WO2016015666A1 - 一种导频发送方法、信道测量方法及装置 - Google Patents

一种导频发送方法、信道测量方法及装置 Download PDF

Info

Publication number
WO2016015666A1
WO2016015666A1 PCT/CN2015/085596 CN2015085596W WO2016015666A1 WO 2016015666 A1 WO2016015666 A1 WO 2016015666A1 CN 2015085596 W CN2015085596 W CN 2015085596W WO 2016015666 A1 WO2016015666 A1 WO 2016015666A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
channel measurement
pilot
subframes
resource
Prior art date
Application number
PCT/CN2015/085596
Other languages
English (en)
French (fr)
Inventor
陈润华
高秋彬
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2016015666A1 publication Critical patent/WO2016015666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a pilot transmission method, a channel measurement method, and an apparatus.
  • FIG. Figure 1 shows a 64-antenna single-polarized antenna structure in which each cylindrical pattern represents an antenna.
  • the number of antennas of the two-dimensional antenna structure is not limited to 64, but may be 8 antennas, 16 antennas, 32 antennas, etc., and is not limited to a single-polarized antenna structure, and may be dual-polarized.
  • 3D MIMO can also be referred to as Full-Dimension (FD) MIMO.
  • beamforming can be performed not only in the horizontal direction but also in the vertical direction.
  • a typical application scenario is vertical dimensionization. The meaning of vertical dimensionization is explained below with reference to the drawings.
  • the 16 antennas in the base station side two-dimensional antenna structure shown in FIG. 2a are virtualized into four antenna ports.
  • the four antennas in the vertical dimension are virtualized into one antenna port, as shown in FIG. 2b, and the vertical dimension is divided into three sectors to cover one high-rise building.
  • each sector is configured with a set of 4-port channel state information reference signals (CSI-RS (or cell-specific reference signals).
  • CSI-RS channel state information reference signals
  • CRS Cell-specific Reference Signal
  • the base station performs vertical beamforming by using different vertical beamforming vectors on the CSI-RS (or CRS) resources corresponding to each sector;
  • a user equipment measures each CSI-RS (or CRS) resource, and feeds back a CSI (including a Rank Indicator (RI), a precoding matrix indication for each CSI-RS (or CRS) resource.
  • RI Rank Indicator
  • PMI Pre-Coding Matrix Indicator
  • CQI Channel Quality Indicator
  • the base station selects the best vertical beamforming vector based on the plurality of CSIs fed back.
  • horizontal beamforming is also performed using different horizontal beamforming vectors on each CSI-RS (or CRS) resource.
  • the purpose of the present application is to provide a pilot transmission method, a channel measurement method, and a device, to solve the problem that the number of pilot resources is one-to-one corresponding to the number of beamforming vectors, and the number of pilot resources to be configured is increased. The problem.
  • a pilot transmission method includes:
  • a subframe in the subframe in which the pilot resource is located that can be used for channel measurement is indicated to the user equipment.
  • the method before transmitting the pilot signal in each subframe in which the same pilot resource is located, the method further includes: performing beamforming on different subframes in which the pilot resource is located by using different beamforming matrices;
  • Transmitting a pilot signal in each subframe in which the same pilot resource is located includes: transmitting a beamformed pilot signal on each subframe in which the pilot resource is located.
  • the subframe indicating that the pilot resource is located in the subframe in which the pilot resource is used for performing channel measurement includes:
  • the subframe indicating that the pilot resource is located in the subframe in which the pilot resource is used for performing channel measurement includes:
  • the channel measurement period is an integer multiple of a period of the pilot resource.
  • the subframe indicating that the pilot resource is located in the subframe in which the pilot resource is used for performing channel measurement includes:
  • a subset of subframes that can be used for channel measurement are indicated to the user equipment, wherein the pilot signal subframe in which the pilot resource is located is divided into a subset of a number of subframes that can be used for channel measurement.
  • the user equipment is indicated to a subset of subframes that can be used for channel measurement, including:
  • a subset of subframes that can be used for channel measurement is indicated to the user equipment by dynamic signaling.
  • the method further includes: selecting at least one beamforming matrix from the adopted beamforming matrix according to the measurement result of the channel measurement after the user equipment performs feedback.
  • the beamforming matrix used on different subframes in which the pilot resources are located is determined by cyclically traversing each beamforming matrix corresponding to the pilot resources.
  • the beamforming matrix used in different subframes in which the pilot resources are located is formed by traversing each beam corresponding to the pilot resources. The way the matrix is determined;
  • the beamforming matrix used in different subframes in which the pilot resources are located is the selected beamforming matrix.
  • the number of pilot resources configured for the user equipment is less than the number of beamforming matrices employed.
  • the number of pilot resources configured for the user equipment is 1.
  • the measurement result includes a measurement value of channel measurement performed by each user equipment in each subframe where each pilot resource is located within a predetermined time period.
  • a channel measurement method includes:
  • different beamforming matrices are used for different beamforming on different subframes in which the same pilot resource is located.
  • the number of pilot resources is less than the number of beamforming matrices.
  • determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located including:
  • Determining a subframe for performing channel measurement in a subframe in which the pilot resource is located according to the indication information of the number of subframes in the subframe in which the pilot resource is located for performing channel measurement.
  • determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located including:
  • determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located including:
  • a frame is divided into a subset of a number of subframes that can be used for channel measurement.
  • the indication information of the subset of subframes that can be used for channel measurement is carried in dynamic signaling.
  • a pilot transmitting device includes:
  • a pilot signal sending module configured to send a pilot signal on each subframe where the same pilot resource is located
  • a configuration module configured to indicate, to the user equipment, a subframe that can be used for channel measurement in a subframe in which the pilot resource is located.
  • a beamforming module is further included for:
  • Beamforming is performed in different subframes in which the pilot resources are located by using different beamforming matrices
  • the pilot signal sending module is specifically configured to: send a beamformed pilot signal on each subframe where the pilot resource is located.
  • the configuration module is used to:
  • the configuration module is used to:
  • the channel measurement period is an integer multiple of a period of the pilot resource.
  • the configuration module is used to:
  • a subset of subframes that can be used for channel measurement are indicated to the user equipment, wherein the pilot signal subframe in which the pilot resource is located is divided into a subset of a number of subframes that can be used for channel measurement.
  • the configuration module is configured to:
  • a subset of subframes that can be used for channel measurement is indicated to the user equipment by dynamic signaling.
  • the method further includes a beamforming matrix selection module, configured to select at least one beamforming matrix from the adopted beamforming matrix according to the measurement result of the channel measurement after the user equipment performs feedback.
  • a beamforming matrix selection module configured to select at least one beamforming matrix from the adopted beamforming matrix according to the measurement result of the channel measurement after the user equipment performs feedback.
  • the beamforming matrix used on different subframes in which the same pilot resource is located is determined by cyclically traversing each beamforming matrix corresponding to the pilot resources.
  • the beamforming matrix used in different subframes in which the same pilot resource is located is formed by traversing each beam corresponding to the pilot resources. The way the matrix is determined;
  • the beamforming matrix used in different subframes in which the same pilot resource is located is the selected beamforming matrix.
  • the number of pilot resources configured for the user equipment is less than the number of beamforming matrices employed.
  • the number of pilot resources configured for the user equipment is 1.
  • the measurement result includes a measurement value of channel measurement performed by each user equipment in each subframe in which each pilot resource is located within a predetermined time period.
  • a base station comprising:
  • a processor configured to execute a computer program that: transmits a pilot signal on each subframe in which the same pilot resource is located; indicates to the user equipment that the subframe in which the pilot resource is located can be used a subframe for performing channel measurement;
  • a memory configured to hold code of the above computer program.
  • the processor is specifically configured to execute a computer program that performs beamforming on different subframes in which the pilot resources are located using different beamforming matrices; where the pilot resources are located A beamformed pilot signal is transmitted on each subframe.
  • the processor is further configured to execute a computer program having the following functions: to the user The device indicates the number of subframes in the subframe in which the pilot resource is located that can be used for channel measurement.
  • the processor is further configured to execute a computer program having the following functions: to the user The device indicates a channel measurement period and a subframe offset, the channel measurement period being an integer multiple of a period of the pilot resource.
  • the processor is further configured to execute a computer program having the following functions: to the user The device indicates a subset of subframes that may be used for channel measurement, wherein the pilot signal subframe in which the pilot resource is located is divided into a subset of a number of subframes that may be used for channel measurement.
  • the processor when indicating to the user equipment a subset of subframes that can be used for channel measurement, is further configured to execute a computer program having the function of: indicating to the user equipment by dynamic signaling A subset of subframes used to make channel measurements.
  • the processor is further configured to execute a computer program that selects at least one beamforming matrix from the employed beamforming matrix based on the measurement results of the channel measurement feedback after the user equipment.
  • the beamforming matrix used on different subframes in which the pilot resources are located is determined by cyclically traversing each beamforming matrix corresponding to the pilot resources.
  • the beamforming matrix used in different subframes in which the pilot resources are located is formed by traversing each beam corresponding to the pilot resources. The way the matrix is determined;
  • the beamforming matrix used in different subframes in which the pilot resources are located is the selected beamforming matrix.
  • the number of pilot resources configured for the user equipment is less than the number of beamforming matrices used. Preferably, the number of pilot resources configured for the user equipment is 1.
  • the measurement result includes the user equipment being within a predetermined time period
  • the measured value of the channel measurement is performed for each subframe in which each pilot resource is located.
  • a channel measuring device comprising:
  • a receiving module configured to receive channel measurement subframe indication information
  • a pilot measurement module configured to determine, according to the channel measurement subframe indication information, a subframe used for channel measurement in a subframe where the pilot resource is located, and perform channel measurement on the determined subframe.
  • different beamforming matrices are used for different beamforming on different subframes in which the same pilot resource is located.
  • the number of pilot resources is less than the number of beamforming matrices.
  • the pilot measurement module when determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which a pilot resource is located, is configured to:
  • Determining a subframe for performing channel measurement in a subframe in which the pilot resource is located according to the indication information of the number of subframes in the subframe in which the pilot resource is located for performing channel measurement.
  • the pilot measurement module when determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which a pilot resource is located, is configured to:
  • the pilot measurement module when determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which a pilot resource is located, is configured to:
  • a frame is divided into a subset of a number of subframes that can be used for channel measurement.
  • the indication information of the subset of subframes that can be used for channel measurement is carried in dynamic signaling.
  • a user equipment comprising:
  • a processor configured to execute a computer program that: determines, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, and is determined Channel measurement on a subframe;
  • a memory configured to hold code of the above computer program.
  • different beamforming matrices are used for different beamforming on different subframes in which the same pilot resource is located.
  • the number of pilot resources is less than the number of beamforming matrices.
  • the processor when determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which a pilot resource is located, the processor is configured to execute the following computer program: according to the pilot resource
  • the indication information of the number of subframes that can be used for channel measurement in the subframe in which the subframe is located determines the subframe used for channel measurement in the subframe in which the pilot resource is located.
  • the processor is configured to execute the following computer program:
  • the processor when determining, according to the channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which a pilot resource is located, the processor is configured to execute the following computer program: according to the received available
  • the indication information of the subset of the subframes in which the channel measurement is performed determines a subframe for performing channel measurement in the subframe in which the pilot resource is located, where the pilot signal subframe in which the pilot resource is located is divided into several A subset of subframes used to make channel measurements.
  • the indication information of the subset of subframes that can be used for channel measurement is carried in dynamic signaling.
  • a particular case of the beamforming matrix in various embodiments of the present application is a beamforming vector.
  • the technical solution provided by the embodiment of the present application is applicable to vertical beamforming, and is also applicable to horizontal beamforming.
  • the pilot signal is sent in each subframe in which the same pilot resource is located. Therefore, the number of pilot resources can be flexibly configured according to actual needs, thereby meeting actual transmission requirements and improving system performance.
  • the configured pilot resources may be less than the vertical or horizontal beamforming matrix, thereby reducing the overhead of pilot resources. Since the pilot resources are reduced, the pilot feedback overhead of the UE is also reduced. If only one pilot resource is configured, the pilot overhead and pilot feedback overhead will be greatly reduced.
  • the subframe that is used for performing channel measurement in the subframe where the pilot resource is located is indicated to the user equipment, and the network side controls the user equipment to perform channel measurement on which subframes. , thus improving the accuracy of CSI reporting.
  • 1 is a schematic structural diagram of a two-dimensional antenna in a 3D MIMO system
  • 2a is a schematic diagram of antenna port division in a 3D MIMO system
  • 2b is a schematic diagram of vertical dimension sectorization in a 3D MIMO system
  • FIG. 3 is a flowchart of a method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of indicating, by using dynamic signaling, a subset of subframes that can be used for channel measurement by using dynamic signaling according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of another method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of vertical beamforming according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another vertical beamforming according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a base station according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a user equipment according to an embodiment of the present application.
  • a MIMO system which may be, but is not limited to, a 3D/FD MIMO system, or may be other MIMO systems.
  • the method provided by the embodiment of the present application is implemented on the network side, and specifically includes the following operations:
  • Step 300 Send a pilot signal in each subframe in which the same pilot resource is located, so that the user equipment performs channel measurement.
  • the pilot resource is composed of a set of time-frequency resources, and the time-frequency resources are distributed in different subframes. Therefore, the subframe in which the pilot resource is located refers to the subframe in which a set of time-frequency resources constituting the pilot resource is located.
  • Step 310 Indicate, to the user equipment, a subframe that can be used for channel measurement in a subframe where the pilot resource is located.
  • the pilot signals may be, but are not limited to, CSI-RS, CRS, and the like.
  • the above process may be, but is not limited to, implemented by a base station.
  • the technical solution provided by the embodiment of the present invention sends a pilot signal in each subframe in which the same pilot resource is located. Therefore, the number of pilot resources can be flexibly configured according to actual needs, thereby meeting the actual transmission requirement and reducing the guide.
  • the overhead of frequency resources improves system performance. Since the pilot resources are reduced, the pilot feedback overhead of the UE is also reduced.
  • the UE determines the subframes in which the pilot signal is included, for example, the UE can measure one CSI-RS subframe before each CSI report. , or two CSI-RS subframes, and so on.
  • the eNB cannot know which CSI-RS subframes the UE performs the measurement, the accuracy of the CSI reporting cannot be accurately controlled, which may result in inaccurate accuracy.
  • the pilot resource is indicated to the user equipment.
  • the network side controls which subframes the user equipment performs channel measurement, thereby improving the accuracy of CSI reporting.
  • the method before transmitting the pilot signal in each subframe in which the same pilot resource is located, the method further includes: performing beamforming on different subframes in which the pilot resource is located by using different beamforming matrices;
  • Transmitting a pilot signal in each subframe in which the same pilot resource is located includes: transmitting a beamformed pilot signal on each subframe in which the pilot resource is located.
  • the above process is suitable for the dynamic adjustment of the beamforming in the vertical direction, and of course also for the dynamic adjustment of the beamforming in the horizontal direction.
  • the technical solution provided by the embodiment of the present application uses different vertical or horizontal beamforming matrices to perform beamforming on different subframes in which the same pilot resource is located. For example, in the prior art, if there are P vertical beam assignments For the shape vector, it is necessary to divide P sectors in the vertical dimension and configure P pilot resources, resulting in excessive CSI-RS overhead.
  • the configured pilot resources may be less than the vertical or horizontal beamforming matrix, thereby reducing the overhead of the pilot resources. Since the pilot resources are reduced, the pilot feedback overhead of the UE is also reduced. Similarly, if the beamforming matrix is used to beamform the resources used for channel measurement, the pilot resource overhead is small, and the UE's The pilot feedback overhead is small.
  • the number of pilot resources configured for the user equipment is less than the number of beamforming matrices employed. If only one pilot resource is configured, the pilot overhead will be greatly reduced.
  • the measurement result of the channel measurement feedback is performed according to the UE, and the beam used from the above is used. At least one beamforming matrix is selected in the shape matrix.
  • At least one beamforming matrix is selected according to the descending order of the measured values in the measurement result.
  • the measurement result may be, but is not limited to, a Reference Signal Receiving Power (RSRP) and/or a Reference Signal Receiving Quality (RSRQ) measurement.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • at least one beamforming matrix is selected in descending order of RSRP and/or RSRQ measurements.
  • the number of the selected beamforming matrices can be configured according to the actual requirements, which is not limited in this application.
  • the beamforming matrix used in different subframes in which the same pilot resource is located is determined in multiple manners.
  • the method is determined by traversing each beamforming matrix corresponding to the pilot resource. of.
  • the specific implementation manner of the traversal may be traversing each beamforming matrix in a predetermined order, or traversing each beam shaping matrix in a randomly selected manner.
  • V 1 is used for vertical beam assignment.
  • V 2 is used for vertical beamforming
  • V 3 is used for vertical beamforming
  • V 4 is used for vertical beam assignment.
  • V 1 is used for vertical beamforming, and so on. If the vertical beamforming matrix is traversed in a randomly selected manner, it is assumed that one of the ⁇ V 1 , V 2 , V 3 , V 4 ⁇ is randomly selected (for example, V 2 ) in the subframe N where the pilot resource is located. For vertical beamforming, then, in subframe N+n, one of ⁇ V 1 , V 3 , V 4 ⁇ is randomly selected (for example, V 3 ) for vertical beamforming, in subframe N+2n, random from Select one of ⁇ V 1 , V 4 ⁇ (for example, V 1 ) for vertical beamforming.
  • subframe N+3n use V 1 for vertical beamforming; if it is loop traversal, in subframe N+4n, Randomly select one of ⁇ V 1 , V 2 , V 3 , V 4 ⁇ for vertical beamforming, and so on.
  • the vertical beamforming matrix As an example, it is assumed that there are four vertical beamforming matrices ⁇ V 1 , V 2 , V 3 , V 4 ⁇ , two pilot resources are configured, and one pilot resource has a period of n sub-children. A frame, the pilot resource corresponds to ⁇ V 1 , V 2 ⁇ , and another pilot resource has a period of m subframes, and the pilot resource corresponds to ⁇ V 3 , V 4 ⁇ . It should be noted that the specific allocation manner of the vertical beamforming matrix corresponding to the pilot resources may be adjusted according to the application requirements, and is merely an example and not a limitation.
  • the set order is V 1 , V 2 , for ⁇ V 3 , V 4 ⁇ , the set The sequence is V 3 , V 4 , and the vertical beamforming is performed by using V 1 in the subframe N where the pilot resources of the n subframes are located. Then, in the subframe N+n, the vertical beamforming is performed by using V 2 .
  • V 1 is used for vertical beamforming, and so on; in the subframe M where the pilot resources of the m subframes are located, V 3 is used for vertical beamforming, then, in the sub-frame the frame m + m, V 4 vertically using beamforming, in subframe m + 2m, V 3 using vertical beamforming, and so on.
  • the random ⁇ , V 2 V 1 ⁇ selects one (e.g., V 2) from vertical beamforming, then the sub-frame N + n, using V 1 vertical beamforming, in a subframe N + 2n, random from ⁇ V 1, V 2 ⁇ selects one (e.g., V 2) for vertical Beamforming, and so on; in the subframe M where the pilot resources of the m subframes are located, randomly select one (for example, V 3 ) from ⁇ V 3 , V 4 ⁇ for vertical beamforming, then, subframe m + m, V 4 vertically using beamforming, in subframe m + 2m, random ⁇ , V 4 V 3 ⁇ is selected from a (e.g., V 3) for vertical beamforming, and so on.
  • V 3 the subframe M where the pilot resources of the m subframes are located
  • a beamforming matrix employed on different subframes in which the same pilot resource is located.
  • the embodiment of the present application does not exclude the beamforming matrix used in different subframes in which the same pilot resource is located by other means. For example, for each subframe in which the pilot resource is located, a beamforming matrix is randomly selected from all beamforming matrices corresponding to the pilot resource; or, each two adjacent subframes adopt the same beamforming Matrix and so on, not to mention here.
  • the beamforming matrix used in different subframes where the same pilot resource is located is traversing each beamforming matrix corresponding to the pilot resources. After the measurement results corresponding to all the beamforming matrices used are obtained, the beamforming matrix used in different subframes where the same pilot resource is located is the selected beamforming matrix.
  • the measurement result corresponding to the beamforming matrix that is, the measurement result obtained by measuring the subframe using the beamforming matrix.
  • the foregoing measurement result includes a measurement value of channel measurement performed by the UE on all or a part of subframes in which the respective pilot resources are located within a predetermined time period.
  • the measured value may be, but is not limited to, a measured value of at least one of the following: CSI, RSRP, RSRQ, and the like.
  • the UE can periodically feed back the measured value or non-periodically feedback the measured value. Taking the periodic feedback measurement as an example, the UE can collectively feed back the measured values in each cycle. It should be noted that the UE may also adopt other feedback methods, for example, separately for each subframe in which each pilot resource is located, and the like.
  • the selected beamforming matrix can be used to solve other problems, such as beamforming, precoding, and the like of 3D/FD MIMO.
  • the pilot resource is referred to as a first pilot resource
  • the base station configuration is further configured with at least one second pilot resource
  • the implementation may be: performing beamforming on the pilot signal on the at least one second pilot resource configured by the base station by using the selected at least one beamforming matrix (ie, transmitting the selected at least one beamforming matrix pair to the UE.
  • the downlink signal is beamformed); the beamformed pilot signal is transmitted on at least one second pilot resource configured by the base station.
  • the second pilot resource is beamformed using the selected beamforming matrix.
  • the UE performs measurement on the second pilot resource and feeds back the measurement result.
  • the beamforming is performed on the 3D/FD MIMO antenna array according to the measurement result fed back by the UE, and the beamforming of the 3D/FD MIMO antenna array does not need to be further processed.
  • the base station uses different beamforming matrices to beamform different second pilot resources.
  • the UE performs measurements on the two second pilot resources and feeds back the measurement results measured on the two second pilot resources.
  • the beamforming scheme of the 3D/FD MIMO antenna array is selected according to the feedback result of the UE measuring the two second pilot resources respectively.
  • the definition of the traditional CSI is that a CSI feedback must correspond to a CSI reference resource (CSI), and the CSI reflects the quality/strength of the channel that the UE can observe on the CSI reference resource.
  • CSI CSI reference resource
  • one CSI reference resource corresponds to one subframe, which is called a CSI reference resource subframe, and the CSI reference resource subframe may include a CSI-RS or a CSI-RS.
  • the CSI is defined as follows: If the CSI reported by the UE is used for scheduling data transmission on the CSI reference resource, the UE must receive the demodulation block error obtained by receiving the data on the CSI reference resource. The rate of BLER (block error rate) does not exceed 10%.
  • the downlink subframe n-k is a CSI reference resource subframe, which satisfies the requirement that the BLER does not exceed 10%, where n and k are integers.
  • a CSI reference resource subframe is not necessarily a subframe including a CSI-RS.
  • N is the number of CSI-RS subframes measured in each CSI feedback of the UE. It is determined by the UE itself in the existing system.
  • the network does not have the number of information, and the number cannot be controlled. In the existing system, the network also cannot control which subframes including CSI-RS are used by the UE for channel estimation.
  • the CSI reference resource subframe and the CSI-RS subframe are both subframes in which the CSI reference resource is located, and the CSI-RS subframe is a subframe in which the CSI-RS is included.
  • different beamforming matrices are used for different subframes in which the same pilot resource (such as CSI reference resource) is located.
  • the beamforming matrix used by the two subframes is different, and the beamforming corresponds to different channel conditions. If the UE determines the measurement result of the pilot resource according to the measurement results on the two subframes, the pilot resource thus determined is determined.
  • the measurement result cannot accurately correspond to the beamforming matrix adopted by any one of the two subframes, and the beamforming matrix is selected according to the measurement result fed back by the UE, and the selected beamforming matrix not only cannot bring gain, but may be reduced. Scheduling accuracy and system performance. To avoid this, the embodiment of the present application provides the following solutions.
  • a subframe in the subframe in which the above-mentioned pilot resource is located, which can be used for channel measurement, is indicated to the user equipment.
  • the above solution specifies the CSI fed back in each uplink subframe, and the UE must measure its channel using a certain set of CSI-RS subframes.
  • one set of CSI-RS subframes is composed of at least one CSI-RS subframe. Since the CSI of each uplink feedback corresponds to one downlink CSI reference resource, which is equivalent to each CSI reference resource, the UE must use a set or a certain CSI-RS subframe to measure its channel.
  • the base station indicates to the UE a subframe that can be used for performing channel measurement, and can control the UE to perform channel measurement according to the subframe that uses the same beamforming matrix, thereby improving scheduling accuracy and system performance.
  • An implementation manner of indicating, to the user equipment, a subframe that can be used for performing channel measurement in the subframe in which the pilot resource is located may be: indicating, to the user equipment, a sub-frame in which the pilot resource is located may be used for performing channel measurement.
  • the number of frames ie N above.
  • the user equipment and the network side agree on the correspondence between the subframe for feeding back CSI and the CSI reference resource subframe, and therefore, indicate to the user equipment, the number of subframes that can be used for channel measurement in the subframe where the pilot resource is located, That is, the subframe indicating the channel measurement in the subframe in which the pilot resource is located is indicated to the user equipment.
  • the subframe (CSI-RS subframe) that can perform channel measurement is a subframe that does not precede the CSI-reference of the CSI-RS.
  • the CSI reference resource subframe itself is a CSI-RS subframe
  • the CSI-RS subframe can be used to measure the CSI reference resource.
  • the measurement may be performed using the latest CSI-RS subframe before the CSI reference resource subframe.
  • the processing steps of the UE and the eNB are as follows.
  • the UE obtains a CSI-reference resource subframe according to the subframe that is fed back by the CSI, and then the UE obtains a CSI-RS subframe that is not earlier than the CSI-reference-resource, and the UE performs channel measurement on the CSI-RS subframe.
  • the CSI feedback subframe may be used to infer which vertical dimension beamforming the UE feedback CSI is for. If N>1, the UE can measure on a maximum of N subframes when measuring for a CSI reference resource.
  • the base station may indicate, by using the high layer signaling, the number of subframes that can be used for channel measurement in the subframe where the pilot resource is located, to the user equipment.
  • the base station indicates the value N or not, indicating to the user equipment that the subframe in which the pilot resource is located may be used for performing channel measurement may also indicate the channel measurement period and the subframe to the user equipment.
  • the offset is implemented, wherein the channel measurement period is an integer multiple of the period of the pilot resource. For example, if the CSI-RS resource period is 10 ms, the eNB has four vertical dimension beamforming matrices in the upper layer, and a vertical dimension beamforming matrix is used in each CSI-RS resource period by polling. When performing channel averaging, channel averaging should be performed on CSI-RS subframes with an interval of 40 ms.
  • the base station may indicate the channel measurement period and the subframe offset by using high layer signaling.
  • Another implementation manner of indicating to the user equipment that the subframe in which the pilot resource is located may be used for performing channel measurement may further be: indicating to the user equipment, a subset of subframes that can be used for channel measurement, where The pilot signal subframe in which the pilot resource is located is divided into a subset of a number of subframes that can be used for channel measurement.
  • the base station may indicate to the user equipment, by using high layer signaling, a subset of subframes that may be used for channel measurement.
  • a CSI fed back in subframe n corresponds in time to a CSI reference resource (reference resource), which corresponds in time series to subframe n-k, where k is a positive integer.
  • the aperiodic CSI feedback is PDCCH-triggered: after receiving the PDCCH transmitted by the eNB, the UE feeds back CSI in the corresponding PUSCH uplink transmission subframe.
  • the reference resource of the CSI may be a subframe that is sent by the PDCCH, or may be a subframe before the PDCCH subframe, and the timing relationship should be clearly defined on both sides of the eNB/UE.
  • the calculation of the CSI reference resource is also feasible.
  • the eNB sends a PDCCH to trigger CSI feedback.
  • the eNB can calculate the subframe of the CSI reference resource, so each The CSI of one PDCCH excitation is determined to correspond to a downlink vertical dimension beamforming matrix.
  • the PDCCH may be notified by signaling whether the CSI fed back by the UE should correspond to which CSI reference resource subframe. For example, as shown in FIG. 4, it is assumed that the eNB has four beamforming matrices in the vertical dimension, the eNB configures one CSI-RS resource, and four different vertical dimension beams are used in four different downlink subframes; A new 2-bit field may be added to the downlink PDCCH.
  • the field informs the UE which CSI reference resource subframe should be used in the uplink feedback subframe to measure CSI. For example, if the 2-bit field is 1, The first CSI reference resource subframe before the PDCCH subframe is measured/referred, and if the 2-bit field is 2, the second CSI reference resource subframe before the PDCCH subframe is measured/referred, and so on.
  • the eNB has four vertical dimension beamforming matrices, and the UE is configured with one CSI-RS resource.
  • the period of the CSI-RS resource is 10 ms, and the eNB uses four beam assignments in different periods of one CSI-RS resource.
  • the shape matrix traverses the shape, and the actual period of the CSI-RS subframe corresponding to a specific beamforming matrix is 40 ms.
  • the CSI-RS period corresponding to different beamforming matrices is not used.
  • the eNB needs to have a certain mechanism to control which downlink CSI-RS subframes the UE performs channel measurement for one uplink CSI feedback.
  • the eNB can also configure the number N of CSI-RS subframes used by the UE to measure the channel by using the upper layer semi-static signaling or the dynamic signaling. When the UE feeds back a CSI, only the N CSIs can be used. - RS subframes are measured.
  • the CSI is measured.
  • the UE should use no more than 2 cycles of CSI reference resource when the CSI is actually measured.
  • a 40 ms sub-frame is measured.
  • the eNB may configure the CSI-RS subframe into several groups of subframe subsets for the UE. For one CSI feedback, the eNB configures which subframe subset the UE uses for CSI measurement. This method is suitable for periodic CSI feedback and also for aperiodic feedback.
  • the eNB may configure the CSI-RS subframe into four groups of subframe subsets for the UE.
  • the 2-bit trigger field in the PDCCH configures which subframe subset the UE uses for CSI. For example, if the 2-bit field is 1, the CSI-RS subframe in the first CSI-RS subframe subset is measured no later than the subframe in which the PDCCH is located. If the 2-bit field is 2, the second CSI is measured. - The subset of RS subframes is no later than the CSI-RS subframe of the subframe in which the PDCCH is located.
  • the method provided by the embodiment of the present application is implemented on the UE side, and specifically includes the following operations:
  • Step 500 Receive channel measurement subframe indication information.
  • Step 510 Determine, according to the received channel measurement subframe indication information, a subframe used for channel measurement in a subframe where the pilot resource is located, and perform channel measurement on the determined subframe.
  • the technical features of the UE side are the same as those of the network side, and are not described here.
  • beamforming is performed by using different beamforming matrices on different subframes in which the same pilot resource is located.
  • the number of pilot resources is less than the number of beamforming matrices.
  • the step 510 includes: determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, where the channel measurement subframe is used to indicate the pilot resource. a subframe in which the channel measurement can be used in the subframe;
  • Channel measurements are made on the determined subframes.
  • Determining a subframe for performing channel measurement in a subframe in which the pilot resource is located according to the received channel measurement subframe indication information including:
  • Determining a subframe for performing channel measurement in a subframe in which the pilot resource is located according to the indication information of the number of subframes in the subframe in which the pilot resource is located for performing channel measurement.
  • determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located including:
  • determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located including:
  • Determining, according to the received indication information of the subset of the subframes that can be used for performing channel measurement, a subframe for performing channel measurement in a subframe in which the pilot resource is located, where the pilot signal of the pilot resource is located The frame is divided into several A subset of subframes that can be used for channel measurements.
  • the indication information of the subset of subframes that can be used for channel measurement is carried in dynamic signaling.
  • dynamic signaling Such as excitation feedback signaling.
  • the base station and the UE side cooperate to implement the implementation of the vertical beamforming as an example, and the technical solutions provided by the embodiments of the present application are exemplified.
  • the base station configures a CSI-RS resource to the UE, and sends the configuration information of the CSI-RS resource to the UE by using the high layer signaling, where the configuration information includes at least a subframe period and a subframe offset of the CSI-RS resource.
  • the base station performs vertical beamforming on the transmitted CSI-RSs by using different vertical beamforming matrices.
  • the vertical beamforming matrix used on each CSI-RS transmitting subframe is determined by traversing from all vertical beamforming matrices of the base station. Therefore, although the UE is only configured with one CSI-RS resource, the UE can measure the channel state after different vertical beamforming in different subframes in which the CSI-RS resource is located.
  • the UE periodically or aperiodically feeds back CSI and/or RSRP, and each CSI and/or RSRP feedback corresponds to a single subframe in time, and also to a separate CSI-RS transmitter after vertical beamforming. frame.
  • the base station can obtain signal strength and channel parameter information after shaping for different vertical beams. Based on this information, the base station can determine the optimal vertical beamforming matrix.
  • the base station has four vertical beamforming matrices ⁇ V1, V2, V3, V4 ⁇ that can be selected.
  • the base station uses V1 to shape the CSI-RS
  • the base station uses V2 to shape the CSI-RS, thereby analogy.
  • the UE measures the CSI-RS corresponding to the vertical beamforming matrix V1, and then feeds back in the subframe N+a.
  • each CSI and/or RSRP in Figure 6 is periodic feedback.
  • each CSI and/or RSRP may also be used for aperiodic feedback, or some CSI and/or RSRP may be configured as periodic feedback, and other CSI and/or RSRP are configured to be non-periodic.
  • Sexual feedback activated by the base station when needed.
  • the period and subframe offset of each CSI and/or RSRP feedback may be independently configured.
  • the measurement results of multiple CSI-RS transmission subframes may be fed back in the same feedback subframe, using a larger physical uplink control channel (PUCCH) or using a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Different vertical beamforming matrices are used on the RS transmission subframe, and the UE reports information (CSI and/or RSRP) corresponding to different vertical dimension beamforming matrices, so that the base station obtains corresponding to different vertical beamforming.
  • Channel information CSI and/or RSRP
  • the base station obtains complete measurement result information for all vertical beamforming matrices.
  • the base station can thus select the best vertical beamforming matrix.
  • the base station can continue to adopt the same vertical beamforming matrix traversal mode, as shown in Figure 6, but this actually increases the CSI feedback period for the optimal vertical beamforming matrix by four. Times.
  • the base station uses the selected optimal vertical beamforming matrix in each CSI-RS transmission subframe, as shown in FIG. That is to say from this, the CSI of each feedback is the CSI for the best vertical beamforming matrix.
  • Each configured pilot resource may use an unused beamforming matrix in different subframes, and the cyclic pattern of the beamforming matrix used by the subframe in which each pilot resource is located may be configured by the base station.
  • the implementation of the present application further provides a pilot transmitting apparatus, as shown in FIG.
  • the pilot signal sending module 801 is configured to send a pilot signal on each subframe where the same pilot resource is located;
  • the configuration module 802 is configured to indicate to the user equipment, a subframe in the subframe where the pilot resource is located, which can be used for channel measurement.
  • the technical solution provided by the embodiment of the present application sends a pilot signal on each subframe in which the same pilot resource is located. Therefore, the number of pilot resources can be flexibly configured according to actual needs, thereby meeting actual transmission requirements and reducing pilots. Resource overhead to improve system performance. Since the pilot resources are reduced, the pilot feedback overhead of the UE is also reduced. If only one pilot resource is configured, the pilot overhead will be greatly reduced.
  • a beamforming module is further included for:
  • Beamforming is performed in different subframes in which the same pilot resource is located by using different beamforming matrices.
  • the number of pilot resources is less than the number of beamforming matrices.
  • the configuration module is used to:
  • the configuration module is used to:
  • the channel measurement period is an integer multiple of a period of the pilot resource.
  • the configuration module is used to:
  • a subset of subframes that can be used for channel measurement are indicated to the user equipment, wherein the pilot signal subframe in which the pilot resource is located is divided into a subset of a number of subframes that can be used for channel measurement.
  • the configuration module is configured to:
  • a subset of subframes that can be used for channel measurement is indicated to the user equipment by dynamic signaling.
  • the number of pilot resources configured for the user equipment is less than the number of beamforming matrices employed.
  • the method further includes a beamforming matrix selection module, configured to select at least one beamforming matrix from the adopted beamforming matrix according to the measurement result of the channel measurement after the user equipment performs feedback.
  • a beamforming matrix selection module configured to select at least one beamforming matrix from the adopted beamforming matrix according to the measurement result of the channel measurement after the user equipment performs feedback.
  • the beamforming matrix used on different subframes in which the same pilot resource is located is determined by cyclically traversing each beamforming matrix corresponding to the pilot resources.
  • the beamforming matrix used in different subframes in which the same pilot resource is located is formed by traversing each beam corresponding to the pilot resources.
  • the method of the matrix is determined; after obtaining the measurement results corresponding to all the beamforming matrices used, the beamforming matrix used in different subframes where the same pilot resource is located is the selected beamforming matrix.
  • the measurement result includes a measurement value of the channel measurement performed by the user equipment on each subframe in which each pilot resource is located within a predetermined time period.
  • the implementation of the present application further provides a base station 900, as shown in FIG. 9, including:
  • the processor 901 is configured to execute a computer program that: transmits a pilot signal on each subframe in which the same pilot resource is located; and indicates to the user equipment that the pilot resource is in a subframe a sub-frame for performing channel measurement;
  • a memory 902 is configured to store the code of the computer program described above.
  • the technical solution provided by the embodiment of the present application sends a pilot signal on each subframe in which the same pilot resource is located. Therefore, the number of pilot resources can be flexibly configured according to actual needs, thereby meeting actual transmission requirements and reducing pilots. Resource overhead to improve system performance. Since the pilot resources are reduced, the pilot feedback overhead of the UE is also reduced. If only one pilot resource is configured, the pilot overhead will be greatly reduced.
  • the number of pilot resources configured for the user equipment is less than the number of beamforming matrices employed.
  • the processor 901 is specifically configured to execute a computer program that performs beamforming on different subframes in which the pilot resources are located using different beamforming matrices; where the pilot resources are located The beamformed pilot signals are transmitted on each subframe; the memory 902 is also configured to store the code of the computer program described above.
  • the beamforming matrix used on different subframes in which the same pilot resource is located is determined by cyclically traversing the respective beamforming matrices corresponding to the pilot resources.
  • the beamforming matrix used in different subframes in which the same pilot resource is located is formed by traversing each beam corresponding to the pilot resources.
  • the method of the matrix is determined; after obtaining the measurement results corresponding to all the beamforming matrices used, the beamforming matrix used in different subframes where the same pilot resource is located is the selected beamforming matrix.
  • the measurement result includes a measurement value of the channel measurement performed by the user equipment on each subframe in which each pilot resource is located within a predetermined time period.
  • the embodiment of the present application further provides a channel measurement apparatus, as shown in FIG. 10, including:
  • the receiving module 1001 is configured to receive channel measurement subframe indication information.
  • the pilot measurement module 1002 is configured to determine, according to the channel measurement subframe indication information, a subframe used for channel measurement in a subframe where the pilot resource is located, and perform channel measurement on the determined subframe.
  • the number of pilot resources is less than the number of beamforming matrices.
  • the pilot measurement module is used to:
  • determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, where the channel measurement subframe is used to indicate that the subframe in which the pilot resource is located may be used.
  • Channel measurements are made on the determined subframes.
  • the pilot measurement module when determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, is configured to:
  • Determining a subframe for performing channel measurement in a subframe in which the pilot resource is located according to the indication information of the number of subframes in the subframe in which the pilot resource is located for performing channel measurement.
  • the pilot measurement module when determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, is configured to:
  • the pilot measurement module when determining, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, is configured to:
  • a frame is divided into a subset of a number of subframes that can be used for channel measurement.
  • the indication information of the subset of subframes that can be used for channel measurement is carried in dynamic signaling.
  • the embodiment of the present application further provides a user equipment 1100, as shown in FIG.
  • the processor 1101 is configured to execute a computer program that: determines, according to the received channel measurement subframe indication information, a subframe for performing channel measurement in a subframe in which the pilot resource is located, and Performing channel measurements on the determined subframes;
  • a memory 1102 is configured to store code of the computer program described above.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the present application may employ an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. The form of the case. Moreover, the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种导频发送、信道测量方法及装置。其导频发送方法包括:在同一个导频资源所在的各个子帧中发送导频信号;向用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧。本申请提供的技术方案中,配置的导频资源可以少于波束赋形矩阵的数量,从而减少了导频资源的开销,且减少了导频反馈开销。本申请提供的技术方案中,由网络侧控制用户设备在哪些子帧上进行信道测量,从而提高了CSI上报的精度。

Description

一种导频发送方法、信道测量方法及装置
本申请要求在2014年7月30日提交中国专利局、申请号为201410371543.4、发明名称为“一种MIMO***中的导频发送方法、测量方法及装置”的中国专利申请,以及2015年3月10日提交中国专利局、申请号为201510104484.9、发明名称为“MIMO***中的导频发送方法、信道测量方法及装置”的中国专利申请的优先权,两个申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种导频发送方法、信道测量方法及装置。
背景技术
3维(3D)多输入多输出(Multiple-Input Multiple-Output,MIMO)***中的二维天线结构如图1所示。图1所示为64天线的单极化天线结构,其中每个圆柱图形代表一个天线。应当指出的是,3D MIMO***中,二维天线结构的天线数量不仅限于64,还可以是8天线、16天线、32天线等等,且不仅限于单极化天线结构,还可以是双极化天线结构。3D MIMO也可以称为全维度(Full-Dimension,FD)MIMO。
在二维天线结构的3D MIMO***中,不仅在水平方向可以进行波束赋形,在垂直方向也可以进行波束赋形。一个典型应用场景是垂直维扇区化。下面结合附图解释垂直维扇区化的含义。
将图2a所示的基站侧二维天线结构中的16根天线虚拟化成4个天线端口。其中,在垂直维的4根天线虚拟化成一个天线端口,如图2b所示,在垂直维分成3个扇区覆盖一个高楼。
基于图2a的天线结构和图2b的垂直维扇区化架构,每个扇区都配置一套4端口信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS(或小区专属参考信号(Cell-specific Reference Signal,CRS))资源,那么一共需要3套4端口CSI-RS(或CRS)资源。
基于上述应用场景的处理流程如下:
基站在每个扇区对应的CSI-RS(或CRS)资源上采用不同的垂直波束赋形向量进行垂直波束赋形;
用户设备(User Equipment,UE)测量每个CSI-RS(或CRS)资源,并针对每个CSI-RS(或CRS)资源反馈一个CSI(包括秩指示(Rank Indicator,RI)、预编码矩阵指示(Pre-Coding Matrix Indicator,PMI)和信道质量指示(Channel Quality Indicator,CQI)),所以这里需 要反馈多个CSI;
基站根据反馈回来的多个CSI,选择最佳垂直波束赋形向量。
在水平方向进行波束赋形时,也是每个CSI-RS(或CRS)资源上采用不同的水平波束赋形向量进行水平波束赋形。
上述现有技术中,采用多少个波束赋形向量,就需要多少个CSI-RS(或CRS)资源。即导频资源数量与波束赋形向量的数量是一一对应的,增大了需要配置的导频资源的数量。
发明内容
本申请的目的是提供一种导频发送方法、信道测量方法及装置,以解决由于导频资源数量与波束赋形向量的数量是一一对应的,增大了需要配置的导频资源的数量的问题。
本申请的目的是通过以下技术方案实现的:
一种导频发送方法,包括:
在同一个导频资源所在的各个子帧中发送导频信号;
向用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧。
较佳地,在同一个导频资源所在的各个子帧中发送导频信号之前,还包括:采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;
在同一个导频资源所在的各个子帧中发送导频信号,包括:在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号。
较佳地,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧,包括:
向所述用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
较佳地,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧,包括:
向所述用户设备指示信道测量周期和子帧偏移,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧,包括:
向所述用户设备指示可以用于进行信道测量的子帧的子集,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,向所述用户设备指示可以用于进行信道测量的子帧的子集,包括:
通过动态信令向所述用户设备指示可以用于进行信道测量的子帧的子集。
基于上述任意方法实施例,较佳地,该方法还包括:根据所述用户设备进行信道测量后反馈的测量结果,从所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
较佳地,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
较佳地,获取所采用的全部波束赋形矩阵对应的测量结果之前,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;
获取所采用的全部波束赋形矩阵对应的测量结果之后,所述导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
本申请中,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。较佳地,为所述用户设备配置的导频资源的数量为1。
基于上述任意方法实施例,较佳地,所述测量结果包括所述用户设备在预定时间段内对各个导频资源所在的各个子帧进行信道测量的测量值。
一种信道测量方法,包括:
接收信道测量子帧指示信息;
根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量。
较佳地,同一个导频资源所在的不同子帧上采用不同的波束赋形矩阵进行波束赋形。
较佳地,导频资源的数量小于波束赋形矩阵的数量。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。
一种导频发送装置,包括:
导频信号发送模块,用于在同一导频资源所在的各个子帧上发送导频信号;
配置模块,用于向用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧。
较佳地,还包括波束赋形模块,用于:
采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;
所述导频信号发送模块具体用于:在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号。
较佳地,所述配置模块用于:
向所述用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
较佳地,所述配置模块用于:
向所述用户设备指示信道测量周期和子帧偏移,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,所述配置模块用于:
向所述用户设备指示可以用于进行信道测量的子帧的子集,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,向所述用户设备指示可以用于进行信道测量的子帧的子集时,所述配置模块用于:
通过动态信令向所述用户设备指示可以用于进行信道测量的子帧的子集。
较佳地,还包括波束赋形矩阵选择模块,用于根据所述用户设备进行信道测量后反馈的测量结果,从所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
较佳地,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
较佳地,获取所采用的全部波束赋形矩阵对应的测量结果之前,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;
获取所采用的全部波束赋形矩阵对应的测量结果之后,同一个导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
本申请中,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。较佳地,为所述用户设备配置的导频资源的数量为1。
基于上述任意装置实施例,较佳地,所述测量结果包括所述用户设备在预定时间段内对各个导频资源所在的各个子帧进行信道测量的测量值。
一种基站,包括:
处理器,该处理器被配置为执行具备下列功能的计算机程序:在同一导频资源所在的各个子帧上发送导频信号;向用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧;
存储器,该存储器被配置为保存上述计算机程序的代码。
较佳地,该处理器具体被配置为执行具备下列功能的计算机程序:采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号。
较佳地,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧时,该处理器还被配置为执行具备下列功能的计算机程序:向所述用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
较佳地,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧时,该处理器还被配置为执行具备下列功能的计算机程序:向所述用户设备指示信道测量周期和子帧偏移,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧时,该处理器还被配置为执行具备下列功能的计算机程序:向所述用户设备指示可以用于进行信道测量的子帧的子集,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,向所述用户设备指示可以用于进行信道测量的子帧的子集时,该处理器还被配置为执行具备下列功能的计算机程序:通过动态信令向所述用户设备指示可以用于进行信道测量的子帧的子集。
较佳地,该处理器还被配置为执行具备下列功能的计算机程序:根据所述用户设备进行信道测量后反馈的测量结果,从所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
较佳地,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
较佳地,获取所采用的全部波束赋形矩阵对应的测量结果之前,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;
获取所采用的全部波束赋形矩阵对应的测量结果之后,所述导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
其中,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。较佳地,为所述用户设备配置的导频资源的数量为1。
基于上述任意基站实施例,较佳地,所述测量结果包括所述用户设备在预定时间段内 对各个导频资源所在的各个子帧进行信道测量的测量值。
一种信道测量装置,包括:
接收模块,用于接收信道测量子帧指示信息;
导频测量模块,用于根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量。
较佳地,同一个导频资源所在的不同子帧上采用不同的波束赋形矩阵进行波束赋形。
较佳地,导频资源的数量小于波束赋形矩阵的数量。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。
一种用户设备,包括:
处理器,该处理器被配置为执行具备下列功能的计算机程序:根据接收到的信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量;
存储器,该存储器被配置为保存上述计算机程序的代码。
较佳地,同一个导频资源所在的不同子帧上采用不同的波束赋形矩阵进行波束赋形。
较佳地,导频资源的数量小于波束赋形矩阵的数量。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述处理器被配置为执行下列计算机程序:根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测 量的子帧时,所述处理器被配置为执行下列计算机程序:
根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述处理器被配置为执行下列计算机程序:根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。
本申请各个实施例中,波束赋形矩阵的一种特殊情况是波束赋形向量。
本申请实施例提供的技术方案适用于垂直波束赋形,也适用于水平波束赋形。本申请实施例,在同一个导频资源所在的各个子帧中发送导频信号,因此,可以根据实际需要灵活配置导频资源的数量,从而满足实际传输需求,提高***性能。例如,配置的导频资源可以少于垂直或水平波束赋形矩阵,从而可以减少导频资源的开销。由于减少了导频资源,因此,UE的导频反馈开销也减少了。如果仅配置一个导频资源,则导频开销及导频反馈开销将大大减小。另外,由于本申请提供的技术方案中,向用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧,实现了由网络侧控制用户设备在哪些子帧上进行信道测量,从而提高了CSI上报的精度。
附图说明
图1为3D MIMO***中的二维天线结构示意图;
图2a为3D MIMO***中天线端口划分示意图;
图2b为3D MIMO***中垂直维扇区化示意图;
图3为本申请实施例提供的一种方法流程图;
图4为本申请实施例提供的通过动态信令向UE指示可以用于进行信道测量的子帧的子集的示意图;
图5为本申请实施例提供的另一种方法流程图;
图6为本申请实施例提供的一种垂直波束赋形示意图;
图7为本申请实施例提供的另一种垂直波束赋形示意图;
图8为本申请实施例提供的一种装置示意图;
图9为本申请实施例提供的基站示意图;
图10为本申请实施例提供的另一种装置示意图;
图11为本申请实施例提供的用户设备示意图。
具体实施方式
本申请实施例提供的技术方案应用于MIMO***,该MIMO***可以但不仅限于是3D/FD MIMO***,也可以是其他MIMO***。
下面将结合附图,对本申请实施例提供的技术方案进行详细说明。
本申请实施例提供的方法在网络侧的实现方式如图3所示,具体包括如下操作:
步骤300、在同一个导频资源所在的各个子帧中发送导频信号,以便用户设备进行信道测量。
其中,导频资源由一组时频资源构成,这些时频资源分布在不同的子帧。因此,导频资源所在的子帧是指构成导频资源的一组时频资源所在的子帧。
步骤310、向用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧。
本申请各个实施例中,导频信号可以但不仅限于是CSI-RS、CRS等等。
上述处理过程可以但不仅限于由基站实现。
本申请实施例提供的技术方案,在同一个导频资源所在的各个子帧中发送导频信号,因此,可以根据实际需要灵活配置导频资源的数量,从而满足实际传输需求,也减少了导频资源的开销,提高***性能。由于减少了导频资源,因此,UE的导频反馈开销也减少了。另外,现有通信技术中网络侧在配置了导频信号给UE之后,UE自行决定在哪些包含导频信号的子帧进行测量,比如UE可以测量每次CSI上报之前的一个CSI-RS子帧,或者两个CSI-RS子帧,等等。因为eNB无法知道UE在哪些CSI-RS子帧中进行测量,因此,无法精确控制CSI上报的精度,可能导致精度不高,而本申请提供的技术方案中,向用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧,实现了由网络侧控制用户设备在哪些子帧上进行信道测量,从而提高了CSI上报的精度。
较佳地,在同一个导频资源所在的各个子帧中发送导频信号之前,还包括:采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;
在同一个导频资源所在的各个子帧中发送导频信号,包括:在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号。
上述处理过程适用于波束赋形在垂直方向的动态调整,当然也适用于波束赋形在水平方向的动态调整。
本申请实施例提供的技术方案,采用不同的垂直或水平波束赋形矩阵在同一个导频资源所在的不同子帧上进行波束赋形,例如,现有技术中,如果有P个垂直波束赋形向量,就需要在垂直维度划分P个扇区,且配置P个导频资源,导致CSI-RS开销过大。而本申请实施例提供的方案,配置的导频资源可以少于垂直或水平波束赋形矩阵,从而减少了导频资源的开销。由于减少了导频资源,因此,UE的导频反馈开销也减少了。同理,如果是采用波束赋形矩阵对用于信道测量的资源进行波束赋形,其导频资源开销小,且UE的 导频反馈开销小。
较佳地,为用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。如果仅配置一个导频资源,则导频开销将大大减小。
较佳地,在各个导频资源所在的子帧上向UE发送经过波束赋形的数据和/或导频信号之后,根据该UE进行信道测量后反馈的测量结果,从上述所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
具体的,是按照测量结果中的测量值的降序,选择至少一个波束赋形矩阵。
本申请实施例中,测量结果可以但不仅限于是参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)测量值。相应的,按照RSRP和/或RSRQ测量值的降序,选择至少一个波束赋形矩阵。选择的波束赋形矩阵的数量可以根据实际需求配置,本申请对此不作限定。
上述步骤300中,同一个导频资源所在的不同子帧上采用的波束赋形矩阵的确定方式有多种,较佳地,是通过遍历该导频资源对应的各个波束赋形矩阵的方式确定的。其中,遍历的具体实现方式可以是按照预定的顺序对各个波束赋形矩阵进行遍历,也可以是随机选择的方式对各个波束赋形矩阵进行遍历。
以垂直波束赋形矩阵为例,假设有4个垂直波束赋形矩阵{V1,V2,V3,V4},配置有一个导频资源,该导频资源的周期为n个子帧。如果按照预定的顺序对各个垂直波束赋形矩阵进行遍历,假设该预定的顺序为V1,V2,V3,V4,在导频资源所在的子帧N,采用V1进行垂直波束赋形,那么,在子帧N+n,采用V2进行垂直波束赋形,在子帧N+2n,采用V3进行垂直波束赋形,在子帧N+3n,采用V4进行垂直波束赋形;如果是循环遍历,在子帧N+4n,采用V1进行垂直波束赋形,以此类推。如果是随机选择的方式对各个垂直波束赋形矩阵进行遍历,假设在导频资源所在的子帧N,随机从{V1,V2,V3,V4}中选择一个(例如V2)进行垂直波束赋形,那么,在子帧N+n,随机从{V1,V3,V4}中选择一个(例如V3)进行垂直波束赋形,在子帧N+2n,随机从{V1,V4}中选择一个(例如V1)进行进行垂直波束赋形,在子帧N+3n,采用V1进行垂直波束赋形;如果是循环遍历,在子帧N+4n,随机从{V1,V2,V3,V4}中选择一个进行垂直波束赋形,以此类推。
仍以垂直波束赋形矩阵为例,假设有4个垂直波束赋形矩阵{V1,V2,V3,V4},配置有两个导频资源,一个导频资源的周期为n个子帧,该导频资源对应{V1,V2},另一个导频资源的周期为m个子帧,该导频资源对应{V3,V4}。应当指出的是,导频资源对应的垂直波束赋形矩阵的具体分配方式可以根据应用需要调整,此处仅为举例而非限定。如果按照预定的顺序对各个垂直波束赋形矩阵进行遍历,假设对于{V1,V2},该设定的顺序为V1,V2,对于{V3,V4},该设定的顺序为V3,V4,在周期为n个子帧的导频资源所在的子帧N,采用V1进行垂直波束赋形,那么,在子帧N+n,采用V2进行垂直波束赋形,在子帧N+2n, 采用V1进行垂直波束赋形,以此类推;在周期为m个子帧的导频资源所在的子帧M,采用V3进行垂直波束赋形,那么,在子帧M+m,采用V4进行垂直波束赋形,在子帧M+2m,采用V3进行垂直波束赋形,以此类推。如果是随机选择的方式对各个垂直波束赋形矩阵进行遍历,假设在周期为n个子帧的导频资源所在的子帧N,随机从{V1,V2}中选择一个(例如V2)进行垂直波束赋形,那么,在子帧N+n,采用V1进行垂直波束赋形,在子帧N+2n,随机从{V1,V2}中选择一个(例如V2)进行垂直波束赋形,以此类推;在周期为m个子帧的导频资源所在的子帧M,随机从{V3,V4}中选择一个(例如V3)进行垂直波束赋形,那么,在子帧M+m,采用V4进行垂直波束赋形,在子帧M+2m,随机从{V3,V4}中选择一个(例如V3)进行垂直波束赋形,以此类推。
应当指出的是,上述仅是确定同一个导频资源所在的不同子帧上采用的波束赋形矩阵的优选实施方式。本申请实施例并不排除通过其他方式确定同一个导频资源所在的不同子帧上采用的波束赋形矩阵。例如,对于导频资源所在的各个子帧,均从该导频资源对应的所有波束赋形矩阵中随机选择波束赋形矩阵;或者,每两个相邻的子帧采用同一个的波束赋形矩阵等等,此处不一一例举。
进一步的,获取所采用的全部波束赋形矩阵对应的测量结果之前,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;获取所采用的全部波束赋形矩阵对应的测量结果之后,同一个导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
波束赋形矩阵对应的测量结果,即对采用该波束赋形矩阵的子帧进行测量得到的测量结果。
基于上述任意方法实施例,上述测量结果包括上述UE在预定时间段内对各个导频资源所在的全部或部分子帧进行信道测量的测量值。其中,测量值可以但不仅限于是以下至少一项的测量值:CSI,RSRP,RSRQ等等。UE既可以周期性反馈测量值,也可以非周期性反馈测量值。以周期性反馈测量值为例,UE可以将每个周期内的测量值集中反馈。应当指出的是,UE也可以采用其他反馈方式,例如,针对各个导频资源所在的各个子帧分别进行反馈,等等。
基于上述任意方法实施例,在选择出至少一个波束赋形矩阵后,可以用选择出的波束赋形矩阵解决其他问题,例如进行3D/FD MIMO的波束赋形、预编码等等。
以利用选择出至少一个波束赋形矩阵进行3D/FD MIMO的波束赋形为例,将上述导频资源称为第一导频资源,基站配置还配置有至少一个第二导频资源,相应的实现方式可以是:采用选择的至少一个波束赋形矩阵对基站配置的至少一个第二导频资源上的导频信号进行波束赋形(即采用选择的至少一个波束赋形矩阵对发送给上述UE的下行信号进行波束赋形);在基站配置的至少一个第二导频资源上发送经过波束赋形的导频信号。
采用选择的波束赋形矩阵在第二导频资源上进行波束赋形的实现方式有多种,本申请无法一一例举,仅以几个优选实施例进行举例说明。
假设基站选择了一个波束赋形矩阵,则采用选择的这个波束赋形矩阵对第二导频资源进行波束赋形。UE在第二导频资源上进行测量,并反馈测量结果。根据UE反馈的测量结果在3D/FD MIMO天线阵列上进行波束赋形,不需要为3D/FD MIMO天线阵列的波束赋形进行进一步的处理。
假设基站配置了两个第二导频资源,且基站选择了两个波束赋形矩阵,则基站分别采用不同的波束赋形矩阵对不同第二导频资源进行波束赋形。UE分别在这两个第二导频资源上进行测量,并反馈在这两个第二导频资源上测量的测量结果。根据UE分别对这两个第二导频资源进行测量的反馈结果,选择3D/FD MIMO天线阵列的波束赋形方案。
传统CSI的定义是一个CSI反馈必须对应一个CSI参考资源(reference resource),CSI反映CSI reference resource上面UE可以观测到的信道的质量/强弱。在时域上,一个CSI reference resource对应于一个子帧(subframe),称为CSI reference resource子帧,CSI reference resource子帧可以包括CSI-RS也可以不包括CSI-RS。在传统3GPP LTE的定义中,CSI的定义如下:eNB如果用UE上报的CSI在CSI reference resource上直接用来调度做数据传输,则UE必须在CSI reference resource上面接收数据得到的解调块误码率BLER(block error rate)不超过10%。如果上行子帧n为CSI反馈的上行子帧,下行子帧n-k即为CSI reference resource子帧,其满足BLER不超过10%的要求,其中,n和k均为整数。CSI reference resource子帧并非一定是包含CSI-RS的子帧。对于UE实现来讲,UE应该使用CSI reference resource子帧之前或者不早于CSI reference resource子帧的N个CSI-RS子帧进行信道测量(N>=1),用来得到CSI reference resource之上的信道估计。N是UE每一次CSI反馈中测量到的CSI-RS子帧的数目,在现有***中由UE自己决定,网络没有该数目的信息,也无法控制该数目。现有***中网络也无法控制UE使用哪些包括CSI-RS的子帧进行信道估计。其中,CSI reference resource子帧和CSI-RS子帧均是CSI reference resource所在的子帧,CSI-RS子帧是其中包括CSI-RS的子帧。
本申请实施例中,由于同一个导频资源(如CSI reference resource)所在的不同子帧采用不同的波束赋形矩阵。两个子帧使用的波束赋形矩阵不同,则波束赋形后对应于不同的信道状况,如果UE根据这两个子帧上的测量结果确定该导频资源的测量结果,这样确定的导频资源的测量结果无法准确对应于这两个子帧中的任一个所采用的波束赋形矩阵,则根据UE反馈的测量结果选择波束赋形矩阵,选择的波束赋形矩阵不仅不能带来增益,反而可能降低调度精确性和***性能。为避免这种情况发生,本申请实施例提供如下解决方案。
向用户设备指示上述导频资源所在的子帧中可以用于进行信道测量的子帧。
上述解决方案可以与上述任意实施例的方案配合实施。下面对这种解决方案进行详细说明。
上述解决方案规定了每一个上行子帧中反馈的CSI,UE必须使用一组确定的CSI-RS subframe对其信道测量。其中,一组CSI-RS subframe由至少一个CSI-RS子帧构成。由于每一个上行反馈的CSI对应于一个下行的CSI reference resource,这里也等效于每一个CSI reference resource,UE必须使用一组或一个确定的包含CSI-RS subframe对其信道测量。
本申请实施例中,由基站向UE指示可以用于进行信道测量的子帧,可以控制UE根据采用同一个波束赋形矩阵的子帧进行信道测量,从而提高调度精度及***性能。
向用户设备指示上述导频资源所在的子帧中可以用于进行信道测量的子帧的一种实现方式可以是:向用户设备指示上述导频资源所在子帧中可以用于进行信道测量的子帧的数量(即上述N)。由于用户设备和网络侧对于反馈CSI的子帧与CSI reference resource子帧的对应关系达成一致,因此,向用户设备指示上述导频资源所在子帧中可以用于进行信道测量的子帧的数量,即是向用户设备指示上述导频资源所在的子帧中可以用于进行信道测量的子帧。
例如,如果上述N的取值为1,可以进行信道测量的子帧(CSI-RS subframe)是不早于CSI reference resource的包含CSI-RS的子帧。如果CSI reference resource子帧本身就是一个CSI-RS子帧,则可以使用该CSI-RS子帧对CSI reference resource进行测量。如果CSI reference resource子帧本身不包括CSI-RS,则可以使用CSI reference resource子帧之前最晚的一个CSI-RS子帧进行测量。相应的,UE和eNB的处理步骤如下。根据CSI反馈的子帧,UE得到CSI-reference resource子帧,然后UE得到不早于CSI-reference-resource的CSI-RS子帧,UE对该CSI-RS子帧进行信道测量。eNB和UE有统一的时序关系的理解,则可以根据CSI反馈的子帧,推断出UE反馈的CSI针对于哪个垂直维度波束赋形。如果N>1,则UE针对某一个CSI reference resource进行测量的时候,最大可以在N个子帧上进行测量。
其中,基站可以通过高层信令向用户设备指示上述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
对于周期性的CSI反馈,无论基站是否指示上述取值N,向用户设备指示上述导频资源所在的子帧中可以用于进行信道测量的子帧也可以通过向用户设备指示信道测量周期和子帧偏移实现,其中,信道测量周期为上述导频资源的周期的整数倍。例如,假设CSI-RS资源周期为10ms,eNB高层有4个垂直维度波束赋形矩阵,采用轮询的方式在每个CSI-RS资源周期内,采用一个垂直维度波束赋形矩阵,则UE在进行信道平均的时候,应该在间隔40ms的CSI-RS子帧上进行信道平均。
其中,基站可以通过高层信令指示信道测量周期和子帧偏移。
向用户设备指示上述导频资源所在的子帧中可以用于进行信道测量的子帧的另一种实现方式还可以是:向用户设备指示可以用于进行信道测量的子帧的子集,其中,导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
其中,基站可以通过高层信令向用户设备指示可以用于进行信道测量的子帧的子集。
在传统非周期CSI反馈中,一个在子帧n中反馈的CSI在时序上对应于一个CSI reference resource(参考资源),CSI reference resource在时序上对应于subframe n-k,这里k是一个正整数。非周期的CSI反馈要有PDCCH激发(trigger):UE接收到eNB发送的PDCCH后,在相应的PUSCH上行传输子帧中反馈CSI。CSI的reference resource可以是PDCCH发送的子帧,也可以是PDCCH子帧之前的某个子帧,其时序关系应在eNB/UE两侧明确定义。对以非周期反馈的CSI,这种CSI reference resource的计算方式同样可行,比如eNB发送一个PDCCH激发CSI反馈,根据CSI反馈的上行子帧,eNB即可以计算得到CSI reference resource的子帧,所以每一个PDCCH激发的CSI都确定对应于一个下行的垂直维度波束赋形矩阵。或者,PDCCH中可以通过信令通知UE反馈的CSI应该对应于哪一个CSI reference resource子帧。比如,如图4所示,假设eNB在垂直维度有4个波束赋形矩阵,eNB配置一个CSI-RS资源,在四个不同的下行子帧中使用四个不同的垂直维度波束;则eNB在下行PDCCH中可以加入一个新的2-bit的域(field),此field通知UE在上行反馈的子帧中应该使用哪一个CSI reference resource子帧来测量CSI,比如2-bit field为1,则测量/反馈PDCCH子帧前的第一个CSI reference resource子帧,如果2-bit field为2,则测量/反馈PDCCH子帧前的第二个CSI reference resource子帧,等等。
作为一个例子,假设eNB有四个垂直维度波束赋形矩阵,给UE配置一个CSI-RS资源,CSI-RS资源的周期为10ms,eNB在一个CSI-RS资源的不同周期分别使用四个波束赋形矩阵遍历赋形,则对应于某一个特定波束赋形矩阵的CSI-RS子帧的实际周期为40ms,为了控制UE在测量CSI的时候不使用对应于不同波束赋形矩阵的CSI-RS周期进行测量并反馈CSI,则eNB需要有一定的机制控制UE针对一个上行CSI反馈在哪些下行CSI-RS子帧中进行信道测量。这里有几种可能的解决方案。作为一种方案,针对一个CSI反馈进程,eNB可以配置允许UE用来进行信道测量的CSI-RS子帧的周期P1,比如P1=40ms,这个周期可以比CSI-RS资源的周期P(比如P=10ms)要长,UE反馈CSI的时候只可以使用配置给信道测量的CSI-RS的实际周期P1的子帧。这种方式比较适用于周期性反馈CSI。比如UE需要在上行子帧n发送CSI,CSI reference resource对应于下行子帧n-k,k>=0,那么UE必须使用不晚于CSI reference resource的包含CSI-RS的周期为P1的子帧进行信道测量。另外,eNB也可以通过高层半静态信令或者是动态信令配置UE用来测量信道使用的CSI-RS子帧的数量N,则UE反馈一个CSI的时候,只可以用不多于N个CSI-RS子帧进行测量。以上两种方法还可以配合实施,比如eNB可以配置UE使用实际周期为P1=40ms 的CSI进行测量,每个CSI测量UE只允许使用不超过N=2个CSI-RS子帧,则UE在实际测量CSI时候应该使用不晚于CSI reference resource的不多于2个周期为P1=40ms的子帧进行测量。另外,eNB可以将CSI-RS子帧分为几组子帧子集配置给UE,针对一个CSI反馈,eNB配置UE使用哪一个子帧子集进行CSI测量。这种方式适用于周期性CSI反馈,也适用于非周期性反馈。
作为另外一种例子,eNB可以将CSI-RS子帧分为四组子帧子集配置给UE,针对一个CSI反馈,PDCCH中的2-bit trigger field配置UE使用哪一个子帧子集进行CSI测量,比如2-bit field为1,则测量第一个CSI-RS子帧子集中不晚于PDCCH所在子帧的CSI-RS子帧,如果2-bit field为2,则测量第二个CSI-RS子帧子集中不晚于PDCCH所在子帧的CSI-RS子帧。
本申请实施例提供的方法在UE侧的实现方式如图5所示,具体包括如下操作:
步骤500、接收信道测量子帧指示信息;
步骤510、根据接收到的信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量。
UE侧实现方式中存在与网络侧相同的技术特征,此处不再赘述。
较佳地,同一个导频资源所在的不同子帧上采用不同的波束赋形矩阵进行波束赋形
较佳地,导频资源的数量小于波束赋形矩阵的数量。
较佳地,步骤510包括:根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量子帧用于指示所述导频资源所在的子帧中可以用于进行信道测量的子帧;
在确定的子帧上进行信道测量。
根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
较佳地,根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干 可以用于进行信道测量的子帧的子集。
较佳地,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。如激发反馈信令。
下面以3D MIMO***中,基站和UE侧配合实施实现垂直波束赋形为例,对本申请实施例提供的技术方案进行举例说明。
基站配置一个CSI-RS资源给UE,并通过高层信令将该CSI-RS资源的配置信息发送给该UE,该配置信息中至少包括该CSI-RS资源的子帧周期和子帧偏移量。
在不同的CSI-RS发送子帧(即CSI-RS资源所在的子帧),基站对发送的CSI-RS采用不同的垂直波束赋形矩阵进行垂直波束赋形。每个CSI-RS发送子帧上所采用的垂直波束赋形矩阵从基站所有垂直波束赋形矩阵中采用遍历的方法确定。由此,虽然UE只是被配置一个CSI-RS资源,但是该CSI-RS资源所在的不同子帧中,UE可以测量不同垂直波束赋形后的信道状态。
UE周期性或非周期性地反馈CSI和/或RSRP,每个CSI和/或RSRP反馈在时间上都对应一个单独的子帧,也针对一个单独的采用垂直波束赋形后CSI-RS发送子帧。由此,根据UE发送回来的CSI和/或RSRP,基站可以得到针对不同垂直波束赋形后的信号强度与信道参数信息。基站根据该信息,可以判断最佳垂直波束赋形矩阵。
假设基站有四个垂直波束赋形矩阵{V1,V2,V3,V4}可以选择。如图6所示,在CSI-RS发送子帧N,基站采用V1对CSI-RS赋形,在CSI-RS发送子帧N+a+b,基站采用V2对CSI-RS赋形,由此类推。在CSI-RS发送子帧N,UE测量对应垂直波束赋形矩阵V1的CSI-RS,然后在子帧N+a中反馈。其中,a和b是不小于0的整数,且a+b>=1。另外需要注意的是,在图6所示的示例中,反馈都是在CSI-RS发送后的a个子帧进行,但是在实际***中,反馈子帧和其对应的CSI-RS发送子帧之间的间隔是可以变化的。比如不同的CSI-RS发送子帧与对应的反馈子帧的时间间隔都可以不同。关于反馈配置,图6中每一个CSI和/或RSRP都是周期性反馈。在实际***中,也可以令每一个CSI和/或RSRP使用非周期性反馈,或者也可以令某些CSI和/或RSRP被配置为周期性反馈,其他CSI和/或RSRP被配置为非周期性反馈,由基站在需要的时候激发。对于周期性反馈的CSI和/或RSRP,每个CSI和/或RSRP反馈的周期和子帧偏移量等可以独立配置。另外,也可以将多个CSI-RS发送子帧的测量结果放在同一个反馈子帧中反馈,使用更大容量的物理上行控制信道(PUCCH)或者使用物理上行共享信道(PUSCH)。应当指出的是,图6中的实例仅为一种可能的例子,本申请实施例的关键点在于,虽然基站给UE配置了一个CSI-RS资源,通过在该CSI-RS资源在不同的CSI-RS发送子帧上采用不同的垂直波束赋形矩阵,UE会上报对应于不同的垂直维度波束赋形矩阵的信息(CSI和/或RSRP),使得基站得到对应于不同垂直波束赋形后的信道信息。
上述处理过程以垂直波束赋形为例进行说明,本申请的方法同样可以用于水平波束赋形,方法相同,不再赘述。
由此可见,在子帧N+4a+3b末尾处,基站得到完整的针对所有垂直波束赋形矩阵的测量结果信息。基站由此可以选择最佳的垂直波束赋形矩阵。由子帧N+4a+3b开始,基站可以继续采用同样的垂直波束赋形矩阵的遍历模式,如图6所示,但这使得针对最佳垂直波束赋形矩阵的CSI反馈周期实际增大了四倍。另一种方法,则由子帧N+4a+3b开始,基站在每个CSI-RS发送子帧都采用选择出来的最佳垂直波束赋形矩阵,如图7所示。即由此开始,每个反馈的CSI都是针对最佳垂直波束赋形矩阵的CSI。
需要指出的是,本申请实施例提供的方法对于基站配置了多个导频资源的情况依然可用。每个配置的导频资源可以在不同的子帧采用不用的波束赋形矩阵,每个导频资源所在的子帧所采用的波束赋形矩阵的循环模式可以由基站来配置。
基于与方法同样的发明构思,本申请实施还提供一种导频发送装置,如图8所示,包括:
导频信号发送模块801,用于在同一导频资源所在的各个子帧上发送导频信号;
配置模块802,用于向用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧。
本申请实施例提供的技术方案,在同一导频资源所在的各个子帧上发送导频信号,因此,可以根据实际需要灵活配置导频资源的数量,从而满足实际传输需求,也减少了导频资源的开销,提高***性能。由于减少了导频资源,因此,UE的导频反馈开销也减少了。如果仅配置一个导频资源,则导频开销将大大减小。
较佳地,还包括波束赋形模块,用于:
采用不同的波束赋形矩阵在同一个导频资源所在的不同子帧进行波束赋形。
较佳地,导频资源的数量小于波束赋形矩阵的数量。
较佳地,所述配置模块用于:
向所述用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
较佳地,所述配置模块用于:
向所述用户设备指示信道测量周期和子帧偏移,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,所述配置模块用于:
向所述用户设备指示可以用于进行信道测量的子帧的子集,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,向所述用户设备指示可以用于进行信道测量的子帧的子集时,所述配置模块用于:
通过动态信令向所述用户设备指示可以用于进行信道测量的子帧的子集。
较佳地,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。
较佳地,还包括波束赋形矩阵选择模块,用于根据所述用户设备进行信道测量后反馈的测量结果,从所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
较佳地,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
较佳地,获取所采用的全部波束赋形矩阵对应的测量结果之前,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;获取所采用的全部波束赋形矩阵对应的测量结果之后,同一个导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
较佳地,所述测量结果包括所述用户设备在预定时间段内对各个导频资源所在的各个子帧进行信道测量的测量值。
基于与方法同样的发明构思,本申请实施还提供一种基站900,如图9所示,包括:
处理器901,该处理器901被配置为执行下列功能的计算机程序:在同一导频资源所在的各个子帧上发送导频信号;向用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧;
存储器902,该存储器902被配置为保存上述计算机程序的代码。
本申请实施例提供的技术方案,在同一导频资源所在的各个子帧上发送导频信号,因此,可以根据实际需要灵活配置导频资源的数量,从而满足实际传输需求,也减少了导频资源的开销,提高***性能。由于减少了导频资源,因此,UE的导频反馈开销也减少了。如果仅配置一个导频资源,则导频开销将大大减小。
较佳地,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。
较佳地,处理器901具体被配置为执行具备下列功能的计算机程序:采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号;存储器902还被配置为保存上述计算机程序的代码。
较佳地,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
较佳地,获取所采用的全部波束赋形矩阵对应的测量结果之前,同一个导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;获取所采用的全部波束赋形矩阵对应的测量结果之后,同一个导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
较佳地,所述测量结果包括所述用户设备在预定时间段内对各个导频资源所在的各个子帧进行信道测量的测量值。
基于与方法同样的发明构思,本申请实施例还提供一种信道测量装置,如图10所示,包括:
接收模块1001,用于接收信道测量子帧指示信息;
导频测量模块1002,用于根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量。
较佳地,导频资源的数量小于波束赋形矩阵的数量。
较佳地,所述导频测量模块用于:
根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量子帧用于指示所述导频资源所在的子帧中可以用于进行信道测量的子帧;
在确定的子帧上进行信道测量。
较佳地,根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
较佳地,根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
较佳地,根据接收到的信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
较佳地,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。
基于与方法同样的发明构思,本申请实施例还提供一种用户设备1100,如图11所示,包括:
处理器1101,该处理器1101被配置为执行具备下列功能的计算机程序:根据接收到的信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量;
存储器1102,该存储器1102被配置为保存上述计算机程序的代码。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种导频发送方法,其特征在于,包括:
    在同一个导频资源所在的各个子帧中发送导频信号;
    向用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧。
  2. 根据权利要求1所述的方法,其特征在于,在同一个导频资源所在的各个子帧中发送导频信号之前,还包括:采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;
    在同一个导频资源所在的各个子帧中发送导频信号,包括:在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号。
  3. 根据权利要求1所述的方法,其特征在于,导频资源的数量小于波束赋形矩阵的数量。
  4. 根据权利要求1所述的方法,其特征在于,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧,包括:
    向所述用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
  5. 根据权利要求1或4所述的方法,其特征在于,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧,包括:
    向所述用户设备指示信道测量周期和子帧偏移,所述信道测量周期为所述导频资源的周期的整数倍。
  6. 根据权利要求1所述的方法,其特征在于,向所述用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧,包括:
    向所述用户设备指示可以用于进行信道测量的子帧的子集,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
  7. 根据权利要求6所述的方法,其特征在于,向所述用户设备指示可以用于进行信道测量的子帧的子集,包括:
    通过动态信令向所述用户设备指示可以用于进行信道测量的子帧的子集。
  8. 根据权利要求1~4任一项所述的方法,其特征在于,该方法还包括:
    根据所述用户设备进行信道测量后反馈的测量结果,从所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
  10. 根据权利要求8所述的方法,其特征在于,获取所采用的全部波束赋形矩阵对应的测量结果之前,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;
    获取所采用的全部波束赋形矩阵对应的测量结果之后,所述导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
  11. 根据权利要求1~4任一项所述的方法,其特征在于,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。
  12. 根据权利要求11所述的方法,其特征在于,为所述用户设备配置的导频资源的数量为1。
  13. 根据权利要求1~4任一项所述的方法,其特征在于,所述测量结果包括所述用户设备在预定时间段内对各个导频资源所在的各个子帧进行信道测量的测量值。
  14. 一种信道测量方法,其特征在于,包括:
    接收信道测量子帧指示信息;
    根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量。
  15. 根据权利要求14所述的方法,其特征在于,同一个导频资源所在的不同子帧上采用不同的波束赋形矩阵进行波束赋形。
  16. 根据权利要求14所述的方法,其特征在于,导频资源的数量小于波束赋形矩阵的数量。
  17. 根据权利要求14所述的方法,其特征在于,根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
    根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
  18. 根据权利要求14或17所述的方法,其特征在于,根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
    根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
  19. 根据权利要求17所述的方法,其特征在于,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,包括:
    根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
  20. 根据权利要求19所述的方法,其特征在于,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。
  21. 一种导频发送装置,其特征在于,包括:
    导频信号发送模块,用于在同一导频资源所在的各个子帧上发送导频信号;
    配置模块,用于向用户设备指示所述导频资源所在的子帧中可以用于进行信道测量的子帧。
  22. 根据权利要求21所述的装置,其特征在于,还包括波束赋形模块,用于:
    采用不同的波束赋形矩阵在所述导频资源所在的不同子帧进行波束赋形;
    所述导频信号发送模块具体用于:在所述导频资源所在的各个子帧上发送经过波束赋形的导频信号。
  23. 根据权利要求21所述的装置,其特征在于,导频资源的数量小于波束赋形矩阵的数量。
  24. 根据权利要求21所述的装置,其特征在于,所述配置模块用于:
    向所述用户设备指示所述导频资源所在子帧中可以用于进行信道测量的子帧的数量。
  25. 根据权利要求21或24所述的装置,其特征在于,所述配置模块用于:
    向所述用户设备指示信道测量周期和子帧偏移,所述信道测量周期为所述导频资源的周期的整数倍。
  26. 根据权利要求21所述的装置,其特征在于,所述配置模块用于:
    向所述用户设备指示可以用于进行信道测量的子帧的子集,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
  27. 根据权利要求26所述的装置,其特征在于,向所述用户设备指示可以用于进行信道测量的子帧的子集时,所述配置模块用于:
    通过动态信令向所述用户设备指示可以用于进行信道测量的子帧的子集。
  28. 根据权利要求21~24任一项所述的装置,其特征在于,还包括波束赋形矩阵选择模块,用于根据所述用户设备进行信道测量后反馈的测量结果,从所采用的波束赋形矩阵中选择至少一个波束赋形矩阵。
  29. 根据权利要求28所述的装置,其特征在于,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过循环遍历所述导频资源对应的各个波束赋形矩阵的方式确定的。
  30. 根据权利要求28所述的装置,其特征在于,获取所采用的全部波束赋形矩阵对应的测量结果之前,所述导频资源所在的不同子帧上采用的波束赋形矩阵是通过遍历所述导频资源对应的各个波束赋形矩阵的方式确定的;
    获取所采用的全部波束赋形矩阵对应的测量结果之后,所述导频资源所在的不同子帧上采用的波束赋形矩阵为选择的波束赋形矩阵。
  31. 根据权利要求21~24任一项所述的装置,其特征在于,为所述用户设备配置的导频资源的数量小于所采用的波束赋形矩阵的数量。
  32. 根据权利要求31所述的装置,其特征在于,为所述用户设备配置的导频资源的数量为1。
  33. 根据权利要求21~24任一项所述的装置,其特征在于,所述测量结果包括所述用户设备在预定时间段内对各个导频资源所在的各个子帧进行信道测量的测量值。
  34. 一种信道测量装置,其特征在于,包括:
    接收模块,用于接收信道测量子帧指示信息;
    导频测量模块,用于根据所述信道测量子帧指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧,并在确定的子帧上进行信道测量。
  35. 根据权利要求34所述的装置,其特征在于,同一个导频资源所在的不同子帧上采用不同的波束赋形矩阵进行波束赋形。
  36. 根据权利要求34所述的装置,其特征在于,导频资源的数量小于波束赋形矩阵的数量。
  37. 根据权利要求34所述的装置,其特征在于,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
    根据所述导频资源所在子帧中可以用于进行信道测量的子帧的数量的指示信息,确定导频资源所在的子帧中用于进行信道测量的子帧。
  38. 根据权利要求34或37所述的装置,其特征在于,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
    根据接收到的信道测量周期和子帧偏移确定导频资源所在的子帧中用于进行信道测量的子帧,所述信道测量周期为所述导频资源的周期的整数倍。
  39. 根据权利要求37所述的装置,其特征在于,根据所述信道测量子帧指示信息确定导频资源所在的子帧中用于进行信道测量的子帧时,所述导频测量模块用于:
    根据接收到的可以用于进行信道测量的子帧的子集的指示信息确定导频资源所在的子帧中用于进行信道测量的子帧,其中,所述导频资源所在的导频信号子帧被划分为若干可以用于进行信道测量的子帧的子集。
  40. 根据权利要求39所述的装置,其特征在于,所述可以用于进行信道测量的子帧的子集的指示信息携带在动态信令中。
PCT/CN2015/085596 2014-07-30 2015-07-30 一种导频发送方法、信道测量方法及装置 WO2016015666A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410371543 2014-07-30
CN201410371543.4 2014-07-30
CN201510104484.9 2015-03-10
CN201510104484.9A CN105322995B (zh) 2014-07-30 2015-03-10 Mimo***中的导频发送方法、信道测量方法及装置

Publications (1)

Publication Number Publication Date
WO2016015666A1 true WO2016015666A1 (zh) 2016-02-04

Family

ID=55216784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085596 WO2016015666A1 (zh) 2014-07-30 2015-07-30 一种导频发送方法、信道测量方法及装置

Country Status (2)

Country Link
CN (1) CN105322995B (zh)
WO (1) WO2016015666A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294644A (zh) * 2016-03-31 2017-10-24 株式会社Ntt都科摩 参考信号发送方法、信道状态信息反馈方法、基站和移动台
WO2017193278A1 (zh) * 2016-05-10 2017-11-16 富士通株式会社 Csi-rs的配置方法、csi的反馈方法、装置以及通信***
CN107733486B (zh) * 2016-08-12 2021-07-30 中兴通讯股份有限公司 混合波束赋形***中的信息传输方法及装置
CN107733485B (zh) * 2016-08-12 2021-09-03 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN107769826A (zh) * 2016-08-19 2018-03-06 索尼公司 无线通信***中的电子设备和方法以及无线通信***
CN107888264B (zh) * 2016-09-30 2022-12-30 中兴通讯股份有限公司 信道信息的反馈方法及装置
CN108012274B (zh) * 2016-11-01 2019-10-29 上海朗帛通信技术有限公司 一种被用于范围扩展的ue、基站中的方法和设备
CN110299935B (zh) * 2018-03-21 2022-11-08 中兴通讯股份有限公司 一种通信方法、基站、终端、存储介质、电子装置
WO2021155609A1 (zh) * 2020-02-07 2021-08-12 华为技术有限公司 信号发送方法及装置
CN114554513B (zh) * 2021-12-30 2024-06-11 中国电信股份有限公司 波束赋形参数的确定方法、装置及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315871A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及***
CN102368697A (zh) * 2011-09-30 2012-03-07 中兴通讯股份有限公司 干扰测量信令通知、干扰测量及反馈方法及其装置
WO2014003384A1 (ko) * 2012-06-24 2014-01-03 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
CN103687010A (zh) * 2012-08-30 2014-03-26 电信科学技术研究院 一种传输参考信号的方法、装置及***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885348B2 (en) * 2006-02-09 2011-02-08 Intel Corporation MIMO communication system and method for beamforming using polar-cap codebooks
US7720470B2 (en) * 2006-06-19 2010-05-18 Intel Corporation Reference signals for downlink beamforming validation in wireless multicarrier MIMO channel
CN101877865B (zh) * 2009-04-30 2014-06-11 中兴通讯股份有限公司 发送测量参考信号的方法、***以及基站和中继站
CN102938688B (zh) * 2011-08-15 2015-05-27 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、***及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315871A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及***
CN102368697A (zh) * 2011-09-30 2012-03-07 中兴通讯股份有限公司 干扰测量信令通知、干扰测量及反馈方法及其装置
WO2014003384A1 (ko) * 2012-06-24 2014-01-03 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
CN103687010A (zh) * 2012-08-30 2014-03-26 电信科学技术研究院 一种传输参考信号的方法、装置及***

Also Published As

Publication number Publication date
CN105322995A (zh) 2016-02-10
CN105322995B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2016015666A1 (zh) 一种导频发送方法、信道测量方法及装置
US10396964B2 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system using multiple antennas
TWI516141B (zh) Three - dimensional channel measurement resource allocation and quality measurement method and equipment
JP6732048B2 (ja) マルチ解像度csiフィードバック
JP6573610B2 (ja) ユーザ装置および基地局
EP3337053B1 (en) Communication technique using csi-rs in mobile communication system
KR102520403B1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
CN105009494B (zh) 一种信道状态信息的反馈方法及装置
CN114221685B (zh) 用于在无线通信***中发送和接收反馈信号的方法和设备
CN110832803B (zh) 用于多用户多入多出的干扰测量和信道状态信息反馈
US9344164B2 (en) Method, system and device for feeding back and receiving PMI
WO2016041368A1 (zh) 下行导频的发送方法、检测方法、装置及基站、终端
TWI587653B (zh) Large - scale digital - analog hybrid antenna and channel status information feedback method and device
WO2017167160A1 (zh) 基于信道状态信息的处理方法、相关设备和计算机存储介质
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
CN116015378A (zh) 信道状态信息的反馈、接收方法及装置、设备、存储介质
JP2017521896A (ja) Mimoのための周期および非周期チャネル状態情報(csi)報告
TW201409961A (zh) 一種傳輸參考信號的方法、裝置及系統
CN102957467B (zh) 一种下行***中多天线的信号处理方法及***
TWI602403B (zh) A channel status information feedback method, a downlink reference signal method and device
WO2017101651A1 (zh) 信道状态信息报告实例的确定方法及装置
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
US10660075B2 (en) Channel state information CSI sending method, channel state information CSI receiving method, terminal, and base station
KR20150009566A (ko) 협력 다중포인트 전송에서 피드백을 보고하기 위한 방법 및 시스템
WO2016045535A1 (zh) 信道状态信息反馈方法、设备及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827202

Country of ref document: EP

Kind code of ref document: A1