WO2016036125A1 - Hybrid cnt-ro membrane pressure vessel - Google Patents

Hybrid cnt-ro membrane pressure vessel Download PDF

Info

Publication number
WO2016036125A1
WO2016036125A1 PCT/KR2015/009225 KR2015009225W WO2016036125A1 WO 2016036125 A1 WO2016036125 A1 WO 2016036125A1 KR 2015009225 W KR2015009225 W KR 2015009225W WO 2016036125 A1 WO2016036125 A1 WO 2016036125A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
reverse osmosis
osmosis membrane
pressure vessel
module
Prior art date
Application number
PCT/KR2015/009225
Other languages
French (fr)
Korean (ko)
Inventor
정준교
김상현
김홍석
오세진
김보람
김선규
Original Assignee
현대건설주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대건설주식회사 filed Critical 현대건설주식회사
Publication of WO2016036125A1 publication Critical patent/WO2016036125A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Definitions

  • the present invention relates to a pressure vessel of the hybrid CNT-RO membrane, and more particularly, a reverse osmosis membrane module having a higher salt rejection rate than the reverse osmosis membrane disposed at the rear end is disposed at the front end of the pressure vessel to increase the freshwater recovery rate. It relates to a pressure vessel.
  • Seawater desalination refers to a series of water treatment processes that removes dissolved substances, including salts, from seawater, which cannot be directly used for domestic or industrial water, to obtain high-purity drinking water, domestic water, and industrial water. Also called seawater desalination, the facilities used to produce seawater as freshwater are called seawater desalination plants or seawater desalination plants.
  • the desalination plant is a facility that removes salt in an economic way to make fresh water using 98% of sea water or brackish water useful for human life.
  • rain falls on the ground, it flows into the sea through various paths, while salts and other substances dissolve as water flows on and into the ground, increasing salinity.
  • Water arriving at sea or in lowlands is evaporated by solar energy, leaving salts in the evaporation process, and only pure water forms clouds and rains. This shows the evaporation process where physical separation takes place and the condensation process where water vapor meets cold air and turns into rainwater, which is a representative desalination seen in natural phenomena.
  • Desalination methods are largely classified according to their basic principles.
  • the reverse osmosis method is used to heat seawater using a heat source and condense the generated steam to obtain fresh water, and reverse osmosis, which produces fresh water by passing the seawater through a semi-permeable membrane using osmosis. It is a representative method of seawater desalination.
  • the evaporation method using a heat source is classified into multi-stage flash (MSF) and multi-effect distillation (MED) according to the fluid flow pattern.
  • MSF multi-stage flash
  • MED multi-effect distillation
  • crystallization method, ion exchange membrane method, solvent extraction method, and pressure adsorption method are applied to seawater desalination.
  • the widely used seawater desalination method is MSF, MED and RO.
  • a hybrid method is used to produce.
  • Reverse osmosis membrane pressure vessels are used for desalination of seawater using reverse osmosis among various seawater desalination systems.
  • the pressure vessel has a plurality of reverse osmosis membrane modules connected in series, raw water flows into the inlet of the front end of the pressure vessel, and desalination of the produced water is discharged into the product outlet located at the rear end of the pressure vessel, and the rear end of the pressure vessel.
  • the brine is located at the brine and the brine is desalted.
  • a plurality of reverse osmosis membrane modules are arranged in series. Since the modules are connected in series, the salinity of seawater that has not been desalted in the reverse osmosis membrane module located at the front end becomes darker as it flows to the rear end.
  • the present invention has been made to solve the conventional problems as described above, the object is to provide a user with a hybrid CNT-RO membrane pressure vessel with a high fresh water recovery.
  • the purpose is to reduce the difference between the fresh water production of the reverse osmosis membrane module disposed in the front end and the fresh water production of the reverse osmosis membrane module disposed in the rear end.
  • the purpose is to increase the water permeability of the reverse osmosis membrane module by mixing the carbon nanotubes in the reverse osmosis membrane module 50% or more.
  • the aim is to reduce the amount of incoming seawater and to reduce the cost of operating a freshwater production system.
  • Reverse osmosis membrane pressure vessel for realizing the above object is a reverse osmosis membrane pressure vessel for desalination of sea water, the seawater inlet is located at at least part of the front end of the pressure vessel; A plurality of reverse osmosis membrane modules disposed in series in the pressure vessel; A permeate flow path passing through a central portion of each of the plurality of reverse osmosis membrane modules and having a plurality of holes formed in contact with the plurality of reverse osmosis membrane modules; A permeate water outlet located at least a portion of the rear end of the pressure vessel; And a concentrated water outlet positioned at at least a portion of the rear end of the pressure vessel, wherein the seawater is introduced through the seawater inlet, and the introduced seawater is desalted while passing through the plurality of reverse osmosis membrane modules.
  • the seawater that has passed through the reverse osmosis membrane module is introduced into the permeate flow path through the plurality of holes, and the seawater introduced into the permeate flow path is discharged through the permeate discharge port and cannot flow into the permeate flow path.
  • Sea water is discharged through the concentrated water outlet, at least one module located at the front end of the pressure vessel of the plurality of reverse osmosis membrane module constitutes a first module portion, the module located at a rear end than the first module portion
  • the flow rate of each module constituting the second module unit, the flow rate of each module constituting the first module unit than There can be many.
  • the salt rejection rate of each module constituting the first module unit may be higher than the salt rejection rate of each module constituting the second module unit.
  • carbon nanotubes may be mixed in the separator of at least one of the first module unit and the second module unit.
  • the carbon nanotubes may be mixed in at least one layer of the polyamide layer and the support layer of the separator.
  • poly dopamine is coated on the carbon nanotubes so that the carbon nanotubes may be uniformly coated.
  • module of the first module unit may be two, and the module of the second module unit may be four.
  • the material of the pressure vessel may be fiber reinforced plastics (FRP, Fiber Reinforced Plastics).
  • the module located at a rear end of the first module unit may constitute a second module unit, and the flow rate of each module constituting the second module unit may be greater than the flow rate of each module constituting the first module unit.
  • the salt rejection rate of each module constituting the first module unit may be higher than the salt rejection rate of each module constituting the second module unit.
  • the second reverse osmosis membrane module may further include a carbon nanotube layer, and the second step may further include transmitting the seawater through the carbon nanotube layer.
  • the pressure vessel stage according to an embodiment of the present invention for realizing the above problems may be a plurality of reverse osmosis membrane pressure vessel connected in parallel.
  • Seawater desalination apparatus for realizing the above problem may be a plurality of reverse osmosis membrane pressure vessel stage connected in series.
  • the carbon nanotubes the step of maintaining the carbon nanotubes in a H 2 O 2 solution of 50 ⁇ 70 °C for 30 minutes ⁇ 2 hours; Evaporating the H 2 O 2 solution and oxidizing the carbon nanotubes for 1 to 3 hours while injecting an inert gas at 800 to 1000 ° C .; Cooling the carbon nanotubes to 25 to 40 ° C. at room temperature; Heating the carbon nanotubes at 300 to 600 ° C. for 2 to 4 hours; And injecting an inert gas to cool the carbon nanotubes to room temperature to open the ends through a thermal oxidation method.
  • the average length obtained through the inert gas may be 1 to 2 ⁇ m, and the average diameter may be 5 to 8 nm. .
  • the carbon nanotubes may be dispersed in the amine solution and mixed with the separator by interfacial polymerization.
  • the amine contained in the amine solution is ortho-phenylenediamine (ortho-phenylenediamine), meta-phenylenediamine (meta-phenylenediamine), para-phenylenediamine (para-phenylenediamine), piperazine ( piperazine, ethylene diamine, cadaverine, and any one selected from the group consisting of a mixture thereof.
  • the poly dopamine is coated, the first step of ultrasonically dispersing the carbon nanotubes in a tris-buffer solution; A second step of prepurging oxygen in the tris-buffer solution in which the carbon nanotubes are mixed; Injecting dopamine into the oxygen pre-purged tris-buffer solution; A fourth step of reacting the carbon nanotubes with the dopamine by injecting oxygen into the dopamine-infused tris-buffer solution; A fifth step of applying ultrasonic dispersion to the tris-buffer solution in which the carbon nanotubes and the dopamine are reacted; A sixth step of reacting the carbon nanotubes with the dopamine by injecting oxygen into the ultrasonically dispersed tris-buffer solution; A seventh step of lowering the pH of the tris-buffer solution; And an eighth step of drying the tris-buffer solution.
  • the tris-buffer solution may be adjusted to a pH of 8.5 or more.
  • the reverse osmosis membrane pressure vessel manufacturing method for realizing the above object in the method for producing a pressure vessel using a reverse osmosis membrane in which carbon nanotubes are mixed, the carbon nanotube 50 Holding in a H 2 O 2 solution at ⁇ 70 ° C. for 30 minutes to 2 hours; Evaporating the H 2 O 2 solution and oxidizing the carbon nanotubes for 1 to 3 hours while injecting an inert gas at 800 to 1000 ° C .; Cooling the carbon nanotubes to 25 to 40 ° C. at room temperature; Heating the carbon nanotubes at 300 to 600 ° C.
  • the average length of the carbon nanotubes is 1 to 2 ⁇ m and the average diameter is 5 to 8 nm. Can be.
  • the present invention can be provided to users of a hybrid CNT-RO membrane pressure vessel having a high freshwater recovery rate.
  • the water permeability of the reverse osmosis membrane module can be increased by 50% or more by mixing carbon nanotubes in the reverse osmosis membrane module.
  • FIG. 1 is a perspective view showing an example of a spiral wound separator module.
  • Figure 2 shows a cross-sectional view of a conventional reverse osmosis membrane pressure vessel.
  • FIG 3 is a cross-sectional view of the hybrid reverse osmosis membrane pressure vessel according to an embodiment of the present invention.
  • Figure 4 shows a cross-section of the reverse osmosis membrane used in the reverse osmosis membrane module according to an embodiment of the present invention.
  • Figure 5 shows that the carbon nanotubes mixed in the reverse osmosis membrane according to an embodiment of the present invention is disproportionately dispersed.
  • FIG. 6 shows a reverse osmosis membrane in which carbon nanotubes coated with poly dopamine are mixed according to one embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of desalination of seawater according to an embodiment of the present invention.
  • Figure 8 is a graph showing the flow rate according to the module position when desalination of sea water using a hybrid CNT reverse osmosis membrane pressure vessel according to an embodiment of the present invention and a conventional reverse osmosis membrane pressure vessel.
  • FIG. 9 shows a stage (Stage) connected in parallel to the reverse osmosis membrane module according to an embodiment of the present invention.
  • FIG. 10 illustrates a multi-stage system in which reverse osmosis membrane pressure vessel stages are connected in series according to an embodiment of the present invention.
  • FIG. 11 is a photograph showing a dispersion result according to Preparation Example 2 and a figure showing the results of a UV spectrometer analysis.
  • FIG. 13 is a photograph showing carbon nanotubes whose ends are opened by treating with thermal oxidation in Example 1.
  • FIG. 14 is a photograph showing carbon nanotubes whose ends are not opened because the thermal oxidation method is not treated by Comparative Example 1.
  • FIG. 14 is a photograph showing carbon nanotubes whose ends are not opened because the thermal oxidation method is not treated by Comparative Example 1.
  • TGA thermogravimetric analysis
  • FIG. 18 is a graph showing the changing peak pattern in atomic absorption analysis by thermal oxidation treatment.
  • 19 is a TEM image showing dopamine-coated carbon nanotubes.
  • Example 20 is a process chart for preparing a carbon nanotube-polyamide composite separator according to Example 1 of the present invention.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • FIG. 23 is a scanning electron microscope (SEM) (a) and transmission electron microscope (TEM) image (b) of a polydopamine-coated carbon nanotube according to Example 2 of the present invention.
  • FIG. 24 is a scanning electron microscope (SEM) (a) and transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to a comparative example of the present invention.
  • FIG. 26 shows infrared spectroscopy (FT-IR) results of carbon nanotubes not coated with polydopamine and carbon nanotubes coated with polydopamine according to Examples 1, 2 and Comparative Examples of the present invention.
  • XPS photoelectron spectroscopy
  • FIG. 28 shows spectrophotometric analysis (UV-vis) results of polydopamine-coated carbon nanotubes according to a comparative example of the present invention (a) and spectroscopy of polydopamine-coated carbon nanotubes according to Example 1 of the present invention. Photometric analysis (UV-vis) results (b).
  • FIG. 29 is a photograph of dispersibility in various solvents of carbon nanotubes not coated with polydopamine.
  • Example 30 is a photograph of dispersibility in various solvents of polydopamine-coated carbon nanotubes according to Example 1 of the present invention.
  • FIG. 31 illustrates an aqueous dispersion image and UV-vis analysis result of CNTs having improved aqueous dispersibility according to an embodiment of the present invention.
  • FIG 32 is a graph comparing the power consumption for the same flow rate when desalination using the reverse osmosis membrane pressure vessel according to an embodiment of the present invention and the conventional reverse osmosis membrane pressure vessel.
  • Reverse osmosis membranes are used for desalination with large amounts of water with relatively low salts such as industrial water, agricultural water, and household water by removing salts such as brine or seawater.
  • Semi-saline desalination using reverse osmosis membrane or desalination of seawater means that the salt or ions in the aqueous solution cannot pass through the membrane when the aqueous solution containing salt or ions is pressurized and filtered. It means passing through and becoming constant water.
  • the pressure applied should be more than the osmotic pressure of the aqueous solution, the action is the reverse of the osmotic process, and the higher the concentration of the aqueous solution, the greater the osmotic pressure, the higher the pressure applied to the feed water.
  • the permeate flow rate of the membrane may be more important than the salt rejection rate depending on the use, or vice versa.
  • a large membrane area is required to apply the separator to industrial scale liquid separation.
  • a device unit that integrates a large membrane area on a compact scale is called a membrane module, and various types of membrane modules such as flat module, tubular module, hollow fiber module, spiral wound module have been developed.
  • commercially available reverse osmosis membrane modules are mainly used as spiral wound type membrane modules.
  • FIG. 1 is a perspective view showing an example of a spiral wound membrane module, wherein the spiral wound module uses a flat sheet membrane as a separator.
  • a mesh (9) and a separator (feed spacer) may be used.
  • 7) and the permeate spacer (8), another membrane (7) is bonded by a sandwich method, and then wound in the form of a roll (roll) on the porous central pipe (10) located in the center Form a module.
  • the inflow water under a constant pressure is passed through the membrane (7) through the inlet flow channel (9).
  • the membrane In the passage of the membrane, dissolved salts and organic substances are excluded and pure water is separated.
  • the separated water flows along the permeate flow path 8 located between the separation membranes, and the permeate is discharged out of the pressure vessel through the permeate outlet 5.
  • the concentrated water discharged from the reverse osmosis membrane module located at the front end flows into the reverse osmosis membrane module located at the rear end, so that the salt concentration of the seawater increases as the seawater flows to the rear end.
  • Figure 2 shows a cross-sectional view of a conventional reverse osmosis membrane pressure vessel
  • a reverse osmosis membrane module inherent in the conventional reverse osmosis membrane pressure vessel all the same type of modules are arranged to treat a high concentration of concentrated water
  • the production water flow rate of the reverse osmosis membrane module of the rear end is very low compared to the front end module has become a problem.
  • the present invention is to provide a reverse osmosis membrane pressure vessel with a high fresh water recovery rate by arranging the reverse osmosis membrane module of other characteristics in the reverse osmosis membrane pressure vessel to solve this problem.
  • FIG 3 is a cross-sectional view of the hybrid reverse osmosis membrane pressure vessel according to an embodiment of the present invention.
  • the hybrid reverse osmosis membrane pressure vessel is a pressure vessel 100, inlet 200, a plurality of reverse osmosis membrane module 300, porous outlet pipe 400, permeate outlet 500 and concentrated water outlet 600 and the like.
  • the pressure vessel 100 is a vessel in which other components are mounted.
  • Pressure vessel 100 It can be manufactured by filament winding method using raw materials such as epoxy resin and glass fiber as pressure vessel 100, and there is no liner inside, and it is light without gel coating and can withstand high pressure FRP (Fiber Reinforced Plastics) ) Pressure vessel 100 may be used.
  • FRP Fiber Reinforced Plastics
  • the inlet 200 is located in the front end of the pressure vessel 100 is a hole in which seawater is introduced.
  • the plurality of reverse osmosis membrane module 300 serves to desalination of the introduced seawater, a spiral wound reverse osmosis membrane module as shown in FIG. 1 is used.
  • Figure 4 shows a cross-section of the reverse osmosis membrane used in the reverse osmosis membrane module according to an embodiment of the present invention
  • the reverse osmosis membrane 310 is a polyamide (PA) layer 311, the support layer 312 And nonwoven fabric 313.
  • the support layer 312 may be made of poly ethersulfone (PES).
  • the reverse osmosis membrane module 300 may be classified according to the salt excretion rate of the reverse osmosis membrane (310).
  • the reverse osmosis membrane module with high salt rejection rate and low production water flow rate is called the high salt rejection type reverse osmosis membrane module (HR type high osmosis membrane module) (320).
  • the high flow rate reverse osmosis membrane module is called a high flow rate reverse osmosis membrane module (HF type reverse osmosis membrane module, High Flux Membrane) (330).
  • the HR type reverse osmosis membrane module 320 is disposed at the front end of the hybrid reverse osmosis membrane pressure vessel, and the HF type reverse osmosis membrane module 330 is disposed at the rear end thereof.
  • the HR type reverse osmosis membrane module 320 is disposed at the front end of the pressure vessel 100 with a relatively low flow rate and high salt rejection rate.
  • the salt concentration is increased toward the end of the.
  • the reverse osmosis membrane module 300 disposed at the rear end of the pressure vessel 100 has to process high concentrations of seawater, so the freshwater production is less than the reverse osmosis membrane module 300 disposed at the front end.
  • the HF-type reverse osmosis membrane module 330 having a relatively high transmittance is disposed at the rear end of the pressure vessel 100.
  • the fresh water recovery rate is increased as compared with the conventional reverse osmosis membrane module.
  • the number of the plurality of reverse osmosis membrane modules 300 used in the pressure vessel 100 is two HR type reverse osmosis membrane modules 320 and four HF type reverse osmosis membrane modules 330 as shown in FIG. 3. It is not limited to, the number can be changed as needed.
  • carbon nanotubes (CNT) 314 may be mixed in the reverse osmosis membrane.
  • the carbon nanotubes 314 may be coated on a polyamide (PA) layer 311 or a poly ethersulfone (PES) layer 312 of the reverse osmosis membrane.
  • PA polyamide
  • PES poly ethersulfone
  • the HF-type reverse osmosis membrane module 330 disposed at the rear end of the reverse osmosis membrane pressure vessel of the present invention requires high permeability in order to desalination seawater quickly. Therefore, when carbon nanotubes 314 are mixed in the reverse osmosis membrane 310 of the HF type reverse osmosis membrane module 330, the production water recovery rate may be further increased. However, the carbon nanotubes 314 may not only be applied to the HF type reverse osmosis membrane module 320 but may also be applied to the HR type reverse osmosis membrane module 330.
  • Figure 5 shows that the carbon nanotubes mixed in the reverse osmosis membrane according to an embodiment of the present invention is disproportionately dispersed.
  • the performance of the reverse osmosis membrane module 300 may be degraded and thus may not normally be desalted.
  • the poly dopamine 315 may be coated on the carbon nanotubes mixed in the reverse osmosis membrane 310.
  • FIG. 6 illustrates a reverse osmosis membrane in which carbon nanotubes coated with poly dopamine are mixed according to an embodiment of the present invention.
  • poly dopamine 315 coated on carbon nanotubes 314 may be used.
  • the carbon nanotubes 314 may be uniformly dispersed in the reverse osmosis membrane 310.
  • the porous outflow pipe 400 connects the plurality of reverse osmosis membrane modules 300 in series, passes through the plurality of reverse osmosis membrane modules 300, and is a passage through which desalination water flows.
  • the permeated water outlet 500 is a hole through which the water introduced into the porous outlet pipe 400 is discharged, and the concentrated water outlet 600 is concentrated in the saltwater which is not fresh water due to the inflow into the porous outlet pipe 400. It is a hole through which concentrated water is discharged.
  • the permeate outlet 500 and the concentrated water outlet 600 are located at the rear end of the pressure vessel 100.
  • FIG. 7 is a flowchart illustrating a method of desalination of seawater according to an embodiment of the present invention.
  • the introduced seawater is desalted by passing through a plurality of reverse osmosis membrane modules in the pressure vessel (S200).
  • At least one module positioned at the front end of the pressure vessel among the plurality of reverse osmosis membrane modules constitutes a first module portion, and the remaining modules positioned at a rear end of the first module portion constitute a second module portion.
  • the reverse osmosis membrane module of the first module unit is an HR type reverse osmosis membrane module 320
  • the reverse osmosis membrane module of the second module unit is an HF type reverse osmosis membrane module 330.
  • the reverse osmosis membrane module of the first module unit may include a plurality of HR type reverse osmosis membrane modules 320
  • the reverse osmosis membrane module of the second module unit includes a plurality of HF type reverse osmosis membrane modules 330. can do.
  • the desalted seawater is discharged through the permeate outlet of the pressure vessel (S300).
  • the Y axis represents the flow rate by position in the pressure vessel, and the area formed by each graph and the X axis is the total freshwater production amount when each separator is used.
  • the flow rate decreases toward the rear end of the pressure vessel 100.
  • the membrane of the present invention the flow rate decreases to the second module, but in the third module, the HF type reverse osmosis membrane module 330 increases the flow rate even when desalination of high concentration seawater. And the flow rate decreases toward the rear end.
  • the freshwater production up to the second module is higher when using the conventional reverse osmosis membrane pressure vessel, but the third to sixth modules are used.
  • Freshwater production up to the first module is more when the hybrid CNT reverse osmosis membrane of the present invention is used.
  • FIG. 9 shows a stage connected in parallel with the reverse osmosis membrane module 300 according to an embodiment of the present invention.
  • the pressure vessel 100 is connected in parallel to a plurality of stages (Stage) 700 is called.
  • Stage 700 is formed by connecting the pressure vessels 100 in parallel, the desalination capacity is increased by the number of the pressure vessels 100 connected thereto.
  • FIG. 10 illustrates a multi-stage system in which reverse osmosis membrane pressure vessel stages are connected in series according to an embodiment of the present invention.
  • a system in which a plurality of stages 700 connected with a plurality of pressure vessels 100 are connected in series may be used.
  • the first stage becomes the first stage and the second stage becomes the second stage.
  • the thermal oxidation method refers to a method of oxidizing by applying high temperature heat, and the reverse osmosis membrane may include carbon nanotubes coated with dopamine.
  • the dopamine is one of the biomimetic substances found in mussel extracts. Dopamine spontaneously adsorbs on a variety of materials under specific conditions and has hydroxyl group (-OH) and amine (-NH2) functional groups to improve the hydrophilicity of the adsorbed material.
  • Dopamine is coated on the carbon nanotubes, thereby improving dispersibility of the carbon nanotubes in the solution used in the preparation of the reverse osmosis membrane.
  • the carbon nanotubes used in the present invention are unopened and coated with dopamine, and the average length of the carbon nanotubes is 1 to 2 ⁇ m, and the average diameter is 5 to 8 nm.
  • the ends of the carbon nanotubes are preferably opened by treating the carbon nanotubes by thermal oxidation.
  • the average length of the ends of the carbon nanotubes before the treatment is shortened to 1 to 2 ⁇ m after the treatment.
  • the carbon nanotubes having an average diameter of 6 to 10 nm before treatment are reduced to 5 to 8 nm after the treatment.
  • the length of the open end of the carbon nanotube is less than 1 ⁇ m the length is too short, it is difficult to expect the improvement of water permeation performance through the inside of the carbon nanotube in the selection layer is not preferable.
  • the length of the open end of the carbon nanotube exceeds 2 ⁇ m the length is too long is not preferable because the protruding portion in the selection layer occurs.
  • the performance is generally improved, but less than 5 nm is not preferable because the water transmittance is too low, if more than 8 nm salt rejection to be achieved in the present invention is It is not preferable to fall too much.
  • the dopamine is coated to improve the dispersibility of the carbon nanotubes in the solution used in the preparation of the reverse osmosis membrane.
  • the binding energy due to the bond between carbon and oxygen forms a peak at 288 to 290 eV.
  • characteristic peaks such as those after the thermal oxidation process are not observed at 288 to 290 eV.
  • the reverse osmosis membrane mixed with carbon nanotubes having such characteristics has excellent water permeability and salt rejection rate.
  • step 2) coating the carbon nanotubes whose end is opened by step 1) with dopamine;
  • step 2) dispersing the carbon nanotubes obtained in step 2) in the amine solution to prepare a carbon nanotube-polyamide composite membrane by interfacial polymerization;
  • the carbon nanotubes are opened at their ends by the thermal oxidation method of step 1).
  • the thermal oxidation method is not particularly limited as long as the carbon nanotubes are opened by oxidizing the carbon nanotubes by injecting heat, but preferably, the carbon nanotubes are oxidized for 1 to 3 hours while injecting an inert gas at 800 to 1,000 ° C. Then, it is cooled to 25 ⁇ 40 °C at room temperature, after which it is heated to 300 ⁇ 600 °C and maintained for 2 to 4 hours, it is characterized in that the inert gas is injected to cool to room temperature.
  • the ends of the carbon nanotubes are opened.
  • Producing a reverse osmosis membrane including the open end of the carbon nanotube enables a fast water permeation phenomenon into the inside of the carbon nanotube, and provides a reverse osmosis membrane having an excellent water permeability compared to before the end is opened. This becomes possible.
  • the average diameter of the carbon nanotubes is reduced to 5 to 8 nm, thereby reducing the effect of reducing the salt excretion rate in the active layer.
  • the average length of the carbon nanotubes becomes 1 to 2 ⁇ m, and there is no protruding portion, and at the same time, the carbon nanotubes are completely enclosed in the separator to reduce the water permeability. This phenomenon is preferable because it can prevent the phenomenon.
  • the amount of dopamine used to coat the carbon nanotubes in the step 2) is characterized in that the coating by using 1,000 parts by weight based on 100 parts by weight of the carbon nanotubes the end is opened.
  • a carbon nanotube-polyamide composite separator is formed by interfacial polymerization.
  • the carbon nanotubes are coated with dopamine, so that the dispersibility is excellent in the amine solution, and the aggregation phenomenon is significantly reduced.
  • the amine contained in the amine solution is ortho-phenylenediamine, ortho-phenylenediamine, meta-phenylenediamine, para-phenylenediamine, and piperazine. ), Ethylene diamine, cadaverine, and mixtures thereof.
  • the thermal oxidation process was the first step through a thermal annealing process to remove amorphous carbon and impurities.
  • the carbon nanotubes were placed in a furnace, and the reaction was performed at 900 ° C. for 2 hours in an argon atmosphere.
  • a thermal oxidation reaction process was performed to open the ends of the carbon nanotubes.
  • Fill the furnace with high-purity air heat the carbon nanotubes to 400 ° C at 10 ° C / min in air condition, maintain 3 hours at isothermal temperature at 400 ° C, and raise the furnace temperature to 500 ° C at 10 ° C / min.
  • inert gas argon
  • a polydopamine coating process was introduced to increase the dispersing performance of the end-opened carbon nanotubes.
  • Dopamine solution 2,000 ppm Dopamine hydrochloride
  • a precursor of polydopamine was prepared under specific conditions (using a 1 M NaOH solution in 15 mM Trizma solution to adjust the pH to pH 8.5 or higher), and then using a known stirring coating method. The reaction proceeded with the nanotubes.
  • the coating process was performed while reacting with an ultrasonic homogeneous system for uniform coating, and the polydopamine was purified by centrifugation to separate the carbon nanotubes uniformly coated.
  • 19 shows the structure of poly dopamine-coated carbon nanotubes through TEM analysis.
  • the dopamine-coated carbon nanotubes according to Preparation Example 2 was dispersed in a water system with a surfactant and stirred with meta-phenylenediamine (MPD) to obtain an MPD solution, TMC After dissolving (Trimesoyl chloride) in a Dodecane solvent to obtain an organic solution, a carbon nanotube-polyamide composite membrane having open ends was prepared by interfacial polymerization. In addition, UV-vis spectroscopy was performed while increasing the concentration of carbon nanotubes to confirm the dispersion performance.
  • MPD meta-phenylenediamine
  • a carbon nanotube-polyamide composite separator was prepared in the same manner as in Example 1 except that the processes of Preparation Example 1 and Preparation Example 2 were not performed.
  • a carbon nanotube-polyamide composite separator was prepared in the same manner as in Example 1 except that the procedure of Preparation Example 1 was not performed.
  • a carbon nanotube-polyamide composite separator was prepared in the same manner as in Example 1 except that the process of Preparation Example 2 was not performed.
  • Figure 14 is a TEM photograph of the end of the carbon nanotubes when the thermal oxidation method is not performed.
  • the average length is 3 to 5 ⁇ m, and when the terminals are opened by the thermal oxidation method, the average length is 1 to 2 ⁇ m.
  • the average length of the carbon nanotubes was also shortened.
  • the average diameter is 6 to 10 nm, and when the terminal is opened by the thermal oxidation method, the average diameter is 5 to 8 nm. It was confirmed that the average diameter of the carbon nanotubes is also reduced due to the terminal opening according to the oxidation method.
  • FIG. 15 is a case in which the end is not opened and the dopamine is coated with carbon nanotubes according to Comparative Example 1
  • FIG. 16 is the dopamine coated in Comparative Example 3 If not, but the end is used to open the carbon nanotubes.
  • the permeability increased when the ends of the carbon nanotubes were unopened than when the terminals were not opened.
  • Table 2 shows the results obtained by measuring the water permeability and salt rejection of the membrane as the content of carbon nanotubes is increased using the separator prepared in Example 1.
  • Table 3 below is a result of measuring the water permeability and salt rejection of the separator prepared from Comparative Example 3.
  • Example 1 in the case of Example 1 according to the present invention, as can be seen in Table 2, it was confirmed that the water permeability and the salt rejection rate were excellently improved or maintained even though the content of carbon nanotubes was increased. On the contrary, in Table 3, even in the case of increasing the content of carbon nanotubes in Comparative Example 3, the water permeability did not increase, and the salt excretion rate also decreased. Through this, it was confirmed that the coating of dopamine on the end-opened carbon nanotubes contributes to the improvement of water transmittance and salt rejection rate.
  • the following process may be added to improve the rate at which the end of the carbon nanotubes open in the step of the reverse osmosis membrane manufacturing method described above.
  • Preparation Example 1 Before performing the process of Preparation Example 1 is a process of injecting carbon nanotubes in a 30% solution of H 2 O 2 at 60 ° C. This process is to pretreat under H 2 O 2 weak oxidation conditions to increase the terminal opening effect during the heat treatment in the subsequent process.
  • the intensity value for the pore size was higher than that obtained by oxidizing under the conventional air condition.
  • the x-axis represents the pore diameter
  • the y-axis represents the volume of the pore, which can be viewed as an intensity value.
  • the y-axis value of the CNTs that were not pretreated was low, but the intensities corresponding to 2.6 nm and 3.3 nm were significantly increased in the case of oxidation treatment under air condition, and the intensity was further increased by H 2 O 2 treatment. You can see the increase. Therefore, the H 2 O 2 treatment can be seen that the highest open rate.
  • the neutral solution of dopamine oxidizes immediately upon contact with air, which can be converted to polydopamine by substantially spontaneous oxidative polymerization and coated on the surface of a material such as carbon nanotubes.
  • the coating process was carried out in an air atmosphere to sufficiently coat polydopamine on carbon nanotubes, but the coating process took 12 to 24 hours, and compared to 6 to 20 nm, which is the thickness of conventional carbon nanotubes. There is a problem that it is difficult to obtain a relatively thick and uniform coating with a thickness of 6 ⁇ 12 nm.
  • dopamine is dissolved in a tris-buffer solution to obtain a precursor solution of polydopamine.
  • the precursor solution of polydopamine is preferably adjusted to a pH of 8.5 or more using 1M NaOH solution in Trizma solution. Can be used.
  • carbon nanotubes are added to the precursor solution of polydopamine to perform a coating process under an oxygen atmosphere.
  • the carbon nanotubes are single wall carbon nanotubes, double wall carbon nanotubes, It may be any one selected from the group consisting of multiwall carbon nanotubes, and rope carbon nanotubes, and multiwall carbon nanotubes may be more preferably used.
  • the coating process may be carried out in an oxygen atmosphere over 15 minutes to 1 hour, but if the coating process time is less than 15 minutes, it is difficult to obtain a uniform coating layer, and if it exceeds 1 hour, the thickness of the coating layer becomes thick. To control the coating time within the above range, it is more preferable to perform the coating process for 30 minutes.
  • the polydopamine-coated carbon nanotubes according to the present invention is prepared.
  • Polydopamine-coated carbon nanotubes were prepared in the same manner as in Example 1, except that the coating process was performed at room temperature in an air atmosphere for 12 hours.
  • FIG. 22 shows a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to Example 1 of the present invention.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • FIG. 23 is a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph of a polydopamine-coated carbon nanotube prepared by performing a coating process for 15 minutes according to Example 2 of the present invention. As shown, it can be confirmed that the coating layer has a thickness of 1.7 nm.
  • FIG. 24 shows a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to a comparative example of the present invention, the coating process is carried out for 12 hours Even if a uniform coating layer is not formed, it can be confirmed that the thickness of the coating layer is also relatively thick as 10 nm.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Figure 25 is thermogravimetrically weighted carbon nanotubes coated with polydopamine according to Examples 1, 2, and Comparative Examples of the present invention together with carbon nanotubes not coated with polydopamine at a temperature of 10 ° C./min under a nitrogen atmosphere.
  • TGA thermogravimetrically weighted carbon nanotubes coated with polydopamine according to Examples 1, 2, and Comparative Examples of the present invention together with carbon nanotubes not coated with polydopamine at a temperature of 10 ° C./min under a nitrogen atmosphere.
  • TGA thermogravimetrically weighted carbon nanotubes coated with polydopamine according to Examples 1, 2, and Comparative Examples of the present invention together with carbon nanotubes not coated with polydopamine at a temperature of 10 ° C./min under a nitrogen atmosphere.
  • TGA thermogravimetrically weighted carbon nanotubes coated with polydopamine according to Examples 1, 2, and Comparative Examples of the present invention together with carbon nanotubes not coated with polydopamine at
  • Fig. 26 shows the results of infrared spectroscopy (FT-IR) of carbon nanotubes not coated with polydopamine and carbon nanotubes coated with polydopamine according to Examples 1, 2 and Comparative Examples of the present invention.
  • the carbon nanotubes not coated with polydopamine do not show a specific peak in the range of 1,000 to 2,000 (cm ⁇ 1) because there are almost no functional groups.
  • the polydopamine particles exhibit characteristic peaks of dopamine in the 1610 and 1500 (cm-1) sections. The peaks of polydopamine were measured for both carbon nanotubes according to Examples 1, 2 and Comparative Example, which shows that the polydopamine was well coated on the carbon nanotubes.
  • Figure 27 shows the photoelectron spectroscopy (XPS) results of the polydopamine-coated carbon nanotubes according to the comparative example of the present invention (a) and the optoelectronics of the polydopamine-coated carbon nanotubes according to Example 1 of the present invention
  • Spectroscopic analysis (XPS) shows (b).
  • XPS photoelectron spectroscopy
  • the ratio of O and N elements increases, which increases with the coating amount of dopamine relative to the carbon nanotubes.
  • the ratio of the O element was 20.57% and the ratio of the N element was 7.38%
  • Example 1 the ratio of the O element was 11.56% and the ratio of the N element was 3.27%.
  • the element ratio result was shown. This shows that the carbon nanotubes coated under oxygen conditions have a low coating amount of polydopamine, and also show a quantitative value for the coating amount of thinly coated carbon nanotubes.
  • FIG. 28 shows spectrophotometric analysis (UV-vis) results of polydopamine-coated carbon nanotubes according to a comparative example of the present invention (a) and spectroscopy of polydopamine-coated carbon nanotubes according to Example 1 of the present invention.
  • Photometric analysis (UV-vis) result (b) is shown.
  • the polydopamine-coated carbon nanotube shows an absorption peak at about 260-270 nm in UV-vis. Absorbance increases as the dispersion is better in the solution, and the carbon nanotubes coated under oxygen conditions are more than the entire range (0.25, 0.75, 1.25 mg / 100g, carbon nanotubes) compared to carbon nanotubes coated under air conditions.
  • the manufacturing method of the polydopamine-coated carbon nanotube of the present invention by coating the polydopamine on the carbon nanotubes in a short time under an oxygen atmosphere, it is possible to achieve a uniform shortening of the coating and coating process time, thereby
  • the polydopamine-coated carbon nanotubes produced are very thin, with a thickness of 1.7 to 2 nm, and the dispersibility is improved in an aqueous system, and includes carbon nanotubes coated with polydopamine, including carbon nanotubes / polymer composite membranes. Applicable to mass production of polymer composites.
  • the process can be further modified as follows to maintain the dispersion degree of carbon nanotubes over time.
  • the conventional dopamine coating process (i) ultrasonic dispersion of carbon nanotubes with a concentration of 200 mg / 1L in a 15 mM tris-buffer solution at pH 8.5 for 1 hour, (ii) dopamine is injected into the solution at a concentration of 2000 ppm, ( iii) reacted with O 2 for 15 minutes, (iv) lowered the pH, terminated the reaction, and (v) dried, but the process for increasing the dispersion was further modified to (i) 200 mg / 1L carbon nano The tube was sonicated for 1 hour in a 15 mM tris-buffer solution at pH 8.5, (ii) pre-purged O 2 in the solution for 5-10 minutes, and (iii) 2000 ppm concentration of dopamine in the solution.
  • FIG. 31 illustrates an aqueous dispersion image and UV-vis analysis result of CNTs having improved aqueous dispersibility according to an embodiment of the present invention.
  • O 2 gas was pre-injected into the solution so that the O 2 was dissolved in the solution in advance, thereby rapidly contacting with dopamine.
  • FIG 32 is a graph comparing the power consumption for the same flow rate when desalination using the reverse osmosis membrane pressure vessel according to an embodiment of the present invention and the conventional reverse osmosis membrane pressure vessel.
  • the power used to obtain the same amount of fresh water was less when using the reverse osmosis membrane pressure vessel according to an embodiment of the present invention, which means that more desalination can be performed using the same power. .
  • the hybrid reverse osmosis membrane pressure vessel described above is not limited to the configuration and method of the above-described embodiments, the embodiments may be selectively all or part of each embodiment so that various modifications can be made It may be configured in combination.
  • the present invention applying the above-described configuration can be provided to users of a hybrid CNT-RO membrane pressure vessel with a high freshwater recovery.
  • the water permeability of the reverse osmosis membrane module can be increased by 50% or more by mixing carbon nanotubes in the reverse osmosis membrane module.

Abstract

The present invention relates to a hybrid CNT-RO membrane pressure vessel. The reverse osmosis separation membrane pressure vessel according to one embodiment of the present invention comprises a seawater inlet, multiple reverse osmosis separation membrane modules, a permeate water flow channel, a permeate water outlet, and a concentrated water outlet, and one or more modules of the multiple reverse osmosis separation membrane modules, which are located at the front end of the pressure vessel, constitute a first module unit, and modules located behind the first module unit constitute a second module unit, and the flux of the respective modules constituting the second module unit may be greater than that of the respective modules constituting the first module unit.

Description

하이브리드 CNT-RO막 압력용기Hybrid CNT-RO Membrane Pressure Vessel
본 발명은 하이브리드 CNT-RO막 압력용기에 관한 것으로서, 보다 상세하게는 후단부에 배치된 역삼투 분리막 보다 높은 염배제율을 가지는 역삼투 분리막 모듈을 압력용기의 전단부에 배치하여 담수 회수율을 높이는 압력용기에 관한 것이다.The present invention relates to a pressure vessel of the hybrid CNT-RO membrane, and more particularly, a reverse osmosis membrane module having a higher salt rejection rate than the reverse osmosis membrane disposed at the rear end is disposed at the front end of the pressure vessel to increase the freshwater recovery rate. It relates to a pressure vessel.
해수 담수화는 생활용수나 공업용수로 직접 사용하기 힘든 바닷물로부터 염분을 포함한 용해물질을 제거하여 순도 높은 음용수 및 생활용수, 공업용수 등을 얻어내는 일련의 수처리 과정을 말한다. 해수탈염이라고도 하며, 해수를 담수로 생산하는데 사용되는 설비를 해수담수화 설비 또는 해수담수화 플랜트라고 한다.Seawater desalination refers to a series of water treatment processes that removes dissolved substances, including salts, from seawater, which cannot be directly used for domestic or industrial water, to obtain high-purity drinking water, domestic water, and industrial water. Also called seawater desalination, the facilities used to produce seawater as freshwater are called seawater desalination plants or seawater desalination plants.
담수화 설비는 지구 상의 물 중 98%나 되는 해수나 기수를 인류의 생활에 유용하게 쓸 수 있도록 경제적인 방법으로 염분을 제거하여 담수로 만드는 설비이다. 비가 땅 위에 떨어지면 여러 경로를 통해 바다로 흘러 가게 되는데, 물이 땅 위와 땅속으로 흐르는 동안 무기염류(Mineral)와 다른 물질 등이 용해되어 점점 염도가 증가한다. 바다나 저지대에 도착한 물은 태양에너지에 의해 증발하게 되며, 이 증발 과정에서 염을 남기며 순수한 물만이 구름을 형성하고 비가 되는 순환을 한다. 이것은 물리적인 분리가 이루어지는 증발과정 및 수증기가 찬 공기를 만나서 빗물로 변하는 응축과정을 잘 나타내고 있는데, 이러한 과정이 자연현상에서 볼 수 있는 대표적인 담수화(Desalination)라 할 수 있다.The desalination plant is a facility that removes salt in an economic way to make fresh water using 98% of sea water or brackish water useful for human life. When rain falls on the ground, it flows into the sea through various paths, while salts and other substances dissolve as water flows on and into the ground, increasing salinity. Water arriving at sea or in lowlands is evaporated by solar energy, leaving salts in the evaporation process, and only pure water forms clouds and rains. This shows the evaporation process where physical separation takes place and the condensation process where water vapor meets cold air and turns into rainwater, which is a representative desalination seen in natural phenomena.
해수담수화의 방식은 크게 기본원리에 따라 분류된다. 열원을 이용하여 해수를 가열하고 발생한 증기를 응축시켜 담수를 얻는 증발법과 삼투현상(Osmosis)을 역으로 이용하여 해수를 반투막(Semi-permeable Membrane)을 통과시켜 담수를 생산하는 역삼투법(Reverse Osmosis)이 해수담수화의 대표적인 방식이다. 열원을 이용하는 증발법은 유체의 흐름 양상에 따라 다단증발법(Multi-Stage Flash: MSF)과 다중효용법(Multi-Effect Distillation: MED)으로 구분된다. 이외에도 결정화법, 이온교환막법, 용제추출법, 가압흡착법 등이 해수담수화에 적용되고 있으나, 현재 널리 상용화된 해수담수화 방식은 MSF, MED와 RO의 3가지 기술이며, MSF 또는 MED와 RO를 혼용하여 담수를 생산하는 Hybrid 방식이 적용되는 경우도 있다.Desalination methods are largely classified according to their basic principles. The reverse osmosis method is used to heat seawater using a heat source and condense the generated steam to obtain fresh water, and reverse osmosis, which produces fresh water by passing the seawater through a semi-permeable membrane using osmosis. It is a representative method of seawater desalination. The evaporation method using a heat source is classified into multi-stage flash (MSF) and multi-effect distillation (MED) according to the fluid flow pattern. In addition, crystallization method, ion exchange membrane method, solvent extraction method, and pressure adsorption method are applied to seawater desalination. Currently, the widely used seawater desalination method is MSF, MED and RO. In some cases, a hybrid method is used to produce.
여러 방식의 해수담수화 장치 중 역삼투법을 사용하여 해수를 담수화 하는 장치에는 역삼투 분리막 압력용기가 사용된다.Reverse osmosis membrane pressure vessels are used for desalination of seawater using reverse osmosis among various seawater desalination systems.
압력용기에는 직렬로 연결된 복수의 역삼투 분리막 모듈이 내재되어 있고, 압력용기의 전단부의 유입구로 원수가 유입되어 압력용기의 후단부에 위치한 생산수 배출구로 담수화된 생산수가 배출되고 압력용기의 후단부에 위치한 농축수 배출구로 담수화 되지 못한 농축수가 배출된다.The pressure vessel has a plurality of reverse osmosis membrane modules connected in series, raw water flows into the inlet of the front end of the pressure vessel, and desalination of the produced water is discharged into the product outlet located at the rear end of the pressure vessel, and the rear end of the pressure vessel. The brine is located at the brine and the brine is desalted.
해수담수화 장치의 역삼투 분리막 압력용기에는 역삼투 분리막 모듈 복수개가 직렬로 배열되어 있다. 모듈이 직렬로 연결되어 있으므로 전단부에 위치한 역삼투 분리막 모듈에서 담수화 되지 못한 해수의 염분농도는 후단부로 흐를수록 진해진다.In the reverse osmosis membrane pressure vessel of the seawater desalination device, a plurality of reverse osmosis membrane modules are arranged in series. Since the modules are connected in series, the salinity of seawater that has not been desalted in the reverse osmosis membrane module located at the front end becomes darker as it flows to the rear end.
종래의 역삼투 분리막 압력용기 내에는 같은 종류의 분리막 모듈이 장착되고, 후단부에 위치한 모듈은 염분농도가 높은 해수를 처리해야 되므로 후단부에 위치한 모듈의 생산수 유량은 전단부에 위치한 모듈에 비해 현저히 낮았다. 이는 결국 전체 생산수 유량 감소를 초래하여 문제가 되었다.In the conventional reverse osmosis membrane pressure vessel, the same type of membrane module is mounted, and the module located at the rear end has to process seawater with high salt concentration, so the production water flow rate of the module located at the rear end is higher than that of the front end module. Significantly lower. This, in turn, led to a reduction in the overall product flow rate, which became a problem.
따라서 후단부에 위치한 분리막 모듈에서도 생산수 유량이 감소되지 않도록 하는 역삼투 분리막 압력용기의 개발이 필요한 실정이다.Therefore, it is necessary to develop a reverse osmosis membrane pressure vessel that does not reduce the production water flow rate even in the membrane module located at the rear end.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 담수 회수율이 높은 하이브리드 CNT-RO막 압력용기를 사용자에게 제공하는 데 그 목적이 있다. The present invention has been made to solve the conventional problems as described above, the object is to provide a user with a hybrid CNT-RO membrane pressure vessel with a high fresh water recovery.
구체적으로, 전단부에 배치된 역삼투 분리막 모듈의 담수 생산량과 후단부에 배치된 역삼투 분리막 모듈의 담수 생산량의 차이를 줄이고자 하는 데 그 목적이 있다.Specifically, the purpose is to reduce the difference between the fresh water production of the reverse osmosis membrane module disposed in the front end and the fresh water production of the reverse osmosis membrane module disposed in the rear end.
또한, 역삼투 분리막 모듈에 탄소나노튜브를 혼합함으로써 역삼투 분리막 모듈의 수투과율을 50%이상 증가시키고자 하는 데 그 목적이 있다.In addition, the purpose is to increase the water permeability of the reverse osmosis membrane module by mixing the carbon nanotubes in the reverse osmosis membrane module 50% or more.
또한, 유입하는 해수량을 줄이고 담수 생산장치를 운영하기 위해 소비되는 비용을 줄이고자 하는 데 그 목적이 있다.In addition, the aim is to reduce the amount of incoming seawater and to reduce the cost of operating a freshwater production system.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned are clearly to those skilled in the art from the following description. It can be understood.
상술한 과제를 실현하기 위한 본 발명의 일예와 관련된 역삼투 분리막 압력용기는 해수를 담수화 하는 역삼투 분리막 압력용기에 있어서, 상기 압력용기 전단의 적어도 일부에 위치하는 해수 유입구; 상기 압력용기의 내부에 직렬로 배치된 복수의 역삼투 분리막 모듈; 상기 복수의 역삼투 분리막 모듈 각각의 중심부를 통과하며, 상기 복수의 역삼투 분리막 모듈과 접하는 면에 복수의 구멍이 형성된 투과수 유로; 상기 압력용기 후단의 적어도 일부에 위치하는 투과수 배출구; 및 상기 압력용기 후단의 적어도 일부에 위치하는 농축수 배출구;를 포함하되, 상기 해수는 상기 해수 유입구를 통해 유입되고, 상기 유입된 해수는 상기 복수의 역삼투 분리막 모듈을 투과하며 담수화되고, 상기 복수의 역삼투 분리막 모듈을 투과한 해수는 상기 복수의 구멍을 통해 상기 투과수 유로로 유입되고, 상기 투과수 유로로 유입된 해수는 상기 투과수 배출구를 통해 배출되며, 상기 투과수 유로로 유입되지 못한 해수는 상기 농축수 배출구를 통해 배출되고, 상기 복수의 역삼투 분리막 모듈 중 상기 압력용기의 전단부에 위치한 적어도 하나의 모듈은 제 1 모듈부를 구성하고, 상기 제 1 모듈부보다 후단에 위치한 모듈은 제 2 모듈부를 구성하며, 상기 제 2 모듈부를 구성하는 각 모듈의 유량은 상기 제 1 모듈부를 구성하는 각 모듈의 유량보다 많을 수 있다.Reverse osmosis membrane pressure vessel according to an embodiment of the present invention for realizing the above object is a reverse osmosis membrane pressure vessel for desalination of sea water, the seawater inlet is located at at least part of the front end of the pressure vessel; A plurality of reverse osmosis membrane modules disposed in series in the pressure vessel; A permeate flow path passing through a central portion of each of the plurality of reverse osmosis membrane modules and having a plurality of holes formed in contact with the plurality of reverse osmosis membrane modules; A permeate water outlet located at least a portion of the rear end of the pressure vessel; And a concentrated water outlet positioned at at least a portion of the rear end of the pressure vessel, wherein the seawater is introduced through the seawater inlet, and the introduced seawater is desalted while passing through the plurality of reverse osmosis membrane modules. The seawater that has passed through the reverse osmosis membrane module is introduced into the permeate flow path through the plurality of holes, and the seawater introduced into the permeate flow path is discharged through the permeate discharge port and cannot flow into the permeate flow path. Sea water is discharged through the concentrated water outlet, at least one module located at the front end of the pressure vessel of the plurality of reverse osmosis membrane module constitutes a first module portion, the module located at a rear end than the first module portion The flow rate of each module constituting the second module unit, the flow rate of each module constituting the first module unit than There can be many.
또한, 상기 제 1 모듈부를 구성하는 각 모듈의 염 배제율은 상기 제 2 모듈부를 구성하는 각 모듈의 염 배제율보다 높을 수 있다.In addition, the salt rejection rate of each module constituting the first module unit may be higher than the salt rejection rate of each module constituting the second module unit.
또한, 상기 제 1 모듈부 및 상기 제 2 모듈부 중 적어도 하나의 모듈부의 분리막에는 탄소나노튜브가 혼합될 수 있다.In addition, carbon nanotubes may be mixed in the separator of at least one of the first module unit and the second module unit.
또한, 상기 탄소나노튜브는 상기 분리막의 폴리아미드층 및 지지층 중 적어도 어느 하나의 층에 혼합될 수 있다.In addition, the carbon nanotubes may be mixed in at least one layer of the polyamide layer and the support layer of the separator.
또한, 상기 탄소나노튜브에 폴리 도파민이 코팅되어 상기 탄소나노튜브가 도포를 고르게 할 수 있다.In addition, poly dopamine is coated on the carbon nanotubes so that the carbon nanotubes may be uniformly coated.
또한, 상기 제 1 모듈부의 모듈은 2개이고, 상기 제 2 모듈부의 모듈은 4개일 수 있다.In addition, the module of the first module unit may be two, and the module of the second module unit may be four.
또한, 상기 압력용기의 재질은 섬유강화플라스틱(FRP, Fiber Reinforced Plastics)일 수 있다.In addition, the material of the pressure vessel may be fiber reinforced plastics (FRP, Fiber Reinforced Plastics).
한편, 상술한 과제를 실현하기 위한 본 발명의 일예와 관련된 해수 담수화 방법은 해수가 역삼투 분리막 압력용기에 유입되는 제 1 단계; 상기 유입된 해수가 상기 압력용기 내의 복수의 역삼투 분리막 모듈을 투과하여 담수화되는 제 2 단계; 상기 담수화된 해수가 상기 압력용기의 투과수 배출구를 통해 배출되는 제 3 단계;를 포함하고, 상기 복수의 역삼투 분리막 모듈 중 상기 압력용기의 전단부에 위치한 적어도 하나의 모듈은 제 1 모듈부를 구성하고, 상기 제 1 모듈부보다 후단에 위치한 모듈은 제 2 모듈부를 구성하며, 상기 제 2 모듈부를 구성하는 각 모듈의 유량은 상기 제 1 모듈부를 구성하는 각 모듈의 유량보다 많을 수 있다.On the other hand, the seawater desalination method according to an embodiment of the present invention for realizing the above-described problem is the first step that the seawater flows into the reverse osmosis membrane pressure vessel; A second step of desalination of the introduced seawater through a plurality of reverse osmosis membrane modules in the pressure vessel; And a third step of discharging the desalted seawater through the permeate outlet of the pressure vessel, wherein at least one module located at the front end of the pressure vessel among the plurality of reverse osmosis membrane modules comprises a first module portion. The module located at a rear end of the first module unit may constitute a second module unit, and the flow rate of each module constituting the second module unit may be greater than the flow rate of each module constituting the first module unit.
또한, 상기 제 1 모듈부를 구성하는 각 모듈의 염 배제율은 상기 제 2 모듈부를 구성하는 각 모듈의 염 배제율보다 높을 수 있다.In addition, the salt rejection rate of each module constituting the first module unit may be higher than the salt rejection rate of each module constituting the second module unit.
또한, 상기 제 2 역삼투 분리막 모듈에는 탄소나노튜브층이 더 포함되고, 상기 제 2단계는, 상기 해수가 상기 탄소나노튜브층을 투과하는 단계;를 더 포함할 수 있다.The second reverse osmosis membrane module may further include a carbon nanotube layer, and the second step may further include transmitting the seawater through the carbon nanotube layer.
한편, 상술한 과제를 실현하기 위한 본 발명의 일예와 관련된 압력용기 스테이지는 역삼투 분리막 압력용기 복수개를 병렬로 연결한 것일 수 있다.On the other hand, the pressure vessel stage according to an embodiment of the present invention for realizing the above problems may be a plurality of reverse osmosis membrane pressure vessel connected in parallel.
상술한 과제를 실현하기 위한 본 발명의 일예와 관련된 해수 담수화 장치는 역삼투 분리막 압력용기 스테이지 복수개를 직렬로 연결한 것일 수 있다.Seawater desalination apparatus according to an embodiment of the present invention for realizing the above problem may be a plurality of reverse osmosis membrane pressure vessel stage connected in series.
또한, 상기 탄소나노튜브는, 상기 탄소나노튜브를 50~70℃의 H2O2 용액 내에 30분 ~ 2시간 동안 유지시키는 단계; 상기 H2O2 용액을 증발시키고 800~1000℃에서 비활성기체를 주입하면서 1~3시간 동안 탄소나노튜브를 산화시키는 단계; 상기 탄소나노튜브를 상온에서 25~40℃ 까지 냉각하는 단계; 상기 탄소나노튜브를 300~600℃로 승온하여 2~4시간 동안 유지하는 단계; 및 비활성기체를 주입하여 상기 탄소나노튜브를 상온까지 냉각시켜 열산화법을 통해 말단이 개봉하는 단계;를 통하여 얻어진 평균 길이는 1~2㎛이고, 평균 직경은 5~8nm인 탄소나노튜브일 수 있다.In addition, the carbon nanotubes, the step of maintaining the carbon nanotubes in a H 2 O 2 solution of 50 ~ 70 ℃ for 30 minutes ~ 2 hours; Evaporating the H 2 O 2 solution and oxidizing the carbon nanotubes for 1 to 3 hours while injecting an inert gas at 800 to 1000 ° C .; Cooling the carbon nanotubes to 25 to 40 ° C. at room temperature; Heating the carbon nanotubes at 300 to 600 ° C. for 2 to 4 hours; And injecting an inert gas to cool the carbon nanotubes to room temperature to open the ends through a thermal oxidation method. The average length obtained through the inert gas may be 1 to 2 μm, and the average diameter may be 5 to 8 nm. .
또한, 상기 탄소나노튜브는 아민 용액에 분산된 후 계면중합법에 의하여 상기 분리막에 혼합될 수 있다.In addition, the carbon nanotubes may be dispersed in the amine solution and mixed with the separator by interfacial polymerization.
또한, 상기 아민 용액에 포함되는 아민은 오르소-페닐렌다이아민(ortho-phenylenediamine), 메타-페닐렌다이아민 (meta-phenylenediamine), 파라-페닐렌다이아민(para-phenylenediamine), 피페라진(piperazine), 에틸렌다이아민(ethylene diamine), 카다버린(cadaverine), 및 이들의 혼합물로 이루어지는 군으로부터 선택된 어느 하나일 수 있다.In addition, the amine contained in the amine solution is ortho-phenylenediamine (ortho-phenylenediamine), meta-phenylenediamine (meta-phenylenediamine), para-phenylenediamine (para-phenylenediamine), piperazine ( piperazine, ethylene diamine, cadaverine, and any one selected from the group consisting of a mixture thereof.
또한, 상기 폴리 도파민이 코팅되는 것은, 상기 탄소나노튜브를 트리스-버퍼 용액에 혼합하여 초음파 분산하는 제 1 단계; 상기 탄소나노튜브가 혼합된 트리스-버퍼 용액에 산소를 프리퍼징 하는 제 2 단계; 상기 산소가 프리퍼징된 트리스-버퍼 용액에 도파민을 주입하는 제 3 단계; 상기 도파민이 주입된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 제 4 단계; 상기 탄소나노튜브와 상기 도파민이 반응된 트리스-버퍼 용액에 초음파 분산을 가하는 제 5 단계; 상기 초음파 분산된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 제 6 단계; 상기 트리스-버퍼 용액의 pH를 낮추는 제 7 단계; 및 상기 트리스-버퍼 용액을 건조하는 제 8 단계;에 의할 수 있다.In addition, the poly dopamine is coated, the first step of ultrasonically dispersing the carbon nanotubes in a tris-buffer solution; A second step of prepurging oxygen in the tris-buffer solution in which the carbon nanotubes are mixed; Injecting dopamine into the oxygen pre-purged tris-buffer solution; A fourth step of reacting the carbon nanotubes with the dopamine by injecting oxygen into the dopamine-infused tris-buffer solution; A fifth step of applying ultrasonic dispersion to the tris-buffer solution in which the carbon nanotubes and the dopamine are reacted; A sixth step of reacting the carbon nanotubes with the dopamine by injecting oxygen into the ultrasonically dispersed tris-buffer solution; A seventh step of lowering the pH of the tris-buffer solution; And an eighth step of drying the tris-buffer solution.
또한, 상기 제 1 단계에서, 상기 트리스-버퍼 용액은 pH가 8.5 이상으로 조절될 수 있다.In addition, in the first step, the tris-buffer solution may be adjusted to a pH of 8.5 or more.
한편, 상술한 과제를 실현하기 위한 본 발명의 일예와 관련된 역삼투 분리막 압력용기 제조 방법은 탄소나노튜브가 혼합되는 역삼투 분리막을 사용하는 압력용기를 제조하는 방법에 있어서, 상기 탄소나노튜브를 50~70℃의 H2O2 용액 내에 30분 ~ 2시간 동안 유지시키는 단계; 상기 H2O2 용액을 증발시키고 800~1000℃에서 비활성기체를 주입하면서 1~3시간 동안 탄소나노튜브를 산화시키는 단계; 상기 탄소나노튜브를 상온에서 25~40℃ 까지 냉각하는 단계; 상기 탄소나노튜브를 300~600℃로 승온하여 2~4시간 동안 유지하는 단계; 및 비활성기체를 주입하여 상기 탄소나노튜브를 상온까지 냉각시켜 열산화법을 통해 말단이 개봉되도록 하는 단계;를 포함하고, 상기 탄소나노튜브의 평균 길이는 1~2㎛이고, 평균 직경은 5~8nm일 수 있다.On the other hand, the reverse osmosis membrane pressure vessel manufacturing method according to an embodiment of the present invention for realizing the above object in the method for producing a pressure vessel using a reverse osmosis membrane in which carbon nanotubes are mixed, the carbon nanotube 50 Holding in a H 2 O 2 solution at ˜70 ° C. for 30 minutes to 2 hours; Evaporating the H 2 O 2 solution and oxidizing the carbon nanotubes for 1 to 3 hours while injecting an inert gas at 800 to 1000 ° C .; Cooling the carbon nanotubes to 25 to 40 ° C. at room temperature; Heating the carbon nanotubes at 300 to 600 ° C. for 2 to 4 hours; And injecting an inert gas to cool the carbon nanotubes to room temperature to open the ends through thermal oxidation. The average length of the carbon nanotubes is 1 to 2 μm and the average diameter is 5 to 8 nm. Can be.
또한, 상기 탄소나노튜브의 말단이 개봉되도록 하는 단계 후, 상기 탄소나노튜브를 트리스-버퍼 용액에 혼합하여 초음파 분산하는 단계; 상기 탄소나노튜브가 혼합된 트리스-버퍼 용액에 산소를 프리퍼징 하는 단계; 상기 산소가 프리퍼징된 트리스-버퍼 용액에 도파민을 주입하는 단계; 상기 도파민이 주입된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 단계; 상기 탄소나노튜브와 상기 도파민이 반응된 트리스-버퍼 용액에 초음파 분산을 가하는 단계; 상기 초음파 분산된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 단계; 상기 트리스-버퍼 용액의 pH를 낮추는 단계; 및 상기 트리스-버퍼 용액을 건조하는 단계;를 더 포함할 수 있다.In addition, after the step of opening the end of the carbon nanotubes, the step of ultrasonic dispersion by mixing the carbon nanotubes in a tris-buffer solution; Prepurging oxygen in the tris-buffer solution in which the carbon nanotubes are mixed; Injecting dopamine into the oxygen pre-purged tris-buffer solution; Reacting the carbon nanotubes with the dopamine by injecting oxygen into the dopamine-infused tris-buffer solution; Applying ultrasonic dispersion to the tris-buffer solution in which the carbon nanotubes and the dopamine are reacted; Reacting the carbon nanotubes with the dopamine by injecting oxygen into the ultrasonically dispersed tris-buffer solution; Lowering the pH of the tris-buffer solution; And drying the tris-buffer solution.
본 발명은 담수 회수율이 높은 하이브리드 CNT-RO막 압력용기 사용자에게 제공할 수 있다.The present invention can be provided to users of a hybrid CNT-RO membrane pressure vessel having a high freshwater recovery rate.
구체적으로, 전단부에 배치된 역삼투 분리막 모듈의 담수 생산량과 후단부에 배치된 역삼투 분리막 모듈의 담수 생산량의 차이를 줄일 수 있다.Specifically, it is possible to reduce the difference between the freshwater production of the reverse osmosis membrane module disposed in the front end portion and the freshwater production of the reverse osmosis membrane module disposed in the rear end portion.
또한, 역삼투 분리막 모듈에 탄소나노튜브를 혼합함으로써 역삼투 분리막 모듈의 수투과율을 50%이상 증가시킬 수 있다.In addition, the water permeability of the reverse osmosis membrane module can be increased by 50% or more by mixing carbon nanotubes in the reverse osmosis membrane module.
또한, 유입하는 해수량을 줄이고 담수 생산장치를 운영하기 위해 소비되는 비용을 줄일 수 있다.In addition, it is possible to reduce the amount of incoming seawater and to reduce the cost of operating the freshwater production apparatus.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned are clearly to those skilled in the art from the following description. It can be understood.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effect obtained in the present invention is not limited to the above-mentioned effects, other effects that are not mentioned will be clearly understood by those skilled in the art from the following description. Could be.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일 실시례를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate one preferred embodiment of the present invention, and together with the detailed description thereof, serve to further understand the technical idea of the present invention. It should not be construed as limited.
도 1은 나권형 분리막 모듈의 일례를 나타낸 사시도이다.1 is a perspective view showing an example of a spiral wound separator module.
도 2는 종래의 역삼투 분리막 압력용기의 단면도를 나타낸다.Figure 2 shows a cross-sectional view of a conventional reverse osmosis membrane pressure vessel.
도 3은 본 발명의 일 실시례에 따른 하이브리드 역삼투 분리막 압력 용기의 단면도이다.3 is a cross-sectional view of the hybrid reverse osmosis membrane pressure vessel according to an embodiment of the present invention.
도 4는 본 발명의 일 실시례에 따른 역삼투 분리막 모듈에 사용되는 역삼투 분리막의 단면을 나타낸다.Figure 4 shows a cross-section of the reverse osmosis membrane used in the reverse osmosis membrane module according to an embodiment of the present invention.
도 5는 본 발명의 일 실시례에 따른 역삼투 분리막에 혼합된 탄소나노튜브가 불균형하게 분산된 것을 나타낸다.Figure 5 shows that the carbon nanotubes mixed in the reverse osmosis membrane according to an embodiment of the present invention is disproportionately dispersed.
도 6은 본 발명의 일 실시례에 따른 폴리 도파민이 코팅된 탄소나노튜브가 혼합된 역삼투 분리막을 나타낸다.6 shows a reverse osmosis membrane in which carbon nanotubes coated with poly dopamine are mixed according to one embodiment of the present invention.
도 7은 본 발명의 일 실시례에 따른 해수를 담수화 시키는 방법을 나타낸 순서도이다.7 is a flowchart illustrating a method of desalination of seawater according to an embodiment of the present invention.
도 8는 본 발명의 일 실시례에 따른 하이브리드 CNT 역삼투 분리막 압력용기와 종래의 역삼투 분리막 압력용기를 사용하여 해수를 담수화할 때의 모듈 위치에 따른 유량을 나타낸 그래프이다.Figure 8 is a graph showing the flow rate according to the module position when desalination of sea water using a hybrid CNT reverse osmosis membrane pressure vessel according to an embodiment of the present invention and a conventional reverse osmosis membrane pressure vessel.
도 9는 본 발명의 일 실시례에 따른 역삼투 분리막 모듈을 병렬로 연결한 단(Stage)를 나타낸다.Figure 9 shows a stage (Stage) connected in parallel to the reverse osmosis membrane module according to an embodiment of the present invention.
도 10은 본 발명의 일 실시례에 따른 역삼투 분리막 압력용기 단을 직렬로 연결한 다단 시스템을 나타낸다.10 illustrates a multi-stage system in which reverse osmosis membrane pressure vessel stages are connected in series according to an embodiment of the present invention.
도 11은 제조예 2에 따른 분산 결과를 보여주는 사진 및 UV 분광계 분석의 결과를 보여주는 그림이다.11 is a photograph showing a dispersion result according to Preparation Example 2 and a figure showing the results of a UV spectrometer analysis.
도 12는 도파민으로 코팅하지 않은 것에 따른 분산 결과를 보여주는 사진 및 UV 분광계 분석의 결과를 보여주는12 is a photograph showing the results of dispersion with no coating with dopamine and the results of a UV spectrometer analysis.
그림이다.Picture.
도 13은 실시예 1에 의해 열산화법을 처리하여 말단이 개봉된 탄소나노튜브를 보여주는 사진이다.FIG. 13 is a photograph showing carbon nanotubes whose ends are opened by treating with thermal oxidation in Example 1. FIG.
도 14는 비교예 1에 의해 열산화법을 처리하지 않아 말단이 개봉되지 않은 탄소나노튜브를 보여주는 사진이다.FIG. 14 is a photograph showing carbon nanotubes whose ends are not opened because the thermal oxidation method is not treated by Comparative Example 1. FIG.
도 15는 비교예 1로부터 제조된 분리막의 수투과율을 나타내는 그래프이다.15 is a graph showing the water transmittance of the separator prepared from Comparative Example 1.
도 16은 비교예 3으로부터 제조된 분리막의 수투과율을 나타내는 그래프이다.16 is a graph showing the water transmittance of the separator prepared from Comparative Example 3.
도 17은 열산화법 처리 유무에 따른 탄소나노튜브의 열중량분석(TGA) 결과이다.17 shows the results of thermogravimetric analysis (TGA) of carbon nanotubes with and without thermal oxidation treatment.
도 18은 열산화법 처리에 의해 원자흡광분석에서 변화하는 피크 양상을 보여주는 그래프이다.FIG. 18 is a graph showing the changing peak pattern in atomic absorption analysis by thermal oxidation treatment. FIG.
도 19는 도파민이 코팅된 탄소나노튜브를 보여주는 TEM 이미지 이다.19 is a TEM image showing dopamine-coated carbon nanotubes.
도 20은 본 발명의 실시예 1에 따라 탄소나노튜브-폴리아미드 복합 분리막을 제조하는 공정도이다.20 is a process chart for preparing a carbon nanotube-polyamide composite separator according to Example 1 of the present invention.
도 21은 본 발명의 일 실시예에 따라 전처리를 하지 않은 경우, Air 조건 전처리를 한 경우 및 H2O2 전처리를 추가한 경우의 탄소나노튜브 기공의 인텐시티 값을 비교한 그래프이다.21 is when the pre-treatment is not performed in accordance with an embodiment of the present invention, when the air condition pretreatment and H 2 O 2 It is a graph comparing the intensity value of carbon nanotube pores when the pretreatment is added.
도 22는 본 발명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 주사전자현미경(SEM) (a) 및 투과전자 현미경(TEM) 사진 (b)이다.22 is a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to Example 1 of the present invention.
도 23은 본 발명의 실시예 2에 따라 폴리도파민이 코팅된 탄소나노튜브의 주사전자현미경(SEM) (a) 및 투과전자 현미경(TEM) 사진 (b)이다.FIG. 23 is a scanning electron microscope (SEM) (a) and transmission electron microscope (TEM) image (b) of a polydopamine-coated carbon nanotube according to Example 2 of the present invention.
도 24는 본 발명의 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 주사전자현미경(SEM) (a) 및 투과전자현미경(TEM) 사진 (b)이다.FIG. 24 is a scanning electron microscope (SEM) (a) and transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to a comparative example of the present invention.
도 25는 폴리도파민이 코팅되지 않은 탄소나노튜브와 본 발명의 실시예 1, 2 및 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 열중량분석(TGA) 결과이다.25 is a thermogravimetric analysis (TGA) result of carbon nanotubes not coated with polydopamine and carbon nanotubes coated with polydopamine according to Examples 1, 2 and Comparative Examples of the present invention.
도 26은 폴리도파민이 코팅되지 않은 탄소나노튜브와 본 발명의 실시예 1, 2 및 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 적외선분광분석(FT-IR) 결과이다.FIG. 26 shows infrared spectroscopy (FT-IR) results of carbon nanotubes not coated with polydopamine and carbon nanotubes coated with polydopamine according to Examples 1, 2 and Comparative Examples of the present invention.
도 27은 본 발명의 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 광전자분광분석(XPS) 결과 (a) 및 본 발 명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 광전자분광분석(XPS) 결과 (b)이다.27 is a photoelectron spectroscopy (XPS) results of polydopamine-coated carbon nanotubes according to a comparative example of the present invention (a) and a photoelectron spectroscopy of polydopamine-coated carbon nanotubes according to Example 1 of the present invention. (XPS) result (b).
도 28은 본 발명의 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 분광광도계분석(UV-vis) 결과 (a) 및 본 발명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 분광광도계분석(UV-vis) 결과 (b)이다.FIG. 28 shows spectrophotometric analysis (UV-vis) results of polydopamine-coated carbon nanotubes according to a comparative example of the present invention (a) and spectroscopy of polydopamine-coated carbon nanotubes according to Example 1 of the present invention. Photometric analysis (UV-vis) results (b).
도 29는 폴리도파민이 코팅되지 않은 탄소나노튜브의 다양한 용매에서의 분산성을 촬영한 사진이다.FIG. 29 is a photograph of dispersibility in various solvents of carbon nanotubes not coated with polydopamine.
도 30은 본 발명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 다양한 용매에서의 분산성을 촬영한 사진이다.30 is a photograph of dispersibility in various solvents of polydopamine-coated carbon nanotubes according to Example 1 of the present invention.
도 31은 본 발명의 일 실시예에 따라 수계 분산성이 향상된 CNT의 수계 분산액 이미지 및 UV-vis 분석 결과를 나타낸다.FIG. 31 illustrates an aqueous dispersion image and UV-vis analysis result of CNTs having improved aqueous dispersibility according to an embodiment of the present invention.
도 32는 본 발명의 일 실시예에 따른 역삼투막 압력용기와 종래의 역삼투막 압력용기를 사용하여 담수화를 한 경우 동일한 유량에 대한 소요 전력을 비교한 그래프이다.32 is a graph comparing the power consumption for the same flow rate when desalination using the reverse osmosis membrane pressure vessel according to an embodiment of the present invention and the conventional reverse osmosis membrane pressure vessel.
역삼투 분리막은 염수나 해수 등의 염분을 제거하여 산업용수, 농업용수, 가정용수 등의 비교적 저염도 이면서 많은 양의 물로 담수화하는데 사용된다. 역삼투 분리막을 이용한 반염수 탈염이나 또는 해수의 담수화란 염분이나 이온등이 녹아있는 수용액을 가압하여 역삼투 분리막을 통과시킬 때 수용액중 염분이나 이온등은 막을 통과 하지 못하여 걸러지고 정제된 물은 막을 통과하여 일정한 용수가 되는 것을 의미한다.Reverse osmosis membranes are used for desalination with large amounts of water with relatively low salts such as industrial water, agricultural water, and household water by removing salts such as brine or seawater. Semi-saline desalination using reverse osmosis membrane or desalination of seawater means that the salt or ions in the aqueous solution cannot pass through the membrane when the aqueous solution containing salt or ions is pressurized and filtered. It means passing through and becoming constant water.
이 때 가해지는 압력은 수용액이 가지는 삼투압 이상이어야 하고 그 작용은 삼투과정의 역방향이며, 또한 수용액의 농도가 높을수록 삼투압이 커지므로 공급수에 가해지는 상기 압력은 더 높아지게 된다.At this time, the pressure applied should be more than the osmotic pressure of the aqueous solution, the action is the reverse of the osmotic process, and the higher the concentration of the aqueous solution, the greater the osmotic pressure, the higher the pressure applied to the feed water.
염수나 해수 등의 물은 다량의 염을 함유하고 있기 때문에 이들 용액을 담수화하는 역삼투 분리막은 염 제거능력이 뛰어나야 하고, 또한 고농도의 염수를 운전하는데 필연적인 펌프의 대형화나 그로 인한 소음, 낮은 에너지효율문제 등을 개선하기 위해 공정압력이 낮아져야 하는 과제를 안고 있다.Since water such as brine or seawater contains a large amount of salt, the reverse osmosis membrane desalination of these solutions should have excellent salt removal ability, and the size of the pump, which is inevitably required to operate high concentration of salt water, and the noise and low energy. In order to improve efficiency problems, the process pressure has to be lowered.
또한, 막의 투과유량은 용도에 따라 염배제율보다 고유량이 중요하거나 이와 반대로 염배제율이 중요한 경우도 있다.In addition, the permeate flow rate of the membrane may be more important than the salt rejection rate depending on the use, or vice versa.
통상적으로 분리막을 산업적 규모의 액체분리에 적용시키려면 상당히 넓은 막면적이 요구된다. 넓은 막면적을 컴팩트한 규모로 집적시킨 장치단위를 분리막 모듈(membrane module)이라 하며, 현재 평판형모듈, 관형모듈, 중공사형모듈, 나권형모듈 등 여러 종류의 막모듈 형식이 개발되어 있고, 특히 최근 상업화되고 있는 역삼투방식의 분리막으로는 나권형(spiralwound type) 막모듈이 주로 쓰이고 있다.Typically, a large membrane area is required to apply the separator to industrial scale liquid separation. A device unit that integrates a large membrane area on a compact scale is called a membrane module, and various types of membrane modules such as flat module, tubular module, hollow fiber module, spiral wound module have been developed. In recent years, commercially available reverse osmosis membrane modules are mainly used as spiral wound type membrane modules.
도 1은 나권형 분리막 모듈의 일례를 나타낸 사시도로서, 나권형모듈은 분리막으로 평판막(flat sheet membrane)을 사용하는데, 도 1을 참조하면 유입수유로(feed spacer)인 mesh(9)와 분리막(7)과 투과수 유로(permeate spacer, 8), 또하나의 분리막(7)을 샌드위치 방식으로 접합시킨 후 이를 중앙에 위치한 다공성 유출관(central pipe, 10)에 롤(roll)형태로 감아서 분리막 모듈을 형성시킨다.1 is a perspective view showing an example of a spiral wound membrane module, wherein the spiral wound module uses a flat sheet membrane as a separator. Referring to FIG. 1, a mesh (9) and a separator (feed spacer) may be used. 7) and the permeate spacer (8), another membrane (7) is bonded by a sandwich method, and then wound in the form of a roll (roll) on the porous central pipe (10) located in the center Form a module.
이러한 분리막 모듈의 기능을 보면, 일정한 압력이 가해진 유입수가 유입수유로인 mesh(9)를 거쳐 분리막(7)을 통과하게 되는데 분리막 통과과정에서 용존염 및 유기물 등이 배제되고 순수한 물만이 분리된다. 분리된 물은 분리막 사이에 위치한 투과수 유로(8)를 따라 흐르게 되고, 이 투과액은 투과수 배출구(5)를 통해 압력용기 외부로 배출된다.In view of the function of the membrane module, the inflow water under a constant pressure is passed through the membrane (7) through the inlet flow channel (9). In the passage of the membrane, dissolved salts and organic substances are excluded and pure water is separated. The separated water flows along the permeate flow path 8 located between the separation membranes, and the permeate is discharged out of the pressure vessel through the permeate outlet 5.
또한 유입수 일부는 농축되어 연결된 또다른 분리막의 유입수로 작용하게 되며, 이때 초기 각 모듈에 있어서 유입수 대비 투과수의 비율을 개별 모듈 회수율(Recovery)로 정하여 관리하게 된다.In addition, some of the influent is concentrated and acts as an influent of another connected membrane. At this time, the ratio of permeated water to influent for each initial module is set as an individual module recovery rate.
이와 같이 전단부에 위치한 역삼투 분리막 모듈에서 배출된 농축수가 후단부에 위치한 역삼투 분리막 모듈로 유입므로 후단부로 해수가 후단부로 흐를수록 해수의 염분농도는 진해진다.As such, the concentrated water discharged from the reverse osmosis membrane module located at the front end flows into the reverse osmosis membrane module located at the rear end, so that the salt concentration of the seawater increases as the seawater flows to the rear end.
도 2는 종래의 역삼투 분리막 압력용기의 단면도를 나타내는 것으로서, 도 2를 참조하면 종래의 역삼투 분리막 압력용기에 내재된 역삼투 분리막 모듈로 모두 같은 종류의 모듈들이 배열되어 고농도의 농축수를 처리하는 후단부의 역삼투 분리막 모듈의 생산수 유량은 전단부 모듈에 비해 매우 낮아 문제가 되었다.Figure 2 shows a cross-sectional view of a conventional reverse osmosis membrane pressure vessel, referring to Figure 2 is a reverse osmosis membrane module inherent in the conventional reverse osmosis membrane pressure vessel all the same type of modules are arranged to treat a high concentration of concentrated water The production water flow rate of the reverse osmosis membrane module of the rear end is very low compared to the front end module has become a problem.
본 발명에서는 이러한 문제를 해결하기 위해 역삼투 분리막 압력용기 내에 다른 특성의 역삼투 분리막 모듈을 배열하여 담수 회수율이 높은 역삼투 분리막 압력용기를 제공하고자 한다.The present invention is to provide a reverse osmosis membrane pressure vessel with a high fresh water recovery rate by arranging the reverse osmosis membrane module of other characteristics in the reverse osmosis membrane pressure vessel to solve this problem.
이하에서는 도면을 참조하여 본 발명의 바람직한 일실시례에 대해서 설명한다. 또한, 이하에 설명하는 일실시례는 특허청구범위에 기재된 본 발명의 내용을 부당하게 한정하지 않으며, 본 실시 형태에서 설명되는 구성 전체가 본 발명의 해결 수단으로서 필수적이라고는 할 수 없다.Hereinafter, with reference to the drawings will be described a preferred embodiment of the present invention. In addition, one Example described below does not unduly limit the content of this invention described in the Claim, and the whole structure demonstrated by this Embodiment is not necessarily required as a solution of this invention.
도 3은 본 발명의 일 실시례에 따른 하이브리드 역삼투 분리막 압력 용기의 단면도이다.3 is a cross-sectional view of the hybrid reverse osmosis membrane pressure vessel according to an embodiment of the present invention.
도 3을 참조하면 하이브리드 역삼투 분리막 압력 용기는 압력용기(100), 유입구(200), 복수의 역삼투 분리막 모듈(300), 다공성 유출관(400), 투과수 배출구(500) 및 농축수 배출구(600) 등을 포함할 수 있다.Referring to Figure 3, the hybrid reverse osmosis membrane pressure vessel is a pressure vessel 100, inlet 200, a plurality of reverse osmosis membrane module 300, porous outlet pipe 400, permeate outlet 500 and concentrated water outlet 600 and the like.
먼저, 압력용기(100)는 다른 구성들이 장착되는 용기이다.First, the pressure vessel 100 is a vessel in which other components are mounted.
압력용기(100)로 에폭시레진과 유리섬유 등의 원료물질을 사용하여 필라멘트 와인딩법으로 제작될 수 있고, 내부에 라이너가 없으며 겔코팅을 하지 않으면서도 가벼우며 고압에 견딜 수 있는 FRP(Fiber Reinforced Plastics) 압력용기(100)가 사용될 수 있다.It can be manufactured by filament winding method using raw materials such as epoxy resin and glass fiber as pressure vessel 100, and there is no liner inside, and it is light without gel coating and can withstand high pressure FRP (Fiber Reinforced Plastics) ) Pressure vessel 100 may be used.
또한, 유입구(200)는 압력용기(100)의 전단부에 위치하고 해수가 유입되는 구멍이다.In addition, the inlet 200 is located in the front end of the pressure vessel 100 is a hole in which seawater is introduced.
다음으로, 복수의 역삼투 분리막 모듈(300)은 유입된 해수를 담수화 하는 역할을 하며, 도 1과 같은 나권형 역삼투 분리막 모듈이 사용된다.Next, the plurality of reverse osmosis membrane module 300 serves to desalination of the introduced seawater, a spiral wound reverse osmosis membrane module as shown in FIG. 1 is used.
또한, 도 4는 본 발명의 일 실시례에 따른 역삼투 분리막 모듈에 사용되는 역삼투 분리막의 단면을 나타내는 것으로서, 역삼투 분리막(310)은 PA(Poly Amide)층(311), 지지층(312) 및 부직포(313) 등을 포함할 수 있다. 또한, 지지층(312)은 PES(Poly Ethersulfone)로 구성될 수 있다.In addition, Figure 4 shows a cross-section of the reverse osmosis membrane used in the reverse osmosis membrane module according to an embodiment of the present invention, the reverse osmosis membrane 310 is a polyamide (PA) layer 311, the support layer 312 And nonwoven fabric 313. In addition, the support layer 312 may be made of poly ethersulfone (PES).
한편, 역삼투 분리막 모듈(300)은 역삼투 분리막(310)의 염배제율에 따라 분류될 수 있다. 염배제율이 높고 생산수 유량이 적은 역삼투 분리막 모듈을 고염배제율형 역삼투 분리막 모듈(HR형 역삼투 분리막 모듈, High Rejection Membrane Module)(320)이라 하고, 상대적으로 염배제율이 낮고 생산수 유량이 많은 역삼투 분리막 모듈을 고유량형 역삼투 분리막 모듈(HF형 역삼투 분리막 모듈, High Flux Membrane)(330)이라 한다.On the other hand, the reverse osmosis membrane module 300 may be classified according to the salt excretion rate of the reverse osmosis membrane (310). The reverse osmosis membrane module with high salt rejection rate and low production water flow rate is called the high salt rejection type reverse osmosis membrane module (HR type high osmosis membrane module) (320). The high flow rate reverse osmosis membrane module is called a high flow rate reverse osmosis membrane module (HF type reverse osmosis membrane module, High Flux Membrane) (330).
본 발명에서 하이브리드 역삼투 분리막 압력용기의 전단부에는 HR형 역삼투 분리막 모듈(320)이 배치되고 후단부에는 HF형 역삼투 분리막 모듈(330)이 배치된다.In the present invention, the HR type reverse osmosis membrane module 320 is disposed at the front end of the hybrid reverse osmosis membrane pressure vessel, and the HF type reverse osmosis membrane module 330 is disposed at the rear end thereof.
압력용기(100)의 전단부에 HF형 분리막 모듈(330)을 배치시키면 유량이 증가하고, 유량이 증가함에 따라 역삼투 분리막의 공극이 막히는 속도도 빨라져 막이 오염되는 현상인 파울링(Fouling) 현상이 나타날 수 있다. 따라서 압력용기(100)의 전단부에는 유량이 상대적으로 느리고 염배제율이 높은 HR형 역삼투 분리막 모듈(320)을 배치한다.Placing the HF type membrane module 330 at the front end of the pressure vessel 100 increases the flow rate, and as the flow rate increases, the speed of clogging the pores of the reverse osmosis membrane increases, causing fouling (fouling) phenomenon. May appear. Therefore, the HR type reverse osmosis membrane module 320 is disposed at the front end of the pressure vessel 100 with a relatively low flow rate and high salt rejection rate.
또한, 앞서 설명한 바와 같이 압력용기(100)의 전단부에 위치한 역삼투 분리막 모듈(300)을 투과하지 못한 해수는 후단부에 위치한 역삼투 분리막 모듈(300)로 흐르기 때문에 해수가 압력용기(100)의 후단으로 갈수록 염분농도가 진해진다.In addition, as described above, the seawater that does not penetrate the reverse osmosis membrane module 300 located at the front end of the pressure vessel 100 flows to the reverse osmosis membrane module 300 located at the rear end, so that the seawater flows into the pressure vessel 100. The salt concentration is increased toward the end of the.
따라서 압력용기(100)의 후단에 배치된 역삼투 분리막 모듈(300)은 고농도의 해수를 처리해야 하므로 담수 생산량은 전단에 배치된 역삼투 분리막 모듈(300)에 비해 적다. 이러한 현상에 대응하여 압력용기(100)의 후단부에는 상대적으로 투과율이 높은 HF형 역삼투 분리막 모듈(330)을 배치한다.Therefore, the reverse osmosis membrane module 300 disposed at the rear end of the pressure vessel 100 has to process high concentrations of seawater, so the freshwater production is less than the reverse osmosis membrane module 300 disposed at the front end. In response to this phenomenon, the HF-type reverse osmosis membrane module 330 having a relatively high transmittance is disposed at the rear end of the pressure vessel 100.
이와 같이 전단부에는 HR형 역삼투 분리막 모듈(320)을 배치하고 후단부에는 HF형 역삼투 분리막 모듈(330)을 배치하면 종래의 역삼투 분리막 모듈을 사용하였을 때와 비교하여 담수 회수율이 증가한다.As such, when the HR type reverse osmosis membrane module 320 is disposed at the front end and the HF type reverse osmosis membrane module 330 is disposed at the rear end, the fresh water recovery rate is increased as compared with the conventional reverse osmosis membrane module. .
압력용기(100)에는 사용되는 복수의 역삼투 분리막 모듈(300)의 개수는 도 3에 도시된 바와 같이 HR형 역삼투 분리막 모듈(320) 2개 및 HF형 역삼투 분리막 모듈(330) 4개에 한정되는 것은 아니고, 필요에 따라 그 개수가 변경될 수 있다.The number of the plurality of reverse osmosis membrane modules 300 used in the pressure vessel 100 is two HR type reverse osmosis membrane modules 320 and four HF type reverse osmosis membrane modules 330 as shown in FIG. 3. It is not limited to, the number can be changed as needed.
한편, 역삼투 분리막에는 탄소나노튜브(CNT, Carbon nanotube)(314)가 혼합될 수 있다.Meanwhile, carbon nanotubes (CNT) 314 may be mixed in the reverse osmosis membrane.
이러한 탄소나노튜브(314)는 역삼투 분리막의 PA(Poly Amide)층(311) 또는 PES(Poly Ethersulfone) 층(312)에 코팅될 수 있다.The carbon nanotubes 314 may be coated on a polyamide (PA) layer 311 or a poly ethersulfone (PES) layer 312 of the reverse osmosis membrane.
이러한 탄소나노튜브(314)가 혼합된 역삼투 분리막을 사용하면 높은 수투과도와 염제거율을 지닌 동시에 내오염성 및 내염소성이 우수한 역삼투 분리막 모듈(300)을 제공할 수 있다.By using the reverse osmosis membrane in which the carbon nanotubes 314 are mixed, the reverse osmosis membrane module 300 having high water permeability and salt removal rate and excellent fouling resistance and chlorine resistance can be provided.
한편, 전처리 공정을 수행한 탄소나노튜브(314)를 역삼투 분리막(310)에 혼합하면 수투과율과 염배제율을 동시에 향상시킬 수 있다. 이러한 전처리 공정에 대해서는 아래에서 자세히 설명한다.On the other hand, when the carbon nanotubes 314 subjected to the pretreatment process are mixed with the reverse osmosis membrane 310, the water permeability and the salt rejection rate may be simultaneously improved. This pretreatment process is described in detail below.
본 발명의 역삼투 분리막 압력용기의 후단부에 배치되는 HF형 역삼투 분리막 모듈(330)에는 빠르게 해수를 담수화하기 위해 높은 투과도가 요구된다. 따라서 HF형 역삼투 분리막 모듈(330)의 역삼투 분리막(310)에 탄소나노튜브(314)가 혼합되는 경우 생산수 회수율을 더욱 높일 수 있다. 다만, 탄소나노튜브(314)는 HF형 역삼투 분리막 모듈(320)에만 적용될 수 있는 것은 아니고 HR형 역삼투 분리막 모듈(330)에도 적용될 수 있다.The HF-type reverse osmosis membrane module 330 disposed at the rear end of the reverse osmosis membrane pressure vessel of the present invention requires high permeability in order to desalination seawater quickly. Therefore, when carbon nanotubes 314 are mixed in the reverse osmosis membrane 310 of the HF type reverse osmosis membrane module 330, the production water recovery rate may be further increased. However, the carbon nanotubes 314 may not only be applied to the HF type reverse osmosis membrane module 320 but may also be applied to the HR type reverse osmosis membrane module 330.
한편, 탄소나노튜브(314)는 극성을 띄고 있어 탄소나노튜브(314) 사이에 인력이 작용하여 역삼투 분리막에 고르게 혼합되지 않고 탄소나노튜브(314)가 역삼투 분리막(310)의 일부에만 혼합될 수 있다.On the other hand, the carbon nanotubes 314 are polarized so that the attraction force between the carbon nanotubes 314 is not evenly mixed in the reverse osmosis membrane, but the carbon nanotubes 314 are mixed only in a part of the reverse osmosis membrane 310. Can be.
도 5는 본 발명의 일 실시례에 따른 역삼투 분리막에 혼합된 탄소나노튜브가 불균형하게 분산된 것을 나타낸다.Figure 5 shows that the carbon nanotubes mixed in the reverse osmosis membrane according to an embodiment of the present invention is disproportionately dispersed.
도 5와 같이 탄소나노튜브가 불균형하게 분산되면 역삼투 분리막 모듈(300)의 성능이 떨어져 정상적으로 담수화가 될 수 없다.When the carbon nanotubes are disproportionately dispersed as shown in FIG. 5, the performance of the reverse osmosis membrane module 300 may be degraded and thus may not normally be desalted.
이러한 문제를 해결하기 위해 역삼투 분리막(310)에 혼합되는 탄소나노튜브에 폴리 도파민(315)이 코팅될 수 있다.To solve this problem, the poly dopamine 315 may be coated on the carbon nanotubes mixed in the reverse osmosis membrane 310.
도 6은 본 발명의 일 실시례에 따른 폴리 도파민이 코팅된 탄소나노튜브가 혼합된 역삼투 분리막을 나타낸 것으로서, 도 6을 참조하면 탄소나노튜브(314)에 코팅된 폴리 도파민(315)에 의해 탄소나노튜브(314)는 역삼투 분리막(310)에 균일하게 분산될 수 있다.FIG. 6 illustrates a reverse osmosis membrane in which carbon nanotubes coated with poly dopamine are mixed according to an embodiment of the present invention. Referring to FIG. 6, poly dopamine 315 coated on carbon nanotubes 314 may be used. The carbon nanotubes 314 may be uniformly dispersed in the reverse osmosis membrane 310.
이와 같이 역삼투 분리막(310)에 탄소나노튜브(314)를 균일하게 분산시키기 위해서 폴리도파민을 코팅하는 공정에 대한 자세한 내용을 아래에서 자세히 설명한다.As described above, details of the process of coating the polydopamine to uniformly disperse the carbon nanotubes 314 in the reverse osmosis membrane 310 will be described in detail below.
다음으로, 다공성 유출관(400)은 복수의 역삼투 분리막 모듈(300)을 직렬로 연결하고, 복수의 역삼투 분리막 모듈(300)을 투과하며 담수화된 물이 흐르는 통로이다.Next, the porous outflow pipe 400 connects the plurality of reverse osmosis membrane modules 300 in series, passes through the plurality of reverse osmosis membrane modules 300, and is a passage through which desalination water flows.
다공성 유출관(400)에는 도 1의 역삼투 분리막 모듈에 도시된 바와 같이 복수의 구멍이 형성되어 역삼투 분리막(310)을 투과한 물이 다공성 유출관(400) 내부로 유입될 수 있다.As shown in the reverse osmosis membrane module of FIG. 1, a plurality of holes are formed in the porous outflow tube 400 so that water having passed through the reverse osmosis membrane 310 may be introduced into the porous outlet tube 400.
또한, 투과수 배출구(500)는 다공성 유출관(400)으로 유입된 물이 배출되는 구멍이고, 농축수 배출구(600)는 다공성 유출관(400)으로 유입되지 못하여 담수가 되지 못한 염분이 농축된 농축수가 배출되는 구멍이다.In addition, the permeated water outlet 500 is a hole through which the water introduced into the porous outlet pipe 400 is discharged, and the concentrated water outlet 600 is concentrated in the saltwater which is not fresh water due to the inflow into the porous outlet pipe 400. It is a hole through which concentrated water is discharged.
투과수 배출구(500)와 농축수 배출구(600)는 압력용기(100)의 후단부에 위치한다.The permeate outlet 500 and the concentrated water outlet 600 are located at the rear end of the pressure vessel 100.
다음으로, 이하에서는 도 7을 참조하여 전술한 구성들을 기초로 해수를 담수화 시키는 방법에 대해 구체적으로 설명한다.Next, a method of desalination of seawater will be described in detail with reference to FIG. 7.
도 7은 본 발명의 일 실시례에 따른 해수를 담수화 시키는 방법을 나타낸 순서도이다.7 is a flowchart illustrating a method of desalination of seawater according to an embodiment of the present invention.
해수가 역삼투 분리막 압력용기에 유입된다(S100).Seawater flows into the reverse osmosis membrane pressure vessel (S100).
상기 유입된 해수가 상기 압력용기 내의 복수의 역삼투 분리막 모듈을 투과하여 담수화된다(S200).The introduced seawater is desalted by passing through a plurality of reverse osmosis membrane modules in the pressure vessel (S200).
복수의 역삼투 분리막 모듈 중 상기 압력용기의 전단부에 위치한 적어도 하나의 모듈은 제 1 모듈부를 구성하고, 상기 제 1 모듈부보다 후단에 위치한 나머지 모듈은 제 2 모듈부를 구성한다.At least one module positioned at the front end of the pressure vessel among the plurality of reverse osmosis membrane modules constitutes a first module portion, and the remaining modules positioned at a rear end of the first module portion constitute a second module portion.
제 1 모듈부의 역삼투 분리막 모듈은 HR형 역삼투 분리막 모듈(320)이고, 제 2 모듈부의 역삼투 분리막 모듈은 HF형 역삼투 분리막 모듈(330)이다.The reverse osmosis membrane module of the first module unit is an HR type reverse osmosis membrane module 320, and the reverse osmosis membrane module of the second module unit is an HF type reverse osmosis membrane module 330.
또한, 제 1 모듈부의 역삼투 분리막 모듈은 복수의 HR형 역삼투 분리막 모듈(320)을 포함할 수 있고, 제 2 모듈부의 역삼투 분리막 모듈은 복수의 HF형 역삼투 분리막 모듈(330)을 포함할 수 있다.In addition, the reverse osmosis membrane module of the first module unit may include a plurality of HR type reverse osmosis membrane modules 320, and the reverse osmosis membrane module of the second module unit includes a plurality of HF type reverse osmosis membrane modules 330. can do.
상기 담수화된 해수가 상기 압력용기의 투과수 배출구를 통해 배출된다(S300).The desalted seawater is discharged through the permeate outlet of the pressure vessel (S300).
다음으로, 본 발명의 하이브리드 CNT 역삼투 분리막 압력용기(100)를 사용하여 해수를 담수화 한 실험예에 대해 설명한다.Next, an experimental example of desalination of seawater using the hybrid CNT reverse osmosis membrane pressure vessel 100 of the present invention will be described.
도 8는 본 발명의 일 실시례에 따른 하이브리드 CNT 역삼투 분리막 압력용기와 종래의 역삼투 분리막 압력용기를 사용하여 해수를 담수화할 때의 모듈 위치에 따른 유량을 나타낸 그래프이다.Figure 8 is a graph showing the flow rate according to the module position when desalination of sea water using a hybrid CNT reverse osmosis membrane pressure vessel according to an embodiment of the present invention and a conventional reverse osmosis membrane pressure vessel.
도 8에서 Y축은 압력용기 내에서 위치별 유량을 나타내며 각 그래프와 X축이 이루는 면적이 각 분리막을 사용하였을 때의 총 담수 생산량이다.In FIG. 8, the Y axis represents the flow rate by position in the pressure vessel, and the area formed by each graph and the X axis is the total freshwater production amount when each separator is used.
본 실험예에서 압력용기(100)의 전단부에는 2개의 HR형 역삼투 분리막 모듈(320) 후단부에는 4개의 HF형 역삼투 분리막 모듈(330)을 사용하였다.In the present experimental example, four HF-type reverse osmosis membrane modules 330 were used at two HR-type reverse osmosis membrane modules 320 at the front end of the pressure vessel 100.
도 8을 참조하면 종래의 분리막을 사용하는 경우 압력용기(100)의 후단부로 갈수록 유량이 줄어든다. 그러나 본원발명의 분리막을 사용하는 경우 두 번째 모듈까지 유량이 줄다가 세 번째 모듈에서는 HF형 역삼투 분리막 모듈(330)이므로 고농도의 해수를 담수화함에도 유량이 늘어난다. 그리고 후단부로 갈수록 유량이 줄어든다.Referring to FIG. 8, when the conventional separator is used, the flow rate decreases toward the rear end of the pressure vessel 100. However, when using the membrane of the present invention, the flow rate decreases to the second module, but in the third module, the HF type reverse osmosis membrane module 330 increases the flow rate even when desalination of high concentration seawater. And the flow rate decreases toward the rear end.
종래의 역삼투 분리막 압력용기와 본 발명의 역삼투 분리막 압력용기를 사용하여 얻은 생산수량을 비교하면 두 번째 모듈까지의 담수 생산량은 종래의 역삼투 분리막 압력용기를 사용할 때 더 많지만 세 번째 모듈부터 여섯 번째 모듈까지의 담수 생산량은 본 발명의 하이브리드 CNT 역삼투 분리막을 사용한 경우에 더 많다.Comparing the production volume obtained using the conventional reverse osmosis membrane pressure vessel and the reverse osmosis membrane pressure vessel of the present invention, the freshwater production up to the second module is higher when using the conventional reverse osmosis membrane pressure vessel, but the third to sixth modules are used. Freshwater production up to the first module is more when the hybrid CNT reverse osmosis membrane of the present invention is used.
a와 b의 면적을 비교해보면 b의 면적이 더 크다는 것을 알 수 있고 종래의 역삼투막에 비해 CNT 역삼투 분리막을 사용하는 경우 생산수 회수율이 높다는 것을 알 수 있다.Comparing the area of a and b, it can be seen that the area of b is larger and the production water recovery rate is higher when using the CNT reverse osmosis membrane compared to the conventional reverse osmosis membrane.
다음으로, 전술한 하이브리드 역삼투 분리막 압력용기(100)의 적용례에 대해 설명한다.Next, an application example of the aforementioned hybrid reverse osmosis membrane pressure vessel 100 will be described.
해수의 담수화는 큰 규모로 수행되므로 일반적으로 압력용기(100)를 여러개 이어 사용한다.Since desalination of seawater is carried out on a large scale, in general, several pressure vessels 100 are used.
도 9는 본 발명의 일 실시례에 따른 역삼투 분리막 모듈(300)을 병렬로 연결한 단(Stage)를 나타낸다.9 shows a stage connected in parallel with the reverse osmosis membrane module 300 according to an embodiment of the present invention.
도 9와 같이 상기 압력용기(100)를 여러개 병렬로 연결한 것을 단(Stage)(700)이라고 한다. 압력용기(100)를 병렬로 연결하여 단(700)을 형성하면 연결한 압력용기(100)의 개수만큼 담수화 용량이 늘어난다.9, the pressure vessel 100 is connected in parallel to a plurality of stages (Stage) 700 is called. When the stage 700 is formed by connecting the pressure vessels 100 in parallel, the desalination capacity is increased by the number of the pressure vessels 100 connected thereto.
도 10은 본 발명의 일 실시례에 따른 역삼투 분리막 압력용기 단을 직렬로 연결한 다단 시스템을 나타낸다.10 illustrates a multi-stage system in which reverse osmosis membrane pressure vessel stages are connected in series according to an embodiment of the present invention.
또한, 유입수에 대한 전체적인 회수율을 높이기 위하여 도 10과 같이 복수의 압력용기(100)가 연결된 단(Stage)(700)을 복수개 직렬로 연결한 시스템을 사용하기도 한다.In addition, in order to increase the overall recovery rate for the influent, as shown in FIG. 10, a system in which a plurality of stages 700 connected with a plurality of pressure vessels 100 are connected in series may be used.
이 경우, 첫 번째 단이 1단(First stage)이 되고 두 번째 단이 2단(Second stage)이 된다.In this case, the first stage becomes the first stage and the second stage becomes the second stage.
이하에서는 탄소나노튜브(314)를 개질하여 역삼투 분리막을 제조하는 방법에 대해 설명한다. 즉, 역삼투 분리막(310)의 수투과율과 염배제율을 향상시키며, 탄소나노튜브(314)가 균일하게 분산되기 위한 공정에 대해 설명한다.Hereinafter, a method of manufacturing the reverse osmosis membrane by modifying the carbon nanotubes 314 will be described. That is, a process for improving the water permeability and salt rejection rate of the reverse osmosis membrane 310 and uniformly dispersing the carbon nanotubes 314 will be described.
열산화법은 고온의 열을 가하여 산화시키는 방법을 말하며, 역삼투 분리막은 도파민으로 코팅된 탄소나노튜브를 포함할 수 있다.The thermal oxidation method refers to a method of oxidizing by applying high temperature heat, and the reverse osmosis membrane may include carbon nanotubes coated with dopamine.
상기 도파민은 생체 모방 물질중 하나로서, 홍합 추출물에서 발견된다. 도파민은 특정 조건에서 다양한 물질에 자발적으로 흡착 반응이 일어나며, 하이드록실 그룹 (-OH) 및 아민 (-NH2)기능기를 가지고 있어 흡착된 물질의 친수성을 향상시킬 수 있다. The dopamine is one of the biomimetic substances found in mussel extracts. Dopamine spontaneously adsorbs on a variety of materials under specific conditions and has hydroxyl group (-OH) and amine (-NH2) functional groups to improve the hydrophilicity of the adsorbed material.
상기 탄소나노튜브에 도파민이 코팅됨으로 인해 역삼투 분리막의 제조시 사용되는 용액 내에서 상기 탄소나노튜브의 분산성이 향상되게 된다. Dopamine is coated on the carbon nanotubes, thereby improving dispersibility of the carbon nanotubes in the solution used in the preparation of the reverse osmosis membrane.
본 발명에 사용되는 탄소나노튜브는 말단이 개봉되고 도파민으로 코팅되며, 상기 탄소나노튜브의 평균 길이는 1~2㎛이며, 평균 직경은 5~8㎚이다. The carbon nanotubes used in the present invention are unopened and coated with dopamine, and the average length of the carbon nanotubes is 1 to 2 μm, and the average diameter is 5 to 8 nm.
특히 상기 탄소나노튜브의 말단은 열산화법으로 탄소나노튜브를 처리해 개봉하는 것이 바람직하다. In particular, the ends of the carbon nanotubes are preferably opened by treating the carbon nanotubes by thermal oxidation.
상기 열산화법으로 처리하여 탄소나노튜브의 말단을 개봉하는 경우 처리전 말단이 닫혀 있는 평균 길이는 3~5㎛였던 탄소나노튜브가 처리후 1~2㎛로 짧아지게 된다. 또한 상기 열산화법으로 처리하여 탄소나노튜브의 말단을 개봉하는 경우 처리전의 평균 직경은 6~10㎚였던 탄소나노튜브가 처리후 5~8㎚로 작아지게 된다. When the end of the carbon nanotubes are opened by the thermal oxidation method, the average length of the ends of the carbon nanotubes before the treatment is shortened to 1 to 2 μm after the treatment. In addition, when the end of the carbon nanotubes are opened by the thermal oxidation method, the carbon nanotubes having an average diameter of 6 to 10 nm before treatment are reduced to 5 to 8 nm after the treatment.
상기 말단이 개봉된 탄소나노튜브의 평균 길이가 1㎛ 미만인 경우에는 그 길이가 너무 짧아져 선택층 내에 탄소나노튜브 내부를 통한 수투과 성능의 향상을 기대하기 어려워 바람직하지 않다. 또한 상기 말단이 개봉된 탄소나노튜브의 길이가 2㎛ 를 초과하는 경우에는 그 길이가 너무 길어져 상기 선택층에서 돌출된 부위가 발생하여 바람직하지 않다. When the average length of the open end of the carbon nanotube is less than 1㎛ the length is too short, it is difficult to expect the improvement of water permeation performance through the inside of the carbon nanotube in the selection layer is not preferable. In addition, when the length of the open end of the carbon nanotube exceeds 2㎛ the length is too long is not preferable because the protruding portion in the selection layer occurs.
상기 말단이 개봉된 탄소나노튜브의 평균 직경이 작아질수록 일반적으로 성능이 향상되나, 5nm 미만인 경우에는 수투과율이 지나치게 떨어져 바람직하지 않으며, 8nm를 초과하는 경우에는 본 발명에서 달성하려는 염배제율이 지나치게 떨어지게 되어 바람직하지 않다. When the average diameter of the open end of the carbon nanotubes is smaller, the performance is generally improved, but less than 5 nm is not preferable because the water transmittance is too low, if more than 8 nm salt rejection to be achieved in the present invention is It is not preferable to fall too much.
또한 상기 도파민이 코팅됨으로써 역삼투 분리막의 제조시 사용되는 용액 내에서 상기 탄소나노튜브의 분산성이 향상되게 된다. In addition, the dopamine is coated to improve the dispersibility of the carbon nanotubes in the solution used in the preparation of the reverse osmosis membrane.
한편, 상기 열산화법에 의해 탄소나노튜브의 말단을 개봉하는 경우에는 탄소나노튜브 내에 산소가 많아져서 탄소와 산소의 결합이 증가하게 된다. On the other hand, when the end of the carbon nanotubes are opened by the thermal oxidation method, oxygen increases in the carbon nanotubes, thereby increasing the bond between carbon and oxygen.
그러므로 원자흡광분석법에 의해 상기 말단이 개봉된 탄소나노튜브를 분석하는 경우, 탄소와 산소의 결합에 따른 결합에너지는 288~290 eV 에서 피크가 형성된다. 상기 탄소나노튜브를 열산화법에 의해 처리하기 전에 원자흡광분석법에 의해 분석하는 경우 상기 288~290 eV 에서 열산화법 처리 후와 같은 특징적인 피크(peak)는 관찰되지 않는다. Therefore, when analyzing the carbon nanotubes whose ends are opened by atomic absorption spectrometry, the binding energy due to the bond between carbon and oxygen forms a peak at 288 to 290 eV. When the carbon nanotubes are analyzed by atomic absorption spectrometry before the thermal oxidation method, characteristic peaks such as those after the thermal oxidation process are not observed at 288 to 290 eV.
이러한 특징을 지닌 탄소나노튜브가 혼합된 역삼투 분리막은 수투과율 및 염배제율이 우수하다.The reverse osmosis membrane mixed with carbon nanotubes having such characteristics has excellent water permeability and salt rejection rate.
본 발명의 역삼투 분리막을 제조하는 방법은Method for producing a reverse osmosis membrane of the present invention
1) 열산화법을 통해 말단이 개봉된 탄소나노튜브를 얻는 단계; 1) obtaining carbon nanotubes whose ends are opened through thermal oxidation;
2) 상기 1)단계에 의해 말단이 개봉된 탄소나노튜브를 도파민으로 코팅하는 단계; 및2) coating the carbon nanotubes whose end is opened by step 1) with dopamine; And
3) 상기 2)단계에서 얻어진 탄소나노튜브를 아민 용액에 분산시킨 후 계면중합법에 의하여 탄소나노튜브-폴리아미드 복합 분리막을 제조하는 단계;3) dispersing the carbon nanotubes obtained in step 2) in the amine solution to prepare a carbon nanotube-polyamide composite membrane by interfacial polymerization;
를 포함한다. It includes.
먼저, 탄소나노튜브는 상기 1)단계의 열산화법에 의해 말단이 개봉된다. First, the carbon nanotubes are opened at their ends by the thermal oxidation method of step 1).
열산화법은 열을 주입하여 탄소나노튜브를 산화시키면서 그 말단을 개봉하는 것이라면 특별한 제한이 있는 것은 아니지만, 바람직하게는 800~1,000℃에서 비활성기체를 주입하면서 1~3시간 동안 탄소나노튜브를 산화시킨 후, 이를 상온에서 25~40℃까지 냉각하고, 그 후 이를 300~600℃로 승온하여 2~4시간 동안 유지한 다음, 비활성기체를 주입하여 상온까지 냉각시키는 것을 특징으로 한다.The thermal oxidation method is not particularly limited as long as the carbon nanotubes are opened by oxidizing the carbon nanotubes by injecting heat, but preferably, the carbon nanotubes are oxidized for 1 to 3 hours while injecting an inert gas at 800 to 1,000 ° C. Then, it is cooled to 25 ~ 40 ℃ at room temperature, after which it is heated to 300 ~ 600 ℃ and maintained for 2 to 4 hours, it is characterized in that the inert gas is injected to cool to room temperature.
이러한 열산화법에 의하여 탄소나노튜브의 말단이 개봉되게 된다. 상기 말단이 개봉된 탄소나노튜브를 포함하여 역삼투 분리막을 제조하게 되면 탄소나노튜브 내부로의 빠른 수투과 현상을 가능하게 하고, 말단이 개봉되기 이전과 비교하여 수투과율이 우수한 역삼투 분리막의 제공이 가능하게 된다.By the thermal oxidation method, the ends of the carbon nanotubes are opened. Producing a reverse osmosis membrane including the open end of the carbon nanotube enables a fast water permeation phenomenon into the inside of the carbon nanotube, and provides a reverse osmosis membrane having an excellent water permeability compared to before the end is opened. This becomes possible.
또한 상기 열산화법에 의하여 탄소나노튜브의 말단을 개봉하게 되면 탄소나노튜브의 평균 직경이 5~8nm로 줄어들게 되어 활성층에서의 염배제율 감소에 대한 영향을 줄일 수 있다.In addition, when the end of the carbon nanotubes are opened by the thermal oxidation method, the average diameter of the carbon nanotubes is reduced to 5 to 8 nm, thereby reducing the effect of reducing the salt excretion rate in the active layer.
또한 상기 열산화법에 의하여 탄소나노튜브의 말단을 개봉하게 되면 탄소나노튜브의 평균 길이가 1~2㎛가 되어 돌출된 부위가 없음과 동시에 탄소나노튜브가 분리막의 내부에 완전히 포위되어 수투과율이 저하되는 현상을 방지할 수 있어 바람직하다. In addition, when the ends of the carbon nanotubes are opened by the thermal oxidation method, the average length of the carbon nanotubes becomes 1 to 2 μm, and there is no protruding portion, and at the same time, the carbon nanotubes are completely enclosed in the separator to reduce the water permeability. This phenomenon is preferable because it can prevent the phenomenon.
상기 2)단계에서 탄소나노튜브를 도파민으로 코팅함으로써 분리막 제조에 사용되는 용액 내에서 탄소나노튜브의 분산성을 향상시킬 수 있다.By coating the carbon nanotubes with dopamine in the step 2) it is possible to improve the dispersibility of the carbon nanotubes in the solution used for preparing the membrane.
보통 분리막 제조시에 사용되는 용액에는 탄소나노튜브의 분산성을 향상시키기 위해 계면활성제를 투여하는 것이 일반적이나, 이러한 계면활성제의 투입에도 불구하고 탄소나노튜브의 분산성이 떨어져 뭉침 현상이 발생되는 문제점이 존재하였다. 하지만, 도파민으로 탄소나노튜브를 코팅함으로써 탄소나노튜브의 분산성이 현저하게 향상되게 된다. It is common to administer a surfactant to improve the dispersibility of the carbon nanotubes in the solution used in the manufacture of the separator, but despite the addition of the surfactant, the dispersion of the carbon nanotubes is poor and agglomeration occurs. Was present. However, by coating the carbon nanotubes with dopamine, the dispersibility of the carbon nanotubes is remarkably improved.
또한 상기 2)단계에서 탄소나노튜브를 코팅하기 위하여 사용되는 도파민의 양은 상기 말단이 개봉된 탄소나노튜브 100중량부에 대하여 1,000중량부를 사용하여 코팅하는 것을 특징으로 한다. In addition, the amount of dopamine used to coat the carbon nanotubes in the step 2) is characterized in that the coating by using 1,000 parts by weight based on 100 parts by weight of the carbon nanotubes the end is opened.
다음으로, 상기 2)단계에서 얻어진 탄소나노튜브를 아민 용액에 분산시킨 후 계면중합법에 의하여 탄소나노튜브-폴리아미드 복합 분리막을 형성하는 단계를 포함한다. 이때 탄소나튜브는 도파민에 의해 코팅되어 아민 용액 내에서 분산성이 우수하고, 뭉침 현상이 현저히 줄어들게 된다. Next, after dispersing the carbon nanotubes obtained in step 2) in the amine solution, a carbon nanotube-polyamide composite separator is formed by interfacial polymerization. At this time, the carbon nanotubes are coated with dopamine, so that the dispersibility is excellent in the amine solution, and the aggregation phenomenon is significantly reduced.
또한 상기 아민 용액에 포함되는 아민은 오르소-페닐렌다이아민(ortho-phenylenediamine), 메타-페닐렌다이아민(meta-phenylenediamine), 파라-페닐렌다이아민(para-phenylenediamine), 피페라진(piperazine), 에틸렌다이아민(ethylene diamine), 카다버린(cadaverine), 및 이들의 혼합물로 이루어지는 군으로부터 선택된 어느 하나인 것이 바람직하다. In addition, the amine contained in the amine solution is ortho-phenylenediamine, ortho-phenylenediamine, meta-phenylenediamine, para-phenylenediamine, and piperazine. ), Ethylene diamine, cadaverine, and mixtures thereof.
이하 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to a preferred embodiment so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예Example
<제조예 1: 열산화법 처리에 의해 말단이 개봉된 탄소나노튜브의 제조>Preparation Example 1 Preparation of Carbon Nanotubes whose Terminals are Opened by Thermal Oxidation
열산화법의 처리과정은 첫 단계로 비정질계 탄소 및 불순물을 제거하기 위하여 thermal annealing 공정을 거쳤다. 탄소나노튜브를 퍼니스(furnace) 내부에 위치하고, 알곤 분위기 상에서 900 ℃로 2시간 동안 반응을 진행하였다. 두 번째 단계로, 탄소나노튜브의 말단을 개봉하기 위하여 열산화 반응공정을 진행하였다. 고순도 공기로 퍼니스 내부를 채우고, 탄소나노튜브를 Air조건에서 분당 10℃ 의 속도로 400℃까지 가열 후 400℃ 온도에서 등온으로 3시간을 유지, 분당 10℃ 의 속도로 퍼니스 내부온도를 500℃ 로 올린 후 500℃에서 30분간 유지, 비활성기체(알곤)를 주입하면서 상온까지 냉각하여 말단이 개봉된 탄소나노튜브를 제조하였다. The thermal oxidation process was the first step through a thermal annealing process to remove amorphous carbon and impurities. The carbon nanotubes were placed in a furnace, and the reaction was performed at 900 ° C. for 2 hours in an argon atmosphere. In the second step, a thermal oxidation reaction process was performed to open the ends of the carbon nanotubes. Fill the furnace with high-purity air, heat the carbon nanotubes to 400 ° C at 10 ° C / min in air condition, maintain 3 hours at isothermal temperature at 400 ° C, and raise the furnace temperature to 500 ° C at 10 ° C / min. After raising for 30 minutes at 500 ℃, inert gas (argon) was injected to cool to room temperature to prepare a carbon nanotube with an open end.
<제조예 2: 도파민이 코팅된 탄소나노튜브의 제조>Preparation Example 2 Preparation of Dopamine-Coated Carbon Nanotubes
제조예 1에 따라 말단이 개봉된 탄소나노튜브의 분산성능을 높이기 위하여 폴리도파민 코팅 공정을 도입하였다. 폴리도파민의 전구체인 도파민용액(2,000 ppm Dopamine hydrochloride)을 특정한 조건(15mM의 Trizma 용액에 1M NaOH용액을 사용하여 pH 8.5이상으로 pH를 조절함)으로 제조 후, 공지의 교반 코팅 방법을 이용하여 탄소나노튜브와 함께 반응을 진행하였다.According to Preparation Example 1, a polydopamine coating process was introduced to increase the dispersing performance of the end-opened carbon nanotubes. Dopamine solution (2,000 ppm Dopamine hydrochloride), a precursor of polydopamine, was prepared under specific conditions (using a 1 M NaOH solution in 15 mM Trizma solution to adjust the pH to pH 8.5 or higher), and then using a known stirring coating method. The reaction proceeded with the nanotubes.
또한 균일한 코팅을 위하여 초음파 균질계로 반응을 시키면서 코팅 공정을 진행하였으며, 폴리도파민이 균일하게 코팅된 탄소나노 튜브를 분리하기 위해 원심분리 공정으로 정제하였다. 하기 도 19는 폴리 도파민이 코팅된 탄소나노튜브의 구조를 TEM 분석을 통하여 확인한 것이다. In addition, the coating process was performed while reacting with an ultrasonic homogeneous system for uniform coating, and the polydopamine was purified by centrifugation to separate the carbon nanotubes uniformly coated. 19 shows the structure of poly dopamine-coated carbon nanotubes through TEM analysis.
<실시예 1: 계면중합법을 이용한 탄소나노튜브-폴리아미드 복합 분리막의 제조>Example 1 Preparation of Carbon Nanotube-Polyamide Composite Membrane Using Interfacial Polymerization Method
상기 제조예 1에 의해 전처리 되고, 상기 제조예 2에 의해 도파민이 코팅된 탄소나노튜브를 계면활성제와 함께 수계에서 분산 시킨 뒤에 메타-페닐렌다이아민(MPD)과 교반시켜 MPD 용액을 얻고, TMC(Trimesoyl chloride)를 Dodecane 용매에 녹여 유기계 용액을 얻은 후, 두 용액을 계면중합법을 이용하여 말단이 개봉된 탄소나노튜브-폴리아미드 복합 분리막을 제조하였다. 그리고 분산 성능을 확인하기 위하여 탄소나노튜브의 농도를 높여가며 UV-vis 분광 분석을 진행하였다.After pretreatment according to Preparation Example 1, the dopamine-coated carbon nanotubes according to Preparation Example 2 was dispersed in a water system with a surfactant and stirred with meta-phenylenediamine (MPD) to obtain an MPD solution, TMC After dissolving (Trimesoyl chloride) in a Dodecane solvent to obtain an organic solution, a carbon nanotube-polyamide composite membrane having open ends was prepared by interfacial polymerization. In addition, UV-vis spectroscopy was performed while increasing the concentration of carbon nanotubes to confirm the dispersion performance.
비교예Comparative example
비교예 1 Comparative Example 1
제조예 1 및 제조예 2의 과정을 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브-폴리아미드 복합 분리막을 제조하였다. A carbon nanotube-polyamide composite separator was prepared in the same manner as in Example 1 except that the processes of Preparation Example 1 and Preparation Example 2 were not performed.
비교예 2 Comparative Example 2
제조예 1의 과정을 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브-폴리아미드 복합 분리막을 제조하였다. A carbon nanotube-polyamide composite separator was prepared in the same manner as in Example 1 except that the procedure of Preparation Example 1 was not performed.
비교예 3 Comparative Example 3
제조예 2의 과정을 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브-폴리아미드 복합 분리막을 제조하였다. A carbon nanotube-polyamide composite separator was prepared in the same manner as in Example 1 except that the process of Preparation Example 2 was not performed.
실험예Experimental Example
실험예 1: 분산성 측정 Experimental Example 1: Measurement of Dispersibility
도파민의 코팅 유무에 따라 용액 내에서 분산성에 미치는 영향을 측정하는 실험을 진행하였다. 이의 실험은 초음파 균질계 분산 및 UV 분광계 분석(UV/Vis spectroscopy) 방법을 통해 진행하였으며, 이를 관찰한 사진 및 UV 분광계 분석의 결과를 하기 도 11 및 도 12에 나타냈다.Experiments were conducted to determine the effect on dispersibility in solution depending on the presence or absence of dopamine coating. The experiment was carried out through ultrasonic homogeneous dispersion and UV spectroscopy (UV / Vis spectroscopy) method, and the photographs and the results of the UV spectrometer analysis observed are shown in FIGS. 11 and 12.
도 11에서 확인할 수 있는 바와 같이 도파민을 탄소나노튜브에 코팅한 제조예 2의 경우는 분산이 잘 이뤄지는 결과를 확인할 수 있었다(도 11a). 또한 UV 분광분석의 결과에서도 탄소나노튜브의 농도를 높이더라도 분산이 잘되는 결과를 확인할 수 있었다(도 11b). As can be seen in Figure 11 in the case of Preparation Example 2 coated with dopamine on the carbon nanotubes it was confirmed that the dispersion is well achieved (Fig. 11a). In addition, even in the result of UV spectroscopy, even if the concentration of carbon nanotubes was increased, the dispersion was well confirmed (Fig. 11b).
하지만 도 12에서 보는 바와 같이 도파민을 탄소나노튜브에 코팅하지 않은 경우에는 분산이 원활하게 이뤄지지 않은 것을 확인할 수 있었다. 또한 농도를 높여갈수록 분산이 더욱 잘 이뤄지지 않는 것을 확인할 수 있었다. However, as shown in FIG. 12, when the dopamine was not coated on the carbon nanotubes, it was confirmed that the dispersion did not occur smoothly. In addition, the higher the concentration was confirmed that the dispersion is not better.
실험예 2: 탄소나노튜브의 말단 개봉 여부 측정Experimental Example 2: Measurement of the terminal opening of the carbon nanotubes
제조예 1에 의하여 열산화법을 실시한 탄소나노튜브의 말단이 개봉되었는지를 확인하는 실험을 진행하였다. 이의 실험은 TEM 사진을 찍어 확인하는 방법으로 진행하였으며, 이의 비교를 위하여 열산화법을 실시하지 않은 탄소나노튜브에 대하여도 TEM을 찍었다. Experiment to check whether the end of the carbon nanotubes subjected to the thermal oxidation method according to Preparation Example 1 was opened. The experiment was carried out by a method of taking a TEM photograph and confirming. For comparison, a TEM was also taken for carbon nanotubes not subjected to thermal oxidation.
도 13은 제조예 1에 의하여 열산화법을 실시한 경우, 도 14는 열산화법을 실시하지 않은 경우의 탄소나노튜브의 말단을 촬영한 TEM 사진이다. 13 is a thermal oxidation method according to Preparation Example 1, Figure 14 is a TEM photograph of the end of the carbon nanotubes when the thermal oxidation method is not performed.
하기 도 13 및 도 14에서 보는 바와 같이 열산화법을 실시한 제조예 1의 경우는 탄소나노튜브의 말단이 개봉되어 비교예 1의 경우와 차이가 있음을 확인하였다. As shown in FIGS. 13 and 14, in the case of Preparation Example 1 subjected to the thermal oxidation method, it was confirmed that the end of the carbon nanotube was opened and there was a difference from the case of Comparative Example 1.
한편, 열산화법을 실시하지 않아 말단이 개봉되지 않은 탄소나노튜브의 경우에는 그 평균 길이가 3~5㎛이며, 열산화법을 실시하여 말단을 개봉시킨 경우는 평균 길이 1~2㎛인 것을 확인할 수 있어 열산화법에 따른 말단 개봉으로 인해 상기 탄소나노튜브의 평균 길이도 짧아짐을 확인할 수 있었다. 또한 열산화법을 실시하지 않아 말단이 개봉되지 않은 탄소나노튜브의 경우에는 그 평균 직경이 6~10nm이며, 열산화법을 실시하여 말단을 개봉시킨 경우는 평균 직경이 5~8nm인 것을 확인할 수 있어 열산화법에 따른 말단 개봉으로 인해 상기 탄소나노튜브의 평균 직경도 작아짐을 확인할 수 있었다.On the other hand, in the case of carbon nanotubes whose ends are not opened due to the thermal oxidation method, the average length is 3 to 5 µm, and when the terminals are opened by the thermal oxidation method, the average length is 1 to 2 µm. As a result of the terminal opening according to the thermal oxidation method, the average length of the carbon nanotubes was also shortened. In the case of carbon nanotubes whose end is not opened due to the thermal oxidation method, the average diameter is 6 to 10 nm, and when the terminal is opened by the thermal oxidation method, the average diameter is 5 to 8 nm. It was confirmed that the average diameter of the carbon nanotubes is also reduced due to the terminal opening according to the oxidation method.
한편 말단이 개봉된 탄소나노튜브와 말단이 개봉되지 않은 탄소나노튜브를 사용하여 제조한 각각의 분리막의 수투과율을 분석하는 실험을 진행하였다. 이의 결과는 하기 도 15 및 도 16에 나타내었고, 도 15는 비교예 1에 따라 말단이 개봉되지 않고 도파민도 코팅되지 않은 탄소나노튜브를 사용한 경우이며, 도 16은 비교예 3에 따라 도파민은 코팅되지 않았지만 말단이 개봉된 탄소나노튜브를 사용한 경우이다. 여기서 확인할 수 있는 바와 같이 말단이 개봉된 탄소나노튜브를 사용한 경우에는 말단이 개봉되지 않은 경우보다 수투과율이 증가하는 것임을 확인할 수 있었다. On the other hand, an experiment was conducted to analyze the water permeability of each of the membranes prepared using the unopened carbon nanotubes and the unopened carbon nanotubes. The results are shown in FIG. 15 and FIG. 16, FIG. 15 is a case in which the end is not opened and the dopamine is coated with carbon nanotubes according to Comparative Example 1, and FIG. 16 is the dopamine coated in Comparative Example 3 If not, but the end is used to open the carbon nanotubes. As can be seen here, it was confirmed that the permeability increased when the ends of the carbon nanotubes were unopened than when the terminals were not opened.
실험예 3: 말단이 개봉된 탄소나노튜브의 열중량분석(TGA) 및 원자흡광분석(AAA) Experimental Example 3 Thermogravimetric Analysis (TGA) and Atomic Absorption Spectrometry (AAA) of Open Ended Carbon Nanotubes
제조예 1에 따라 열산화법을 실시하여 말단이 개봉된 탄소나노튜브와 열산화법을 실시하지 않아 말단이 개봉되지 않은 탄소나노튜브의 구조적인 차이점이 존재하는지를 확인하기 위해 열중량분석 및 원자흡광분석 실험을 진행하였다. 이의 결과는 하기 도 17 및 도 18에 나타냈다. Thermogravimetric and Atomic Absorption Experiments to determine whether there is a structural difference between carbon nanotubes whose ends are not opened and carbon nanotubes whose ends are not opened due to thermal oxidation according to Preparation Example 1 Proceeded. The results are shown in FIGS. 17 and 18 below.
하기 도 17에서 확인할 수 있는 바와 제조예 1에 따라 열산화법을 적용한 경우는 탄소나노튜브의 중량이 고온으로 올라갈수록 감소함을 확인할 수 있었다. 또한 도 18에서 확인할 수 있는 바와 같이 제조예 1의 경우 원자흡광분석에 의해 상기 말단이 개봉된 탄소나노튜브를 분석한 경우, 탄소와 산소의 결합에 따른 결합에너지(Binding Energy)는 288~290 eV 에서 피크가 형성되는 것을 확인할 수 있었다. 하지만 열산화법을 적용하지 않은 경우에는 288~290 eV에서 특징적인 피크가 관찰되지 않았다. 이는 제조예 1의 경우에는 열산화법을 통하여 말단에 생성된 산소의 원자 개수가 증가하여 탄소와 산소의 결합이 증가하므로 상기 288~290 eV에서 특징적인 피크가 나타난 것으로 해석할 수 있다. In the case of applying the thermal oxidation method according to Preparation Example 1 as shown in FIG. 17, the weight of the carbon nanotubes decreased as the temperature increased to a high temperature. In addition, as shown in FIG. 18, in the case of Preparation Example 1, when the carbon nanotubes whose ends were opened by atomic absorption analysis were analyzed, the binding energy according to the binding of carbon and oxygen was 288 to 290 eV. It was confirmed that the peak is formed at. However, in the absence of thermal oxidation, characteristic peaks were not observed at 288 ~ 290 eV. This can be interpreted that in the case of Preparation Example 1 because the number of atoms of oxygen generated at the end through the thermal oxidation method increases, the bond between carbon and oxygen increases, so that a characteristic peak appears at the above 288 ~ 290 eV.
실험예 4: 실시예 1로부터 제조된 복합 분리막의 수투과율 및 염배제율 측정Experimental Example 4: Measurement of Water Permeability and Salt Exclusion Rate of the Composite Membrane Prepared from Example 1
실시예 1 및 비교예 1로부터 제조된 각 분리막의 수투과율 및 염배제율을 측정하는 실험을 진행하였다. 분리막의 성능은 crossflow방식 여과시스템 장비를 이용하여 측정하였다. 성능평가는 NaCl 2,000 ppm 농도의 용액을 피드(feed)로 사용했으며, flow rate: 2LPM, 15.5bar, 25℃ 의 운전 조건에서 진행되었으며, 수투과도는 장치에 연결된 전자저울을 이용한 프로그램으로 측정하였고, 염배제율은 이온전도도 미터를 이용하여 측정하였다. 하기 표 1은 일반 폴리아미드 분리막(PA), 탄소나노튜브 함량이 0.25㎎인 비교예 1로부터 제조된 분리막, 탄소나노튜브 함량이 0.25㎎인 비교예 3으로부터 제조된 분리막의 수투과율과 염배제율을 측정하여 나타낸 결과이다. 또한 하기 표 2는 실시예 1로부터 제조된 분리막을 사용하여 탄소나노튜브의 함량을 증가시킴에 따라 막의 수투과율 및 염배제율을 측정하여 나타낸 결과이다. 또한 하기 표 3은 비교예 3으로부터 제조된 분리막의 수투과율 및 염배제율을 측정하여 나타낸 결과이다. Experiments were carried out to measure the water permeability and salt rejection rate of each separator prepared from Example 1 and Comparative Example 1. Membrane performance was measured using a crossflow filtration system. Performance evaluation was performed using a solution of 2,000 ppm NaCl as a feed, flow rate: 2LPM, 15.5 bar, operating conditions of 25 ℃, water permeability was measured by a program using an electronic balance connected to the device, Salt excretion was measured using an ion conductivity meter. Table 1 shows the water permeability and salt rejection ratio of the general polyamide separator (PA), the separator prepared from Comparative Example 1 having a carbon nanotube content of 0.25 mg, and the separator prepared from Comparative Example 3 having a carbon nanotube content of 0.25 mg. This is the result shown by measuring. In addition, Table 2 below shows the results obtained by measuring the water permeability and salt rejection of the membrane as the content of carbon nanotubes is increased using the separator prepared in Example 1. In addition, Table 3 below is a result of measuring the water permeability and salt rejection of the separator prepared from Comparative Example 3.
분리막(탄소나노튜브 함량)Separation membrane (carbon nanotube content) 수투과율(LHM/bar)Water transmittance (LHM / bar) 염배재율(%)Salt Exclusion Rate (%)
폴리아미드 분리막(0)Polyamide Membrane (0) 2.42±0.12.42 ± 0.1 98.5±0.298.5 ± 0.2
비교예 1(0.25mg)Comparative Example 1 (0.25 mg) 2.58±0.32.58 ± 0.3 97.3±0.597.3 ± 0.5
비교예 3(0.25mg)Comparative Example 3 (0.25 mg) 2.74±0.172.74 ± 0.17 98.2±0.398.2 ± 0.3
분리막(탄소나노튜브 함량)Separation membrane (carbon nanotube content) 수투과율(LHM/bar)Water transmittance (LHM / bar) 염배재율(%)Salt Exclusion Rate (%)
폴리아미드 분리막(0)Polyamide Membrane (0) 2.42±0.12.42 ± 0.1 98.7±0.298.7 ± 0.2
실시예 1(0.25mg)Example 1 (0.25 mg) 2.8±0.112.8 ± 0.11 98.5±0.1598.5 ± 0.15
실시예 1(1.25mg)Example 1 (1.25 mg) 3.08±0.163.08 ± 0.16 98.7±0.1298.7 ± 0.12
실시예 1(3.75mg)Example 1 (3.75 mg) 3.31±0.173.31 ± 0.17 98.5±0.298.5 ± 0.2
분리막(탄소나노튜브 함량)Separation membrane (carbon nanotube content) 수투과율(LHM/bar)Water transmittance (LHM / bar) 염배재율(%)Salt Exclusion Rate (%)
폴리아미드 분리막(0)Polyamide Membrane (0) 2.42±0.12.42 ± 0.1 98.5±0.298.5 ± 0.2
비교예 3(0.25mg)Comparative Example 3 (0.25 mg) 2.71±0.172.71 ± 0.17 98.2±0.398.2 ± 0.3
비교예 3(0.75mg)Comparative Example 3 (0.75 mg) 2.39±0.062.39 ± 0.06 98.3±0.398.3 ± 0.3
비교예 3(1.25mg)Comparative Example 3 (1.25 mg) 2.01±0.162.01 ± 0.16 97.4±0.797.4 ± 0.7
표 1에서 보는 바와 같이 말단이 개봉된 탄소나노튜브를 사용하면(비교예 3), 그렇지 않은 것(비교예 1)과 대비하여 수투과율이 기본적으로 증가함을 알 수 있다. As shown in Table 1, the use of carbon nanotubes whose ends are opened (Comparative Example 3), it can be seen that the water transmittance is basically increased compared to the other (Comparative Example 1).
또한 상기 표 2에서 확인할 수 있는 바와 같이 본 발명에 따른 실시예 1의 경우는 탄소나노튜브의 함량을 증가하여도 수투과율 및 염배제율이 우수하게 향상되거나 유지되는 것을 확인하였다. 이에 반하여 표 3에서는 비교예 3의 경우 탄소나노튜브의 함량을 증가시켜도 수투과율이 증가하지 않으며, 또한 염배제율도 떨어지게 되는 결과를 확인할 수 있었다. 이를 통해 말단이 개봉된 탄소나노튜브에 도파민을 코팅하는 것이 수투과율 및 염배제율의 향상에 기여하는 것임을 확인할 수 있었다. In addition, in the case of Example 1 according to the present invention, as can be seen in Table 2, it was confirmed that the water permeability and the salt rejection rate were excellently improved or maintained even though the content of carbon nanotubes was increased. On the contrary, in Table 3, even in the case of increasing the content of carbon nanotubes in Comparative Example 3, the water permeability did not increase, and the salt excretion rate also decreased. Through this, it was confirmed that the coating of dopamine on the end-opened carbon nanotubes contributes to the improvement of water transmittance and salt rejection rate.
한편, 전술한 역삼투 분리막 제조방법의 단계에서 탄소나노튜브의 말단이 개방되는 비율을 향상시키기 위해 다음과 같은 공정이 추가될 수 있다.On the other hand, the following process may be added to improve the rate at which the end of the carbon nanotubes open in the step of the reverse osmosis membrane manufacturing method described above.
상기 제조예 1의 과정을 수행하기 전 탄소나노튜브를 60°C의 H2O2 30% 용액에주입하는 공정이다. 이러한 공정은 H2O2 약산화 조건에서 전처리하여 이후 공정에서 열처리 시 말단 개방 효과를 높이는 것이다.Before performing the process of Preparation Example 1 is a process of injecting carbon nanotubes in a 30% solution of H 2 O 2 at 60 ° C. This process is to pretreat under H 2 O 2 weak oxidation conditions to increase the terminal opening effect during the heat treatment in the subsequent process.
이와 같은 H2O2 전처리 공정을 추가함으로써 기존의 Air 조건에서 산화하기만 한 결과보다 기공 크기에 대한 인텐시티 값이 상승되었다.By adding such a H 2 O 2 pretreatment process, the intensity value for the pore size was higher than that obtained by oxidizing under the conventional air condition.
도 21은 본 발명의 일 실시예에 따라 전처리를 하지 않은 경우, Air 조건 전처리를 한 경우 및 H2O2 전처리를 추가한 경우의 탄소나노튜브 기공의 인텐시티 값을 비교한 그래프이다.21 is when the pre-treatment is not performed in accordance with an embodiment of the present invention, when the air condition pretreatment and H 2 O 2 It is a graph comparing the intensity value of carbon nanotube pores when the pretreatment is added.
도 21에서 x축은 기공의 지름이고, y축은 기공의 볼륨을 나타내며 이는 인텐시티 값이라고 볼 수 있다. y축 값이 클수록 해당하는 지름의 기공 개수가 많고, 말단개방 비율이 높다는 것을 의미한다.In FIG. 21, the x-axis represents the pore diameter, and the y-axis represents the volume of the pore, which can be viewed as an intensity value. The larger the y-axis value, the larger the number of pores of the corresponding diameter and the higher the terminal open ratio.
BET N2 가스 측정 결과 2.6 nm 및 3.3 nm 에 해당하는 기공 크기에 대한 인텐시티 값이 확인 되었다.As a result of BET N2 gas measurement, the intensity value for the pore size corresponding to 2.6 nm and 3.3 nm was confirmed.
그래프에서 전처리되지 않은 CNT의 경우 y축 값이 낮으나, 에어 조건에서 산화 처리한 경우가 2.6 nm 및 3.3 nm 에 해당하는 인텐시티가 크게 증가하는 것을 확인할 수 있고, H2O2 처리를 하면 인텐시티가 더욱 증가하는 것을 확인할 수 있다. 따라서 H2O2 처리를 한 경우 개방율이 가장 높다는 것을 알 수 있다.In the graph, the y-axis value of the CNTs that were not pretreated was low, but the intensities corresponding to 2.6 nm and 3.3 nm were significantly increased in the case of oxidation treatment under air condition, and the intensity was further increased by H 2 O 2 treatment. You can see the increase. Therefore, the H 2 O 2 treatment can be seen that the highest open rate.
이하에서는 역삼투 분리막에서 탄소나노튜브의 분산성을 높이기 위한 상기 제조예 2에서 진보된 폴리도파민이 코팅공정에 대해 상세히 설명한다.Hereinafter will be described in detail the polydopamine coating process advanced in Preparation Example 2 to increase the dispersibility of the carbon nanotubes in the reverse osmosis membrane.
도파민[2-(3,4-디히드록시페닐)에틸아민]은 다양한 동물의 호르몬 및 신경전달물질이고, 많은 식물에서 폴리페놀의 전구체인 생체모방소재로서 기질에 쉽게 흡착하며 다양한 표면에 특정 조건에서 자발적으로 반응하는 성질을 갖는다. 특히, 수용성이면서 다양한 소재에 흡착하는 성질 때문에 본 발명에서도 탄소나노튜브 표면에 잘 흡착할 수 있는 도파민을 코팅 소재로 사용한다.Dopamine [2- (3,4-dihydroxyphenyl) ethylamine] is a hormone and neurotransmitter of various animals, and is a biomimetic material that is a precursor of polyphenols in many plants, easily adsorbed to substrates, and has specific conditions on various surfaces. Spontaneously reacts in In particular, the present invention uses dopamine as a coating material because it is water-soluble and adsorptive to various materials.
게다가 도파민의 중성 용액은 공기와 접촉하면 이내 산화하게 되는데, 이는 실질적으로 자발적인 산화 중합에 의하여 폴리도파민으로 변하고 탄소나노튜브와 같은 소재의 표면에 코팅될 수 있는 것이다. 그러나 종래에는 탄소나노튜브에 폴리도파민을 충분히 코팅하기 위하여 공기 분위기 하에서 코팅공정을 수행하였으나, 코팅공정이 12~24 시간으로 오래 걸리고, 통상적인 탄소나노튜브의 두께인 6~20 nm에 비하여 코팅층의 두께가 6~12 nm로 상대적으로 두껍고 균일한 코팅을 얻기가 어려운 문제점이 있었다.In addition, the neutral solution of dopamine oxidizes immediately upon contact with air, which can be converted to polydopamine by substantially spontaneous oxidative polymerization and coated on the surface of a material such as carbon nanotubes. However, in the past, the coating process was carried out in an air atmosphere to sufficiently coat polydopamine on carbon nanotubes, but the coating process took 12 to 24 hours, and compared to 6 to 20 nm, which is the thickness of conventional carbon nanotubes. There is a problem that it is difficult to obtain a relatively thick and uniform coating with a thickness of 6 ~ 12 nm.
따라서 본 발명에서는 이러한 문제점을 해결하고자 i) 도파민을 트리스-버퍼 용액에 용해시켜 폴리도파민의 전구체 용액을 얻는 단계; ii) 상기 i) 단계의 폴리도파민의 전구체 용액에 탄소나노튜브를 부가하여 산소 분위기 하에서 코팅공정을 수행하는 단계; 및 iii) 상기 ii) 단계에서 코팅공정이 완료된 용액을 원심분리, 진공여과 및 건조하는 단계;를 포함하는 폴리도파민이 코팅된 탄소나노튜브의 제조방법을 제공한다.Therefore, in the present invention to solve this problem i) dissolving dopamine in the tris-buffer solution to obtain a precursor solution of polydopamine; ii) adding carbon nanotubes to the precursor solution of polydopamine of step i) and performing a coating process under an oxygen atmosphere; And iii) centrifuging, vacuum filtration and drying the solution in which the coating process is completed in step ii).
먼저, 도파민을 트리스-버퍼 용액에 용해시켜 폴리도파민의 전구체 용액을 얻게 되는바, 상기 폴리도파민의 전구체 용액은 트리즈마(Trizma) 용액에 1M NaOH 용액을 사용하여 pH를 8.5 이상으로 조절한 것을 바람직하게 사용할 수 있다. 이어서 폴리도파민의 전구체 용액에 탄소나노튜브를 부가하여 산소 분위기 하에서 코팅공정을 수행하게 되는데, 탄소나노튜브는 단일벽 탄소나노튜브(single wall carbon nanotube), 이중벽 탄소나노튜브(double wall carbon nanotube), 다중벽 탄소나노튜브(multi wall carbon nanotube), 및 다발형 탄소나노튜브(rope carbon nanotube)로 이루어진 군으로부터 선택된 어느 하나의 것일 수 있고, 다중벽 탄소나노튜브를 보다 바람직하게 사용할 수 있다.First, dopamine is dissolved in a tris-buffer solution to obtain a precursor solution of polydopamine. The precursor solution of polydopamine is preferably adjusted to a pH of 8.5 or more using 1M NaOH solution in Trizma solution. Can be used. Subsequently, carbon nanotubes are added to the precursor solution of polydopamine to perform a coating process under an oxygen atmosphere. The carbon nanotubes are single wall carbon nanotubes, double wall carbon nanotubes, It may be any one selected from the group consisting of multiwall carbon nanotubes, and rope carbon nanotubes, and multiwall carbon nanotubes may be more preferably used.
또한, 상기 코팅공정은 산소 분위기 하에서 15 분 내지 1 시간에 걸쳐 수행할 수 있는데, 코팅공정 시간이 15 분 미만이면 균일한 코팅층을 얻기 어렵고, 1 시간을 초과하면 코팅층의 두께가 두꺼워지는 단점이 있으므로, 상기 범위 내에서 코팅시간을 조절하며, 30 분 동안 코팅공정을 수행하는 것이 더욱 바람직하다.In addition, the coating process may be carried out in an oxygen atmosphere over 15 minutes to 1 hour, but if the coating process time is less than 15 minutes, it is difficult to obtain a uniform coating layer, and if it exceeds 1 hour, the thickness of the coating layer becomes thick. To control the coating time within the above range, it is more preferable to perform the coating process for 30 minutes.
마지막으로 코팅공정이 완료된 용액을 원심분리, 진공여과 및 건조하는 단계를 거쳐, 본 발명에 따른 폴리도파민이 코팅된 탄소나노튜브를 제조한다.Finally, through the centrifugation, vacuum filtration and drying of the solution is completed, the polydopamine-coated carbon nanotubes according to the present invention is prepared.
이하 구체적인 실시예를 상세히 설명한다.Hereinafter, specific embodiments will be described in detail.
(실시예 1)(Example 1)
도파민 100 mg을 10 mM의 트리즈마(Trizma) 용액 100 mL에 용해시켜(pH 8.5로 조절) 폴리도파민의 전구체 용액을 얻었다. 상기 얻어진 폴리도파민의 전구체 용액에 다중벽 탄소나노튜브 50 mg을 부가하여 산소 분위기 하의 상온에서 30 분 동안 코팅공정을 수행하였다. 코팅공정 후, 통상의 원심분리, 진공여과 및 건조과정을 순차적으로 거쳐 폴리도파민이 코팅된 탄소나노튜브를 제조하였다.100 mg of dopamine was dissolved in 100 mL of a 10 mM Trizma solution (adjusted to pH 8.5) to obtain a precursor solution of polydopamine. 50 mg of multi-walled carbon nanotubes were added to the obtained precursor solution of polydopamine, and the coating process was performed at room temperature under oxygen atmosphere for 30 minutes. After the coating process, a polydopamine-coated carbon nanotube was manufactured through a conventional centrifugation, vacuum filtration, and drying process sequentially.
(실시예 2)(Example 2)
15 분 동안 코팅공정을 수행한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리도파민이 코팅된 탄소나노튜브를 제조하였다.Except that the coating process was performed for 15 minutes polycarbonate was coated with carbon nanotubes in the same manner as in Example 1.
(비교예)(Comparative Example)
공기 분위기 하의 상온에서 12 시간 동안 코팅공정을 수행한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리도파민이 코팅된 탄소나노튜브를 제조하였다.Polydopamine-coated carbon nanotubes were prepared in the same manner as in Example 1, except that the coating process was performed at room temperature in an air atmosphere for 12 hours.
도 22는 본 발명의 실시예 1에 따른 폴리도파민이 코팅된 탄소나노튜브의 주사전자현미경(SEM) (a) 및 투과전자현미경(TEM) 사진 (b)을 나타내었다. 도 22에서 보는 바와 같이 코팅층이 균일하게 형성되고, 코팅층의 두께도 2 nm로 매우 적절함을 알 수 있다.FIG. 22 shows a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to Example 1 of the present invention. As shown in Figure 22 it can be seen that the coating layer is formed uniformly, the thickness of the coating layer is also very suitable as 2 nm.
도 23은 본 발명의 실시예 2에 따라 코팅공정을 15 분 동안 수행하여 제조된 폴리도파민이 코팅된 탄소나노튜브의 주사전자현미경(SEM) (a) 및 투과전자현미경(TEM) 사진 (b)을 나타낸 것으로, 코팅층의 두께가 1.7 nm인 균일한 코팅층을 확인할 수 있다.FIG. 23 is a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph of a polydopamine-coated carbon nanotube prepared by performing a coating process for 15 minutes according to Example 2 of the present invention. As shown, it can be confirmed that the coating layer has a thickness of 1.7 nm.
도 24는 본 발명의 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 주사전자현미경(SEM) (a) 및 투과전자현미경(TEM) 사진 (b)을 나타낸 것인데, 코팅공정을 12 시간 동안 수행하여도 균일한 코팅층이 형성되지 않고, 코팅층의 두께도 10 nm로서 상대적으로 두꺼운 것을 확인할 수 있다.24 shows a scanning electron microscope (SEM) (a) and a transmission electron microscope (TEM) photograph (b) of a polydopamine-coated carbon nanotube according to a comparative example of the present invention, the coating process is carried out for 12 hours Even if a uniform coating layer is not formed, it can be confirmed that the thickness of the coating layer is also relatively thick as 10 nm.
또한, 도 25에는 폴리도파민이 코팅되지 않은 탄소나노튜브와 함께 본 발명의 실시예 1 , 2 및 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브를 질소 분위기 하에서 10℃/min 승온 속도로 열중량분석(TGA)을 수행한 결과를 나타내었는바, 도 25에서 보는 바와 같이 개질되지 않은 탄소나노튜브는 고온까지 중량감소가 거의 없으나, 폴리도파민 입자의 경우 약 40% 이상의 중량감소를 보인다. 따라서 개질된 탄소나노튜브의 중량 감소량은 폴리도파민의 코팅량에 비례함을 알 수 있다. 비교예에 따라 코팅된 탄소나노튜브의 경우 약 20% 의 중량감소를 보인다. 반면, 실시예 1, 2에 따라 산소 분위기 하에서의 짧은 시간 코팅된 탄소나노튜브의 경우 각각 약 10~15 %의 중량감소를 보였다. 이는 짧은 공정시간에도 폴리도파민이 탄소나노튜브에 성공적으로 코팅되었음을 보여준다.In addition, Figure 25 is thermogravimetrically weighted carbon nanotubes coated with polydopamine according to Examples 1, 2, and Comparative Examples of the present invention together with carbon nanotubes not coated with polydopamine at a temperature of 10 ° C./min under a nitrogen atmosphere. As a result of performing the analysis (TGA), as shown in FIG. 25, the unmodified carbon nanotubes show little weight loss up to a high temperature, but polydopamine particles show a weight loss of about 40% or more. Therefore, it can be seen that the weight reduction amount of the modified carbon nanotubes is proportional to the coating amount of polydopamine. Carbon nanotubes coated according to the comparative example show a weight loss of about 20%. On the other hand, according to Examples 1 and 2, the carbon nanotubes coated for a short time in an oxygen atmosphere showed a weight loss of about 10 to 15%, respectively. This shows that polydopamine has been successfully coated on carbon nanotubes even with short processing times.
그리고 도 26에는 폴리도파민이 코팅되지 않은 탄소나노튜브와 본 발명의 실시예 1, 2 및 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 적외선분광분석(FT-IR) 결과를 나타내었는바, 도 26에서 보는 바와 같이 폴리도파민이 코팅되지 않은 탄소나노튜브는 기능기가 거의 없기 때문에 1,000~2,000 (cm-1) 구간에서 특정한 피크를 보이지 않는다. 폴리도파민 입자의 경우 1610 및 1500 (cm-1) 구간에서 도파민의 특성 피크가 나타난다. 실시예 1, 2 및 비교예에 따른 탄소나노튜브 모두 폴리도파민의 피크가 측정되었으며, 이는 폴리도파민이 탄소나노튜브에 코팅이 잘 되었음을 보여준다. In addition, Fig. 26 shows the results of infrared spectroscopy (FT-IR) of carbon nanotubes not coated with polydopamine and carbon nanotubes coated with polydopamine according to Examples 1, 2 and Comparative Examples of the present invention. As shown in FIG. 26, the carbon nanotubes not coated with polydopamine do not show a specific peak in the range of 1,000 to 2,000 (cm −1) because there are almost no functional groups. The polydopamine particles exhibit characteristic peaks of dopamine in the 1610 and 1500 (cm-1) sections. The peaks of polydopamine were measured for both carbon nanotubes according to Examples 1, 2 and Comparative Example, which shows that the polydopamine was well coated on the carbon nanotubes.
또한, 도 27에는 본 발명의 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 광전자분광분석(XPS) 결과 (a) 및 본 발명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 광전자분광분석(XPS) 결과 (b)를 나타내었다. 도 27에서 보는 바와 같이 도파민 입자가 코팅되는 경우 O와 N 원소의 비율이 증가하며, 이는 탄소나노튜브 대비 도파민의 코팅량에 따라 증가한다. 비교예에 의하면, O 원소의 비율이 20.57%, N 원소의 비율은 7.38% 로 측정된 반면, 실시예 1에 따르면, O 원소의 비율이 11.56%, N 원소의 비율이 3.27%로서 상대적으로 적은 원소비율 결과를 보였다. 이는 산소 조건에서 코팅된 탄소나노튜브가 폴리도파민의 코팅량이 적다는 것을 보여주며, 또한 얇게 코팅된 탄소나노튜브의 코팅량에 대한 정량적 값을 보여준다.In addition, Figure 27 shows the photoelectron spectroscopy (XPS) results of the polydopamine-coated carbon nanotubes according to the comparative example of the present invention (a) and the optoelectronics of the polydopamine-coated carbon nanotubes according to Example 1 of the present invention Spectroscopic analysis (XPS) shows (b). As shown in FIG. 27, when the dopamine particles are coated, the ratio of O and N elements increases, which increases with the coating amount of dopamine relative to the carbon nanotubes. According to the comparative example, the ratio of the O element was 20.57% and the ratio of the N element was 7.38%, while according to Example 1, the ratio of the O element was 11.56% and the ratio of the N element was 3.27%. The element ratio result was shown. This shows that the carbon nanotubes coated under oxygen conditions have a low coating amount of polydopamine, and also show a quantitative value for the coating amount of thinly coated carbon nanotubes.
도 28에는 본 발명의 비교예에 따라 폴리도파민이 코팅된 탄소나노튜브의 분광광도계분석(UV-vis) 결과 (a) 및 본 발명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 분광광도계분석(UV-vis) 결과 (b)를 나타내었다. 도 28에서 보는 바와 같이 폴리도파민이 코팅된 탄소나노튜브의 경우 UV-vis 내에서 약 260-270 nm 부근에서 흡광 피크를 보인다. 흡광도 (absorbance)는 용액 내에서 분산이 잘 될수록 증가하는 값을 보이며, 산소 조건하에서 코팅된 탄소나노튜브가 공기 조건에서 코팅된 탄소나노튜브 대비 전 구간 (0.25, 0.75, 1.25 mg/100g, 탄소나노튜브(mg)/초순수(DI, g))에서 높은 흡광도 값을 보이며, 이를 통하여 종래 공기 분위기 하에서 장시간 코팅 공정을 수행하여 폴리도파민이 코팅된 탄소나노튜브에 비하여 그 분산도가 크게 향상되었음을 알 수 있다.FIG. 28 shows spectrophotometric analysis (UV-vis) results of polydopamine-coated carbon nanotubes according to a comparative example of the present invention (a) and spectroscopy of polydopamine-coated carbon nanotubes according to Example 1 of the present invention. Photometric analysis (UV-vis) result (b) is shown. As shown in FIG. 28, the polydopamine-coated carbon nanotube shows an absorption peak at about 260-270 nm in UV-vis. Absorbance increases as the dispersion is better in the solution, and the carbon nanotubes coated under oxygen conditions are more than the entire range (0.25, 0.75, 1.25 mg / 100g, carbon nanotubes) compared to carbon nanotubes coated under air conditions. It shows high absorbance value in the tube (mg) / ultra pure water (DI, g)), which shows that the dispersion degree is greatly improved compared to the carbon nanotubes coated with polydopamine by performing the coating process for a long time in an air atmosphere. have.
도 29의 사진으로부터는 폴리도파민이 코팅되지 않은 탄소나노튜브의 수계를 포함한 다양한 용매에서의 분산성을 확인할 수 있는데, 탈이온수(deionized water : DI)에서 뿐만 아니라, 아세톤 및 알코올 등 다양한 유기용매에서 분산성이 떨어짐을 알 수 있으나, 본 발명의 실시예 1에 따라 폴리도파민이 코팅된 탄소나노튜브의 다양한 용매에서의 분산성을 촬영한 도 30의 사진으로부터는 아세톤 및 알코올 등의 유기용매에서 분산성은 여전히 떨어지지만, 탈이온수와 같은 수계에서는 분산성이 극히 향상되었음을 확인할 수 있다.From the photograph of FIG. 29, it is possible to confirm the dispersibility in various solvents including the aqueous system of the carbon nanotubes not coated with polydopamine, as well as in deionized water (DI) and various organic solvents such as acetone and alcohol. It can be seen that the dispersibility is deteriorated, but from the photograph of FIG. 30 photographing the dispersibility of the polydopamine-coated carbon nanotubes in various solvents according to Example 1 of the present invention, it is dispersed in an organic solvent such as acetone and alcohol. Although the castle is still inferior, it can be seen that the dispersibility is extremely improved in water systems such as deionized water.
따라서 본 발명의 폴리도파민이 코팅된 탄소나노튜브의 제조방법에 따르면, 산소분위기 하에서 단시간 내에 폴리도파민을 탄소나노튜브에 코팅함으로써 균일한 코팅 및 코팅공정 시간의 현저한 단축을 달성할 수 있으며, 그에 의하여 제조되는 폴리도파민이 코팅된 탄소나노튜브는 코팅층의 두께가 1.7~2 nm로 매우 얇고, 수계에서의 분산성이 향상되어 탄소나노튜브/고분자 복합막을 비롯한 폴리도파민이 코팅된 탄소나노튜브를 포함하는 고분자 복합체의 대량 생산에 적용 가능하다.Therefore, according to the manufacturing method of the polydopamine-coated carbon nanotube of the present invention, by coating the polydopamine on the carbon nanotubes in a short time under an oxygen atmosphere, it is possible to achieve a uniform shortening of the coating and coating process time, thereby The polydopamine-coated carbon nanotubes produced are very thin, with a thickness of 1.7 to 2 nm, and the dispersibility is improved in an aqueous system, and includes carbon nanotubes coated with polydopamine, including carbon nanotubes / polymer composite membranes. Applicable to mass production of polymer composites.
한편, 전술한 폴리도파민 코팅방법의 단계에서 탄소나노튜브의 분산도가 시간의 경과에도 유지될 수 있도록 다음과 같이 공정을 추가 수정할 수 있다.On the other hand, in the above-described step of the polydopamine coating method, the process can be further modified as follows to maintain the dispersion degree of carbon nanotubes over time.
즉, 기존의 도파민 코팅 공정은 (i) 200mg/1L 농도의 탄소나노튜브를 pH 8.5의 15mM tris-buffer 용액에서 1시간 초음파 분산하고, (ii) 용액에 도파민을 2000 ppm 농도로 주입하며, (iii) O2를 주입하며 15분간 반응시키고, (iv) pH 낮추며 반응 종결하고, (v) 건조시키는 것으로 진행되었으나, 분산도 증가를 위한 공정이 추가 수정되어 (i) 200mg/1L 농도의 탄소나노튜브를 pH 8.5의 15mM tris-buffer 용액에서 1시간 초음파 분산하고, (ii) 용액에 O2를 5분~10분동안 프리퍼지(Pre-purge)하며, (iii) 용액에 도파민을 2000 ppm 농도로 주입하며, (iv) O2를 주입하며 5분간 반응시키고, (v) 탄소나노튜브의 뭉침을 방지하기 위해 5분 동안 초음파 분산시키며, (vi) 다시 O2를 주입하며 5분간 반응시키며, (vii) pH 낮추며 반응 종결하고, (v) 건조시킬 수 있다.That is, the conventional dopamine coating process (i) ultrasonic dispersion of carbon nanotubes with a concentration of 200 mg / 1L in a 15 mM tris-buffer solution at pH 8.5 for 1 hour, (ii) dopamine is injected into the solution at a concentration of 2000 ppm, ( iii) reacted with O 2 for 15 minutes, (iv) lowered the pH, terminated the reaction, and (v) dried, but the process for increasing the dispersion was further modified to (i) 200 mg / 1L carbon nano The tube was sonicated for 1 hour in a 15 mM tris-buffer solution at pH 8.5, (ii) pre-purged O 2 in the solution for 5-10 minutes, and (iii) 2000 ppm concentration of dopamine in the solution. (Iv) react with 5 minutes while injecting O 2 , (v) disperse ultrasonic waves for 5 minutes to prevent agglomeration of carbon nanotubes, and (vi) react with 5 minutes while injecting O 2 again, (vii) the reaction may be terminated with lowering pH and (v) dried.
이와 같이 도파민 코팅을 위한 추가공정을 수행하고 CNT의 분산도를 비교하기 위해 시간대별로 필터링을 하여 분산도를 측정해보았다.In this way, an additional process for dopamine coating was performed and the dispersion was measured by time-phase filtering to compare the dispersion of CNTs.
도 31은 본 발명의 일 실시예에 따라 수계 분산성이 향상된 CNT의 수계 분산액 이미지 및 UV-vis 분석 결과를 나타낸다.FIG. 31 illustrates an aqueous dispersion image and UV-vis analysis result of CNTs having improved aqueous dispersibility according to an embodiment of the present invention.
도 31에 나타난 바와 같이 기존의 공정에 의한 탄소나노튜브는 시간이 경과할수록 분산도가 감소하지만, 추가수정된 공정에 의한 탄소나노튜브는 시간이 경과하여도 분산도가 유지된다는 것을 확인할 수 있다.As shown in FIG. 31, the dispersion of carbon nanotubes according to the existing process decreases with time, but the dispersion of carbon nanotubes according to the additionally modified process is maintained even with time.
결론적으로, 탄소나노튜브의 도파민과의 빠른 반응을 이루기 위해 O2 가스를 용액에 미리 주입함으로써 용액에 O2가 미리 용해되도록 하여 도파민과의 접촉을 빠르게 한 것이다.In conclusion, in order to achieve rapid reaction with dopamine of carbon nanotubes, O 2 gas was pre-injected into the solution so that the O 2 was dissolved in the solution in advance, thereby rapidly contacting with dopamine.
또한, 반응 중의 CNT-self aggregation(뭉침현상)을 해소하기 위해 중간에 약한 분산 과정을 추가하였으며, 그 결과로 장기 분산 안전성이 크게 향상된다는 것을 확인할 수 있다.In addition, in order to solve the CNT-self aggregation (aggregation) in the reaction was added a weak dispersion process in the middle, as a result it can be seen that the long-term dispersion stability is greatly improved.
상기 설명한 탄소나노튜브를 혼합한 역삼투 분리막을 적용한 역삼투막 압력용기를 이용하여 해수담수화를 실시해보았다.Seawater desalination was performed using a reverse osmosis membrane pressure vessel to which the reverse osmosis membrane mixed with carbon nanotubes described above was applied.
도 32는 본 발명의 일 실시예에 따른 역삼투막 압력용기와 종래의 역삼투막 압력용기를 사용하여 담수화를 한 경우 동일한 유량에 대한 소요 전력을 비교한 그래프이다.32 is a graph comparing the power consumption for the same flow rate when desalination using the reverse osmosis membrane pressure vessel according to an embodiment of the present invention and the conventional reverse osmosis membrane pressure vessel.
도 32에 나타난 바와 같이 동일한 양의 담수를 얻기 위해 사용되는 전력이 본 발명의 일 실시예에 따른 역삼투막 압력용기를 사용한 경우 더 적었고, 이는 동일한 전력을 사용하여 더 많은 담수화를 할 수 있다는 것을 의미한다.As shown in FIG. 32, the power used to obtain the same amount of fresh water was less when using the reverse osmosis membrane pressure vessel according to an embodiment of the present invention, which means that more desalination can be performed using the same power. .
따라서 본 발명의 역삼투막 압력용기를 사용하면 소비 에너지를 저감할 수 있다는 효과도 발생한다는 것을 알 수 있다.Therefore, it can be seen that when the reverse osmosis membrane pressure vessel of the present invention is used, the effect of reducing energy consumption also occurs.
상기와 같이 설명된 하이브리드 역삼투 분리막 압력용기는 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The hybrid reverse osmosis membrane pressure vessel described above is not limited to the configuration and method of the above-described embodiments, the embodiments may be selectively all or part of each embodiment so that various modifications can be made It may be configured in combination.
전술한 구성을 적용한 본 발명은 담수 회수율이 높은 하이브리드 CNT-RO막 압력용기 사용자에게 제공할 수 있다.The present invention applying the above-described configuration can be provided to users of a hybrid CNT-RO membrane pressure vessel with a high freshwater recovery.
구체적으로, 전단부에 배치된 역삼투 분리막 모듈의 담수 생산량과 후단부에 배치된 역삼투 분리막 모듈의 담수 생산량의 차이를 줄일 수 있다.Specifically, it is possible to reduce the difference between the freshwater production of the reverse osmosis membrane module disposed in the front end portion and the freshwater production of the reverse osmosis membrane module disposed in the rear end portion.
또한, 역삼투 분리막 모듈에 탄소나노튜브를 혼합함으로써 역삼투 분리막 모듈의 수투과율을 50%이상 증가시킬 수 있다.In addition, the water permeability of the reverse osmosis membrane module can be increased by 50% or more by mixing carbon nanotubes in the reverse osmosis membrane module.
또한, 유입하는 해수량을 줄이고 담수 생산장치를 운영하기 위해 소비되는 비용을 줄일 수 있다.In addition, it is possible to reduce the amount of incoming seawater and to reduce the cost of operating the freshwater production apparatus.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned are clearly to those skilled in the art from the following description. It can be understood.

Claims (19)

  1. 해수를 담수화 하는 역삼투 분리막 압력용기에 있어서,In the reverse osmosis membrane pressure vessel for desalination of seawater,
    상기 압력용기 전단의 적어도 일부에 위치하는 해수 유입구;Seawater inlet located at least a portion of the front end of the pressure vessel;
    상기 압력용기의 내부에 직렬로 배치된 복수의 역삼투 분리막 모듈;A plurality of reverse osmosis membrane modules disposed in series in the pressure vessel;
    상기 복수의 역삼투 분리막 모듈 각각의 중심부를 통과하며, 상기 복수의 역삼투 분리막 모듈과 접하는 면에 복수의 구멍이 형성된 투과수 유로;A permeate flow path passing through a central portion of each of the plurality of reverse osmosis membrane modules and having a plurality of holes formed in contact with the plurality of reverse osmosis membrane modules;
    상기 압력용기 후단의 적어도 일부에 위치하는 투과수 배출구; 및A permeate water outlet located at least a portion of the rear end of the pressure vessel; And
    상기 압력용기 후단의 적어도 일부에 위치하는 농축수 배출구;를 포함하되,Includes; Concentrated water outlet located in at least a portion of the pressure vessel rear end;
    상기 해수는 상기 해수 유입구를 통해 유입되고,The sea water is introduced through the sea water inlet,
    상기 유입된 해수는 상기 복수의 역삼투 분리막 모듈을 투과하며 담수화되고,The introduced seawater is desalted through the plurality of reverse osmosis membrane modules,
    상기 복수의 역삼투 분리막 모듈을 투과한 해수는 상기 복수의 구멍을 통해 상기 투과수 유로로 유입되고,Seawater passing through the plurality of reverse osmosis membrane modules is introduced into the permeate flow path through the plurality of holes,
    상기 투과수 유로로 유입된 해수는 상기 투과수 배출구를 통해 배출되며,Seawater introduced into the permeate flow path is discharged through the permeate discharge port,
    상기 투과수 유로로 유입되지 못한 해수는 상기 농축수 배출구를 통해 배출되고,Sea water not introduced into the permeate flow path is discharged through the concentrated water outlet,
    상기 복수의 역삼투 분리막 모듈 중 상기 압력용기의 전단부에 위치한 적어도 하나의 모듈은 제 1 모듈부를 구성하고, 상기 제 1 모듈부보다 후단에 위치한 모듈은 제 2 모듈부를 구성하며,At least one module located at the front end of the pressure vessel of the plurality of reverse osmosis membrane modules comprises a first module portion, a module located after the first module portion constitutes a second module portion,
    상기 제 2 모듈부를 구성하는 각 모듈의 유량은 상기 제 1 모듈부를 구성하는 각 모듈의 유량보다 많은 것을 특징으로 하는 역삼투 분리막 압력용기.Reverse osmosis membrane pressure vessel, characterized in that the flow rate of each module constituting the second module portion is greater than the flow rate of each module constituting the first module portion.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제 1 모듈부를 구성하는 각 모듈의 염 배제율은 상기 제 2 모듈부를 구성하는 각 모듈의 염 배제율보다 높은 것을 특징으로 하는 역삼투 분리막 압력용기.The salt rejection rate of each module constituting the first module portion is higher than the salt rejection rate of each module constituting the second module portion reverse pressure osmosis membrane pressure vessel.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제 1 모듈부 및 상기 제 2 모듈부 중 적어도 하나의 모듈부의 분리막에는 탄소나노튜브가 혼합되는 것을 특징으로 하는 역삼투 분리막 압력용기.Reverse osmosis membrane pressure vessel, characterized in that the carbon nanotubes are mixed in the separation membrane of at least one of the first module portion and the second module portion.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 탄소나노튜브는 상기 분리막의 폴리아미드층 및 지지층 중 적어도 어느 하나의 층에 혼합되는 것을 특징으로 하는 역삼투 분리막 압력용기.The carbon nanotube is a reverse osmosis membrane pressure vessel, characterized in that mixed in at least one layer of the polyamide layer and the support layer of the separator.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 탄소나노튜브에 폴리 도파민이 코팅되어 상기 탄소나노튜브가 도포를 고르게 하는 것을 특징으로 하는 역삼투 분리막 압력용기.Poly dopamine is coated on the carbon nanotubes, the reverse osmosis membrane pressure vessel, characterized in that the carbon nanotubes evenly coated.
  6. 제 1항에 있어서,The method of claim 1,
    상기 제 1 모듈부의 모듈은 2개이고,The module of the first module unit is two,
    상기 제 2 모듈부의 모듈은 4개인 것을 특징으로 하는 역삼투 분리막 압력용기.Reverse osmosis membrane pressure vessel, characterized in that the four modules of the second module unit.
  7. 제 1항에 있어서,The method of claim 1,
    상기 압력용기의 재질은 섬유강화플라스틱(FRP, Fiber Reinforced Plastics)인 것을 특징으로 하는 역삼투 분리막 압력용기.The pressure vessel material is a reverse osmosis membrane pressure vessel, characterized in that the fiber reinforced plastics (FRP, Fiber Reinforced Plastics).
  8. 해수가 역삼투 분리막 압력용기에 유입되는 제 1 단계;A first step in which seawater flows into the reverse osmosis membrane pressure vessel;
    상기 유입된 해수가 상기 압력용기 내의 복수의 역삼투 분리막 모듈을 투과하여 담수화되는 제 2 단계;A second step of desalination of the introduced seawater through a plurality of reverse osmosis membrane modules in the pressure vessel;
    상기 담수화된 해수가 상기 압력용기의 투과수 배출구를 통해 배출되는 제 3 단계;를 포함하고,And a third step of discharging the desalted seawater through the permeated water outlet of the pressure vessel.
    상기 복수의 역삼투 분리막 모듈 중 상기 압력용기의 전단부에 위치한 적어도 하나의 모듈은 제 1 모듈부를 구성하고, 상기 제 1 모듈부보다 후단에 위치한 모듈은 제 2 모듈부를 구성하며,At least one module located at the front end of the pressure vessel of the plurality of reverse osmosis membrane modules comprises a first module portion, a module located after the first module portion constitutes a second module portion,
    상기 제 2 모듈부를 구성하는 각 모듈의 유량은 상기 제 1 모듈부를 구성하는 각 모듈의 유량보다 많은 것을 특징으로 하는 해수 담수화 방법.The flow rate of each module constituting the second module unit is greater than the flow rate of each module constituting the first module unit seawater desalination method.
  9. 제 8항에 있어서,The method of claim 8,
    상기 제 1 모듈부를 구성하는 각 모듈의 염 배제율은 상기 제 2 모듈부를 구성하는 각 모듈의 염 배제율보다 높은 것을 특징으로 하는 해수 담수화 방법.The salt rejection rate of each module constituting the first module portion is higher than the salt rejection rate of each module constituting the second module portion.
  10. 제 8항에 있어서,The method of claim 8,
    상기 제 2 역삼투 분리막 모듈에는 탄소나노튜브층이 더 포함되고,The second reverse osmosis membrane module further includes a carbon nanotube layer,
    상기 제 2단계는,The second step,
    상기 해수가 상기 탄소나노튜브층을 투과하는 단계;를 더 포함하는 것을 특징으로 하는 해수 담수화 방법.The seawater desalination method further comprising the step of passing through the carbon nanotube layer.
  11. 제 1항 내지 제 7항 중 어느 한항에 따른 역삼투 분리막 압력용기 복수개를 병렬로 연결한 것을 특징으로 하는 역삼투 분리막 압력용기 스테이지.Reverse osmosis membrane pressure vessel stage characterized in that a plurality of reverse osmosis membrane pressure vessel according to any one of claims 1 to 7 connected in parallel.
  12. 제 11항에 따른 역삼투 분리막 압력용기 스테이지 복수개를 직렬로 연결한 것을 특징으로 하는 해수 담수화 장치.Seawater desalination apparatus characterized in that a plurality of reverse osmosis membrane pressure vessel stage according to claim 11 are connected in series.
  13. 제 3 항에 있어서,The method of claim 3, wherein
    상기 탄소나노튜브는,The carbon nanotubes,
    상기 탄소나노튜브를 50~70℃의 H2O2 용액 내에 30분 ~ 2시간 동안 유지시키는 단계;Maintaining the carbon nanotubes in a H 2 O 2 solution at 50˜70 ° C. for 30 minutes to 2 hours;
    상기 H2O2 용액을 증발시키고 800~1000℃에서 비활성기체를 주입하면서 1~3시간 동안 탄소나노튜브를 산화시키는 단계;Evaporating the H 2 O 2 solution and oxidizing the carbon nanotubes for 1 to 3 hours while injecting an inert gas at 800 to 1000 ° C .;
    상기 탄소나노튜브를 상온에서 25~40℃ 까지 냉각하는 단계;Cooling the carbon nanotubes to 25 to 40 ° C. at room temperature;
    상기 탄소나노튜브를 300~600℃로 승온하여 2~4시간 동안 유지하는 단계; 및Heating the carbon nanotubes at 300 to 600 ° C. for 2 to 4 hours; And
    비활성기체를 주입하여 상기 탄소나노튜브를 상온까지 냉각시켜 열산화법을 통해 말단이 개봉하는 단계;를 통하여 얻어진 평균 길이는 1~2㎛이고, 평균 직경은 5~8nm인 탄소나노튜브인 것을 특징으로 하는 역삼투 분리막 압력용기.Injecting an inert gas to cool the carbon nanotubes to room temperature to open the terminal through a thermal oxidation method; the average length obtained through 1 ~ 2㎛, the average diameter is 5 ~ 8nm carbon nanotubes Reverse osmosis membrane pressure vessel.
  14. 제 4 항에 있어서,The method of claim 4, wherein
    상기 탄소나노튜브는 아민 용액에 분산된 후 계면중합법에 의하여 상기 분리막에 혼합되는 것을 특징으로 하는 역삼투 분리막 압력용기.The carbon nanotubes are dispersed in an amine solution, and then reverse osmosis membrane pressure vessel, characterized in that mixed by the membrane by the interfacial polymerization method.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 아민 용액에 포함되는 아민은 오르소-페닐렌다이아민(ortho-phenylenediamine), 메타-페닐렌다이아민 (meta-phenylenediamine), 파라-페닐렌다이아민(para-phenylenediamine), 피페라진(piperazine), 에틸렌다이아민(ethylene diamine), 카다버린(cadaverine), 및 이들의 혼합물로 이루어지는 군으로부터 선택된 어느 하나인 것을 특징으로 하는 역삼투 분리막 압력용기.The amine contained in the amine solution is ortho-phenylenediamine, meta-phenylenediamine, para-phenylenediamine, and piperazine. Reverse pressure osmosis membrane pressure vessel, characterized in that any one selected from the group consisting of ethylene diamine, ethylene diamine, cadaverine, and mixtures thereof.
  16. 제 5 항에 있어서,The method of claim 5, wherein
    상기 폴리 도파민이 코팅되는 것은,The poly dopamine is coated,
    상기 탄소나노튜브를 트리스-버퍼 용액에 혼합하여 초음파 분산하는 제 1 단계;A first step of ultrasonically dispersing the carbon nanotubes in a tris-buffer solution;
    상기 탄소나노튜브가 혼합된 트리스-버퍼 용액에 산소를 프리퍼징 하는 제 2 단계;A second step of prepurging oxygen in the tris-buffer solution in which the carbon nanotubes are mixed;
    상기 산소가 프리퍼징된 트리스-버퍼 용액에 도파민을 주입하는 제 3 단계;Injecting dopamine into the oxygen pre-purged tris-buffer solution;
    상기 도파민이 주입된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 제 4 단계;A fourth step of reacting the carbon nanotubes with the dopamine by injecting oxygen into the dopamine-infused tris-buffer solution;
    상기 탄소나노튜브와 상기 도파민이 반응된 트리스-버퍼 용액에 초음파 분산을 가하는 제 5 단계;A fifth step of applying ultrasonic dispersion to the tris-buffer solution in which the carbon nanotubes and the dopamine are reacted;
    상기 초음파 분산된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 제 6 단계;A sixth step of reacting the carbon nanotubes with the dopamine by injecting oxygen into the ultrasonically dispersed tris-buffer solution;
    상기 트리스-버퍼 용액의 pH를 낮추는 제 7 단계; 및A seventh step of lowering the pH of the tris-buffer solution; And
    상기 트리스-버퍼 용액을 건조하는 제 8 단계;에 의한 것을 특징으로 하는 역삼투 분리막 압력용기.Reverse osmosis membrane pressure vessel, characterized in that for; the eighth step of drying the tris-buffer solution.
  17. 제16항에 있어서,The method of claim 16,
    상기 제 1 단계에서,In the first step,
    상기 트리스-버퍼 용액은 pH가 8.5 이상으로 조절된 것을 특징으로 하는 역삼투 분리막 압력용기.The tris-buffer solution is a reverse osmosis membrane pressure vessel, characterized in that the pH is adjusted to 8.5 or more.
  18. 탄소나노튜브가 혼합되는 역삼투 분리막을 사용하는 압력용기를 제조하는 방법에 있어서,In the method for producing a pressure vessel using a reverse osmosis membrane in which carbon nanotubes are mixed,
    상기 탄소나노튜브를 50~70℃의 H2O2 용액 내에 30분 ~ 2시간 동안 유지시키는 단계;Maintaining the carbon nanotubes in a H 2 O 2 solution at 50˜70 ° C. for 30 minutes to 2 hours;
    상기 H2O2 용액을 증발시키고 800~1000℃에서 비활성기체를 주입하면서 1~3시간 동안 탄소나노튜브를 산화시키는 단계;Evaporating the H 2 O 2 solution and oxidizing the carbon nanotubes for 1 to 3 hours while injecting an inert gas at 800 to 1000 ° C .;
    상기 탄소나노튜브를 상온에서 25~40℃ 까지 냉각하는 단계;Cooling the carbon nanotubes to 25 to 40 ° C. at room temperature;
    상기 탄소나노튜브를 300~600℃로 승온하여 2~4시간 동안 유지하는 단계; 및Heating the carbon nanotubes at 300 to 600 ° C. for 2 to 4 hours; And
    비활성기체를 주입하여 상기 탄소나노튜브를 상온까지 냉각시켜 열산화법을 통해 말단이 개봉되도록 하는 단계;를 포함하고,Injecting an inert gas to cool the carbon nanotubes to room temperature to open the end through a thermal oxidation method;
    상기 탄소나노튜브의 평균 길이는 1~2㎛이고, 평균 직경은 5~8nm인 것을 특징으로 하는 역삼투 분리막 압력용기 제조 방법.The average length of the carbon nanotubes is 1 ~ 2㎛, the reverse osmosis membrane pressure vessel manufacturing method, characterized in that the average diameter is 5 ~ 8nm.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 탄소나노튜브의 말단이 개봉되도록 하는 단계 후,After the step of opening the end of the carbon nanotubes,
    상기 탄소나노튜브를 트리스-버퍼 용액에 혼합하여 초음파 분산하는 단계;Ultrasonically dispersing the carbon nanotubes in a tris-buffer solution;
    상기 탄소나노튜브가 혼합된 트리스-버퍼 용액에 산소를 프리퍼징 하는 단계;Prepurging oxygen in the tris-buffer solution in which the carbon nanotubes are mixed;
    상기 산소가 프리퍼징된 트리스-버퍼 용액에 도파민을 주입하는 단계;Injecting dopamine into the oxygen pre-purged tris-buffer solution;
    상기 도파민이 주입된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 단계;Reacting the carbon nanotubes with the dopamine by injecting oxygen into the dopamine-infused tris-buffer solution;
    상기 탄소나노튜브와 상기 도파민이 반응된 트리스-버퍼 용액에 초음파 분산을 가하는 단계;Applying ultrasonic dispersion to the tris-buffer solution in which the carbon nanotubes and the dopamine are reacted;
    상기 초음파 분산된 트리스-버퍼 용액에 산소를 주입하여 상기 탄소나노튜브와 상기 도파민을 반응시키는 단계;Reacting the carbon nanotubes with the dopamine by injecting oxygen into the ultrasonically dispersed tris-buffer solution;
    상기 트리스-버퍼 용액의 pH를 낮추는 단계; 및Lowering the pH of the tris-buffer solution; And
    상기 트리스-버퍼 용액을 건조하는 단계;를 더 포함하는 것을 특징으로 하는 역삼투 분리막 압력용기 제조 방법. Drying the tris-buffer solution; Reverse osmosis membrane pressure vessel manufacturing method characterized in that it further comprises.
PCT/KR2015/009225 2014-09-02 2015-09-02 Hybrid cnt-ro membrane pressure vessel WO2016036125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0116266 2014-09-02
KR20140116266 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016036125A1 true WO2016036125A1 (en) 2016-03-10

Family

ID=55440096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009225 WO2016036125A1 (en) 2014-09-02 2015-09-02 Hybrid cnt-ro membrane pressure vessel

Country Status (2)

Country Link
KR (1) KR101803604B1 (en)
WO (1) WO2016036125A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106925121A (en) * 2017-05-02 2017-07-07 华东理工大学 A kind of Mg2+And Li+Separate triple channel endodermis positively charged nanofiltration membranes and preparation method thereof
ES2680904A1 (en) * 2017-03-06 2018-09-11 Manuel Lahuerta Romeo Underwater desalination (Machine-translation by Google Translate, not legally binding)
CN113101807A (en) * 2021-04-06 2021-07-13 九章膜(北京)科技有限公司 Membrane module, membrane equipment with membrane module and membrane system
CN113121859A (en) * 2021-04-22 2021-07-16 哈尔滨工业大学 Preparation method of electropolymerized polydopamine-carbon nanotube composite membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117561A (en) * 1994-10-20 1996-05-14 Toray Ind Inc Reverse osmosis membrane separator and reverse osmosis separation method
US20100320140A1 (en) * 2009-06-18 2010-12-23 Nowak Andrew P Methods and systems for incorporating carbon nanotubes into thin film composite reverse osmosis membranes
KR20110098503A (en) * 2010-02-26 2011-09-01 고려대학교 산학협력단 Polyamide reverse osmosis membranes with enhanced chlorine resistance and method for manufacturing the same
JP2012130839A (en) * 2010-12-20 2012-07-12 Hitachi Plant Technologies Ltd Reverse osmosis treatment apparatus
KR101374279B1 (en) * 2012-01-03 2014-03-14 한국화학연구원 Carbon nanotube reverse osmosis composite membrane and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658423B1 (en) * 2006-01-12 2006-12-15 주식회사 새 한 Multistage separation system using reverse osmosis membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117561A (en) * 1994-10-20 1996-05-14 Toray Ind Inc Reverse osmosis membrane separator and reverse osmosis separation method
US20100320140A1 (en) * 2009-06-18 2010-12-23 Nowak Andrew P Methods and systems for incorporating carbon nanotubes into thin film composite reverse osmosis membranes
KR20110098503A (en) * 2010-02-26 2011-09-01 고려대학교 산학협력단 Polyamide reverse osmosis membranes with enhanced chlorine resistance and method for manufacturing the same
JP2012130839A (en) * 2010-12-20 2012-07-12 Hitachi Plant Technologies Ltd Reverse osmosis treatment apparatus
KR101374279B1 (en) * 2012-01-03 2014-03-14 한국화학연구원 Carbon nanotube reverse osmosis composite membrane and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2680904A1 (en) * 2017-03-06 2018-09-11 Manuel Lahuerta Romeo Underwater desalination (Machine-translation by Google Translate, not legally binding)
CN106925121A (en) * 2017-05-02 2017-07-07 华东理工大学 A kind of Mg2+And Li+Separate triple channel endodermis positively charged nanofiltration membranes and preparation method thereof
CN106925121B (en) * 2017-05-02 2020-04-24 华东理工大学 Mg2+And Li+Separating three-channel inner skin layer positively-charged nanofiltration membrane and preparation method thereof
CN113101807A (en) * 2021-04-06 2021-07-13 九章膜(北京)科技有限公司 Membrane module, membrane equipment with membrane module and membrane system
CN113121859A (en) * 2021-04-22 2021-07-16 哈尔滨工业大学 Preparation method of electropolymerized polydopamine-carbon nanotube composite membrane
CN113121859B (en) * 2021-04-22 2022-09-02 哈尔滨工业大学 Preparation method of electropolymerized polydopamine-carbon nanotube composite membrane

Also Published As

Publication number Publication date
KR20160028391A (en) 2016-03-11
KR101803604B1 (en) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2016036125A1 (en) Hybrid cnt-ro membrane pressure vessel
WO2016043427A1 (en) Multistage membrane separation and purification process and apparatus for separating high purity methane gas
WO2016032299A1 (en) Polyimide preparation method using monomer salt
WO2019022268A1 (en) Zinc oxide nanoparticle/reduced graphene oxide nanocomposite photocatalyst with controlled shape having high photocatalytic characteristics, and manufacturing method therefor
WO2015137678A1 (en) Composite film comprising graphene oxide coating layer, porous polymer support comprising same, and method for preparing same
WO2018110986A1 (en) Filter medium, method for manufacturing same, and filter unit comprising same
WO2018070726A1 (en) Method for producing lithium compound
WO2015016683A1 (en) Polyamide-based water-treatment separation membrane having excellent durability, and manufacturing method therefor
WO2020256450A1 (en) Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
WO2015084121A1 (en) Block copolymer
WO2015084122A1 (en) Block copolymer
WO2015084124A1 (en) Block copolymer
WO2012060601A2 (en) Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
WO2014196835A1 (en) Polyamide-based water treatment separation membrane having excellent oxidation resistance and chlorine resistance and manufacturing method therefor
WO2017111503A1 (en) Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas
WO2009142434A2 (en) Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
WO2009142433A2 (en) Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
WO2014069786A1 (en) Polyamide-based water treatment separating film having superior contamination resistance and method for manufacturing same
WO2020017729A1 (en) Membrane apparatus having improved forward osmosis performance and method for separating solution using same
WO2017179900A1 (en) Graphene fiber and manufacturing method therefor
WO2018124459A1 (en) Perovskite compound and preparation method therefor, and solar cell comprising perovskite compound and manufacturing method therefor
WO2013169024A1 (en) Solvent-substitution solvent used in aerogel production, and hydrophobised aerogel production method using same
WO2017146457A2 (en) Ultrathin-film composite membrane based on thermally rearranged poly(benzoxazole-imide) copolymer, and production method therefor
WO2014021634A1 (en) Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
WO2014021635A1 (en) Separation membrane comprising coating layer and battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838659

Country of ref document: EP

Kind code of ref document: A1