WO2013131401A1 - 信道状态信息的处理方法、基站和终端 - Google Patents

信道状态信息的处理方法、基站和终端 Download PDF

Info

Publication number
WO2013131401A1
WO2013131401A1 PCT/CN2012/087701 CN2012087701W WO2013131401A1 WO 2013131401 A1 WO2013131401 A1 WO 2013131401A1 CN 2012087701 W CN2012087701 W CN 2012087701W WO 2013131401 A1 WO2013131401 A1 WO 2013131401A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
information
resources
signaling
Prior art date
Application number
PCT/CN2012/087701
Other languages
English (en)
French (fr)
Inventor
郭森宝
孙云锋
陈艺戬
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013131401A1 publication Critical patent/WO2013131401A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for processing channel state information, a base station, and a terminal.
  • LTE Long Term Evolution
  • R10 adds many new features based on the former two, such as Demodulation Reference Signal (DMRS) and Channel State Information Reference Signal (CSI). -RS) and other pilot characteristics, 8 antenna support and other transmission and feedback characteristics, etc., especially the inter-cell interference cancellation enhancement (elCIC) technology based on the R8/9 ICIC, further Consider interference avoidance techniques between cells.
  • the technology for solving the interference problem between cells mainly considers the cell interference avoidance under the isomorphic network in the early stage of the R10 phase, and the mainstream considers the elCIC technology and the Coordinated Multi-point (CoMP) technology.
  • CoMP is that multiple nodes cooperate to send data to one or more terminals (UEs) at the same time-frequency resource or different time-frequency resources. Such a technique can reduce interference between cells and improve the swallowing of cell edges.
  • the complexity of CoMP technology and the time limit discussed by R10 finally decided not to introduce additional CoMP standardized content in the R10 phase, but in designing CSI-RS, the requirements of the CoMP part can be considered for R10, and the base station side first uses UE-specific (UE- Specific) High-level signaling configures the UE-set of CSI-RS configuration information (including non-zero-power CSI-RS configuration information and zero-power CSI-RS configuration information). The UE performs CSI measurement on the serving base station by using the non-zero power CSI-RS configured on the base station side.
  • UE-specific UE- Specific
  • High-level signaling configures the UE-set of CSI-RS configuration information (including non-zero-power CSI-RS configuration information and zero-power CSI-RS configuration information).
  • the UE performs CSI measurement on the serving base station by using the non-zero power CSI-RS configured on the base station side.
  • the UE side needs to know the number of antenna ports of the CSI-RS, the time domain and frequency domain position of the CSI-RS in one subframe, the period and subframe offset information of the CSI-RS, and the power information of the CSI-RS.
  • the UE generates a CSI-RS pilot by using a cell ID obtained by initial access and synchronization, and detecting a Physical Broadcast Channel (PBCH), and then demodulating the CSI-RS by using a correlation detection algorithm to obtain a CSI value.
  • PBCH Physical Broadcast Channel
  • CoMP transmission methods mainly include Joint Transmission (JT), Coordinated Scheduling (CS)/Coordinated Beamforming (CB).
  • JT Joint Transmission
  • CS Coordinated Scheduling
  • CB Coordinated Beamforming
  • TPs transmission nodes
  • MCS Modulation Coding Scheme
  • the UE For the CS/CB, the UE needs to feed back the weights of multiple TPs, so that the base station side can cooperate better, so that the CSI fed back by the UE is used to determine the cooperative precoding weight and the MCS value of the serving node and the interfering node. And the pairing user's choice of machine precoding and MCS selection.
  • the UE also needs to feedback the weights of the multiple TPs, so that the base station side can dynamically determine the TP of the UE by using the CSIs of multiple TPs fed back by the UE, and determine the TP to send data to the UE. Precoding weights and MCS.
  • the base station side needs to configure multiple CSI-RS resources for the UE to measure the CSIs of multiple TPs and configure the CSI-RS resources in advance through the high-level signaling of the UE-Specific upper layer. It is necessary to include various information required for the corresponding TP.
  • the cell ID and bandwidth information cannot be obtained through high-level signaling, so it needs to be enhanced in the R11 phase, so that the UE can obtain the above two kinds of information.
  • the cell ID also uses the UE-Specific (UE-specific) high-level signaling configuration, but the bandwidth problem has not been discussed, so if you consider the unequal bandwidth, the CoMP and/or reference signal.
  • the embodiments of the present invention provide a method for processing channel state information, a base station, and a terminal, to solve the problem of CoMP and/or RSRP and/or RSRQ and/or RSSI and/or RLM measurement in the case of unequal bandwidth.
  • the embodiment of the present invention provides a method for processing channel state information (CSI), which includes: configuring, by a base station, terminal side (UE) dedicated high layer signaling and/or public high layer signaling (PBCH or SIB1 or SIB2) The channel state information reference signal (CSI-RS) resource signaling, and the CSI-RS resource signaling is sent to the terminal; where each CSI-RS resource signaling includes at least one of the following information: And time domain and frequency domain location information of the CSI-RS resource in one subframe, period and subframe offset information of the CSI-RS resource subframe, power information of the CSI-RS resource, and bandwidth information occupied by the CSI-RS resource;
  • CSI channel state information
  • the base station Generating, by the base station, a CSI-RS according to the multiple CSI-RS resource signaling, and sending the CSI-RS to the terminal on a corresponding time domain and frequency domain resource, and receiving the feedback that is sent by the terminal
  • the CSI or reference signal receives power.
  • each of the CSI-RS resources is independently configured in time domain and frequency domain location information in one subframe;
  • the period and subframe offset information of each of the CSI-RS resource subframes are independently configured; or a plurality of the CSI-RS resource subframes configure a set of period and subframe offset information; or
  • Each of the CSI-RS resources independently configures power information
  • the power information is independently configured for different antenna ports of each of the CSI-RS resources;
  • the number of the antenna port indication information is 1, 2, 4 or 8; or
  • the bandwidth information occupied by the CSI-RS resource includes at least one of the following: 1.4M, 3M, 5M, 1 OM, 15M, 20M, N resource blocks (RBs), and N resource block groups (Resource Block Group) , RBG) and N subbands, N is a natural number.
  • the embodiment of the invention further provides a method for processing channel state information (CSI), the method comprising:
  • the terminal receives multiple channel state information reference signal (CSI-RS) resource signaling sent by the base station; where each CSI-RS resource signaling includes at least one of the following information: the number of antenna port indication information, and the CSI-RS resource is Time domain and frequency domain location information in one subframe, week of CSI-RS resource subframe Period and subframe offset information, power information of the CSI-RS resource, and bandwidth information occupied by the CSI-RS resource; the terminal uses the multiple CSI-RS resource signaling to measure and receive on the corresponding time domain and frequency domain resources.
  • CSI-RS resource signaling includes at least one of the following information: the number of antenna port indication information, and the CSI-RS resource is Time domain and frequency domain location information in one subframe, week of CSI-RS resource subframe Period and subframe offset information, power information of the CSI-RS resource, and bandwidth information occupied by the CSI-RS resource; the terminal uses the multiple CSI-RS resource signaling to measure and receive on the corresponding time domain and frequency domain resources.
  • CSI or reference signal received power RSRP and/or RSRQ and/or RSSI and/or RLM measurement
  • RSRP and/or RSRQ and/or RSSI and/or RLM measurement CSI or reference signal received power corresponding to multiple CSI-RS resources, and feeding back the CSI or the RSRP and/or RSRQ to the base station And / or RSSI and / or RLM measurements.
  • the terminal uses the multiple CSI-RS resource signaling to measure CSIRSRP and/or RSRQ and/or RSSI and/or corresponding to the received multiple CSI-RS resources on the corresponding time domain and frequency domain resources.
  • RLM measurement or RSRP and/or RSRQ and/or RSSI and/or RLM measurement comprising: the terminal generating a CSI-RS according to the multiple CSI-RS resource signaling, the CSI-RS and the received Performing correlation operations on the plurality of CSI-RS resources to obtain CSIRSRP and/or RSRQ and/or RSSI and/or RLM measurement or RSRP and/or RSRQ and/or RSSI and/or RLM measurement corresponding to multiple CSI-RS resources .
  • each of the CSI-RS resources is independently configured in time domain and frequency domain location information in one subframe; and/or
  • the period and subframe offset information of each of the CSI-RS resource subframes are independently configured; or the plurality of CSI-RS resource subframes configure a set of period and subframe offset information; and/or each of the CSI- RS resources are independently configured with power information; or
  • the power information of each antenna port of each of the CSI-RS resources is independently configured; and/or the value of the number of antenna port indications is 1, 2, 4 or 8; and/or
  • the bandwidth information occupied by the CSI-RS resource includes at least one of the following: 1.4M, 3M, 5M,
  • N RBs 10M, 15M and 20M, N RBs, N RBG (Resource Block Group) and N subbands.
  • An embodiment of the present invention further provides a base station, where the base station includes:
  • Configuring a sending module configured to: configure multiple channel state information reference signal (CSI-RS) resource signaling on the terminal side by using terminal (UE) dedicated high layer signaling and/or common high layer signaling (PBCH or SIB1 or SIB2), And transmitting, to the terminal, the CSI-RS resource signaling; where each CSI-RS resource signaling includes at least one of the following information: an antenna port number indication information, a time domain and a frequency of the CSI-RS resource in one subframe. Domain location information, period of CSI-RS resource subframes, and subframe offset information Information, power information of CSI-RS resources and bandwidth information occupied by CSI-RS resources;
  • CSI-RS channel state information reference signal
  • a processing module configured to: generate a CSI-RS according to the multiple CSI-RS resource signaling configured by the sending module, and send the CSI to the terminal on a corresponding time domain and frequency domain resource RS, and receiving the CSI or reference signal received power fed back by the terminal.
  • the time domain and frequency domain location information of each of the CSI-RS resources in one subframe is independently configured; and/or
  • the period and subframe offset information of each of the CSI-RS resource subframes are independently configured; or a plurality of the CSI-RS resource subframes are configured with a set of period and subframe offset information; and/or each The power information of the CSI-RS resource is independently configured; or
  • the power information of different antenna ports of each of the CSI-RS resources is independently configured; and/or the number of the antenna port indication information is 1, 2, 4 or 8; and/or
  • the bandwidth information occupied by the CSI-RS resource includes at least one of the following: 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs (Resource Block Group), and N subbands .
  • the embodiment of the invention further provides a terminal, the terminal comprising:
  • a receiving module configured to: receive multiple channel state information reference signal (CSI-RS) resource signaling sent by the base station, where each CSI-RS resource signaling includes at least one of the following information: And time domain and frequency domain location information of the CSI-RS resource in one subframe, period and subframe offset information of the CSI-RS resource subframe, power information of the CSI-RS resource, and bandwidth information occupied by the CSI-RS resource;
  • CSI-RS channel state information reference signal
  • a processing module configured to: measure, by using the multiple CSI-RS resource signaling received by the receiving module, CSI or a reference signal corresponding to the received multiple CSI-RS resources on the corresponding time domain and frequency domain resources Receive power (RSRP and / or RSRQ and / or RSSI and / or RLM measurements), and vector.
  • RSRP and / or RSRQ and / or RSSI and / or RLM measurements Receive power
  • the processing module is configured to: generate a CSI-RS according to the multiple CSI-RS resource signaling, and perform a correlation operation on the CSI-RS and the received multiple CSI-RS resources, Obtaining CSIRSRP and/or RSRQ and/or RSSI and/or RLM measurements corresponding to multiple CSI-RS resources Or RSRP and / or RSRQ and / or RSSI and / or RLM measurements.
  • the time domain and frequency domain location information of each of the CSI-RS resources in one subframe is independently configured; and/or
  • the period and subframe offset information of each of the CSI-RS resource subframes are independently configured; or a plurality of the CSI-RS resource subframes are configured with a set of period and subframe offset information; and/or each The power information of the CSI-RS resource is independently configured; or
  • the power information of different antenna ports of each of the CSI-RS resources is independently configured; and/or the number of the antenna port indication information is 1, 2, 4 or 8; and/or
  • the bandwidth information occupied by the CSI-RS resource includes at least one of the following: 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs (Resource Block Group), and N subbands .
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for processing channel state information according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for processing channel state information according to the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal embodiment of the present invention. Preferred embodiment of the invention
  • the embodiment of the present invention provides a method for processing a CSI.
  • the base station side configures multiple CSI-RS resource signalings on the terminal side through UE-Specific high-level signaling, so that the UE can accurately perform TP in multiple TP unequal bandwidths. Choose and get accurate CSI measurements in CoMP technology.
  • FIG. 1 it is a flowchart of Embodiment 1 of a method for processing channel state information according to the present invention.
  • the embodiment is described from the base station side, and the method includes:
  • Step 101 The base station configures multiple channel state information reference signal (CSI-RS) resource signaling on the terminal side by using terminal (UE) dedicated high layer signaling and/or common high layer signaling, and sends the CSI-RS resource signal to the terminal.
  • CSI-RS resource signaling includes at least one of the following information: an antenna port number indication information, a time domain and frequency domain location information of a CSI-RS resource in one subframe, and a CSI-RS resource subframe.
  • Period and subframe offset information, power information of CSI-RS resources, and bandwidth information occupied by CSI-RS resources; common high layer signaling may include a physical broadcast channel (PBCH), and a system information block type 1 (System Information Block) Type 1 , SIBl ) or System Information Block Type 2 (SIB2).
  • PBCH physical broadcast channel
  • SIBl System Information Block
  • SIB2 System Information Block Type 2
  • Step 102 The base station generates a CSI-RS according to the multiple CSI-RS resource signaling, and sends the CSI-RS to the terminal on a corresponding time domain and frequency domain resource, and receives the terminal feedback.
  • the CSI or reference signal receives power.
  • FIG. 2 it is a flowchart of Embodiment 2 of a method for processing channel state information according to the present invention.
  • the embodiment is described from the terminal side, and the method includes:
  • Step 201 The terminal receives multiple channel state information reference signal (CSI-RS) resource signaling sent by the base station, where each CSI-RS resource signaling includes at least: an antenna port number indication information, and a CSI-RS resource in one Time domain and frequency domain location information in a subframe, period and subframe offset information of a CSI-RS resource subframe, power information of a CSI-RS resource, and bandwidth information occupied by a CSI-RS resource;
  • CSI-RS resource signaling includes at least: an antenna port number indication information, and a CSI-RS resource in one Time domain and frequency domain location information in a subframe, period and subframe offset information of a CSI-RS resource subframe, power information of a CSI-RS resource, and bandwidth information occupied by a CSI-RS resource;
  • CSI-RS resource signaling includes at least: an antenna port number indication information, and a CSI-RS resource in one Time domain and frequency domain location information in a subframe, period and subframe offset information of a CSI-RS resource
  • Step 202 The terminal uses the multiple CSI-RS resource signaling to measure CSI and/or RSRP and/or RSRQ and/or corresponding to the received multiple CSI-RS resources on the corresponding time domain and frequency domain resources. Or RSSI and/or RLM, and feed back the CSI or the and/or RSRP and/or RSRQ and/or RSSI and/or RLM to the base station.
  • Embodiment 1 The following describes the embodiments of the present invention from the perspective of interaction between the base station side and the terminal side: Embodiment 1
  • each CSI-RS resource signaling includes: antenna port number indication information, CSI-RS resources Time domain and frequency domain location information in one subframe, period and subframe offset information of CSI-RS resource subframes, power information of CSI-RS resources, and bandwidth occupied by CSI-RS resources Information.
  • the base station side performs CSI-RS generation and transmission according to the information indicated in the foregoing CSI-RS resource signaling, and is used for the UE side to measure and feed back CSI of each configured CSI-RS resource.
  • the UE side receives multiple CSI-RS resource signalings configured by the base station, and performs CSI-RS generation according to the obtained CSI-RS resource signaling, and then performs correlation operations with the received CSI-RS resources to obtain different CSI-RSs.
  • the CSI and/or RSRP and/or RSRQ and/or RSSI and/or RLM of the resource are fed back to the base station.
  • the value of the antenna port number indication information may be 1, 2, 4 or 8.
  • the bandwidth information occupied by the CSI-RS may include 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs, and N sub-bands.
  • each CSI-RS resource signaling includes: antenna port number indication information, CSI-RS resources Time domain and frequency domain location information in one subframe, power information of CSI-RS resources and bandwidth information occupied by CSI-RS resources; base station side additionally configures a set of CSI-RS resources for multiple CSI-RS resources The period of the frame and the subframe offset signaling, the multiple sets of CSI-RS resources use the same set of period and subframe offset signaling.
  • the base station side performs CSI-RS generation and transmission according to the information indicated in the signaling, and is used by the UE side to measure and feed back CSI of each configured CSI-RS resource.
  • the UE side receives multiple CSI-RS resource signalings configured by the base station, and performs CSI-RS generation according to the obtained CSI-RS resource signaling, and then performs correlation operations with the received CSI-RS resources to obtain different CSI-RSs.
  • the CSI and/or RSRP and/or RSRQ and/or RSSI and/or RLM of the resource are fed back to the base station.
  • the value of the antenna port number indication information may be 1, 2, 4 or 8.
  • the bandwidth information occupied by the CSI-RS may include 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs, and N subbands.
  • each CSI-RS resource signaling includes: antenna port number indication information, CSI-RS resources Time domain and frequency domain location information in one subframe, period and subframe offset information of CSI-RS resource subframes, bandwidth information of CSI-RS resources, and CSI-RS resources
  • the power information of the antenna port is independently configured.
  • the base station side performs CSI-RS generation and transmission according to the information indicated in the foregoing CSI-RS resource signaling, and is used for measuring and feeding back CSI of each configured CSI-RS resource by the UE side.
  • the UE side receives multiple CSI-RS resource signalings configured by the base station, and performs CSI-RS generation according to the obtained CSI-RS resource signaling, and then performs correlation operations with the received CSI-RS resources to obtain different CSI-RSs.
  • the CSI of the resource and feedback to the base station.
  • the value of the antenna port number indication information may be 1, 2, 4 or 8.
  • the bandwidth information occupied by the CSI-RS may include 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs, and N sub-bands.
  • each CSI-RS resource signaling includes: antenna port number indication information, CSI-RS resources Time domain and frequency domain location information in one subframe, power information independently configured by different antenna ports of CSI-RS resources, and bandwidth information occupied by CSI-RS resources.
  • the base station side further configures a set of CSI-RS resource subframe periodicity and subframe offset signaling for multiple CSI-RS resources, and multiple CSI-RS resources use the same set of period and subframe offset signaling.
  • the base station side performs CSI-RS generation and transmission according to the information indicated in the foregoing CSI-RS resource signaling, and is used for the UE side to measure and feed back CSI of each configured CSI-RS resource.
  • the UE side receives multiple CSI-RS resource signalings configured by the base station, and performs CSI-RS generation according to the obtained CSI-RS resource signaling, and then performs correlation operations with the received CSI-RS resources to obtain different CSI-RSs.
  • the CSI and/or RSRP and/or RSRQ and/or RSSI and/or RLM of the resource are fed back to the base station.
  • the value of the antenna port number indication information may be 1, 2, 4 or 8.
  • the bandwidth information occupied by the CSI-RS may include 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs, and N subbands.
  • the UE can be made to accurately perform TP selection with multiple TP unequal bandwidths and obtain accurate CSI measurements in CoMP technology.
  • the base station includes a configuration sending module 31 and a processing module 32, where:
  • the configuration sending module 31 is configured to: configure terminal side multiple channel state information reference signal (CSI-RS) resource signaling by using terminal (UE) dedicated high layer signaling and/or common high layer signaling (PBCH or SIB1 or SIB2), And transmitting, to the terminal, the CSI-RS resource signaling;
  • each CSI-RS resource signaling includes at least one of the following information: an antenna port number indication information, a time domain and a frequency of the CSI-RS resource in one subframe. Domain location information, period and subframe offset information of CSI-RS resource subframes, power information of CSI-RS resources, and bandwidth information occupied by CSI-RS resources;
  • the processing module 32 is configured to: generate a CSI-RS according to the multiple CSI-RS resource signaling configured by the sending module, and send the CSI to the terminal on a corresponding time domain and frequency domain resource. RS, and receiving the CSI or reference signal received power fed back by the terminal.
  • the time domain and frequency domain location information of each of the CSI-RS resources in one subframe may be independently configured; the period and subframe offset information of each of the CSI-RS resource subframes may be independently configured.
  • the plurality of CSI-RS resource subframes may be configured with a set of period and subframe offset information; the power information of each of the CSI-RS resources may be independently configured; or, each of the CSI- The power information of different antenna ports of the RS resource can be independently configured.
  • the value of the number of antenna port indication information may be 1, 2, 4 or 8;
  • the bandwidth information occupied by the CSI-RS resources may include 1.4M, 3M, 5M, 10M, 15M, 20M, N RBs, N RBGs, and N sub-bands.
  • the foregoing base station sends the configured CSI-RS resource signaling to the terminal through the UE-specific high-layer signaling, which lays a foundation for the UE to accurately perform TP selection in multiple TP unequal bandwidth conditions and obtain accurate CSI measurement in CoMP technology. .
  • FIG. 4 it is a schematic structural diagram of a terminal embodiment of the present invention.
  • the terminal includes a receiving module 41 and a processing module 42, wherein:
  • the receiving module 41 is configured to receive multiple channel state information reference signal (CSI-RS) resource signaling sent by the base station, where each CSI-RS resource signaling includes at least: antenna port number indication information, CSI-RS resources Time domain and frequency domain location information in one subframe, period and subframe offset information of a CSI-RS resource subframe, power information of a CSI-RS resource, and bandwidth information occupied by a CSI-RS resource;
  • CSI-RS channel state information reference signal
  • the processing module 42 is configured to use the multiple CSI-RS resource messages received by the receiving module Having measured CSIRSRP and/or RSRQ and/or RSSI and/or RLM measurements or RSRP and/or RSRQ and/or RSSI and/or RSSI corresponding to the received plurality of CSI-RS resources on respective time and frequency domain resources.
  • the RLM measures and feeds back the CSI or the RSRP and/or RSRQ and/or RSSI and/or RLM measurements to the base station.
  • the processing module 42 is configured to generate according to the multiple CSI-RS resource signaling
  • the CSI-RS performs a correlation operation on the CSI-RS and the received plurality of the CSI-RS resources, and the time domain and the frequency domain of each of the CSI-RS resources in one subframe are obtained.
  • the location information may be independently configured; the period and subframe offset information of each of the CSI-RS resource subframes may be independently configured; and the plurality of the CSI-RS resource subframes may be configured with a set of periods and subframes. Offset information; power information of each of the CSI-RS resources may be independently configured; or, power information of different antenna ports of each of the CSI-RS resources may be independently configured.
  • the value of the number of the antenna port indication information may be 1, 2, 4 or 8; the bandwidth information occupied by the CSI-RS resource may include 1.4M, 3M, 5M, 10M, 15M, 20M, N RB, N RBGs, and N subbands.
  • the UE receives the CSI-RS resource signaling sent by the base station side, and obtains the CSI corresponding to the received multiple CSI-RS resources by using the CSI-RS resource signaling, so that the UE has multiple TPs with different bandwidths.
  • TP selection can be performed accurately and accurate CSI measurements can be obtained in CoMP technology.
  • the foregoing method for processing channel state information, a base station, and a terminal enable the UE to accurately perform TP selection under multiple TP unequal bandwidth conditions and obtain accurate CSI measurement in CoMP technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种信道状态信息的处理方法、基站和终端,所述处理方法包括:基站通过UE专用高层信令或公用高层信令配置终端侧多个CSI-RS资源信令,并向终端发送所述CSI-RS资源信令;其中每个CSI-RS资源信令均至少包括以下信息之一:天线端口数目指示信息、CSI-RS资源在一个子帧中的时域和频域位置信息、CSI-RS资源子帧的周期和子帧偏置信息、CSI-RS资源的功率信息和CSI-RS资源所占带宽信息;所述基站根据所述多个CSI-RS资源信令生成CSI-RS,并在相应的时域和频域资源上向所述终端发送所述CSI-RS,以及接收所述终端反馈的所述CSI或者参考信号接收功率。

Description

信道状态信息的处理方法、 基站和终端
技术领域
本发明涉及通信领域, 尤其涉及一种信道状态信息的处理方法、 基站和 终端。
背景技术
长期演进( Long Term Evolution, 简称 LTE ) ***在经历了 R8/9/10几个 版本后, 又陆续准确研究 R11技术。 目前部分 R8产品开始逐步商用, R9和 R10有待进一步产品规划。
在经历了 R8和 R9阶段, R10在前两者的基础上又增加了很多新的特性, 例如解调参考信号(Demodulation Reference Signal, DMRS )、 信道状态信息 参考信号 (Channel State Information Reference Signal, CSI-RS)等导频特性, 8 天线支持等传输和反馈特性等等, 特别是小区间干扰抵消增强 (ehanced Inter-Cell Interference Cancellin, elCIC )技术在考虑了 R8/9 ICIC的基础之上, 进一步考虑小区之间的干扰避免技术。 对于解决小区之间干扰问题的技术在 R10阶段初期主要考虑同构网下的小区干扰避免, 其中主流的考虑 elCIC技 术和多点协作 ( Coordinated Multi-point, CoMP )技术。 CoMP顾名思义就是 多个节点协作给一个或者多个终端(UE )在相同的时频资源或者不同的时频 资源来发送数据。 这样的技术可以减少小区之间的干扰, 提高小区边缘的吞
CoMP技术的复杂性和 R10讨论的时间限制, 最终决定在 R10阶段不引入额 外的 CoMP标准化内容, 但是在设计 CSI-RS可以考虑 CoMP部分的需求来 对于 R10, 基站侧首先通过 UE专用 ( UE-Specific )高层信令配置 UE— 套 CSI-RS配置信息(其中包括非零功率的 CSI-RS配置信息和零功率 CSI-RS 配置信息) 。 UE利用基站侧配置的非零功率 CSI-RS对服务基站进行 CSI测 量。 首先 UE侧需要知道 CSI-RS的天线端口数目, CSI-RS在一个子帧中的 时域和频域位置, CSI-RS的周期和子帧偏置信息以及 CSI-RS的功率信息。 这样 UE 利用初始接入和同步时获得的小区 ID 以及检测物理广播信道 (Physical Broadcast Channel, PBCH)来生成 CSI-RS导频, 再利用相关检测算 法解调 CSI-RS,从而获得 CSI值,具体可以参考第三代合作伙伴计划 ( 3GPP ) LTE 36.211中 6.10.5节关于 CSI-RS生成方法相关章节。 其中 UE本地生成 CSI-RS序列需要利用的小区 ID和带宽信息并不是通过高层信令通知的。
CoMP传输方式主要包括联合传输(Joint Transmission, JT ) , 协作调度 ( Coordinated Scheduling, CS )/协作波束赋形( Coordinated Beamforming, CB )。 对于 JT ,由于不同的传输节点 (Transmission Point, TP)共同为一个 UE传输数 据, 这时 UE需要反馈多个 TP的 CSI, 使得基站侧可以利用 UE反馈的 CSI 来决定哪些 TP用于给 UE发送数据, 并且决定给该 UE发送数据的预编码权 值和调制编码方案 (Modulation Coding Scheme, MCS ) 。 对于 CS/CB来说, UE需要反馈多个 TP的权值,从而使得基站侧可以更好地协作,从而利用 UE 反馈的 CSI来决定服务节点和干扰节点的协作预编码权值和 MCS值,以及配 对用户的选择机器预编码和 MCS的选择。对于 DPS来说, UE也需要反馈多 个 TP的权值, 从而使得基站侧可以利用 UE反馈的多个 TP的 CSI, 来动态 地决定该 UE的 TP,并且决定该 TP给该 UE发送数据的预编码权值及 MCS。 如果 UE需要反馈多个 TP的 CSI, 那么就需要基站侧预先通过 UE-Specific 高层的高层信令给 UE配置多个 CSI-RS资源用来测量多个 TP的 CSI, 并且 配置的 CSI-RS资源中需要包括各种对应 TP所需要的信息。
通过对 R10的分析, 通过高层信令是无法获得小区 ID和带宽信息, 所 以需要在 R11阶段增强, 使得 UE可以获得以上两种信息。 通过 68次会议的 讨论, 最终决定小区 ID也釆用过 UE-Specific(UE专用)高层信令配置的方式, 但是一直没有讨论带宽问题, 所以如果考虑不等带宽情况下 CoMP和 /或参考 信号接收功率( Reference Signal Receiving Poweer, RSRP ) 、 和 /或参考信号 接收质量( Reference Signal Receiving Quality, RSRQ )和 /或接收信号强度指 示( Received Signal Strength Indicator , RSSI )和 /或无线链路测量( Radio Link Measurement, RLM )测量, 都会存在问题。
发明内容 本发明实施例提供了一种信道状态信息的处理方法、 基站和终端, 以解 决在不等带宽情况下 CoMP和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测 量存在的问题。
本发明实施例提供了一种信道状态信息( CSI )的处理方法,该方法包括: 基站通过终端( UE )专用高层信令和 /或公共高层信令( PBCH或者 SIB1 或者 SIB2 )配置终端侧多个信道状态信息参考信号(CSI-RS )资源信令, 并 向终端发送所述 CSI-RS资源信令; 其中每个 CSI-RS资源信令均至少包括以 下信息之一: 天线端口数目指示信息、 CSI-RS资源在一个子帧中的时域和频 域位置信息、 CSI-RS资源子帧的周期和子帧偏置信息、 CSI-RS资源的功率信 息和 CSI-RS资源所占带宽信息;
所述基站根据所述多个 CSI-RS资源信令生成 CSI-RS, 并在相应的时域 和频域资源上向所述终端发送所述 CSI-RS, 以及接收所述终端反馈的所述 CSI或者参考信号接收功率。
优选地,每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息独立 配置; 或者
每个所述 CSI-RS资源子帧的周期和子帧偏置信息独立配置; 或者 多个所述 CSI-RS资源子帧配置一套周期和子帧偏置信息; 或者
每个所述 CSI-RS资源独立配置功率信息; 或者
每个所述 CSI-RS资源的不同天线端口独立配置功率信息; 或者
所述天线端口数目指示信息的取值为 1、 2、 4或 8; 或者
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 1 OM、 15M、 20M、 N个资源块( Resource Block , RB )、 N个资源块组 (Resource Block Group, RBG)和 N个子带, N为自然数。
本发明实施例还提供了一种信道状态信息(CSI )的处理方法, 该方法包 括:
终端接收基站发送的多个信道状态信息参考信号 (CSI-RS ) 资源信令; 其中,每个 CSI-RS资源信令均至少包括以下信息之一: 天线端口数目指示信 息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子帧的周 期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽信息; 所述终端使用所述多个 CSI-RS 资源信令在相应的时域和频域资源上测 量接收到的多个 CSI-RS资源对应的 CSI或者参考信号接收功率(RSRP和 / 或 RSRQ和 /或 RSSI和 /或 RLM测量) , 并向所述基站反馈所述 CSI或者所 述 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量。
优选地,所述终端使用所述多个 CSI-RS资源信令在相应的时域和频域资 源上测量接收到的多个 CSI-RS资源对应的 CSIRSRP和 /或 RSRQ和 /或 RSSI 和 /或 RLM测量或者 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量 , 包括: 所述终端根据所述多个 CSI-RS资源信令生成 CSI-RS,对所述 CSI-RS和 接收到的多个所述 CSI-RS资源进行相关运算, 获得多个 CSI-RS资源对应的 CSIRSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量或者 RSRP和 /或 RSRQ和 / 或 RSSI和 /或 RLM测量。
优选地,每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息独立 配置; 和 /或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息独立配置; 或者 多个所述 CSI-RS资源子帧配置一套周期和子帧偏置信息; 和 /或 每个所述 CSI-RS资源独立配置功率信息; 或者
每个所述 CSI-RS资源的不同天线端口独立配置功率信息; 和 /或 所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、
10M、 15M和、 20M、 N个 RBs、 N个 RBG(Resource Block Group,资源块组) 和 N个子带。
本发明实施例还提供了一种基站, 该基站包括:
配置发送模块, 其设置为: 通过终端(UE )专用高层信令和 /或公共高层 信令(PBCH或者 SIB1或者 SIB2 ) 配置终端侧多个信道状态信息参考信号 ( CSI-RS )资源信令,并向终端发送所述 CSI-RS资源信令;其中每个 CSI-RS 资源信令均至少包括以下信息之一: 天线端口数目指示信息、 CSI-RS资源在 一个子帧中的时域和频域位置信息、 CSI-RS 资源子帧的周期和子帧偏置信 息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽信息;
处理模块, 其设置为: 根据所述配置发送模块配置的所述多个 CSI-RS 资源信令生成 CSI-RS , 并在相应的时域和频域资源上向所述终端发送所述 CSI-RS, 以及接收所述终端反馈的所述 CSI或者参考信号接收功率。
优选地,每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息是独 立配置的; 和 /或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息是独立配置的; 或者 多个所述 CSI-RS资源子帧配置了一套周期和子帧偏置信息; 和 /或 每个所述 CSI-RS资源的功率信息是独立配置的; 或者
每个所述 CSI-RS资源的不同天线端口的功率信息是独立配置的; 和 /或 所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 10M、 15M和、 20M、 N个 RBs、 N个 RBG(Resource Block Group,资源块组) 和 N个子带。
本发明实施例还提供了一种终端, 该终端包括:
接收模块, 其设置为: 接收基站发送的多个信道状态信息参考信号 ( CSI-RS )资源信令;其中,每个 CSI-RS资源信令均至少包括以下信息之一: 天线端口数目指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子帧的周期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS 资源所占带宽信息;
处理模块,其设置为: 使用所述接收模块接收的所述多个 CSI-RS资源信 令在相应的时域和频域资源上测量接收到的多个 CSI-RS资源对应的 CSI或者 参考信号接收功率( RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量 ) , 并向 量。
优选地, 所述处理模块, 是设置为: 根据所述多个 CSI-RS资源信令生成 CSI-RS, 对所述 CSI-RS和接收到的多个所述 CSI-RS资源进行相关运算, 获 得多个 CSI-RS资源对应的 CSIRSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量 或者 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量。
优选地,每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息是独 立配置的; 和 /或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息是独立配置的; 或者 多个所述 CSI-RS资源子帧配置了一套周期和子帧偏置信息; 和 /或 每个所述 CSI-RS资源的功率信息是独立配置的; 或者
每个所述 CSI-RS资源的不同天线端口的功率信息是独立配置的; 和 /或 所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 10M、 15M和、 20M、 N个 RBs、 N个 RBG(Resource Block Group,资源块组) 和 N个子带。
上述信道状态信息的处理方法、基站和终端, 使得 UE可以在多个 TP不 等带宽情况下准确地进行 TP选择以及在 CoMP技术中获得准确的 CSI测量。 附图概述
图 1为本发明信道状态信息的处理方法实施例一的流程图;
图 2为本发明信道状态信息的处理方法实施例二的流程图;
图 3为本发明基站实施例的结构示意图;
图 4为本发明终端实施例的结构示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供了一种 CSI的处理方法,基站侧通过 UE-Specific高层 信令配置终端侧多个 CSI-RS资源信令, 可以使得 UE在多个 TP不等带宽情 况下准确地进行 TP选择以及在 CoMP技术中获得准确的 CSI测量。
如图 1所示, 为本发明信道状态信息的处理方法实施例一的流程图, 该 实施例是从基站侧进行描述的, 该方法包括:
步骤 101、 基站通过终端(UE )专用高层信令和 /或公共高层信令配置终 端侧多个信道状态信息参考信号 (CSI-RS ) 资源信令, 并向终端发送所述 CSI-RS资源信令; 其中每个 CSI-RS资源信令均至少包括以下信息之一: 天 线端口数目指示信息、 CSI-RS 资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子帧的周期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS 资源所占带宽信息; 公共高层信令可以包括物理广播信道( Physical broadcast channel, PBCH )、 ***信息块类型 1 ( System Information Block Type 1 , SIBl ) 或***信息块类型 2 ( System Information Block Type2, SIB2 ) 。
步骤 102、所述基站根据所述多个 CSI-RS资源信令生成 CSI-RS,并在相 应的时域和频域资源上向所述终端发送所述 CSI-RS, 以及接收所述终端反馈 的所述 CSI或者参考信号接收功率。
如图 2所示, 为本发明信道状态信息的处理方法实施例二的流程图, 该 实施例是从终端侧进行描述的, 该方法包括:
步骤 201、 终端接收基站发送的多个信道状态信息参考信号 (CSI-RS ) 资源信令;其中,每个 CSI-RS资源信令均至少包括:天线端口数目指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子帧的周期和 子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽信息;
步骤 202、 所述终端使用所述多个 CSI-RS资源信令在相应的时域和频域 资源上测量接收到的多个 CSI-RS资源对应的 CSI和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM, 并向所述基站反馈所述 CSI或者所述和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM。
下面从基站侧和终端侧进行交互的角度对本发明实施例进行描述: 实施例一
假定 UE1为一个 R11的用户, 基站侧通过 UE-Specific高层信令配置终 端侧多个 CSI-RS资源信令, 其中每个 CSI-RS资源信令包括: 天线端口数目 指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子 帧的周期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽 信息。 并且基站侧按照上述 CSI-RS资源信令中所指示的信息进行 CSI-RS的 生成并且发送, 用于 UE侧测量和反馈各个配置的 CSI-RS资源的 CSI。 UE 侧接收到基站配置的多个 CSI-RS资源信令, 并且按照所得 CSI-RS资源信令 进行 CSI-RS生成, 然后和接收的 CSI-RS资源进行相关运算, 从而获得各个 不同 CSI-RS资源的 CSI和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM, 并 且反馈给基站。 其中, 上述天线端口数目指示信息的取值可以为 1、 2、 4或 8。 CSI-RS所占用带宽信息可以包括 1.4M、 3M、 5M、 10M、 15M、 20M、 N 个 RB、 N个 RBG和 N个子带。
实施例二
假定 UE1为一个 R11的用户, 基站侧通过 UE-Specific高层信令配置终 端侧多个 CSI-RS资源信令, 其中每个 CSI-RS资源信令包括: 天线端口数目 指示信息, CSI-RS资源在一个子帧中的时域和频域位置信息, CSI-RS资源的 功率信息和 CSI-RS资源所占带宽信息; 基站侧还另外给多个 CSI-RS资源配 置一套 CSI-RS资源子帧的周期和子帧偏置信令, 多个 CSI-RS资源使用相同 的一套周期和子帧偏置信令。 并且基站侧按照信令中所指示的信息进行 CSI-RS的生成并且发送, 用于 UE侧测量和反馈各个配置的 CSI-RS资源的 CSI。 UE侧接收到基站配置的多个 CSI-RS资源信令, 并且按照所得 CSI-RS 资源信令进行 CSI-RS生成, 然后和接收的 CSI-RS资源进行相关运算, 从而 获得各个不同 CSI-RS资源的 CSI和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM, 并且反馈给基站。 其中, 上述天线端口数目指示信息的取值可以为 1、 2、 4或 8。 CSI-RS所占用带宽信息可以包括 1.4M、 3M、 5M、 10M、 15M、 20M、 N个 RB、 N个 RBG和 N个子带。
实施例三
假定 UE1为一个 R11的用户, 基站侧通过 UE-Specific高层信令配置终 端侧多个 CSI-RS资源信令, 其中每个 CSI-RS资源信令包括: 天线端口数目 指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子 帧的周期和子帧偏置信息、 CSI-RS资源所占带宽信息和 CSI-RS资源的不同 天线端口独立配置的功率信息。并且基站侧按照上述 CSI-RS资源信令中所指 示的信息进行 CSI-RS 的生成并且发送, 用于 UE侧测量和反馈各个配置的 CSI-RS资源的 CSI。 UE侧接收到基站配置的多个 CSI-RS资源信令, 并且按 照所得 CSI-RS资源信令进行 CSI-RS生成, 然后和接收的 CSI-RS资源进行 相关运算, 从而获得各个不同 CSI-RS资源的 CSI, 并且反馈给基站。 其中, 上述天线端口数目指示信息的取值可以为 1、 2、 4或 8。 CSI-RS所占用带宽 信息可以包括 1.4M、 3M、 5M、 10M、 15M、 20M、 N个 RB、 N个 RBG和 N个子带。
实施例四
假定 UE1为一个 R11的用户, 基站侧通过 UE-Specific高层信令配置终 端侧多个 CSI-RS资源信令, 其中每个 CSI-RS资源信令包括: 天线端口数目 指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源的 不同天线端口独立配置的功率信息和 CSI-RS资源所占带宽信息。基站侧还另 外给多个 CSI-RS资源配置一套 CSI-RS资源子帧的周期和子帧偏置信令, 多 个 CSI-RS 资源使用相同的一套周期和子帧偏置信令。 并且基站侧按照上述 CSI-RS资源信令中所指示的信息进行 CSI-RS的生成并且发送, 用于 UE侧 测量和反馈各个配置的 CSI-RS 资源的 CSI。 UE侧接收到基站配置的多个 CSI-RS资源信令, 并且按照所得 CSI-RS资源信令进行 CSI-RS生成, 然后和 接收的 CSI-RS资源进行相关运算, 从而获得各个不同 CSI-RS资源的 CSI和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM, 并且反馈给基站。 其中, 上述 天线端口数目指示信息的取值可以为 1、 2、 4或 8。 CSI-RS所占用带宽信息 可以包括 1.4M、 3M、 5M、 10M、 15M、 20M、 N个 RB、 N个 RBG和 N个 子带。
从上面的实施例可以看出使用上述方法,可以使得 UE在多个 TP不等带 宽情况下准确地进行 TP选择以及在 CoMP技术中获得准确的 CSI测量。
如图 3所示, 为本发明基站实施例的结构示意图, 该基站包括配置发送 模块 31和处理模块 32, 其中: 配置发送模块 31 , 设置为: 通过终端 (UE ) 专用高层信令和 /或公共高 层信令 ( PBCH或者 SIB1或者 SIB2 )配置终端侧多个信道状态信息参考信号 ( CSI-RS )资源信令,并向终端发送所述 CSI-RS资源信令;其中每个 CSI-RS 资源信令均至少包括以下信息之一: 天线端口数目指示信息、 CSI-RS资源在 一个子帧中的时域和频域位置信息、 CSI-RS 资源子帧的周期和子帧偏置信 息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽信息;
处理模块 32, 设置为: 根据所述配置发送模块配置的所述多个 CSI-RS 资源信令生成 CSI-RS, 并在相应的时域和频域资源上向所述终端发送所述 CSI-RS, 以及接收所述终端反馈的所述 CSI或者参考信号接收功率。
其中,每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息可以是 独立配置的;每个所述 CSI-RS资源子帧的周期和子帧偏置信息可以是独立配 置的; 多个所述 CSI-RS资源子帧可以是配置了一套周期和子帧偏置信息; 每 个所述 CSI-RS资源的功率信息可以是独立配置的; 或者, 每个所述 CSI-RS 资源的不同天线端口的功率信息可以是独立配置的。
优选地, 所述天线端口数目指示信息的取值可以为 1、 2、 4或 8; 所述
CSI-RS资源所占用带宽信息可以包括 1.4M、 3M、 5M、 10M、 15M、 20M、 N个 RB、 N个 RBG和 N个子带。
上述基站通过 UE专用高层信令向终端发送配置的 CSI-RS资源信令,为 UE可以在多个 TP不等带宽情况下准确地进行 TP选择以及在 CoMP技术中 获得准确的 CSI测量奠定了基础。
如图 4所示, 为本发明终端实施例的结构示意图, 该终端包括接收模块 41和处理模块 42, 其中:
接收模块 41 , 设置为接收基站发送的多个信道状态信息参考信号 ( CSI-RS )资源信令; 其中, 每个 CSI-RS资源信令均至少包括: 天线端口数 目指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源 子帧的周期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带 宽信息;
处理模块 42, 设置为使用所述接收模块接收的所述多个 CSI-RS资源信 令在相应的时域和频域资源上测量接收到的多个 CSI-RS 资源对应的 CSIRSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量或者 RSRP和 /或 RSRQ和 / 或 RSSI和 /或 RLM测量, 并向所述基站反馈所述 CSI或者所述 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM测量。
其中, 所述处理模块 42, 是设置为根据所述多个 CSI-RS资源信令生成
CSI-RS, 对所述 CSI-RS和接收到的多个所述 CSI-RS资源进行相关运算, 获 另夕卜,每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息可以是 独立配置的;每个所述 CSI-RS资源子帧的周期和子帧偏置信息可以是独立配 置的; 多个所述 CSI-RS资源子帧可以是配置了一套周期和子帧偏置信息; 每 个所述 CSI-RS资源的功率信息可以是独立配置的; 或者, 每个所述 CSI-RS 资源的不同天线端口的功率信息可以是独立配置的。
优选地, 所述天线端口数目指示信息的取值可以为 1、 2、 4或 8; 所述 CSI-RS资源所占用带宽信息可以包括 1.4M、 3M、 5M、 10M、 15M、 20M、 N个 RB、 N个 RBG和 N个子带。
上述 UE通过接收基站侧发送的 CSI-RS资源信令, 并使用该 CSI-RS资 源信令获得接收到的多个 CSI-RS资源对应的 CSI, 从而使得 UE在多个 TP 不等带宽情况下可以准确地进行 TP选择以及在 CoMP技术中获得准确的 CSI测量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性
上述信道状态信息的处理方法、基站和终端, 使得 UE可以在多个 TP不 等带宽情况下准确地进行 TP选择以及在 CoMP技术中获得准确的 CSI测量。

Claims

权 利 要 求 书
1、 一种信道状态信息 (CSI ) 的处理方法, 该方法包括:
基站通过终端( UE )专用高层信令和 /或公共高层信令配置终端侧多个信 道状态信息参考信号( CSI-RS )资源信令, 并向终端发送所述 CSI-RS资源信 令; 其中每个 CSI-RS资源信令均至少包括以下信息之一: 天线端口数目指示 信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子帧的 周期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽信息; 所述基站根据所述多个 CSI-RS资源信令生成 CSI-RS, 并在相应的时域 和频域资源上向所述终端发送所述 CSI-RS , 以及接收所述终端反馈的所述 CSI或者参考信号接收功率。
2、 根据权利要求 1所述的方法, 其中:
每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息独立配置;和
/或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息独立配置,或者多个所 述 CSI-RS资源子帧配置一套周期和子帧偏置信息;和 /或每个所述 CSI-RS资 源独立配置功率信息,或者每个所述 CSI-RS资源的不同天线端口独立配置功 率信息; 和 /或
所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 10M、 15M、 20M、 N个资源块(RB ) 、 N个资源块组(RBG ) 、 N个子带,
N为自然数。
3、 根据权利要求 1或 2所述的方法, 其中,
所述公共高层信令包括物理广播信道、 ***信息块类型 1或***信息块 类型 2。
4、 一种信道状态信息 (CSI ) 的处理方法, 该方法包括:
终端接收基站发送的多个信道状态信息参考信号 (CSI-RS ) 资源信令; 其中, 每个 CSI-RS 资源信令均至少包括: 天线端口数目指示信息、 CSI-RS 资源在一个子帧中的时域和频域位置信息、 CSI-RS资源子帧的周期和子帧偏 置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带宽信息;
所述终端使用所述多个 CSI-RS 资源信令在相应的时域和频域资源上测 量接收到的多个 CSI-RS资源对应的 CSI和 /或参考信号接收功率( RSRP )和 /或参考信号接收质量 (RSRQ )和 /或参考信号强度指示和 /或无线链路测量 ( RLM ),并向所述基站反馈所述 CSI和 /或所述 RSRP和 /或 RSRQ和 /或 RSSI 和 /或 RLM。
5、 根据权利要求 4所述的方法, 其中:
所述终端使用所述多个 CSI-RS 资源信令在相应的时域和频域资源上测 量接收到的多个 CSI-RS资源对应的 CSI和 /或 RSRP和 /或 RSRQ和 /或 RSSI 和 /或 RLM, 包括:
所述终端根据所述多个 CSI-RS资源信令生成 CSI-RS ,对所述 CSI-RS和 接收到的多个所述 CSI-RS资源进行相关运算, 获得多个 CSI-RS资源对应的 CSI和 /或 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM。
6、 根据权利要求 4或 5所述的方法, 其中:
每个所述 CSI-RS资源在一个子帧中的时域和频域位置信息独立配置;和
/或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息独立配置 , 或者多个 所述 CSI-RS资源子帧配置一套周期和子帧偏置信息; 和 /或
每个所述 CSI-RS资源独立配置功率信息, 或者每个所述 CSI-RS资源的 不同天线端口独立配置功率信息; 和 /或
所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 10M、 15M、 20M、 N个资源块(RB ) 、 N个资源块组(RBG ) 、 N个子带, N为自然数。
7、 一种基站, 该基站包括:
配置发送模块, 其设置为: 通过终端(UE )专用高层信令和 /或公共高层 信令配置终端侧多个信道状态信息参考信号 (CSI-RS ) 资源信令, 并向终端 发送所述 CSI-RS资源信令; 其中每个 CSI-RS资源信令均至少包括以下信息 之一: 天线端口数目指示信息、 CSI-RS资源在一个子帧中的时域和频域位置 信息、 CSI-RS 资源子帧的周期和子帧偏置信息、 CSI-RS 资源的功率信息和 CSI-RS资源所占带宽信息;
处理模块, 其设置为: 根据所述配置发送模块配置的所述多个 CSI-RS 资源信令生成 CSI-RS , 并在相应的时域和频域资源上向所述终端发送所述 CSI-RS, 以及接收所述终端反馈的所述 CSI和 /或参考信号接收功率(RSRP ) 和 /或参考信号接收质量(RSRQ )和 /或参考信号强度指示和 /或无线链路测量 ( RLM ) 。
8、 根据权利要求 7所述的基站, 其中:
每个所述 CSI-RS 资源在一个子帧中的时域和频域位置信息是独立配置 的; 和 /或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息是独立配置的,或者多 个所述 CSI-RS资源子帧配置一套周期和子帧偏置信息; 和 /或
每个所述 CSI-RS资源的功率信息是独立配置的, 或者每个所述 CSI-RS 资源的不同天线端口独立配置功率信息; 和 /或
所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 10M、 15M、 20M、 N个资源块(RB ) 、 N个资源块组(RBG ) 、 N个子带, N为自然数。
9、 根据权利要求 7或 8所述的基站, 其中,
所述公共高层信令包括物理广播信道、 ***信息块类型 1或***信息块 类型 2。
10、 一种终端, 该终端包括:
接收模块, 其设置为: 接收基站发送的多个信道状态信息参考信号
( CSI-RS )资源信令; 其中, 每个 CSI-RS资源信令均至少包括: 天线端口数 目指示信息、 CSI-RS资源在一个子帧中的时域和频域位置信息、 CSI-RS资源 子帧的周期和子帧偏置信息、 CSI-RS资源的功率信息和 CSI-RS资源所占带 宽信息;
处理模块,其设置为: 使用所述接收模块接收的所述多个 CSI-RS资源信 令在相应的时域和频域资源上测量接收到的多个 CSI-RS资源对应的 CSI和 / 或参考信号接收功率(RSRP )和 /或参考信号接收质量(RSRQ )和 /或参考信 号强度指示和 /或无线链路测量(RLM ) , 并向所述基站反馈所述 CSI和 /或 所述 RSRP和 /或 RSRQ和 /或 RSSI和 /或 RLM。
11、 根据权利要求 10所述的终端, 其中:
所述处理模块是设置为根据所述多个 CSI-RS资源信令生成 CSI-RS, 对 所述 CSI-RS 和接收到的多个所述 CSI-RS 资源进行相关运算, 获得多个
12、 根据权利要求 11所述的终端, 其中:
每个所述 CSI-RS 资源在一个子帧中的时域和频域位置信息是独立配置 的; 和 /或
每个所述 CSI-RS资源子帧的周期和子帧偏置信息是独立配置的,或者多 个所述 CSI-RS资源子帧配置一套周期和子帧偏置信息; 和 /或
每个所述 CSI-RS资源的功率信息是独立配置的, 或者每个所述 CSI-RS 资源的不同天线端口独立配置功率信息; 和 /或
所述天线端口数目指示信息的取值为 1、 2、 4或 8; 和 /或
所述 CSI-RS资源所占用带宽信息至少包括以下之一: 1.4M、 3M、 5M、 10M、 15M、 20M、 N个资源块(RB ) 、 N个资源块组(RBG ) 、 N个子带,
N为自然数。
PCT/CN2012/087701 2012-03-09 2012-12-27 信道状态信息的处理方法、基站和终端 WO2013131401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100617712A CN103312434A (zh) 2012-03-09 2012-03-09 信道状态信息的处理方法、基站和终端
CN201210061771.2 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013131401A1 true WO2013131401A1 (zh) 2013-09-12

Family

ID=49115923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087701 WO2013131401A1 (zh) 2012-03-09 2012-12-27 信道状态信息的处理方法、基站和终端

Country Status (2)

Country Link
CN (1) CN103312434A (zh)
WO (1) WO2013131401A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059005A1 (zh) * 2016-09-30 2018-04-05 电信科学技术研究院 一种大规模天线波束传输方法及基站、终端
EP3251300B1 (en) 2015-01-30 2021-01-06 Nokia Solutions and Networks Oy Method and apparatus for performing radio-resource-management measurements
CN114221685A (zh) * 2015-09-18 2022-03-22 三星电子株式会社 用于在无线通信***中发送和接收反馈信号的方法和设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619027B (zh) 2013-11-01 2020-01-14 中兴通讯股份有限公司 一种发现信号处理方法和基站
CN105557046B (zh) 2014-01-24 2019-07-19 华为技术有限公司 导频信号的传输方法及装置
EP3136803A4 (en) 2014-05-27 2017-05-03 ZTE Corporation Discovery signal processing method and base station
CN112491524B (zh) * 2015-04-10 2024-02-23 阿里斯卡尔股份有限公司 发送csi-rs的基站和报告csi的用户设备
CN106470078B (zh) * 2015-08-19 2019-04-26 ***通信集团公司 一种信道状态信息测量和反馈的方法、设备及***
CN105451341B (zh) * 2015-11-06 2019-03-15 北京佰才邦技术有限公司 非授权频段中配置参考信号的方法和装置
CN107046436B (zh) * 2016-02-05 2021-05-25 中兴通讯股份有限公司 一种降低信道量化复杂度的方法和装置
CN107294689A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 导频配置信息的传输方法、装置及***
CN107888355B (zh) * 2016-09-30 2021-07-30 中兴通讯股份有限公司 测量参考信号的发送方法及装置、接收方法及装置
CN118158722A (zh) * 2017-01-06 2024-06-07 华为技术有限公司 一种信道状态信息测量的配置方法及相关设备
CN108809494B (zh) * 2017-05-05 2021-03-23 维沃移动通信有限公司 Csi-rs序列的发送方法、接收方法、相关设备及***
CN108989008B (zh) * 2017-06-05 2021-12-14 华为技术有限公司 参考信号的传输方法、装置和设备
CN109803289B (zh) * 2017-11-17 2021-01-05 华为技术有限公司 一种csi上报方法及终端设备
CN111698715A (zh) * 2019-03-13 2020-09-22 华为技术有限公司 一种参考信号测量方法及通信装置
CN114667758A (zh) * 2019-11-29 2022-06-24 中兴通讯股份有限公司 用于压缩无线信道状态信息反馈的方法
WO2021109440A1 (en) * 2020-04-30 2021-06-10 Zte Corporation Method of prior channel information transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131225A (zh) * 2010-08-16 2011-07-20 华为技术有限公司 一种数据信道状态信息的测量方法和设备
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
CN102201897A (zh) * 2011-04-29 2011-09-28 中兴通讯股份有限公司 信道状态信息处理方法、装置及***
CN102237951A (zh) * 2010-04-30 2011-11-09 ***通信集团公司 小区八天线端口的信道状态信息参考信号传输方法和设备
CN102315871A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138261A (ko) * 2009-06-24 2010-12-31 주식회사 팬택 무선통신 시스템에서 참조신호의 할당방법 및 그 장치, 그 장치를 이용한 송수신장치
CN102307081A (zh) * 2011-08-19 2012-01-04 电信科学技术研究院 一种发送和接收csi的方法、***及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置
CN102237951A (zh) * 2010-04-30 2011-11-09 ***通信集团公司 小区八天线端口的信道状态信息参考信号传输方法和设备
CN102131225A (zh) * 2010-08-16 2011-07-20 华为技术有限公司 一种数据信道状态信息的测量方法和设备
CN102201897A (zh) * 2011-04-29 2011-09-28 中兴通讯股份有限公司 信道状态信息处理方法、装置及***
CN102315871A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3251300B1 (en) 2015-01-30 2021-01-06 Nokia Solutions and Networks Oy Method and apparatus for performing radio-resource-management measurements
EP3251300B2 (en) 2015-01-30 2023-09-13 Nokia Solutions and Networks Oy Method and apparatus for performing radio-resource-management measurements
CN114221685A (zh) * 2015-09-18 2022-03-22 三星电子株式会社 用于在无线通信***中发送和接收反馈信号的方法和设备
CN114221685B (zh) * 2015-09-18 2024-01-26 三星电子株式会社 用于在无线通信***中发送和接收反馈信号的方法和设备
WO2018059005A1 (zh) * 2016-09-30 2018-04-05 电信科学技术研究院 一种大规模天线波束传输方法及基站、终端

Also Published As

Publication number Publication date
CN103312434A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2013131401A1 (zh) 信道状态信息的处理方法、基站和终端
CA3078839C (en) System and method for control signaling via csi-rs
US20190386730A1 (en) System and Method for Wireless Communications Measurements and CSI Feedback
TWI571072B (zh) 用於通道狀態資訊參考符號資源組之通道狀態資訊報告
CN110995329B (zh) 用于参考信号和csi反馈的***和方法
US10454554B2 (en) Interference measurement method and apparatus for use in mobile communication system
CN101867457B (zh) 信道状态信息的处理方法及用户设备
EP2893753B1 (en) Communications system for configuring channel state information
WO2015165356A1 (zh) 一种鉴权信息的传输方法及终端
WO2015045696A1 (ja) 基地局、移動局、参照信号送信方法及びチャネル品質測定方法
JP2019506084A (ja) ユーザ装置及び無線通信方法
CN109804570A (zh) 用于波束成形的准共址
WO2013004128A1 (zh) 一种配置参考信号的方法、UE及eNB
KR20180116461A (ko) 무선 네트워크들에서의 간섭 측정
CN105007600A (zh) 一种下行数据速率匹配的方法和装置
CN113287268A (zh) 用于预编码矩阵指示和信道质量指示的独立子带大小
CN107733611B (zh) 准共位置信息的处理方法及装置
JP2016536913A (ja) チャネル状態情報参照信号を構成するための方法、および基地局
KR20220041197A (ko) 최대 전력 업링크 mimo 능력의 시그널링
TW201325275A (zh) 通道測量之彈性組態
WO2014008779A1 (zh) 上报信道状态信息的方法和装置
WO2014019443A1 (zh) 在干扰测量资源上进行干扰测量的方法及设备
CN109151886A (zh) 一种用于上报的方法、设备和***
WO2018028549A1 (zh) 测量导频的发送方法、信道状态信息的反馈方法及装置
JP6260799B2 (ja) 複数のチャネル特性の計算及び通知

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870355

Country of ref document: EP

Kind code of ref document: A1