WO2016038713A1 - 神経刺激装置、神経刺激システム及び神経刺激方法 - Google Patents

神経刺激装置、神経刺激システム及び神経刺激方法 Download PDF

Info

Publication number
WO2016038713A1
WO2016038713A1 PCT/JP2014/074029 JP2014074029W WO2016038713A1 WO 2016038713 A1 WO2016038713 A1 WO 2016038713A1 JP 2014074029 W JP2014074029 W JP 2014074029W WO 2016038713 A1 WO2016038713 A1 WO 2016038713A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
electrode
electrodes
nerve stimulation
nerve
Prior art date
Application number
PCT/JP2014/074029
Other languages
English (en)
French (fr)
Inventor
健夫 碓井
豪 新井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016547314A priority Critical patent/JPWO2016038713A1/ja
Priority to PCT/JP2014/074029 priority patent/WO2016038713A1/ja
Publication of WO2016038713A1 publication Critical patent/WO2016038713A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators

Definitions

  • the present invention relates to a nerve stimulation device, a nerve stimulation system, and a nerve stimulation method. More specifically, a nerve stimulation device including an electrode that is placed in a blood vessel and stimulates nerves, a nerve stimulation system that arranges a lead in the blood vessel, stimulates the vagus nerve, and treats arrhythmia such as tachycardia, and nerve stimulation Regarding the method.
  • a nerve stimulation system that treats arrhythmia by suppressing an increase in heart rate and sympathetic excitement by applying electrical stimulation to the vagus nerve via an electrode connected to the vagus nerve.
  • a heart rate decrease as a biological reaction of nerve stimulation can be used as an index of a stimulation effect.
  • a method is used in which an electrocardiogram waveform generated in the heart is captured and the heart rate is calculated from the peak interval of the waveform. Therefore, a nerve stimulation system that performs feedback based on the heart rate using a heart treatment lead installed in the heart has been proposed (see, for example, Patent Document 1). Conventionally, research on treatment methods by applying electrical stimulation to nerve tissue has been performed.
  • a nerve stimulating device used for such applications it has been proposed to place an electrode in a blood vessel and stimulate the nerve adjacent to the blood vessel through the blood vessel wall by the electrode.
  • the nerve to be treated include a vagus nerve, and stimulating this brings about a desired effect such as lowering the heart rate.
  • an event such as an increase in heart rate or tachycardia.
  • a mechanism for detecting biological information such as a heart rate and an electrocardiographic waveform is connected to the nerve stimulation device, and the input biological information is monitored.
  • an electrocardiogram signal is acquired by a plurality of bipolar leads placed in a blood vessel. This bipolar lead is configured to allow cardiac pacing in addition to the acquisition of an electrocardiographic signal.
  • An object of the present invention is to provide a neurostimulator that can be obtained.
  • a nerve stimulation system includes a lead portion disposed in a blood vessel, a stimulation electrode having at least two electrodes, and an electrocardiogram acquisition electrode including at least two electrodes.
  • a stimulation signal generating unit for generating a stimulation signal
  • a heart rate measuring unit for measuring a heart rate from the electrocardiogram acquisition electrode.
  • the stimulation electrode and the electrocardiogram acquisition electrode are disposed on the same lead portion.
  • a nerve stimulation system includes a lead portion disposed in a blood vessel, a stimulation electrode composed of at least two electrodes, a one-electrode electrocardiogram acquisition electrode, and a stimulation signal.
  • a stimulation signal generating unit for generating, a heart rate measuring unit for measuring a heart rate from the electrocardiogram acquisition electrode, and switching for switching the connection to the stimulation signal generating unit and the heart rate measuring unit connected to the stimulation electrode Means.
  • the stimulation electrode and the electrocardiogram acquisition electrode are disposed on the same lead portion.
  • the switching means When applying neural stimulation, the switching means performs switching so as to connect the stimulation electrode to the stimulation signal generator, and when acquiring an electrocardiogram, the switching means measures one of the stimulation electrodes as the heart rate. Switch to connect to one input / output of the unit.
  • switching is performed so that the two electrodes of the stimulation electrode have the same potential when an electrocardiogram is acquired. May be.
  • the nerve stimulation method uses a stimulation electrode having at least two electrodes and an electrocardiogram acquisition electrode composed of at least two electrodes, and is stimulated by a stimulation signal generator.
  • a signal is generated, a heart rate is measured from an electrocardiogram acquisition electrode by a heart rate measurement unit, and nerve stimulation is performed by arranging the stimulation electrode and the electrocardiogram acquisition electrode on the same lead portion disposed in a blood vessel.
  • the nerve stimulation device is a nerve stimulation device that is placed in a living body and performs electrical stimulation on the nerve, and includes a stimulation electrode that applies the electrical stimulation to the nerve, and a first end portion.
  • a nerve stimulation electrode having a lead portion connected to the stimulation electrode, a stimulation generating device connected to the second end of the lead portion and generating a nerve stimulation signal for applying the electrical stimulation, And at least one biometric information acquisition electrode provided on the lead portion so as not to be separated from the lead portion.
  • the biological information acquisition electrode provided on the lead portion has the adhesive portion, and can be adhesively fixed to the biological surface. There may be.
  • one of the biological information acquisition electrodes may be provided on the stimulation generator.
  • the biological information acquisition electrode provided on the stimulation generator has an adhesive portion and can be adhesively fixed to the biological surface. It may be.
  • the nerve stimulation apparatus in any one of the fifth to eighth aspects, three or more biological information acquisition electrodes are provided, and the biological information acquisition is performed.
  • One of the electrodes may be set as a reference electrode from which an electrocardiogram waveform is acquired.
  • vagus nerve stimulation and heart rate measurement can be performed with a simple configuration, and an electrocardiographic signal can be acquired more accurately. There is an effect.
  • FIG. 1 is a schematic diagram showing an overall configuration of a nerve stimulation system 1 according to the present embodiment.
  • the nerve stimulation system 1 includes an electrode unit 10.
  • the electrode unit 10 includes two electrodes and includes a first stimulation electrode 11 and a second stimulation electrode 12.
  • the nerve stimulation system 1 includes a lead portion 13 and a first electrocardiogram acquisition electrode 14 and a second electrocardiogram acquisition electrode 15 configured by two electrodes.
  • the lead portion 13 is disposed in the blood vessel Bv of the heart H.
  • the nerve stimulation system 1 includes a stimulation generator 16 and a heart rate measurement unit 17 (see FIG. 2).
  • the stimulus generator 16 generates a stimulus signal.
  • the heart rate measuring unit 17 measures the heart rate from the electrocardiogram acquisition electrodes 14 and 15.
  • the stimulation electrodes 11 and 12 and the electrocardiogram acquisition electrodes 14 and 15 are arranged on the same lead portion 13.
  • the electrode unit 10 includes a plurality of urging units 18.
  • the urging unit 18 includes a first stimulation electrode 11 and a second stimulation electrode 12 that form a pair of a positive electrode and a negative electrode.
  • Each stimulation electrode 11, 12 is placed in the patient's blood vessel Bv so as to be close to the vagus nerve Vn. Since each of the stimulation electrodes 11 and 12 is electrically connected to the stimulation generator 16, a nerve stimulation signal generated by the stimulation generator 16 is applied.
  • Each urging portion 18 has a rigidity that can maintain a certain shape against deformation of the indwelling blood vessel wall.
  • Each urging portion 18 can be suitably formed using, for example, a superelastic wire made of nickel titanium.
  • the surface of each urging portion 18 is covered with a biocompatible resin such as polyurethane (not shown) so that the blood vessel wall is hardly damaged.
  • a coating or a medicine for preventing thrombus may be further arranged.
  • each urging portion 18 is connected to the distal end portion of the lead portion 13.
  • the leading end portion of each urging portion 18 is bundled on the axis of the lead portion 13.
  • each urging portion 18 first extends from the connection portion to the lead portion 13 in the radial direction outside the lead portion 13 and toward the tip side from the tip of the lead portion 13. Thereafter, each urging portion 18 curves gently and extends forward substantially parallel to the axis of the lead portion 13.
  • each urging portion 18 When viewed in the axial direction of the lead portion 13, each urging portion 18 extends radially away from the axial line of the lead portion 13, and is arranged at approximately equal intervals in the circumferential direction of the lead portion 13.
  • the lead portion 13 is a long member having a lead wire inside.
  • the lead unit 13 connects each stimulation electrode 11, 12 and a stimulation signal generation unit 19 (see FIG. 2) provided in the stimulation generator 16. Furthermore, the lead unit 13 connects the electrocardiogram acquisition electrodes 14 and 15 to the heart rate measuring unit 17 provided in the stimulus generator 16.
  • the lead part 13 is connected to the stimulus generator 16 by a connector 21.
  • the lead portion 13 has no protruding portion at the tip.
  • the first electrocardiogram acquisition electrode 14 and the second electrocardiogram acquisition electrode 15 are located distal to the heart H and connected in series to the lead portion 13.
  • the electrocardiogram acquisition electrodes 14 and 15 acquire the potential difference between them as an electrocardiogram waveform (electrical information) in the heart rate measurement unit 17.
  • the heart rate measuring unit 17 measures the heart rate by A / D converting the electrocardiogram waveform and calculating the RR interval.
  • FIG. 2 is a block diagram of a stimulus generator in the nerve stimulation system according to the present embodiment.
  • the stimulus generator 16 is a non-implantable device.
  • the stimulus generation device 16 includes a heart rate measurement unit 17, a stimulus signal generation unit 19, a control unit 20, and an interface unit 22.
  • the control unit 20 is connected to the heart rate measurement unit 17 and the stimulus signal generation unit 19.
  • the interface unit 22 is connected to the control unit 20.
  • the heart rate measurement unit 17 is connected to the first electrocardiogram acquisition electrode 14 via the connector 21 through the first connection line 23.
  • the heart rate measurement unit 17 is connected to the second electrocardiogram acquisition electrode 15 via the connector 21 through the second connection line 24.
  • the heart rate measurement unit 17 is connected to the control unit 20 through the third connection line 25.
  • the heart rate measurement unit 17 acquires the electrical information acquired by the electrocardiogram acquisition electrodes 14 and 15 at a predetermined timing, and measures the heart rate based on the electrical information.
  • the stimulation signal generator 19 is connected to the first stimulation electrode 11 via the connector 21 through the fourth connection line 26.
  • the stimulation signal generator 19 is connected to the second stimulation electrode 12 via the connector 21 through the fifth connection line 27.
  • the stimulus signal generator 19 is connected to the controller 20 through the sixth connection line 28.
  • the stimulation signal generator 19 generates a neural stimulation signal having a predetermined pulse width and voltage value at a predetermined timing instructed to the controller 20 (constant voltage control).
  • the stimulation intensity may be specified by specifying a current value instead of the voltage value (constant current control).
  • the generated nerve stimulation signal is sent to the stimulation electrodes 11 and 12 through the lead portion 13 and applied to the vagus nerve Vn.
  • the first connection line 23 is connected to the seventh connection line 29.
  • the seventh connection line 29 is connected to the first electrocardiogram acquisition electrode 14 via the connector 21.
  • the second connection line 24 is connected to the eighth connection line 30.
  • the eighth connection line 30 is connected to the second electrocardiogram acquisition electrode 15 via the connector 21.
  • the fourth connection line 26 is connected to the ninth connection line 31.
  • the ninth connection line 31 is connected to the first stimulation electrode 11 via the connector 21.
  • the fifth connection line 27 is connected to the tenth connection line 32.
  • the tenth connection line 32 is connected to the second stimulation electrode 12 via the connector 21.
  • the control unit 20 has arithmetic means such as a CPU and storage means such as a memory.
  • the control unit 20 instructs and controls the acquisition of the electrical information of the heart rate measurement unit 17 and the timing of generating the nerve stimulation signal of the stimulation signal generation unit 19 in accordance with the program stored in the storage unit.
  • the control unit 20 obtains a peak interval from the obtained electrocardiogram signal and calculates a heart rate.
  • the interface unit 22 has a known configuration such as a liquid crystal screen (including a touch panel) and buttons.
  • the interface unit 22 displays the heart rate measured by the heart rate measuring unit 17, accepts a user operation input to the stimulus generator 16, and sends it to the control unit 20.
  • the vagus nerve stimulation of the blood vessel Bv and the electrocardiogram acquisition can be acquired by the single lead unit 13. Therefore, according to the nerve stimulation system 1 which concerns on 1st Embodiment, compared with the conventional nerve stimulation system, it can implement
  • the insertability is excellent.
  • the vagus nerve stimulation of the blood vessel Bv and the electrocardiogram acquisition are performed by one lead portion 13. Therefore, according to the nerve stimulation method which concerns on 1st Embodiment, it can implement with a very simple structure compared with the related nerve stimulation system.
  • FIG. 3 is a schematic diagram illustrating an overall configuration of a nerve stimulation system according to a first modification of the present embodiment.
  • FIG. 4 is a schematic diagram illustrating an overall configuration of a nerve stimulation system according to a second modification of the present embodiment.
  • FIG. 5 is a schematic diagram illustrating a main part of a nerve stimulation system according to a third modification of the present embodiment.
  • FIG. 6 is a schematic diagram illustrating a main part of a nerve stimulation system according to a fourth modification of the present embodiment.
  • FIG. 7 is a schematic diagram illustrating an overall configuration of a nerve stimulation system according to a fifth modification of the present embodiment.
  • FIG. 8 is a schematic diagram showing a main part of a nerve stimulation system according to a sixth modification of the present embodiment.
  • the first electrocardiogram acquisition electrode 14 may be configured to connect to the tip of the biasing portion 18 proximal to the heart H (see FIG. 1). .
  • the second electrocardiogram acquisition electrode 15 is connected to the lead portion 13 distal to the heart H.
  • the first electrocardiogram acquisition electrode 14 since the first electrocardiogram acquisition electrode 14 is disposed in the vicinity of the heart H, the voltage level of the signal is increased. As a result, it is possible to acquire an electrocardiographic signal with a good S / N ratio, and the heart rate generated by the heart H can be accurately acquired. Further, according to the present embodiment, since the distances between the electrocardiogram acquisition electrodes 14 and 15 are separated, it is easy to detect a potential difference.
  • positioned in the heart H may be provided in the front-end
  • the electrocardiogram acquisition electrodes 14 and 15 are connected to the extension lead portion 41 so as to be positioned on the extension line of the lead portion 13. According to this embodiment, since the electrocardiogram acquisition electrodes 14 and 15 are disposed in the heart H, the heart rate generated by the heart H can be acquired more accurately. Moreover, according to this embodiment, since each electrocardiogram acquisition electrode 14 and 15 is arrange
  • a mesh anchor 46 may be attached to the urging unit 18 as in the nerve stimulation system 45 shown in FIG.
  • the electrocardiogram acquisition electrodes 14 and 15 are connected in series to the lead portion 13 distal to the heart H (see FIG. 1). According to this embodiment, the flow of blood flow is promoted by the mesh anchor 46. Therefore, according to the present embodiment, it is possible to prevent the blood flow from becoming stagnant, slowing down, backflowing, or coughing, preventing the formation of blood clots, and accurately adjusting the heart rate. Can be obtained.
  • each stimulation electrode 11, 12 is connected to one of the urging units 51, and each electrocardiogram acquisition electrode 14, 15 is connected in series to the lead portion 13 distal to the heart H (see FIG. 1). Yes.
  • the flow of blood flow is promoted by the mesh anchor-shaped biasing portion 51. Therefore, according to the present embodiment, it is possible to prevent the blood flow from becoming stagnant, slowing down, backflowing, or coughing, preventing the formation of blood clots, and accurately adjusting the heart rate. Can be obtained.
  • the nerve stimulation system 55 shown in FIG. 7 you may comprise so that the urging
  • the stimulation electrodes 11 and 12 are connected to the biasing portion 56, and the electrocardiogram acquisition electrodes 14 and 15 are connected in series to the lead portion 13 distal to the heart H (see FIG. 1). May be.
  • the lead portion 13 has a function of maintaining the flow path of the blood vessel Bv by being close to the blood vessel wall of the blood vessel Bv. Since the nerve stimulation system 55 according to the present modification is provided with the urging portion 56 having a spiral structure, it is possible to prevent the blood flow from being inhibited. Therefore, according to the present embodiment, it is possible to prevent the blood flow from becoming stagnant, slowing down, backflowing, or coughing, preventing the formation of blood clots, and accurately adjusting the heart rate. Can be obtained.
  • the nerve stimulation system 60 shown in FIG. 8 may be configured to include a pair of U-shaped biasing portions 61 and extension lead portions 62 having a spring structure.
  • the extension lead part 62 is disposed on an extension line of the axis of the lead part 13.
  • Energizing portions 61 are connected to both ends of the extension lead portion 62.
  • the stimulation electrodes 11 and 12 are connected to the biasing portion 61, and the electrocardiogram acquisition electrodes 14 and 15 are connected in series to the lead portion 13 distal to the heart H (see FIG. 1).
  • the flow of blood flow is promoted by the pair of U-shaped biasing portions 61 having a spring structure. Therefore, according to the present embodiment, it is possible to prevent the blood flow from becoming stagnant, slowing down, backflowing, or coughing, preventing the formation of blood clots, and accurately adjusting the heart rate. Can be obtained.
  • FIG. 9 is a schematic diagram showing the overall configuration of the nerve stimulation system according to the present embodiment.
  • FIG. 10 is a block diagram of a stimulus generation apparatus during nerve stimulation in the nerve stimulation system.
  • FIG. 11 is a block diagram of a stimulus generation apparatus during heart rate measurement in the nerve stimulation system.
  • FIG. 12 is a timing chart illustrating the switching operation of the nerve stimulation system.
  • the nerve stimulation system 70 includes a first stimulation electrode 11 and a second stimulation electrode 12, and a single electrocardiogram acquisition electrode 71.
  • the first stimulation electrode 11 and the second stimulation electrode 12 are connected in series to one of the urging portions 18.
  • a single electrocardiogram acquisition electrode 71 is connected to the lead portion 13.
  • a single electrocardiogram acquisition electrode 71 is disposed distal to the heart H.
  • the nerve stimulation system 70 is equipped with a stimulus generator 73 including a switching unit 72 (see FIG. 10).
  • the switching unit 72 is connected to the stimulation electrodes 11 and 12.
  • the switching unit 72 is a means for switching the connection between the stimulation electrodes 11 and 12 and the stimulation signal generating unit 19 (see FIG. 2) and the connection between the stimulation electrodes 11 and 12 and the heart rate measuring unit 17 (see FIG. 2). It is an example.
  • the switching unit 72 includes a first switch 74, a normally closed contact 79, a normally open contact 80, and a second switch 78.
  • the first switch 74 has a normally closed contact 75, a normally open contact 76, and a movable contact 77.
  • the second switch 78 has a movable contact 81.
  • the normally closed contact 75 is connected to one input / output of the stimulus signal generator 19 through the eleventh connection line 82.
  • the normally open contact 76 is connected to the normally open contact 80 of the second switch 78 and one input / output of the heart rate measuring unit 17 through the twelfth connection line 83.
  • the normally closed contact 79 is connected to the other input / output of the stimulation signal generator 19 through the thirteenth connection line 84.
  • the other input / output of the heart rate measuring unit 17 is connected to the electrocardiogram acquisition electrode 71 through the fourteenth connection line 85, the connector 21, and the fifteenth connection line 86.
  • Each of the switches 74 and 78 may be a general controllable circuit switch such as an FET in addition to the illustrated analog switch, and may be configured so as to be switched by a command from the control unit 20.
  • the movable contact 77 of the first switch 74 is connected to the normally closed contact 75, and the movable contact 81 of the second switch 78 is connected to the normally closed contact 79.
  • signals are respectively sent from the stimulation signal generator 19 to the first stimulation electrode 11 and the second stimulation electrode 12.
  • the nerve stimulation signal is sent to the stimulation electrodes 11 and 12 through the lead portion 13 and applied to the vagus nerve Vn.
  • the heart rate measurement part 17 acquires the electrical information acquired with the electrocardiogram acquisition electrode 71 at a predetermined timing, and measures the heart rate based on the electrical information. At this time, each stimulation electrode 11 and 12 will be in the electrically conductive state.
  • the movable contacts 77 and 81 of the switches 74 and 78 are switched to the normally open contacts 76 and 80, respectively.
  • the heart rate measurement unit 17 acquires the electrical information acquired by the electrocardiogram acquisition electrode 71 at a predetermined timing, and measures the heart rate based on the electrical information. Thereafter, these operations are repeatedly executed at time t5, time t6, time t7, and time t8.
  • the stimulation generator 73 is connected to the stimulation signal generator 19 from each stimulation electrode 11, 12 and from each stimulation electrode 11, 12.
  • a switching unit 72 that switches connection to the heart rate measuring unit 17 is provided. According to the nerve stimulation system 70, it is possible to realize nerve stimulation and electrocardiogram acquisition with a very simple configuration by using a single electrocardiogram acquisition electrode 71.
  • the nerve stimulation system 70 switching is performed by the switching unit 72 so that the stimulation electrodes 11 and 12 have the same potential when the electrocardiogram is acquired. Therefore, according to the nerve stimulation system 70, the polarization imbalance at the contact surface between the stimulation electrodes 11 and 12 and the living body can be eliminated.
  • the lead wire (not shown) accommodated in the lead portion 13 is usually composed of four wires. Since the nerve stimulation system 70 according to the present embodiment can be realized with three conducting wires, the diameter of the lead portion 13 can be further reduced.
  • the electrocardiogram acquisition electrode 71 is disposed at a position far away from each of the stimulation electrodes 11 and 12, it is possible to prevent receiving noise during nerve stimulation.
  • FIG. 13 is a schematic diagram illustrating an overall configuration of a nerve stimulation system according to a first modification of the present embodiment.
  • FIG. 14 is a block diagram of a stimulus generator according to a second modification of the present embodiment.
  • FIG. 15 is a block diagram of a stimulus generator according to a third modification of the present embodiment.
  • a single electrocardiogram acquisition electrode 91 may be arranged proximal to the heart H at the tip of the biasing unit 18. According to this embodiment, since the electrocardiogram acquisition electrode 91 is disposed proximal to the heart H, the heart rate generated by the heart H can be accurately acquired. Moreover, according to this embodiment, since the electrocardiogram acquisition electrode 91 is disposed at a position close to the heart H, the level of the electrocardiogram can be detected higher.
  • the single switch 96 may be equipped like the nerve stimulation system 95 shown in FIG.
  • the switch 96 has a normally open contact 97, a normally closed contact 98, and a movable contact 99.
  • the normally open contact 97 is connected to one input / output of the stimulus signal generator 19 through the sixteenth connection line 100.
  • the normally closed contact 98 is connected to one input / output of the heart rate measuring unit 17 through the seventeenth connection line 101.
  • the nerve stimulation system 110 may be configured to connect the normally closed contact 113 of the second switch 112 to ground when no nerve stimulation is performed.
  • the first switch 111 has a normally open contact 114, a normally closed contact 115, and a movable contact 116.
  • the second switch 112 has a normally open contact 117, a normally closed contact 113, and a movable contact 118.
  • the normally open contact 114 is connected to one input / output of the stimulus signal generator 19 through an eighteenth connection line 119.
  • the normally closed contact 115 is connected to one input / output of the heart rate measuring unit 17 through the nineteenth connection line 120.
  • the normally open contact 117 is connected to the other input / output of the stimulation signal generator 19 through the twentieth connection line 121.
  • the normally closed contact 113 is connected to the ground through the twenty-first connection line 122. According to this embodiment, the noise level of the electrocardiogram signal can be reduced by connecting the reference electrode to the ground.
  • a method of performing electrocardiogram acquisition by switching the nerve stimulation electrodes in a circuit manner is also conceivable as in the same manner as the electrode for cardiac stimulation and intracardiac electrocardiogram acquisition in the ICD device.
  • the SN ratio is small because the level of the electrocardiogram signal is small compared to the intracardiac electrocardiogram.
  • it is desirable that the electrode interval is relatively large.
  • it has been empirically found that it is effective that the electrode interval is about 5 mm in nerve stimulation. It is not easy to obtain suitable electrocardiograms.
  • FIG. 16 is a schematic diagram showing the overall configuration of the nerve stimulation apparatus 201 according to the present embodiment.
  • the nerve stimulation device 201 includes a stimulation generator 210 and a nerve stimulation electrode 220.
  • the stimulus generator 210 generates a nerve stimulus signal.
  • the nerve stimulation electrode 220 is placed in a blood vessel of a patient or the like.
  • the nerve stimulation electrode 220 is placed in a blood vessel of a patient or the like and applies a nerve stimulation signal generated by the stimulation generator 210 to a living tissue, thereby performing electrical stimulation to the nerve.
  • the nerve stimulation electrode 220 includes an indwelling unit 230 and a lead unit 221.
  • the indwelling unit 230 is held in the blood vessel.
  • the lead part 221 connects the indwelling part 230 and the stimulus generator 210.
  • the indwelling unit 230 includes a plurality of urging members 231 and a pair of stimulation electrodes 233A and 233B.
  • the pair of stimulation electrodes 233A and 233B is attached to one of the biasing members 231.
  • Each urging member 231 has a rigidity that can maintain a certain shape against deformation of the indwelling blood vessel wall.
  • Each urging member 231 can be suitably formed using a super elastic wire made of nickel titanium, for example.
  • the surface of each urging member 231 is covered with a biocompatible resin such as polyurethane (not shown) so that the blood vessel wall is hardly damaged.
  • a coating or a medicine for preventing thrombus may be further disposed.
  • each biasing member 231 is connected to the distal end portion of the lead portion 221.
  • each urging member 231 is first radially outward of the lead portion 221 and distal to the tip end of the lead portion 221 (hereinafter referred to as “from”) as shown in FIG. 16 in a natural state where no external force is applied. , Referred to as “front”).
  • Each biasing member 231 is then bundled close to the axis of the lead portion 221 while gradually curving.
  • the pair of stimulation electrodes 233 ⁇ / b> A and 233 ⁇ / b> B is arranged at one longitudinal intermediate portion of the plurality of biasing members 231.
  • the pair of stimulation electrodes 233A and 233B has a conductive electrode surface exposed on at least a part of the outer peripheral surface.
  • a metal material excellent in biocompatibility is preferable, and examples thereof include a noble metal material such as a platinum iridium alloy.
  • the stimulation electrode 233A located on the distal end side is a negative electrode
  • the stimulation electrode 233B located on the proximal end side is a positive electrode.
  • the stimulation electrodes 233A and 233B are connected to the stimulation generator 210 by wirings not shown.
  • the number of stimulation electrodes is not limited to a pair, and a plurality of stimulation electrodes may be provided.
  • the lead portion 221 has a known configuration including an insulating coating 222 and a connector 223, and is configured to be long and flexible.
  • the wirings connected to the stimulation electrodes 233A and 233B pass through the coating provided on the urging member 231 and the insulating coating 222 of the lead portion 221 and are connected to the stimulation generator 210 via the connector 223.
  • a pair of detection electrodes (biological information acquisition electrodes) 224 and 225 are attached to the lead generator 221 on the stimulus generator 210 side.
  • the detection electrode 224 includes a conductive electrode part 224a and an adhesive pad 224b.
  • the detection electrode 225 includes a conductive electrode portion 225a and an adhesive pad 225b.
  • Each electrode part 224a, 225a is connected to the stimulus generator 210 via a wiring (not shown) arranged in the lead part 221.
  • the adhesive pads 224b and 225b have a known configuration that can repeatedly adhere to and peel from the body surface of a patient or the like.
  • the adhesive pads 224b and 225b are attached to support the lead part 221 and the electrode parts 224a and 225a on the body surface.
  • the pair of detection electrodes 224 and 225 are attached so as to be always positioned on the lead portion 221 without being separated from the lead portion 221 so that the lead portion 221 can be suitably supported.
  • FIG. 17 is a block diagram of the stimulus generator 210.
  • the stimulus generation device 210 includes a stimulus generation unit 211, a biological information acquisition unit 212, and a control unit 213.
  • the stimulus generator 211 generates a nerve stimulus signal.
  • the biological information acquisition unit 212 acquires biological information such as a heart rate based on the potential change detected by the detection electrodes 224 and 225.
  • the control unit 213 controls the stimulus generator 210 as a whole.
  • the biological information acquisition unit 212 acquires an electrocardiographic waveform based on the potential change of the living body detected by the detection electrodes 224 and 225.
  • the biological information acquisition unit 212 acquires the heart rate of a patient or the like based on the RR interval of the electrocardiogram waveform.
  • the control unit 213 is connected to the stimulus generation unit 211 and the biological information acquisition unit 212.
  • the control unit 213 instructs the stimulation generation unit 211 to generate a nerve stimulation signal when the heart rate received from the biological information acquisition unit 212 satisfies a predetermined condition.
  • the mode of the nerve stimulation signal may be set in advance in the form of a program or the like in the control unit 213, or an interface unit for input may be provided in the stimulation generating device so that it can be set by an operation input by a user, a doctor, or the like. May be set.
  • the stimulus generator 211 is connected to a power source (not shown) built in the stimulus generator 210.
  • the stimulus generator 211 generates a nerve stimulus signal in response to an instruction from the controller 213.
  • the generated neural stimulation signal is sent to the stimulation electrodes 233A and 233B through the lead portion 221 and applied to the living body.
  • the operation at the time of use of the nerve stimulation apparatus 201 having the above configuration will be described.
  • the surgeon makes a small incision in the patient's blood vessel to form an opening, and inserts a cylindrical introducer or the like into the blood vessel.
  • the surgeon deforms each urging member 231 of the indwelling portion 230 into a linear shape along the axis of the lead portion 221 and then inserts it into a tubular member such as a sheath, and inserts the tubular member into an introducer or the like.
  • the surgeon moves the distal end of the tubular member to an indwelling site close to the nerve that stimulates the tube.
  • each biasing member 231 When the surgeon projects the indwelling portion 230 from the distal end of the tubular member, each biasing member 231 has a restoring force to the original shape, and thus comes into contact with the inner wall (blood vessel wall) of the blood vessel. As a result, the indwelling unit 230 is held in the blood vessel in a state where the stimulation electrodes 233A and 233B arranged on each biasing member 231 are in contact with the blood vessel wall.
  • the surgeon removes the introducer by removing or tearing the introducer. Thereby, the indwelling part 230 is indwelled in the predetermined position in a patient's blood vessel.
  • the tubular member may or may not be removed.
  • the pair of detection electrodes 224 and 225 is provided on the lead part 221 located outside the body in a state where the indwelling part 230 is indwelled at the predetermined position.
  • the surgeon arranges the lead part 221 outside the body so as to lie over the body surface.
  • the surgeon attaches the adhesive pad 224b of the detection electrode 224 and the adhesive pad 225b of the detection electrode 225 to the patient's skin.
  • the heart rate is acquired and monitored at any time by the biological information acquisition unit 212 based on the information detected by the detection electrodes 224 and 225.
  • the stimulation generation unit 211 When the heart rate satisfies a predetermined condition, the stimulation generation unit 211 generates a nerve stimulation signal according to a command from the control unit 213.
  • the generated neural stimulation signal is applied to the stimulation electrodes 233A and 233B.
  • the electrical stimulation applied to the tissue from the stimulation electrodes 233A and 233B stimulates the target nerve through the blood vessel wall to perform treatment.
  • the detection electrodes 224 and 225 for detecting information for obtaining biological information are provided on the lead part 221 located outside the body when the indwelling part 230 is placed. Therefore, a sufficient distance is maintained between the detection electrodes 224 and 225 and the stimulation electrodes 233A and 233B that perform nerve stimulation. As a result, noise due to nerve stimulation is suppressed from entering the detection electrodes 224 and 225, and accurate biological information can be acquired and appropriate treatment can be performed.
  • the detection electrodes 224 and 225 are always provided on the lead part 221, the wiring does not extend further from the lead part. Therefore, the linear part outside the body is substantially only the lead part 221. As a result, the apparatus configuration is simplified, and the troublesomeness of the patient at the time of indwelling is reduced.
  • the lead portion 221 can be fixed to the body surface by attaching the adhesive pad to the body surface such as skin. it can. As a result, the operator can simply place the indwelling and can stabilize the position of the lead part outside the body after the indwelling. In general, the deviation of the lead part outside the body is a cause of the deviation of the indwelling part 30 in the body.
  • the nerve stimulation apparatus 201 according to the present embodiment also contributes to the certainty of treatment due to the above configuration.
  • both the pair of detection electrodes are located outside the body when the indwelling unit 230 is placed in the body.
  • one electrode portion 224a of the detection electrode may be disposed on the indwelling portion 230 or on the lead portion 221 located in the body.
  • a fourth embodiment of the present invention will be described with reference to FIG.
  • the difference between the present embodiment and the third embodiment is that a reference electrode is further provided as a biological information acquisition electrode.
  • a reference electrode is further provided as a biological information acquisition electrode.
  • FIG. 21 is a schematic diagram showing the configuration of the nerve stimulation apparatus 251 according to the present embodiment.
  • a reference electrode 252 is provided on the outer surface of the stimulus generator 210.
  • the reference electrode 252 has an electrode part 252a and an adhesive part 252b.
  • the electrode unit 252a is connected to the biological information acquisition unit 212 of the stimulus generator.
  • the adhesive portion 252b can have the same configuration as the adhesive portions 224b and 225b.
  • the nerve stimulating device 251 When the nerve stimulating device 251 is placed, if the surgeon attaches the adhesive portion 252b to the patient's body surface, the stimulus generator 210 is fixed to the body surface together with the electrode portion 252a. After placement of the nerve stimulator 251, an electrocardiographic waveform is acquired based on tripolar information obtained by adding the reference electrode 252 to the detection electrodes 224 and 225.
  • the nerve stimulation device 251 can acquire accurate biological information and perform appropriate treatment, as with the nerve stimulation device 201 according to the first embodiment.
  • the nerve stimulation apparatus 251 according to this embodiment since the nerve stimulation apparatus 251 according to this embodiment includes the reference electrode 252, it can acquire an electrocardiographic waveform with three poles. As a result, the nerve stimulation apparatus 251 according to the present embodiment can reduce the influence of the fluctuation of the signal baseline due to noise or body movement mixed in the electrocardiogram signal by using a known correction method. The nerve stimulation apparatus 251 according to the present embodiment can further improve the accuracy of the acquired biological information. Furthermore, in the nerve stimulation apparatus 251 according to the present embodiment, the reference electrode 252 is provided on the stimulation generator 210. Therefore, by fixing the reference electrode 252, the stimulus generator 210 can also be fixed, and the indwelling operation can be easily performed.
  • the example in which the reference electrode is provided on the stimulus generator has been described.
  • the position where the reference electrode is placed is not limited to this, and may be provided on the lead portion 221 or the placement portion 230.
  • the bipolar electrode is installed at a position sandwiching from the upper right to the lower left with the heart as the center, a large signal level can be obtained, which is advantageous for heart rate measurement.
  • the example in which the reference electrode is provided on the stimulus generator has been described, but instead of this, one of the detection electrodes may be provided in the stimulus generator. If comprised in this way, even if it is the structure which is not provided with a reference
  • the detection electrode and the reference electrode may be configured to be detachable from the lead portion by using a known snap button mechanism or the like.
  • a known snap button mechanism or the like if a plurality of snap button mechanisms such as detection electrodes or more are provided on the lead portion, the attachment positions of the detection electrodes and the like can be adjusted according to the patient or the like.
  • an adhesive pad having no electrode part is attached to a snap button mechanism to which no detection electrode or the like is attached, the lead part is fixed to the body surface in a more stable state.
  • Each of the above embodiments provides a nerve stimulation device, a nerve stimulation system, and a tissue stimulation method that can perform vagus nerve stimulation and heart rate measurement with a simple configuration and can acquire an electrocardiographic signal more accurately. it can.
  • Neural stimulation system 11 1st stimulation electrode, stimulation electrode 12 2nd stimulation electrode, stimulation electrodes 13, 221 Lead part 14 1st electrocardiogram acquisition electrode, electrocardiogram acquisition electrode 15 2nd electrocardiogram acquisition electrode, electrocardiogram acquisition electrode 17 Heart rate measurement part 19 Stimulation signal generator 35, 40, 45, 50, 55, 60, 70 Neural stimulation system 72 Switching unit, switching unit 74 First switch, switching unit, switching unit 78 Second switch, switching unit, switching unit 90 Neural stimulation System 95 Neural stimulation system 96 Switch, switching unit, switching unit 110 Neural stimulation system 111 First switch, switching unit, switching unit 112 Second switch, switching unit, switching unit 201, 251 Neural stimulation device 210 Stimulation generator 220 Neural stimulation Electrodes 224, 225 Detection electrodes (biological information acquisition electrodes) 224b, 225b, 252b Adhesive part 233A, 233B Stimulation electrode 252 Reference electrode (biological information acquisition electrode)

Landscapes

  • Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本神経刺激システムは、血管内に配置されるリード部と、少なくとも2極の電極を有する刺激電極と、少なくとも2極の電極で構成される心電図取得電極と、刺激信号を生成するための刺激信号発生部と、前記心電図取得電極から心拍数を計測するための心拍数計測部と、を備える。前記刺激電極と前記心電図取得電極とは、同一の前記リード部上に配置されている。

Description

神経刺激装置、神経刺激システム及び神経刺激方法
 本発明は、神経刺激装置、神経刺激システム、及び神経刺激方法に関する。より詳しくは、血管内に留置されて神経を刺激する電極を備えた神経刺激装置、血管内にリードを配置し、迷走神経を刺激して頻脈等の不整脈を治療する神経刺激システム及び神経刺激方法に関する。
 迷走神経に接続された電極を介して迷走神経に電気的な刺激を与えることにより、心拍数の上昇や交感神経の興奮を抑制して不整脈を治療する神経刺激システムが知られている。
 この神経刺激システムでは、神経刺激の生体反応としての心拍数低下を刺激効果の指標として用いられることが知られている。
 一般に、心拍数の計測方法としては、心臓で発生している心電図波形を捕捉し、波形のピーク間隔から心拍数を計算により求める方法が用いられている。
 そこで、心臓内に設置する心臓治療リードを使用して心拍数によるフィードバックを行う神経刺激システムが提案されている(例えば、特許文献1参照)。
 従来、神経組織に電気刺激を与えることによる治療法の研究が行われてきた。そのような用途に用いられる神経刺激装置として、血管内に電極を留置し、前記電極により血管に隣接する神経を血管壁越しに刺激することが提案されている。治療対象の神経としては、例えば迷走神経が挙げられ、これを刺激することで、心拍数を低下させる等の所望の効果をもたらす。
 迷走神経を刺激する治療の場合、心拍数が上昇している、又は頻脈になっている等の事象を検出して刺激を行う必要がある。このため、神経刺激装置には、心拍数や心電波形等の生体情報を検出する機構が接続され、入力される生体情報が監視される。
 特許文献2に記載の神経刺激デバイスでは、血管内に留置された複数の双極リードで心電信号が取得される。この双極リードは心電信号の取得に加えて心臓ペーシングも可能に構成されている。
日本国特表2010-536481号公報 日本国特表2007-510467号公報
 特許文献1に記載の神経刺激システムでは、心拍検出手段を心内に留置しているので、患者に与える侵襲が小さいとは言えないという問題がある。
 これに対して、体表面に心拍検出手段を設置することも考えられるが、侵襲は小さくなるものの、設置する電極の数が多くなった等の場合に煩わしさが生じる。
特許文献2に記載の神経刺激デバイスでは、神経刺激を行う電極と心電信号を取得する双極リードとが近接し、かつ電気的インピーダンスの低い血液中に配置されている。そのため、神経刺激が行われると刺激パルスの影響を受けて心電信号が正しく検出できない恐れがある。心電信号に刺激パルス由来のノイズが混入すると、心拍数を正しく計測することが困難であるという課題がある。
 本発明は、上記の課題に鑑みてなされたもので、迷走神経刺激と心拍数の計測とを、簡易な構成で行うことができる神経刺激システムおよび神経刺激方法と、心電信号をより正確に取得できる神経刺激装置とを提供することを目的とする。
 本発明の第1の態様によれば、神経刺激システムは、血管内に配置されるリード部と、少なくとも2極の電極を有する刺激電極と、少なくとも2極の電極で構成される心電図取得電極と、刺激信号を生成するための刺激信号発生部と、前記心電図取得電極から心拍数を計測するための心拍数計測部と、を備える。前記刺激電極と前記心電図取得電極とが、同一の前記リード部上に配置されている。
 本発明の第2の態様によれば、神経刺激システムは、血管内に配置されるリード部と、少なくとも2極の電極で構成される刺激電極と、1極の心電図取得電極と、刺激信号を生成するための刺激信号発生部と、前記心電図取得電極から心拍数を計測するための心拍数計測部と、前記刺激電極に接続され、刺激信号発生部および心拍数計測部への接続を切換える切換え手段と、を備える。前記刺激電極と前記心電図取得電極とは、同一の前記リード部上に配置される。神経刺激を印加する場合には前記切換え手段が前記刺激電極を前記刺激信号発生部に接続させるよう切換えを行い、心電図を取得する場合には前記切換え手段が前記刺激電極の一方を前記心拍数計測部の一方の入力/出力へ接続させるよう切換えを行う。
 本発明の第3の態様によれば、上記第1の態様または第2の態様に係る神経刺激システムにおいて、心電図取得時に前記刺激電極の前記2極の電極が同電位となるように切換えを行ってもよい。
 本発明の第4の態様によれば、神経刺激方法は、少なくとも2極の電極を有する刺激電極を用いるとともに、少なくとも2極の電極で構成される心電図取得電極を用い、刺激信号発生部により刺激信号を生成し、心拍数計測部により心電図取得電極から心拍数を計測し、前記刺激電極と前記心電図取得電極とを、血管内に配置した同一のリード部上に配置して神経刺激を行う。
 本発明の第5の態様によれば、神経刺激装置は、生体に留置されて神経に電気刺激を行う神経刺激装置であって、神経に前記電気刺激を印加する刺激電極、および第一端部が前記刺激電極に接続されたリード部を有する神経刺激電極と、前記リード部の第二端部に接続され、前記電気刺激を印加させるための神経刺激信号を生成する刺激発生装置と、二つ以上設けられ、少なくとも一つが前記リード部から離間しないように前記リード部上に設けられた生体情報取得電極とを備える。
本発明の第6の態様によれば、上記第5の態様に係る神経刺激装置において、前記リード部上に設けられた生体情報取得電極は、粘着部を有し、生体表面に粘着固定可能であってもよい。
本発明の第7の態様によれば、上記第5の態様または第6の態様に係る神経刺激装置において、前記生体情報取得電極の一つが前記刺激発生装置上に設けられていてもよい。
本発明の第8の態様によれば、上記第7の態様に係る神経刺激装置において、前記刺激発生装置上に設けられた生体情報取得電極は、粘着部を有し、生体表面に粘着固定可能であってもよい。
本発明の第9の態様によれば、上記第5の態様から第8の態様のいずれかの一態様に係る神経刺激装置において、前記生体情報取得電極は3つ以上設けられ、前記生体情報取得電極の一つが、心電図波形が取得される基準電極に設定されてもよい。
 本発明に係る神経刺激装置、神経刺激システム及び組織刺激方法によれば、迷走神経刺激と心拍数の計測とを、簡易な構成で行うことができ、かつ、心電信号をより正確に取得できるという効果を奏する。
本発明の第1実施形態に係る神経刺激システムの全体構成を示す模式図である。 本発明の第1実施形態に係る神経刺激システムにおける刺激発生装置のブロック図である。 本発明の第1実施形態の第1変形例に係る神経刺激システムの全体構成を示す模式図である。 本発明の第1実施形態の第2変形例に係る神経刺激システムの全体構成を示す模式図である。 本発明の第1実施形態の第3変形例に係る神経刺激システムの要部を示す模式図である。 本発明の第1実施形態の第4変形例に係る神経刺激システムの要部を示す模式図である。 本発明の第1実施形態の第5変形例に係る神経刺激システムの要部構成を示す模式図である。 本発明の第1実施形態の第6変形例に係る神経刺激システムの要部を示す模式図である。 本発明の第2実施形態に係る神経刺激システムの全体構成を示す模式図である。 本発明の第2実施形態に係る神経刺激システムにおける神経刺激時の刺激発生装置のブロック図である。 本発明の第2実施形態に係る神経刺激システムにおける心拍数計測時の刺激発生装置のブロック図である。 本発明の第2実施形態に係る神経刺激システムの切り換え動作を説明するタイミングチャートである。 本発明の第2実施形態の第1変形例に係る神経刺激システムの全体構成を示す模式図である。 本発明の第2実施形態の第2変形例に係る刺激発生装置のブロック図である。 本発明の第2実施形態の第3変形例に係る刺激発生装置のブロック図である。 本発明の第3実施形態に係る神経刺激装置の全体構成を示す模式図である。 本発明の第3実施形態に係る神経刺激装置の機能ブロック図である。 本発明の第3実施形態に係る神経刺激装置が患者に留置された状態を示す図である。 本発明の第3実施形態に係る神経刺激装置の変形例の全体構成を示す模式図である。 本発明の第3実施形態に係る神経刺激装置の変形例の全体構成を示す模式図である。 本発明の第4実施形態に係る神経刺激装置の全体構成を示す模式図である。
(第1実施形態)
 以下、本発明の第1実施形態に係る神経刺激システムを、図1から図8を参照しながら説明する。図1は、本実施形態に係る神経刺激システム1の全体構成を示す模式図である。
 図1に示すように、神経刺激システム1は、電極ユニット10を備える。電極ユニット10は、2極の電極で構成され、第1刺激電極11及び第2刺激電極12を有する。神経刺激システム1は、リード部13と、2極の電極で構成される第1心電図取得電極14及び第2心電図取得電極15とを備える。リード部13は、心臓Hの血管Bv内に配置される。神経刺激システム1は、刺激発生装置16と、心拍数計測部17(図2参照)とを備える。刺激発生装置16は、刺激信号を生成する。心拍数計測部17は、各心電図取得電極14、15から心拍数を計測する。神経刺激システム1は、各刺激電極11、12と各心電図取得電極14、15とを同一のリード部13上に配置している。
 電極ユニット10は、複数の付勢部18を備えている。付勢部18には、プラス極とマイナス極との対をなす第1刺激電極11及び第2刺激電極12を有する。各刺激電極11、12は、迷走神経Vnに近接するように患者の血管Bv内に留置される。各刺激電極11、12は、刺激発生装置16に電気的に接続されるために、この刺激発生装置16で生成された神経刺激信号が印加される。
 各付勢部18は、留置される血管壁の変形に抗して一定の形状を保持可能な程度の剛性を有する。各付勢部18は、例えばニッケルチタン製の超弾性ワイヤ等を用いて好適に形成することができる。各付勢部18の表面は、図示しないポリウレタン等の生体適合性樹脂で被覆され、血管壁を傷つけにくく構成されている。各付勢部18の表面には、血栓防止のためのコーティングや薬剤等がさらに配置されてもよい。
 各付勢部18の基端側は、リード部13の先端部に接続されている。各付勢部18の先端部は、リード部13の軸線上において結束されている。各付勢部18は、外力が作用しない自然状態において、リード部13に対する接続部位から、まずリード部13の径方向外側かつリード部13の先端よりも先端側に向かって延びている。各付勢部18は、その後、緩やかにカーブしてリード部13の軸線と略平行に前方に延びている。各付勢部18は、リード部13の軸線方向に見ると、リード部13の軸線から離間するように放射状に延びており、リード部13の周方向において概ね等間隔に配置されている。
 リード部13は、内部に導線を備えた長尺部材である。リード部13は、各刺激電極11、12と、刺激発生装置16に設けられた刺激信号発生部19(図2参照)とを接続する。さらにリード部13は、各心電図取得電極14、15と、刺激発生装置16に設けられた心拍数計測部17とを接続する。リード部13は、コネクタ21により刺激発生装置16に接続される。リード部13は、先端に突出部分がない。
 第1心電図取得電極14及び第2心電図取得電極15は、心臓Hに対して遠位に位置してリード部13に直列に接続されている。各心電図取得電極14、15は、それらの間の電位差が心電波形(電気的情報)として心拍数計測部17に取得される。心拍数計測部17は、心電波形をA/D変換し、R-R間隔を算出することで心拍数を計測する。
 次に、刺激発生装置16の内部構造について説明する。図2は、本実施形態に係る神経刺激システムにおける刺激発生装置のブロック図である。
 刺激発生装置16は、非植込み型の装置である。刺激発生装置16は、心拍数計測部17と、刺激信号発生部19と、制御部20と、インターフェイス部22とを備えている。制御部20は、心拍数計測部17及び刺激信号発生部19に接続する。インターフェイス部22は、制御部20に接続する。
 心拍数計測部17は、第1接続線23を通じ、コネクタ21を介して第1心電図取得電極14に接続している。心拍数計測部17は、第2接続線24を通じ、コネクタ21を介して第2心電図取得電極15に接続している。心拍数計測部17は、第3接続線25を通じて制御部20に接続している。心拍数計測部17は、各心電図取得電極14、15で取得した電気的情報を所定のタイミングで取得し、電気的情報に基づいて心拍数を計測する。
 刺激信号発生部19は、第4接続線26を通じ、コネクタ21を介して第1刺激電極11に接続している。刺激信号発生部19は、第5接続線27を通じ、コネクタ21を介して第2刺激電極12に接続している。刺激信号発生部19は、第6接続線28を通じて制御部20に接続している。そのために、刺激信号発生部19は、所定のパルス幅及び電圧値の神経刺激信号を制御部20に指令した所定のタイミングで発生する(定電圧制御)。なお、電圧値に代えて電流値を指定することによって刺激強度を指定してもよい(定電流制御)。
 発生した神経刺激信号は、リード部13を通って各刺激電極11、12に送られ、迷走神経Vnに印加される。
 第1接続線23は、第7接続線29に接続している。第7接続線29は、コネクタ21を介して第1心電図取得電極14に接続する。第2接続線24は、第8接続線30に接続している。第8接続線30は、コネクタ21を介して第2心電図取得電極15に接続する。第4接続線26は、第9接続線31に接続している。第9接続線31は、コネクタ21を介して第1刺激電極11に接続する。第5接続線27は、第10接続線32に接続している。第10接続線32は、コネクタ21を介して第2刺激電極12に接続する。
 制御部20は、CPU等の演算手段及びメモリ等の記憶手段を有する。制御部20は、記憶手段に記憶されたプログラム等に従って、心拍数計測部17の電気的情報の取得と、刺激信号発生部19の神経刺激信号を発生するタイミングとを指令して制御する。制御部20では、得られた心電図信号から、ピーク間隔を求め、心拍数を計算する。
 インターフェイス部22は、液晶画面(タッチパネルを含む)やボタン等の公知の構成を有する。インターフェイス部22は、心拍数計測部17の計測した心拍数を表示するとともに、刺激発生装置16に対する使用者の操作入力を受け付けて制御部20に送る。
 以上説明したように、第1実施形態に係る神経刺激システム1によれば、血管Bvの迷走神経刺激と心電図取得とを1本のリード部13により取得できる。
 従って、第1実施形態に係る神経刺激システム1によれば、従来の神経刺激システムと比べて、極めて簡易な構成で実現することができる。
 また、第1実施形態に係る神経刺激システム1によれば、リード部13の先端に突出部分がないため、挿入性が優れる。
 第1実施形態に係る神経刺激方法によれば、1本のリード部13により血管Bvの迷走神経刺激と心電図取得とを行う。
 従って、第1実施形態に係る神経刺激方法によれば、関連する神経刺激システムと比べて、極めて簡易な構成で実施することができる。
 次に、本実施形態の変形例について説明する。図3は、本実施形態の第1変形例に係る神経刺激システムの全体構成を示す模式図である。図4は、本実施形態の第2変形例に係る神経刺激システムの全体構成を示す模式図である。図5は、本実施形態の第3変形例に係る神経刺激システムの要部を示す模式図である。図6は、本実施形態の第4変形例に係る神経刺激システムの要部を示す模式図である。図7は、本実施形態の第5変形例に係る神経刺激システムの全体構成を示す模式図である。図8は、本実施形態の第6変形例に係る神経刺激システムの要部を示す模式図である。
 図3に示す神経刺激システム35のように、第1心電図取得電極14は、心臓H(図1参照)に対して近位の付勢部18の先端部に接続するように構成されてもよい。第2心電図取得電極15は、心臓Hに対して遠位のリード部13に接続されている。
 本実施形態によれば、第1心電図取得電極14が心臓Hの近位に配置されているため、信号の電圧レベルが大きくなる。結果として、SN比の良い心電信号を取得することが可能になり、心臓Hが発生する心拍数を正確に取得できる。
 また、本実施形態によれば、各心電図取得電極14、15の距離が離れているので、電位差を検出しやすい。
 また、本実施形態では、図4に示す神経刺激システム40のように、付勢部18の先端部に、心臓H(図1参照)内に配置する延長リード部41が設けられるように構成されてもよい。延長リード部41に、リード部13の延長線上に位置して各心電図取得電極14、15が接続されている。
 本実施形態によれば、各心電図取得電極14、15が心臓H内に配置されているため、心臓Hが発生する心拍数をさらに正確に取得できる。
 また、本実施形態によれば、各心電図取得電極14、15とも心臓H内に配置されるので、電圧レベルの高い心電図を取得できる。
 本実施形態では、図5に示す神経刺激システム45のように、付勢部18に、網目のアンカー46を取り付けるように構成されてもよい。そして、各心電図取得電極14、15が心臓H(図1参照。)に対して遠位のリード部13に直列に接続されている。
 本実施形態によれば、網目のアンカー46により、血流の流れが促進される。
 従って、本実施形態によれば、血流が淀んだ状態になったり、流れが遅くなったり、逆流したり、せき止められたりするのを防止でき、血栓の生成を防止でき、且つ心拍数を正確に取得できる。
 本実施形態では、図6に示す神経刺激システム50のように、ステント仕様の網目アンカー形状の付勢部51を備えるように構成してもよい。そして、付勢部51の一つに各刺激電極11、12が接続され、各心電図取得電極14、15が心臓H(図1参照)に対して遠位のリード部13に直列に接続されている。
 本実施形態によれば、網目アンカー形状の付勢部51により、血流の流れを促進する。
 従って、本実施形態によれば、血流が淀んだ状態になったり、流れが遅くなったり、逆流したり、せき止められたりするのを防止でき、血栓の生成を防止でき、且つ心拍数を正確に取得できる。
 本実施形態では、図7に示す神経刺激システム55のように、らせん構造を有する付勢部56を備えるように構成してもよい。そして、付勢部56に各刺激電極11、12が接続され、各心電図取得電極14、15が心臓H(図1参照)に対して遠位のリード部13に直列に接続されるように構成してもよい。この場合、リード部13は、血管Bvの血管壁に近接することにより、血管Bvの流路を維持する機能を有する。
 本変形例に係る神経刺激システム55は、らせん構造を有する付勢部56が設けられているので、血流の流れを阻害することが防止できる。
 従って、本実施形態によれば、血流が淀んだ状態になったり、流れが遅くなったり、逆流したり、せき止められたりするのを防止でき、血栓の生成を防止でき、且つ心拍数を正確に取得できる。
 本実施形態では、図8に示す神経刺激システム60は、ばね構造を有するU字形状の一対の付勢部61と延長リード部62とを備えるように構成してもよい。延長リード部62は、リード部13の軸線の延長線上に配置している。延長リード部62の両端部には、付勢部61が接続されている。さらに、付勢部61に各刺激電極11、12が接続され、各心電図取得電極14、15が心臓H(図1参照。)に対して遠位のリード部13に直列に接続されている。
 本実施形態によれば、ばね構造を有するU字形状の一対の付勢部61により、血流の流れが促進される。
 従って、本実施形態によれば、血流が淀んだ状態になったり、流れが遅くなったり、逆流したり、せき止められたりするのを防止でき、血栓の生成を防止でき、且つ心拍数を正確に取得できる。
(第2実施形態)
 次に、本発明の第2実施形態について図9から図15を参照しながら説明するが、前記第1実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。図9は、本実施形態に係る神経刺激システムの全体構成を示す模式図である。図10は、神経刺激システムにおける神経刺激時の刺激発生装置のブロック図である。
 図11は、神経刺激システムにおける心拍数計測時の刺激発生装置のブロック図である。
 図12は、神経刺激システムの切り換え動作を説明するタイミングチャートである。
 図9に示すように、本実施形態に係る神経刺激システム70は、第1刺激電極11及び第2刺激電極12と、単一の心電図取得電極71とを備える。第1刺激電極11及び第2刺激電極12は、付勢部18の一つに直列に接続している。単一の心電図取得電極71は、リード部13に接続している。単一の心電図取得電極71は、心臓Hに対して遠位に配置されている。また、神経刺激システム70は、切換部72(図10参照)を備える刺激発生装置73を装備する。切換部72は、各刺激電極11、12に接続されている。切換部72は、各刺激電極11、12と刺激信号発生部19(図2参照)との接続及び各刺激電極11、12と心拍数計測部17(図2参照)との接続を切換える手段の一例である。
 図10に示すように、切換部72は、第1スイッチ74と、常閉接点79と、常開接点80と、第2スイッチ78とから構成されている。第1スイッチ74は、常閉接点75、常開接点76、可動接点77を有する。第2スイッチ78は、可動接点81を有する。常閉接点75は、第11接続線82を通じて刺激信号発生部19の一方の入力/出力に接続している。常開接点76は、第12接続線83を通じて第2スイッチ78の常開接点80と心拍数計測部17の一方の入力/出力とに接続している。常閉接点79は、第13接続線84を通じて刺激信号発生部19の他方の入力/出力に接続している。心拍数計測部17の他方の入力/出力は、第14接続線85、コネクタ21、第15接続線86を通じて心電図取得電極71に接続している。各スイッチ74、78は、図示したアナログスイッチの他にFET等の一般的な制御可能な回路スイッチでも良く、制御部20の指令により切換えを行う構成であればよい。
 刺激発生装置73は、刺激信号が印加される場合、第1スイッチ74の可動接点77が常閉接点75に接続され、第2スイッチ78の可動接点81が常閉接点79に接続される。これにより、刺激信号発生部19から第1刺激電極11及び第2刺激電極12に信号がそれぞれ送給される。そして、神経刺激信号が、リード部13を通って各刺激電極11、12に送られて迷走神経Vnに印加される。
 次に、心拍数を計測する場合について図11を参照して説明する。
 図11に示すように、第1スイッチ74の可動接点77が常開接点76に接続され、第2スイッチ78の可動接点81が常開接点80に接続される。そのため、各刺激電極11、12から神経刺激信号が出力されない。これにより、心拍数計測部17は、心電図取得電極71で取得した電気的情報を所定のタイミングで取得し、電気的情報に基づいて心拍数を計測する。このとき、各刺激電極11、12は、電気的に導通された状態になる。
 次に、神経刺激信号を発生する場合と心拍数を計測する場合とのタイミングについて図12を参照して説明する。
 図12に示すように、各スイッチ74、78の各可動接点77、81が各常開接点76、80に接続されている時点t1において、各スイッチ74、78の各可動接点77、81が各常閉接点75、79に切り換わる。これにより、時点t2において、刺激信号発生部19から第1刺激電極11及び第2刺激電極12に信号がそれぞれ送給される。神経刺激信号が、リード部13を通って各刺激電極11、12に送られて迷走神経Vnに印加される。
 時点t2の以後の時点t3において、各スイッチ74、78の各可動接点77、81が各常開接点76、80に切り換わる。時点t3の以後の時点t4において、心拍数計測部17は、心電図取得電極71で取得した電気的情報を所定のタイミングで取得し、電気的情報に基づいて心拍数を計測する。以後、時点t5、時点t6、時点t7、時点t8において、これらの動作を繰り返し実行する。
 以上説明したように、第2実施形態に係る神経刺激システム70によれば、刺激発生装置73が、各刺激電極11、12から刺激信号発生部19への接続と、各刺激電極11、12から心拍数計測部17への接続とを切換える切換部72を備える。
 神経刺激システム70によれば、単一の心電図取得電極71を活用して神経刺激と心電図取得とを極めて簡易な構成で実現することができる。
 神経刺激システム70によれば、切換部72により、心電図取得時に各刺激電極11、12が同電位となるように切換えが行われる。
 従って、神経刺激システム70によれば、各刺激電極11、12と生体との接触面における分極の不均衡を解消できる。
 リード部13内に収容されている不図示の導線は、通常、4本で構成される。本実施形態に係る神経刺激システム70によれば、3本の導線で実現できるために、リード部13の径をさらに細くすることができる。
 神経刺激システム70によれば、各刺激電極11、12から遠く離れた位置に心電図取得電極71が配置されているため、神経刺激時にノイズを受けることを防止できる。
 次に、本実施形態の変形例について説明する。図13は、本実施形態の第1変形例に係る神経刺激システムの全体構成を示す模式図である。図14は、本実施形態の第2変形例に係る刺激発生装置のブロック図である。図15は、本実施形態の第3変形例に係る刺激発生装置のブロック図である。
 例えば、図13に示す神経刺激システム90のように、単一の心電図取得電極91を付勢部18の先端部において心臓Hに対して近位に配置するように構成されてもよい。
 本実施形態によれば、心電図取得電極91が心臓Hの近位に配置されているために、心臓Hが発生する心拍数を正確に取得できる。
 また、本実施形態によれば、心臓Hに近い位置に心電図取得電極91が配置されているために、心電のレベルをより高く検出することができる。
 また、本実施形態では、図14に示す神経刺激システム95のように、単一のスイッチ96を装備するように構成されてもよい。
 この場合、スイッチ96は、常開接点97と、常閉接点98と、可動接点99とを有する。常開接点97は、第16接続線100を通じて刺激信号発生部19の一方の入力/出力に接続されている。常閉接点98は、第17接続線101を通じて心拍数計測部17の一方の入力/出力に接続されている。
 本実施形態によれば、単一のスイッチ96により、神経刺激と心電図取得とを切り換えできるので、極めて簡易な構成で実現することができる。
 また、本実施形態では、図15に示す神経刺激システム110のように、第1スイッチ111と、第2スイッチ112とを装備してもよい。神経刺激システム110は、神経刺激を行わないときに第2スイッチ112の常閉接点113を接地に接続するように構成されてもよい。
 この場合、第1スイッチ111は、常開接点114と、常閉接点115と、可動接点116とを有する。第2スイッチ112は、常開接点117と、常閉接点113と、可動接点118とを有する。常開接点114は、第18接続線119を通じて刺激信号発生部19の一方の入力/出力に接続されている。常閉接点115は、第19接続線120を通じて心拍数計測部17の一方の入力/出力に接続されている。常開接点117は、第20接続線121を通じて刺激信号発生部19の他方の入力/出力に接続されている。常閉接点113は、第21接続線122を通じて接地に接続されている。
 本実施形態によれば、基準電極を接地に接続することにより、心電図信号のノイズレベルを低下させることができる。
 本発明の神経刺激システムにおいて、ICD装置における心臓刺激および心内心電図取得の電極兼用と同様に、神経刺激電極を回路的に切換えを行い、心電図取得を行う方法も容易に考えられる。しかしながら、血管内に留置する神経刺激電極の場合は、心内心電図と比較すると心電信号のレベルが小さいためSN比が小さくなる。
心電図取得を目的とする場合、電極間隔は比較的大きいことが望ましいが、神経刺激においては電極間隔は5mm程度であることが効果的であることが経験的に判っており、好適な神経刺激と好適な心電図取得の両立は容易ではない。
(第3実施形態)
 本発明の第3実施形態について、図16から図19を参照して説明する。
 図16は、本実施形態に係る神経刺激装置201の全体構成を示す模式図である。神経刺激装置201は、刺激発生装置210と、神経刺激電極220とを備えている。刺激発生装置210は、神経刺激信号を発生する。神経刺激電極220は、患者等の血管内に留置される。
 神経刺激電極220は、患者等の血管内に留置されて、刺激発生装置210で生成された神経刺激信号を生体組織に印加することにより、神経への電気刺激を行う。
 神経刺激電極220は、留置部230と、リード部221とを備えている。留置部230は、血管内に保持される。リード部221は、留置部230と刺激発生装置210とを接続する。
 留置部230は、複数の付勢部材231と、一対の刺激電極233Aおよび233Bとを備えている。一対の刺激電極233A、233Bは、付勢部材231の一つに取り付けられる。
 各付勢部材231は、留置される血管壁の変形に抗して一定の形状を保持可能な程度の剛性を有する。各付勢部材231は、例えばニッケルチタン製の超弾性ワイヤ等を用いて好適に形成することができる。各付勢部材231の表面は、図示しないポリウレタン等の生体適合性樹脂で被覆され、血管壁を傷つけにくく構成されている。付勢部材231の表面には、さらに血栓防止のためのコーティングや薬剤等が配置されてもよい。
 図16に示すように、各付勢部材231の基端側は、リード部221の先端部に接続されている。各付勢部材231は、外力が作用しない自然状態において、図16に示すように、リード部221に対する接続部位から、まずリード部221の径方向外側かつリード部221の先端よりも先端側(以下、「前方」と称する)に向かって延びる。各付勢部材231は、その後緩やかにカーブしながらリード部221の軸線に接近して束ねられている。
 一対の刺激電極233Aおよび233Bは、複数の付勢部材231のうちの一つの長手方向中間部に配置されている。一対の刺激電極233Aおよび233Bは、外周面の少なくとも一部に導電性の電極面を露出させている。刺激電極233A、233Bの材料としては、生体適合性に優れた金属材料が好ましく、例えば、白金イリジウム合金等の貴金属材料を挙げることができる。本実施形態では、先端側に位置する刺激電極233Aが負極、基端側に位置する刺激電極233Bが正極である。刺激電極233A、233Bは、それぞれ図示しない配線によって刺激発生装置210と接続されている。刺激電極の数は一対に限られず、複数設けられてもよい。
 リード部221は、絶縁性被覆222およびコネクタ223を備えた公知の構成を有し、長尺かつ可撓性を有するように構成されている。刺激電極233A、233Bに接続された配線は、付勢部材231に設けられた被覆内およびリード部221の絶縁性被覆222内を通り、コネクタ223を介して刺激発生装置210に接続されている。
 リード部221における、刺激発生装置210側には、一対の検出電極(生体情報取得電極)224、225が取り付けられている。検出電極224は、導電性の電極部224aと、粘着パッド224bとを有している。検出電極225は、導電性の電極部225aと、粘着パッド225bとを有している。各電極部224a、225aは、リード部221内に配置された図示しない配線を介して刺激発生装置210と接続されている。
 粘着パッド224b、225bは、患者等の体表面に繰り返し粘着および剥離可能な公知の構成を有する。粘着パッド224b、225bは、粘着されることにより、リード部221および電極部224a、225aを体表面に支持する。
 一対の検出電極224、225は、リード部221を好適に支持できるよう、リード部221から離間せず、常にリード部221上に位置するように取り付けられている。
 図17は、刺激発生装置210のブロック図である。刺激発生装置210は、刺激生成部211と、生体情報取得部212と、制御部213とを備えている。刺激生成部211は、神経刺激信号を生成する。生体情報取得部212は、検出電極224、225の検出した電位変化に基づいて心拍数等の生体情報を取得する。制御部213は、刺激発生装置210全体の制御を行う。
 生体情報取得部212は、検出電極224、225が検出した生体の電位変化にもとづいて心電波形を取得する。生体情報取得部212は、心電波形のR-R間隔等に基づいて、患者等の心拍数を取得する。
 制御部213は、刺激生成部211および生体情報取得部212に接続されている。制御部213は、生体情報取得部212から受信した心拍数が所定の条件を満たしたときに、神経刺激信号を発生させるよう刺激生成部211に指示する。神経刺激信号の態様は、あらかじめ制御部213にプログラム等の形で設定されてもよいし、刺激発生装置に入力のためのインターフェイス部を設け、使用者、医師等の操作入力等により設定できるように設定されてもよい。
 刺激生成部211は、刺激発生装置210に内蔵された図示しない電源と接続されている。刺激生成部211は、制御部213の指示に応じて神経刺激信号を生成する。生成された神経刺激信号は、リード部221を通って刺激電極233A、233Bに送られ、生体に印加される。
 上記の構成を備えた神経刺激装置201の使用時の動作について説明する。
 術者は、患者の血管に小切開を加えて開口を形成し、筒状のイントロデューサー等を血管内に挿入する。そして、術者は、留置部230の各付勢部材231を、リード部221の軸線に沿うような直線状に変形させてからシース等の管状部材に挿入し、管状部材をイントロデューサー等に挿入する。次に、術者は、管状部材の先端部を刺激する神経に近い留置部位まで移動させる。術者が管状部材の先端から留置部230を突出させると、各付勢部材231は、元の形状への復元力を有するため、血管の内壁(血管壁)に接触する。その結果、留置部230は、各付勢部材231に配置されている刺激電極233A、233Bが血管壁に接触した状態で血管内に保持される。
 留置部230の位置が定まったら、術者はイントロデューサーを抜去するあるいは引き裂く等によりイントロデューサーを取り除く。これにより、留置部230が患者の血管内の所定位置に留置される。管状部材は、除去されてもされなくてもいずれでもよい。
 一対の検出電極224、225は、図18に示されるように、留置部230が上述の所定位置に留置された状態において、体外に位置するリード部221上に設けられている。術者は、体外にあるリード部221を体表面に這わせるように配置する。術者は、検出電極224の粘着パッド224bと、検出電極225の粘着パッド225bとを患者の皮膚に貼り付ける。刺激発生装置210が粘着テープ等により患者の体表面や衣服等に固定されると、神経刺激装置201全体の留置が完了する。
 神経刺激電極220の留置中は、検出電極224、225が検出した情報に基づいて生体情報取得部212で心拍数が随時取得され、監視される。心拍数が所定の条件を満たすと、制御部213の指令により刺激生成部211で神経刺激信号が生成される。生成された神経刺激信号は、刺激電極233A、233Bに印加される。刺激電極233A、233Bから組織に印加される電気刺激により、対象の神経が血管壁越しに刺激されて治療が行われる。
 本実施形態に係る神経刺激装置201によれば、生体情報取得のための情報を検出する検出電極224、225が、留置部230の留置時に体外に位置するリード部221上に設けられている。そのため、検出電極224、225は、神経刺激を行う刺激電極233A、233Bとの間に十分な距離が保たれる。その結果、検出電極224、225には神経刺激によるノイズが入ることが抑制され、正確な生体情報を取得して適切な治療を行うことができる。
 検出電極224、225が、常にリード部221上に位置するように設けられているため、リード部からさらに配線が延びることはない。そのため、体外の線状部位は、実質的にリード部221のみである。その結果、装置構成が簡素化されるとともに、留置時の患者の煩わしさが低減される。
 検出電極224は粘着パッド224bを有し、検出電極225は粘着パッド225bを有しているため、粘着パッドを皮膚等の体表面に貼り付けることで、リード部221も体表面に固定することができる。その結果、術者は留置を簡便に行うことができ、留置後の体外のリード部の位置も安定させることができる。一般に、体外のリード部のずれは、体内における留置部30のずれの原因である。しかし、本実施形態に係る神経刺激装置201は、上記構成により、治療の確実性にも寄与する。
 本実施形態においては、留置部230の体内留置時において一対の検出電極の両方が体外に位置する例を説明した。しかし、図19および図20に示すように、検出電極の一方の電極部224aが留置部230に配置されたり、体内に位置するリード部221上に配置されたりしてもよい。ただし、電極部224aが刺激電極233A,233Bに近いほど神経刺激時にノイズが入る確率が高くなるため、電極部224aが体内に配置される場合は、できるだけ刺激電極から離れた位置に配置されるのが好ましい。
(第4実施形態)
 次に、本発明の第4実施形態について、図21を参照して説明する。本実施形態と第3実施形態との異なるところは、生体情報取得電極として、基準電極をさらに備える点である。以降の説明において、すでに説明したものと共通する構成等については、同一の符号を付して重複する説明を省略する。
 図21は、本実施形態に係る神経刺激装置251の構成を示す模式図である。刺激発生装置210の外表面には、基準電極252が設けられている。基準電極252は、電極部252aおよび粘着部252bを有している。電極部252aは、刺激発生装置の生体情報取得部212に接続されている。粘着部252bは、粘着部224b、225bと同様の構成を用いることができる。
 神経刺激装置251の留置時には、術者が粘着部252bを患者の体表面に貼り付けると、電極部252aとともに刺激発生装置210が体表面に固定される。
 神経刺激装置251の留置後には、検出電極224、225に基準電極252を加えた3極の情報に基づいて心電波形が取得される。
 本実施形態に係る神経刺激装置251は、第一実施形態に係る神経刺激装置201と同様に、正確な生体情報を取得して適切な治療を行うことができる。
 また、本実施形態に係る神経刺激装置251は、基準電極252を備えているため、3極により心電波形を取得することができる。その結果、本実施形態に係る神経刺激装置251は、心電信号に混入したノイズや体動などによる信号基線の動揺の影響を、公知の補正手法を用いて低減することができる。本実施形態に係る神経刺激装置251は、取得される生体情報の精度をさらに高めることができる。
 さらに、本実施形態に係る神経刺激装置251は、基準電極252が刺激発生装置210上に設けられている。そのため、基準電極252を固定することにより、刺激発生装置210の固定も行うことができ、留置作業を簡便に行うことができる。
 本実施形態では、基準電極が刺激発生装置上に設けられた例を説明した。基準電極が留置される位置にはこれには限られず、リード部221上や留置部230上に設けられても構わない。一般的に、2極の電極は心臓を中心に右上から左下方向に挟む位置に設置することにより、信号レベルが大きく取得出来る為、心拍数計測には有利である。この場合、基準電極は心臓に対して左上、あるいは右下の他の2極からの距離が等しい位置に設置されることが望ましい。リード線の引き回し等の事情で完全に等間隔でない場合でも、ノイズ低減の効果は期待できる。
 以上、本発明の各実施形態を説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。
 例えば、上述の第4実施形態では、刺激発生装置上に基準電極を設ける例を説明したが、これに代えて、検出電極の一方を刺激発生装置に設けてもよい。このように構成すると、基準電極を備えない構成でも、体表面に固定する電極と刺激発生装置とを一つの操作で固定することができる。
 また、公知のスナップボタン機構等を用いることにより、検出電極や基準電極がリード部に対して着脱自在に構成されてもよい。このとき、スナップボタン機構をリード部上に検出電極等の数以上の複数設けておくと、検出電極等の取り付け位置を患者等に応じて調節することができる。さらに、検出電極等が取り付けられなかったスナップボタン機構に、電極部を有さない粘着パッドを取り付ければ、リード部がより安定した状態で体表面に固定される。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明に限定されることはなく、添付のクレームの範囲によってのみ限定される。
 上記各実施形態は、迷走神経刺激と心拍数の計測とを、簡易な構成で行うことができ、かつ、心電信号をより正確に取得できる神経刺激装置、神経刺激システム及び組織刺激方法を提供できる。
1  神経刺激システム
11 第1刺激電極、刺激電極
12 第2刺激電極、刺激電極
13,221 リード部
14 第1心電図取得電極、心電図取得電極
15 第2心電図取得電極、心電図取得電極
17 心拍数計測部
19 刺激信号発生部
35,40,45,50,55,60,70 神経刺激システム
72 切換部、切換え手段
74 第1スイッチ、切換部、切換え手段
78 第2スイッチ、切換部、切換え手段
90 神経刺激システム
95 神経刺激システム
96 スイッチ、切換部、切換え手段
110 神経刺激システム
111 第1スイッチ、切換部、切換え手段
112 第2スイッチ、切換部、切換え手段
201、251 神経刺激装置
210 刺激発生装置
220 神経刺激電極
224、225 検出電極(生体情報取得電極)
224b、225b、252b 粘着部
233A、233B 刺激電極
252 基準電極(生体情報取得電極)

Claims (9)

  1.  血管内に配置されるリード部と、
     少なくとも2極の電極を有する刺激電極と、
     少なくとも2極の電極で構成される心電図取得電極と、
     刺激信号を生成するための刺激信号発生部と、
     前記心電図取得電極から心拍数を計測するための心拍数計測部と、
     を備え、
     前記刺激電極と前記心電図取得電極とは、同一の前記リード部上に配置されている神経刺激システム。
  2.  血管内に配置されるリード部と、
     少なくとも2極の電極で構成される刺激電極と、
     1極の心電図取得電極と、
     刺激信号を生成するための刺激信号発生部と、
     前記心電図取得電極から心拍数を計測するための心拍数計測部と、
     前記刺激電極に接続され、刺激信号発生部および心拍数計測部への接続を切換える切換え手段と、
     を備え、
     前記刺激電極と前記心電図取得電極とは、同一の前記リード部上に配置され、
     神経刺激を印加する場合には前記切換え手段が前記刺激電極を前記刺激信号発生部に接続させるよう切換えを行い、心電図を取得する場合には前記切換え手段が前記刺激電極の一方を前記心拍数計測部の一方の入力/出力へ接続させるよう切換えを行う神経刺激システム。
  3.  心電図取得時に前記刺激電極の前記2極の電極が同電位となるように切換えを行う請求項1または請求項2に記載の神経刺激システム。
  4.  少なくとも2極の電極を有する刺激電極を用いるとともに、少なくとも2極の電極で構成される心電図取得電極を用い、刺激信号発生部により刺激信号を生成し、心拍数計測部により心電図取得電極から心拍数を計測し、前記刺激電極と前記心電図取得電極とを、血管内に配置した同一のリード部上に配置して神経刺激を行う神経刺激方法。
  5.  生体に留置されて神経に電気刺激を行う神経刺激装置であって、
     神経に前記電気刺激を印加する刺激電極、および第一端部が前記刺激電極に接続されたリード部を有する神経刺激電極と、
     前記リード部の第二端部に接続され、前記電気刺激を印加させるための神経刺激信号を生成する刺激発生装置と、
     二つ以上設けられ、少なくとも一つが前記リード部から離間しないように前記リード部上に設けられた生体情報取得電極と、
     を備える神経刺激装置。
  6.  前記リード部上に設けられた生体情報取得電極は、粘着部を有し、生体表面に粘着固定可能である請求項5に記載の神経刺激装置。
  7.  前記生体情報取得電極の一つが前記刺激発生装置上に設けられている請求項5または6に記載の神経刺激装置。
  8.  前記刺激発生装置上に設けられた生体情報取得電極は、粘着部を有し、生体表面に粘着固定可能である請求項7に記載の神経刺激装置。
  9.  前記生体情報取得電極は3つ以上設けられ、前記生体情報取得電極の一つが、心電波形が取得される基準電極に設定される請求項5から8のいずれか一項に記載の神経刺激装置。
PCT/JP2014/074029 2014-09-11 2014-09-11 神経刺激装置、神経刺激システム及び神経刺激方法 WO2016038713A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016547314A JPWO2016038713A1 (ja) 2014-09-11 2014-09-11 神経刺激装置、神経刺激システム及び神経刺激方法
PCT/JP2014/074029 WO2016038713A1 (ja) 2014-09-11 2014-09-11 神経刺激装置、神経刺激システム及び神経刺激方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074029 WO2016038713A1 (ja) 2014-09-11 2014-09-11 神経刺激装置、神経刺激システム及び神経刺激方法

Publications (1)

Publication Number Publication Date
WO2016038713A1 true WO2016038713A1 (ja) 2016-03-17

Family

ID=55458501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074029 WO2016038713A1 (ja) 2014-09-11 2014-09-11 神経刺激装置、神経刺激システム及び神経刺激方法

Country Status (2)

Country Link
JP (1) JPWO2016038713A1 (ja)
WO (1) WO2016038713A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506617A (ja) * 2006-10-11 2010-03-04 カーディアック ペースメイカーズ, インコーポレイテッド 心臓血管機能を調節する経皮神経刺激装置
JP2010540161A (ja) * 2007-10-02 2010-12-24 カーディアック ペースメイカーズ, インコーポレイテッド 個別の心筋接触領域を提供するリードアセンブリ
JP2011083415A (ja) * 2009-10-15 2011-04-28 Olympus Corp 神経刺激装置
JP2011527598A (ja) * 2008-07-08 2011-11-04 カーディアック ペースメイカーズ, インコーポレイテッド 迷走神経刺激を送達する医療システム
JP2013000404A (ja) * 2011-06-17 2013-01-07 Olympus Corp 神経刺激装置および神経刺激装置の作動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506617A (ja) * 2006-10-11 2010-03-04 カーディアック ペースメイカーズ, インコーポレイテッド 心臓血管機能を調節する経皮神経刺激装置
JP2010540161A (ja) * 2007-10-02 2010-12-24 カーディアック ペースメイカーズ, インコーポレイテッド 個別の心筋接触領域を提供するリードアセンブリ
JP2011527598A (ja) * 2008-07-08 2011-11-04 カーディアック ペースメイカーズ, インコーポレイテッド 迷走神経刺激を送達する医療システム
JP2011083415A (ja) * 2009-10-15 2011-04-28 Olympus Corp 神経刺激装置
JP2013000404A (ja) * 2011-06-17 2013-01-07 Olympus Corp 神経刺激装置および神経刺激装置の作動方法

Also Published As

Publication number Publication date
JPWO2016038713A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
US11850418B2 (en) System and methods for heart rate and electrocardiogram extraction from a spinal cord stimulation system
JP2020511248A5 (ja)
CN111790047B (zh) 用于电神经调制的导管和导管***
JP5936409B2 (ja) 電極ユニットおよび組織刺激システム
WO2006105395A3 (en) Trans-septal/trans-myocardial ventricular pacing lead
JP2013527007A5 (ja)
JP2021512663A (ja) 再分極をマッピング及び調整するためのシステム及び方法
JP6531246B1 (ja) 電気刺激治療器
JP6488498B1 (ja) 排尿障害治療器
Kruse et al. Detecting and distinguishing cardiac pacing artifacts
CN115349944A (zh) 脉冲消融***
EP3841999A1 (en) Combined cardiac pacing and irreversible electroporation (ire) treatment
JPWO2019155941A1 (ja) 除細動カテーテルシステム、除細動用電源装置および除細動用電源装置の制御方法
Poppendieck et al. A new generation of double-sided intramuscular electrodes for multi-channel recording and stimulation
JP2014188157A (ja) 神経刺激システム及び神経刺激方法
WO2016038713A1 (ja) 神経刺激装置、神経刺激システム及び神経刺激方法
JP2014184052A (ja) 神経刺激装置
JPWO2019155942A1 (ja) 除細動カテーテルシステム、除細動用電源装置および除細動用電源装置の制御方法
WO2016092611A1 (ja) 神経刺激装置
US9681816B2 (en) Device and method for lead failure detection
JP6472724B2 (ja) 神経刺激装置
JP6626256B2 (ja) 神経刺激電極の移動検知方法および神経刺激システム
KR102045714B1 (ko) 제세동 카테터 시스템
JP2016067574A (ja) 神経刺激装置
CN117042839A (zh) 用于植入式脉冲发生器的引线定位

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901724

Country of ref document: EP

Kind code of ref document: A1