基站根据为每个子帧组配置和/或与终端分别约定的每个子帧组的导频发送参数,在各子帧组内进行导频发送。
比如子帧组1按以下导频参数配置进行发送:
表9、子帧组1的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组1 RB ID Mode 4=0 Pattern#1#2#3#4 0-31 6dB
子帧组2按以下导频参数配置进行发送:
表10、子帧组2的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组2 RB ID Mode 2=1 Pattern#1#3 16-31 3dB
子帧组3按以下导频参数配置进行发送:
表11、子帧组3的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组3 ALL RB Pattern#3 0-7 3dB
子帧组4按以下导频参数配置进行发送:
表12、子帧组4的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组4 RB ID Mode 4=0 Pattern#2#4 8-15 0dB
例二:Port分组分别配置导频参数,基站侧。
例二的子例1:Port分组:
基站将待发送下行测量导频信号的X个端口分为Y个端口组:端口组1, 端口组2……端口组Y,其中,Y小于或等于X.每个端口组可以包含1个或多个端口。
几种简单的端口分组方法示例如下。
方法1:分块分组法,每一块为一组,如图7所示。
方法2:分行分组法:每一行的天线端口为一个天线组如图8所示。
方法3:极化分组法:每一个极化方向的天线端口为一个天线组,如图9所示。
还有一些混合方法进行分组,如方法3和方法1结合,方法3和方法1结合等。实际应用时不限于上述示例,可自行设计如何分组。
基站可以通过物理层的控制信令配置给终端上述端口分组信息或者通过高层控制信令配置给终端上述端口分组信息
基站也可以与终端进行端口分组信息约定,该约定可以根据天线拓扑,天线极化情况及总端口数目进行确定。不同的天线拓扑,不同总天线数目不同的天线极化情况分别有不同针对性的分组约定。
例二的子例2:Port分组导频发送参数配置:
本实施例中主要表述的方法是分别为不同端口组进行导频发送参数配置。比如如下表所示:
表13、各Port组导频发送PRB pair密度配置
Figure PCTCN2015078895-appb-000005
这里PRB pair的密度指的是导频发送RB数目/整个带宽RB数目,最大为1。
表14、各Port组导频发送PRB pair位置配置
  Port组1 Port组2 Port组3 Port组4
PRB pair位置 RB ID Mode 4=0 RB ID Mode 2=1 ALL RB ALL RB
表15、各Port组导频发送PRB pair内导频密度配置
  Port组1 Port组2 Port组3 Port组4
PRB pair内RE密度 4RE/RB 2RE/RB 1RE/RB 2RE/RB
表16、各Port组导频发送PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000006
表17、各Port组导频重复发送次数配置
  Port组1 Port组2 Port组3 Port组4
导频重复发送次数 1 2 4 4
表18、各Port组导频发送时域位置配置
  Port组1 Port组2 Port组3 Port组4
导频发送时域位置 延迟4ms 延迟8ms 延迟12ms 延迟12ms
这里的延迟可以指相对CSI-RS触发信令所在子帧位置的延迟。
表19、各Port组导频周期配置
  Port组1 Port组2 Port组3 Port组4
导频周期 10 20 40 80
表20、各Port组导频发送子帧偏置配置
  Port组1 Port组2 Port组3 Port组4
导频周期 2子帧 2子帧 0子帧 0子帧
表21、各Port组测量导频相对功率配置
Figure PCTCN2015078895-appb-000007
这里举例的是每个端口组的测量导频总功率相对数据信道的功率。
例二的子例3:导频发送:
基站根据为每个端口组配置和/或与终端分别约定每个端口组的导频发送参数,在各端口组内进行导频发送。
比如Port组1按以下导频参数配置进行发送:
表22、Port组1的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组1 RB ID Mode 4=0 Pattern#1#2#3#4 10ms -3dB
Port组2按以下导频参数配置进行发送:
表23、Port组2的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组2 RB ID Mode 2=1 Pattern#1#3 20ms 0dB
Port组3按以下导频参数配置进行发送:
表24、Port组3的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组3 ALL RB Pattern#3 40ms 0dB
Port组4按以下导频参数配置进行发送:
表25、Port组4的导频发送参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组4 RB ID Mode 4=0 Pattern#2#4 80ms 3dB
例三:RB分组分别配置导频参数,基站侧。
例三的子例1:RB分组方法:
基站将频域待发送测量导频信号的Q个PRB pair分为P个RB组:RB组1,RB组2……RB组P,其中,P小于或等于Q。每个RB组可以包含1个或多个RB。
几种简单的分组示例如图10所示,以划分为三个RB组为例,一种是将每三个连续的RB分别划分到RB组1、2、3(如图10中左起第一列所示);一种是将所有RB均分到RB组1、2、3,各组中的RB连续(如图10中左起第二列所示);一种是各组中的RB连续,但RB组1中的RB多于另外两组(如图10中左起第三列所示);一种是将每六个连续的RB分别划分到RB组1、2、3,各组中包含两个连续的RB(如图10中右起第一列所示);实际应用时不限于图10中的示例,可自行设计如何分组。
RB分组信息可以基站通过下行物理层控制信令或者是高层配置信令通知终端。RB分组信息也可以是基站与终端进行一些预先约定。
更进一步的每个子帧内的RB分组可以是不同的。也就是说,子帧内的RB分组还需要结合子帧号才能确定。
例三的子例2:RB组的导频发送参数配置:
本例中主要表述的方法是分别为不同RB组进行导频发送参数配置。比 如如下表所示:
表26、各RB组PRB pair内导频密度配置
  RB组1 RB组2 RB组3 RB组4
PRB pair内RE密度 128RE/RB 32RE/RB 16RE/RB 32RE/RB
表27、各RB组PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000008
表28、各RB组测量导频端口数目配置
  RB组1 RB组2 RB组3 RB组4
测量导频端口数目 32 16 8 8
表29、各RB组测量导频端口ID配置
  RB组1 RB组2 RB组3 RB组4
测量导频端口ID 0-31 16-31 8-15 8-15
表30、各RB组测量导频相对功率配置
Figure PCTCN2015078895-appb-000009
这里举例的是每个RB内的测量导频总功率相对数据信道的功率。
例三的子例3:导频发送:
基站根据为每个RB组配置和/或与终端分别约定每个RB组的导频发送参数,在各RB组内进行导频发送。
比如RB组1按以下导频参数配置进行发送:
表31、RB组1的导频发送参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组1 Pattern#1#2#3#4 0-31 6dB
RB组2按以下导频参数配置进行发送:
表32、RB组2的导频发送参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组2 Pattern#1#3 16-31 3dB
RB组3按以下导频参数配置进行发送:
表33、RB组3的导频发送参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组3 Pattern#3 0-7 3dB
RB组4按以下导频参数配置进行发送:
表34、RB组4的导频发送参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组4 Pattern#2#4 8-15 0dB
例四:多维资源分区域分别配置导频参数,基站侧。
例四的子例1:二维度资源分区域方法1:
该方法主要在端口和资源块RB两个维度进行导频发送区域划分,对于子帧维度不进行区域划分。图11(a)和图11(b)给出了两种简单的划分方式示例,分别是划分为三个区域和四个区域。
例四的子例2:二维度资源分区域方法2:
该方法主要在端口和子帧两个维度进行导频发送区域划分,对于资源块RB维度不进行区域划分。图12(a)和图12(b)给出了两种简单的划分方式示例。
例四的子例3:二维度资源分区域方法3:
该方法主要在RB和子帧两个维度进行导频发送区域划分,对于端口维度不进行区域划分。图13(a)和图13(b)给出了两种简单的划分方式示例。
例四的子例4:三维度资源分区域方法
该方法主要在RB和子帧,端口两个维度进行导频发送区域划分,图14给出了一种简单的划分方式示例,共划分出八个区域。
区域分组信息可以基站通过物理层控制信令或高层控制信令进行通知,或基站与终端进行约定。
例四的子例5:各区域的导频发送参数配置:
表35、各区域组PRB pair内导频密度配置
  区域1 区域2 区域3 区域4
PRB pair内RE密度 128RE/RB 32RE/RB 16RE/RB 32RE/RB
表36、各区域组PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000010
表37、各区域组测量导频相对功率配置
Figure PCTCN2015078895-appb-000011
这里举例的是每个区域内的测量导频总功率相对数据信道的功率。
最后基站根据配置的导频发送位置/密度和/或发送功率在各区域内进行导频发送。
实施例二、一种下行导频的检测方法,包括步骤U110~130:
U110、终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组;所述资源包括子帧、端口、PRB pair中的任一个或其任意组合。
U120、终端确定每个所述资源组的导频发送参数。
U130、终端根据各资源组的导频发送参数进行下行测量导频信号检测。
本实施例的一种实施方式中,步骤U120中,终端可以根据基站配置信令确定每个资源组的导频发送参数。
本实施例的一种实施方式中,所述资源为时域待发送下行测量导频信号的M个子帧,所划分出的资源组为子帧组;在本实施方式中,检测方法具体包括步骤U210~U230:
U210、终端根据基站配置信令和/或与基站的约定方法将时域待发送下行测量导频信号的M子帧分为N个子帧组:子帧组1,子帧组2……子帧组N,其中,N小于或等于M。每个子帧组可以包含1个或多个子帧。
U220、终端确定每个子帧组的导频发送参数。所述导频发送参数包括以下参数中的一种或多种:
(1)所述下行测量导频信号所占用的时频资源密度和时频资源位置;
进一步的,所述时频资源密度可以包含PRB pair的密度和/或PRB pair内的占用RE密度;
进一步的,所述时频资源位置可以包含PRB pair的位置和/或PRB pair内的占用RE的位置(pattern)。
(2)所述下行测量导频信号端口数目;
(3)所述下行测量导频信号端口ID。
(4)所述下行测量导频信号发送功率。
进一步的,终端可以根据基站配置信令确定每个子帧组的导频发送参数。
U230、终端根据各所述子帧组的所述导频发送参数进行所述下行测量导频信号检测。
本实施例的一种实施方式中,所述资源为待发送下行测量导频信号的X个端口,所划分出的资源组为端口组;在本实施方式中,检测方法具体包括步骤U310~U330:
U310、终端根据基站配置信令和/或与基站的约定方法将待发送下行测量导频信号的X个端口分为Y个端口组:端口组1,端口组2……端口组Y,其中,Y小于或等于X。每个端口组可以包含1个或多个端口。
进一步的,端口分组信息还需要根据子帧号确定
U320、终端确定每个端口组的导频发送参数。所述导频发送参数包括以下参数中的一种或多种:
(1)该端口对应的所述下行测量导频信号所占用的时频资源密度;
(2)该端口对应的占用的PRB pair的密度;
(3)该端口对应的占用的PRB pair的位置;
(4)该端口对应的PRB pair内的发送密度;
(5)该端口对应的PRB pair内的发送位置;
(6)如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
(7)如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
(8)所述下行测量导频信号发送功率。
进一步的,终端可以根据基站配置信令确定每个端口组的导频发送参数。
U330、终端根据各所述端口组的所述导频发送参数进行所述下行测量导频信号检测。
本实施例的一种实施方式中,所述资源为待发送下行测量导频信号的Q个PRB pair,所划分出的资源组为RB组;在本实施方式中,检测方法具体包括步骤U410~U430:
U410、终端根据基站配置信令和/或与基站的约定方法将待发送下行测量导频信号的Q个PRB pair分为P个子帧组:RB组1,RB组2……RB组P,其中,P小于或等于Q。每个RB组可以包含1个或多个PRB pair。
进一步的,RB组的划分可以根据子帧号确定。
U420、终端确定每个RB组的导频发送参数。所述导频发送参数包括以下参数中的一种或多种:
(1)该RB组内所述下行测量导频信号的发送资源密度;
(2)该RB组内所述下行测量导频信号的发送资源位置;
(3)该RB组内所述下行测量导频信号的发送资源端口数目;
(4)该RB组内所述下行测量导频信号的发送资源端口ID;
(5)所述下行测量导频信号发送功率;
进一步的,终端可以根据基站配置信令确定每个RB组的导频发送参数。
U430、终端根据各所述RB组的所述导频发送参数在各所述RB组内进行所述下行测量导频信号检测。
本实施例的一种实施方式中,所述资源为子帧、端口、PRB pair的任意组合,本实施方式的分组是多维联合区域的划分,可以将划分出的每个资源组称为一个区域;在本实施方式中,检测方法具体包括步骤U510~U530:
U510、终端根据基站配置信令和/或与基站的约定方法将待发送下行测量 导频信号的M个端口、X个子帧位置、Q个RB位置进行联合的位置区域划分,划分为K个发送区域;
或者
终端根据基站配置信令和/或与基站的约定方法将待发送下行测量导频信号的M个端口、X个子帧位置进行联合的位置区域划分,划分为K个发送区域;
或者
终端根据基站配置信令和/或与基站的约定方法将待发送下行测量导频信号的X个子帧位置、Q个RB位置进行联合的位置区域划分,划分为K个发送区域;
或者
终端根据基站配置信令和/或与基站的约定方法将待发送下行测量导频信号的M个端口、Q个RB位置进行联合的位置区域划分,划分为K个发送区域;
所述K个发送区域分别为区域1,区域2……区域K。
U520、终端确定每个所述区域的导频发送参数;所述导频发送参数包括所述下行测量导频信号发送位置/密度和/或发送功率。
U530、终端根据每个所述区域的所述导频发送参数分别在各所述区域内进行所述下行测量导频信号检测。
下面用几个例子具体说明本实施例。
例五:TTI分组分别获取导频参数,终端侧。
例五的子例1:子帧分组信息获取:
终端根据基站配置信令和/或与基站的约定方法将时域待发送测量导频信号的M子帧分为N个子帧组:子帧组1,子帧组2……子帧组N,其中,N小于或等于M.每个子帧组可以包含1个或多个子帧。
终端检测基站的物理层控制信令或高层信令,即可获得子帧分组信息,从而获得总的子帧组个数,每个子帧组包含的子帧数等。
或者基站与终端预先约定当非周期CSI-RS发送子帧个数为M时,对应的子帧分组方法。或者基站与终端预先约定与子帧ID关联的子帧分组方法:如奇数子帧为一组,偶数字帧为一组。又如子帧号Mod4=0为子帧组1,子帧号Mod4=1为子帧组2,子帧号Mod4=2为子帧组3,子帧号Mod4=3为子帧组4。
终端根据约定内容取得子帧分组信息。
例五的子例2:子帧组导频参数信息获取:
本实施例中主要表述的方法是终端获取为不同子帧组的各种导频发送参数配置。比如如下表所示:
表38、各子帧组导频发送PRB pair密度配置
Figure PCTCN2015078895-appb-000012
这里PRB pair的密度指的是RB数目/整个带宽RB数目,最大为1。
表39、各子帧组导频发送PRB pair位置配置
  子帧组1 子帧组2 子帧组3 子帧组4
PRB pair位置 RB ID Mode 4=0 RB ID Mode 2=1 ALL RB ALL RB
表40、各子帧组PRB pair内导频密度配置
  子帧组1 子帧组2 子帧组3 子帧组4
PRB pair内RE密度 128RE/RB 32RE/RB 8RE/RB 16RE/RB
表41、各子帧组导频发送PRB pair位置配置
Figure PCTCN2015078895-appb-000013
这里的Pattern#i是收发端预先约定的导频发送位置。
表42、各子帧组导频端口数目配置
  子帧组1 子帧组2 子帧组3 子帧组4
测量导频端口数目 32 16 8 8
表43、各子帧组导频端口ID配置
  子帧组1 子帧组2 子帧组3 子帧组4
测量导频端口ID 0-31 16-31 0-7 8-15
表44、各子帧组导频相对功率配置
Figure PCTCN2015078895-appb-000014
这里举例的是测量导频总功率相对数据信道的功率,且常用的一种假设是测量导频在端口间功率是平均分配的。
例五的子例3:子帧组导频检测:
在各子帧组内已所确定的导频发送参数(作为导频检测参数)进行导频检测。
比如子帧组1按以下导频参数配置进行检测:
表45、子帧组1的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组1 RB ID Mode 4=0 Pattern#1#2#3#4 0-31 6dB
子帧组2按以下导频参数配置进行检测:
表46、子帧组2的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组2 RB ID Mode 2=1 Pattern#1#3 16-31 3dB
子帧组3按以下导频参数配置进行检测:
表47、子帧组3的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组3 ALL RB Pattern#3 0-7 3dB
子帧组4按以下导频参数配置进行检测:
表48、子帧组4的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口ID 相对功率
子帧组4 RB ID Mode 4=0 Pattern#2#4 8-15 0dB
例六:端口分组分别获取导频参数,终端侧。
例六的子例1:Port分组信息获取。
终端根据基站配置信令和/或与基站的约定方法将待发送测量导频信号的X个端口分为Y个端口组:端口组1,端口组2……端口组Y,其中,Y 小于或等于X.每个端口组可以包含1个或多个端口。
终端检测基站的物理层控制信令或高层信令,即可获得端口分组信息,从而获得总的端口组个数,每个端口组包含的端口数等。
终端也可以与基站进行端口分组信息约定,该约定可以根据天线拓扑,天线极化情况及总端口数目进行确定。不同的天线拓扑,不同总天线数目不同的天线极化情况分别有不同针对性的分组约定。
例六的子例2:Port组导频参数信息获取。
本实施例中主要表述的方法是获取不同端口组进行导频发送参数配置。比如如下表所示:
表49、各Port组导频发送PRB pair密度配置
Figure PCTCN2015078895-appb-000015
这里PRB pair的密度指的是导频发送RB数目/整个带宽RB数目,最大为1。
表50、各Port组导频发送PRB pair位置配置
  Port组1 Port组2 Port组3 Port组4
PRB pair位置 RB ID Mode 4=0 RB ID Mode 2=1 ALL RB ALL RB
表51、各Port组导频发送PRB pair内导频密度配置
  Port组1 Port组2 Port组3 Port组4
PRB pair内RE密度 4RE/RB 2RE/RB 1RE/RB 2RE/RB
表52、各Port组导频发送PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000016
表53、各Port组导频重复发送次数配置
  Port组1 Port组2 Port组3 Port组4
导频重复发送次数 1 2 4 4
表54、各Port组导频发送时域位置配置
  Port组1 Port组2 Port组3 Port组4
导频发送时域位置 延迟4ms 延迟8ms 延迟12ms 延迟12ms
这里的延迟可以指相对CSI-RS触发信令所在子帧位置的延迟。
表55、各Port组导频周期配置
  Port组1 Port组2 Port组3 Port组4
导频周期 10 20 40 80
表56、各Port组导频发送子帧偏置配置
  Port组1 Port组2 Port组3 Port组4
导频周期 2子帧 2子帧 0子帧 0子帧
表57、各Port组导频相对功率配置
Figure PCTCN2015078895-appb-000017
这里举例的是每个端口组的测量导频总功率相对数据信道的功率。
例六的子例3:对各Port组进行导频检测:
对各Port组内进行导频检测。
比如对于Port组1按以下导频参数配置进行检测:
表58、Port组1的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组1 RB ID Mode 4=0 Pattern#1#2#3#4 10ms -3dB
Port组2按以下导频参数配置进行检测:
表59、Port组2的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组2 RB ID Mode 2=1 Pattern#1#3 20ms 0dB
Port组3按以下导频参数配置进行检测:
表60、Port组3的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组3 ALL RB Pattern#3 40ms 0dB
Port组4按以下导频参数配置进行检测:
表61、Port组4的导频检测参数
  PRB pair密度与位置 PRB pair内位置与密度 测量导频端口周期 相对功率
Port组4 RB ID Mode 4=0 Pattern#2#4 80ms 3dB
例七:RB分组分别获取导频参数,终端侧。
例七的子例1:RB分组信息获取:
终端根据基站配置信令和/或与基站的约定方法将频域待发送测量导频信号的Q个PRB pair分为P个子帧组:RB组1,RB组2……RB组P,其中,P小于或等于Q.每个RB组可以包含1个或多个RB。
终端检测基站的物理层控制信令或高层信令,即可获得RB分组信息,从而获得总的RB组个数,每个RB组包含的RB数等。
终端也可以与基站进行RB分组信息约定,该约定可以根据天线拓扑,天线极化情况及总端口数目进行确定。不同的天线拓扑,不同总天线数目不同的天线极化情况分别有不同针对性的RB分组约定
进一步的每个子帧内的RB分组可以是不同的。也就是说,子帧内的RB分组还需要结合子帧号才能确定。
例七的子例2:RB组导频参数信息获取:
本实施例中主要表述的方法是获取不同RB组进行导频发送参数配置。比如如下表所示:
表62、各RB组PRB pair内导频密度配置
  RB组1 RB组2 RB组3 RB组4
PRB pair内RE密度 128RE/RB 32RE/RB 16RE/RB 32RE/RB
表63、各RB组PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000018
表64、各RB组导频端口数目配置
  RB组1 RB组2 RB组3 RB组4
测量导频端口数目 32 16 8 8
表65、各RB组导频端口ID配置
  RB组1 RB组2 RB组3 RB组4
测量导频端口ID 0-31 16-31 8-15 8-15
表66、各RB组PRB pair内导频相对功率配置
Figure PCTCN2015078895-appb-000019
这里举例的是每个RB内的测量导频总功率相对数据信道的功率。
例七的子例3:各RB组导频检测:
终端根据获取的各RB组导频参数在各RB组内进行导频检测。
比如RB组1按以下导频参数配置进行检测:
表67、RB组1的导频检测参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组1 Pattern#1#2#3#4 0-31 6dB
RB组2按以下导频参数配置进行检测:
表68、RB组2的导频检测参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组2 Pattern#1#3 16-31 3dB
RB组3按以下导频参数配置进行检测:
表69、RB组3的导频检测参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组3 Pattern#3 0-7 3dB
RB组4按以下导频参数配置进行检测:
表70、RB组4的导频检测参数
  PRB pair内位置与密度 测量导频端口ID 相对功率
RB组4 Pattern#2#4 8-15 0dB
例八:多维区域分组分别获取导频参数,终端侧。
例八的子例1:区域分组信息获取:
终端根据基站配置信令和/或与基站的约定方法将待发送测量导频信号的M个端口、X个子帧位置、Q个RB位置进行联合的位置区域划分,划分为K个发送区域分别为区域1,区域2……区域K。
或者
终端根据基站配置信令和/或与基站的约定方法将待发送测量导频信号的M个端口、X个子帧位置进行联合的位置区域划分,划分为K个发送区域分别为区域1,区域2……区域K。
或者
终端根据基站配置信令和/或与基站的约定方法将待发送测量导频信号的X个子帧位置、Q个RB位置进行联合的位置区域划分,划分为K个发送区域分别为区域1,区域2……区域K。
或者
终端根据基站配置信令和/或与基站的约定方法将待发送测量导频信号的M个端口、Q个RB位置进行联合的位置区域划分,划分为K个发送区域分别为区域1,区域2……区域K。
终端检测基站的物理层控制信令或高层信令,即可获得区域分组信息,从而获得总的区域个数,每个区域的定义等。
终端也可以与基站进行RB分组信息约定,该约定可以根据天线拓扑,天线极化情况及总端口数目进行确定。不同的天线拓扑,不同总天线数目不同的天线极化情况分别有不同针对性的RB分组约定。
例八的子例2:区域内导频发送参数配置信息获取:
表71、各区域PRB pair内导频密度配置
  区域1 区域2 区域3 区域4
PRB pair内RE密度 128RE/RB 32RE/RB 16RE/RB 32RE/RB
表72、各区域PRB pair内导频位置配置
Figure PCTCN2015078895-appb-000020
表73、各区域导频相对功率配置
Figure PCTCN2015078895-appb-000021
这里举例的是每个区域内的测量导频总功率相对数据信道的功率。
最后终端根据配置的导频发送位置/密度和/或发送功率在各区域内进行导频检测。
实施例三、一种下行导频的发送装置,设置于基站,包括:
划分模块1501,设置成:将待发送下行测量导频信号的资源划分为多个资源组;所述资源包括子帧、端口、物理资源块对PRB pair中的任一个或其任意组合;
设置模块1502,设置成:分别配置和/或与终端分别约定每个资源组的导频发送参数;
发送模块1503,设置成:分别根据为每个资源组配置和/或与终端约定的导频发送参数,在各资源组内发送下行测量导频信号。
本实施例的一种实施方式中,所述资源为时域待发送下行测量导频信号的多个子帧,所述划分模块所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
所述导频发送参数包括以下参数中的一种或多种:
所述下行测量导频信号所占用的时频资源密度和时频资源位置;
所述下行测量导频信号端口数目;
所述下行测量导频信号端口标识ID;
所述下行测量导频信号发送功率。
本实施方式中,所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用RE密度;
所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
本实施例的一种实施方式中,所述资源为待发送下行测量导频信号的多个端口,所述划分模块所划分出的资源组为端口组,每个端口组包含一个或多个端口;
所述导频发送参数包括以下参数中的一种或多种:
该端口对应的所述下行测量导频信号所占用的时频资源密度;
该端口对应的占用的PRB pair的密度;
该端口对应的占用的PRB pair的位置;
该端口对应的PRB pair内的发送密度;
该端口对应的PRB pair内的发送位置;
如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
所述下行测量导频信号发送功率。
本实施方式中,所述划分模块1501根据子帧号确定所述端口组的划分。
本实施例的一种实施方式中,所述资源为频域待发送下行测量导频信号的多个PRB pair,所述划分模块所划分出的资源组为资源块组;每个所述RB组包含一个或多个PRB pair;
所述导频发送参数包括以下参数中的一种或多种:
该RB组内下行测量导频信号的发送资源密度;
该RB组内下行测量导频信号的发送资源位置;
该RB组内下行测量导频信号的发送资源端口数目;
该RB组内下行测量导频信号的发送资源端口ID;
下行测量导频信号发送功率。
本实施方式中,所述划分模块1501根据子帧号确定所述RB组的划分。
本实施例的一种实施方式中,所述资源为子帧、端口、PRB pair的任意组合,所述划分模块1501所划分出的每个资源组为一个区域;
所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
本实施例的一种实施方式中,所述装置还可以包括:
约定模块1504,设置成:通过配置信令通知终端或与终端约定所述资源组的分组信息。
实施例四、一种下行导频的检测装置,设置于终端,包括:
分组模块1601,设置成:根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组;所述资源包括子帧、端口、PRBpair中的任一个或其任意组合;
参数确定模块1602,设置成:确定每个所述资源组的导频发送参数;
检测模块1603,设置成:根据各资源组的导频发送参数进行下行测量导频信号检测。
本实施例的一种实施方式中,所述资源为时域待发送下行测量导频信号的多个子帧,所述分组模块所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
所述导频发送参数包括以下参数中的一种或多种:
所述下行测量导频信号所占用的时频资源密度和时频资源位置;
所述下行测量导频信号端口数目;
所述下行测量导频信号端口标识ID;
所述下行测量导频信号发送功率。
本实施方式中,所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用RE密度;
所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
本实施例的一种实施方式中,所述资源为待发送下行测量导频信号的多个端口,所述分组模块所划分出的资源组为端口组,每个端口组包含一个或多个端口;
所述导频发送参数包括以下参数中的一种或多种:
该端口对应的所述下行测量导频信号所占用的时频资源密度;
该端口对应的占用的PRB pair的密度;
该端口对应的占用的PRB pair的位置;
该端口对应的PRB pair内的发送密度;
该端口对应的PRB pair内的发送位置;
如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
所述下行测量导频信号发送功率。
本实施方式中,所述分组模块1601根据子帧号确定所述端口组的划分。
本实施例的一种实施方式中,所述资源为频域待发送下行测量导频信号的多个PRB pair,所述分组模块所划分出的资源组为资源块组;每个所述RB组包含一个或多个PRB pair;
所述导频发送参数包括以下参数中的一种或多种:
该RB组内下行测量导频信号的发送资源密度;
该RB组内下行测量导频信号的发送资源位置;
该RB组内下行测量导频信号的发送资源端口数目;
该RB组内下行测量导频信号的发送资源端口ID;
下行测量导频信号发送功率。
本实施方式中,所述分组模块1601根据子帧号确定所述RB组的划分。
本实施例的一种实施方式中,所述资源为子帧、端口、PRB pair的任意组合,所述分组模块所划分出的每个资源组为一个区域;
所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
本实施例的一种实施方式中,所述参数确定模块1601确定每个所述资源组的导频发送参数是指:
所述参数确定模块1602根据基站配置信令确定每个资源组的导频发送 参数。
实施例五、一种基站,包括实施例三所述的发送装置。
实施例六、一种终端,包括实施例四所述的检测装置。
实施例七、本发明实施例公开了一种计算机程序,包括程序指令,当该程序指令被基站执行时,使得该基站可执行上述任意的下行导频的发送装置。
本发明实施例公开了一种载有所述的计算机程序的载体。
实施例八、本发明实施例公开了一种计算机程序,包括程序指令,当该程序指令被终端执行时,使得该终端可执行上述任意的下行导频的检测装置。
本发明实施例公开了一种载有所述的计算机程序的载体。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。
工业实用性
本发明技术方案能够提供更为灵活的下行导频传输方案。因此本发明具有很强的工业实用性。

Claims (38)

  1. 一种下行导频的发送方法,包括:
    基站将待发送下行测量导频信号的资源划分为多个资源组,其中,所述资源包括子帧、端口、物理资源块对PRB pair中的任一个或其任意组合;
    所述基站分别配置和/或与终端分别约定每个资源组的导频发送参数;
    所述基站分别根据为每个资源组配置和/或与终端约定的所述导频发送参数,在多个所述资源组内发送所述下行测量导频信号。
  2. 如权利要求1所述的下行导频的发送方法,其中:
    所述资源为时域待发送所述下行测量导频信号的多个子帧,所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
    所述导频发送参数包括以下参数中的一种或多种:
    所述下行测量导频信号所占用的时频资源密度和时频资源位置;
    所述下行测量导频信号端口数目;
    所述下行测量导频信号端口标识ID;
    所述下行测量导频信号发送功率。
  3. 如权利要求2所述的下行导频的发送方法,其中:
    所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
    所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
  4. 如权利要求1所述的下行导频的发送方法,其中:
    所述资源为待发送下行测量导频信号的多个端口,所划分出的资源组为端口组,每个端口组包含一个或多个端口;
    所述导频发送参数包括以下参数中的一种或多种:
    该端口对应的所述下行测量导频信号所占用的时频资源密度;
    该端口对应的占用的PRB pair的密度;
    该端口对应的占用的PRB pair的位置;
    该端口对应的PRB pair内的发送密度;
    该端口对应的PRB pair内的发送位置;
    如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
    如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
    所述下行测量导频信号发送功率。
  5. 如权利要求4所述的下行导频的发送方法,其中,所述基站将待发送下行测量导频信号的资源划分为多个资源组的步骤包括:
    根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
  6. 如权利要求1所述的下行导频的发送方法,其中:
    所述资源为频域待发送下行测量导频信号的多个PRB pair,所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRB pair;
    所述导频发送参数包括以下参数中的一种或多种:
    该RB组内下行测量导频信号的发送资源密度;
    该RB组内下行测量导频信号的发送资源位置;
    该RB组内下行测量导频信号的发送资源端口数目;
    该RB组内下行测量导频信号的发送资源端口ID;
    下行测量导频信号发送功率。
  7. 如权利要求6所述的下行导频的发送方法,其中,所述基站将待发送下行测量导频信号的资源划分为多个资源组的步骤包括:
    根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
  8. 如权利要求1所述的下行导频的发送方法,其中:
    所述资源为子帧、端口、PRB pair的任意组合,划分出的每个资源组为一个区域;所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
  9. 如权利要求1到8中任一项所述的下行导频的发送方法,该方法还包括:
    基站通过配置信令通知终端或与终端约定所述资源组的分组信息。
  10. 一种下行导频的检测方法,包括:
    终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组,其中,所述资源包括子帧、端口、PRB pair中的任一个或其任意组合;
    所述终端确定每个所述资源组的导频发送参数;
    所述终端根据多个所述资源组的所述导频发送参数进行所述下行测量导频信号的检测。
  11. 如权利要求10所述的下行导频的检测方法,其中:
    所述资源为时域待发送下行测量导频信号的多个子帧,所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
    所述导频发送参数包括以下参数中的一种或多种:
    所述下行测量导频信号所占用的时频资源密度和时频资源位置;
    所述下行测量导频信号端口数目;
    所述下行测量导频信号端口标识ID;
    所述下行测量导频信号发送功率。
  12. 如权利要求11所述的下行导频的检测方法,其中:
    所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
    所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
  13. 如权利要求10所述的下行导频的检测方法,其中:
    所述资源为待发送下行测量导频信号的多个端口,所划分出的资源组为端口组,每个端口组包含一个或多个端口;
    所述导频发送参数包括以下参数中的一种或多种:
    该端口对应的所述下行测量导频信号所占用的时频资源密度;
    该端口对应的占用的PRB pair的密度;
    该端口对应的占用的PRB pair的位置;
    该端口对应的PRB pair内的发送密度;
    该端口对应的PRB pair内的发送位置;
    如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
    如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
    所述下行测量导频信号发送功率。
  14. 如权利要求13所述的下行导频的检测方法,其中,所述终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组的步骤包括:
    根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
  15. 如权利要求10所述的下行导频的检测方法,其中:
    所述资源为频域待发送下行测量导频信号的多个PRB pair,所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRB pair;所述导频发送参数包括以下参数中的一种或多种:
    该RB组内下行测量导频信号的发送资源密度;
    该RB组内下行测量导频信号的发送资源位置;
    该RB组内下行测量导频信号的发送资源端口数目;
    该RB组内下行测量导频信号的发送资源端口ID;
    下行测量导频信号发送功率。
  16. 如权利要求15所述的下行导频的检测方法,其中,所述终端根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组的步骤包括:
    根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
  17. 如权利要求10所述的下行导频的检测方法,其中:
    所述资源为子帧、端口、PRB pair的任意组合,划分出的每个资源组为一个区域;所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
  18. 如权利要求10到17中任一项所述的下行导频的检测方法,其中,所述终端确定每个所述资源组的导频发送参数的步骤包括:
    所述终端根据基站配置信令确定每个资源组的所述导频发送参数。
  19. 一种下行导频的发送装置,设置于基站,包括划分模块、设置模块和发送模块,其中:
    所述划分模块设置成:将待发送下行测量导频信号的资源划分为多个资源组;所述资源包括子帧、端口、物理资源块对PRB pair中的任一个或其任意组合;
    所述设置模块设置成:分别配置和/或与终端分别约定每个资源组的导频发送参数;
    所述发送模块设置成:分别根据为每个资源组配置和/或与终端约定的导频发送参数,在各资源组内发送下行测量导频信号。
  20. 如权利要求19所述的下行导频的发送装置,其中:
    所述资源为时域待发送下行测量导频信号的多个子帧,所述划分模块所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
    所述导频发送参数包括以下参数中的一种或多种:
    所述下行测量导频信号所占用的时频资源密度和时频资源位置;
    所述下行测量导频信号端口数目;
    所述下行测量导频信号端口标识ID;
    所述下行测量导频信号发送功率。
  21. 如权利要求20所述的下行导频的发送装置,其中:
    所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
    所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
  22. 如权利要求19所述的下行导频的发送装置,其中:
    所述资源为待发送下行测量导频信号的多个端口,所述划分模块所划分出的资源组为端口组,每个端口组包含一个或多个端口;
    所述导频发送参数包括以下参数中的一种或多种:
    该端口对应的所述下行测量导频信号所占用的时频资源密度;
    该端口对应的占用的PRB pair的密度;
    该端口对应的占用的PRB pair的位置;
    该端口对应的PRB pair内的发送密度;
    该端口对应的PRB pair内的发送位置;
    如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
    如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
    所述下行测量导频信号发送功率。
  23. 如权利要求22所述的下行导频的发送装置,其中,所述划分模块设置成按照如下方式将待发送下行测量导频信号的资源划分为多个资源组:
    根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
  24. 如权利要求19所述的下行导频的发送装置,其中:
    所述资源为频域待发送下行测量导频信号的多个PRB pair,所述划分模块所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRBpair;
    所述导频发送参数包括以下参数中的一种或多种:
    该RB组内下行测量导频信号的发送资源密度;
    该RB组内下行测量导频信号的发送资源位置;
    该RB组内下行测量导频信号的发送资源端口数目;
    该RB组内下行测量导频信号的发送资源端口ID;
    下行测量导频信号发送功率。
  25. 如权利要求24所述的下行导频的发送装置,其中,所述划分模块设置成按照如下方式将待发送下行测量导频信号的资源划分为多个资源组:
    根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
  26. 如权利要求19所述的下行导频的发送装置,其中:
    所述资源为子帧、端口、PRB pair的任意组合,所述划分模块所划分出的每个资源组为一个区域;
    所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
  27. 如权利要求19到26中任一项所述的下行导频的发送装置,该装置还包括约定模块,其中,
    所述约定模块设置成:通过配置信令通知终端或与终端约定所述资源组的分组信息。
  28. 一种下行导频的检测装置,设置于终端,包括分组模块、参数确定模块和检测模块,其中:
    所述分组模块设置成:根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组;所述资源包括子帧、端口、PRB pair中的任一个或其任意组合;
    所述参数确定模块设置成:确定每个所述资源组的导频发送参数;
    所述检测模块设置成:根据各资源组的导频发送参数进行下行测量导频信号检测。
  29. 如权利要求28所述的下行导频的检测装置,其中:
    所述资源为时域待发送下行测量导频信号的多个子帧,所述分组模块所划分出的资源组为子帧组,每个所述子帧组中包括一个或多个子帧;
    所述导频发送参数包括以下参数中的一种或多种:
    所述下行测量导频信号所占用的时频资源密度和时频资源位置;
    所述下行测量导频信号端口数目;
    所述下行测量导频信号端口标识ID;
    所述下行测量导频信号发送功率。
  30. 如权利要求29所述的下行导频的检测装置,其中:
    所述时频资源密度包含PRB pair的密度和/或PRB pair内的占用资源单元RE密度;
    所述时频资源位置包含PRB pair的位置和/或PRB pair内的占用RE的位置。
  31. 如权利要求28所述的下行导频的检测装置,其中:
    所述资源为待发送下行测量导频信号的多个端口,所述分组模块所划分 出的资源组为端口组,每个端口组包含一个或多个端口;
    所述导频发送参数包括以下参数中的一种或多种:
    该端口对应的所述下行测量导频信号所占用的时频资源密度;
    该端口对应的占用的PRB pair的密度;
    该端口对应的占用的PRB pair的位置;
    该端口对应的PRB pair内的发送密度;
    该端口对应的PRB pair内的发送位置;
    如果所述下行测量导频信号是周期导频:该端口对应的发送周期及偏置;
    如果所述下行测量导频信号是非周期导频:该端口对应的重复发送次数,发送时域位置;
    所述下行测量导频信号发送功率。
  32. 如权利要求31所述的下行导频的检测装置,其中,所述分组模块设置成按照如下方式根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组:
    根据子帧号将待发送下行测量导频信号的多个端口划分为多个所述端口组。
  33. 如权利要求28所述的下行导频的检测装置,其中:
    所述资源为频域待发送下行测量导频信号的多个PRB pair,所述分组模块所划分出的资源组为资源块RB组;每个所述RB组包含一个或多个PRBpair;
    所述导频发送参数包括以下参数中的一种或多种:
    该RB组内下行测量导频信号的发送资源密度;
    该RB组内下行测量导频信号的发送资源位置;
    该RB组内下行测量导频信号的发送资源端口数目;
    该RB组内下行测量导频信号的发送资源端口ID;
    下行测量导频信号发送功率。
  34. 如权利要求33所述的下行导频的检测装置,其中,所述分组模块设置成按照如下方式根据基站配置信令和/或与基站的约定,将待发送下行测量导频信号的资源分为多个资源组:
    根据子帧号将频域待发送下行测量导频信号的多个PRB pair划分为多个所述RB组。
  35. 如权利要求28所述的下行导频的检测装置,其中:
    所述资源为子帧、端口、PRB pair的任意组合,所述分组模块所划分出的每个资源组为一个区域;
    所述导频发送参数包括所述下行测量导频信号的发送位置/密度和/或发送功率。
  36. 如权利要求28到35中任一项所述的下行导频的检测装置,其中,所述参数确定模块设置成按照如下方式确定每个所述资源组的导频发送参数:
    所述参数确定模块根据基站配置信令确定每个资源组的所述导频发送参数。
  37. 一种基站,包括如权利要求19至27中任一项所述的下行导频的发送装置。
  38. 一种终端,包括如权利要求28至36中任一项所述的下行导频的检测装置。
PCT/CN2015/078895 2014-09-15 2015-05-13 下行导频的发送方法、检测方法、装置及基站、终端 WO2016041368A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22153812.7A EP4009573A1 (en) 2014-09-15 2015-05-13 Downlink pilot transmitting method and device, detection method and device, evolved node b and terminal
US15/511,339 US10673586B2 (en) 2014-09-15 2015-05-13 Downlink pilot transmitting method and device, detection method and device, evolved node B and terminal
EP15842269.1A EP3197087B1 (en) 2014-09-15 2015-05-13 Downlink pilot sending method, detecting method, device, base station and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410468890.9 2014-09-15
CN201410468890.9A CN105490787B (zh) 2014-09-15 2014-09-15 下行导频的发送方法、检测方法、装置及基站、终端

Publications (1)

Publication Number Publication Date
WO2016041368A1 true WO2016041368A1 (zh) 2016-03-24

Family

ID=55532524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078895 WO2016041368A1 (zh) 2014-09-15 2015-05-13 下行导频的发送方法、检测方法、装置及基站、终端

Country Status (4)

Country Link
US (1) US10673586B2 (zh)
EP (2) EP3197087B1 (zh)
CN (1) CN105490787B (zh)
WO (1) WO2016041368A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3606233A4 (en) * 2017-03-25 2020-12-30 ZTE Corporation METHOD AND DEVICE FOR DETERMINATION OF TRANSMISSION PARAMETERS AND INFORMATION MEDIA

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047409A1 (ja) * 2014-09-25 2016-03-31 株式会社Nttドコモ 基地局及びユーザ装置
CN111817839B (zh) * 2015-05-22 2022-11-08 富士通株式会社 参考信号的资源配置方法、装置以及通信***
WO2017000099A1 (zh) * 2015-06-29 2017-01-05 华为技术有限公司 传输信道状态信息参考信号的方法和设备
WO2017067580A1 (en) * 2015-10-20 2017-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Determination of reference signal transmission pattern
US11206177B2 (en) * 2015-12-22 2021-12-21 Samsung Electronics Co., Ltd. Scheme for configuring reference signal and communicating channel state information in a wireless communication system using multiple antenna ports
CN107306146B (zh) * 2016-04-19 2021-07-30 中兴通讯股份有限公司 端口与波束的配置方法及装置
CN107547094B (zh) * 2016-06-29 2023-08-22 华为技术有限公司 一种信号传输方法及装置
CN107623539B (zh) * 2016-07-11 2020-05-22 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107666380B (zh) * 2016-07-29 2020-01-31 普天信息技术有限公司 一种专网通信***中发送下行导频信号的方法及基站
US11368963B2 (en) * 2016-09-21 2022-06-21 Apple Inc. Reduced CSI (channel state information)-RS (reference signal) density support for FD (full dimensional)-MIMO (multiple input multiple output) systems
CN107888253A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种降低csi‑rs参考信号密度的方法
KR102156672B1 (ko) * 2016-10-07 2020-09-17 주식회사 케이티 새로운 무선 통신 시스템에서 주파수 오프셋 추정을 위한 참조 신호를 전송하는 방법 및 장치
WO2018066899A1 (ko) 2016-10-07 2018-04-12 주식회사 케이티 새로운 무선 통신 시스템에서 주파수 오프셋 추정을 위한 참조 신호를 전송하는 방법 및 장치
KR102323591B1 (ko) * 2016-11-04 2021-11-08 엘지전자 주식회사 무선 통신 시스템에서 하향링크 채널을 수신하는 방법 및 이를 위한 장치
CN108242989B (zh) * 2016-12-27 2022-07-15 中兴通讯股份有限公司 数据传输方法、数据解调方法、装置及终端
CN108259146B (zh) * 2016-12-28 2021-06-08 华为技术有限公司 一种测量导频信号的传输方法及设备
CN108282298B (zh) * 2017-01-06 2023-04-11 中兴通讯股份有限公司 一种参考信号传输方法及装置
CN108419292B (zh) * 2017-02-09 2021-08-06 工业和信息化部电信研究院 一种不同业务频分复用方法
CN108631834B (zh) * 2017-03-24 2020-12-04 电信科学技术研究院 一种在多天线通信***中发射分集的方法及装置
CN109150477B (zh) * 2017-06-28 2023-10-24 华为技术有限公司 发送和接收参考信号的方法、网络设备和终端设备
US10512100B2 (en) * 2018-02-13 2019-12-17 Google Llc User device-requested downlink pilots
CN115001637A (zh) * 2018-03-13 2022-09-02 中兴通讯股份有限公司 控制信道发送、检测方法、装置及设备、存储介质
CN113243135A (zh) * 2018-12-25 2021-08-10 华为技术有限公司 获取下行信道信息的方法和装置
US11569886B2 (en) * 2019-04-01 2023-01-31 Qualcomm Incorporated Network-sensitive transmit diversity scheme
US11690083B2 (en) * 2020-06-09 2023-06-27 Qualcomm Incorporated Grouping user equipment based on downlink power
US11627574B2 (en) 2020-06-09 2023-04-11 Qualcomm Incorporated Grouping user equipment based on downlink power
TR2021019870A2 (tr) * 2021-12-14 2022-03-21 Istanbul Medipol Ueniversitesi Entegre algilama ve i̇leti̇şi̇m i̇çi̇n güvenli̇ pi̇lot tahsi̇si̇

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055709A (zh) * 2009-11-05 2011-05-11 大唐移动通信设备有限公司 一种先进的长期演进***中测量导频的传输方法及装置
WO2011120224A1 (zh) * 2010-03-31 2011-10-06 富士通株式会社 导频图案生成方法和装置、信号发送及接收方法和装置
WO2011153286A1 (en) * 2010-06-01 2011-12-08 Qualcomm Incorporated Reference signal patterns
CN103297153A (zh) * 2012-02-28 2013-09-11 华为技术有限公司 功率测量方法、信号测量方法和设备
CN103313250A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 小区配置方法和同步方法,用户设备和基站
CN103391576A (zh) * 2012-05-11 2013-11-13 华为技术有限公司 参考信号接收功率的上报方法和设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119591A1 (ja) * 2006-03-31 2007-10-25 Matsushita Electric Industrial Co., Ltd. 無線通信基地局装置および無線通信移動局装置
KR101689597B1 (ko) * 2009-02-09 2016-12-26 엘지전자 주식회사 하향링크 mimo 시스템에 있어서, 참조 신호 전송 방법
US10193678B2 (en) * 2009-10-08 2019-01-29 Qualcomm Incorporated Muting schemes for channel state information reference signal and signaling thereof
KR101053635B1 (ko) * 2010-01-28 2011-08-03 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 기지국이 릴레이 노드로 제어 신호를 송신하는 방법 및 이를 위한 장치
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
US9407409B2 (en) * 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
CN102263723B (zh) * 2010-05-31 2013-09-25 ***通信集团公司 下行信道测量参考信号发送方法、装置和接收方法、装置
JP5896619B2 (ja) 2011-04-05 2016-03-30 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
JP5970170B2 (ja) * 2011-11-07 2016-08-17 株式会社Nttドコモ 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
WO2013085336A1 (ko) * 2011-12-07 2013-06-13 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 송수신 방법 및 장치
WO2014010994A1 (ko) * 2012-07-12 2014-01-16 엘지전자 주식회사 무선 접속 시스템에서 안테나 포트향 참조 신호 전송 방법
WO2014035137A1 (ko) * 2012-08-30 2014-03-06 엘지전자 주식회사 무선 통신 시스템에서 채널을 추정하는 방법 및 장치
EP3300420B1 (en) * 2012-09-11 2018-12-05 LG Electronics Inc. Method and apparatus for receiving channel state information-reference signals in wireless communication system
CN103858500B (zh) * 2012-09-29 2018-02-06 华为技术有限公司 控制信息发送方法、接收方法和设备
CN103795509A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 一种传输harq指示信息的方法和设备
WO2014113087A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Channel state information-reference signal patterns for time division duplex systems in long term evolution wireless networks
US9544037B2 (en) * 2014-02-07 2017-01-10 Lg Electronics Inc. Method and apparatus for interference cancellation
EP3136778B1 (en) * 2014-05-16 2020-01-01 Huawei Technologies Co. Ltd. Information processing method, base station, and user equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055709A (zh) * 2009-11-05 2011-05-11 大唐移动通信设备有限公司 一种先进的长期演进***中测量导频的传输方法及装置
WO2011120224A1 (zh) * 2010-03-31 2011-10-06 富士通株式会社 导频图案生成方法和装置、信号发送及接收方法和装置
WO2011153286A1 (en) * 2010-06-01 2011-12-08 Qualcomm Incorporated Reference signal patterns
CN103297153A (zh) * 2012-02-28 2013-09-11 华为技术有限公司 功率测量方法、信号测量方法和设备
CN103313250A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 小区配置方法和同步方法,用户设备和基站
CN103391576A (zh) * 2012-05-11 2013-11-13 华为技术有限公司 参考信号接收功率的上报方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197087A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3606233A4 (en) * 2017-03-25 2020-12-30 ZTE Corporation METHOD AND DEVICE FOR DETERMINATION OF TRANSMISSION PARAMETERS AND INFORMATION MEDIA
US11082970B2 (en) 2017-03-25 2021-08-03 Zte Corporation Method and device for determining transmission parameters and storage medium
EP3998735A1 (en) * 2017-03-25 2022-05-18 ZTE Corporation Method and device for determining transmission parameters and storage medium

Also Published As

Publication number Publication date
CN105490787B (zh) 2019-06-14
CN105490787A (zh) 2016-04-13
EP3197087B1 (en) 2022-03-09
EP3197087A4 (en) 2017-09-13
EP4009573A1 (en) 2022-06-08
EP3197087A1 (en) 2017-07-26
US20170264412A1 (en) 2017-09-14
US10673586B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2016041368A1 (zh) 下行导频的发送方法、检测方法、装置及基站、终端
JP7337747B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
CN105450272B (zh) 一种导频信息的反馈方法、装置及终端
JP6987788B2 (ja) 低減密度csi−rsのための機構
KR102108470B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN110832803B (zh) 用于多用户多入多出的干扰测量和信道状态信息反馈
US10454554B2 (en) Interference measurement method and apparatus for use in mobile communication system
US9871639B2 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system using multiple antennas
JP6755092B2 (ja) 無線通信システムでチャンネル状態情報送受信方法及び装置
EP3402087B1 (en) Method for reporting channel state information, user equipment, and base station
CN105991222B (zh) 配置信息通知方法、获取方法、装置、基站及终端
TWI516141B (zh) Three - dimensional channel measurement resource allocation and quality measurement method and equipment
WO2016013351A1 (ja) 基地局、ユーザ装置および無線通信ネットワーク
CN110050432B (zh) 获得并指示用于csi-rs的分量组合的方法和设备
US20130288730A1 (en) METHOD AND SYSTEM FOR COORDINATED MULTIPOINT (CoMP) COMMUNICATION BETWEEN BASE-STATIONS AND MOBILE COMMUNICATION TERMINALS
AU2016241468A2 (en) Resource allocation device and method in large-scale antenna system
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
TW201409961A (zh) 一種傳輸參考信號的方法、裝置及系統
WO2016065838A1 (zh) 测量导频发送、检测方法、装置、基站及终端
WO2017061822A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
JP2015514351A5 (zh)
WO2013131401A1 (zh) 信道状态信息的处理方法、基站和终端
WO2016015666A1 (zh) 一种导频发送方法、信道测量方法及装置
KR20180136819A (ko) 이동 통신 시스템에서의 데이터 전송 방법 및 장치
JP2019516291A (ja) 非周期的信号を送信する方法、基地局及びユーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15511339

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015842269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015842269

Country of ref document: EP