WO2016039080A1 - Functional laminate film and method for producing functional laminate film - Google Patents

Functional laminate film and method for producing functional laminate film Download PDF

Info

Publication number
WO2016039080A1
WO2016039080A1 PCT/JP2015/073048 JP2015073048W WO2016039080A1 WO 2016039080 A1 WO2016039080 A1 WO 2016039080A1 JP 2015073048 W JP2015073048 W JP 2015073048W WO 2016039080 A1 WO2016039080 A1 WO 2016039080A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional
layer
gas barrier
functional layer
meth
Prior art date
Application number
PCT/JP2015/073048
Other languages
French (fr)
Japanese (ja)
Inventor
英二郎 岩瀬
内海 京久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016547794A priority Critical patent/JP6316443B2/en
Publication of WO2016039080A1 publication Critical patent/WO2016039080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a functional laminate film and a method of producing a functional laminate film.
  • LCDs Liquid crystal display devices
  • LCDs consume less power, and their use is expanding year by year as a space-saving image display device. Further, in liquid crystal display devices in recent years, further power saving, color reproducibility improvement and the like are required as LCD performance improvement.
  • a quantum dot is a state of electrons whose movement direction is restricted in all three dimensions, and when semiconductor nanoparticles are three-dimensionally surrounded by a high potential barrier, these nanoparticles It becomes a dot.
  • Quantum dots exhibit various quantum effects. For example, the “quantum size effect” occurs in which the density of states (energy levels) of electrons is discretized. According to this quantum size effect, it is possible to control the light absorption wavelength and the light emission wavelength by changing the size of the quantum dot.
  • quantum dots are dispersed in a resin or the like and, for example, are disposed and used as a quantum dot film for wavelength conversion between a backlight and a liquid crystal panel.
  • excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited to emit fluorescence.
  • white light can be embodied by emitting light with a narrow half-width of red light, green light, and blue light. Since the half width of the fluorescence due to the quantum dot is narrow, it is possible to make the white light obtained by selecting the wavelength highly bright or to be designed to be excellent in color reproducibility.
  • quantum dots are easily degraded by moisture and oxygen, and there is a problem that the light emission intensity is reduced by the photooxidation reaction. Therefore, a gas barrier film is laminated
  • a gas barrier film is laminated
  • a gas barrier film is laminated
  • only protecting both main surfaces of the quantum dot layer with the gas barrier film causes a problem that moisture and oxygen infiltrate from the end face not protected by the gas barrier film and the quantum dots are degraded.
  • Patent Document 1 describes a display backlight unit comprising a remote phosphor film comprising a light emitting quantum dot (QD) population, sandwiching the QD phosphor material with two gas barrier films, and two gas barrier films A configuration for narrowing and sealing the end is described.
  • oxides such as a silicon oxide, a titanium oxide, and aluminum oxide, are described as a formation material of the barrier layer of a gas barrier film.
  • the quantum dot layer is required to be able to express a desired wavelength conversion function and to be formed as thin as possible. Furthermore, in the LCD, it is required to further increase the ratio of the display area (light emitting area) to the entire display device, and further narrowing of the frame portion is required.
  • the gas barrier film is narrowed to seal the end in order to reduce the infiltration of moisture and oxygen from the end of the quantum dot layer, the thickness of the quantum dot layer at the end becomes thinner.
  • its function can not be sufficiently expressed, and the size of the area that can be effectively used may be reduced, and the frame portion may be enlarged.
  • a barrier layer made of an oxide such as silicon oxide, titanium oxide, or aluminum oxide is hard and brittle, the barrier layer may have a barrier layer using such an oxide as a forming material. As a result, there is a problem that the gas barrier property is lowered and it is impossible to suppress the infiltration of water and oxygen into the quantum dot layer.
  • the object of the present invention is to solve the problems of the prior art as described above, and it is possible to suppress the infiltration of water and oxygen from the end face of the functional layer to prevent the deterioration of the functional layer, and to have gas barrier properties. It is an object of the present invention to provide a functional laminated film and a method for producing a functional laminated film which can increase the proportion of the area which can be effectively used as a functional layer without lowering the
  • the inventor of the present invention has a functional layer, and two gas barrier films having an inorganic layer, which are respectively laminated on one main surface and the other main surface of the functional layer.
  • the inorganic layer contains silicon nitride
  • the functional layer has at the end a throttling area thinner than the average thickness of the functional layer, and the throttling area is 10 mm from the end face of the functional layer
  • the thickness at the end face being the thinnest, it is possible to suppress the infiltration of moisture or oxygen from the end face of the functional layer, and prevent the deterioration of the functional layer, and the gas barrier property
  • the present invention the inventors have found that it is possible to increase the proportion of the area that can be effectively used as a functional layer without lowering the That is, the present invention provides a functional laminated film having the following constitution and a method for producing the same.
  • the inorganic layer comprises silicon nitride and
  • the functional layer has at the end a throttling area that is thinner than the average thickness of the functional layer,
  • the squeeze area is an area within 10 mm or less from the end face of the functional layer, and the functional laminated film having the thinnest thickness at the end face.
  • the gas barrier film has a gas barrier support and an inorganic layer
  • FIG. 1 is a cross-sectional view conceptually showing one example of the functional laminate film of the present invention. It is sectional drawing which shows notionally an example of the gas barrier film used for a functional laminated film. It is sectional drawing which expands and shows the edge part of the functional laminated film shown in FIG. It is an expanded sectional view which shows notionally another example of the functional laminated film of this invention.
  • FIGS. 5 (A) to 5 (C) are cross-sectional views conceptually showing one example of a functional laminate film, for explaining the manufacturing method of the present invention.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • FIG. 1 is a cross-sectional view conceptually showing one example of the functional laminate film of the present invention.
  • the functional laminated film 10 shown in FIG. 1 has two gas barrier films 14 laminated respectively on both main surfaces of the functional layer 12 and the functional layer 12, and the gap between the gas barrier films 14 is narrowed at the end.
  • the thickness of the functional layer 12 is smaller than that of the central portion.
  • the functional layer 12 is a layer for expressing a desired function such as wavelength conversion. As shown in FIG. 1, the functional layer 12 has a substantially uniform thickness in the central portion, and has an area in which the thickness gradually decreases at the end, and has a shape in which the thickness at the end is the smallest. The gradually thinning area at this end is the throttling area in the present invention. This point will be described in detail later.
  • the functional layer 12 is a quantum dot layer formed by dispersing a large number of quantum dots in a matrix such as a resin, and has a function of converting the wavelength of light incident on the functional layer 12 and emitting it.
  • the functional layer 12 when blue light emitted from a backlight (not shown) is incident on the functional layer 12, the functional layer 12 has a wavelength of at least a part of the blue light as red light or green light due to the effect of quantum dots contained therein. Convert and emit.
  • blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm
  • green light is light having an emission center wavelength in a wavelength band of 500 nm to 600 nm
  • red light Is light having an emission center wavelength in a wavelength band of more than 600 nm and not more than 680 nm.
  • the wavelength conversion function expressed by the quantum dot layer is not limited to the configuration for wavelength converting blue light to red light or green light, and it is possible to convert at least a part of incident light to light of different wavelengths. Just do it.
  • the quantum dot is excited at least by the incident excitation light to emit fluorescence.
  • the type of quantum dot contained in the quantum dot layer is not particularly limited, and various known quantum dots may be appropriately selected according to the required wavelength conversion performance and the like.
  • quantum dots With regard to quantum dots, reference can be made to, for example, JP-A-2012-169271 paragraphs 0060 to 0066, but the present invention is not limited to those described herein.
  • a quantum dot a commercial item can be used without any restriction.
  • the emission wavelength of the quantum dot can usually be adjusted by the composition and size of the particle.
  • the quantum dots are preferably distributed uniformly in the matrix, but may be distributed in the matrix with bias. Further, only one type of quantum dot may be used, or two or more types may be used in combination. When two or more types are used in combination, two or more types of quantum dots having different wavelengths of emitted light may be used.
  • known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of 600 nm to 680 nm, a quantum dot (B) having an emission center wavelength in a wavelength range of 500 nm to 600 nm ), A quantum dot (C) having an emission center wavelength in a wavelength band of 400 nm to 500 nm, the quantum dot (A) is excited by excitation light to emit red light, and the quantum dot (B) is green light The quantum dot (C) emits blue light.
  • White light can be embodied by the green light being emitted and the blue light transmitted through the quantum dot layer.
  • White light can be embodied by the green light emitted by the light emitting diode and the blue light emitted by the quantum dot (C).
  • quantum rod having a rod-like shape and having directivity and emitting polarized light may be used.
  • the type of matrix of the quantum dot layer there is no particular limitation on the type of matrix of the quantum dot layer, and various resins used in known quantum dot layers can be used.
  • polyester resins for example, polyethylene terephthalate, polyethylene naphthalate
  • (meth) acrylic resins for example, polyvinyl chloride resins, polyvinylidene chloride resins and the like can be mentioned.
  • a curable compound having a polymerizable group can be used as a matrix.
  • the type of the polymerizable group is not particularly limited, but is preferably a (meth) acrylate group, a vinyl group or an epoxy group, more preferably a (meth) acrylate group, and still more preferably an acrylate group.
  • the respective polymerizable groups may be the same or different.
  • a resin containing the following first polymerizable compound and second polymerizable compound can be used as a matrix.
  • the first polymerizable compound is one or more selected from the group consisting of a bifunctional or higher functional (meth) acrylate monomer, and a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group.
  • a compound Preferably it is a compound.
  • examples of the difunctional (meth) acrylate monomer include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate hydroxypivalate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are mentioned as preferable examples.
  • bifunctional or higher functional (meth) acrylate monomers as the trifunctional or higher functional (meth) acrylate monomers, ECH modified glycerol tri (meth) acrylate, EO modified glycerol tri (meth) acrylate, PO modified glycerol tri (meth) ) Acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO modified phosphate triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) a Lilate, dipentaerythritol penta (meth) a Li
  • Examples of the monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group include aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether; poly
  • the monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method, for example, Maruzen KK Publishing, Fourth Edition Experimental Chemistry Lecture 20 Organic Synthesis II, 213 ⁇ , 1992 Ed. By Alfred Hasfner, The chemistry of heterocyclic compounds-Small Ring Heterocycles part 3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Bonding, Vol. 29, No. 12, 32, 1985, Yoshimura, Bonding, Volume 30, No. 5, 42, 1986, Yoshimura, Bonding, Volume 30, No. 7, 42, 1986, JP-A-11-100378, Patent No. 2906245, Patent No. 2926262, etc. Can be synthesized.
  • the second polymerizable compound has a functional group having hydrogen bonding property in the molecule, and has a polymerizable group capable of polymerizing reaction with the first polymerizable compound.
  • a functional group which has hydrogen bondability a urethane group, a urea group, or a hydroxyl group etc. are mentioned.
  • the polymerizable group capable of polymerizing reaction with the first polymerizable compound for example, when the first polymerizable compound is a bifunctional or more (meth) acrylate monomer, it may be a (meth) acryloyl group, and When the polymerizable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
  • diisocyanates such as TDI, MDI, HDI, IPDI, HMDI, etc. and poly (propylene oxide) diol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A, ethoxylated bisphenol Reaction of S spiro glycol, caprolactone modified diol, polyol such as carbonate diol, and hydroxy acrylate such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycidol di (meth) acrylate, pentaerythritol triacrylate Monomers and oligomers obtained by the reaction, as described in JP-A-2002-265650, JP-A-2002-355936, and JP-A-2002-06723.
  • diisocyanates such as TDI, MDI, HDI, IPDI, HMDI, etc. and poly (propylene oxide) diol, poly (t
  • polyfunctional urethane monomers described in JP-like it can be mentioned polyfunctional urethane monomers described in JP-like. Specifically, adducts of TDI and hydroxyethyl acrylate, adducts of IPDI and hydroxyethyl acrylate, adducts of HDI and pentaerythritol triacrylate (PETA), and adducts of TDI and PETA remained.
  • Compounds obtained by reacting isocyanate and dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, adducts of pentaerythritol, TDI and hydroxyethyl acrylate, and the like can be mentioned, but are not limited thereto. Absent.
  • the (meth) acrylate monomer containing a urethane group examples include AH-600, AT-600, UA-306H, UA-306T, UA-306I, UA-510H, manufactured by Kyoeisha Chemical Co., Ltd. UF-8001G, DAUA-167, UA-160TM manufactured by Shin-Nakamura Chemical Co., Ltd., UV-4108F manufactured by Osaka Organic Chemical Industry Co., Ltd., UV-4117F, etc. may be mentioned. These can be used singly or in combination of two or more.
  • the compound synthesize combined by reaction of the compound which has an epoxy group, and (meth) acrylic acid can be mentioned.
  • Representative ones are classified into bisphenol A type, bisphenol S type, bisphenol F type, epoxidized oil type, phenol novolak type and alicyclic type according to the compound having an epoxy group.
  • (meth) acrylate obtained by reacting (meth) acrylic acid with an adduct of bisphenol A and epichlorohydrin, and epichlorohydrin with phenol novolak reacted with (meth) acrylic acid (Meth) acrylate, (meth) acrylate obtained by reacting (meth) acrylic acid with an adduct of bisphenol S and epichlorohydrin, and (meth) acrylic acid with an adduct of bisphenol S and epichlorohydrin ( Mention may be made of (meth) acrylates, (meth) acrylates obtained by reacting (meth) acrylic acid with epoxidized soybean oil, and the like.
  • (meth) acrylate monomer containing a hydroxyl group although the (meth) acrylate monomer etc. which have a carboxy group or a phosphoric acid group at the terminal can be mentioned, it is not limited to these.
  • the second polymerizable compound containing a hydroxyl group examples include epoxy esters manufactured by Kyoeisha Chemical Co., Ltd., M-600A, 40 EM, 70 PA, 200 PA, 80 MFA, 300 M, 3002 A, 3000 MK, 3000 A, 4-hydroxybutyl acrylate manufactured by Nippon Kasei Co., Ltd., monofunctional acrylate A-SA manufactured by Shin-Nakamura Chemical Co., Ltd., monofunctional methacrylate SA, monofunctional acrylate ⁇ -carboxyethyl acrylate manufactured by Daicel Ornex Co., Ltd. And JPA-514 manufactured by Johoku Chemical Industry Co., Ltd. These can be used singly or in combination of two or more.
  • the mass ratio of the first polymerizable compound to the second polymerizable compound may be 10:90 to 99: 1, preferably 10:90 to 90:10. It is also preferable that the content of the first polymerizable compound is larger than the content of the second polymerizable compound, specifically, (content of the first polymerizable compound) / (second polymerizable compound) The content is preferably 2 to 10.
  • the matrix further contains a monofunctional (meth) acrylate monomer.
  • a monofunctional (meth) acrylate monomer acrylic acid and methacrylic acid, derivatives thereof, more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned.
  • the compound is mentioned to the following as those specific examples, this invention is not limited to this.
  • the monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, preferably 50 to 150 parts by mass, per 100 parts by mass of the total mass of the first polymerizable compound and the second polymerizable compound. More preferably, it is included.
  • the first polymerizable compound, the second polymerizable compound, and the monofunctional (meth) acrylate monomer have a long-chain alkyl group having 4 to 30 carbon atoms.
  • the long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dot is improved. As the dispersibility of the quantum dots is improved, the amount of light orthogonal to the light conversion layer from the light conversion layer is increased, which is effective to improve the front luminance and the front contrast.
  • the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate and oleyl (meth) acrylate.
  • lauryl (meth) acrylate, oleyl (meth) acrylate and stearyl (meth) acrylate are particularly preferable.
  • trifluoroethyl (meth) acrylate pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluoro (perfluoro)
  • a compound having a fluorine atom such as hexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and the like may be included.
  • the total amount of resin to be a matrix in the quantum dot layer is not particularly limited, but it is preferably 90 to 99.9 parts by mass, and 92 to 99 parts by mass with respect to 100 parts by mass of the quantum dot layer. It is more preferable that it is a part.
  • the thickness of the quantum dot layer is not particularly limited, but is preferably 5 ⁇ m to 200 ⁇ m, and more preferably 10 ⁇ m to 150 ⁇ m in terms of handleability and light emission characteristics.
  • the above thickness is intended to be an average thickness, and the average thickness is calculated by measuring the thickness of any 10 points or more of any 10 points or more in the region 10 mm from the end face of the quantum dot layer. Find on average. Further, it is preferable that the thickness of the region other than the squeeze region of the functional layer 12, that is, the inner side of the squeeze region is in the range of ⁇ 2% of the above-mentioned average thickness.
  • the thickness of the area other than the aperture area By setting the thickness of the area other than the aperture area to a flat thickness of ⁇ 2%, the variation in the luminance of the light emitted from the functional layer is suppressed, and the light emission distribution of the emitted light, for example, blue light, It is preferable in that the emission distribution of red light and green light can be made uniform, and the performance can be stabilized.
  • a quantum dot layer there is no limitation in particular in the formation method of a quantum dot layer, What is necessary is just to form by a well-known method. For example, it can be formed by preparing a coating composition in which quantum dots, a resin serving as a matrix, and a solvent are mixed, and coating the coating composition on the gas barrier film 14 and curing it by UV irradiation or the like. In addition, you may add a polymerization initiator, a silane coupling agent, etc. to the coating composition used as a quantum dot layer as needed.
  • the gas barrier film 14 is a film having gas barrier properties, which is laminated on the main surface of the functional layer 12. That is, the gas barrier film 14 is a member for covering the main surface of the functional layer 12 and suppressing the infiltration of moisture and oxygen from the main surface of the functional layer 12.
  • the gas barrier film 14 preferably has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less. Further, the gas barrier film 14 preferably has an oxygen permeability of 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
  • a gas barrier film 14 having low water vapor permeability and low oxygen permeability that is, high gas barrier properties, it is possible to prevent moisture and oxygen from entering the functional layer 12 and to prevent deterioration of the functional layer 12 more suitably.
  • the water vapor transmission rate was measured by Mocon method.
  • the water vapor transmission rate exceeds the measurement limit of Mocon method, it is measured by the calcium corrosion method (the method described in JP-A-2005-283561).
  • the oxygen permeability was measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH using a measuring apparatus (manufactured by Nippon AI Co., Ltd.) by an APIMS method (atmospheric pressure ionization mass spectrometry).
  • the thickness of the gas barrier film 14 is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 55 ⁇ m.
  • the thickness of the gas barrier film 14 is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 55 ⁇ m.
  • the gas barrier film 14 has flexibility that can exhibit gas barrier properties without cracking of the inorganic layer 26 described later even after being stretched by 2.5%.
  • the water vapor transmission rate after the gas barrier film 14 is stretched 2.5% in the plane direction is preferably 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less.
  • the oxygen permeability after stretching the gas barrier film in the plane direction by 2.5% is also preferably 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
  • the width of the throttling region of the end portion described later is obtained by having sufficient flexibility such that the gas barrier properties such as water vapor permeability and oxygen permeability do not decrease. While narrowing, the thickness of the end face of the functional layer 12 can be reduced.
  • the gas barrier film 14 one having at least one organic layer and at least one inorganic layer as the gas barrier layer 22 on the gas barrier support 20 is suitably used.
  • FIG. 2 sectional drawing which represents an example of a gas barrier film notionally is shown.
  • the gas barrier film 14 shown in FIG. 2 has a gas barrier layer 22 having an inorganic layer 26 and an organic layer 24 and a gas barrier support 20 for supporting the gas barrier layer 22.
  • the gas barrier film 14 only needs to have at least one inorganic layer 26 on the gas barrier support 20, and one combination of the inorganic layer 26 and the organic layer 24 serving as the base of the inorganic layer 26 is required. It is preferable to have the above. Therefore, the gas barrier film 14 may have two combinations of the inorganic layer 26 and the organic layer 24 of the base, or may have three or more.
  • the organic layer 24 acts as a base layer for properly forming the inorganic layer 26. The larger the number of combinations of the combination of the base organic layer 24 and the inorganic layer 26, the better the gas barrier properties. A gas barrier film can be obtained.
  • the outermost surface of the gas barrier film 14 is preferably the inorganic layer 26, and the functional layer 12 is preferably laminated on the inorganic layer 26 side.
  • gas barrier support 20 of the gas barrier film 14 various known gas barrier films used as a support can be used.
  • films made of various plastics are suitably used in terms of easy thinning and weight reduction and being suitable for flexibility.
  • polyethylene polyethylene
  • PEN polyethylene naphthalate
  • PA polyethylene terephthalate
  • PVC polyvinyl chloride
  • PVA polyvinyl alcohol
  • PAN polyacritonitrile
  • PI polyimide
  • transparent polyimide polymethyl methacrylate resin
  • PC polycarbonate
  • PP polypropylene
  • PS polystyrene
  • ABS cyclic olefin copolymer
  • COC cycloolefin polymer
  • Plastic films made of COP and triacetyl cellulose
  • the material of the gas barrier support 20 it is preferable to use a material having a melting point of 230 ° C. or less and a glass transition temperature of 120 ° C. or less.
  • a material having a melting point of 230 ° C. or less and a glass transition temperature of 120 ° C. or less as the material of the gas barrier support 20, the laminate of the functional layer 12 and the gas barrier film 14 is cut in the cutting step described later.
  • the thickness of the functional layer is made smaller than the average thickness in the range of 10 mm or less from the surface to form the throttling area, the throttling area can be formed more easily by heating the blade.
  • the gas barrier support 20 has a high transmittance of ultraviolet light.
  • a coating composition to be the functional layer 12 is formed on the gas barrier film 14, and further, after the gas barrier film 14 is laminated on the coating film, ultraviolet rays are irradiated. A method of curing the coating film to form the functional layer 12 is suitably used. Therefore, it is preferable that the gas barrier support 20 sufficiently transmit ultraviolet light for irradiating the functional layer 12.
  • PET As a material of the gas barrier support 20, PET, COP, PC, PI, TAC, etc. are more preferably used from the viewpoints of melting point, glass transition temperature, and ultraviolet light transmittance.
  • the thickness of the gas barrier support 20 may be appropriately set depending on the application and size.
  • the thickness of the gas barrier support 20 is preferably about 5 ⁇ m to 100 ⁇ m.
  • the gas barrier support 20 may be provided with functions such as reflection prevention, retardation control, and light extraction efficiency improvement on the surface of such a plastic film.
  • the gas barrier layer 22 has an inorganic layer 26 mainly exhibiting gas barrier properties, and an organic layer 24 to be a base layer of the inorganic layer 26.
  • the organic layer 24 is to be a base layer of the inorganic layer 26 that mainly exhibits gas barrier properties in the gas barrier film 14.
  • various known gas barrier films used as the organic layer 24 can be used.
  • the organic layer 24 is a film containing an organic compound as a main component, and basically, one formed by crosslinking a monomer and / or an oligomer can be used.
  • the film containing an organic compound as a main component is a film containing 50% or more of an organic compound.
  • the gas barrier film 14 also functions as a cushion of the inorganic layer 26 by having the organic layer 24 to be the base. Therefore, when the inorganic layer 26 receives an impact from the outside during the cutting process to be described later, damage to the inorganic layer 26 can be prevented by the cushioning effect of the organic layer 24. Thereby, in the functional laminated film 10, the gas barrier film 14 appropriately exhibits the gas barrier performance, and the deterioration of the functional layer 12 due to water or oxygen can be suitably prevented.
  • the gas barrier film 14 includes the organic layer 24 serving as the base of the inorganic layer 26, thereby embedding the irregularities on the surface of the gas barrier support 20, foreign substances adhering to the surface, etc.
  • the film formation surface can be made appropriate.
  • a high gas barrier performance can be obtained such that the water vapor transmission rate is 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less.
  • various organic compounds can be used as a material for forming the organic layer 24.
  • polyester acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluorine resin, polyimide, fluorinated polyimide, polyamide, polyamide imide, polyether imide, cellulose acylate, polyurethane, poly Thermoplastic resins such as ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, etc. or polysiloxane, other
  • a film of an organosilicon compound is preferably exemplified. A plurality of these may be used in combination.
  • the organic layer 24 composed of a radically polymerizable compound and / or a polymer of a cationically polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • a glass transition temperature of 120 ° C. is mainly composed of acrylate and / or methacrylate monomer or oligomer polymer.
  • the above acrylic resin and methacrylic resin are suitably exemplified as the organic layer 24.
  • bifunctional or more, particularly trifunctional or more such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA) and dipentaerythritol hexa (meth) acrylate (DPHA).
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa
  • the acrylic resin and methacrylic resin which have as a main component the polymer of the monomer and oligomer of the acrylate and / or the methacrylate of these are illustrated suitably. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the inorganic layer 26 can be formed on the base having a firm skeleton, so that the inorganic layer 26 can be formed more densely and has high gas barrier properties. .
  • the thickness of the organic layer 24 is preferably 0.5 ⁇ m to 5 ⁇ m.
  • the thickness of the organic layer 24 is preferably 0.5 ⁇ m to 5 ⁇ m.
  • the thickness of the organic layer 24 is more preferably 1 ⁇ m to 5 ⁇ m.
  • the thickness of each organic layer may be the same or different.
  • the forming material of each organic layer may be same or different. However, in terms of productivity and the like, it is preferable to form all the organic layers of the same material.
  • the organic layer 24 may be formed by a known method such as a coating method or flash evaporation. Further, in order to improve the adhesion to the inorganic layer 26 which is the lower layer of the organic layer 24, the organic layer 24 preferably contains a silane coupling agent.
  • An inorganic layer 26 is formed on the organic layer 24 with the organic layer 24 as a base.
  • the inorganic layer 26 is a film containing an inorganic compound as a main component, and the gas barrier film 14 mainly exhibits gas barrier properties.
  • the formation material of the inorganic layer 26 contains silicon nitride as a main component.
  • silicon nitride as a material for forming the inorganic layer 26, it is possible to exhibit high transparency, excellent gas barrier properties, and further, excellent flexibility. Therefore, even if the thickness of the end face of the functional layer 12 is reduced while narrowing the width of the squeeze area at the end described later, the inorganic layer 26 does not break, and sufficient gas barrier properties can be exhibited.
  • the hydrogen content in the film is preferably 10 atomic% to 30 atomic%.
  • the hydrogen content of the inorganic layer 26 is 30 atomic% or less, sufficient oxidation resistance can be exhibited, and sufficient gas barrier properties can be ensured for a long time. Therefore, it is possible to prevent the inconvenience such as the inorganic layer 26 becoming easily broken with time.
  • the hydrogen content of the inorganic layer 26 is set to 10 atomic% or more, it is possible to improve the flexibility by reducing the three-dimensional bonding between the bonds in the film very strongly.
  • hydrogen is contained in the source gas or the like and is inevitably mixed.
  • the hydrogen content in the inorganic layer 26 is more preferably 15 atomic% to 25 atomic%.
  • the hydrogen content in the inorganic layer 26 in the present invention is a value measured by a Rutherford backscattering analysis method and a hydrogen forward scattering analysis method using a backscattering measurement apparatus (an AN2500 manufactured by Nisshin High Voltages Co., Ltd.) .
  • the inorganic layer 26 has a peak intensity of absorption due to stretching vibration of Si—H whose peak is located in 2170 cm ⁇ 1 to 2200 cm ⁇ 1 in a Fourier transform infrared absorption spectrum (hereinafter referred to as FTIR) of a silicon nitride film.
  • the intensity ratio [I (NH) / I (Si-N)] to Si-N) is 0.03 to 0.07, and it is 0.03 to 0.06. Is more preferred.
  • the infrared absorption spectrum of the surface of the gas barrier film is measured using an ATR (Attenuated Total Reflectance) mode with an FTIR measurement device, and the organic layer is formed as a reference
  • the infrared absorption spectrum of the surface was measured with the obtained film as a baseline, and the infrared absorption spectrum of the inorganic layer was determined from the difference.
  • the film density of the inorganic layer 26 is not particularly limited, but is preferably 2.1 g / cm 3 to 2.7 g / cm 3 .
  • the film density is preferably 2.1 g / cm 3 to 2.7 g / cm 3 .
  • the film density of the inorganic layer 26 is more preferably 2.3 g / cm 3 to 2.6 g / cm 3 because the above advantages can be obtained more preferably.
  • the film density of the inorganic layer 26 in the present invention is a value measured by an X-ray reflectance measurement method using a thin film X-ray diffractometer (ATX-E manufactured by Rigaku Corporation).
  • the materials for forming the inorganic layers may be different from each other. However, in consideration of productivity and the like, it is preferable to form all the inorganic layers with the same material.
  • the thickness of the inorganic layer 26 may be appropriately determined according to the material to be formed, so as to express the desired gas barrier properties. According to the study of the present inventor, the thickness of the inorganic layer 26 is preferably 10 to 200 nm. By setting the thickness of the inorganic layer 26 to 10 nm or more, the inorganic layer 26 that stably exhibits sufficient gas barrier performance can be formed. In addition, the inorganic layer 26 is generally brittle, and if it is too thick, there is a possibility that cracking, cracks, peeling, etc. may occur. However, when the thickness of the inorganic layer 26 is 200 nm or less, cracking may occur. It can prevent and improve flexibility.
  • the thickness of the inorganic layer 26 is preferably 10 nm to 100 nm, and particularly preferably 15 nm to 75 nm.
  • the thickness of each inorganic layer may be the same or different.
  • the inorganic layer 26 may be formed by a known method of forming a silicon nitride film. Specifically, vapor deposition methods such as plasma CVD such as CCP-CVD and ICP-CVD, sputtering such as magnetron sputtering and reactive sputtering, and vacuum deposition are suitably exemplified.
  • plasma CVD such as CCP-CVD and ICP-CVD
  • sputtering such as magnetron sputtering and reactive sputtering
  • vacuum deposition are suitably exemplified.
  • FIG. 3 is a cross-sectional view showing an end portion of the functional laminated film 10 shown in FIG. 1 in an enlarged manner.
  • one gas barrier film 14 is bent in the direction approaching the other gas barrier film 14 side. That is, at the end, the gap between the gas barrier films 14 is narrowed so as to narrow toward the end face.
  • the end face of the functional layer 12 is open in the thickness H 1.
  • the gas barrier film 14 is an end portion such that the thickness H 1 of the functional layer 12 at the end face is thinner than the thickness of the functional layer 12 at the central portion, that is, the average thickness H 0 of the functional layer 12. It is arranged by being bent.
  • the surface area of the end face of the functional layer 12 is reduced to prevent the penetration of moisture, oxygen, etc. from the end face of the functional layer 12.
  • a squeeze area the area having a thickness smaller than the average thickness of the functional layer 12
  • a throttling area an area which is thinner by 10% or more than the average thickness continuously from the end face.
  • the width T from the end face of the throttle region is 10 mm or less.
  • the gas barrier film is used to protect a functional layer that is easily degraded by moisture or oxygen, such as a quantum dot layer, and to further suppress entry of moisture or oxygen from the end face of the functional layer. It has been proposed to seal the end face with a gas barrier film.
  • a functional layer that is easily degraded by moisture or oxygen, such as a quantum dot layer
  • narrowing of the frame is required to increase the ratio of the display area to the entire display device. Therefore, if the gas barrier film is narrowed to seal the end in order to reduce the infiltration of moisture or oxygen from the end of the functional layer, the thickness of the functional layer at the end becomes thinner.
  • the function can not be sufficiently expressed, and the size of the area that can be effectively used may be reduced, and the frame portion may be enlarged. Then, it is possible to make a frame part small and to enlarge an area which can be effectively used by forming so that thickness may become thin suddenly near the end face.
  • a barrier layer made of an oxide such as silicon oxide, titanium oxide, or aluminum oxide is hard and brittle, the barrier layer may have a barrier layer using such an oxide as a forming material. As a result, there is a problem that the gas barrier property is lowered and it is not possible to suppress the entry of water or oxygen into the functional layer.
  • silicon nitride is used as the inorganic layer 26 that exhibits gas barrier properties, and the width T from the end face of the narrowed region where the thickness of the functional layer 12 is reduced is 10 mm or less Have.
  • the end of the functional laminated film 10 is squeezed, the surface area of the end face of the functional layer 12 is reduced, and when intrusion of moisture, oxygen, etc. from the end face is suppressed, the end face is sharply curved near the end face Even when the position to start squeezing is 10 mm or less from the end face, the inorganic layer is not easily broken, so that sufficient gas barrier properties can be maintained.
  • the functional layer 12 can not sufficiently exhibit its function without reducing the gas barrier properties.
  • the ratio of the area that can be effectively used as the functional layer 12 can be increased, and the frame can be narrowed.
  • the width T of the narrowed region from the end face is preferably 1 mm or less, and more preferably 0.2 mm or less.
  • the frame can be further narrowed.
  • silicon nitride is used as the inorganic layer 26
  • sufficient gas barrier properties can be exhibited without cracking of the inorganic layer even if the frame is thus narrowed.
  • the thickness H 1 at the end face of the functional layer 12 is preferably 50% or less of the average thickness H 0 of the functional layer 12, and more preferably 10% or less.
  • thickness H 1 in the end face of functional layer 12 50% or less of average thickness H 0 or less, more preferably 10% or less, penetration of moisture and oxygen from the end face of functional layer 12 is more suitably reduced can do.
  • silicon nitride is used as the inorganic layer 26, even if the thickness H 1 of the end face is narrowed to be smaller than the average thickness H 0 as described above, the inorganic layer is cracked. Sufficient gas barrier properties can be expressed without.
  • the thickness H 1 at the end face of the inorganic layer 26 may be 0 mm, that is, the end may be narrowed so that the gas barrier films 14 are in contact with each other. Thereby, the penetration of moisture and oxygen from the end face of the functional layer 12 can be more suitably prevented.
  • the end portions may be curved toward the functional layer 12 to reduce the thickness H 1 of the end surface of the functional layer 12.
  • the present invention is not limited to this, Other It may have a layer.
  • it may have a hard coat layer, an optical compensation layer, a transparent conductive layer, and the like.
  • the production method of the present invention is Preparing a laminate having a functional layer, and two gas barrier films having an inorganic layer containing silicon nitride, which are respectively laminated on one principal surface and the other principal surface of the functional layer; Cutting the laminate to form a thickness of the functional layer in a range of 10 mm or less from the cut surface, thinner than the average thickness of the functional layer, and the thinnest on the cut surface. It is a manufacturing method of a functional lamination film.
  • a laminate 30 in which the gas barrier film 14 is laminated on both sides of the functional layer 12 is prepared.
  • the coating composition to be the functional layer 12 is formed on the gas barrier film 14, and the gas barrier film 14 is further laminated on the coating film.
  • a method of producing the laminate 30 by irradiating the ultraviolet rays and curing the coating film to form the functional layer 12 can be suitably used.
  • the laminated body 30 is cut at a predetermined position using a blade v.
  • the vicinity of the cutting portion is compressed by the pressing by the blade v.
  • the thickness of the functional layer 12 in the range of 10 mm or less from the cut surface is thinner than the average thickness of the functional layer 12, and the thickness at the cut surface is the most It is formed to be thinner.
  • the thickness of the functional layer 12 in the vicinity of the cut surface is formed thin by cutting the laminate 30 in this manner, the gas barrier film is sharply curved in the vicinity of the cut surface.
  • the thickness of the functional layer 12 can be thin in a narrow range of 10 mm or less from the cut surface.
  • the cutting step it is preferable to use a metal blade v, and cutting is preferably performed by heating the temperature of the blade to the range of the glass transition temperature + 50 ° C. to the melting point + 50 ° C. of the gas barrier support 20.
  • the gas barrier support 20 is easily heated and deformed at the cutting portion, and when cutting, the thickness of the functional layer 12 near the cutting portion is more suitably It can be formed thin.
  • the thickness of the functional layer 12 in a cut surface can be adjusted by adjusting the temperature of a blade. Therefore, when the blade is heated for cutting, it is preferable to use a thermoplastic resin as the gas barrier support 20.
  • the functional layer 12 such as a quantum dot layer may be weak to heat. Therefore, when the laminate 30 itself is heated, the functional layer may be degraded, and a predetermined function may not be realized.
  • the gas barrier support 20 by heating the blade, the gas barrier support 20 is softened while the deterioration of the quantum dot layer is prevented, and the thickness of the functional layer 12 near the cut portion is thin. It can be formed.
  • a slitter which is used for die cutting etc., a Thomson blade type in which a blade is bent in a frame shape and embedded in a base such as a plywood or resin plate, a cutting blade, or a slitter having a smooth blade on the outer periphery of a steel disc.
  • a cutting method using a die cutter which is fixed to the outer peripheral surface of one roll of a blade and a roller pair and passes an object to be cut between the roller pair to perform contour processing is preferably available.
  • the cutter used for cutting may be a double-edged blade or a single-edged blade.
  • the cutting edge angle of the cutting tool there is no particular limitation on the cutting edge angle of the cutting tool, and by appropriately selecting the cutting edge angle, it is possible to more suitably adjust the shape of the stop area such as the thickness of the end face.
  • the cutting edge angle is 20 to 40 °.
  • the cutting speed is preferably 0.01 mm / s to 100 mm / s, and more preferably 0.1 mm / s to 10 mm / s.
  • the cutting speed is about 100 mm / s to 1000 mm / s from the viewpoint of productivity etc.
  • the cutting speed is 100 mm / s or less.
  • the thickness of the functional layer can be more suitably reduced in the range of 10 mm or less from the cut surface. Further, in order to make the cutting speed less than 0.01 mm / s, it is difficult to control and the equipment becomes expensive, so it is preferable to set it to 0.01 mm / s or more.
  • the long laminate may be cut in a predetermined shape to be the functional laminated film 10 while being conveyed in the longitudinal direction.
  • the cutting may be performed while conveying the long laminate in the longitudinal direction, or the conveyance and the cutting may be alternately performed intermittently.
  • Example 1 As Example 1, the functional laminated film 10 shown in FIG. 1 was produced.
  • ⁇ Functional laminated film> [Preparation Process of Protective Film-Coated Laminate] (Gas barrier film)
  • a gas barrier film in which the organic layer 24 and the inorganic layer 26 were formed on the gas barrier support 20 was used.
  • the gas barrier support 20 a polyethylene terephthalate film (PET film, Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 50 ⁇ m, a width of 1000 mm, and a length of 100 m was used.
  • PET film polyethylene terephthalate film having a thickness of 50 ⁇ m, a width of 1000 mm, and a length of 100 m was used.
  • the gas barrier support has a melting point of 200 ° C. and a glass transition temperature of 80 ° C.
  • the organic layer 24 was formed on the surface of the gas barrier support 20.
  • the material of the organic layer 24 was coated on the gas barrier support 20 by a coating method, dried, and then irradiated with ultraviolet rays to perform polymerization, thereby forming a film having a thickness of 1 ⁇ m.
  • a coating solution for forming the organic layer 24 the mass ratio of the polymerizable compound TMPTA (manufactured by Daicel Cytech Co., Ltd.) and the ultraviolet polymerization initiator (manufactured by Lamberti, ESACURE KTO 46) at a weight ratio of 95: 5 It weighed so that it became and these were dissolved in methyl ethyl ketone, and the coating liquid of 15% of solid content concentration was prepared.
  • the prepared polymerizable composition is applied onto the gas barrier support 20 by roll-to-roll (hereinafter also referred to as “RtoR”) using a die coater, passed through a drying zone at 50 ° C. for 3 minutes, and then UV light the irradiated (integrated radiation, about 600 mJ / cm 2) UV cured to form an organic layer 24.
  • RtoR roll-to-roll
  • PE PAC2-30-T, manufactured by San-A Kaken Co., Ltd.
  • PE was attached as a protective film for an organic layer with a pass roll immediately after the formation of the organic layer 24, conveyed, and wound up.
  • an inorganic layer 26 having a thickness of 50 nm is formed on the organic layer 24. It formed.
  • source gases silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ) and hydrogen gas (H 2 ) were used.
  • the amount of gas supplied was 160 sccm for silane gas, 370 sccm for ammonia gas, 240 sccm for nitrogen gas, and 590 sccm for hydrogen gas.
  • the film-forming pressure was 40 Pa. That is, the inorganic layer 26 is a silicon nitride film.
  • the plasma excitation power was 2.5 kW at a frequency of 13.56 MHz.
  • the gas barrier film 14 was produced.
  • the water vapor permeability and the oxygen permeability of the produced gas barrier film 14 were measured by the Ca corrosion method, and the water vapor permeability at a temperature of 40 ° C. and a humidity of 90% RH was 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day) ]Met.
  • the oxygen permeability at a temperature of 40 ° C. and a humidity of 90% RH was 1 ⁇ 10 ⁇ 3 [cc / (m 2 ⁇ day ⁇ atm)].
  • a sample of the gas barrier film 14 having a width of 10 mm and a length of 150 mm is prepared, and the sample is pulled to an elongation of 2.5% with Tensilon (AGS-J-5kN manufactured by Shimadzu Corporation), and then the water vapor transmission rate and oxygen are obtained.
  • the transmittance was measured and found to be 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)] and 1 ⁇ 10 ⁇ 3 [cc / (m 2 ⁇ day ⁇ atm)], respectively.
  • the amount of elongation (breaking elongation) when the inorganic layer was broken was 3.5%.
  • PE PAC2-30-T, manufactured by San-Ai Kaken Co., Ltd.
  • PE was attached as a protective film for the inorganic layer with a film surface touch roll immediately after the formation of the inorganic layer 26, and was transported and wound up.
  • the protective film for the inorganic layer was peeled off with a RtoR coating device, and then the coating composition was applied on the inorganic layer 26 of the gas barrier film 14 by a coating method.
  • the coating composition of the functional layer 12 the following each component was mixed and the quantum dot dispersion liquid was prepared.
  • Quantum dot A emission maximum: 520 nm
  • Quantum dot B emission maximum: 630 nm
  • Monofunctional methacrylate (lauryl methacrylate) 70 parts by mass
  • Bifunctional acrylate (dipropylene glycol di) Acrylate) 20 parts by mass trifunctional acrylate (trimethylolpropane triacrylate) 10 parts by mass
  • the coating composition was previously stirred for 10 minutes with a dissolver at 150 rpm for about 30 minutes and simultaneously subjected to ultrasonic degassing (the ultrasonic transmitter used is Bransonic 8800 manufactured by Bransonic 8800, and a plastic container is interposed with water) This solution was irradiated with an ultrasonic power of 280 W and a frequency of 40 kH). After that, the coating composition was prepared by carrying out a filtration treatment with a filter (PALL profile II, pore diameter 100 ⁇ m) with a filtration accuracy of 100 ⁇ m. Coating was performed using a die coater. Next, on the applied coating composition, the same gas barrier film 14 as described above was laminated with the inorganic layer 26 directed to the coating composition side.
  • the ultrasonic transmitter used is Bransonic 8800 manufactured by Bransonic 8800, and a plastic container is interposed with water
  • This solution was irradiated with an ultrasonic power of 280 W and a frequency of 40 kH).
  • ultraviolet rays are irradiated (total irradiation amount: approximately 300 mJ / cm 2 ) to perform UV curing, thereby forming the functional layer 12 having a thickness of 70 ⁇ m, and a laminate 30 is produced.
  • the thickness H 1 of the functional layer 12 at the end face of the produced functional laminated film 10 and the width T of the squeeze area are observed at three points by observing the shape of the cross section using a laser microscope (LEXT manufactured by Olympus Corporation) It measured and calculated each average value.
  • the thickness H 1 of the end face was 35 ⁇ m, that is, 50% of the average thickness of the functional layer, and the width T of the throttling region was 8.0 mm.
  • Example 2 In the cutting step, the functional laminated film 10 was produced in the same manner as in Example 1 except that the heating temperature of the blade was changed to 100 ° C. and the cutting speed was changed to 8 mm / s.
  • the thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 50 ⁇ m (70% of the average thickness of the functional layer), and the width T of the squeeze area was 7.8 mm.
  • Example 3 In the cutting step, the functional laminated film 10 was produced in the same manner as in Example 1 except that the heating temperature of the blade was changed to 220 ° C. and the cutting speed was changed to 3 mm / s.
  • the thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 7 ⁇ m (10% of the average thickness of the functional layer), and the width T of the squeeze area was 8.2 mm.
  • Example 4 In the cutting step, the functional laminated film 10 was produced in the same manner as in Example 1 except that the heating temperature of the blade was changed to 250 ° C. and the cutting speed was changed to 1 mm / s.
  • the thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 is 0 ⁇ m, that is, the gas barrier films 14 are in contact with each other as shown in FIG. 4. Further, the width T of the throttling area was 8.1 mm.
  • a functional laminate film 10 was produced in the same manner as in Example 1 except that the thickness of the gas barrier support was changed to 38 ⁇ m, and the cutting step was changed to a double-edged Thomson blade having a blade angle of 30 °.
  • the thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 35 ⁇ m (50% of the average thickness of the functional layer), and the width T of the squeeze area was 1 mm.
  • the water vapor transmission rate and the oxygen transmission rate were measured to be 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)] and 1 ⁇ 10 ⁇ , respectively. It was 3 [cc / (m 2 ⁇ day ⁇ atm)].
  • the breaking elongation of the gas barrier film 14 was 4%.
  • Example 6 A functional laminate film 10 was produced in the same manner as in Example 1 except that the thickness of the gas barrier support was changed to 23 ⁇ m, and in the cutting step, it was changed to a double-edged Thomson blade with a blade angle of 20 °.
  • the thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 35 ⁇ m (50% of the average thickness of the functional layer), and the width T of the squeeze area was 0.18 mm.
  • the water vapor transmission rate and the oxygen transmission rate were measured to be 1 ⁇ 10 ⁇ 4 [g / (m 2 ⁇ day)] and 1 ⁇ 10 ⁇ , respectively. It was 3 [cc / (m 2 ⁇ day ⁇ atm)].
  • the breaking elongation of the gas barrier film 14 was 4.5%.
  • Comparative Example 1 In the cutting step, a functional laminated film was produced in the same manner as in Example 1 except that cutting was performed using a CO 2 laser.
  • the thickness H 1 of the end face of the functional layer of the produced functional laminate film was 30 ⁇ m (100% of the average thickness of the functional layer).
  • Comparative Example 2 A functional laminate film 10 was produced in the same manner as in Example 1 except that an alumina film was used instead of the silicon nitride film as the inorganic layer of the gas barrier film.
  • the thickness H 1 of the end face of the functional layer of the functional laminated film produced was 35 ⁇ m (50% of the average thickness of the functional layer), and the width T of the squeeze area was 8.1 mm. Further, when the water vapor permeability and oxygen permeability of the gas barrier film were measured, they were 1 ⁇ 10 -4 [g / (m 2 ⁇ day)] and 1 ⁇ 10 -3 [cc / (m 2 ⁇ day ⁇ atm, respectively) )]Met.
  • the breaking elongation of the gas barrier film was 1%.
  • the alumina film was formed by a general sputtering apparatus. Specifically, the gas barrier support on which the organic layer was formed was loaded into a general sputtering apparatus, and an inorganic sintered body formed of an alumina film was formed by DC magnetron sputtering using an alumina sintered body as a target. .
  • the gas barrier property test that is, the durability test was performed on the functional laminated films of Examples 1 to 6 and Comparative Example 1 produced. Specifically, the functional laminate film immediately after preparation and the functional laminate film after standing for 100 hours in an environment of temperature 60 ° C. and humidity 90% RH are incorporated into the following liquid crystal display device, and uneven brightness is obtained. It measured and gas barrier property was evaluated by the change of the luminance nonuniformity before and behind humidification.
  • a commercially available liquid crystal display device (Panasonic product name: THL42D2) is disassembled, a functional laminated film is added on the light guide plate on the side with the liquid crystal cell, and the backlight unit is changed to the following B narrow band backlight unit And manufactured a backlight unit and a liquid crystal display.
  • the B narrow band backlight unit used is provided with a blue light emitting diode (Nichia B-LED: Blue, main wavelength 465 nm, half width 20 nm) as a light source.
  • luminance unevenness was evaluated when the liquid crystal display was displayed in white.
  • the luminance was measured with a luminance meter (SR3, manufactured by TOPCON) installed at a distance of 740 mm at five points at equal intervals except for both ends 50 mm in the diagonal direction on the front of the display device.
  • the difference between the respective luminances measured at 10 points was calculated from the calculated average value, and the maximum value thereof was divided by the average luminance and the value represented as a percentage was regarded as luminance unevenness.
  • Example 1 As shown in Table 1 above, it can be seen that the functional laminate film of the present invention has higher gas barrier properties than the comparative example. Moreover, when Example 1 and Comparative Example 2 are compared, in Example 1, since the silicon nitride film is used as the inorganic layer of the gas barrier film, the inorganic layer does not break even when the width T of the throttling region is 10 mm or less. It can be seen that sufficient gas barrier properties are developed. On the other hand, in Comparative Example 2, since the alumina film is used as the inorganic layer, it is understood that when the width T of the throttling region is 10 mm or less, the inorganic layer is broken and the gas barrier property is lowered.
  • the width T needs to be increased in order to prevent cracking of the inorganic layer, and the frame portion can not be made smaller.
  • the gas barrier properties can be further improved by curving the end portion of the gas barrier film suddenly to thin the thickness of the end face as in Examples 3 and 4. Or it turns out that the edge part of a gas barrier film can be made to curve suddenly like Example 5, 6, the width T of a diaphragm area can be made smaller, and a frame can be narrowed. From the above results, the effects of the present invention are clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

Provided are: a functional laminate film that can prevent the deterioration of a functional layer by minimizing the entrance of moisture and oxygen from an end surface of the functional layer and that makes it possible to increase the proportion of an area that can be effectively used as a functional layer without decreasing gas barrier properties; and a method for producing the functional laminate film. The functional laminate film comprises a functional layer and a two gas barrier films that comprise an inorganic layer and that are layered on each of the one main surface and the other main surface of the functional layer. The inorganic layer comprises silicon nitride. The functional layer comprises a compressed area on the ends thereof, said compressed area being thinner than the average thickness of the functional layer. The compressed area is an area within a range of 10 mm or less from the end surfaces of the functional layer and is thinnest at the end surfaces.

Description

機能性積層フィルムおよび機能性積層フィルムの製造方法Functional laminated film and method for producing functional laminated film
 本発明は、機能性積層フィルムおよび機能性積層フィルムの製造方法に関する。 The present invention relates to a functional laminate film and a method of producing a functional laminate film.
 液晶表示装置(以下、LCDともいう)は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。また、近年の液晶表示装置において、LCD性能改善としてさらなる省電力化、色再現性向上等が求められている。 Liquid crystal display devices (hereinafter also referred to as LCDs) consume less power, and their use is expanding year by year as a space-saving image display device. Further, in liquid crystal display devices in recent years, further power saving, color reproducibility improvement and the like are required as LCD performance improvement.
 LCDのバックライトの省電力化に伴って、光利用効率を高め、また、色再現性を向上するために、入射光の波長を変換して出射する量子ドットを利用することが提案されている。
 量子ドットとは、三次元全方向において移動方向が制限された電子の状態のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される「量子サイズ効果」が発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長・発光波長を制御できる。
With the power saving of the backlight of the LCD, it has been proposed to use a quantum dot that converts the wavelength of incident light and emits it in order to improve light utilization efficiency and improve color reproducibility. .
A quantum dot is a state of electrons whose movement direction is restricted in all three dimensions, and when semiconductor nanoparticles are three-dimensionally surrounded by a high potential barrier, these nanoparticles It becomes a dot. Quantum dots exhibit various quantum effects. For example, the “quantum size effect” occurs in which the density of states (energy levels) of electrons is discretized. According to this quantum size effect, it is possible to control the light absorption wavelength and the light emission wavelength by changing the size of the quantum dot.
 一般に、このような量子ドットは、樹脂等の中に分散されて、例えば、波長変換を行う量子ドットフィルムとして、バックライトと液晶パネルとの間に配置されて用いられる。
 バックライトから量子ドットを含むフィルムに励起光が入射すると、量子ドットが励起され蛍光を発光する。ここで異なる発光特性を有する量子ドットを用いることで、赤色光、緑色光、青色光の半値幅の狭い光を発光させて白色光を具現化することができる。量子ドットによる蛍光は半値幅が狭いため、波長を適切に選択することで得られる白色光を高輝度にしたり色再現性に優れる設計にしたりすることが可能である。
In general, such quantum dots are dispersed in a resin or the like and, for example, are disposed and used as a quantum dot film for wavelength conversion between a backlight and a liquid crystal panel.
When excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited to emit fluorescence. Here, by using quantum dots having different light emission characteristics, white light can be embodied by emitting light with a narrow half-width of red light, green light, and blue light. Since the half width of the fluorescence due to the quantum dot is narrow, it is possible to make the white light obtained by selecting the wavelength highly bright or to be designed to be excellent in color reproducibility.
 ところで、量子ドットは、水分や酸素により劣化しやすく、光酸化反応により発光強度が低下するという課題がある。そのため、量子ドットを含む樹脂層(以下、「量子ドット層」ともいう)の両面にガスバリアフィルムを積層して量子ドット層を保護することが行われている。
 しかしながら、量子ドット層の両主面をガスバリアフィルムで保護するのみでは、ガスバリアフィルムで保護されていない端面から水分や酸素が浸入し、量子ドットが劣化するという問題があった。
 これに対して、水分や酸素を通しにくい材料を機能層に混入させることが考えられるが、材料の選択幅が狭くなったり、生産性が低下したりするという問題があった。
 そのため、ガスバリアフィルムで端面を密封して量子ドット層の端部からの水分や酸素の浸入を低減して量子ドットの劣化を防止することが提案されている。
By the way, quantum dots are easily degraded by moisture and oxygen, and there is a problem that the light emission intensity is reduced by the photooxidation reaction. Therefore, a gas barrier film is laminated | stacked on both surfaces of the resin layer (henceforth a "quantum dot layer") containing a quantum dot, and protecting a quantum dot layer is performed.
However, only protecting both main surfaces of the quantum dot layer with the gas barrier film causes a problem that moisture and oxygen infiltrate from the end face not protected by the gas barrier film and the quantum dots are degraded.
On the other hand, it is conceivable to mix a material that is difficult to pass moisture or oxygen into the functional layer, but there is a problem that the selection range of the material becomes narrow or the productivity decreases.
Therefore, it has been proposed to seal the end face with a gas barrier film to reduce the infiltration of moisture and oxygen from the end of the quantum dot layer to prevent the deterioration of the quantum dot.
 例えば、特許文献1には、発光量子ドット(QD)集団を含むリモート蛍光体フィルムを備えるディスプレイバックライトユニットが記載されており、QD蛍光体材料を2つのガスバリアフィルムで挟み、2つのガスバリアフィルムを狭圧して端部を密封する構成が記載されている。また、ガスバリアフィルムのバリア層の形成材料として、酸化ケイ素、酸化チタン、酸化アルミニウム等の酸化物が記載されている。 For example, Patent Document 1 describes a display backlight unit comprising a remote phosphor film comprising a light emitting quantum dot (QD) population, sandwiching the QD phosphor material with two gas barrier films, and two gas barrier films A configuration for narrowing and sealing the end is described. Moreover, oxides, such as a silicon oxide, a titanium oxide, and aluminum oxide, are described as a formation material of the barrier layer of a gas barrier film.
特表2013-544018号公報Japanese Patent Publication No. 2012-544018
 ところで、近年、LCDにおいては、さらなる薄型化の要求がある。そのため、量子ドット層は、所望の波長変換の機能を発現可能で、かつ、できるだけ薄い厚さに形成することが求められる。
 さらに、LCDにおいては、表示装置全体に対して表示領域(発光領域)の比率をさらに大きくすることが求められており、額縁部分のさらなる狭額縁化が求められている。
By the way, in recent years, in the LCD, there is a demand for further thinning. Therefore, the quantum dot layer is required to be able to express a desired wavelength conversion function and to be formed as thin as possible.
Furthermore, in the LCD, it is required to further increase the ratio of the display area (light emitting area) to the entire display device, and further narrowing of the frame portion is required.
 そのため、量子ドット層の端部からの水分や酸素の浸入を低減するために、ガスバリアフィルムを狭圧して端部を密封すると、端部での、量子ドット層の厚さが薄くなってしまうため、量子ドット層の端部ではその機能を十分に発現することができず、有効に利用できる領域の大きさが小さくなり、額縁部分が大きくなってしまうおそれがある。
 これに対して、端面付近で急に厚さが薄くなるように形成することで、額縁部分を小さくし、有効に利用できる領域を大きくすることが考えられる。しかしながら、酸化ケイ素、酸化チタン、酸化アルミニウム等の酸化物からなるバリア層は、硬く脆いため、このような酸化物を形成材料として用いるバリア層を有するガスバリアフィルムを、急に湾曲させると、バリア層が割れてしまい、ガスバリア性が低下して、量子ドット層への水分や酸素の浸入を抑制できなくなるという問題があった。
Therefore, if the gas barrier film is narrowed to seal the end in order to reduce the infiltration of moisture and oxygen from the end of the quantum dot layer, the thickness of the quantum dot layer at the end becomes thinner. At the end of the quantum dot layer, its function can not be sufficiently expressed, and the size of the area that can be effectively used may be reduced, and the frame portion may be enlarged.
On the other hand, it is conceivable to reduce the frame portion and increase the area that can be effectively used by forming the thickness so as to be suddenly reduced near the end face. However, since a barrier layer made of an oxide such as silicon oxide, titanium oxide, or aluminum oxide is hard and brittle, the barrier layer may have a barrier layer using such an oxide as a forming material. As a result, there is a problem that the gas barrier property is lowered and it is impossible to suppress the infiltration of water and oxygen into the quantum dot layer.
 本発明の目的は、このような従来技術の問題点を解決することにあり、機能層の端面から水分や酸素が浸入することを抑制して、機能層の劣化を防止でき、かつ、ガスバリア性を低下させることなく、機能層として有効に利用可能な領域の割合を大きくすることができる機能性積層フィルムおよび機能性積層フィルムの製造方法を提供することにある。 The object of the present invention is to solve the problems of the prior art as described above, and it is possible to suppress the infiltration of water and oxygen from the end face of the functional layer to prevent the deterioration of the functional layer, and to have gas barrier properties. It is an object of the present invention to provide a functional laminated film and a method for producing a functional laminated film which can increase the proportion of the area which can be effectively used as a functional layer without lowering the
 本発明者は、上記課題を達成すべく鋭意研究した結果、機能層と、機能層の一方の主面および他方の主面にそれぞれ積層される、無機層を有する2つのガスバリアフィルムと、を有する機能性積層フィルムにおいて、無機層は、窒化ケイ素を含み、機能層は、端部に、機能層の平均厚さよりも厚さが薄い絞り領域を有し、絞り領域は、機能層の端面から10mm以下の範囲の領域であり、かつ、端面での厚さが最も薄いことにより、機能層の端面から水分や酸素が浸入することを抑制して、機能層の劣化を防止でき、かつ、ガスバリア性を低下させることなく、機能層として有効に利用可能な領域の割合を大きくすることができることを見出し、本発明を完成させた。
 すなわち、本発明は以下の構成の機能性積層フィルムおよびその製造方法を提供する。
As a result of earnest studies to achieve the above problems, the inventor of the present invention has a functional layer, and two gas barrier films having an inorganic layer, which are respectively laminated on one main surface and the other main surface of the functional layer. In the functional laminated film, the inorganic layer contains silicon nitride, and the functional layer has at the end a throttling area thinner than the average thickness of the functional layer, and the throttling area is 10 mm from the end face of the functional layer In the region of the following range, and the thickness at the end face being the thinnest, it is possible to suppress the infiltration of moisture or oxygen from the end face of the functional layer, and prevent the deterioration of the functional layer, and the gas barrier property In the present invention, the inventors have found that it is possible to increase the proportion of the area that can be effectively used as a functional layer without lowering the
That is, the present invention provides a functional laminated film having the following constitution and a method for producing the same.
 (1) 機能層と、機能層の一方の主面および他方の主面にそれぞれ積層される、無機層を有する2つのガスバリアフィルムとを有する機能性積層フィルムにおいて、
 無機層は、窒化ケイ素を含み、
 機能層は、端部に、機能層の平均厚さよりも厚さが薄い絞り領域を有し、
 絞り領域は、機能層の端面から10mm以下の範囲の領域であり、かつ、端面での厚さが最も薄い機能性積層フィルム。
 (2) 絞り領域は、端面から1mm以下の範囲の領域である(1)に記載の機能性積層フィルム。
 (3) 機能層の端面での厚みは、機能層の平均厚さの50%以下である(1)または(2)に記載の機能性積層フィルム。
 (4) 2つのガスバリアフィルムの端部が、互いに接触している(1)~(3)のいずれかに記載の機能性積層フィルム。
 (5) 絞り領域よりも内側での機能層の厚さは、機能層の平均厚さの±2%である(1)~(4)のいずれかに記載の機能性積層フィルム。
 (6) ガスバリアフィルムの、機能層側の最上層が無機層である(1)~(5)のいずれかに記載の機能性積層フィルム。
 (7) ガスバリアフィルムは、ガスバリア支持体と、ガスバリア支持体上に積層される有機層と、有機層上に積層される無機層とを有する(1)~(6)のいずれかに記載の機能性積層フィルム。
 (8) ガスバリアフィルムの厚さが、5μm~100μmである(1)~(7)のいずれかに記載の機能性積層フィルム。
 (9) ガスバリア支持体は、融点が230℃以下、ガラス転移温度が120℃以下である(7)または(8)に記載の機能性積層フィルム。
 (10) ガスバリアフィルムを面方向に2.5%伸ばした後の水蒸気透過率が、1×10-3[g/(m2・day)]以下である(1)~(9)のいずれかに記載の機能性積層フィルム。
 (11) 無機層は、水素の含有率が10原子%~30原子%である(1)~(10)のいずれかに記載の機能性積層フィルム。
 (12) 機能層は、多数の量子ドットを含む量子ドット層である(1)~(11)のいずれかに記載の機能性積層フィルム。
 (13) 機能層と、機能層の一方の主面および他方の主面にそれぞれ積層される、窒化ケイ素を含む無機層を有する2つのガスバリアフィルムとを有する積層体を準備する準備工程と、
 積層体を切断して、切断面から10mm以下の範囲で機能層の厚さを、機能層の平均厚さよりも薄く、かつ、切断面での厚さを最も薄く形成する切断工程と、を有する機能性積層フィルムの製造方法。
 (14) ガスバリアフィルムは、ガスバリア支持体と無機層とを有し、
 切断工程において、刃の温度をガスバリア支持体の、ガラス転移温度+50℃~融点+50℃の範囲に加熱して切断を行う(13)に記載の機能性積層フィルムの製造方法。
 (15) 切断工程は、トムソン刃、裁断刃またはスリッター刃を用いて行う(13)または(14)に記載の機能性積層フィルムの製造方法。
(1) A functional laminate film having a functional layer and two gas barrier films having an inorganic layer, which are respectively laminated on one principal surface and the other principal surface of the functional layer,
The inorganic layer comprises silicon nitride and
The functional layer has at the end a throttling area that is thinner than the average thickness of the functional layer,
The squeeze area is an area within 10 mm or less from the end face of the functional layer, and the functional laminated film having the thinnest thickness at the end face.
(2) The functional laminated film according to (1), wherein the squeeze area is an area in the range of 1 mm or less from the end face.
(3) The functional laminated film according to (1) or (2), wherein the thickness at the end face of the functional layer is 50% or less of the average thickness of the functional layer.
(4) The functional laminated film according to any one of (1) to (3), wherein the ends of the two gas barrier films are in contact with each other.
(5) The functional laminated film according to any one of (1) to (4), wherein the thickness of the functional layer on the inner side of the narrowed region is ± 2% of the average thickness of the functional layer.
(6) The functional laminated film according to any one of (1) to (5), wherein the uppermost layer on the functional layer side of the gas barrier film is an inorganic layer.
(7) The gas barrier film according to any one of (1) to (6), having a gas barrier support, an organic layer laminated on the gas barrier support, and an inorganic layer laminated on the organic layer Laminated film.
(8) The functional laminated film according to any one of (1) to (7), wherein the thickness of the gas barrier film is 5 μm to 100 μm.
(9) The functional laminated film according to (7) or (8), wherein the gas barrier support has a melting point of 230 ° C. or less and a glass transition temperature of 120 ° C. or less.
(10) Any one of (1) to (9) in which the water vapor transmission rate after extending the gas barrier film in the plane direction by 2.5% is 1 × 10 −3 [g / (m 2 · day)] or less Functional laminated film as described in.
(11) The functional laminated film according to any one of (1) to (10), wherein the inorganic layer has a hydrogen content of 10 atomic% to 30 atomic%.
(12) The functional laminated film according to any one of (1) to (11), wherein the functional layer is a quantum dot layer containing a large number of quantum dots.
(13) A preparing step of preparing a laminate having a functional layer, and two gas barrier films having an inorganic layer containing silicon nitride, which are respectively laminated on one main surface and the other main surface of the functional layer;
Cutting the laminate to form a thickness of the functional layer in a range of 10 mm or less from the cut surface, thinner than the average thickness of the functional layer, and the thinnest on the cut surface. Method for producing functional laminated film.
(14) The gas barrier film has a gas barrier support and an inorganic layer,
The method for producing a functional laminated film according to (13), wherein the cutting is performed by heating the blade temperature to the range of the glass transition temperature + 50 ° C to the melting point + 50 ° C of the gas barrier support.
(15) The manufacturing method of the functional laminated film as described in (13) or (14) which performs a cutting process using a Thomson blade, a cutting blade, or a slitter blade.
 このような本発明によれば、機能層の端面から水分や酸素が浸入することを抑制して、機能層の劣化を防止でき、かつ、ガスバリア性を低下させることなく、機能層として有効に利用可能な領域の割合を大きくすることができる機能性積層フィルムおよび機能性積層フィルムの製造方法を提供することができる。 According to the present invention as described above, it is possible to suppress the infiltration of moisture or oxygen from the end face of the functional layer, to prevent the deterioration of the functional layer, and to effectively use it as the functional layer without lowering the gas barrier properties. It is possible to provide a functional laminated film and a method for producing a functional laminated film that can increase the proportion of the possible regions.
図1は、本発明の機能性積層フィルムの一例を概念的に示す断面図である。FIG. 1 is a cross-sectional view conceptually showing one example of the functional laminate film of the present invention. 機能性積層フィルムに用いられるガスバリアフィルムの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the gas barrier film used for a functional laminated film. 図1に示す機能性積層フィルムの端部を拡大して示す断面図である。It is sectional drawing which expands and shows the edge part of the functional laminated film shown in FIG. 本発明の機能性積層フィルムの他の一例を概念的に示す拡大断面図である。It is an expanded sectional view which shows notionally another example of the functional laminated film of this invention. 図5(A)~図5(C)は、本発明の製造方法を説明するための、機能性積層フィルムの一例を概念的に示す断面図である。FIGS. 5 (A) to 5 (C) are cross-sectional views conceptually showing one example of a functional laminate film, for explaining the manufacturing method of the present invention.
 以下、本発明の機能性積層フィルムおよび機能性積層フィルムの製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the functional laminated film of the present invention and the method for producing the functional laminated film will be described in detail based on the preferred embodiments shown in the attached drawings.
Although the description of the configuration requirements described below may be made based on the representative embodiments of the present invention, the present invention is not limited to such embodiments.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
 図1は、本発明の機能性積層フィルムの一例を概念的に示す断面図である。 FIG. 1 is a cross-sectional view conceptually showing one example of the functional laminate film of the present invention.
 図1に示す機能性積層フィルム10は、機能層12および機能層12の両主面にそれぞれ積層される2つのガスバリアフィルム14を有し、端部において、ガスバリアフィルム14同士の間隙が絞られて、機能層12の厚さが中央部に比べて薄くなった形状を有するものである。 The functional laminated film 10 shown in FIG. 1 has two gas barrier films 14 laminated respectively on both main surfaces of the functional layer 12 and the functional layer 12, and the gap between the gas barrier films 14 is narrowed at the end. The thickness of the functional layer 12 is smaller than that of the central portion.
 機能層12は、波長変換等の所望の機能を発現するための層である。
 図1に示すように、機能層12は、中央部は略均一な厚さであり、端部において、漸次、薄くなる領域を有し、端面での厚さが最も薄くなる形状を有する。この端部の、漸次薄くなる領域が、本発明における絞り領域である。
 この点に関しては後に詳述する。
The functional layer 12 is a layer for expressing a desired function such as wavelength conversion.
As shown in FIG. 1, the functional layer 12 has a substantially uniform thickness in the central portion, and has an area in which the thickness gradually decreases at the end, and has a shape in which the thickness at the end is the smallest. The gradually thinning area at this end is the throttling area in the present invention.
This point will be described in detail later.
 一例として、機能層12は、多数の量子ドットを樹脂等のマトリックス中に分散してなる量子ドット層であり、機能層12に入射した光の波長を変換して出射する機能を有するものである。
 例えば、図示しないバックライトから出射された青色光が機能層12に入射すると、機能層12は、内部に含有する量子ドットの効果により、この青色光の少なくとも一部を赤色光あるいは緑色光に波長変換して出射する。
As an example, the functional layer 12 is a quantum dot layer formed by dispersing a large number of quantum dots in a matrix such as a resin, and has a function of converting the wavelength of light incident on the functional layer 12 and emitting it. .
For example, when blue light emitted from a backlight (not shown) is incident on the functional layer 12, the functional layer 12 has a wavelength of at least a part of the blue light as red light or green light due to the effect of quantum dots contained therein. Convert and emit.
 ここで、青色光とは、400nm~500nmの波長帯域に発光中心波長を有する光であり、緑色光とは、500nm~600nmの波長帯域に発光中心波長を有する光のことであり、赤色光とは、600nmを超え680nm以下の波長帯域に発光中心波長を有する光のことである。
 なお、量子ドット層が発現する波長変換の機能は、青色光を赤色光あるいは緑色光に波長変換する構成に限定はされず、入射光の少なくとも一部を異なる波長の光に変換するものであればよい。
Here, blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm, green light is light having an emission center wavelength in a wavelength band of 500 nm to 600 nm, and red light Is light having an emission center wavelength in a wavelength band of more than 600 nm and not more than 680 nm.
The wavelength conversion function expressed by the quantum dot layer is not limited to the configuration for wavelength converting blue light to red light or green light, and it is possible to convert at least a part of incident light to light of different wavelengths. Just do it.
 量子ドットは、少なくとも、入射する励起光により励起され蛍光を発光する。
 量子ドット層に含有される量子ドットの種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の量子ドットを適宜選択すればよい。
The quantum dot is excited at least by the incident excitation light to emit fluorescence.
The type of quantum dot contained in the quantum dot layer is not particularly limited, and various known quantum dots may be appropriately selected according to the required wavelength conversion performance and the like.
 量子ドットについては、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。 With regard to quantum dots, reference can be made to, for example, JP-A-2012-169271 paragraphs 0060 to 0066, but the present invention is not limited to those described herein. As a quantum dot, a commercial item can be used without any restriction. The emission wavelength of the quantum dot can usually be adjusted by the composition and size of the particle.
 量子ドットは、マトリックス中に均一に分散されるのが好ましいが、マトリックス中に偏りをもって分散されてもよい。
 また、量子ドットは、1種のみを用いてもよいし、2種以上を併用してもよい。
 2種以上併用する場合は、発光光の波長が異なる2種以上の量子ドットを使用してもよい。
The quantum dots are preferably distributed uniformly in the matrix, but may be distributed in the matrix with bias.
Further, only one type of quantum dot may be used, or two or more types may be used in combination.
When two or more types are used in combination, two or more types of quantum dots having different wavelengths of emitted light may be used.
 具体的には、公知の量子ドットには、600nm~680nmの範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nm~600nmの範囲の波長帯域に発光中心波長を有する量子ドット(B)、400nm~500nmの波長帯域に発光中心波長を有する量子ドット(C)があり、量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光する。例えば、量子ドット(A)と量子ドット(B)を含む量子ドット含有積層体へ励起光として青色光を入射させると、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光と、量子ドット層を透過した青色光により、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む量子ドット層に励起光として紫外光を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および量子ドット(C)により発光される青色光により、白色光を具現化することができる。 Specifically, known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of 600 nm to 680 nm, a quantum dot (B) having an emission center wavelength in a wavelength range of 500 nm to 600 nm ), A quantum dot (C) having an emission center wavelength in a wavelength band of 400 nm to 500 nm, the quantum dot (A) is excited by excitation light to emit red light, and the quantum dot (B) is green light The quantum dot (C) emits blue light. For example, when blue light is made incident as excitation light to a quantum dot-containing laminate including quantum dots (A) and quantum dots (B), red light emitted by quantum dots (A) and light emitted by quantum dots (B) White light can be embodied by the green light being emitted and the blue light transmitted through the quantum dot layer. Alternatively, red light emitted by the quantum dot (A), quantum dot (B), by causing ultraviolet light as excitation light to enter the quantum dot layer containing the quantum dots (A), (B), and (C) White light can be embodied by the green light emitted by the light emitting diode and the blue light emitted by the quantum dot (C).
 また、量子ドットとして、形状がロッド状で指向性を持ち偏光を発する、いわゆる量子ロッドを用いてもよい。 Further, as a quantum dot, a so-called quantum rod having a rod-like shape and having directivity and emitting polarized light may be used.
 量子ドット層のマトリックスの種類としては、特に限定はなく、公知の量子ドット層で用いられる各種の樹脂を用いることができる。
 例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂などが挙げられる。あるいは、マトリックスとして、重合性基を有する硬化性化合物を用いることができる。重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリレート基、ビニル基またはエポキシ基であり、より好ましくは、(メタ)アクリレート基であり、さらに好ましくは、アクリレート基である。また、2つ以上の重合性基を有する重合性単量体は、それぞれの重合性基が同一であってもよいし、異なっていても良い。
There is no particular limitation on the type of matrix of the quantum dot layer, and various resins used in known quantum dot layers can be used.
For example, polyester resins (for example, polyethylene terephthalate, polyethylene naphthalate), (meth) acrylic resins, polyvinyl chloride resins, polyvinylidene chloride resins and the like can be mentioned. Alternatively, a curable compound having a polymerizable group can be used as a matrix. The type of the polymerizable group is not particularly limited, but is preferably a (meth) acrylate group, a vinyl group or an epoxy group, more preferably a (meth) acrylate group, and still more preferably an acrylate group. Moreover, as for the polymerizable monomers having two or more polymerizable groups, the respective polymerizable groups may be the same or different.
 具体的には、例えば、以下の第1の重合性化合物と第2の重合性化合物とを含む樹脂をマトリックスとして用いることができる。 Specifically, for example, a resin containing the following first polymerizable compound and second polymerizable compound can be used as a matrix.
 第1の重合性化合物は、2官能以上の(メタ)アクリレートモノマー、ならびにエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーからなる群から選択される1つ以上の化合物であるのが好ましい。 The first polymerizable compound is one or more selected from the group consisting of a bifunctional or higher functional (meth) acrylate monomer, and a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group. Preferably it is a compound.
 2官能以上の(メタ)アクリレートモノマーのうち、2官能の(メタ)アクリレートモノマーとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が好ましい例として挙げられる。 Among the bifunctional or higher (meth) acrylate monomers, examples of the difunctional (meth) acrylate monomer include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate hydroxypivalate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are mentioned as preferable examples.
 また、2官能以上の(メタ)アクリレートモノマーのうち、3官能以上の(メタ)アクリレートモノマーとしては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。 Further, among the bifunctional or higher functional (meth) acrylate monomers, as the trifunctional or higher functional (meth) acrylate monomers, ECH modified glycerol tri (meth) acrylate, EO modified glycerol tri (meth) acrylate, PO modified glycerol tri (meth) ) Acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO modified phosphate triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) a Lilate, dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) Acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxy tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are mentioned as preferable examples.
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとしては、例えば、脂肪族環状エポキシ化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;高級脂肪酸のグリシジルエステル類;エポキシシクロアルカンを含む化合物等が好適に用いられる。 Examples of the monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group include aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether; poly (polyether polyols) obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin Glycidyl ethers; diglycidyl esters of aliphatic long-chain dibasic acids; glycidyl esters of higher fatty acids; compounds containing epoxy cycloalkane and the like are suitably used.
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとして好適に使用できる市販品としては、ダイセル化学工業(株)のセロキサイド2021P、セロキサイド8000、シグマアルドリッチ社製の4-ビニルシクロヘキセンジオキシド等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。 Commercially available products that can be suitably used as a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group include: Celoxide 2021 P, Celoxide 8000, manufactured by Sigma Aldrich, 4-cell manufactured by Daicel Chemical Industries, Ltd. Vinylcyclohexene dioxide and the like can be mentioned. These can be used singly or in combination of two or more.
 また、エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーはその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。 The monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method, for example, Maruzen KK Publishing, Fourth Edition Experimental Chemistry Lecture 20 Organic Synthesis II, 213 ~, 1992 Ed. By Alfred Hasfner, The chemistry of heterocyclic compounds-Small Ring Heterocycles part 3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Bonding, Vol. 29, No. 12, 32, 1985, Yoshimura, Bonding, Volume 30, No. 5, 42, 1986, Yoshimura, Bonding, Volume 30, No. 7, 42, 1986, JP-A-11-100378, Patent No. 2906245, Patent No. 2926262, etc. Can be synthesized.
 第2の重合性化合物は、分子中に水素結合性を有する官能基を有し、かつ、第1の重合性化合物と重合反応できる重合性基を有する。
 水素結合性を有する官能基としては、ウレタン基、ウレア基、またはヒドロキシル基等が挙げられる。
 第1の重合性化合物と重合反応できる重合性基としては、例えば、第1の重合性化合物が2官能以上の(メタ)アクリレートモノマーであるときは(メタ)アクリロイル基であればよく、第1の重合性化合物がエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーであるときはエポキシ基またはオキセタニル基であればよい。
The second polymerizable compound has a functional group having hydrogen bonding property in the molecule, and has a polymerizable group capable of polymerizing reaction with the first polymerizable compound.
As a functional group which has hydrogen bondability, a urethane group, a urea group, or a hydroxyl group etc. are mentioned.
As the polymerizable group capable of polymerizing reaction with the first polymerizable compound, for example, when the first polymerizable compound is a bifunctional or more (meth) acrylate monomer, it may be a (meth) acryloyl group, and When the polymerizable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
 ウレタン基を含む(メタ)アクリレートモノマーとしては、TDI、MDI、HDI、IPDI、HMDI等のジイソシアナートとポリ(プロピレンオキサイド)ジオール、ポリ(テトラメチレンオキサイド)ジオール、エトキシ化ビスフェノールA、エトキシ化ビスフェノールSスピログリコール、カプロラクトン変性ジオール、カーボネートジオール等のポリオール、および2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシドールジ(メタ)アクリレート、ペンタエリスリトールトリアクリレート等のヒドロキシアクリレートを反応させて得られるモノマー、オリゴマーであり、特開2002-265650公報や、特開2002-355936号公報、特開2002-067238号公報等に記載の多官能ウレタンモノマーを挙げることができる。具体的には、TDIとヒドロキシエチルアクリレートとの付加物、IPDIとヒドロキシエチルアクリレートとの付加物、HDIとペンタエリスリトールトリアクリレート(PETA)との付加物、TDIとPETAとの付加物を作り残ったイソシアナートとドデシルオキシヒドロキシプロピルアクリレートを反応させた化合物、6,6ナイロンとTDIの付加物、ペンタエリスリトールとTDIとヒドロキシエチルアクリレートの付加物等をあげることができるが、これに限定されるものではない。 As the (meth) acrylate monomer containing a urethane group, diisocyanates such as TDI, MDI, HDI, IPDI, HMDI, etc. and poly (propylene oxide) diol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A, ethoxylated bisphenol Reaction of S spiro glycol, caprolactone modified diol, polyol such as carbonate diol, and hydroxy acrylate such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycidol di (meth) acrylate, pentaerythritol triacrylate Monomers and oligomers obtained by the reaction, as described in JP-A-2002-265650, JP-A-2002-355936, and JP-A-2002-06723. It can be mentioned polyfunctional urethane monomers described in JP-like. Specifically, adducts of TDI and hydroxyethyl acrylate, adducts of IPDI and hydroxyethyl acrylate, adducts of HDI and pentaerythritol triacrylate (PETA), and adducts of TDI and PETA remained. Compounds obtained by reacting isocyanate and dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, adducts of pentaerythritol, TDI and hydroxyethyl acrylate, and the like can be mentioned, but are not limited thereto. Absent.
 ウレタン基を含む(メタ)アクリレートモノマーとして好適に使用できる市販品としては、共栄社化学(株)製のAH-600、AT-600、UA-306H、UA-306T、UA-306I、UA-510H、UF-8001G、DAUA-167、新中村化学工業(株)製のUA-160TM、大阪有機化学工業(株)製のUV-4108F、UV-4117F等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。 Commercially available products that can be suitably used as the (meth) acrylate monomer containing a urethane group include AH-600, AT-600, UA-306H, UA-306T, UA-306I, UA-510H, manufactured by Kyoeisha Chemical Co., Ltd. UF-8001G, DAUA-167, UA-160TM manufactured by Shin-Nakamura Chemical Co., Ltd., UV-4108F manufactured by Osaka Organic Chemical Industry Co., Ltd., UV-4117F, etc. may be mentioned. These can be used singly or in combination of two or more.
 ヒドロキシル基を含む(メタ)アクリレートモノマーとしては、エポキシ基を有する化合物と(メタ)アクリル酸との反応により合成される化合物を挙げることができる。代表的なものは、エポキシ基を有する化合物により、ビスフェノールA型、ビスフェノールS型、ビスフェノールF型、エポキシ化油型、フェノールのノボラック型、脂環型に分類される。具体的な例としては、ビスフェノールAとエピクロルヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、フェノールノボラックにエピクロロヒドリンを反応させ、(メタ)アクリル酸を反応させた(メタ)アクリレート、ビスフェノールSとエピクロロヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、ビスフェノールSとエピクロロヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、エポキシ化大豆油に(メタ)アクリル酸を反応させた(メタ)アクリレート等を挙げることができる。また、ヒドロキシル基を含む(メタ)アクリレートモノマーとして他には、末端にカルボキシ基、またはリン酸基を有する(メタ)アクリレートモノマー等を挙げることができるが、これらに限定されるものではない。 As a (meth) acrylate monomer containing a hydroxyl group, the compound synthesize | combined by reaction of the compound which has an epoxy group, and (meth) acrylic acid can be mentioned. Representative ones are classified into bisphenol A type, bisphenol S type, bisphenol F type, epoxidized oil type, phenol novolak type and alicyclic type according to the compound having an epoxy group. As a specific example, (meth) acrylate obtained by reacting (meth) acrylic acid with an adduct of bisphenol A and epichlorohydrin, and epichlorohydrin with phenol novolak reacted with (meth) acrylic acid ( (Meth) acrylate, (meth) acrylate obtained by reacting (meth) acrylic acid with an adduct of bisphenol S and epichlorohydrin, and (meth) acrylic acid with an adduct of bisphenol S and epichlorohydrin ( Mention may be made of (meth) acrylates, (meth) acrylates obtained by reacting (meth) acrylic acid with epoxidized soybean oil, and the like. Moreover, as a (meth) acrylate monomer containing a hydroxyl group, although the (meth) acrylate monomer etc. which have a carboxy group or a phosphoric acid group at the terminal can be mentioned, it is not limited to these.
 ヒドロキシル基を含む第2の重合性化合物として好適に使用できる市販品としては、共栄社化学(株)製のエポキシエステル、M-600A、40EM、70PA、200PA、80MFA、3002M、3002A、3000MK、3000A、日本化成(株)製の4-ヒドロキシブチルアクリレート、新中村化学工業(株)製の単官能アクリレートA-SA、単官能メタクリレートSA、ダイセル・オルネクス(株)製の単官能アクリレートβ-カルボキシエチルアクリレート、城北化学工業(株)製のJPA-514等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 第1の重合性化合物と第2の重合性化合物との質量比は10:90~99:1であればよく、10:90~90:10であることが好ましい。第2の重合性化合物の含有量に対し第1の重合性化合物の含有量が多いことも好ましく、具体的には(第1の重合性化合物の含有量)/(第2の重合性化合物の含有量)が2~10であることが好ましい。
Commercial products that can be suitably used as the second polymerizable compound containing a hydroxyl group include epoxy esters manufactured by Kyoeisha Chemical Co., Ltd., M-600A, 40 EM, 70 PA, 200 PA, 80 MFA, 300 M, 3002 A, 3000 MK, 3000 A, 4-hydroxybutyl acrylate manufactured by Nippon Kasei Co., Ltd., monofunctional acrylate A-SA manufactured by Shin-Nakamura Chemical Co., Ltd., monofunctional methacrylate SA, monofunctional acrylate β-carboxyethyl acrylate manufactured by Daicel Ornex Co., Ltd. And JPA-514 manufactured by Johoku Chemical Industry Co., Ltd. These can be used singly or in combination of two or more.
The mass ratio of the first polymerizable compound to the second polymerizable compound may be 10:90 to 99: 1, preferably 10:90 to 90:10. It is also preferable that the content of the first polymerizable compound is larger than the content of the second polymerizable compound, specifically, (content of the first polymerizable compound) / (second polymerizable compound) The content is preferably 2 to 10.
 第1の重合性化合物と第2の重合性化合物とを含む樹脂をマトリックスとして用いる場合には、マトリックス中に、さらに単官能(メタ)アクリレートモノマーを含むことが好ましい。単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本発明はこれに限定されるものではない。
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノまたはジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
 単官能(メタ)アクリレートモノマーは第1の重合性化合物と第2の重合性化合物との総質量100質量部に対して、1~300質量部含まれていることが好ましく、50~150質量部含まれていることがより好ましい。
When a resin containing a first polymerizable compound and a second polymerizable compound is used as a matrix, it is preferable that the matrix further contains a monofunctional (meth) acrylate monomer. As a monofunctional (meth) acrylate monomer, acrylic acid and methacrylic acid, derivatives thereof, more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Although the compound is mentioned to the following as those specific examples, this invention is not limited to this.
Methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having 1 to 30 carbon atoms in the alkyl group such as meta) acrylate; aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate; butoxyethyl (meth) acrylate ) Alkoxyalkyl (meth) acrylates having 2 to 30 carbon atoms in the alkoxyalkyl group such as acrylate; total carbon number of (monoalkyl or dialkyl) aminoalkyl groups such as N, N-dimethylaminoethyl (meth) acrylate 1 to 2 Aminoalkyl (meth) acrylates; (meth) acrylates of diethylene glycol ethyl ether, (meth) acrylates of triethylene glycol butyl ether, (meth) acrylates of tetraethylene glycol monomethyl ether, (meth) acrylates of hexaethylene glycol monomethyl ether, Monomethyl ether (meth) acrylate of octaethylene glycol, monomethyl ether (meth) acrylate of nona ethylene glycol, monomethyl ether (meth) acrylate of dipropylene glycol, monomethyl ether (meth) acrylate of heptapropylene glycol, monoethyl of tetraethylene glycol A terminal alkyl group having 1 to 10 carbon atoms in an alkylene chain such as ether (meth) acrylate (Meth) acrylate of polyalkylene glycol alkyl ether having 1 to 10 carbon atoms of ether; 1 to 30 carbon atoms of alkylene chain such as (meth) acrylate of hexaethylene glycol phenyl ether and 6 carbon atoms of terminal aryl ether (Meth) acrylates of polyalkylene glycol aryl ethers of to 20; alicyclic structures such as cyclohexyl (meth) acrylates, dicyclopentanyl (meth) acrylates, isobornyl (meth) acrylates, methylene oxide-added cyclodecatriene (meth) acrylates, etc. (Meth) acrylates having 4 to 30 carbon atoms in total; fluorinated alkyl (meth) acrylates having 4 to 30 carbon atoms in total such as heptadecafluorodecyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, mono (meth) acrylate of triethylene glycol, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (Meth) acrylates having hydroxyl groups such as (meth) acrylates, glycerol mono or di (meth) acrylates; (meth) acrylates having glycidyl groups such as glycidyl (meth) acrylates; tetraethylene glycol mono (meth) acrylates, hexa Polyethylene glycol mono (meth) ene having 1 to 30 carbon atoms in the alkylene chain, such as ethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, etc. ) Acrylate; (meth) acrylamide, N, N- dimethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, acryloyl morpholine (meth) acrylamide and the like.
The monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, preferably 50 to 150 parts by mass, per 100 parts by mass of the total mass of the first polymerizable compound and the second polymerizable compound. More preferably, it is included.
 また、炭素数4~30の長鎖アルキル基を有する化合物を含むことが好ましい。具体的には第1の重合性化合物、第2の重合性化合物、または単官能(メタ)アクリレートモノマーの少なくともいずれかが、炭素数4~30の長鎖アルキル基を有することが好ましい。上記長鎖アルキル基は炭素数12~22の長鎖アルキル基であることがより好ましい。これにより、量子ドットの分散性が向上するからである。量子ドットの分散性が向上するほど、光変換層から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。
 炭素数4~30の長鎖アルキル基を有する単官能(メタ)アクリレートモノマーとしては、具体的には、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、オレイル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が好ましい。中でもラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレートが特に好ましい。
In addition, it is preferable to include a compound having a long chain alkyl group having 4 to 30 carbon atoms. Specifically, it is preferable that at least one of the first polymerizable compound, the second polymerizable compound, and the monofunctional (meth) acrylate monomer have a long-chain alkyl group having 4 to 30 carbon atoms. The long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dot is improved. As the dispersibility of the quantum dots is improved, the amount of light orthogonal to the light conversion layer from the light conversion layer is increased, which is effective to improve the front luminance and the front contrast.
Specific examples of the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate and oleyl (meth) acrylate. Stearyl (meth) acrylate, behenyl (meth) acrylate, butyl (meth) acrylamide, octyl (meth) acrylamide, lauryl (meth) acrylamide, oleyl (meth) acrylamide, stearyl (meth) acrylamide, behenyl (meth) acrylamide, etc. preferable. Among these, lauryl (meth) acrylate, oleyl (meth) acrylate and stearyl (meth) acrylate are particularly preferable.
 また、マトリックスとなる樹脂中に、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル-ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッ素原子を有する化合物を含んでいてもよい。これらの化合物を含むことにより塗布性を向上させることができる。
 また、量子ドット層中のマトリックスとなる樹脂の総量には特に限定はないが、量子ドット層の全量100質量部に対して、90~99.9質量部であることが好ましく、92~99質量部であることがより好ましい。
Moreover, in resin which becomes a matrix, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluoro (perfluoro) A compound having a fluorine atom such as hexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and the like may be included. Coating property can be improved by containing these compounds.
Further, the total amount of resin to be a matrix in the quantum dot layer is not particularly limited, but it is preferably 90 to 99.9 parts by mass, and 92 to 99 parts by mass with respect to 100 parts by mass of the quantum dot layer. It is more preferable that it is a part.
 量子ドット層の厚さは特に制限されないが、取り扱い性および発光特性の点で、5μm~200μmが好ましく、10μm~150μmがより好ましい。
 なお、上記厚さは平均厚さを意図し、平均厚さは量子ドット層の端面から10mmより内側の領域の任意の10点以上の任意の10点以上の厚みを測定して、それらを算術平均して求める。
 また、機能層12の絞り領域以外の領域、すなわち、絞り領域よりも内側での厚さは、上記平均厚さの±2%の範囲にあるのが好ましい。絞り領域以外の領域の厚さを±2%の平坦な厚さにすることにより、機能層から出射される光の輝度のばらつきを抑制し、また、出射光の発光分布、例えば、青色光、赤色光、緑色光の発光分布を均一化することができ、性能を安定化できる等の点で好ましい。
The thickness of the quantum dot layer is not particularly limited, but is preferably 5 μm to 200 μm, and more preferably 10 μm to 150 μm in terms of handleability and light emission characteristics.
The above thickness is intended to be an average thickness, and the average thickness is calculated by measuring the thickness of any 10 points or more of any 10 points or more in the region 10 mm from the end face of the quantum dot layer. Find on average.
Further, it is preferable that the thickness of the region other than the squeeze region of the functional layer 12, that is, the inner side of the squeeze region is in the range of ± 2% of the above-mentioned average thickness. By setting the thickness of the area other than the aperture area to a flat thickness of ± 2%, the variation in the luminance of the light emitted from the functional layer is suppressed, and the light emission distribution of the emitted light, for example, blue light, It is preferable in that the emission distribution of red light and green light can be made uniform, and the performance can be stabilized.
 量子ドット層の形成方法には特に限定はなく、公知の方法で形成すればよい。例えば、量子ドットとマトリックスとなる樹脂と溶剤とを混合した塗布組成物を調整し、この塗布組成物をガスバリアフィルム14上に塗布し、UV照射等により硬化させることで形成することができる。
 なお、量子ドット層となる塗布組成物には、必要に応じて、重合開始剤やシランカップリング剤等を添加してもよい。
There is no limitation in particular in the formation method of a quantum dot layer, What is necessary is just to form by a well-known method. For example, it can be formed by preparing a coating composition in which quantum dots, a resin serving as a matrix, and a solvent are mixed, and coating the coating composition on the gas barrier film 14 and curing it by UV irradiation or the like.
In addition, you may add a polymerization initiator, a silane coupling agent, etc. to the coating composition used as a quantum dot layer as needed.
 ガスバリアフィルム14は、機能層12の主面に積層される、ガスバリア性を有するフィルムである。すなわち、ガスバリアフィルム14は、機能層12の主面を覆って、機能層12の主面からの水分や酸素の浸入を抑制するための部材である。 The gas barrier film 14 is a film having gas barrier properties, which is laminated on the main surface of the functional layer 12. That is, the gas barrier film 14 is a member for covering the main surface of the functional layer 12 and suppressing the infiltration of moisture and oxygen from the main surface of the functional layer 12.
 ガスバリアフィルム14は、水蒸気透過率が1×10-3[g/(m2・day)]以下であるのが好ましい。
 また、ガスバリアフィルム14は、酸素透過率が1×10-2[cc/(m2・day・atm)]以下であるのが好ましい。
 水蒸気透過率ならびに酸素透過率が低い、すなわち、ガスバリア性が高いガスバリアフィルム14を用いることで、機能層12への水分や酸素の浸入を防止して機能層12の劣化をより好適に防止することができる。
 なお、水蒸気透過率は、モコン法によって測定した。また、水蒸気透過率が、モコン法の測定限界を超えた場合には、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。
 また、酸素透過率は、APIMS法(大気圧イオン化質量分析法)による測定装置(株式会社日本エイピーアイ社製)を用いて、温度40℃、湿度90%RHの条件下で測定した。
The gas barrier film 14 preferably has a water vapor transmission rate of 1 × 10 −3 [g / (m 2 · day)] or less.
Further, the gas barrier film 14 preferably has an oxygen permeability of 1 × 10 −2 [cc / (m 2 · day · atm)] or less.
By using a gas barrier film 14 having low water vapor permeability and low oxygen permeability, that is, high gas barrier properties, it is possible to prevent moisture and oxygen from entering the functional layer 12 and to prevent deterioration of the functional layer 12 more suitably. Can.
The water vapor transmission rate was measured by Mocon method. In addition, when the water vapor transmission rate exceeds the measurement limit of Mocon method, it is measured by the calcium corrosion method (the method described in JP-A-2005-283561).
In addition, the oxygen permeability was measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH using a measuring apparatus (manufactured by Nippon AI Co., Ltd.) by an APIMS method (atmospheric pressure ionization mass spectrometry).
 また、ガスバリアフィルム14の厚さは、5μm~100μmであるのが好ましく、10μm~70μmがより好ましく、15μm~55μmが特に好ましい。
 ガスバリアフィルム14の厚さを100μm以下とすることで、十分な可撓性を持たせることができ、後述する端部の絞り領域の幅を狭くしつつ、機能層12の端面の厚さを薄くすることができる。また、機能性積層フィルム10全体の厚さを薄くできる点でも好ましい。
 また、ガスバリアフィルム14の厚さを5μm以上とすることで、2つのガスバリアフィルム14の間に機能層12を形成する際に、機能層12の厚さを均一にできる点で好ましい。
The thickness of the gas barrier film 14 is preferably 5 μm to 100 μm, more preferably 10 μm to 70 μm, and particularly preferably 15 μm to 55 μm.
By setting the thickness of the gas barrier film 14 to 100 μm or less, sufficient flexibility can be given, and the thickness of the end face of the functional layer 12 is reduced while narrowing the width of the squeeze area at the end described later can do. Moreover, it is preferable also in the point which can make thickness of the functional laminated film 10 whole thin.
Moreover, when forming the functional layer 12 between two gas barrier films 14 by making the thickness of the gas barrier film 14 into 5 micrometers or more, it is preferable at the point which can make the thickness of the functional layer 12 uniform.
 また、ガスバリアフィルム14は、2.5%伸ばした後においても、後述の無機層26が割れずにガスバリア性を発現できる柔軟性を有するのが好ましい。
 具体的には、ガスバリアフィルム14を面方向に2.5%伸ばした後の水蒸気透過率が1×10-3[g/(m2・day)]以下であるのが好ましい。同様に、ガスバリアフィルム14を面方向に2.5%伸ばした後の酸素透過率も1×10-2[cc/(m2・day・atm)]以下であるのが好ましい。
 ガスバリアフィルム14が、面方向に2.5%伸ばしても、水蒸気透過率や酸素透過率等のガスバリア性が低下しない、十分な柔軟性を有することにより、後述する端部の絞り領域の幅を狭くしつつ、機能層12の端面の厚さを薄くすることができる。
Moreover, it is preferable that the gas barrier film 14 has flexibility that can exhibit gas barrier properties without cracking of the inorganic layer 26 described later even after being stretched by 2.5%.
Specifically, the water vapor transmission rate after the gas barrier film 14 is stretched 2.5% in the plane direction is preferably 1 × 10 −3 [g / (m 2 · day)] or less. Similarly, the oxygen permeability after stretching the gas barrier film in the plane direction by 2.5% is also preferably 1 × 10 −2 [cc / (m 2 · day · atm)] or less.
Even if the gas barrier film 14 is stretched by 2.5% in the planar direction, the width of the throttling region of the end portion described later is obtained by having sufficient flexibility such that the gas barrier properties such as water vapor permeability and oxygen permeability do not decrease. While narrowing, the thickness of the end face of the functional layer 12 can be reduced.
 ここで、ガスバリアフィルム14としては、ガスバリア支持体20の上に、ガスバリア層22として、少なくとも1層の有機層と、少なくとも1層の無機層を有するものが好適に用いられる。
 図2に、ガスバリアフィルムの一例を概念的に表す断面図を示す。
 図2に示すガスバリアフィルム14は、無機層26および有機層24を有するガスバリア層22と、ガスバリア層22を支持するガスバリア支持体20とを有してなる。
Here, as the gas barrier film 14, one having at least one organic layer and at least one inorganic layer as the gas barrier layer 22 on the gas barrier support 20 is suitably used.
In FIG. 2, sectional drawing which represents an example of a gas barrier film notionally is shown.
The gas barrier film 14 shown in FIG. 2 has a gas barrier layer 22 having an inorganic layer 26 and an organic layer 24 and a gas barrier support 20 for supporting the gas barrier layer 22.
 なお、ガスバリアフィルム14は、ガスバリア支持体20の上に、少なくとも1つの無機層26を有していればよく、無機層26と、無機層26の下地となる有機層24との組み合わせを1つ以上有するのが好ましい。従って、ガスバリアフィルム14は、無機層26と下地の有機層24との組み合わせを2つ有するものでもよく、あるいは、3つ以上、有するものでもよい。有機層24は、無機層26を適正に形成するための下地層としてとして作用するものであり、下地の有機層24と無機層26との組み合わせの積層数が多いほど、優れたガスバリア性を有するガスバリアフィルムを得られる。 The gas barrier film 14 only needs to have at least one inorganic layer 26 on the gas barrier support 20, and one combination of the inorganic layer 26 and the organic layer 24 serving as the base of the inorganic layer 26 is required. It is preferable to have the above. Therefore, the gas barrier film 14 may have two combinations of the inorganic layer 26 and the organic layer 24 of the base, or may have three or more. The organic layer 24 acts as a base layer for properly forming the inorganic layer 26. The larger the number of combinations of the combination of the base organic layer 24 and the inorganic layer 26, the better the gas barrier properties. A gas barrier film can be obtained.
 また、ガスバリアフィルム14は、最表面が無機層26であるのが好ましく、無機層26側に機能層12が積層されるのが好ましい。
 ガスバリアフィルム14の最表面を無機層26とすることにより、ガスバリア支持体20や有機層24からアウトガスが放出されても、このアウトガスは無機層26で遮蔽され、機能層12に至ることを防止できる。
The outermost surface of the gas barrier film 14 is preferably the inorganic layer 26, and the functional layer 12 is preferably laminated on the inorganic layer 26 side.
By forming the outermost surface of the gas barrier film 14 as the inorganic layer 26, even if outgas is released from the gas barrier support 20 or the organic layer 24, the outgas is shielded by the inorganic layer 26 and can be prevented from reaching the functional layer 12 .
 ガスバリアフィルム14のガスバリア支持体20としては、公知のガスバリアフィルムで支持体として用いられているものが、各種、利用可能である。
 中でも、薄手化や軽量化が容易である、フレキシブル化に好適である等の点で、各種のプラスチック(高分子材料/樹脂材料)からなるフィルムが好適に利用される。
 具体的には、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、環状オレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)からなるプラスチックフィルムが、好適に例示される。
As the gas barrier support 20 of the gas barrier film 14, various known gas barrier films used as a support can be used.
Among them, films made of various plastics (polymer material / resin material) are suitably used in terms of easy thinning and weight reduction and being suitable for flexibility.
Specifically, polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacritonitrile (PAN), polyimide ( PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), ABS, cyclic olefin copolymer (COC), cycloolefin polymer ( Plastic films made of COP) and triacetyl cellulose (TAC) are suitably exemplified.
 ここで、ガスバリア支持体20の材料として、融点が230℃以下、ガラス転移温度が120℃以下の材料を用いるのが好ましい。
 ガスバリア支持体20の材料として、融点が230℃以下、ガラス転移温度が120℃以下の材料を用いることで、後述する切断工程において、機能層12とガスバリアフィルム14の積層体を切断して、切断面から10mm以下の範囲で機能層の厚さを平均厚さよりも薄くして絞り領域を形成する際に、刃を加熱することで、より簡易に絞り領域を形成することができる。
Here, as the material of the gas barrier support 20, it is preferable to use a material having a melting point of 230 ° C. or less and a glass transition temperature of 120 ° C. or less.
By using a material having a melting point of 230 ° C. or less and a glass transition temperature of 120 ° C. or less as the material of the gas barrier support 20, the laminate of the functional layer 12 and the gas barrier film 14 is cut in the cutting step described later When the thickness of the functional layer is made smaller than the average thickness in the range of 10 mm or less from the surface to form the throttling area, the throttling area can be formed more easily by heating the blade.
 また、ガスバリア支持体20は紫外線の透過率が高いのが好ましい。量子ドット層等の機能層12を形成する方法として、ガスバリアフィルム14上に、機能層12となる塗布組成物し、さらに、塗布膜上にガスバリアフィルム14を積層した後に、紫外線を照射して、塗布膜を硬化させて機能層12を形成する方法が好適に利用される。従って、ガスバリア支持体20は、機能層12に照射するための紫外線を十分に透過させるのが好ましい。 Moreover, it is preferable that the gas barrier support 20 has a high transmittance of ultraviolet light. As a method of forming the functional layer 12 such as a quantum dot layer, a coating composition to be the functional layer 12 is formed on the gas barrier film 14, and further, after the gas barrier film 14 is laminated on the coating film, ultraviolet rays are irradiated. A method of curing the coating film to form the functional layer 12 is suitably used. Therefore, it is preferable that the gas barrier support 20 sufficiently transmit ultraviolet light for irradiating the functional layer 12.
 融点、ガラス転移温度、ならびに、紫外線の透過率等の観点から、ガスバリア支持体20の材料としては、PET、COP、PC、PI、TAC等がより好適に用いられる。 As a material of the gas barrier support 20, PET, COP, PC, PI, TAC, etc. are more preferably used from the viewpoints of melting point, glass transition temperature, and ultraviolet light transmittance.
 ガスバリア支持体20の厚さは、用途や大きさによって、適宜、設定すればよい。ここで、本発明者の検討によれば、ガスバリア支持体20の厚さは、5μm~100μm程度が好ましい。ガスバリア支持体20の厚さを、この範囲にすることにより、軽量化や薄手化、可撓性等の点で、好ましい結果を得る。
 なお、ガスバリア支持体20は、このようなプラスチックフィルムの表面に、反射防止や位相差制御、光取り出し効率向上等の機能が付与されていてもよい。
The thickness of the gas barrier support 20 may be appropriately set depending on the application and size. Here, according to the study of the present inventor, the thickness of the gas barrier support 20 is preferably about 5 μm to 100 μm. By setting the thickness of the gas barrier support 20 in this range, preferable results can be obtained in terms of weight reduction, thinning, flexibility, and the like.
The gas barrier support 20 may be provided with functions such as reflection prevention, retardation control, and light extraction efficiency improvement on the surface of such a plastic film.
 ガスバリア層22は、主にガスバリア性を発現する無機層26と、無機層26の下地層となる有機層24とを有する。 The gas barrier layer 22 has an inorganic layer 26 mainly exhibiting gas barrier properties, and an organic layer 24 to be a base layer of the inorganic layer 26.
 有機層24は、ガスバリアフィルム14において主にガスバリア性を発現する無機層26の下地層となるものである。
 有機層24は、公知のガスバリアフィルムで有機層24として用いられているものが、各種、利用可能である。例えば、有機層24は、有機化合物を主成分とする膜で、基本的に、モノマーおよび/またはオリゴマを、架橋して形成されるものが利用できる。
 なお、有機化合物を主成分とする膜とは、有機化合物を50%以上含有する膜である。
The organic layer 24 is to be a base layer of the inorganic layer 26 that mainly exhibits gas barrier properties in the gas barrier film 14.
As the organic layer 24, various known gas barrier films used as the organic layer 24 can be used. For example, the organic layer 24 is a film containing an organic compound as a main component, and basically, one formed by crosslinking a monomer and / or an oligomer can be used.
Note that the film containing an organic compound as a main component is a film containing 50% or more of an organic compound.
 ガスバリアフィルム14は、この下地となる有機層24を有することにより、この有機層24が、無機層26のクッションとしても作用する。そのため、後述する切断工程の際に、無機層26が外部から衝撃を受けた場合などに、この有機層24のクッション効果によって、無機層26の損傷を防止できる。
 これにより、機能性積層フィルム10において、ガスバリアフィルム14が適正にガスバリア性能を発現して、水分や酸素による機能層12の劣化を、好適に防止できる。
The gas barrier film 14 also functions as a cushion of the inorganic layer 26 by having the organic layer 24 to be the base. Therefore, when the inorganic layer 26 receives an impact from the outside during the cutting process to be described later, damage to the inorganic layer 26 can be prevented by the cushioning effect of the organic layer 24.
Thereby, in the functional laminated film 10, the gas barrier film 14 appropriately exhibits the gas barrier performance, and the deterioration of the functional layer 12 due to water or oxygen can be suitably prevented.
 また、ガスバリアフィルム14は、無機層26の下地となる有機層24を有することにより、ガスバリア支持体20の表面の凹凸や、表面に付着している異物等を包埋して、無機層26の成膜面を適正にできる。その結果、成膜面の全面に、隙間無く、割れやヒビ等の無い適正な無機層26を成膜できる。これにより、水蒸気透過率が1×10-3[g/(m2・day)]以下となるような、高いガスバリア性能を得ることができる。 In addition, the gas barrier film 14 includes the organic layer 24 serving as the base of the inorganic layer 26, thereby embedding the irregularities on the surface of the gas barrier support 20, foreign substances adhering to the surface, etc. The film formation surface can be made appropriate. As a result, it is possible to form an appropriate inorganic layer 26 without any gap and without cracks, cracks and the like on the entire surface of the film formation surface. Thereby, a high gas barrier performance can be obtained such that the water vapor transmission rate is 1 × 10 −3 [g / (m 2 · day)] or less.
 ガスバリアフィルム14において、有機層24の形成材料としては、各種の有機化合物(樹脂/高分子化合物)が、利用可能である。
 具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機ケイ素化合物の膜が好適に例示される。これらは、複数を併用してもよい。
In the gas barrier film 14, various organic compounds (resin / polymer compound) can be used as a material for forming the organic layer 24.
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluorine resin, polyimide, fluorinated polyimide, polyamide, polyamide imide, polyether imide, cellulose acylate, polyurethane, poly Thermoplastic resins such as ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, etc. or polysiloxane, other A film of an organosilicon compound is preferably exemplified. A plurality of these may be used in combination.
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物の重合物から構成された有機層24は、好適である。
 中でも特に、上記強度に加え、屈折率が低い、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、ガラス転移温度が120℃以上のアクリル樹脂やメタクリル樹脂は、有機層24として好適に例示される。
 その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上、特に3官能以上のアクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、アクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
 有機層24を、このようなアクリル樹脂やメタクリル樹脂で形成することにより、骨格がしっかりした下地の上に無機層26を成膜できるので、より緻密でガスバリア性が高い無機層26を成膜できる。
Among them, the organic layer 24 composed of a radically polymerizable compound and / or a polymer of a cationically polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
Among them, particularly, in addition to the above-mentioned strength, in view of low refractive index, high transparency, and excellent optical characteristics, etc., a glass transition temperature of 120 ° C. is mainly composed of acrylate and / or methacrylate monomer or oligomer polymer. The above acrylic resin and methacrylic resin are suitably exemplified as the organic layer 24.
Among them, bifunctional or more, particularly trifunctional or more, such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA) and dipentaerythritol hexa (meth) acrylate (DPHA). The acrylic resin and methacrylic resin which have as a main component the polymer of the monomer and oligomer of the acrylate and / or the methacrylate of these are illustrated suitably. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
By forming the organic layer 24 with such an acrylic resin or methacrylic resin, the inorganic layer 26 can be formed on the base having a firm skeleton, so that the inorganic layer 26 can be formed more densely and has high gas barrier properties. .
 有機層24の厚さは、0.5μm~5μmが好ましい。
 有機層24の厚さを0.5μm以上とすることにより、後述する切断工程の際に、無機層26が外部から衝撃を受けた場合などにおける、クッションとしての効果を十分に発揮して、無機層26の損傷を、より確実に防止できる。また、有機層24の厚さを1μm以上とすることにより、より好適に無機層26の成膜面を適正にして、割れやヒビ等の無い適正な無機層26を、成膜面の全面に渡って成膜できる。
 また、有機層24の厚さを5μm以下とすることにより、有機層24が厚すぎることに起因する、有機層24のクラックや、ガスバリアフィルム14のカール等の問題の発生を、好適に防止することができる。
 以上の点を考慮すると、有機層24の厚さは、1μm~5μmとするのが、より好ましい。
The thickness of the organic layer 24 is preferably 0.5 μm to 5 μm.
By setting the thickness of the organic layer 24 to 0.5 μm or more, the effect as a cushion is sufficiently exerted when the inorganic layer 26 receives an impact from the outside in the cutting step to be described later, etc. Damage to the layer 26 can be prevented more reliably. Further, by setting the thickness of the organic layer 24 to 1 μm or more, the film-forming surface of the inorganic layer 26 is more suitably made appropriate, and the appropriate inorganic layer 26 free from cracks, cracks and the like is provided all over the film-forming surface. The film can be formed across.
Further, by setting the thickness of the organic layer 24 to 5 μm or less, the occurrence of problems such as cracking of the organic layer 24 and curling of the gas barrier film 14 due to the organic layer 24 being too thick is suitably prevented. be able to.
In consideration of the above points, the thickness of the organic layer 24 is more preferably 1 μm to 5 μm.
 なお、ガスバリアフィルムが、有機層を複数有する場合には、各有機層の厚さは、同じでも、互いに異なってもよい。
 また、有機層を複数有する場合には、各有機層の形成材料は、同じでも異なってもよい。しかしながら、生産性等の点からは、全ての有機層を、同じ材料で形成するのが好ましい。
When the gas barrier film has a plurality of organic layers, the thickness of each organic layer may be the same or different.
Moreover, when it has multiple organic layers, the forming material of each organic layer may be same or different. However, in terms of productivity and the like, it is preferable to form all the organic layers of the same material.
 有機層24は、塗布法やフラッシュ蒸着等の公知の方法で成膜すればよい。
 また、有機層24の下層となる無機層26との密着性を向上するために、有機層24は、シランカップリング剤を含有するのが好ましい。
The organic layer 24 may be formed by a known method such as a coating method or flash evaporation.
Further, in order to improve the adhesion to the inorganic layer 26 which is the lower layer of the organic layer 24, the organic layer 24 preferably contains a silane coupling agent.
 有機層24の上には、この有機層24を下地として、無機層26が成膜される。
 無機層26は、無機化合物を主成分とする膜で、ガスバリアフィルム14において、ガスバリア性を主に発現するものである。
An inorganic layer 26 is formed on the organic layer 24 with the organic layer 24 as a base.
The inorganic layer 26 is a film containing an inorganic compound as a main component, and the gas barrier film 14 mainly exhibits gas barrier properties.
 無機層26の形成材料は、窒化ケイ素を主成分とするものである。
 無機層26の形成材料として、窒化ケイ素を用いることで、透明性が高く、かつ、優れたガスバリア性を発現でき、さらに、優れた可撓性を発現することができる。従って、後述する端部の絞り領域の幅を狭くしつつ、機能層12の端面の厚さを薄くしても、無機層26が割れることがなく、十分なガスバリア性を発現することができる。
The formation material of the inorganic layer 26 contains silicon nitride as a main component.
By using silicon nitride as a material for forming the inorganic layer 26, it is possible to exhibit high transparency, excellent gas barrier properties, and further, excellent flexibility. Therefore, even if the thickness of the end face of the functional layer 12 is reduced while narrowing the width of the squeeze area at the end described later, the inorganic layer 26 does not break, and sufficient gas barrier properties can be exhibited.
 ここで、無機層26すなわちガスバリア膜としての窒化ケイ素膜において、膜中の水素含有量が、10原子%~30原子%であるのが好ましい。
 無機層26の水素含有量が30原子%以下とすることにより、十分な耐酸化性を発現することができ、十分なガスバリア性を長期に渡って確保することができる。従って、経時により無機層26が割れ易くなってしまう等の不都合が生じるのを防止できる。
 また、無機層26の水素含有量を10原子%以上とすることにより、膜内部の結合が三次元的に非常に強固に結び付くことを低減して、可撓性を向上することができる。
 なお、窒化ケイ素膜において、水素は、原料ガス等に含有されるものであり、不可避的に混入してしまうものである。水素含有量を低減するためには、そのための処理や操作(例えば、成膜時の基板温度の高温化、ポストアニール処理など)が必要であり、また、生産コストも高くなってしまう。従って、無機層26中の水素含有量を10原子%以上とすることにより、好適な生産性も確保することができる。
 また、上記観点から、無機層26中の水素含有量は、15原子%~25原子%とするのがより好ましい。
Here, in the inorganic layer 26, ie, the silicon nitride film as a gas barrier film, the hydrogen content in the film is preferably 10 atomic% to 30 atomic%.
When the hydrogen content of the inorganic layer 26 is 30 atomic% or less, sufficient oxidation resistance can be exhibited, and sufficient gas barrier properties can be ensured for a long time. Therefore, it is possible to prevent the inconvenience such as the inorganic layer 26 becoming easily broken with time.
In addition, by setting the hydrogen content of the inorganic layer 26 to 10 atomic% or more, it is possible to improve the flexibility by reducing the three-dimensional bonding between the bonds in the film very strongly.
In the silicon nitride film, hydrogen is contained in the source gas or the like and is inevitably mixed. In order to reduce the hydrogen content, processing and operations therefor (for example, raising the temperature of the substrate during film formation, post-annealing treatment, and the like) are necessary, and the production cost also increases. Therefore, by setting the hydrogen content in the inorganic layer 26 to 10 atomic% or more, suitable productivity can be secured.
Further, from the above viewpoint, the hydrogen content in the inorganic layer 26 is more preferably 15 atomic% to 25 atomic%.
 ここで、本発明における無機層26中の水素含有量は、後方散乱測定装置(日新ハイボルテージ社製 AN2500型)を用い、ラザフォード後方散乱分析法および水素前方散乱分析法によって測定した値である。 Here, the hydrogen content in the inorganic layer 26 in the present invention is a value measured by a Rutherford backscattering analysis method and a hydrogen forward scattering analysis method using a backscattering measurement apparatus (an AN2500 manufactured by Nisshin High Voltages Co., Ltd.) .
 また、無機層26は、窒化ケイ素膜のフーリエ変換赤外吸収スペクトル(以下、FTIRとする)において、2170cm-1~2200cm-1内にピークが位置するSi-Hの伸縮振動による吸収のピーク強度I(Si-H)と、840cm-1付近のSi-Nの伸縮振動による吸収のピーク強度I(Si-N)との強度比である[I(Si-H)/I(Si-N)]が、0.03~0.15であるのが好ましい。
 このピーク強度比を0.03~0.15とすることで、十分な耐酸化性が得られ、十分なガスバリア性を長期に渡って確保でき、十分な可撓性を得ることができる。
In addition, the inorganic layer 26 has a peak intensity of absorption due to stretching vibration of Si—H whose peak is located in 2170 cm −1 to 2200 cm −1 in a Fourier transform infrared absorption spectrum (hereinafter referred to as FTIR) of a silicon nitride film. The intensity ratio of I (Si-H) to the peak intensity I (Si-N) of absorption due to stretching vibration of Si-N near 840 cm -1 [I (Si-H) / I (Si-N) ] Is preferably 0.03 to 0.15.
By setting the peak intensity ratio to 0.03 to 0.15, sufficient oxidation resistance can be obtained, sufficient gas barrier properties can be ensured for a long time, and sufficient flexibility can be obtained.
 また、無機層26のFTIRにおける3350cm-1付近のN-Hの伸縮振動による吸収のピーク強度I(N-H)と、840cm-1付近のSi-Nの伸縮振動による吸収のピーク強度I(Si-N)との強度比である[I(N-H)/I(Si-N)]が、0.03~0.07であるのが好ましく、0.03~0.06であるのがより好ましい。
 このピーク強度比[I(N-H)/I(Si-N)]を0.03以上とすることにより、膜の着色をより好適に抑制して透明性の高い無機層26を得られる、ガスバリア支持体20や下層層となる有機層24との密着性を向上できる等の点で好ましい結果を得る。また、ピーク強度比[I(N-H)/I(Si-N)]を0.07以下とすることにより、より高い耐酸化性を確保できる、長期に渡って十分なガスバリア性を確保できる、ガスバリア支持体20や有機層24との密着性を向上できる、十分な可撓性が得やすくなる等の点で好ましい結果を得る。
Further, the peak intensity I (N−H) of absorption due to stretching vibration of NH in the vicinity of 3350 cm −1 in the FTIR of the inorganic layer 26 and the peak intensity I of absorption due to stretching vibration of Si—N near 840 cm −1 It is preferable that the intensity ratio [I (NH) / I (Si-N)] to Si-N) is 0.03 to 0.07, and it is 0.03 to 0.06. Is more preferred.
By setting the peak intensity ratio [I (N−H) / I (Si−N)] to 0.03 or more, the coloring of the film can be more suitably suppressed to obtain the inorganic layer 26 with high transparency. Favorable results are obtained in that the adhesion with the gas barrier support 20 and the organic layer 24 to be the lower layer can be improved. Further, by setting the peak intensity ratio [I (NH) / I (Si-N)] to 0.07 or less, higher oxidation resistance can be ensured, and sufficient gas barrier properties can be ensured over a long period of time. Favorable results can be obtained in that the adhesion with the gas barrier support 20 and the organic layer 24 can be improved, and sufficient flexibility can be easily obtained.
 ここで、本発明における無機層26のFTIRの測定は、FTIR測定装置で、ATR(Attenuated Total Reflectance)モードを用いてガスバリアフィルムの表面の赤外吸収スペクトルを測定し、リファレンスとして有機層までを形成したフィルムをベースラインとして表面の赤外吸収スペクトルを測定し、その差分から、無機層の赤外吸収スペクトルを求めた。 Here, in the measurement of the FTIR of the inorganic layer 26 in the present invention, the infrared absorption spectrum of the surface of the gas barrier film is measured using an ATR (Attenuated Total Reflectance) mode with an FTIR measurement device, and the organic layer is formed as a reference The infrared absorption spectrum of the surface was measured with the obtained film as a baseline, and the infrared absorption spectrum of the inorganic layer was determined from the difference.
 また、本発明において、無機層26の膜密度には、特に限定は無いが、2.1g/cm3~2.7g/cm3であるのが好ましい。
 膜密度を2.1g/cm3以上とすることにより、より高い耐酸化性を確保できる、長期に渡って十分なガスバリア性を確保できる、基板Zや下層との密着性を向上できる等の点で好ましい結果を得る。また、膜密度が高くなると、膜が割れやすくなる傾向にあるが、膜密度を2.7g/cm3以下とすることにより、膜密度が高くなることに起因する割れを好適に防止して可撓性を向上できる、基板Zや下層との密着性を向上できる等の点で好ましい結果を得る。
 上記利点を、より好適に得られる等の点で、無機層26の膜密度は、2.3g/cm3~2.6g/cm3とするのが、より好ましい。
In the present invention, the film density of the inorganic layer 26 is not particularly limited, but is preferably 2.1 g / cm 3 to 2.7 g / cm 3 .
By setting the film density to 2.1 g / cm 3 or more, higher oxidation resistance can be ensured, sufficient gas barrier properties can be ensured over a long period, adhesion to the substrate Z and the lower layer can be improved, etc. Give favorable results. In addition, when the film density is high, the film tends to be easily broken. However, by setting the film density to 2.7 g / cm 3 or less, it is possible to suitably prevent the crack caused by the high film density. Favorable results are obtained in that the flexibility can be improved and the adhesion to the substrate Z and the lower layer can be improved.
The film density of the inorganic layer 26 is more preferably 2.3 g / cm 3 to 2.6 g / cm 3 because the above advantages can be obtained more preferably.
 ここで、本発明における無機層26の膜密度は、薄膜X線回折装置(株式会社リガク製 ATX-E)を用いて、X線反射率測定法によって測定した値である。 Here, the film density of the inorganic layer 26 in the present invention is a value measured by an X-ray reflectance measurement method using a thin film X-ray diffractometer (ATX-E manufactured by Rigaku Corporation).
 なお、ガスバリアフィルムが複数の無機層を有する場合には、無機層の形成材料は、互いに異なってもよい。しかしながら、生産性等を考慮すれば、全ての無機層を、同じ材料で形成するのが好ましい。 When the gas barrier film has a plurality of inorganic layers, the materials for forming the inorganic layers may be different from each other. However, in consideration of productivity and the like, it is preferable to form all the inorganic layers with the same material.
 無機層26の厚さは、形成材料に応じて、目的とするガスバリア性を発現できる厚さを、適宜、決定すればよい。なお、本発明者の検討によれば、無機層26の厚さは、10~200nmとするのが好ましい。
 無機層26の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層26が形成できる。また、無機層26は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層26の厚さを200nm以下とすることにより、割れが発生することを防止して可撓性を向上できる。
 また、このような点を考慮すると、無機層26の厚さは、10nm~100nmにするのが好ましく、特に、15nm~75nmとするのが好ましい。
 なお、ガスバリアフィルムが無機層を複数有する場合には、各無機層の厚さは、同じでも異なってもよい。
The thickness of the inorganic layer 26 may be appropriately determined according to the material to be formed, so as to express the desired gas barrier properties. According to the study of the present inventor, the thickness of the inorganic layer 26 is preferably 10 to 200 nm.
By setting the thickness of the inorganic layer 26 to 10 nm or more, the inorganic layer 26 that stably exhibits sufficient gas barrier performance can be formed. In addition, the inorganic layer 26 is generally brittle, and if it is too thick, there is a possibility that cracking, cracks, peeling, etc. may occur. However, when the thickness of the inorganic layer 26 is 200 nm or less, cracking may occur. It can prevent and improve flexibility.
Further, in consideration of such a point, the thickness of the inorganic layer 26 is preferably 10 nm to 100 nm, and particularly preferably 15 nm to 75 nm.
When the gas barrier film has a plurality of inorganic layers, the thickness of each inorganic layer may be the same or different.
 無機層26は、公知の窒化ケイ素膜の形成方法で形成すればよい。具体的には、CCP-CVDやICP-CVD等のプラズマCVD、マグネトロンスパッタリングや反応性スパッタリング等のスパッタリング、真空蒸着など、気相堆積法が好適に例示される。 The inorganic layer 26 may be formed by a known method of forming a silicon nitride film. Specifically, vapor deposition methods such as plasma CVD such as CCP-CVD and ICP-CVD, sputtering such as magnetron sputtering and reactive sputtering, and vacuum deposition are suitably exemplified.
 次に、図3を用いて、絞り領域についてより詳細に説明する。
 図3は、図1に示す機能性積層フィルム10の端部を拡大して示す断面図である。
 図3に示すように、機能性積層フィルム10の端部(周縁部)において、一方のガスバリアフィルム14が、他方のガスバリアフィルム14側に近づく方向に屈曲される。すなわち、端部において、ガスバリアフィルム14同士の間隙が、端面に向かうにしたがって狭くなるように絞られた形状を有している。また、図3においては、機能層12の端面は厚さH1で開放されている。
 言い換えると、端面における機能層12の厚さH1が、中央部における機能層12の厚さ、すなわち、機能層12の平均厚さH0よりも薄くなるように、ガスバリアフィルム14は、端部で屈曲されて配置されている。
Next, the aperture area will be described in more detail with reference to FIG.
FIG. 3 is a cross-sectional view showing an end portion of the functional laminated film 10 shown in FIG. 1 in an enlarged manner.
As shown in FIG. 3, at the end portion (peripheral portion) of the functional laminate film 10, one gas barrier film 14 is bent in the direction approaching the other gas barrier film 14 side. That is, at the end, the gap between the gas barrier films 14 is narrowed so as to narrow toward the end face. Further, in FIG. 3, the end face of the functional layer 12 is open in the thickness H 1.
In other words, the gas barrier film 14 is an end portion such that the thickness H 1 of the functional layer 12 at the end face is thinner than the thickness of the functional layer 12 at the central portion, that is, the average thickness H 0 of the functional layer 12. It is arranged by being bent.
 このように、端部における、ガスバリアフィルム14同士の間隙を絞った形状とすることにより、機能層12の端面の表面積を小さくして、機能層12の端面からの水分や酸素等の侵入を防止し、機能層12の劣化を防止することができる。
 なお、前述のとおり、機能層12の平均厚さよりも厚さが薄い領域を絞り領域という。具体的には、端面から連続して、平均厚さよりも厚さが10%以上薄い領域を、絞り領域という。
As described above, by reducing the gap between the gas barrier films 14 at the end, the surface area of the end face of the functional layer 12 is reduced to prevent the penetration of moisture, oxygen, etc. from the end face of the functional layer 12. Thus, deterioration of the functional layer 12 can be prevented.
As described above, the area having a thickness smaller than the average thickness of the functional layer 12 is referred to as a squeeze area. Specifically, an area which is thinner by 10% or more than the average thickness continuously from the end face is referred to as a throttling area.
 ここで、本発明においては、絞り領域の、端面からの幅Tは、10mm以下である。 Here, in the present invention, the width T from the end face of the throttle region is 10 mm or less.
 前述のとおり、量子ドット層などの水分や酸素により劣化しやすい機能層を、ガスバリアフィルムで保護することが行われており、さらに、機能層の端面から水分や酸素が浸入するのを抑制するために、ガスバリアフィルムで端面を密封することが提案されている。
 一方で、液晶表示装置においては、さらなる薄型化の要求に加えて、表示装置全体に対して表示領域の比率を大きくする、狭額縁化が求められている。
 そのため、機能層の端部からの水分や酸素の浸入を低減するために、ガスバリアフィルムを狭圧して端部を密封すると、端部での、機能層の厚さが薄くなってしまうため、機能層の端部ではその機能を十分に発現することができず、有効に利用できる領域の大きさが小さくなり、額縁部分が大きくなってしまうおそれがある。
 そこで、端面付近で急に厚さが薄くなるように形成することで、額縁部分を小さくし、有効に利用できる領域を大きくすることが考えられる。しかしながら、酸化ケイ素、酸化チタン、酸化アルミニウム等の酸化物からなるバリア層は、硬く脆いため、このような酸化物を形成材料として用いるバリア層を有するガスバリアフィルムを、急に湾曲させると、バリア層が割れてしまい、ガスバリア性が低下して、機能層への水分や酸素の浸入を抑制できなくなるという問題があった。
As described above, the gas barrier film is used to protect a functional layer that is easily degraded by moisture or oxygen, such as a quantum dot layer, and to further suppress entry of moisture or oxygen from the end face of the functional layer. It has been proposed to seal the end face with a gas barrier film.
On the other hand, in the liquid crystal display device, in addition to the demand for further thinning, narrowing of the frame is required to increase the ratio of the display area to the entire display device.
Therefore, if the gas barrier film is narrowed to seal the end in order to reduce the infiltration of moisture or oxygen from the end of the functional layer, the thickness of the functional layer at the end becomes thinner. At the end of the layer, the function can not be sufficiently expressed, and the size of the area that can be effectively used may be reduced, and the frame portion may be enlarged.
Then, it is possible to make a frame part small and to enlarge an area which can be effectively used by forming so that thickness may become thin suddenly near the end face. However, since a barrier layer made of an oxide such as silicon oxide, titanium oxide, or aluminum oxide is hard and brittle, the barrier layer may have a barrier layer using such an oxide as a forming material. As a result, there is a problem that the gas barrier property is lowered and it is not possible to suppress the entry of water or oxygen into the functional layer.
 これに対して、本発明は、ガスバリア性を発現する無機層26として、窒化ケイ素を用い、かつ、機能層12の厚さが薄くなる絞り領域の、端面からの幅Tを10mm以下とする構成を有する。これにより、機能性積層フィルム10の端部を絞って、機能層12の端面の表面積を小さくして、端面からの水分や酸素等の侵入を抑制する際に、端面近傍で急に湾曲させて、絞り始める位置を端面から10mm以下とした場合でも、無機層が割れにくいため、十分なガスバリア性を維持することができる。従って、機能層12の端面から水分や酸素が浸入することを抑制して、機能層12の劣化を防止でき、かつ、ガスバリア性を低下させることなく、機能層12がその機能を十分に発現できない領域を少なくして、機能層12として有効に利用可能な領域の割合を大きくすることができ、狭額縁化することができる。 On the other hand, in the present invention, silicon nitride is used as the inorganic layer 26 that exhibits gas barrier properties, and the width T from the end face of the narrowed region where the thickness of the functional layer 12 is reduced is 10 mm or less Have. Thereby, the end of the functional laminated film 10 is squeezed, the surface area of the end face of the functional layer 12 is reduced, and when intrusion of moisture, oxygen, etc. from the end face is suppressed, the end face is sharply curved near the end face Even when the position to start squeezing is 10 mm or less from the end face, the inorganic layer is not easily broken, so that sufficient gas barrier properties can be maintained. Therefore, it is possible to suppress the infiltration of moisture or oxygen from the end face of the functional layer 12 to prevent the deterioration of the functional layer 12, and the functional layer 12 can not sufficiently exhibit its function without reducing the gas barrier properties. By reducing the area, the ratio of the area that can be effectively used as the functional layer 12 can be increased, and the frame can be narrowed.
 ここで、絞り領域の、端面からの幅Tは、1mm以下であるのが好ましく、0.2mm以下であるのがより好ましい。
 絞り領域の、端面からの幅Tをより狭くすることで、より狭額縁化することができる。本発明においては、無機層26として、窒化ケイ素を用いるので、このように狭額縁化しても無機層が割れることなく十分なガスバリア性を発現することができる。
Here, the width T of the narrowed region from the end face is preferably 1 mm or less, and more preferably 0.2 mm or less.
By narrowing the width T from the end face of the throttling region, the frame can be further narrowed. In the present invention, since silicon nitride is used as the inorganic layer 26, sufficient gas barrier properties can be exhibited without cracking of the inorganic layer even if the frame is thus narrowed.
 また、機能層12の端面における厚さH1は、機能層12の平均厚さH0の50%以下であるのが好ましく、10%以下であるのがより好ましい。
 機能層12の端面における厚さH1を、平均厚さH0の50%以下、より好ましくは10%以下とすることで、機能層12の端面からの水分や酸素の浸入をより好適に低減することができる。また、本発明においては、無機層26として、窒化ケイ素を用いるので、このように端面の厚さH1を、平均厚さH0に対してより薄くなるように絞っても、無機層が割れることなく十分なガスバリア性を発現することができる。
The thickness H 1 at the end face of the functional layer 12 is preferably 50% or less of the average thickness H 0 of the functional layer 12, and more preferably 10% or less.
By making thickness H 1 in the end face of functional layer 12 50% or less of average thickness H 0 or less, more preferably 10% or less, penetration of moisture and oxygen from the end face of functional layer 12 is more suitably reduced can do. Further, in the present invention, since silicon nitride is used as the inorganic layer 26, even if the thickness H 1 of the end face is narrowed to be smaller than the average thickness H 0 as described above, the inorganic layer is cracked. Sufficient gas barrier properties can be expressed without.
 さらに、図4に示す機能性積層フィルムのように、無機層26の端面での厚さH1を0mm、すなわち、ガスバリアフィルム14同士が接するように端部を絞ってもよい。これにより、機能層12の端面からの水分や酸素の浸入をより好適に防止することができる。 Furthermore, as in the functional laminated film shown in FIG. 4, the thickness H 1 at the end face of the inorganic layer 26 may be 0 mm, that is, the end may be narrowed so that the gas barrier films 14 are in contact with each other. Thereby, the penetration of moisture and oxygen from the end face of the functional layer 12 can be more suitably prevented.
 また、図3に示す例では、一方のガスバリアフィルム14を湾曲させて、機能層12の端面の厚さH1が薄くなる構成としたが、これに限定はされず、両方のガスバリアフィルム14の端部をそれぞれ機能層12側に湾曲させて、機能層12の端面の厚さH1を薄くする構成としてもよい。 Moreover, in the example shown in FIG. 3, although it was set as the structure which makes thickness H 1 of the end surface of the functional layer 12 thin by curving one gas barrier film 14, limitation is not carried out to this, The end portions may be curved toward the functional layer 12 to reduce the thickness H 1 of the end surface of the functional layer 12.
 なお、図1に示す機能性積層フィルム10は、ガスバリアフィルム14と、機能層12と、ガスバリアフィルム14との3層を積層した構成としたが、本発明はこれに限定はされず、他の層を有していてもよい。例えば、ハードコート層、光学補償層、透明導電層等を有していてもよい。 In addition, although it was set as the structure which laminated | stacked three layers, the gas barrier film 14, the functional layer 12, and the gas barrier film 14, as shown in FIG. 1, the present invention is not limited to this, Other It may have a layer. For example, it may have a hard coat layer, an optical compensation layer, a transparent conductive layer, and the like.
 次に、本発明の機能性積層フィルムの製造方法(以下、「本発明の製造方法」ともいう)について図5(A)~図5(C)を用いて説明する。
 本発明の製造方法は、
 機能層と、機能層の一方の主面および他方の主面にそれぞれ積層される、窒化ケイ素を含む無機層を有する2つのガスバリアフィルムとを有する積層体を準備する準備工程と、
 積層体を切断して、切断面から10mm以下の範囲で機能層の厚さを、機能層の平均厚さよりも薄く、かつ、切断面での厚さを最も薄く形成する切断工程と、を有する機能性積層フィルムの製造方法である。
Next, the method for producing the functional laminated film of the present invention (hereinafter, also referred to as “the method for producing the present invention”) will be described using FIGS. 5 (A) to 5 (C).
The production method of the present invention is
Preparing a laminate having a functional layer, and two gas barrier films having an inorganic layer containing silicon nitride, which are respectively laminated on one principal surface and the other principal surface of the functional layer;
Cutting the laminate to form a thickness of the functional layer in a range of 10 mm or less from the cut surface, thinner than the average thickness of the functional layer, and the thinnest on the cut surface. It is a manufacturing method of a functional lamination film.
 準備工程において、図5(A)に示すような、機能層12の両面にガスバリアフィルム14を積層した積層体30を準備する。
 このような積層体30の作製方法には特に限定はなく、前述のように、ガスバリアフィルム14上に、機能層12となる塗布組成物し、さらに、塗布膜上にガスバリアフィルム14を積層した後に、紫外線を照射して、塗布膜を硬化させて機能層12を形成して積層体30を作製する方法が好適に利用可能である。
In the preparation step, as shown in FIG. 5A, a laminate 30 in which the gas barrier film 14 is laminated on both sides of the functional layer 12 is prepared.
There is no particular limitation on the method for producing such a laminate 30, and as described above, the coating composition to be the functional layer 12 is formed on the gas barrier film 14, and the gas barrier film 14 is further laminated on the coating film. A method of producing the laminate 30 by irradiating the ultraviolet rays and curing the coating film to form the functional layer 12 can be suitably used.
 次に、切断工程において、図5(B)に示すように、刃物vを用いて、積層体30を所定の位置で切断する。その際、刃物vによる押圧により、切断部近傍が圧縮される。これにより、図5(C)に示すように、切断面から10mm以下の範囲での機能層12の厚さが、機能層12の平均厚さよりも薄く、かつ、切断面での厚さが最も薄くなるように形成する。 Next, in the cutting step, as shown in FIG. 5 (B), the laminated body 30 is cut at a predetermined position using a blade v. At this time, the vicinity of the cutting portion is compressed by the pressing by the blade v. Thereby, as shown in FIG. 5C, the thickness of the functional layer 12 in the range of 10 mm or less from the cut surface is thinner than the average thickness of the functional layer 12, and the thickness at the cut surface is the most It is formed to be thinner.
 本発明の製造方法においては、このように、積層体30を切断することで、切断面近傍の機能層12の厚さを薄く形成するので、切断面近傍で、ガスバリアフィルムを急に湾曲させて、切断面から10mm以下の狭い範囲で、機能層12の厚さを薄く形成することができる。また、バリや切りくずといった製品の品質を低下させる異物の発生や、寸法異常の発生を少なくすることができる。 In the manufacturing method of the present invention, since the thickness of the functional layer 12 in the vicinity of the cut surface is formed thin by cutting the laminate 30 in this manner, the gas barrier film is sharply curved in the vicinity of the cut surface. The thickness of the functional layer 12 can be thin in a narrow range of 10 mm or less from the cut surface. In addition, it is possible to reduce the occurrence of foreign matter such as burrs and chips that degrade the quality of products and the occurrence of dimensional abnormalities.
 ここで、切断工程において、金属の刃物vを用いるのが好ましく、刃の温度を、ガスバリア支持体20のガラス転移温度+50℃~融点+50℃の範囲に加熱して切断を行うのが好ましい。
 切断に用いる刃の温度を上記範囲とすることで、切断部でガスバリア支持体20を加熱して変形しやすくして、切断した際に、切断部近傍の機能層12の厚さをより好適に薄く形成することができる。また、刃の温度を調整することで、切断面での機能層12の厚さを調整することができる。
 従って、刃を加熱して切断を行う場合には、ガスバリア支持体20として、熱可塑性の樹脂を用いるのが好ましい。
Here, in the cutting step, it is preferable to use a metal blade v, and cutting is preferably performed by heating the temperature of the blade to the range of the glass transition temperature + 50 ° C. to the melting point + 50 ° C. of the gas barrier support 20.
By setting the temperature of the blade used for cutting in the above range, the gas barrier support 20 is easily heated and deformed at the cutting portion, and when cutting, the thickness of the functional layer 12 near the cutting portion is more suitably It can be formed thin. Moreover, the thickness of the functional layer 12 in a cut surface can be adjusted by adjusting the temperature of a blade.
Therefore, when the blade is heated for cutting, it is preferable to use a thermoplastic resin as the gas barrier support 20.
 なお、量子ドット層等の機能層12は、熱に弱い場合がある。従って、積層体30自体を加熱すると、機能層が劣化して、所定の機能を発現できなくなってしまうおそれがある。
 これに対して、本発明の製造方法においては、刃を加熱することで、量子ドット層の劣化を防止しつつ、ガスバリア支持体20を軟化させて、切断部近傍の機能層12の厚さ薄く形成することができる。
The functional layer 12 such as a quantum dot layer may be weak to heat. Therefore, when the laminate 30 itself is heated, the functional layer may be degraded, and a predetermined function may not be realized.
On the other hand, in the manufacturing method of the present invention, by heating the blade, the gas barrier support 20 is softened while the deterioration of the quantum dot layer is prevented, and the thickness of the functional layer 12 near the cut portion is thin. It can be formed.
 また、刃を加熱する方法にも特に限定はなく、電熱器や誘導加熱器等の公知の加熱器を用いて加熱すればよい。 Moreover, there is no limitation in particular also in the method to heat a blade, and it may heat using well-known heaters, such as an electric heater and an induction heater.
 切断工程において用いる刃物には特に限定はなく、種々の公知の刃物が適宜利用可能である。
 例えば、型抜き等に用いられる、刃物を枠状に曲げてベニヤ板や樹脂板等のベースに埋め込んだトムソン刃型、裁断刃、鋼の円板の外周に滑らかな刃が付いた刃物であるスリッター刃、ローラ対の一方のロールの外周表面に固定され、ローラ対の間に被切断物を通過させて輪郭加工を行うダイカッターを用いた切断方法が好適に利用可能である。
 また、切断に用いる刃物は、両刃であっても片刃であってもよい。
 また、刃物の刃先角度にも特に限定はなく、刃先角度を適宜、選択することで、端面の厚さ等の絞り領域の形状をより好適に調整することができる。好ましくは、刃先角度は20~40°である。
There is no limitation in particular in the cutter used in a cutting process, Various known cutters can be utilized suitably.
For example, a slitter which is used for die cutting etc., a Thomson blade type in which a blade is bent in a frame shape and embedded in a base such as a plywood or resin plate, a cutting blade, or a slitter having a smooth blade on the outer periphery of a steel disc. A cutting method using a die cutter which is fixed to the outer peripheral surface of one roll of a blade and a roller pair and passes an object to be cut between the roller pair to perform contour processing is preferably available.
Moreover, the cutter used for cutting may be a double-edged blade or a single-edged blade.
Further, there is no particular limitation on the cutting edge angle of the cutting tool, and by appropriately selecting the cutting edge angle, it is possible to more suitably adjust the shape of the stop area such as the thickness of the end face. Preferably, the cutting edge angle is 20 to 40 °.
 また、トムソン刃、裁断刃等による切断する場合には、切断速度を0.01mm/s~100mm/sとするのが好ましく、0.1mm/s~10mm/sとするのがより好ましい。
 通常、フィルム状物の切断においては、生産性等の観点から、切断速度は、100mm/s~1000mm/s程度であるが、本発明においては、切断速度を100mm/s以下とすることで、切断面から10mm以下の範囲で機能層の厚さをより好適に薄く形成することができる。また、切断速度を0.01mm/s未満とするには、制御が難しく、設備が高価になるため、0.01mm/s以上とするのが好ましい。
When cutting with a Thomson blade, a cutting blade or the like, the cutting speed is preferably 0.01 mm / s to 100 mm / s, and more preferably 0.1 mm / s to 10 mm / s.
Usually, in the cutting of a film-like material, the cutting speed is about 100 mm / s to 1000 mm / s from the viewpoint of productivity etc. However, in the present invention, the cutting speed is 100 mm / s or less. The thickness of the functional layer can be more suitably reduced in the range of 10 mm or less from the cut surface. Further, in order to make the cutting speed less than 0.01 mm / s, it is difficult to control and the equipment becomes expensive, so it is preferable to set it to 0.01 mm / s or more.
 また、切断工程は、長尺な積層体を長手方向に搬送しつつ、機能性積層フィルム10となる所定の形状に切断してもよい。
 その際、長尺な積層体を長手方向に搬送しながら、切断を行っても良いし、搬送と切断とを交互に、間欠的に実施してもよい。
In the cutting step, the long laminate may be cut in a predetermined shape to be the functional laminated film 10 while being conveyed in the longitudinal direction.
At that time, the cutting may be performed while conveying the long laminate in the longitudinal direction, or the conveyance and the cutting may be alternately performed intermittently.
 以上、本発明の機能性積層フィルムおよびその製造方法について詳細に説明したが、本発明は、上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 As mentioned above, although the functional laminated film of this invention and its manufacturing method were demonstrated in detail, this invention is not limited to the said Example, In the range which does not deviate from the summary of this invention, various improvement and change are performed. Of course it is good.
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of specific examples of the present invention.
 [実施例1]
 実施例1として、図1に示す機能性積層フィルム10を作製した。
Example 1
As Example 1, the functional laminated film 10 shown in FIG. 1 was produced.
 <機能性積層フィルム>
 〔保護フィルム付積層体の準備工程〕
 (ガスバリアフィルム)
 ガスバリアフィルム14としては、ガスバリア支持体20上に、有機層24および無機層26が形成されたガスバリアフィルムを用いた。
 ガスバリア支持体20として、厚さ50μm、幅1000mm、長さ100mのポリエチレンテレフタレートフィルム(PETフィルム、東洋紡株式会社製 コスモシャインA4300)を用いた。
 なお、ガスバリア支持体の融点は200℃、ガラス転移温度は80℃である。
<Functional laminated film>
[Preparation Process of Protective Film-Coated Laminate]
(Gas barrier film)
As the gas barrier film 14, a gas barrier film in which the organic layer 24 and the inorganic layer 26 were formed on the gas barrier support 20 was used.
As the gas barrier support 20, a polyethylene terephthalate film (PET film, Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm, a width of 1000 mm, and a length of 100 m was used.
The gas barrier support has a melting point of 200 ° C. and a glass transition temperature of 80 ° C.
 次に、ガスバリア支持体20の表面に有機層24を形成した。有機層24は、塗布法によりガスバリア支持体20に材料を塗布し、乾燥後、紫外線照射して重合を行って、厚さ1μmの膜を形成した。
 有機層24を形成する塗布液として、重合性化合物のTMPTA(ダイセル・サイテック株式会社製)と、紫外線重合開始剤(ランベルティ社製、ESACURE KTO46)1.4gとを、質量比が95:5となるように秤量し、これらをメチルエチルケトンに溶解させて、固形分濃度15%の塗布液を調製した。
 調製した重合性組成物をダイコーターを用いてロール・ツー・ロール(以下、「RtoR」ともいう)によりガスバリア支持体20上に塗布し、50℃の乾燥ゾーンを3分間通過させ、その後、紫外線を照射(積算照射量約600mJ/cm2)してUV硬化させ、有機層24を形成した。
 なお、有機層24形成直後のパスロールにて有機層用保護フィルムとしてPE(株式会社サンエー科研製 PAC2-30-T)を貼り付け、搬送し、巻き取った。
Next, the organic layer 24 was formed on the surface of the gas barrier support 20. The material of the organic layer 24 was coated on the gas barrier support 20 by a coating method, dried, and then irradiated with ultraviolet rays to perform polymerization, thereby forming a film having a thickness of 1 μm.
As a coating solution for forming the organic layer 24, the mass ratio of the polymerizable compound TMPTA (manufactured by Daicel Cytech Co., Ltd.) and the ultraviolet polymerization initiator (manufactured by Lamberti, ESACURE KTO 46) at a weight ratio of 95: 5 It weighed so that it became and these were dissolved in methyl ethyl ketone, and the coating liquid of 15% of solid content concentration was prepared.
The prepared polymerizable composition is applied onto the gas barrier support 20 by roll-to-roll (hereinafter also referred to as “RtoR”) using a die coater, passed through a drying zone at 50 ° C. for 3 minutes, and then UV light the irradiated (integrated radiation, about 600 mJ / cm 2) UV cured to form an organic layer 24.
In addition, PE (PAC2-30-T, manufactured by San-A Kaken Co., Ltd.) was attached as a protective film for an organic layer with a pass roll immediately after the formation of the organic layer 24, conveyed, and wound up.
 次に、一般的なRtoRの成膜装置を用いて、CCP(容量結合プラズマ方式)-CVDにより、有機層用保護フィルムを剥離した後、有機層24上に、厚さ50nmの無機層26を形成した。
 原料ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。ガスの供給量は、シランガスが160sccm、アンモニアガスが370sccm、窒素ガスが240sccm、水素ガスが590sccmとした。また、成膜圧力は40Paとした。すなわち、無機層26は、窒化珪素膜である。
 プラズマ励起電力は、周波数13.56MHzで2.5kWとした。
Next, after peeling off the protective film for an organic layer by CCP (capacitively coupled plasma method) -CVD using a general RtoR film forming apparatus, an inorganic layer 26 having a thickness of 50 nm is formed on the organic layer 24. It formed.
As source gases, silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ) and hydrogen gas (H 2 ) were used. The amount of gas supplied was 160 sccm for silane gas, 370 sccm for ammonia gas, 240 sccm for nitrogen gas, and 590 sccm for hydrogen gas. Moreover, the film-forming pressure was 40 Pa. That is, the inorganic layer 26 is a silicon nitride film.
The plasma excitation power was 2.5 kW at a frequency of 13.56 MHz.
 以上のように、ガスバリアフィルム14を作製した。
 作製したガスバリアフィルム14の水蒸気透過率および酸素透過率をCa腐食法で測定したところ、温度40℃、湿度90%RHにおける水蒸気透過率は、1×10-4[g/(m2・day)]であった。また、酸素透過率をAPIMS法で測定したところ、温度40℃、湿度90%RHにおける酸素透過率は、1×10-3[cc/(m2・day・atm)]であった。
 また、幅10mm長さ150mmのガスバリアフィルム14のサンプルを作製し、サンプルをテンシロン(株式会社島津製作所製 AGS-J-5kN)にて、伸び2.5%まで引っ張った後に、水蒸気透過率および酸素透過率を測定したところ、それぞれ、1×10-4[g/(m2・day)]、1×10-3[cc/(m2・day・atm)]であった。
 さらに、サンプルの伸び量(変位量)をふりながら、無機層の割れを観察したところ、無機層が割れた際の伸び量(破断伸び)は3.5%であった。
 なお、無機層26形成直後の膜面タッチロールにて無機層用保護フィルムとしてPE(株式会社サンエー科研製 PAC2-30-T)を貼り付け、搬送し、巻き取った。
As described above, the gas barrier film 14 was produced.
The water vapor permeability and the oxygen permeability of the produced gas barrier film 14 were measured by the Ca corrosion method, and the water vapor permeability at a temperature of 40 ° C. and a humidity of 90% RH was 1 × 10 −4 [g / (m 2 · day) ]Met. In addition, when the oxygen permeability was measured by APIMS method, the oxygen permeability at a temperature of 40 ° C. and a humidity of 90% RH was 1 × 10 −3 [cc / (m 2 · day · atm)].
In addition, a sample of the gas barrier film 14 having a width of 10 mm and a length of 150 mm is prepared, and the sample is pulled to an elongation of 2.5% with Tensilon (AGS-J-5kN manufactured by Shimadzu Corporation), and then the water vapor transmission rate and oxygen are obtained. The transmittance was measured and found to be 1 × 10 −4 [g / (m 2 · day)] and 1 × 10 −3 [cc / (m 2 · day · atm)], respectively.
Furthermore, when the crack of the inorganic layer was observed while giving the amount of elongation (displacement) of the sample, the amount of elongation (breaking elongation) when the inorganic layer was broken was 3.5%.
In addition, PE (PAC2-30-T, manufactured by San-Ai Kaken Co., Ltd.) was attached as a protective film for the inorganic layer with a film surface touch roll immediately after the formation of the inorganic layer 26, and was transported and wound up.
 (機能層)
 次に、RtoRの塗布装置により、無機層用保護フィルムを剥離した後に、塗布法によりガスバリアフィルム14の無機層26上に、塗布組成物を塗布した。
 機能層12の塗布組成物としては下記の各成分を混合して、量子ドット分散液を調製した。
(Functional layer)
Next, the protective film for the inorganic layer was peeled off with a RtoR coating device, and then the coating composition was applied on the inorganic layer 26 of the gas barrier film 14 by a coating method.
As a coating composition of the functional layer 12, the following each component was mixed and the quantum dot dispersion liquid was prepared.
・量子ドットA(発光極大:520nm)         0.1質量部
・量子ドットB(発光極大:630nm)        0.01質量部
・1官能メタクリレート(ラウリルメタクリレート)     70質量部
・2官能アクリレート(ジプロピレングリコールジアクリレート)
                             20質量部
・3官能アクリレート(トリメチロールプロパントリアクリレート)
                             10質量部
・光重合開始剤:イルガキュア819(BASF社製)     1質量部
・有機修飾スメクタイト(層状粘土化合物、アスペクト比20、長径0.15μm)                        2.5質量部
Quantum dot A (emission maximum: 520 nm) 0.1 parts by mass Quantum dot B (emission maximum: 630 nm) 0.01 parts by mass Monofunctional methacrylate (lauryl methacrylate) 70 parts by mass Bifunctional acrylate (dipropylene glycol di) Acrylate)
20 parts by mass trifunctional acrylate (trimethylolpropane triacrylate)
10 parts by mass Photopolymerization initiator: Irgacure 819 (manufactured by BASF) 1 part by mass Organically modified smectite (layered clay compound, aspect ratio 20, major axis 0.15 μm) 2.5 parts by mass
 塗布組成物は、事前にディゾルバーで10Lの塗液を150rpmにて30分程度攪拌し、同時に超音波脱泡を実施(使用超音波発信器はブランソン製 Bransonic8800を用いて水を介在してポリ容器内のこの液に超音波出力280W、周波数 40kHで照射した)した。その後、濾過精度が100μmのフィルタ(PALL プロファイルII、孔径100μm)で濾過処理を実施して塗布組成物を調製した。
 塗布はダイコーターを用いて行った。
 次に、塗布した塗布組成物の上に、先と同様の、ガスバリアフィルム14を、無機層26を塗布組成物側に向けて積層した。
 その後、紫外線を照射(積算照射量約300mJ/cm2)してUV硬化させ、厚さ70μmの機能層12を形成し、積層体30を作製した。
The coating composition was previously stirred for 10 minutes with a dissolver at 150 rpm for about 30 minutes and simultaneously subjected to ultrasonic degassing (the ultrasonic transmitter used is Bransonic 8800 manufactured by Bransonic 8800, and a plastic container is interposed with water) This solution was irradiated with an ultrasonic power of 280 W and a frequency of 40 kH). After that, the coating composition was prepared by carrying out a filtration treatment with a filter (PALL profile II, pore diameter 100 μm) with a filtration accuracy of 100 μm.
Coating was performed using a die coater.
Next, on the applied coating composition, the same gas barrier film 14 as described above was laminated with the inorganic layer 26 directed to the coating composition side.
Thereafter, ultraviolet rays are irradiated (total irradiation amount: approximately 300 mJ / cm 2 ) to perform UV curing, thereby forming the functional layer 12 having a thickness of 70 μm, and a laminate 30 is produced.
 〔切断工程〕
 次に、作製した積層体30を、RtoRで搬送しつつ、トムソン刃を用いて、160mm×90mmの大きさに、打ち抜き加工を行い、機能性積層フィルム10を作製した。
 用いたトムソン刃は、刃先角度40°の両刃トムソン刃とした。
 刃の温度は、150℃とし、切断速度は5mm/sとした。
[Cutting process]
Next, while conveying the manufactured laminated body 30 by RtoR, punching processing was performed to a size of 160 mm × 90 mm using a Thomson blade, and a functional laminated film 10 was manufactured.
The Thomson blade used was a double-edge Thomson blade with a blade angle of 40 °.
The temperature of the blade was 150 ° C., and the cutting speed was 5 mm / s.
 作製した機能性積層フィルム10の端面における機能層12の厚さH1、および、絞り領域の幅Tを、レーザー顕微鏡(オリンパス株式会社製 LEXT)を用いて断面の形状を観察して、3箇所測定し、それぞれ平均値を求めた。端面の厚さH1は35μm、すなわち、機能層の平均厚さの50%、絞り領域の幅Tは8.0mmであった。 The thickness H 1 of the functional layer 12 at the end face of the produced functional laminated film 10 and the width T of the squeeze area are observed at three points by observing the shape of the cross section using a laser microscope (LEXT manufactured by Olympus Corporation) It measured and calculated each average value. The thickness H 1 of the end face was 35 μm, that is, 50% of the average thickness of the functional layer, and the width T of the throttling region was 8.0 mm.
 [実施例2]
 切断工程において、刃の加熱温度を100℃に変更し、切断速度を8mm/sに変更した以外は実施例1と同様にして、機能性積層フィルム10を作製した。
 作製した機能性積層フィルム10の機能層12の端面の厚さH1は50μm(機能層の平均厚さの70%)、絞り領域の幅Tは7.8mmであった。
 [実施例3]
 切断工程において、刃の加熱温度を220℃に変更し、切断速度を3mm/sに変更した以外は実施例1と同様にして、機能性積層フィルム10を作製した。
 作製した機能性積層フィルム10の機能層12の端面の厚さH1は7μm(機能層の平均厚さの10%)、絞り領域の幅Tは8.2mmであった。
Example 2
In the cutting step, the functional laminated film 10 was produced in the same manner as in Example 1 except that the heating temperature of the blade was changed to 100 ° C. and the cutting speed was changed to 8 mm / s.
The thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 50 μm (70% of the average thickness of the functional layer), and the width T of the squeeze area was 7.8 mm.
[Example 3]
In the cutting step, the functional laminated film 10 was produced in the same manner as in Example 1 except that the heating temperature of the blade was changed to 220 ° C. and the cutting speed was changed to 3 mm / s.
The thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 7 μm (10% of the average thickness of the functional layer), and the width T of the squeeze area was 8.2 mm.
 [実施例4]
 切断工程において、刃の加熱温度を250℃に変更し、切断速度を1mm/sに変更した以外は実施例1と同様にして、機能性積層フィルム10を作製した。
 作製した機能性積層フィルム10の機能層12の端面の厚さH1は0μm、すなわち、図4のようにガスバリアフィルム14同士が接する構成とした。また、絞り領域の幅Tは8.1mmであった。
 [実施例5]
 ガスバリア支持体の厚さを38μmに変更し、切断工程において、刃先角度30°の両刃トムソン刃に変更した以外は実施例1と同様にして、機能性積層フィルム10を作製した。
 作製した機能性積層フィルム10の機能層12の端面の厚さH1は35μm(機能層の平均厚さの50%)、絞り領域の幅Tは1mmであった。また、ガスバリアフィルム14を伸び2.5%まで引っ張った後に、水蒸気透過率および酸素透過率を測定したところ、それぞれ、1×10-4[g/(m2・day)]、1×10-3[cc/(m2・day・atm)]であった。また、ガスバリアフィルム14の破断伸びは、4%であった。
 [実施例6]
 ガスバリア支持体の厚さを23μmに変更し、切断工程において、刃先角度20°の両刃トムソン刃に変更した以外は実施例1と同様にして、機能性積層フィルム10を作製した。
 作製した機能性積層フィルム10の機能層12の端面の厚さH1は35μm(機能層の平均厚さの50%)、絞り領域の幅Tは0.18mmであった。また、ガスバリアフィルム14を伸び2.5%まで引っ張った後に、水蒸気透過率および酸素透過率を測定したところ、それぞれ、1×10-4[g/(m2・day)]、1×10-3[cc/(m2・day・atm)]であった。また、ガスバリアフィルム14の破断伸びは、4.5%であった。
Example 4
In the cutting step, the functional laminated film 10 was produced in the same manner as in Example 1 except that the heating temperature of the blade was changed to 250 ° C. and the cutting speed was changed to 1 mm / s.
The thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 is 0 μm, that is, the gas barrier films 14 are in contact with each other as shown in FIG. 4. Further, the width T of the throttling area was 8.1 mm.
[Example 5]
A functional laminate film 10 was produced in the same manner as in Example 1 except that the thickness of the gas barrier support was changed to 38 μm, and the cutting step was changed to a double-edged Thomson blade having a blade angle of 30 °.
The thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 35 μm (50% of the average thickness of the functional layer), and the width T of the squeeze area was 1 mm. In addition, after the gas barrier film 14 was stretched and pulled to 2.5%, the water vapor transmission rate and the oxygen transmission rate were measured to be 1 × 10 −4 [g / (m 2 · day)] and 1 × 10 −, respectively. It was 3 [cc / (m 2 · day · atm)]. Moreover, the breaking elongation of the gas barrier film 14 was 4%.
[Example 6]
A functional laminate film 10 was produced in the same manner as in Example 1 except that the thickness of the gas barrier support was changed to 23 μm, and in the cutting step, it was changed to a double-edged Thomson blade with a blade angle of 20 °.
The thickness H 1 of the end face of the functional layer 12 of the produced functional laminate film 10 was 35 μm (50% of the average thickness of the functional layer), and the width T of the squeeze area was 0.18 mm. In addition, after the gas barrier film 14 was stretched and pulled to 2.5%, the water vapor transmission rate and the oxygen transmission rate were measured to be 1 × 10 −4 [g / (m 2 · day)] and 1 × 10 −, respectively. It was 3 [cc / (m 2 · day · atm)]. The breaking elongation of the gas barrier film 14 was 4.5%.
 [比較例1]
 切断工程において、CO2レーザーを用いて切断を行った以外は、実施例1と同様にして、機能性積層フィルムを作製した。
作製した機能性積層フィルムの機能層の端面の厚さH1は30μm(機能層の平均厚さの100%)であった。
Comparative Example 1
In the cutting step, a functional laminated film was produced in the same manner as in Example 1 except that cutting was performed using a CO 2 laser.
The thickness H 1 of the end face of the functional layer of the produced functional laminate film was 30 μm (100% of the average thickness of the functional layer).
 [比較例2]
 ガスバリアフィルムの無機層として、窒化ケイ素膜に代えてアルミナ膜を用いた以外は、実施例1と同様にして、機能性積層フィルム10を作製した。
 作製した機能性積層フィルムの機能層の端面の厚さH1は35μm(機能層の平均厚さの50%)、絞り領域の幅Tは8.1mmであった。
 また、ガスバリアフィルムの水蒸気透過率および酸素透過率を測定したところ、それぞれ、1×10-4[g/(m2・day)]、1×10-3[cc/(m2・day・atm)]であった。さらに、ガスバリアフィルムを伸び2.5%まで引っ張った後に、水蒸気透過率および酸素透過率を測定したところ、それぞれ、3×10-2[g/(m2・day)]、4×10-1[cc/(m2・day・atm)]であった。また、ガスバリアフィルムの破断伸びは、1%であった。
Comparative Example 2
A functional laminate film 10 was produced in the same manner as in Example 1 except that an alumina film was used instead of the silicon nitride film as the inorganic layer of the gas barrier film.
The thickness H 1 of the end face of the functional layer of the functional laminated film produced was 35 μm (50% of the average thickness of the functional layer), and the width T of the squeeze area was 8.1 mm.
Further, when the water vapor permeability and oxygen permeability of the gas barrier film were measured, they were 1 × 10 -4 [g / (m 2 · day)] and 1 × 10 -3 [cc / (m 2 · day · atm, respectively) )]Met. Furthermore, when the gas barrier film was stretched and pulled to 2.5%, the water vapor transmission rate and the oxygen transmission rate were measured to be 3 × 10 −2 [g / (m 2 · day)] and 4 × 10 −1, respectively. It was [cc / (m 2 · day · atm)]. Moreover, the breaking elongation of the gas barrier film was 1%.
 なお、アルミナ膜は、一般的なスパッタリング装置により形成した。具体的には、有機層が形成されたガスバリア支持体を、一般的なスパッタリング装置に装填して、アルミナ焼結体をターゲットとして用いて、DCマグネトロンスパッタリングによって、アルミナ膜からなる無機層を形成した。 The alumina film was formed by a general sputtering apparatus. Specifically, the gas barrier support on which the organic layer was formed was loaded into a general sputtering apparatus, and an inorganic sintered body formed of an alumina film was formed by DC magnetron sputtering using an alumina sintered body as a target. .
 [評価]
 <ガスバリア性試験>
 作製した実施例1~6および比較例1の機能性積層フィルムについて、ガスバリア性試験、すなわち、耐久性試験を行った。
 具体的には、作製直後の機能性積層フィルム、および、温度60℃湿度90%RHの環境下で100時間静置した後の機能性積層フィルムを、以下の液晶表示装置に組み込み、輝度ムラを測定し、加湿前後の輝度ムラの変化によりガスバリア性を評価した。
[Evaluation]
<Gas barrier test>
The gas barrier property test, that is, the durability test was performed on the functional laminated films of Examples 1 to 6 and Comparative Example 1 produced.
Specifically, the functional laminate film immediately after preparation and the functional laminate film after standing for 100 hours in an environment of temperature 60 ° C. and humidity 90% RH are incorporated into the following liquid crystal display device, and uneven brightness is obtained. It measured and gas barrier property was evaluated by the change of the luminance nonuniformity before and behind humidification.
 まず、市販の液晶表示装置(パナソニック社製商品名THL42D2)を分解し、液晶セルがある側の導光板上に機能性積層フィルムを加え、バックライトユニットを以下のB狭帯域バックライトユニットに変更し、バックライトユニットおよび液晶表示装置を製造した。用いたB狭帯域バックライトユニットは、光源として、青色発光ダイオード(日亜B-LED:Blue,主波長465nm、半値幅20nm)を備える。 First, a commercially available liquid crystal display device (Panasonic product name: THL42D2) is disassembled, a functional laminated film is added on the light guide plate on the side with the liquid crystal cell, and the backlight unit is changed to the following B narrow band backlight unit And manufactured a backlight unit and a liquid crystal display. The B narrow band backlight unit used is provided with a blue light emitting diode (Nichia B-LED: Blue, main wavelength 465 nm, half width 20 nm) as a light source.
 次に、液晶表示装置を白表示した際の色ムラを評価した。表示装置の前面の対角線方向に両端50mmを除き、両対角線それぞれ等間隔に5点で、740mmの距離に設置した輝度計(SR3、TOPCON社製)にて輝度を測定した。算出した平均値から10点で測定したそれぞれの輝度の差を計算し、そのうちの最大値を平均輝度で割って百分率で表した値を、輝度ムラとした。 Next, color unevenness was evaluated when the liquid crystal display was displayed in white. The luminance was measured with a luminance meter (SR3, manufactured by TOPCON) installed at a distance of 740 mm at five points at equal intervals except for both ends 50 mm in the diagonal direction on the front of the display device. The difference between the respective luminances measured at 10 points was calculated from the calculated average value, and the maximum value thereof was divided by the average luminance and the value represented as a percentage was regarded as luminance unevenness.
 測定した、加湿前後の輝度ムラの差に基づいて以下のように評価した。
A:5%以下である。
B:5%超10%以下である。
C:10%超20%以下である。
D:20%超である。
 結果を下記の表1に示す。
It evaluated as follows based on the difference of the luminance nonuniformity before and behind humidification which was measured.
A: 5% or less.
B: 5% or more and 10% or less.
C: 10% or more and 20% or less.
D: more than 20%.
The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、本発明の機能性積層フィルムは、比較例に対して、より高いガスバリア性を有することがわかる。
 また、実施例1と比較例2とを対比すると、実施例1では、ガスバリアフィルムの無機層として窒化ケイ素膜を用いるので、絞り領域の幅Tを10mm以下としても、無機層が割れることなく、十分なガスバリア性を発現しているのがわかる。これに対して、比較例2では、無機層としてアルミナ膜を用いているので、絞り領域の幅Tを10mm以下とすると、無機層が割れてガスバリア性が低下しているのがわかる。言い換えると、無機層としてアルミナ膜を用いた場合には、無機層の割れを防止するために幅Tを大きくする必要があり、額縁部を小さくすることができない。
 さらに、実施例3、4のように、ガスバリアフィルムの端部を急に湾曲させて端面の厚さを薄くすることでガスバリア性をより向上できることがわかる。
 あるいは、実施例5、6のように、ガスバリアフィルムの端部を急に湾曲させて、絞り領域の幅Tをより小さくして狭額縁化できることがわかる。
 以上の結果より、本発明の効果は明らかである。
As shown in Table 1 above, it can be seen that the functional laminate film of the present invention has higher gas barrier properties than the comparative example.
Moreover, when Example 1 and Comparative Example 2 are compared, in Example 1, since the silicon nitride film is used as the inorganic layer of the gas barrier film, the inorganic layer does not break even when the width T of the throttling region is 10 mm or less. It can be seen that sufficient gas barrier properties are developed. On the other hand, in Comparative Example 2, since the alumina film is used as the inorganic layer, it is understood that when the width T of the throttling region is 10 mm or less, the inorganic layer is broken and the gas barrier property is lowered. In other words, when an alumina film is used as the inorganic layer, the width T needs to be increased in order to prevent cracking of the inorganic layer, and the frame portion can not be made smaller.
Furthermore, it is understood that the gas barrier properties can be further improved by curving the end portion of the gas barrier film suddenly to thin the thickness of the end face as in Examples 3 and 4.
Or it turns out that the edge part of a gas barrier film can be made to curve suddenly like Example 5, 6, the width T of a diaphragm area can be made smaller, and a frame can be narrowed.
From the above results, the effects of the present invention are clear.
 10 機能性積層フィルム
 12 機能層
 14 ガスバリアフィルム
 20 ガスバリア支持体
 22 ガスバリア層
 24 有機層
 26 無機層
10 functional laminated film 12 functional layer 14 gas barrier film 20 gas barrier support 22 gas barrier layer 24 organic layer 26 inorganic layer

Claims (15)

  1.  機能層と、前記機能層の一方の主面および他方の主面にそれぞれ積層される、無機層を有する2つのガスバリアフィルムとを有する機能性積層フィルムにおいて、
     前記無機層は、窒化ケイ素を含み、
     前記機能層は、端部に、前記機能層の平均厚さよりも厚さが薄い絞り領域を有し、
     前記絞り領域は、前記機能層の端面から10mm以下の範囲の領域であり、かつ、端面での厚さが最も薄いことを特徴とする機能性積層フィルム。
    In a functional laminate film having a functional layer, and two gas barrier films having an inorganic layer, which are respectively laminated on one main surface and the other main surface of the functional layer,
    The inorganic layer comprises silicon nitride,
    The functional layer has at its end a squeeze area whose thickness is thinner than the average thickness of the functional layer,
    The functional laminated film characterized in that the narrowed area is an area within a range of 10 mm or less from the end face of the functional layer, and the thickness at the end face is the thinnest.
  2.  前記絞り領域は、端面から1mm以下の範囲の領域である請求項1に記載の機能性積層フィルム。 The functional laminated film according to claim 1, wherein the squeeze area is an area in a range of 1 mm or less from the end face.
  3.  前記機能層の端面での厚みは、前記機能層の平均厚さの50%以下である請求項1または2に記載の機能性積層フィルム。 The functional laminated film according to claim 1, wherein a thickness of the functional layer at an end face is 50% or less of an average thickness of the functional layer.
  4.  2つの前記ガスバリアフィルムの端部が、互いに接触している請求項1~3のいずれか一項に記載の機能性積層フィルム。 The functional laminated film according to any one of claims 1 to 3, wherein the ends of the two gas barrier films are in contact with each other.
  5.  前記絞り領域よりも内側での前記機能層の厚さは、前記機能層の平均厚さの±2%である請求項1~4のいずれか一項に記載の機能性積層フィルム。 The functional laminated film according to any one of claims 1 to 4, wherein the thickness of the functional layer inside the narrowed region is ± 2% of the average thickness of the functional layer.
  6.  前記ガスバリアフィルムの、前記機能層側の最上層が前記無機層である請求項1~5のいずれか一項に記載の機能性積層フィルム。 The functional laminated film according to any one of claims 1 to 5, wherein the uppermost layer on the functional layer side of the gas barrier film is the inorganic layer.
  7.  前記ガスバリアフィルムは、ガスバリア支持体と、前記ガスバリア支持体上に積層される有機層と、前記有機層上に積層される前記無機層とを有する請求項1~6のいずれか一項に記載の機能性積層フィルム。 The gas barrier film according to any one of claims 1 to 6, comprising a gas barrier support, an organic layer laminated on the gas barrier support, and the inorganic layer laminated on the organic layer. Functional laminated film.
  8.  前記ガスバリアフィルムの厚さが、5μm~100μmである請求項1~7のいずれか一項に記載の機能性積層フィルム。 The functional laminated film according to any one of claims 1 to 7, wherein the thickness of the gas barrier film is 5 μm to 100 μm.
  9.  前記ガスバリア支持体は、融点が230℃以下、ガラス転移温度が120℃以下である請求項7または8に記載の機能性積層フィルム。 9. The functional laminate film according to claim 7, wherein the gas barrier support has a melting point of 230 ° C. or less and a glass transition temperature of 120 ° C. or less.
  10.  前記ガスバリアフィルムを面方向に2.5%伸ばした後の水蒸気透過率が、1×10-3[g/(m2・day)]以下である請求項1~9のいずれか一項に記載の機能性積層フィルム。 The water vapor transmission rate after extending the gas barrier film in the plane direction by 2.5% is 1 × 10 -3 [g / (m 2 · day)] or less according to any one of claims 1 to 9. Functional laminated film.
  11.  前記無機層は、水素の含有率が10原子%~30原子%である請求項1~10のいずれか一項に記載の機能性積層フィルム。 The functional laminated film according to any one of claims 1 to 10, wherein the inorganic layer has a hydrogen content of 10 atomic% to 30 atomic%.
  12.  前記機能層は、多数の量子ドットを含む量子ドット層である請求項1~11のいずれか一項に記載の機能性積層フィルム。 The functional laminated film according to any one of claims 1 to 11, wherein the functional layer is a quantum dot layer including a large number of quantum dots.
  13.  機能層と、前記機能層の一方の主面および他方の主面にそれぞれ積層される、窒化ケイ素を含む無機層を有する2つのガスバリアフィルムとを有する積層体を準備する準備工程と、
     前記積層体を切断して、切断面から10mm以下の範囲で前記機能層の厚さを、前記機能層の平均厚さよりも薄く、かつ、前記切断面での厚さを最も薄く形成する切断工程と、を有することを特徴とする機能性積層フィルムの製造方法。
    Preparing a laminate having a functional layer, and two gas barrier films having an inorganic layer containing silicon nitride, which are respectively laminated on one principal surface and the other principal surface of the functional layer;
    A cutting step of cutting the laminate to form a thickness of the functional layer within a range of 10 mm or less from the cut surface, thinner than the average thickness of the functional layer and the thinnest on the cut surface And a method of producing a functional laminate film.
  14.  前記ガスバリアフィルムは、ガスバリア支持体と前記無機層とを有し、
     前記切断工程において、刃の温度を前記ガスバリア支持体の、ガラス転移温度+50℃~融点+50℃の範囲に加熱して切断を行う請求項13に記載の機能性積層フィルムの製造方法。
    The gas barrier film has a gas barrier support and the inorganic layer,
    The method for producing a functional laminated film according to claim 13, wherein the cutting is performed by heating the blade temperature to a range of the glass transition temperature + 50 ° C to the melting point + 50 ° C of the gas barrier support.
  15.  前記切断工程は、トムソン刃、裁断刃またはスリッター刃を用いて行う請求項13または14に記載の機能性積層フィルムの製造方法。 The method for producing a functional laminated film according to claim 13, wherein the cutting step is performed using a Thomson blade, a cutting blade or a slitter blade.
PCT/JP2015/073048 2014-09-12 2015-08-17 Functional laminate film and method for producing functional laminate film WO2016039080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547794A JP6316443B2 (en) 2014-09-12 2015-08-17 Functional laminated film and method for producing functional laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186402 2014-09-12
JP2014-186402 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016039080A1 true WO2016039080A1 (en) 2016-03-17

Family

ID=55458838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073048 WO2016039080A1 (en) 2014-09-12 2015-08-17 Functional laminate film and method for producing functional laminate film

Country Status (2)

Country Link
JP (1) JP6316443B2 (en)
WO (1) WO2016039080A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139027A (en) * 2018-02-08 2019-08-22 東レエンジニアリング株式会社 Manufacturing method for light conversion body, manufacturing apparatus for light conversion body, and light conversion body
CN111103720A (en) * 2018-10-29 2020-05-05 三星显示有限公司 Optical adjuster and display device including the same
JPWO2021235024A1 (en) * 2020-05-21 2021-11-25

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116132A (en) * 1985-11-15 1987-05-27 石崎産業株式会社 Vacuum heat-insulating packaging material made of corrugatedboard and manufacture thereof
JP2000514538A (en) * 1996-07-08 2000-10-31 オーシャニアリング インターナショナル インコーポレイテッド Insulation panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891567B2 (en) * 2005-01-19 2011-02-22 Agency For Science, Technology And Research Identification tag, object adapted to be identified, and related methods, devices, and systems
KR20200039806A (en) * 2010-11-10 2020-04-16 나노시스, 인크. Quantum dot films, lighting devices, and lighting methods
BR112015017244A2 (en) * 2013-01-21 2017-07-11 3M Innovative Properties Co quantum dot film article, method of forming a quantum dot film article and quantum dot material
KR102062687B1 (en) * 2013-01-23 2020-01-06 엘지전자 주식회사 Quantum dot composite film and Backlight unit by using the film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116132A (en) * 1985-11-15 1987-05-27 石崎産業株式会社 Vacuum heat-insulating packaging material made of corrugatedboard and manufacture thereof
JP2000514538A (en) * 1996-07-08 2000-10-31 オーシャニアリング インターナショナル インコーポレイテッド Insulation panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139027A (en) * 2018-02-08 2019-08-22 東レエンジニアリング株式会社 Manufacturing method for light conversion body, manufacturing apparatus for light conversion body, and light conversion body
JP7025233B2 (en) 2018-02-08 2022-02-24 東レエンジニアリング株式会社 Manufacturing method of optical converter, manufacturing equipment of optical converter, and optical converter
CN111103720A (en) * 2018-10-29 2020-05-05 三星显示有限公司 Optical adjuster and display device including the same
JP2020071481A (en) * 2018-10-29 2020-05-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Optical member and display device including the same
JP7423252B2 (en) 2018-10-29 2024-01-29 三星ディスプレイ株式會社 Optical member and display device including the same
JPWO2021235024A1 (en) * 2020-05-21 2021-11-25
JP7265093B2 (en) 2020-05-21 2023-04-25 株式会社クレハ Method for producing the composition

Also Published As

Publication number Publication date
JP6316443B2 (en) 2018-04-25
JPWO2016039080A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US10427392B2 (en) Functional composite film and quantum dot film
US10603885B2 (en) Functional composite film and wavelength conversion film
CN108712966B (en) Gas barrier film and wavelength conversion film
JP6433592B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
US20180022881A1 (en) Functional film and method for producing functional film
JP6570638B2 (en) Laminated film
JP6316971B2 (en) Functional laminated film and method for producing functional laminated film
JP6599992B2 (en) Laminated film
JP6433591B2 (en) Laminated film
JP6608447B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP6577874B2 (en) Wavelength conversion film
WO2017068780A1 (en) Wavelength-converting laminated film
WO2016039080A1 (en) Functional laminate film and method for producing functional laminate film
JP6441484B2 (en) Laminated film
KR102129370B1 (en) Backlight Film
JP6611350B2 (en) Backlight film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839345

Country of ref document: EP

Kind code of ref document: A1