WO2016038819A1 - Electrode, method for manufacturing same, and organic el lighting device provided with electrode - Google Patents

Electrode, method for manufacturing same, and organic el lighting device provided with electrode Download PDF

Info

Publication number
WO2016038819A1
WO2016038819A1 PCT/JP2015/004270 JP2015004270W WO2016038819A1 WO 2016038819 A1 WO2016038819 A1 WO 2016038819A1 JP 2015004270 W JP2015004270 W JP 2015004270W WO 2016038819 A1 WO2016038819 A1 WO 2016038819A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
metal nanowire
metal
anchor layer
Prior art date
Application number
PCT/JP2015/004270
Other languages
French (fr)
Japanese (ja)
Inventor
井上 純一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016038819A1 publication Critical patent/WO2016038819A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an electrode, a manufacturing method thereof, and an organic EL lighting device including the electrode, and particularly includes an electrode on which a metal nanowire layer including a metal nanowire is formed as a conductive film, a manufacturing method thereof, and the electrode.
  • the present invention relates to an organic EL lighting device.
  • Metal oxides such as indium tin oxide (ITO) have been used for transparent conductive films that require light transmission, such as transparent conductive films formed on plastic substrates.
  • ITO indium tin oxide
  • a transparent conductive film using a metal oxide is manufactured by sputtering film formation in a vacuum environment, and thus is expensive to manufacture, and cracking and peeling are likely to occur due to deformation such as bending and bending. It was a thing.
  • a transparent conductive film using metal oxide instead of a transparent conductive film using a metal oxide, a transparent conductive film using metal nanowires that can be formed by coating or printing, has high resistance to bending and bending, and can realize low resistance. Is being considered.
  • a transparent conductive film using metal nanowires has attracted attention as a next-generation transparent conductive film that does not use indium, which is a rare metal (see, for example, Patent Documents 1 and 2).
  • the metal nanowire-containing transparent conductive film formed by coating a dispersion liquid in which metal nanowires are dispersed in various binders on a glass substrate or a plastic substrate and then firing the same is an ITO-like transparent conductive film.
  • the adhesion to the substrate was inferior compared to the sputtered film.
  • after manufacturing a transparent electrode formed with a transparent conductive film containing metal nanowires when there is a cleaning process with water or solvent, or when an environmental test that reproduces the environment to which the final product is exposed is performed Further, peeling or floating accompanying the decrease in the adhesion between the transparent conductive film and the substrate occurred, and there was a risk of impairing conductivity.
  • Patent Document 3 does not interpose a reaction product of perhydropolysilazane between a base material and a transparent conductive film containing metal nanowires. In addition, Patent Document 3 neither describes nor suggests the reaction rate of polysilazane.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can easily form a low-resistance metal nanowire layer (conductive film), and can improve the adhesion between the substrate and the metal nanowire layer, and a method for producing the electrode
  • An object of the present invention is to provide an organic EL lighting device including the electrodes.
  • the inventors of the present invention formed a metal nanowire layer on an anchor layer formed on a substrate, whereby a low-resistance metal nanowire layer ( It was found that the conductive film) can be easily formed and the adhesion between the substrate and the metal nanowire layer can be improved, and the present invention has been completed.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> An anchor layer forming step of forming an anchor layer on a base material, and a metal nanowire layer forming step of forming a metal nanowire layer including metal nanowires on the anchor layer are included. It is a manufacturing method of an electrode.
  • the anchor layer is a primer layer formed between the base material and the metal nanowire layer, thereby improving the adhesion between the base material and the metal nanowire layer. can do.
  • electrode refers to “a structure including a base material, an anchor layer formed on the base material, and a metal nanowire layer formed on the anchor layer”.
  • ⁇ 2> In the anchor layer forming step, polysilazane is applied on the base material, and the applied polysilazane is reacted to form the anchor layer on the base material. It is a manufacturing method of this electrode.
  • the metal nanowire layer forming step when the reaction rate of polysilazane in the anchor layer is 50% to 95%, the metal nanowire layer is formed on the anchor layer, ⁇ 2> It is a manufacturing method of the electrode as described in above.
  • ⁇ 4> The method for producing an electrode according to ⁇ 2> or ⁇ 3>, wherein the polysilazane is perhydropolysilazane.
  • ⁇ 5> The method for producing an electrode according to any one of ⁇ 1> to ⁇ 4>, further including an overcoat layer forming step of forming an overcoat layer on the metal nanowire layer.
  • a liquid material containing an acrylate monomer is applied on the metal nanowire layer, the applied liquid material is cured, and the metal nanowire layer is coated with the liquid material.
  • ⁇ 7> The method for producing an electrode according to any one of ⁇ 1> to ⁇ 6>, wherein the metal nanowire is a silver nanowire.
  • ⁇ 8> An electrode manufactured by the manufacturing method according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> An organic EL lighting device comprising the electrode according to ⁇ 8>.
  • the conventional problems can be solved, the object can be achieved, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the substrate and the metal can be formed. It is possible to provide an electrode that can improve the adhesion to the nanowire layer, a method for manufacturing the electrode, and an organic EL lighting device including the electrode. In addition, process-resistant performance (for example, tolerance with respect to the wet cleaning process of EL element) can be improved by improving the adhesiveness of a base material and a metal nanowire layer.
  • FIG. 1 is a schematic diagram of an organic EL lighting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the transparent electrode of Comparative Example 1.
  • FIG. 3 is a schematic diagram for explaining the transparent electrode of Comparative Example 2.
  • FIG. 4 is a schematic diagram for explaining the transparent electrode of Example 1.
  • FIG. 5 is a schematic diagram for explaining the transparent electrodes of Examples 2 to 10.
  • FIG. 6 is a schematic diagram for explaining the transparent electrode of Example 11.
  • FIG. FIG. 7 is a schematic diagram for explaining the transparent electrode of Comparative Example 3.
  • FIG. 8 is a schematic view for explaining the transparent electrode of Comparative Example 4.
  • FIG. 9 is a schematic diagram for explaining the transparent electrodes of Examples 12 to 20.
  • the method for producing an electrode of the present invention includes at least an anchor layer forming step and a metal nanowire layer forming step, and further includes other steps such as an overcoat layer forming step appropriately selected as necessary.
  • the anchor layer forming step is a step of forming an anchor layer on the substrate.
  • the transparent base material which consists of material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable.
  • the transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film.
  • the film is formed into a film (sheet) thinned to such an extent that flexible flexibility can be realized, or an appropriate amount. It can be made into the flat form which has a film thickness of the grade which can implement
  • limiting in particular as said inorganic material According to the objective, it can select suitably, For example, quartz, sapphire, glass, etc. are mentioned.
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyimide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • PE polyether sulfone
  • PP polypropylene
  • PP diacetyl cellulose
  • PVC polyvinyl chloride
  • acrylic resin PMMA
  • PC polycarbonate
  • Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used.
  • the film thickness of the transparent substrate is preferably 5 ⁇ m to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • the method for forming the anchor layer on the substrate is not particularly limited and may be appropriately selected depending on the purpose.
  • polysilazane is applied on the substrate, and the coated polysilazane is applied.
  • the method of making it react and forming the said anchor layer on the said base material etc. are mentioned.
  • the layer for example, layer formed using the compound etc. which contain Si atom and organic substance simultaneously in a molecule
  • the thickness of the anchor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001 ⁇ m to 5 ⁇ m, and more preferably 0.01 ⁇ m to 1 ⁇ m. If the thickness of the anchor layer is less than 0.001 ⁇ m, poor adhesion between the substrate and the metal nanowire layer may occur. If the thickness exceeds 5 ⁇ m, the optical properties such as chromaticity and total light transmittance of the electrode film A characteristic defect may occur in the characteristic.
  • the thickness of the anchor layer is within the more preferable range, it is advantageous in terms of adhesion and optical characteristics. Due to the barrier film performance of the polysilazane film as the anchor layer, deterioration of the electrode over time can be reduced.
  • the polysilazane is particularly excellent in adhesion to glass and organic matter, it is preferably used as an anchor layer component.
  • the weight average molecular weight of the polysilazane is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 to 5000. There is no restriction
  • the perhydropolysilazane is represented by the following formula (1) (n represents an arbitrary integer) and reacts with moisture in the atmosphere to be converted into silica glass (see the following reaction formula (2)).
  • the metal nanowire layer forming step is a step of forming a metal nanowire layer including metal nanowires on the anchor layer.
  • the reaction rate of polysilazane in the anchor layer at the time of forming the metal nanowire layer on the anchor layer is not particularly limited and can be appropriately selected according to the purpose, but is preferably 50% to 95%, 70% to 95% is more preferable, and 82.5% to 87.5% is particularly preferable.
  • the reaction rate is less than 50%, the solvent resistance may be inferior, and when it exceeds 95%, the anchor layer has almost the same structure as glass, so the adhesion of the metal nanowires may be inferior. is there.
  • the reaction rate is within the more preferable range or the particularly preferable range, it is advantageous in terms of solvent resistance and adhesion.
  • the reaction rate of polysilazane in the anchor layer is a ratio (%) calculated using an infrared spectroscopy (IR) spectrum of a sample to be measured.
  • IR infrared spectroscopy
  • the dispersion liquid includes at least metal nanowires, and further includes carbon nanotubes, a transparent resin material (binder), a solvent, a dispersant, and other components as necessary.
  • the dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
  • the viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 cP to 50 cP, and more preferably 10 cP to 40 cP. If the viscosity of the dispersion is less than 1 cP or more than 50 cP, a dispersion film formation failure may be caused in the dispersion film forming step, and the surface resistance distribution may be non-uniform. On the other hand, when the viscosity of the dispersion is within the more preferable range, it is advantageous in that formation failure of the dispersion film can be prevented and the distribution of surface resistance can be made uniform.
  • the mass of the said dispersion liquid is 100 masses. Parts, preferably 0.01 to 10.00 parts by mass.
  • the basis weight sufficient for the metal nanowires and any carbon nanotubes in the finally obtained transparent conductive film may (0.001g / m 2 ⁇ 1.000g / m 2) can not be obtained, and when it exceeds 10.00 parts by mass, the dispersibility of the metal nanowires and any of the carbon nanotube is deteriorated.
  • the metal nanowire is made of metal and is a fine wire having a diameter on the order of nm.
  • the constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose.
  • Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • Ag and Cu are preferable in terms of high conductivity.
  • the average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
  • the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate.
  • the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
  • the average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m.
  • the metal nanowires are not easily connected to each other, and the transparent conductive film containing the metal nanowires may not function as a conductive film.
  • the total light transmittance and haze of the transparent conductive film containing the metal nanowire may be deteriorated, or the dispersibility of the metal nanowire in the dispersion used when forming the transparent conductive film may be deteriorated.
  • the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape.
  • the length of the metal nanowire is not limited.
  • the weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ⁇ 1.000g / m 2, 0.003g / m 2 ⁇ 0.3 g / m 2 is more preferable.
  • the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate.
  • the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
  • the metal nanowire network means a network structure formed by connecting a plurality of metal nanowires to each other in a network.
  • the said metal nanowire network is formed by passing through the pressurization process mentioned later.
  • combined by the conventional synthesis method may be sufficient, and a commercially available thing may be used.
  • combining method of the said carbon nanotube According to the objective, it can select suitably, For example, an arc discharge method, a laser evaporation method, a thermal CVD method etc. are mentioned.
  • limiting in particular as said carbon nanotube According to the objective, it can select suitably, A single-walled carbon nanotube (SWNT) may be sufficient, and a multi-walled carbon nanotube (MWNT) may be sufficient. However, the single-walled carbon nanotube is preferable.
  • the carbon nanotube may be a mixture of metallic and semiconducting carbon nanotubes, or may be a selectively separated semiconducting carbon nanotube.
  • the carbon nanotube network means a network structure formed by connecting a plurality of carbon nanotubes in a network.
  • the carbon nanotube network is formed through a pressure treatment described later.
  • the transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
  • transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
  • transparent resin material (binder) there is no restriction
  • a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned,
  • Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
  • the thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
  • the solvent is not particularly limited as long as the metal nanowires and optionally contained carbon nanotubes are dispersed, and can be appropriately selected according to the purpose.
  • water methanol, ethanol, n-propanol , I-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol and other alcohols; cyclohexanone, cyclopentanone, anone and other ketones; N, N-dimethylformamide (DMF) and other amides; dimethyl sulfoxide Sulfides such as (DMSO); and the like. These may be used individually by 1 type and may use 2 or more types together.
  • DMF N-dimethylformamide
  • DMSO dimethyl sulfoxide Sulfides
  • a high boiling point solvent may be further added to the dispersion liquid. Thereby, the evaporation rate of the solvent from the dispersion can be controlled.
  • the high boiling point solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups.
  • PVP polyvinyl pyrrolidone
  • amino group-containing compounds such as polyethyleneimine
  • sulfo groups including sulfonates
  • the dispersant when added to the dispersion, it is preferable to add the dispersant so that the conductivity of the finally obtained transparent conductive film does not deteriorate.
  • the said dispersing agent can be made to adsorb
  • the other components are not particularly limited and may be appropriately selected depending on the intended purpose.
  • surfactants for example, surfactants, viscosity modifiers, curing accelerators, plasticity, stabilizers such as antioxidants and sulfidizing agents, and the like. , Etc.
  • Metal nanowire layer is formed using a dispersion, and the dispersion is as described above.
  • the metal nanowires, carbon nanotubes, transparent resin material (binder), solvent, dispersant, and other components that can be contained in the dispersion are all as described above in the description of the dispersion.
  • a method for forming the dispersion film made of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a wet film formation method is preferable in terms of physical properties, convenience, production cost, and the like.
  • limiting in particular as said wet film-forming method According to the objective, it can select suitably, For example, well-known methods, such as the apply
  • the coating method is not particularly limited and can be appropriately selected according to the purpose. For example, the micro gravure coating method, the wire bar coating method, the direct gravure coating method, the die coating method, the dip method, and the spray coating.
  • the printing method is not particularly limited and can be appropriately selected depending on the purpose. For example, letterpress printing, offset printing, gravure printing, intaglio printing, rubber printing, screen printing, ink jet printing, and the like. Is mentioned.
  • the thickness of the metal nanowire layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the wet thickness is preferably 3 ⁇ m to 20 ⁇ m, and more preferably 5 ⁇ m to 15 ⁇ m. If the dispersion film has a wet thickness of less than 3 ⁇ m, it may be difficult to form a metal nanowire layer. If the thickness of the dispersion film exceeds 20 ⁇ m, the distribution of the surface resistance of the transparent conductive film obtained may be uneven. is there. On the other hand, when the wet thickness of the dispersion film is within the more preferable range, This is advantageous in terms of good formation of the dispersion film and uniformity of the surface resistance distribution of the transparent conductive film obtained.
  • the overcoat layer forming step is a step of forming an overcoat layer on the metal nanowire layer. Due to the presence of the overcoat layer, solvent resistance and environmental resistance can be further improved.
  • the overcoat layer is preferably transparent.
  • the method for forming the overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method in which a polymer such as polycarbonate or polymethyl methacrylate is dissolved in a solvent and then applied / dried. Can be mentioned.
  • the overcoat layer is formed of a curable material capable of forming a crosslinked structure, the solvent resistance and the environmental resistance can be further improved.
  • the curable material is not particularly limited as long as it can form a crosslinked structure, and can be appropriately selected according to the purpose, but from the viewpoint of transparency, fast curability, solvent resistance, environmental resistance test, Acrylic polymerized materials are preferred, and in particular from the viewpoint of improving solvent resistance and environmental resistance tests, polyfunctional acrylic monomer-containing materials are more preferred.
  • the curing reaction system of the curing material may be either thermal curing or photocuring, but a photocuring system is preferable in that there is little thermal damage to the member.
  • the electrode of the present invention is an electrode manufactured by the manufacturing method of the present invention, and includes at least a base material, an anchor layer formed on the base material, and a metal nanowire layer formed on the anchor layer And other members as necessary.
  • the base material, the anchor layer, and the metal nanowire layer are as described above.
  • FIG. 1 is a schematic diagram of an organic EL lighting device according to an embodiment of the present invention.
  • an organic EL lighting device 100 of the present invention includes an organic EL panel 1.
  • the organic EL panel 1 includes electrodes (a glass substrate 2, an anchor layer (not shown) formed on the glass substrate 2, and a silver nanowire layer formed on the anchor layer) manufactured by the manufacturing method of the present invention. 3)
  • the organic light emitting layer 4 and the back electrode 5 made of a light reflecting metal film are sequentially laminated. And the part except the light emission surface (in the case of FIG. 1, the lower surface of the board
  • a silver nanowire coating material (ST658 manufactured by Seashell) was spin-coated on a glass substrate 20 (Non-alkali glass of Nippon Electric Glass, model name: OA-10G, thickness 0.7 mm). 700 rpm / 20 seconds), followed by baking at 120 ° C. for 2 minutes to form the silver nanowire layer 30, thereby producing the transparent electrode 200. About the produced transparent electrode 200, evaluation of adhesiveness and evaluation of an environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
  • a silver nanowire coating material (ST658 manufactured by Seashell) was spin-coated on a glass substrate 20 (Non-alkali glass of Nippon Electric Glass, model name: OA-10G, thickness 0.7 mm). 700 rpm / 20 seconds) and then baked at 120 ° C. for 2 minutes to form a silver nanowire layer 30.
  • a coating for overcoat layer having the following composition is applied on the formed silver nanowire layer 30 by a spin coating method (700 rpm / 20 seconds), then baked at 120 ° C. for 2 minutes, and cured by UV irradiation of 1,000 mJ. Then, the overcoat layer 40 was formed, and the transparent electrode 300 was produced.
  • Example 1 As shown in FIG. 4, a silane compound (KBM5103 manufactured by Shin-Etsu Silicone) is spin-coated on a glass substrate 20 (Non-alkali glass of Nippon Electric Glass, model name: OA-10G, thickness 0.7 mm) (1 000 rpm / 20 seconds), followed by baking at 100 ° C./30 seconds to form a silane film (anchor layer) 50. On the formed silane film (anchor layer) 50, a silver nanowire coating (SThell manufactured by Seashell) was applied by spin coating (700 rpm / 20 seconds), and then baked at 120 ° C. for 2 minutes to produce silver nanowires. A wire layer 30 was formed.
  • a silane compound KBM5103 manufactured by Shin-Etsu Silicone
  • a coating for overcoat layer having the following composition is applied on the formed silver nanowire layer 30 by a spin coating method (700 rpm / 20 seconds), then baked at 120 ° C. for 2 minutes, and cured by UV irradiation of 1,000 mJ. Then, the overcoat layer 40 was formed, and the transparent electrode 400 was produced. About the produced transparent electrode 400, evaluation of adhesiveness and evaluation of an environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
  • Example 2 Reaction rate 40%
  • Example 1 instead of applying the silver nanowire paint on the silane film (anchor layer) 50 formed on the glass substrate 20, as shown in FIG.
  • Polysilazane N120A manufactured by AZ Electronic Materials, “PHPS” in Tables 1 and 2) was applied by spin coating (1,000 rpm / 20 seconds) to form a perhydropolysilazane film (anchor layer) 60.
  • the transparent electrode 500 was produced in the same manner as in Example 1 except that the silver nanowire paint was applied when the reaction rate of perhydropolysilazane was 40%.
  • an environmental test resistance value change
  • the reaction rate of the perhydropolysilazane is a ratio (%) calculated using an infrared spectroscopy (IR) spectrum of the sample to be measured, and the absorption of the Si—N group of the perhydropolysilazane before the reaction. This is the ratio (%) of the height of the absorption peak of the Si—N group of perhydropolysilazane after the reaction when the peak height is 100%.
  • IR infrared spectroscopy
  • Example 3 50% reaction rate
  • Example 2 a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 50%.
  • the test resistance value change
  • the evaluation results are shown in Table 1.
  • Example 4 Reaction rate 60%
  • Example 2 a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 60%.
  • the test resistance value change
  • the evaluation results are shown in Table 1.
  • Example 5 reaction rate 70%
  • Example 2 a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 70%.
  • the test resistance value change
  • the evaluation results are shown in Table 1.
  • Example 6 Reaction rate 82.5%)
  • a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 82.5%.
  • an environmental test resistance value change
  • Example 7 reaction rate 85%
  • Example 2 a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 85%.
  • the test resistance value change
  • the evaluation results are shown in Table 1.
  • Example 8 Reaction rate 87.5%)
  • a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 87.5%.
  • an environmental test resistance value change
  • Example 9 reaction rate 95%)
  • a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 95%.
  • the test resistance value change
  • the evaluation results are shown in Table 1.
  • Example 10 reaction rate 100%
  • Example 2 a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 100%.
  • the test resistance value change
  • the evaluation results are shown in Table 1.
  • Example 11 In Example 7, as shown in FIG. 6, a transparent electrode 600 was produced in the same manner as in Example 7 except that the overcoat layer 40 was not formed. Evaluation and evaluation of environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
  • Comparative Example 3 In Comparative Example 1, instead of using the glass substrate 20 as a substrate, as shown in FIG. 7, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, a transparent electrode 700 was produced in the same manner as in Comparative Example 1, and the produced transparent electrode 700 was evaluated for adhesion and an environmental test (change in resistance value). The evaluation results are shown in Table 2.
  • Comparative Example 4 In Comparative Example 2, instead of using the glass substrate 20 as a substrate, as shown in FIG. 8, it was a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)). Except for the above, the transparent electrode 800 was produced in the same manner as in Comparative Example 2, and the produced transparent electrode 800 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
  • Example 12 Reaction rate 60%
  • a PET substrate 21 adheresive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 4, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
  • Example 13 Reaction rate 70%
  • a PET substrate 21 adheresive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 5, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
  • Example 14 Reaction rate 85%
  • a PET substrate 21 adheresive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 7, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
  • Example 15 reaction rate 95%)
  • a PET substrate 21 adheresive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 9, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
  • Example 16 reaction rate 100%
  • a PET substrate 21 adheresive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used.
  • a transparent electrode 900 was produced, and the produced transparent electrode 900 was evaluated for adhesion and an environmental test (change in resistance value). The evaluation results are shown in Table 2.
  • Example 17 Copper nanowire
  • Example 14 instead of using silver nanowires, copper nanowires (manufactured by NOVARIALS, trade name “NovaWireCu01”, average minor axis diameter 30 nm (manufacturer value)) were used in the same manner as in Example 14. Then, a transparent electrode was produced, and the produced transparent electrode was evaluated for adhesion and an environmental test (change in resistance value). The evaluation results are shown in Table 2.
  • the electrode of the present invention is an alternative to an electrode formed with a conductive film using a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers, smartphones, touch panels, LEDs, and liquid crystal panels.
  • ITO indium tin oxide

Abstract

Provided are: an electrode wherein a low resistance metal nano-wire layer (conductive film) is easily formed, and adhesion between a base material and the metal nano-wire layer is improved; a method for manufacturing the electrode; and an organic EL lighting device that is provided with the electrode. An electrode manufacturing method of the present invention includes: an anchor layer forming step for forming an anchor layer on a base material; and a metal nano-wire layer forming step for forming a metal nano-wire layer on the anchor layer, said metal nano-wire layer including a metal nano-wire.

Description

電極及びその製造方法、並びに前記電極を備える有機EL照明装置ELECTRODE, ITS MANUFACTURING METHOD, AND ORGANIC EL LIGHTING DEVICE HAVING THE ELECTRODE 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2014-186636号(2014年9月12日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2014-186636 (filed on September 12, 2014), the entire disclosure of which is incorporated herein by reference.
 本発明は、電極及びその製造方法、並びに前記電極を備える有機EL照明装置に関し、特に、導電膜として金属ナノワイヤーを含む金属ナノワイヤー層が形成された電極及びその製造方法、並びに前記電極を備える有機EL照明装置に関する。 The present invention relates to an electrode, a manufacturing method thereof, and an organic EL lighting device including the electrode, and particularly includes an electrode on which a metal nanowire layer including a metal nanowire is formed as a conductive film, a manufacturing method thereof, and the electrode. The present invention relates to an organic EL lighting device.
 タッチパネル等の表示パネルの表示面に設けられる透明導電膜、表示パネルの表示面側に配置される情報入力装置の透明導電膜、更には、有機EL照明のガラス基材又はポリエチレンテレフタレート(PET)等のプラスチック基材上に形成される透明導電膜等、光透過性が要求される透明導電膜には、インジウムスズ酸化物(ITO)のような金属酸化物が用いられてきた。しかしながら、金属酸化物を用いた透明導電膜は、真空環境下におけるスパッタ成膜等により製造されるため、製造コストがかかるものであり、また曲げやたわみなどの変形によって割れや剥離が発生し易いものであった。 A transparent conductive film provided on the display surface of a display panel such as a touch panel, a transparent conductive film of an information input device arranged on the display surface side of the display panel, a glass substrate for organic EL lighting, polyethylene terephthalate (PET), etc. Metal oxides such as indium tin oxide (ITO) have been used for transparent conductive films that require light transmission, such as transparent conductive films formed on plastic substrates. However, a transparent conductive film using a metal oxide is manufactured by sputtering film formation in a vacuum environment, and thus is expensive to manufacture, and cracking and peeling are likely to occur due to deformation such as bending and bending. It was a thing.
 そこで、金属酸化物を用いた透明導電膜に代えて、塗布や印刷による成膜が可能で、しかも曲げやたわみに対する耐性も高く、且つ低抵抗を実現可能な金属ナノワイヤーを用いた透明導電膜が検討されている。金属ナノワイヤーを用いた透明導電膜は、レアメタルであるインジウムを使わない次世代の透明導電膜としても注目されている(例えば、特許文献1,2参照)。 Therefore, instead of a transparent conductive film using a metal oxide, a transparent conductive film using metal nanowires that can be formed by coating or printing, has high resistance to bending and bending, and can realize low resistance. Is being considered. A transparent conductive film using metal nanowires has attracted attention as a next-generation transparent conductive film that does not use indium, which is a rare metal (see, for example, Patent Documents 1 and 2).
 しかしながら、金属ナノワイヤーが種々のバインダー中に分散した分散液がガラス基材又はプラスチック基材上にコーティングされ、後に焼成されることで形成される金属ナノワイヤー含有透明導電膜は、ITOのようなスパッタ膜と比べて基材への密着性が劣る場合があった。
 特に、金属ナノワイヤーを含む透明導電膜が形成された透明電極を製造した後に、水や溶剤による洗浄工程が存在する場合、または、最終製品が晒される環境を再現した環境試験を行った場合において、透明導電膜と基材との密着性の低下に伴う剥がれや浮きが生じ、導通性を損なう恐れがあった。
However, the metal nanowire-containing transparent conductive film formed by coating a dispersion liquid in which metal nanowires are dispersed in various binders on a glass substrate or a plastic substrate and then firing the same is an ITO-like transparent conductive film. In some cases, the adhesion to the substrate was inferior compared to the sputtered film.
In particular, after manufacturing a transparent electrode formed with a transparent conductive film containing metal nanowires, when there is a cleaning process with water or solvent, or when an environmental test that reproduces the environment to which the final product is exposed is performed Further, peeling or floating accompanying the decrease in the adhesion between the transparent conductive film and the substrate occurred, and there was a risk of impairing conductivity.
 また、基材と、ITO等の透明導電膜との間に、パーヒドロポリシラザンの反応物を介在させる技術が知られている(例えば、特許文献3参照)。 Also, a technique is known in which a reaction product of perhydropolysilazane is interposed between a base material and a transparent conductive film such as ITO (for example, see Patent Document 3).
 しかしながら、特許文献3の技術は、基材と、金属ナノワイヤーを含む透明導電膜との間に、パーヒドロポリシラザンの反応物を介在させるものではない。また、特許文献3には、ポリシラザンの反応率に関する記載も示唆もない。 However, the technique of Patent Document 3 does not interpose a reaction product of perhydropolysilazane between a base material and a transparent conductive film containing metal nanowires. In addition, Patent Document 3 neither describes nor suggests the reaction rate of polysilazane.
特表2010-507199号公報Special table 2010-507199 特表2010-525526号公報Special table 2010-525526 特開平9-237159号公報JP-A-9-237159
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、基材と金属ナノワイヤー層との密着性を向上させることができる電極及びその製造方法、並びに前記電極を備える有機EL照明装置を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can easily form a low-resistance metal nanowire layer (conductive film), and can improve the adhesion between the substrate and the metal nanowire layer, and a method for producing the electrode An object of the present invention is to provide an organic EL lighting device including the electrodes.
 本発明者らは、前記目的を達成すべく鋭意検討を行った結果、基材の上に形成されたアンカー層の上に金属ナノワイヤー層を形成することにより、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、基材と金属ナノワイヤー層との密着性を向上させることができることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention formed a metal nanowire layer on an anchor layer formed on a substrate, whereby a low-resistance metal nanowire layer ( It was found that the conductive film) can be easily formed and the adhesion between the substrate and the metal nanowire layer can be improved, and the present invention has been completed.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
 <1> 基材の上にアンカー層を形成するアンカー層形成工程と、前記アンカー層の上に金属ナノワイヤーを含む金属ナノワイヤー層を形成する金属ナノワイヤー層形成工程と、を含むことを特徴とする、電極の製造方法である。
 該<1>に記載の電極の製造方法において、アンカー層が基材と金属ナノワイヤー層との間に形成されたプライマー層となることで、基材と金属ナノワイヤー層との密着性を改善することができる。
 なお、本明細書において、「電極」は、「基材と、該基材上に形成されたアンカー層と、該アンカー層上に形成された金属ナノワイヤー層とを備える構造体」を指す。
 <2> 前記アンカー層形成工程において、前記基材の上にポリシラザンを塗布し、該塗布されたポリシラザンを反応させて、前記基材の上に前記アンカー層を形成する、前記<1>に記載の電極の製造方法である。
 <3> 前記金属ナノワイヤー層形成工程において、前記アンカー層におけるポリシラザンの反応率が50%~95%であるときに、前記アンカー層の上に前記金属ナノワイヤー層を形成する、前記<2>に記載の電極の製造方法である。
 <4> 前記ポリシラザンが、パーヒドロポリシラザンである、前記<2>又は<3>に記載の電極の製造方法である。
 <5> 前記金属ナノワイヤー層の上にオーバーコート層を形成するオーバーコート層形成工程をさらに含む、前記<1>から<4>のいずれかに記載の電極の製造方法である。
 <6> 前記オーバーコート層形成工程において、前記金属ナノワイヤー層の上にアクリレートモノマーを含有する液状物を塗布し、該塗布された液状物を硬化させて、前記金属ナノワイヤー層の上に前記オーバーコート層を形成する、前記<5>に記載の電極の製造方法である。
 <7> 前記金属ナノワイヤーが銀ナノワイヤーである、前記<1>から<6>のいずれかに記載の電極の製造方法である。
 <8> 前記<1>から<7>のいずれかに記載の製造方法により製造されたことを特徴とする、電極である。
 <9> 前記<8>に記載の電極を備えることを特徴とする、有機EL照明装置である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> An anchor layer forming step of forming an anchor layer on a base material, and a metal nanowire layer forming step of forming a metal nanowire layer including metal nanowires on the anchor layer are included. It is a manufacturing method of an electrode.
In the electrode manufacturing method according to <1>, the anchor layer is a primer layer formed between the base material and the metal nanowire layer, thereby improving the adhesion between the base material and the metal nanowire layer. can do.
In this specification, “electrode” refers to “a structure including a base material, an anchor layer formed on the base material, and a metal nanowire layer formed on the anchor layer”.
<2> In the anchor layer forming step, polysilazane is applied on the base material, and the applied polysilazane is reacted to form the anchor layer on the base material. It is a manufacturing method of this electrode.
<3> In the metal nanowire layer forming step, when the reaction rate of polysilazane in the anchor layer is 50% to 95%, the metal nanowire layer is formed on the anchor layer, <2> It is a manufacturing method of the electrode as described in above.
<4> The method for producing an electrode according to <2> or <3>, wherein the polysilazane is perhydropolysilazane.
<5> The method for producing an electrode according to any one of <1> to <4>, further including an overcoat layer forming step of forming an overcoat layer on the metal nanowire layer.
<6> In the overcoat layer forming step, a liquid material containing an acrylate monomer is applied on the metal nanowire layer, the applied liquid material is cured, and the metal nanowire layer is coated with the liquid material. The method for producing an electrode according to <5>, wherein an overcoat layer is formed.
<7> The method for producing an electrode according to any one of <1> to <6>, wherein the metal nanowire is a silver nanowire.
<8> An electrode manufactured by the manufacturing method according to any one of <1> to <7>.
<9> An organic EL lighting device comprising the electrode according to <8>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、基材と金属ナノワイヤー層との密着性を向上させることができる電極及びその製造方法、並びに前記電極を備える有機EL照明装置を提供することができる。
 なお、基材と金属ナノワイヤー層との密着性を向上させることで、耐プロセス性能(例えば、EL素子のウェット洗浄処理に対する耐性)を向上させることができる。
According to the present invention, the conventional problems can be solved, the object can be achieved, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the substrate and the metal can be formed. It is possible to provide an electrode that can improve the adhesion to the nanowire layer, a method for manufacturing the electrode, and an organic EL lighting device including the electrode.
In addition, process-resistant performance (for example, tolerance with respect to the wet cleaning process of EL element) can be improved by improving the adhesiveness of a base material and a metal nanowire layer.
図1は、本発明の一実施形態に係る有機EL照明装置の模式図である。FIG. 1 is a schematic diagram of an organic EL lighting device according to an embodiment of the present invention. 図2は、比較例1の透明電極を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the transparent electrode of Comparative Example 1. FIG. 図3は、比較例2の透明電極を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the transparent electrode of Comparative Example 2. 図4は、実施例1の透明電極を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the transparent electrode of Example 1. FIG. 図5は、実施例2~10の透明電極を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the transparent electrodes of Examples 2 to 10. 図6は、実施例11の透明電極を説明するための模式図である。FIG. 6 is a schematic diagram for explaining the transparent electrode of Example 11. FIG. 図7は、比較例3の透明電極を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the transparent electrode of Comparative Example 3. 図8は、比較例4の透明電極を説明するための模式図である。FIG. 8 is a schematic view for explaining the transparent electrode of Comparative Example 4. 図9は、実施例12~20の透明電極を説明するための模式図である。FIG. 9 is a schematic diagram for explaining the transparent electrodes of Examples 12 to 20.
(電極の製造方法)
 本発明の電極の製造方法は、少なくとも、アンカー層形成工程と、金属ナノワイヤー層形成工程とを含み、更に、必要に応じて適宜選択した、オーバーコート層形成工程等のその他の工程を含む。
(Method for manufacturing electrode)
The method for producing an electrode of the present invention includes at least an anchor layer forming step and a metal nanowire layer forming step, and further includes other steps such as an overcoat layer forming step appropriately selected as necessary.
<アンカー層形成工程>
 前記アンカー層形成工程は、基材の上にアンカー層を形成する工程である。
<Anchor layer formation process>
The anchor layer forming step is a step of forming an anchor layer on the substrate.
<<基材>>
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができるが、無機材料、プラスチック材料等の可視光に対して透過性を有する材料からなる透明基材が好ましい。
 前記透明基材は、透明導電膜を有する透明電極に必要とされる膜厚を有しており、例えばフレキシブルな屈曲性を実現できる程度に薄膜化されたフィルム状(シート状)、又は適度の屈曲性と剛性を実現できる程度の膜厚を有する平板状とすることができる。
 前記無機材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、石英、サファイア、ガラス、などが挙げられる。
 前記プラスチック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、などの公知の高分子材料が挙げられる。斯かるプラスチック材料を用いて透明基材を構成した場合、生産性の観点から透明基材の膜厚を5μm~500μmとすることが好ましいが、この範囲に特に限定されるものではない。
<< Base material >>
There is no restriction | limiting in particular as said base material, Although it can select suitably according to the objective, The transparent base material which consists of material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable.
The transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film. For example, the film is formed into a film (sheet) thinned to such an extent that flexible flexibility can be realized, or an appropriate amount. It can be made into the flat form which has a film thickness of the grade which can implement | achieve flexibility and rigidity.
There is no restriction | limiting in particular as said inorganic material, According to the objective, it can select suitably, For example, quartz, sapphire, glass, etc. are mentioned.
There is no restriction | limiting in particular as said plastic material, According to the objective, it can select suitably, For example, a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), a polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used. When a transparent substrate is constituted using such a plastic material, the film thickness of the transparent substrate is preferably 5 μm to 500 μm from the viewpoint of productivity, but is not particularly limited to this range.
<<アンカー層の形成>>
 前記基材の上にアンカー層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材の上にポリシラザンを塗布し、該塗布されたポリシラザンを反応させて、前記基材の上に前記アンカー層を形成する方法、などが挙げられる。
<< Formation of Anchor Layer >>
The method for forming the anchor layer on the substrate is not particularly limited and may be appropriately selected depending on the purpose. For example, polysilazane is applied on the substrate, and the coated polysilazane is applied. The method of making it react and forming the said anchor layer on the said base material etc. are mentioned.
-アンカー層-
 前記アンカー層としては、基材と金属ナノワイヤー層との両方の密着性が高い層(例えば、分子中にSi原子と有機物を同時に含む化合物等を用いて形成される層)が好ましい。
 前記アンカー層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.001μm~5μmが好ましく、0.01μm~1μmがより好ましい。
 前記アンカー層の厚みが、0.001μm未満であると、基材と金属ナノワイヤー層との密着不良が生じることがあり、5μmを超えると、電極膜の色度や全光線透過率などの光学特性において特性不良が生じることがある。一方、前記アンカー層の厚みが、前記より好ましい範囲内であると、密着性と光学特性の点で有利である。
 前記アンカー層としてのポリシラザン膜のバリア膜性能により、電極の経時劣化を軽減することができる。
-Anchor layer-
As said anchor layer, the layer (for example, layer formed using the compound etc. which contain Si atom and organic substance simultaneously in a molecule | numerator) with high adhesiveness of both a base material and a metal nanowire layer is preferable.
The thickness of the anchor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001 μm to 5 μm, and more preferably 0.01 μm to 1 μm.
If the thickness of the anchor layer is less than 0.001 μm, poor adhesion between the substrate and the metal nanowire layer may occur. If the thickness exceeds 5 μm, the optical properties such as chromaticity and total light transmittance of the electrode film A characteristic defect may occur in the characteristic. On the other hand, when the thickness of the anchor layer is within the more preferable range, it is advantageous in terms of adhesion and optical characteristics.
Due to the barrier film performance of the polysilazane film as the anchor layer, deterioration of the electrode over time can be reduced.
-ポリシラザン-
 前記ポリシラザンは、特に、ガラスや有機物に対する密着性に優れているため、アンカー層成分として好適に使用される。
 前記ポリシラザンの重量平均分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、500~5000が好ましい。
 前記ポリシラザンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、パーヒドロポリシラザン、などが挙げられる。
 前記パーヒドロポリシラザンは、下記式(1)(nは任意の整数を示す)によって表され、大気中の水分と反応してシリカガラスに転化する(下記反応式(2)参照)。
-Polysilazane-
Since the polysilazane is particularly excellent in adhesion to glass and organic matter, it is preferably used as an anchor layer component.
The weight average molecular weight of the polysilazane is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 to 5000.
There is no restriction | limiting in particular as said polysilazane, According to the objective, it can select suitably, For example, perhydropolysilazane etc. are mentioned.
The perhydropolysilazane is represented by the following formula (1) (n represents an arbitrary integer) and reacts with moisture in the atmosphere to be converted into silica glass (see the following reaction formula (2)).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
-(SiH2NH)-+2H2O→SiO2+NH3+2H2 -(SiH 2 NH)-+ 2H 2 O → SiO 2 + NH 3 + 2H 2
<金属ナノワイヤー層形成工程>
 前記金属ナノワイヤー層形成工程は、アンカー層の上に金属ナノワイヤーを含む金属ナノワイヤー層を形成する工程である。
<Metal nanowire layer formation process>
The metal nanowire layer forming step is a step of forming a metal nanowire layer including metal nanowires on the anchor layer.
<<金属ナノワイヤー層の形成>>
 前記アンカー層の上に金属ナノワイヤーを含む金属ナノワイヤー層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属ナノワイヤーを含む分散液を用いて、アンカー層上に分散膜を形成する方法、などが挙げられる。
<< Formation of metal nanowire layer >>
There is no restriction | limiting in particular as a method of forming the metal nanowire layer containing metal nanowire on the said anchor layer, According to the objective, it can select suitably, For example, using the dispersion liquid containing metal nanowire. And a method of forming a dispersion film on the anchor layer.
-アンカー層におけるポリシラザンの反応率-
 アンカー層の上に金属ナノワイヤー層を形成する時点でのアンカー層におけるポリシラザンの反応率としては、特に制限はなく、目的に応じて適宜選択することができるが、50%~95%が好ましく、70%~95%がより好ましく、82.5%~87.5%が特に好ましい。
 前記反応率が、50%未満であると、耐溶剤性に劣ることがあり、95%を超えると、アンカー層がほぼガラスと同じ構造体となるため、金属ナノワイヤーの密着性が劣ることがある。一方、前記反応率が前記より好ましい範囲内、又は、前記特に好ましい範囲内であると、耐溶剤性及び密着性の点で有利である。
 前記アンカー層におけるポリシラザンの反応率は、測定対象となるサンプルの赤外分光法(IR)スペクトルを用いて算出した割合(%)であり、例えば、上記反応式(2)の反応前のパーヒドロポリシラザンのSi-N基の吸収ピークの高さを100%とした場合の、上記反応式(2)の反応後のパーヒドロポリシラザンのSi-N基の吸収ピークの高さの割合(%)を指す。なお、上記反応率の算出には、事前に作成した検量線(縦軸が「Si-N基の吸収ピークの高さ」、横軸が「反応時間」のグラフ)を用いてもよい。
-Reaction rate of polysilazane in anchor layer-
The reaction rate of polysilazane in the anchor layer at the time of forming the metal nanowire layer on the anchor layer is not particularly limited and can be appropriately selected according to the purpose, but is preferably 50% to 95%, 70% to 95% is more preferable, and 82.5% to 87.5% is particularly preferable.
When the reaction rate is less than 50%, the solvent resistance may be inferior, and when it exceeds 95%, the anchor layer has almost the same structure as glass, so the adhesion of the metal nanowires may be inferior. is there. On the other hand, when the reaction rate is within the more preferable range or the particularly preferable range, it is advantageous in terms of solvent resistance and adhesion.
The reaction rate of polysilazane in the anchor layer is a ratio (%) calculated using an infrared spectroscopy (IR) spectrum of a sample to be measured. When the height of the absorption peak of the Si—N group of polysilazane is 100%, the ratio (%) of the height of the absorption peak of the Si—N group of perhydropolysilazane after the reaction of the above reaction formula (2) is calculated. Point to. For the calculation of the reaction rate, a calibration curve prepared in advance (a graph in which the vertical axis indicates the height of the Si—N group absorption peak and the horizontal axis indicates the “reaction time”) may be used.
-分散液-
 前記分散液は、少なくとも、金属ナノワイヤーを含んでなり、更に必要に応じて、カーボンナノチューブ、透明樹脂材料(バインダー)、溶剤、分散剤、その他の成分、などを含んでなる。
-Dispersion-
The dispersion liquid includes at least metal nanowires, and further includes carbon nanotubes, a transparent resin material (binder), a solvent, a dispersant, and other components as necessary.
 前記分散液の分散手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理、加圧分散処理、などが好適に挙げられる。 The dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
 前記分散液の粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、1cP~50cPが好ましく、10cP~40cPがより好ましい。
 前記分散液の粘度が、1cP未満又は50cP超であると、分散膜形成工程において分散膜の形成不良を引き起こし、表面抵抗の分布を不均一にすることがある。一方、前記分散液の粘度が、前記より好ましい範囲内であると、分散膜の形成不良を防止して、表面抵抗の分布を均一化できる点で有利である。
The viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 cP to 50 cP, and more preferably 10 cP to 40 cP.
If the viscosity of the dispersion is less than 1 cP or more than 50 cP, a dispersion film formation failure may be caused in the dispersion film forming step, and the surface resistance distribution may be non-uniform. On the other hand, when the viscosity of the dispersion is within the more preferable range, it is advantageous in that formation failure of the dispersion film can be prevented and the distribution of surface resistance can be made uniform.
 前記分散液中の金属ナノワイヤーと、任意に含まれるカーボンナノチューブとの合計の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記分散液の質量を100質量部とした場合、0.01質量部~10.00質量部が好ましい。
 前記金属ナノワイヤーと、任意のカーボンナノチューブとの合計の配合量が、0.01質量部未満であると、最終的に得られる透明導電膜において金属ナノワイヤー及び任意のカーボンナノチューブに十分な目付量(0.001g/m2~1.000g/m2)が得られないことがあり、10.00質量部を超えると、金属ナノワイヤー及び任意のカーボンナノチューブの分散性が劣化することがある。
There is no restriction | limiting in particular as a total compounding quantity of the metal nanowire in the said dispersion liquid, and the carbon nanotube contained arbitrarily, Although it can select suitably according to the objective, The mass of the said dispersion liquid is 100 masses. Parts, preferably 0.01 to 10.00 parts by mass.
When the total amount of the metal nanowires and any carbon nanotubes is less than 0.01 parts by mass, the basis weight sufficient for the metal nanowires and any carbon nanotubes in the finally obtained transparent conductive film may (0.001g / m 2 ~ 1.000g / m 2) can not be obtained, and when it exceeds 10.00 parts by mass, the dispersibility of the metal nanowires and any of the carbon nanotube is deteriorated.
--金属ナノワイヤー--
 前記金属ナノワイヤーは、金属を用いて構成されたものであって、nmオーダーの径を有する微細なワイヤーである。
 前記金属ナノワイヤーの構成元素としては、金属元素である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、Fe、V、Ta、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、AgやCuが、導電性が高い点で、好ましい。
--- Metal nanowires--
The metal nanowire is made of metal and is a fine wire having a diameter on the order of nm.
The constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose. For example, Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, Ag and Cu are preferable in terms of high conductivity.
 前記金属ナノワイヤーの平均短軸径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm超500nm以下が好ましく、10nm~100nmがより好ましい。
 前記金属ナノワイヤーの平均短軸径が、1nm以下であると、金属ナノワイヤーの導電率が劣化して、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、500nmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの平均短軸径が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
The average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
When the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate. On the other hand, when the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
 前記金属ナノワイヤーの平均長軸長としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~1000μmが好ましく、1μm~100μmがより好ましい。
 前記金属ナノワイヤーの平均長軸長が、1μm未満であると、金属ナノワイヤー同士がつながりにくく、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、1000μmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化したり、透明導電膜を形成する際に用いる分散液における金属ナノワイヤーの分散性が劣化することがある。一方、前記金属ナノワイヤーの平均長軸長が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
 なお、金属ナノワイヤーの平均短軸径及び平均長軸長は、走査型電子顕微鏡により測定可能な、数平均短軸径及び数平均長軸長である。より具体的には、金属ナノワイヤーを少なくとも100本以上測定し、電子顕微鏡写真から画像解析装置を用いて、それぞれのナノワイヤーの投影径及び投影面積を算出する。投影径を、短軸径とした。また、下記式に基づき、長軸長を算出した。
長軸長=投影面積/投影径
 平均短軸径は、短軸径の算術平均値とした。平均長軸長は、長軸長の算術平均値とした。
The average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 1000 μm, and more preferably 1 μm to 100 μm.
When the average major axis length of the metal nanowires is less than 1 μm, the metal nanowires are not easily connected to each other, and the transparent conductive film containing the metal nanowires may not function as a conductive film. The total light transmittance and haze of the transparent conductive film containing the metal nanowire may be deteriorated, or the dispersibility of the metal nanowire in the dispersion used when forming the transparent conductive film may be deteriorated. On the other hand, when the average major axis length of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
The average minor axis diameter and the average major axis length of the metal nanowires are the number average minor axis diameter and the number average major axis length that can be measured with a scanning electron microscope. More specifically, at least 100 metal nanowires are measured, and the projected diameter and projected area of each nanowire are calculated from an electron micrograph using an image analyzer. The projected diameter was the minor axis diameter. Further, the major axis length was calculated based on the following formula.
Long axis length = projected area / projected diameter The average minor axis diameter was an arithmetic average value of minor axis diameters. The average major axis length was the arithmetic average value of the major axis length.
 更に、前記金属ナノワイヤーは、金属ナノ粒子が数珠状に繋がってワイヤー形状を有しているものでもよい。この場合、前記金属ナノワイヤーの長さは限定されない。 Furthermore, the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape. In this case, the length of the metal nanowire is not limited.
 前記金属ナノワイヤーの目付量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001g/m2~1.000g/m2が好ましく、0.003g/m2~0.3g/m2がより好ましい。
 前記金属ナノワイヤーの目付量が、0.001g/m2未満であると、金属ナノワイヤーが十分に金属ナノワイヤー層中に存在せず、透明導電膜の導電性が劣化することがあり、1.000g/m2を超えると、透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの目付量が前記より好ましい範囲内であると、透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
The weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ~ 1.000g / m 2, 0.003g / m 2 ~ 0.3 g / m 2 is more preferable.
When the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate. On the other hand, when the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
---金属ナノワイヤーネットワーク---
 なお、前記金属ナノワイヤーネットワークとは、複数の金属ナノワイヤーが互いに網状に連結されて形成されたネットワーク構造を意味する。前記金属ナノワイヤーネットワークは、後述する加圧処理を経ることにより形成される。
---- Metal nanowire network ---
The metal nanowire network means a network structure formed by connecting a plurality of metal nanowires to each other in a network. The said metal nanowire network is formed by passing through the pressurization process mentioned later.
--カーボンナノチューブ--
 前記カーボンナノチューブとしては、特に制限はなく、目的に応じて適宜選択することができ、従来の合成法で合成されるものでもよく、また、市販のものであってもよい。
 前記カーボンナノチューブの合成法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アーク放電法、レーザー蒸発法、熱CVD法、などが挙げられる。
 前記カーボンナノチューブとしては、特に制限はなく、目的に応じて適宜選択することができ、単層カーボンナノチューブ(SWNT)であってもよく、多層カーボンナノチューブ(MWNT)であってもよい。但し、前記単層カーボンナノチューブが好ましい。
 前記カーボンナノチューブとしては、金属性と半導体性のカーボンナノチューブの混合物であってよく、また、また選択的に分離された半導体性カーボンナノチューブであってもよい。
--carbon nanotube--
There is no restriction | limiting in particular as said carbon nanotube, According to the objective, it can select suitably, The thing synthesize | combined by the conventional synthesis method may be sufficient, and a commercially available thing may be used.
There is no restriction | limiting in particular as the synthesis | combining method of the said carbon nanotube, According to the objective, it can select suitably, For example, an arc discharge method, a laser evaporation method, a thermal CVD method etc. are mentioned.
There is no restriction | limiting in particular as said carbon nanotube, According to the objective, it can select suitably, A single-walled carbon nanotube (SWNT) may be sufficient, and a multi-walled carbon nanotube (MWNT) may be sufficient. However, the single-walled carbon nanotube is preferable.
The carbon nanotube may be a mixture of metallic and semiconducting carbon nanotubes, or may be a selectively separated semiconducting carbon nanotube.
---カーボンナノチューブネットワーク---
 前記カーボンナノチューブネットワークとは、複数のカーボンナノチューブが互いに網状に連結されて形成されたネットワーク構造を意味する。前記カーボンナノチューブネットワークは、後述する加圧処理を経ることにより形成される。
---- Carbon nanotube network ---
The carbon nanotube network means a network structure formed by connecting a plurality of carbon nanotubes in a network. The carbon nanotube network is formed through a pressure treatment described later.
--透明樹脂材料(バインダー)--
 前記透明樹脂材料(バインダー)は、前記金属ナノワイヤー、及び任意に含まれる前記カーボンナノチューブを分散させるものである。
 前記透明樹脂材料(バインダー)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、既知の透明な、天然高分子樹脂、合成高分子樹脂、などが挙げられ、熱可塑性樹脂であってもよく、また、熱、光、電子線、放射線で硬化する熱(光)硬化性樹脂であってもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、などが挙げられる。
 前記熱(光)硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂、アジド基やジアジリン基などの感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマー、などが挙げられる。
-Transparent resin material (binder)-
The transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
There is no restriction | limiting in particular as said transparent resin material (binder), According to the objective, it can select suitably, For example, a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned, Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
The thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorine Polypropylene, vinylidene fluoride, ethylcellulose, hydroxypropylmethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, and the like.
The thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
--溶剤--
 前記溶剤としては、金属ナノワイヤー及び任意に含まれるカーボンナノチューブが分散するものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、水;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール等のアルコール;シクロヘキサノン、シクロペンタノン、アノン等のケトン;N,N-ジメチルホルムアミド(DMF)等のアミド;ジメチルスルホキシド(DMSO)等のスルフィド;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--solvent--
The solvent is not particularly limited as long as the metal nanowires and optionally contained carbon nanotubes are dispersed, and can be appropriately selected according to the purpose. For example, water; methanol, ethanol, n-propanol , I-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol and other alcohols; cyclohexanone, cyclopentanone, anone and other ketones; N, N-dimethylformamide (DMF) and other amides; dimethyl sulfoxide Sulfides such as (DMSO); and the like. These may be used individually by 1 type and may use 2 or more types together.
 前記分散液を用いて形成される分散膜の乾燥ムラやクラックを抑えるため、分散液には、更に高沸点溶剤を添加してもよい。これにより、分散液からの溶剤の蒸発速度をコントロールすることができる。
 前記高沸点溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
In order to suppress drying unevenness and cracks in the dispersion film formed using the dispersion liquid, a high boiling point solvent may be further added to the dispersion liquid. Thereby, the evaporation rate of the solvent from the dispersion can be controlled.
The high boiling point solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl Ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl A Le, dipropylene glycol isopropyl ether, tripropylene glycol isopropyl ether, methyl glycol, and the like. These may be used individually by 1 type and may use 2 or more types together.
--分散剤--
 前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルピロリドン(PVP);ポリエチレンイミン等のアミノ基含有化合物;スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基等の官能基を有する化合物で金属に吸着可能なもの;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記分散剤を、前記金属ナノワイヤー又は任意に含まれるカーボンナノチューブの表面に吸着させてもよい。これにより、前記金属ナノワイヤー又は任意に含まれるカーボンナノチューブの分散性を向上させることができる。
-Dispersant-
The dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups. , Sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group, epoxy group, isocyanate group, cyano group, vinyl group, A compound having a functional group such as a thiol group or a carbinol group, which can be adsorbed to a metal; These may be used alone or in combination of two or more.
You may make the said dispersing agent adsorb | suck to the surface of the said metal nanowire or the carbon nanotube contained arbitrarily. Thereby, the dispersibility of the said metal nanowire or the carbon nanotube contained arbitrarily can be improved.
 また、前記分散剤を前記分散液に対して添加する場合は、最終的に得られる透明導電膜の導電性が劣化しない程度の添加量にすることが好ましい。これにより、前記分散剤を、透明導電膜の導電性が劣化しない程度の量で金属ナノワイヤー又は任意に含まれるカーボンナノチューブに吸着させることができる。 In addition, when the dispersant is added to the dispersion, it is preferable to add the dispersant so that the conductivity of the finally obtained transparent conductive film does not deteriorate. Thereby, the said dispersing agent can be made to adsorb | suck to the metal nanowire or the carbon nanotube contained arbitrarily in the quantity which is the extent which the electroconductivity of a transparent conductive film does not deteriorate.
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、粘度調整剤、硬化促進触媒、可塑性、酸化防止剤や硫化防止剤等の安定剤、などが挙げられる。
-Other ingredients-
The other components are not particularly limited and may be appropriately selected depending on the intended purpose. For example, surfactants, viscosity modifiers, curing accelerators, plasticity, stabilizers such as antioxidants and sulfidizing agents, and the like. , Etc.
<<金属ナノワイヤー層>>
 前記金属ナノワイヤー層は、分散液を用いて形成され、該分散液は、前述した通りである。また、前記分散液に含まれ得る金属ナノワイヤー、カーボンナノチューブ、透明樹脂材料(バインダー)、溶剤、分散剤、その他の成分は、いずれも、分散液の説明で前述した通りである。
<< Metal nanowire layer >>
The metal nanowire layer is formed using a dispersion, and the dispersion is as described above. The metal nanowires, carbon nanotubes, transparent resin material (binder), solvent, dispersant, and other components that can be contained in the dispersion are all as described above in the description of the dispersion.
 前記分散液からなる分散膜の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、物性、利便性、製造コスト等の点で、湿式製膜法が好ましい。
 前記湿式製膜法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布法、スプレー法、印刷法、などの公知の方法が挙げられる。
 前記塗布法としては、特に限定されるものではなく、目的に応じて適宜選択することができ、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法、などが挙げられる。
 前記スプレー法としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記印刷法としては、特に限定されるものではなく、目的に応じて適宜選択することができ、例えば、凸版印刷、オフセット印刷、グラビア印刷、凹版印刷、ゴム版印刷、スクリーン印刷、インクジェット印刷、などが挙げられる。
A method for forming the dispersion film made of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose. However, a wet film formation method is preferable in terms of physical properties, convenience, production cost, and the like.
There is no restriction | limiting in particular as said wet film-forming method, According to the objective, it can select suitably, For example, well-known methods, such as the apply | coating method, the spray method, and the printing method, are mentioned.
The coating method is not particularly limited and can be appropriately selected according to the purpose. For example, the micro gravure coating method, the wire bar coating method, the direct gravure coating method, the die coating method, the dip method, and the spray coating. Method, reverse roll coating method, curtain coating method, comma coating method, knife coating method, spin coating method, and the like.
There is no restriction | limiting in particular as said spray method, According to the objective, it can select suitably.
The printing method is not particularly limited and can be appropriately selected depending on the purpose. For example, letterpress printing, offset printing, gravure printing, intaglio printing, rubber printing, screen printing, ink jet printing, and the like. Is mentioned.
 前記金属ナノワイヤー層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、ウェット厚として3μm~20μmが好ましく、5μm~15μmがより好ましい。
 前記分散膜のウェット厚が、3μm未満であると、金属ナノワイヤー層の形成が困難になることがあり、20μmを超えると、得られる透明導電膜の表面抵抗の分布が不均一になることがある。一方、前記分散膜のウェット厚が、前記より好ましい範囲内であると、
分散膜の良好な形成及び得られる透明導電膜の表面抵抗の分布の均一性の点で有利である。
The thickness of the metal nanowire layer is not particularly limited and may be appropriately selected depending on the intended purpose. The wet thickness is preferably 3 μm to 20 μm, and more preferably 5 μm to 15 μm.
If the dispersion film has a wet thickness of less than 3 μm, it may be difficult to form a metal nanowire layer. If the thickness of the dispersion film exceeds 20 μm, the distribution of the surface resistance of the transparent conductive film obtained may be uneven. is there. On the other hand, when the wet thickness of the dispersion film is within the more preferable range,
This is advantageous in terms of good formation of the dispersion film and uniformity of the surface resistance distribution of the transparent conductive film obtained.
<オーバーコート層形成工程>
 前記オーバーコート層形成工程は、前記金属ナノワイヤー層の上にオーバーコート層を形成する工程である。
 前記オーバーコート層の存在により、耐溶剤性や耐環境試験性をより高めることができる。
 なお、前記オーバーコート層は、透明であることが好ましい。
<Overcoat layer forming step>
The overcoat layer forming step is a step of forming an overcoat layer on the metal nanowire layer.
Due to the presence of the overcoat layer, solvent resistance and environmental resistance can be further improved.
The overcoat layer is preferably transparent.
<<オーバーコート層の形成>>
 前記金属ナノワイヤー層の上にオーバーコート層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属ナノワイヤー層の上にアクリレートモノマーを含有する液状物を塗布し、該塗布された液状物を硬化させて、前記金属ナノワイヤー層の上に前記オーバーコート層を形成する方法、などが挙げられる。
<< Formation of overcoat layer >>
There is no restriction | limiting in particular as a method of forming an overcoat layer on the said metal nanowire layer, According to the objective, it can select suitably, For example, the liquid containing an acrylate monomer on the said metal nanowire layer And a method of forming the overcoat layer on the metal nanowire layer by applying a material and curing the applied liquid material.
-オーバーコート層-
 前記オーバーコート層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリカーボネート、ポリメチルメタクリレート等のポリマーを溶剤に溶解後、塗布/乾燥する方法、などが挙げられる。
 ここで、前記オーバーコート層が架橋構造を形成し得る硬化系材料で形成されると、耐溶剤性及び耐環境試験性をより高めることができる。前記硬化系材料としては、架橋構造を形成し得る限り、特に制限はなく、目的に応じて適宜選択することができるが、透明性、速硬化性、耐溶剤性、耐環境試験の観点から、アクリル重合系材料が好ましく、特に、耐溶剤性、耐環境試験を向上する観点から、多官能アクリルモノマー含有材料がより好ましい。また、前記硬化系材料の硬化反応系としては、熱硬化及び光硬化のいずれでもよいが、部材への熱ダメージが少ない点で、光硬化系が好ましい。
-Overcoat layer-
The method for forming the overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method in which a polymer such as polycarbonate or polymethyl methacrylate is dissolved in a solvent and then applied / dried. Can be mentioned.
Here, when the overcoat layer is formed of a curable material capable of forming a crosslinked structure, the solvent resistance and the environmental resistance can be further improved. The curable material is not particularly limited as long as it can form a crosslinked structure, and can be appropriately selected according to the purpose, but from the viewpoint of transparency, fast curability, solvent resistance, environmental resistance test, Acrylic polymerized materials are preferred, and in particular from the viewpoint of improving solvent resistance and environmental resistance tests, polyfunctional acrylic monomer-containing materials are more preferred. In addition, the curing reaction system of the curing material may be either thermal curing or photocuring, but a photocuring system is preferable in that there is little thermal damage to the member.
(電極)
 本発明の電極は、本発明の製造方法により製造された電極であって、少なくとも、基材と、該基材上に形成されたアンカー層と、該アンカー層上に形成された金属ナノワイヤー層とを有し、必要に応じて、その他の部材を有する。
 なお、前記基材、前記アンカー層、及び前記金属ナノワイヤー層は、前述した通りである。
 前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記オーバーコート層、などが挙げられる。
(electrode)
The electrode of the present invention is an electrode manufactured by the manufacturing method of the present invention, and includes at least a base material, an anchor layer formed on the base material, and a metal nanowire layer formed on the anchor layer And other members as necessary.
The base material, the anchor layer, and the metal nanowire layer are as described above.
There is no restriction | limiting in particular as said other member, According to the objective, it can select suitably, For example, the said overcoat layer etc. are mentioned.
(有機EL照明装置)
 本発明の有機EL照明装置は、少なくとも、本発明の電極を有し、必要に応じて、その他の部材を有する。
 図1は、本発明の一実施形態に係る有機EL照明装置の模式図である。
 図1において、本発明の有機EL照明装置100は、有機ELパネル1を備える。この有機ELパネル1は、本発明の製造方法により製造された電極(ガラス基板2と、ガラス基板2上に形成されたアンカー層(不図示)と、アンカー層上に形成された銀ナノワイヤー層3)、有機発光層4、及び光反射用の金属膜からなる背面電極5が順次積層されて構成されている。そして、この有機ELパネル1の発光面(図1の場合は基板2の下面)を除く部分は、金属等の導電性の筐体6で全体的に覆われている。
(Organic EL lighting device)
The organic EL lighting device of the present invention has at least the electrode of the present invention and, if necessary, other members.
FIG. 1 is a schematic diagram of an organic EL lighting device according to an embodiment of the present invention.
In FIG. 1, an organic EL lighting device 100 of the present invention includes an organic EL panel 1. The organic EL panel 1 includes electrodes (a glass substrate 2, an anchor layer (not shown) formed on the glass substrate 2, and a silver nanowire layer formed on the anchor layer) manufactured by the manufacturing method of the present invention. 3) The organic light emitting layer 4 and the back electrode 5 made of a light reflecting metal film are sequentially laminated. And the part except the light emission surface (in the case of FIG. 1, the lower surface of the board | substrate 2) of this organic EL panel 1 is entirely covered with the electroconductive housing | casing 6, such as a metal.
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(比較例1)
 図2に示すように、ガラス基材20(日本電気硝子の無アルカリガラス、型名:OA-10G、厚み0.7mm)上に、銀ナノワイヤー塗料(Seashell社製ST658)をスピンコート法(700rpm/20秒間)により塗布した後に、120℃で2分間焼成して、銀ナノワイヤー層30を形成し、透明電極200を作製した。作製した透明電極200について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Comparative Example 1)
As shown in FIG. 2, a silver nanowire coating material (ST658 manufactured by Seashell) was spin-coated on a glass substrate 20 (Non-alkali glass of Nippon Electric Glass, model name: OA-10G, thickness 0.7 mm). 700 rpm / 20 seconds), followed by baking at 120 ° C. for 2 minutes to form the silver nanowire layer 30, thereby producing the transparent electrode 200. About the produced transparent electrode 200, evaluation of adhesiveness and evaluation of an environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
<密着性の評価>
 JIS規格K5600-5-6に準拠して、碁盤目試験器を使用して、塗膜を1mm間隔で100目クロスカットしたのち、24mm幅セロハンテープ(ニチバン製)を3cm長さに貼付する。セロハンテープの一端から45℃の角度で一気に剥した後、クロスハッチ部の未剥離個数(NG数)を数え、密着性をOK数/100で評価した(OK数=100-NG数)。初期のサンプルと、純粋で30分間超音波洗浄した後のサンプルと、アセトンで30分間超音波洗浄した後のサンプルとについて評価した。
<<評価基準>>
○:100/100
▲:80~99/100
×:0~79/100
<Evaluation of adhesion>
In accordance with JIS standard K5600-5-6, a cross-cut tester is used to cross-cut the coating film at 100 mm intervals at 1 mm intervals, and then a 24 mm wide cellophane tape (manufactured by Nichiban) is applied to a length of 3 cm. After peeling off from the end of the cellophane tape at an angle of 45 ° C., the number of non-peeled portions (NG number) of the cross hatched portion was counted, and the adhesion was evaluated as OK number / 100 (OK number = 100−NG number). An initial sample, a sample after pure ultrasonic cleaning for 30 minutes, and a sample after ultrasonic cleaning with acetone for 30 minutes were evaluated.
<< Evaluation criteria >>
○: 100/100
▲: 80-99 / 100
×: 0 to 79/100
<環境試験(抵抗値変化)の評価>
 ナプソン社製の抵抗率計EC-80Pを用いて、測定プローブを銀ナノワイヤー層表面に接触させて透明電極の抵抗値を測定した。環境試験前後の抵抗値変化を次の基準で評価した。環境試験としては、「温度100℃、ドライで500時間」と「温度60℃、相対湿度90%で500時間」の2種類で行った。
<<評価基準>>
○:変化率が10%未満であって、且つ、環境試験前後の抵抗値がいずれも150以下
△:変化率が10%以上20%未満であって、且つ、環境試験前後の抵抗値がいずれも150以下
×:変化率20%以上、又は、環境試験前後の抵抗値のいずれかが150Ω超
<Evaluation of environmental test (resistance change)>
Using a resistivity meter EC-80P manufactured by Napson, the measurement probe was brought into contact with the surface of the silver nanowire layer, and the resistance value of the transparent electrode was measured. The resistance value change before and after the environmental test was evaluated according to the following criteria. The environmental test was performed in two types: “temperature 100 ° C., dry 500 hours” and “temperature 60 ° C., relative humidity 90% 500 hours”.
<< Evaluation criteria >>
○: Change rate is less than 10% and resistance value before and after environmental test is 150 or less. Δ: Change rate is 10% or more and less than 20%, and resistance value before and after environmental test is any. 150 or less x: Change rate of 20% or more, or resistance value before and after environmental test exceeds 150Ω
(比較例2)
 図3に示すように、ガラス基材20(日本電気硝子の無アルカリガラス、型名:OA-10G、厚み0.7mm)上に、銀ナノワイヤー塗料(Seashell社製ST658)をスピンコート法(700rpm/20秒間)により塗布した後に、120℃で2分間焼成して、銀ナノワイヤー層30を形成した。形成した銀ナノワイヤー層30上に、下記組成のオーバーコート層用塗料をスピンコート法(700rpm/20秒間)により塗布した後に、120℃で2分間焼成し、1,000mJのUV照射にて硬化して、オーバーコート層40を形成し、透明電極300を作製した。作製した透明電極300について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
<オーバーコート層用塗料の組成>
(1)アクリレートモノマー(脂肪族ウレタンアクリレート、サートマー社製CN9006):0.633質量%
(2)多官能アクリレート(ペンタエリスリトールトリアクリレート(トリエステル55%)、新中村化学工業社製A-TMM-3):0.317質量%
(3)開始剤(チバジャパン社製イルガキュアIrg907):0.050質量%
(4)レベリング剤(DIC社製Rs-75):0.016質量%
(5)希釈溶剤(プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)):98.984質量%
(Comparative Example 2)
As shown in FIG. 3, a silver nanowire coating material (ST658 manufactured by Seashell) was spin-coated on a glass substrate 20 (Non-alkali glass of Nippon Electric Glass, model name: OA-10G, thickness 0.7 mm). 700 rpm / 20 seconds) and then baked at 120 ° C. for 2 minutes to form a silver nanowire layer 30. A coating for overcoat layer having the following composition is applied on the formed silver nanowire layer 30 by a spin coating method (700 rpm / 20 seconds), then baked at 120 ° C. for 2 minutes, and cured by UV irradiation of 1,000 mJ. Then, the overcoat layer 40 was formed, and the transparent electrode 300 was produced. About the produced transparent electrode 300, evaluation of adhesiveness and evaluation of an environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
<Composition of paint for overcoat layer>
(1) Acrylate monomer (aliphatic urethane acrylate, CN9006 manufactured by Sartomer): 0.633% by mass
(2) Polyfunctional acrylate (pentaerythritol triacrylate (triester 55%), A-TMM-3 manufactured by Shin-Nakamura Chemical Co., Ltd.): 0.317% by mass
(3) Initiator (Irgacure Irg907 manufactured by Ciba Japan): 0.050% by mass
(4) Leveling agent (DIC Rs-75): 0.016% by mass
(5) Diluting solvent (propylene glycol 1-monomethyl ether 2-acetate (PGMEA)): 98.984% by mass
(実施例1)
 図4に示すように、ガラス基材20(日本電気硝子の無アルカリガラス、型名:OA-10G、厚み0.7mm)上に、シラン化合物(信越シリコーン社製KBM5103)をスピンコート法(1,000rpm/20秒間)にて塗布した後に、100℃/30秒間焼成して、シラン膜(アンカー層)50を形成した。形成したシラン膜(アンカ-層)50の上に、銀ナノワイヤー塗料(Seashell社製ST658)をスピンコート法(700rpm/20秒間)により塗布した後に、120℃で2分間焼成して、銀ナノワイヤー層30を形成した。形成した銀ナノワイヤー層30上に、下記組成のオーバーコート層用塗料をスピンコート法(700rpm/20秒間)により塗布した後に、120℃で2分間焼成し、1,000mJのUV照射にて硬化して、オーバーコート層40を形成し、透明電極400を作製した。作製した透明電極400について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 1)
As shown in FIG. 4, a silane compound (KBM5103 manufactured by Shin-Etsu Silicone) is spin-coated on a glass substrate 20 (Non-alkali glass of Nippon Electric Glass, model name: OA-10G, thickness 0.7 mm) (1 000 rpm / 20 seconds), followed by baking at 100 ° C./30 seconds to form a silane film (anchor layer) 50. On the formed silane film (anchor layer) 50, a silver nanowire coating (SThell manufactured by Seashell) was applied by spin coating (700 rpm / 20 seconds), and then baked at 120 ° C. for 2 minutes to produce silver nanowires. A wire layer 30 was formed. A coating for overcoat layer having the following composition is applied on the formed silver nanowire layer 30 by a spin coating method (700 rpm / 20 seconds), then baked at 120 ° C. for 2 minutes, and cured by UV irradiation of 1,000 mJ. Then, the overcoat layer 40 was formed, and the transparent electrode 400 was produced. About the produced transparent electrode 400, evaluation of adhesiveness and evaluation of an environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
(実施例2:反応率40%)
 実施例1において、ガラス基材20上に形成したシラン膜(アンカー層)50の上に、銀ナノワイヤー塗料を塗布する代わりに、図5に示すように、ガラス基材20上に、パーヒドロポリシラザン(AZエレクトロニック マテリアルズ社製NN120A、表1及び2中における「PHPS」)をスピンコート法(1,000rpm/20秒間)にて塗布して、パーヒドロポリシラザン膜(アンカー層)60を形成し、パーヒドロポリシラザンの反応率が40%のときに銀ナノワイヤー塗料を塗布したこと以外は、実施例1と同様にして、透明電極500を作製し、作製した透明電極500について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
 なお、前記パーヒドロポリシラザンの反応率は、測定対象となるサンプルの赤外分光法(IR)スペクトルを用いて算出した割合(%)であり、反応前のパーヒドロポリシラザンのSi-N基の吸収ピークの高さを100%とした場合の、反応後のパーヒドロポリシラザンのSi-N基の吸収ピークの高さの割合(%)である。
(Example 2: Reaction rate 40%)
In Example 1, instead of applying the silver nanowire paint on the silane film (anchor layer) 50 formed on the glass substrate 20, as shown in FIG. Polysilazane (NN120A manufactured by AZ Electronic Materials, “PHPS” in Tables 1 and 2) was applied by spin coating (1,000 rpm / 20 seconds) to form a perhydropolysilazane film (anchor layer) 60. The transparent electrode 500 was produced in the same manner as in Example 1 except that the silver nanowire paint was applied when the reaction rate of perhydropolysilazane was 40%. In addition, an environmental test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
The reaction rate of the perhydropolysilazane is a ratio (%) calculated using an infrared spectroscopy (IR) spectrum of the sample to be measured, and the absorption of the Si—N group of the perhydropolysilazane before the reaction. This is the ratio (%) of the height of the absorption peak of the Si—N group of perhydropolysilazane after the reaction when the peak height is 100%.
(実施例3:反応率50%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から50%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 3: 50% reaction rate)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 50%. The test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例4:反応率60%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から60%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 4: Reaction rate 60%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 60%. The test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例5:反応率70%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から70%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 5: reaction rate 70%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 70%. The test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例6:反応率82.5%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から82.5%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 6: Reaction rate 82.5%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 82.5%. In addition, an environmental test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例7:反応率85%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から85%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 7: reaction rate 85%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 85%. The test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例8:反応率87.5%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から87.5%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 8: Reaction rate 87.5%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 87.5%. In addition, an environmental test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例9:反応率95%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から95%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 9: reaction rate 95%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 95%. The test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例10:反応率100%)
 実施例2において、パーヒドロポリシラザンの反応率を40%から100%に変えたこと以外は、実施例2と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 10: reaction rate 100%)
In Example 2, a transparent electrode was produced in the same manner as in Example 2 except that the reaction rate of perhydropolysilazane was changed from 40% to 100%. The test (resistance value change) was evaluated. The evaluation results are shown in Table 1.
(実施例11)
 実施例7において、図6に示すように、オーバーコート層40を形成しなかったこと以外は、実施例7と同様にして、透明電極600を作製し、作製した透明電極600について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表1に示す。
(Example 11)
In Example 7, as shown in FIG. 6, a transparent electrode 600 was produced in the same manner as in Example 7 except that the overcoat layer 40 was not formed. Evaluation and evaluation of environmental test (resistance value change) were performed. The evaluation results are shown in Table 1.
(比較例3)
 比較例1において、基材として、ガラス基材20を用いる代わりに、図7に示すように、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、比較例1と同様にして、透明電極700を作製し、作製した透明電極700について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Comparative Example 3)
In Comparative Example 1, instead of using the glass substrate 20 as a substrate, as shown in FIG. 7, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, a transparent electrode 700 was produced in the same manner as in Comparative Example 1, and the produced transparent electrode 700 was evaluated for adhesion and an environmental test (change in resistance value). The evaluation results are shown in Table 2.
(比較例4)
 比較例2において、基材として、ガラス基材20を用いる代わりに、図8に示すように、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、比較例2と同様にして、透明電極800を作製し、作製した透明電極800について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Comparative Example 4)
In Comparative Example 2, instead of using the glass substrate 20 as a substrate, as shown in FIG. 8, it was a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)). Except for the above, the transparent electrode 800 was produced in the same manner as in Comparative Example 2, and the produced transparent electrode 800 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
(実施例12:反応率60%)
 実施例4において、基材として、ガラス基材20を用いる代わりに、図9に示すように、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、実施例4と同様にして、透明電極900を作製し、作製した透明電極900について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Example 12: Reaction rate 60%)
In Example 4, instead of using the glass substrate 20 as a substrate, as shown in FIG. 9, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 4, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
(実施例13:反応率70%)
 実施例5において、基材として、ガラス基材20を用いる代わりに、図9に示すように、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、実施例5と同様にして、透明電極900を作製し、作製した透明電極900について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Example 13: Reaction rate 70%)
In Example 5, instead of using the glass substrate 20 as a substrate, as shown in FIG. 9, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 5, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
(実施例14:反応率85%)
 実施例7において、基材として、ガラス基材20を用いる代わりに、図9に示すように、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、実施例7と同様にして、透明電極900を作製し、作製した透明電極900について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Example 14: Reaction rate 85%)
In Example 7, instead of using the glass substrate 20 as a substrate, as shown in FIG. 9, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 7, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
(実施例15:反応率95%)
 実施例9において、基材として、ガラス基材20を用いる代わりに、図9に示すように、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、実施例9と同様にして、透明電極900を作製し、作製した透明電極900について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Example 15: reaction rate 95%)
In Example 9, instead of using the glass substrate 20 as a substrate, as shown in FIG. 9, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. Except for the above, the transparent electrode 900 was produced in the same manner as in Example 9, and the produced transparent electrode 900 was evaluated for adhesion and environmental tests (resistance change). The evaluation results are shown in Table 2.
(実施例16:反応率100%)
 実施例10において、基材として、ガラス基材20を用いる代わりに、図9に示すよう、PET基材21(易接着PETフィルム(東レ製、ルミラー100-U34、厚み100um))としたこと以外は、実施例10と同様にして、透明電極900を作製し、作製した透明電極900について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Example 16: reaction rate 100%)
In Example 10, instead of using the glass substrate 20 as the substrate, as shown in FIG. 9, a PET substrate 21 (adhesive PET film (manufactured by Toray, Lumirror 100-U34, thickness 100 um)) was used. In the same manner as in Example 10, a transparent electrode 900 was produced, and the produced transparent electrode 900 was evaluated for adhesion and an environmental test (change in resistance value). The evaluation results are shown in Table 2.
(実施例17:銅ナノワイヤー)
 実施例14において、銀ナノワイヤーを用いる代わりに、銅ナノワイヤー(NOVARIALS社製、商品名「NovaWireCu01」、平均短軸径30nm(メーカー値))を用いたこと以外は、実施例14と同様にして、透明電極を作製し、作製した透明電極について、密着性の評価及び環境試験(抵抗値変化)の評価を行った。評価結果を表2に示す。
(Example 17: Copper nanowire)
In Example 14, instead of using silver nanowires, copper nanowires (manufactured by NOVARIALS, trade name “NovaWireCu01”, average minor axis diameter 30 nm (manufacturer value)) were used in the same manner as in Example 14. Then, a transparent electrode was produced, and the produced transparent electrode was evaluated for adhesion and an environmental test (change in resistance value). The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2から、基材の上にアンカー層が形成され、アンカー層の上に金属ナノワイヤーを含む金属ナノワイヤー層が形成された実施例1~17では、基材の上にアンカー層が形成されていない比較例1~4と比較して、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、基材と金属ナノワイヤー層との密着性を向上させることができることが分かる。 From Tables 1 and 2, in Examples 1 to 17 in which the anchor layer was formed on the base material and the metal nanowire layer including metal nanowires was formed on the anchor layer, the anchor layer was formed on the base material. Compared with comparative examples 1 to 4 that are not formed, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the adhesion between the substrate and the metal nanowire layer is improved. I can see that
 本発明の電極は、ノートパソコン、スマートフォン、タッチパネル、LED、液晶パネル等の電子機器に用いられているインジウムスズ酸化物(ITO)等の金属酸化物を用いた導電膜が形成された電極の代替物として、多岐に渡って適用可能であるが、特に、有機EL照明装置用途に好適に用いることができる。 The electrode of the present invention is an alternative to an electrode formed with a conductive film using a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers, smartphones, touch panels, LEDs, and liquid crystal panels. Although it can apply to various things as a thing, it can be used especially suitably for an organic electroluminescent illuminating device use.
 1  有機ELパネル
 2  ガラス基板
 3  銀(銅)ナノワイヤー層
 4  有機発光層
 5  背面電極
 6  筐体
20  ガラス基材
21  PET基材
30  銀(銅)ナノワイヤー層
40  オーバーコート層
50  シラン膜(アンカー層)
60  パーヒドロポリシラザン膜(アンカー層)
100 有機EL照明装置
200 透明電極
300 透明電極
400 透明電極
500 透明電極
600 透明電極
700 透明電極
800 透明電極
900 透明電極
DESCRIPTION OF SYMBOLS 1 Organic electroluminescent panel 2 Glass substrate 3 Silver (copper) nanowire layer 4 Organic light emitting layer 5 Back electrode 6 Case 20 Glass base material 21 PET base material 30 Silver (copper) nanowire layer 40 Overcoat layer 50 Silane film (anchor) layer)
60 Perhydropolysilazane film (anchor layer)
100 Organic EL Lighting Device 200 Transparent Electrode 300 Transparent Electrode 400 Transparent Electrode 500 Transparent Electrode 600 Transparent Electrode 700 Transparent Electrode 800 Transparent Electrode 900 Transparent Electrode

Claims (9)

  1.  基材の上にアンカー層を形成するアンカー層形成工程と、
     前記アンカー層の上に金属ナノワイヤーを含む金属ナノワイヤー層を形成する金属ナノワイヤー層形成工程と、を含むことを特徴とする、電極の製造方法。
    An anchor layer forming step of forming an anchor layer on the substrate;
    A metal nanowire layer forming step of forming a metal nanowire layer including metal nanowires on the anchor layer.
  2.  前記アンカー層形成工程において、前記基材の上にポリシラザンを塗布し、該塗布されたポリシラザンを反応させて、前記基材の上に前記アンカー層を形成する、請求項1に記載の電極の製造方法。 2. The production of an electrode according to claim 1, wherein in the anchor layer forming step, polysilazane is applied on the base material, and the applied polysilazane is reacted to form the anchor layer on the base material. Method.
  3.  前記金属ナノワイヤー層形成工程において、前記アンカー層におけるポリシラザンの反応率が50%~95%であるときに、前記アンカー層の上に前記金属ナノワイヤー層を形成する、請求項2に記載の電極の製造方法。 The electrode according to claim 2, wherein in the metal nanowire layer forming step, the metal nanowire layer is formed on the anchor layer when a reaction rate of polysilazane in the anchor layer is 50% to 95%. Manufacturing method.
  4.  前記ポリシラザンが、パーヒドロポリシラザンである、請求項2又は3に記載の電極の製造方法。 The method for producing an electrode according to claim 2 or 3, wherein the polysilazane is perhydropolysilazane.
  5.  前記金属ナノワイヤー層の上にオーバーコート層を形成するオーバーコート層形成工程をさらに含む、請求項1から3のいずれかに記載の電極の製造方法。 The method for producing an electrode according to any one of claims 1 to 3, further comprising an overcoat layer forming step of forming an overcoat layer on the metal nanowire layer.
  6.  前記オーバーコート層形成工程において、前記金属ナノワイヤー層の上にアクリレートモノマーを含有する液状物を塗布し、該塗布された液状物を硬化させて、前記金属ナノワイヤー層の上に前記オーバーコート層を形成する、請求項5に記載の電極の製造方法。 In the overcoat layer forming step, a liquid material containing an acrylate monomer is applied on the metal nanowire layer, the applied liquid material is cured, and the overcoat layer is formed on the metal nanowire layer. The manufacturing method of the electrode of Claim 5 which forms.
  7.  前記金属ナノワイヤーが銀ナノワイヤーである、請求項1から3のいずれかに記載の電極の製造方法。 The method for producing an electrode according to any one of claims 1 to 3, wherein the metal nanowire is a silver nanowire.
  8.  請求項1から3のいずれかに記載の製造方法により製造されたことを特徴とする、電極。 An electrode manufactured by the manufacturing method according to any one of claims 1 to 3.
  9.  請求項8に記載の電極を備えることを特徴とする、有機EL照明装置。 An organic EL lighting device comprising the electrode according to claim 8.
PCT/JP2015/004270 2014-09-12 2015-08-25 Electrode, method for manufacturing same, and organic el lighting device provided with electrode WO2016038819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186636 2014-09-12
JP2014186636A JP2016062639A (en) 2014-09-12 2014-09-12 Electrode and method for producing the same, and organic el lighting device including electrode

Publications (1)

Publication Number Publication Date
WO2016038819A1 true WO2016038819A1 (en) 2016-03-17

Family

ID=55458594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004270 WO2016038819A1 (en) 2014-09-12 2015-08-25 Electrode, method for manufacturing same, and organic el lighting device provided with electrode

Country Status (2)

Country Link
JP (1) JP2016062639A (en)
WO (1) WO2016038819A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442283B2 (en) 2019-09-02 2024-03-04 日東電工株式会社 Transparent conductive film, transparent conductive film manufacturing method and intermediate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028164A (en) * 2006-07-21 2008-02-07 Asahi Glass Co Ltd Transparent conductive film and manufacturing method thereof, electromagnetic shield body using same, and display device
JP2013074025A (en) * 2011-09-27 2013-04-22 Shin Etsu Polymer Co Ltd Method for manufacturing conductive pattern formation substrate and conductive pattern formation substrate
JP2014127286A (en) * 2012-12-26 2014-07-07 Konica Minolta Inc Organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028164A (en) * 2006-07-21 2008-02-07 Asahi Glass Co Ltd Transparent conductive film and manufacturing method thereof, electromagnetic shield body using same, and display device
JP2013074025A (en) * 2011-09-27 2013-04-22 Shin Etsu Polymer Co Ltd Method for manufacturing conductive pattern formation substrate and conductive pattern formation substrate
JP2014127286A (en) * 2012-12-26 2014-07-07 Konica Minolta Inc Organic electroluminescent element

Also Published As

Publication number Publication date
JP2016062639A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
US10738212B2 (en) Property enhancing fillers for transparent coatings and transparent conductive films
CN103890700B (en) The display device of capacitor formula touch panel, capacitive touch panels
EP3309230B1 (en) Flexible plastic film
KR102107738B1 (en) Flexible plastic film
JP6938714B2 (en) Transparent conductive film with adhesive layer
KR102543985B1 (en) Conductive films and electronic decives including the same
US20100040887A1 (en) Transparent Conductive Films Containing Carbon Nanotubes And Touch Panel
EP1993106A1 (en) Method of manufacturing transparent conductive film containing carbon nanotubes and binder, and transparent conductive film manufactured thereby
TWI550642B (en) Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same
TWI579141B (en) Optical laminated body and image display device
KR20100088155A (en) Method for producing carbon nanotube-containing conductor
WO2015115630A1 (en) Transparent electroconductive film and method for manufacturing same, information input apparatus, and electronic device
KR101816332B1 (en) Optically clear adhesive film, method for preparing the same and touch screen panel
WO2015075876A1 (en) Transparent conductor and method for producing transparent conductor
TW201515023A (en) Transparent conductive film and process for producing transparent conductive film
JP2011070821A (en) Transparent anisotropic conductive film
TW201539482A (en) Composition for forming transparent conductive layer
WO2016038819A1 (en) Electrode, method for manufacturing same, and organic el lighting device provided with electrode
KR20190109113A (en) Polymer composition for forming multifunctional layer, multifunctional layer formed from the same, and protective layer including the multifunctional layer
WO2016129270A1 (en) Electrode, method for producing same, and touch panel and organic el lighting element each provided with said electrode
WO2016038821A1 (en) Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode
KR20150034993A (en) Conductive coating composition containing metallic nanowires and forming method for conductive film using the same
JP2017045262A (en) Electrode manufacturing method, electrode, touch panel and organic electroluminescence lighting device
JP2016224727A (en) Method for manufacturing electrode, electrode, touch panel and organic el illumination element
KR20200113947A (en) Transparent electrode film for touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840301

Country of ref document: EP

Kind code of ref document: A1