WO2016035505A1 - Control device and control method for tempering mill - Google Patents

Control device and control method for tempering mill Download PDF

Info

Publication number
WO2016035505A1
WO2016035505A1 PCT/JP2015/072370 JP2015072370W WO2016035505A1 WO 2016035505 A1 WO2016035505 A1 WO 2016035505A1 JP 2015072370 W JP2015072370 W JP 2015072370W WO 2016035505 A1 WO2016035505 A1 WO 2016035505A1
Authority
WO
WIPO (PCT)
Prior art keywords
temper rolling
shape
steel sheet
hot
rolled steel
Prior art date
Application number
PCT/JP2015/072370
Other languages
French (fr)
Japanese (ja)
Inventor
舘野 純一
慎也 山口
青江 信一郎
北村 拓也
裕史 津山
隆喜 寺崎
裕紀 米田
横田 修二
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014177066A external-priority patent/JP5971293B2/en
Priority claimed from JP2014177056A external-priority patent/JP5971292B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2016035505A1 publication Critical patent/WO2016035505A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/56Elongation control

Definitions

  • the present invention relates to a control device and a control method for a temper rolling mill that are suitable for application to a temper rolling process for correcting the shape of a steel sheet after hot rolling.
  • the steel sheet is subjected to light reduction (elongation rate) within a range of about 0.05 to 3% for the purpose of removing yield elongation, correcting the shape of the steel sheet, and adjusting the surface roughness.
  • elongation rate elongation rate
  • the temper rolling process for hot-rolled steel sheets plays a particularly important role in correcting the steel sheet shape.
  • the shape of the steel sheet means the flatness of the steel sheet, which is called so-called ear elongation or belly elongation, and is caused by a difference in elongation in the longitudinal direction in the width direction of the steel sheet. That is, if the elongation in the longitudinal direction at the end in the width direction of the steel plate is large, the shape of the steel plate becomes an ear extension shape. On the other hand, if the elongation in the longitudinal direction at the central portion in the width direction of the steel plate is large, the shape of the steel plate becomes a belly stretch shape.
  • the degree of reduction is expressed by the reduction ratio R shown in the following formula (1) using the thicknesses Hin and Hout of the steel sheet on the entry side and the exit side of the rolling mill.
  • the degree of reduction is represented by the elongation ratio EL shown in the following formula (2). Therefore, in this specification, the degree of reduction in the temper rolling process is represented by the elongation ratio EL.
  • the shape of the steel sheet is corrected using shape control means such as a roll bender that controls the amount of bending of the rolling roll.
  • shape control means such as a roll bender that controls the amount of bending of the rolling roll.
  • the initial value of the operation amount of the shape control means is generally set to the center value of the operation range so that it can be adjusted according to the steel plate shape on the delivery side of the rolling mill during rolling.
  • the rolling reduction in the normal cold rolling process is several tens of percent, and the shape of the steel sheet before cold rolling, that is, the elongation difference in the longitudinal direction in the width direction of the steel sheet before cold rolling is a strain added in the cold rolling process. It is overwhelmingly small compared to the amount. For this reason, in a cold rolling process, the influence which the steel plate shape before rolling has on the steel plate shape after rolling is small.
  • the elongation rate in the temper rolling process is about 0.05 to 3%, and the elongation difference in the longitudinal direction in the width direction of the steel sheet before the temper rolling is about the same as the strain applied in the rolling process.
  • the shape of the steel plate before rolling has a great influence on the shape of the steel plate after rolling, and shape defects before rolling often remain after rolling. Therefore, it is necessary to consider the shape of the steel plate before rolling in the initial setting of the rolling mill.
  • Patent Document 1 discloses that the steel plate shape becomes the target shape by substituting the predicted value of the rolling load and the material crown and the actual measured value of the steel plate shape before rolling into a mathematical model created in advance.
  • a steel sheet shape control method in the cold rolling process for calculating the initial value of the operation amount of the shape control means has been proposed.
  • Patent Document 1 does not disclose or suggest a method for measuring an actual measurement value of a steel plate shape before rolling.
  • the actual measured value of the steel plate shape before rolling can be measured using a non-contact distance sensor on the exit side of the final stand of the hot rolling mill.
  • the steel plate shape changes due to creep deformation in the subsequent coil winding process and cooling process.
  • the steel plate shape on the exit side of the hot rolling mill may be different from the steel plate shape on the entry side of the cold rolling mill or temper rolling mill. Even if the measured values are used, it is difficult to control the steel plate shape to the target shape in the cold rolling process or the temper rolling process.
  • the steepness (an index indicating the steel plate shape as a peak height per pitch in the longitudinal direction) has a value at one location such as an ear extension shape with about 1.5%. Only the shape of the steel plate before rolling is handled. In general, since the shape of the steel sheet in the longitudinal direction is not constant, the steel sheet shape in the cold rolling process or the temper rolling process is the target of the steel sheet shape with only one representative value as in the embodiment described in Patent Document 1. It is insufficient to control the shape.
  • the operation amount of the shape control means reaches the upper limit value or the lower limit value of the operation range, The shape may not be sufficiently corrected.
  • a method of measuring the shape of the entire length of a steel sheet using a shape detection device by unwinding a hot-rolled coil before performing a cold rolling process or a temper rolling process can be considered.
  • a separate process of unwinding the coil is required, and thus a lot of labor is required.
  • Patent Document 1 Even if the shape of the entire length of the steel plate is measured, the technique described in Patent Document 1 is mainly intended for a cold rolling process in which the rolling reduction is determined in advance. For this reason, when it is a rolling process with a very small rolling reduction like a temper rolling process, the technique of patent document 1 may not be enough to correct the steel plate shape before rolling.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to accurately predict the steel plate shape before temper rolling without requiring much labor, and based on the predicted steel plate shape. It is providing the control apparatus and control method of a temper rolling mill which can correct
  • the control device for a temper rolling mill is a control device for a temper rolling mill for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling.
  • Predicting means for predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model simulating the process, and temper rolling based on the shape of the hot rolled steel sheet before temper rolling predicted by the predicting means
  • the elongation ratio calculating means for calculating the target elongation ratio of the hot-rolled steel sheet at the above, and the reduction position and tension of the temper rolling mill according to the target elongation ratio of the hot-rolled steel sheet in the temper rolling calculated by the elongation ratio calculation means And a control means for controlling.
  • the elongation rate calculating means is the maximum elongation in the shape of the hot-rolled steel sheet before temper rolling predicted by the predicting means.
  • the target elongation ratio EL of the hot-rolled steel sheet in the temper rolling is calculated by substituting the difference rate ⁇ max into the following formula (3).
  • (alpha) 1 in Numerical formula (3) shows a shape control safety factor.
  • the elongation rate calculating means is the maximum elongation in the shape of the hot-rolled steel sheet before temper rolling predicted by the predicting means.
  • the target elongation ratio EL of the hot-rolled steel sheet in the temper rolling is calculated by substituting the difference rate ⁇ max into the following formula (4).
  • (alpha) 2 in Numerical formula (4) shows a shape control safety factor.
  • a method for controlling a temper rolling mill is a method for controlling a temper rolling mill for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling.
  • An elongation ratio calculating step for calculating a target elongation ratio of the hot-rolled steel sheet in step, and a reduction position and tension of the temper rolling mill according to the target elongation ratio of the hot-rolled steel sheet in the temper rolling calculated in the elongation ratio calculation step
  • a control step for controlling is a method for controlling a temper rolling mill for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling.
  • the temper rolling mill control device is a temper rolling mill control device for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling.
  • Predicting means for predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model simulating the process, and hot rolled steel sheet based on the shape of the hot rolled steel sheet before temper rolling predicted by the predicting means
  • Control means for controlling the initial setting value of the shape control means for correcting the shape of the above.
  • the control device for a temper rolling mill according to the second aspect of the present invention is characterized in that, in the above invention, the shape control means is a roll bender for controlling a deflection amount of the rolling roll.
  • the temper rolling mill control method is a temper rolling mill control method for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling. Prediction step of predicting the shape of the hot-rolled steel plate before temper rolling using a mathematical model simulating the process, and hot-rolled steel plate based on the shape of the hot-rolled steel plate before temper rolling predicted in the prediction step And a control step for controlling an initial setting value of the shape control means for correcting the shape of the shape.
  • the steel plate shape before temper rolling is accurately predicted without requiring much labor, and the steel plate shape is desired based on the predicted steel plate shape.
  • the shape can be corrected.
  • FIG. 1 is a schematic diagram showing the configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the temper rolling control process according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining the flow of a general hot rolling process.
  • FIG. 4 is a diagram illustrating an example of calculating the elongation difference rate.
  • FIG. 5 is a diagram showing measured values of the shape of the steel sheet after the temper rolling of the invention example and the comparative example.
  • FIG. 6 is a schematic diagram showing a configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the second embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow
  • FIG. 7 is a flowchart showing the flow of the temper rolling control process according to the second embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the operation amount of the work roll bender and the elongation difference rate.
  • FIG. 9 is a diagram showing measured values of the shape of the steel sheet after temper rolling in the invention example and the comparative example.
  • FIG. 1 is a schematic diagram showing the configuration of a temper rolling mill control apparatus according to a first embodiment of the present invention and a temper rolling mill to which the control apparatus is applied.
  • a temper rolling mill 1 to which a control device for a temper rolling mill according to a first embodiment of the present invention is applied includes a four-high rolling mill 2 and reels 3a and 3b as main components.
  • the temper rolling machine 1 passes the steel sheet S through the four-high rolling mill 2 while discharging and winding the hot-rolled steel sheet (hereinafter abbreviated as steel sheet) S using the reel 3a and the reel 3b. As a result, the shape of the steel sheet S is corrected.
  • the reduction control of the steel sheet S is performed by controlling the reduction position of the work roll of the four-high rolling mill 2, and the rolling tension of the steel sheet S is controlled by the torque control of the motor that rotates the reels 3a and 3b.
  • the four-high rolling mill 2 includes a work roll bender that controls the shape of the steel sheet S by controlling the amount of axial deflection of the work roll as the shape control means of the steel sheet S.
  • a control device 10 for a temper rolling mill is configured by an information processing device such as a personal computer, and the arithmetic processing device in the information processing device stores a computer program. By executing this, it functions as a steel plate shape prediction unit 11, a target elongation rate setting unit 12, and a reduction position / tension control unit 13. The functions of these units will be described later.
  • the control device 10 of the temper rolling mill having such a configuration predicts the steel plate shape before temper rolling with high accuracy without requiring much labor by executing the temper rolling control process shown below,
  • the steel plate shape is corrected to a desired shape based on the predicted steel plate shape.
  • the operation of the control device 10 of the temper rolling mill when the temper rolling control process is executed will be described with reference to FIGS.
  • FIG. 2 is a flowchart showing the flow of the temper rolling control process according to the first embodiment of the present invention.
  • the flowchart shown in FIG. 2 starts at the timing when the execution command for the temper rolling process is input, and the temper rolling control process proceeds to step S1.
  • the steel plate shape prediction unit 11 acquires the steel plate information and hot rolling information of the steel plate S that performs temper rolling. Specifically, as shown in FIG. 3, in a general hot rolling process, the steel sheet S is rolled to a predetermined thickness in the finish rolling mill 21 and then passes through a run-out table (not shown). Is cooled by the coiler 23 and wound in a coil shape by the coiler 23 (coil winding process). And the coil-shaped steel plate S is cooled until it becomes normal temperature in a coil yard (coil cooling process).
  • the steel plate shape prediction unit 11 acquires information on material characteristics such as the dimensional shape, temperature, and deformation resistance of the steel plate S on the exit side of the finish rolling mill 21 as steel plate information. Moreover, the steel plate shape prediction unit 11 acquires, as hot rolling information, information on the cooling condition of the steel plate S by the water cooling device 22 and the tension and speed applied to the steel plate S in the passing plate. In addition, when the temperature of the steel plate S can be measured before winding by the coiler 23, the measured temperature may be included in the steel plate information. Thereby, the process of step S1 is completed and a temper rolling control process progresses to the process of step S2.
  • the steel plate shape prediction unit 11 simulates the hot rolling process, the coil winding process, and the coil cooling process based on the steel sheet information and hot rolling information of the steel sheet S acquired in the process of step S1.
  • the shape of the steel plate S before temper rolling is predicted using a mathematical model (steel plate shape prediction process). Details of the steel plate shape prediction process will be described later.
  • the process of step S2 is completed and a temper rolling control process progresses to the process of step S3.
  • the target elongation rate setting unit 12 calculates the target elongation rate EL of the steel sheet S in the temper rolling based on the shape of the steel sheet S before the temper rolling predicted in the process of step S2. . Specifically, first, the target elongation rate setting unit 12 calculates the elongation difference rate ⁇ in the shape of the steel sheet S before temper rolling using the following formula (5).
  • Equation (5) le and lc represent the length of the steel sheet S at the center position in the width direction and the end position in the width direction of the steel sheet S, respectively.
  • the shape of the steel sheet S is an ear-extending shape, and when it is negative, the shape of the steel sheet S is an abdominal elongation shape.
  • FIG. 4 is a diagram showing a calculation example of the elongation difference rate.
  • This example shows the elongation difference obtained from the shape prediction result of a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm.
  • the shape of the steel plate is an ear extension shape with an elongation difference rate of 0.1% from the front end in the longitudinal direction (longitudinal position 0 m) to the vicinity of the central portion in the longitudinal direction (longitudinal position 450 m).
  • the shape of the steel plate becomes a belly stretch shape (defective shape) with an elongation difference rate of about ⁇ 0.2%.
  • the elongation difference 0.1%
  • the steepness using the peak height per unit length of the steel sheet as an index is about 2%.
  • the portion having the worst shape in the steel plate shape before temper rolling that is, an elongation rate larger than the maximum value (maximum elongation difference rate) ⁇ max of the elongation difference rate ⁇ is set as the target elongation rate EL. .
  • the target elongation rate setting unit 12 calculates the target elongation rate EL of the steel sheet S in the temper rolling by substituting the calculated maximum elongation difference rate ⁇ max into the following formula (6).
  • ⁇ 1 in the following formula (6) represents a shape control safety factor considering an error of the formula model and an operation variation in the temper rolling process.
  • the target elongation rate setting unit 12 substitutes the maximum elongation difference ⁇ max in the shape of the steel sheet S before temper rolling predicted in the process of step S2 into the following equation (7).
  • the target elongation ratio EL of the steel sheet S in quality rolling may be calculated.
  • ⁇ 2 in the following formula (7) represents a shape control safety factor considering an error of the formula model and an operation variation in the temper rolling process.
  • the shape control safety factors ⁇ 1 and ⁇ 2 may be determined for each temper rolling mill according to the prediction accuracy of the mathematical model, the amount of fluctuation in the operation of the temper rolling mill, and the accuracy of the required steel plate shape.
  • the value of the control safety factor ⁇ 1 is preferably set within a range of 1.1 to 5.0, and the value of the shape control safety factor ⁇ 2 is preferably set within a range of 0.1 to 1.0.
  • the elongation rate in the temper rolling process is affected by mechanical properties such as yield strength and elongation of the steel sheet after temper rolling. For this reason, when the range of the stretch rate is limited due to the mechanical properties of the steel sheet, the target stretch rate EL is obtained in consideration of both the stretch rate constraint due to the mechanical properties and the stretch rate for shape correction. It is desirable. Thereby, the process of step S3 is completed and a temper rolling control process progresses to the process of step S4.
  • the rolling position / tension control unit 13 uses a theoretical rolling model to calculate the temper rolling mill based on the target elongation ratio EL of the steel sheet S in the temper rolling calculated in the process of step S3. 1, the rolling position of the four-high rolling mill 2 and the tension of the steel sheet S are controlled.
  • the reduction position / tension control unit 13 may control the reduction position and the tension by referring to a table indicating the relationship between the target elongation rate EL, the reduction position, and the tension for each steel type prepared in advance.
  • the initial value of the work roll bender's operation amount may be set to the center value of the operation range in preparation for the operation by the operator during temper rolling.
  • the actual value of the elongation rate is calculated from the measurement result of the thickness or the sheet passing speed of the steel sheet S before and after rolling, and the reduction position and the tension are set so that the target elongation rate can be maintained based on the calculated result. It is good to perform feedback control. Thereby, the process of step S4 is completed and a series of temper rolling control processes are complete
  • the mathematical model in each part is constituted by a phase transformation model, a heat transfer model, and a stress / strain model.
  • a viscoplastic analysis is performed using a differential model for the temperature calculation and a simple physical model for the stress / strain model (slit model on the runout table, lamination after winding). Cylindrical model). The outline of each model will be described below.
  • the temperature transition on the run-out table is the heat transfer analysis and transformation analysis with the condition of the steel sheet at the delivery side of the finishing mill (sheet crown, flatness, and temperature distribution in the width direction) as the initial condition and the cooling condition as the boundary condition. It is calculated by solving The temperature distribution of the C cross section of the steel sheet is obtained by solving the unsteady conduction equation shown in the following formula (8) and the boundary condition formula shown in the following formula (9) (explicit differential model).
  • the temperature distribution in the plate thickness direction is assumed to be uniform, and is treated as a one-dimensional model only in the plate width direction.
  • the phase transformation uses a method of calculating transformation behavior for an arbitrary cooling curve using an isothermal transformation curve (TTT diagram), and considers changes in physical property values due to transformation and transformation heat generation.
  • T is the temperature of the steel sheet
  • t is the time
  • is the thermal conductivity
  • q is the calorific value per unit time associated with the phase transformation
  • is the density
  • c is the specific heat
  • n is the coordinate perpendicular to the steel sheet surface
  • h Represents the heat transfer coefficient
  • Tc represents the temperature of the coolant or the atmosphere.
  • volume strain increment ⁇ t and creep strain increment ⁇ c between time t and time t + ⁇ t are given by the following equations (10) and (11).
  • is a linear expansion coefficient
  • x is a transformation rate
  • depends on temperature and transformation rate.
  • C 1 , C 2 and n are parameters representing creep deformation.
  • a slit model is used for stress / strain analysis on the run-out table.
  • the slit model it is assumed that elongation or contraction deformation in each slit is elastically constrained between adjacent slits, and the following mathematical formula is introduced by introducing a longitudinal average strain ( ⁇ m with a superscript bar). (13) is used to determine the longitudinal stress generated in each slit.
  • the average strain in the longitudinal direction is determined under the condition that the average stress obtained by integrating the longitudinal stress in each slit obtained from the following formula (13) in the plate width direction is equal to the run-out tension.
  • E Young's modulus
  • ⁇ e exceeds the yield stress ⁇ Y
  • ⁇ p is used with the steel plate as an elastic perfect plastic body.
  • the strip crown amount at C ri is i slits (plate thickness difference between the plate width central), R n is the radius of the contact surface, the epsilon theta represents the circumferential strain.
  • a slit model correction model that takes into account the plate crown and the coil surface shape is used for analysis of the tension distribution in the plate width direction in the coil winding process. Similar to the analysis on the run-out table, the longitudinal stress at this time is expressed by the following formula (16), and the longitudinal average strain (with superscript bar) is set so that the longitudinal average stress becomes equal to the coil tension. Of ⁇ m ) and the tension distribution is calculated. Further, the coil surface after N turns is obtained by a coupled analysis with a coil deformation obtained by a coil cooling analysis to be described later, with the coil winding tightening force based on the tension distribution obtained using the following formula (17) as an external force.
  • Equation (17) is solved by assuming that the contact thermal conductivity h c depends on the contact pressure p between the steel plates in contact, and the thermal conductivity in the radial direction is calculated using the following Equation (18). To do. Further, when the plate crown is large, a gap is formed between the steel plates in the vicinity of the end in the width direction of the steel plate. Therefore, the equivalent contact thermal conductivity is calculated using Equation (19) in consideration of the thermal conductivity of the air in the gap. The equivalent thermal conductivity ⁇ r_eq in the radial direction is obtained using h c_eq , Equation (20).
  • lambda w is the thermal conductivity of the plate width direction
  • d represents the size of the gap between the steel plates.
  • the laminated cylindrical model is used for the analysis in the coil state. Unlike the case where the coil is analyzed as an integrated object, the laminated cylindrical model calculates the contact between the steel plates of the coil and considers contact / non-contact between the steel plates. Therefore, accurate stress / strain analysis can be performed. Specifically, when the contact force p acts on the steel plate, the radial stress and the circumferential stress acting on a certain steel plate j are given to the analysis by the following formula (21).
  • r represents the position in the radial direction in the steel sheet
  • R j represents the inner diameter
  • R j + 1 represents the outer diameter
  • the frictional force acting in the plate width direction of the contact surface is obtained using the following formula (22) to give a constraint in the plate width direction.
  • is a friction coefficient
  • dj is a sign representing the direction of slip in the width direction.
  • the circumferential strain generated in each steel sheet is obtained by the following formula (23). It is done.
  • represents the Poisson's ratio
  • equation (24) obtained by transforming equation (23) into an incremental form can be used to calculate under the matching condition that the circumferential strain increment of each steel plate at the contact surface becomes equal.
  • ⁇ E represents an increase in Young's modulus
  • the elastic deformation of the mandrel due to the tightening force is calculated in consideration of the contact between the innermost steel plate and the mandrel.
  • rigidity is set to zero in order to simulate coil extraction from a mandrel.
  • the heat transfer model and the phase transformation model are coupled and solved at each time step to obtain various physical property values at time t + ⁇ t.
  • a contact condition formula is established and the contact force is calculated, and the contact condition is recalculated assuming that the portion where the contact force is tensile is non-contact.
  • the calculation is repeated until all contact forces become compressive force or 0 (non-contact), and the stress / strain state at time t + ⁇ t is determined.
  • the analysis is continued until the temperature of the coil reaches about room temperature, and the final stress / strain state is evaluated.
  • the temper rolling mill includes a four-stage rolling mill including a work roll having a diameter of 500 mm and a barrel length of 1600 mm and a backup roll having a diameter of 1000 mm and a barrel length of 1600 mm, and the operation range of the work roll bender is ink. It was 0 to 60 ton / chock on the lease side (direction in which pressure was applied between the chock supporting the upper and lower work roll ends).
  • the steel plate S is a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm, which was rolled in the hot rolling process shown in FIG. 3 and wound into a coil shape, and then cooled to room temperature. .
  • the predicted steel plate shape was as shown in FIG. That is, the absolute value of the maximum elongation difference ⁇ max was 0.2%.
  • the shape as 1.5 the value of the safety factor [alpha] 1 was calculated target expansion rate EL from the maximum elongation difference ratio [Delta] [epsilon] max using Equation (6), the target expansion ratio EL is 0.3% Met.
  • the rolling position is 1.85 mm
  • the entry side tension is 2.0 ton
  • the exit side tension Set to 4.5 tons.
  • the initial value of the operation amount of the work roll bender was set to 30 ton / chock, which is the center value of the operation range.
  • the rolling position and tension of a temper rolling mill for obtaining a target elongation rate of 0.1% were set using a rolling theory model formula.
  • the reduction position was controlled in the same manner as in Invention Examples 1 and 2. It shows in FIG. 5 after temper rolling.
  • the operator appropriately operated the work roll bender according to the shape of the steel plate on the exit side of the rolling mill.
  • the steel plate shape prediction unit 11 includes a hot rolling process, a coil winding process, and a coil cooling process. Is used to predict the shape of the steel sheet S before temper rolling, and the target elongation rate setting unit 12 performs the temper rolling in the temper rolling based on the predicted shape of the steel sheet S before temper rolling.
  • the target elongation rate EL of the steel sheet S is calculated, and the reduction position / tension control unit 13 controls the reduction position and tension of the work roll of the four-high rolling mill 2 according to the target elongation rate EL calculated by the target elongation rate setting unit 12. To do.
  • the steel plate shape before temper rolling can be accurately predicted without requiring much labor, and the steel plate shape can be corrected to a desired shape based on the predicted steel plate shape.
  • FIG. 6 shows the configuration of the temper rolling mill to which the control device for the temper rolling mill according to the second embodiment of the present invention is applied. Since it is the same as the structure of the temper rolling mill shown in 1, the description is abbreviate
  • FIG. 6 is a schematic diagram showing a configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the second embodiment of the present invention.
  • the control device 30 of the temper rolling mill according to the second embodiment of the present invention is configured by an information processing device such as a personal computer, and the arithmetic processing device in the information processing device stores a computer program. By executing, it functions as the steel plate shape prediction unit 31, the operation amount setting unit 32, and the steel plate shape control unit 33. The functions of these units will be described later.
  • the control device 30 of the temper rolling mill having such a configuration predicts the steel plate shape before the temper rolling with high accuracy without requiring much labor by executing the temper rolling control process shown below.
  • the steel plate shape is corrected to a desired shape based on the predicted steel plate shape.
  • operation movement of the control apparatus 30 of the temper rolling mill at the time of performing a temper rolling control process is demonstrated.
  • FIG. 7 is a flowchart showing the flow of the temper rolling control process according to the second embodiment of the present invention.
  • the flowchart shown in FIG. 7 starts at the timing when the execution command for the temper rolling process is input, and the temper rolling control process proceeds to the process of step S11.
  • the steel plate shape prediction unit 31 acquires the steel plate information and hot rolling information of the steel plate S that performs temper rolling. Specifically, the steel plate shape prediction unit 31 acquires information on material characteristics such as the dimensional shape, temperature, and deformation resistance of the steel plate S on the exit side of the finish rolling mill 21 shown in FIG. 3 as steel plate information. Moreover, the steel plate shape prediction unit 31 acquires, as hot rolling information, information on the cooling conditions of the steel plate S by the water cooling device 22 shown in FIG. 3 and the tension and speed applied to the steel plate S in the passing plate. In addition, when the temperature of the steel plate S can be measured before winding by the coiler 23 illustrated in FIG. 3, the measured temperature may be included in the steel plate information. Thereby, the process of step S11 is completed and a temper rolling control process progresses to the process of step S12.
  • the steel plate shape prediction unit 31 simulates the hot rolling process, the coil winding process, and the coil cooling process based on the steel sheet information and hot rolling information of the steel sheet S acquired in the process of step S11.
  • the shape of the steel plate S before temper rolling is predicted using a mathematical model (steel plate shape prediction process). Since the steel plate shape prediction process has the same contents as the steel plate shape prediction process in step S2, the detailed description thereof is omitted. Thereby, the process of step S12 is completed and a temper rolling control process progresses to the process of step S13.
  • the operation amount setting unit 32 sets the initial setting value of the work roll bender based on the shape of the steel sheet S before the temper rolling predicted in the process of step S12. Specifically, first, the operation amount setting unit 32 calculates the elongation difference rate ⁇ (see FIG. 4) in the shape of the steel sheet S before the temper rolling using the already described mathematical formula (3).
  • FIG. 8 is a diagram showing the relationship between the operation amount of the work roll bender and the elongation difference calculated experimentally using the temper rolling mill shown in FIG.
  • temper rolling was performed on a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm.
  • the elongation difference rate decreases. This is because when the work roll bender's operating amount is increased, the axial center deflection of the upper and lower work rolls changes in the direction in which the gap at both ends widens, so that the steel plate shape changes from the ear extension shape to the belly extension shape.
  • the operation amount of the work roll is changed from the lower limit value 0 ton / chock of the operation range to the upper limit value 60 ton / of the operation range.
  • the differential elongation changes by about -0.3%.
  • the operation amount setting unit 32 can perform sufficient shape control even in the portion having the worst shape in the steel plate shape before temper rolling, that is, in the portion where the elongation difference rate ⁇ is maximized, in other words, The initial value of the work roll bender's operation amount is set so that the work roll bender's operation amount does not reach the upper limit value or the lower limit value of the operation range even in the portion where the elongation difference rate ⁇ is maximum. That is, in this embodiment, the operation amount setting unit 32 sets the initial value of the operation amount of the work roll bender in consideration of the shape of the entire length of the steel plate.
  • the steel plate shape shown in FIG. 4 has a belly stretch shape with an elongation difference of ⁇ 0.2% at a position of about 850 m in the longitudinal direction of the steel plate.
  • the initial value is set to 30 ton / chock, which is the center value of the operation range, according to the initial setting method of the operation amount of a general work roll bender, the belly at a position of about 850 m.
  • the operation amount of the work roll bender is adjusted to 0 ton / chock, which is the lower limit of the operation range, to correct the stretch shape, the steel plate shape change is only 0.15%, and the abdominal stretch shape remains. Resulting in.
  • the operation amount setting unit 32 sets the initial value of the operation amount of the work roll bender so that the operation amount of the work roll bender does not stick to the lower limit value of the operation range even for the stretched shape at a position of about 850 m. Is calculated and set. Specifically, the operation amount setting unit 32 calculates the center value SHAPE (Med) of the steel plate shape using the following formula (25), and the operation range of the work roll bender is calculated with respect to the center value of the steel plate shape. Set the initial value of the work roll vendor's operation amount so that the center value comes.
  • SHAPE Max
  • SHAPE Min
  • the maximum value SHAPE (Max) and the minimum value SHAPE (Min) of the steel plate shape before temper rolling are 0.1 and ⁇ 0.2, respectively. Med) is calculated as -0.05%. Therefore, the operation amount setting unit 32 sets 40 ton / chock corresponding to ⁇ 0.05% as an initial value of the operation amount of the work roll vendor based on the relationship shown in FIG.
  • the initial value of the work roll bender's operation amount can be reduced by 40 ton / chock even for the abdominal stretch shape at a position of about 850 m.
  • the steel plate shape can be improved until zero. Thereby, the process of step S13 is completed and a temper rolling control process progresses to the process of step S14.
  • the steel plate shape control unit 33 controls the reduction position of the four-high rolling mill 2 and the tension of the steel plate S in the temper rolling mill 1.
  • the steel plate shape control unit 33 controls the steel plate shape by controlling the operation amount of the work roll bender according to the operation of the operator. Thereby, the process of step S14 is completed and a series of temper rolling control processes are complete
  • the temper rolling mill includes a four-stage rolling mill including a work roll having a diameter of 500 mm and a barrel length of 1600 mm and a backup roll having a diameter of 1000 mm and a barrel length of 1600 mm, and the operation range of the work roll bender is ink. It was 0 to 60 ton / chock on the lease side (direction in which pressure was applied between the chock supporting the upper and lower work roll ends).
  • the steel plate S is a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm, which was rolled in the hot rolling process shown in FIG. 3 and wound into a coil shape, and then cooled to room temperature. .
  • the predicted steel plate shape was as shown in FIG.
  • the steel plate shape is an ear extension shape with an elongation difference of 0.1%, and from the vicinity of the central portion of the steel plate in the longitudinal direction to the longitudinal tail end, The difference in elongation is about -0.2%, indicating a poor shape (belly stretched shape).
  • the center value SHAPE (Med) of the steel plate shape is calculated as -0.05% based on the steel plate shape shown in FIG. 4, and the work roll corresponding to the center value of the steel plate shape is calculated based on the relationship shown in FIG.
  • the operating amount of the vendor 40 ton / chock
  • the operation amount of the work roll bender was feedback controlled based on the steel plate shape measured on the delivery side of the rolling mill.
  • the center value (30 ton / chock) of the operation range of the work roll vendor was set as the initial value of the operation amount of the work roll vendor.
  • FIG. 9 is a diagram showing measured values of the steel sheet shape after temper rolling in the invention example and the comparative example.
  • the steel plate shape is good, whereas in the comparative example, the belly stretch shape remains at the tail end portion of the steel plate and deviates from the target range, resulting in a poor shape.
  • the steel plate shape prediction unit 31 includes a hot rolling process, a coil winding process, and The shape of the steel sheet S before the temper rolling is predicted using a mathematical model simulating the coil cooling process, and the shape of the steel sheet S before the temper rolling which the operation amount setting unit 32 predicts by the steel plate shape prediction unit 31 is predicted.
  • the initial setting value of the work roll bender that corrects the shape of the steel sheet S is controlled based on the above.
  • control of the temper rolling mill which can predict the steel plate shape before temper rolling with high precision without requiring much labor, and can correct the steel plate shape to a desired shape based on the predicted steel plate shape.
  • An apparatus and a control method can be provided.

Abstract

In a control device (10) for a tempering mill according to a first embodiment of the present invention, a steel plate shape prediction unit (11) predicts the shape of a steel plate (S) before temper rolling using a mathematical model for simulating a hot rolling process, a coil winding process, and a coil cooling process; a target elongation percentage setting unit (12) calculates a target elongation percentage (EL) for the steel plate (S) in temper rolling on the basis of the predicted shape for the steel plate (S) before the temper rolling; and a reduction position/tensile force control unit (13) controls reduction position and tensile force of a work roll in a four stage rolling mill (2) according to the target elongation percentage (EL) calculated by the target elongation percentage setting unit (12).

Description

調質圧延機の制御装置及び制御方法Control device and control method for temper rolling mill
 本発明は、熱間圧延後の鋼板の形状を矯正する調質圧延工程に適用して好適な、調質圧延機の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for a temper rolling mill that are suitable for application to a temper rolling process for correcting the shape of a steel sheet after hot rolling.
 一般に、鋼板の調質圧延工程では、降伏伸びの除去、鋼板形状の矯正、表面粗さの調整等を目的として、鋼板に0.05~3%程度の範囲内の軽圧下(伸長率)が付与される。熱間圧延後の鋼板(以下、熱延鋼板と略記)に対する調質圧延工程は、特に鋼板形状の矯正としての役割が大きい。 In general, in the temper rolling process of steel sheets, the steel sheet is subjected to light reduction (elongation rate) within a range of about 0.05 to 3% for the purpose of removing yield elongation, correcting the shape of the steel sheet, and adjusting the surface roughness. Is granted. The temper rolling process for hot-rolled steel sheets (hereinafter abbreviated as hot-rolled steel sheets) plays a particularly important role in correcting the steel sheet shape.
 ここで、鋼板形状とは、いわゆる耳伸びや腹伸びと称される鋼板の平坦度のことを意味し、鋼板の幅方向における長手方向の伸び差に起因して生じるものである。すなわち、鋼板の幅方向端部での長手方向の伸びが大きいと、鋼板形状は耳伸び形状になる。これに対して、鋼板の幅方向中央部での長手方向の伸びが大きいと、鋼板形状は腹伸び形状になる。 Here, the shape of the steel sheet means the flatness of the steel sheet, which is called so-called ear elongation or belly elongation, and is caused by a difference in elongation in the longitudinal direction in the width direction of the steel sheet. That is, if the elongation in the longitudinal direction at the end in the width direction of the steel plate is large, the shape of the steel plate becomes an ear extension shape. On the other hand, if the elongation in the longitudinal direction at the central portion in the width direction of the steel plate is large, the shape of the steel plate becomes a belly stretch shape.
 なお、一般的な圧延工程では、圧下の程度は圧延機の入側及び出側における鋼板の厚みHin,Houtを用いて以下の数式(1)に示す圧下率Rで表される。これに対して、調質圧延工程では、圧下の程度は以下の数式(2)に示す伸張率ELで表される。そこで、本明細書中では、調質圧延工程における圧下の程度は伸張率ELで表すものとする。 In a general rolling process, the degree of reduction is expressed by the reduction ratio R shown in the following formula (1) using the thicknesses Hin and Hout of the steel sheet on the entry side and the exit side of the rolling mill. On the other hand, in the temper rolling process, the degree of reduction is represented by the elongation ratio EL shown in the following formula (2). Therefore, in this specification, the degree of reduction in the temper rolling process is represented by the elongation ratio EL.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 調質圧延工程では、圧延ロールの撓み量を制御するロールベンダー等の形状制御手段を用いて鋼板形状が矯正される。この時、圧延機の初期設定として、鋼板の寸法や材質及び目標形状に応じた圧延条件、すなわち圧延ロールの圧下位置の初期値や形状制御手段の操作量の初期値を設定する必要がある。 In the temper rolling process, the shape of the steel sheet is corrected using shape control means such as a roll bender that controls the amount of bending of the rolling roll. At this time, as the initial setting of the rolling mill, it is necessary to set the rolling conditions according to the size and material of the steel sheet and the target shape, that is, the initial value of the rolling roll reduction position and the initial value of the operation amount of the shape control means.
 従来の圧延機の初期設定では、テーブル値や簡易な数式モデルを用いて圧延ロールの圧下位置の初期値を算出することが一般的であった。また、形状制御手段の操作量の初期値は、圧延中に圧延機出側の鋼板形状に応じて調整できるように操作範囲の中心値に設定することが一般的である。 In the initial setting of a conventional rolling mill, it is common to calculate the initial value of the rolling position of the rolling roll using a table value or a simple mathematical model. Further, the initial value of the operation amount of the shape control means is generally set to the center value of the operation range so that it can be adjusted according to the steel plate shape on the delivery side of the rolling mill during rolling.
 通常の冷間圧延工程の圧下率は数10%であり、冷間圧延前の鋼板形状、すなわち冷間圧延前の鋼板の幅方向における長手方向の伸び差は冷間圧延工程で付加される歪み量に比べて圧倒的に小さい。このため、冷間圧延工程では、圧延前の鋼板形状が圧延後の鋼板形状に与える影響は小さい。 The rolling reduction in the normal cold rolling process is several tens of percent, and the shape of the steel sheet before cold rolling, that is, the elongation difference in the longitudinal direction in the width direction of the steel sheet before cold rolling is a strain added in the cold rolling process. It is overwhelmingly small compared to the amount. For this reason, in a cold rolling process, the influence which the steel plate shape before rolling has on the steel plate shape after rolling is small.
 ところが、調質圧延工程の伸張率は0.05~3%程度であり、調質圧延前の鋼板の幅方向における長手方向の伸び差は圧延工程で付加される歪み量と同程度である。このため、調質圧延工程では、圧延前の鋼板形状が圧延後の鋼板形状に与える影響が大きく、圧延前の形状不良が圧延後にも残存する場合が多い。従って、圧延機の初期設定の際には圧延前の鋼板形状を考慮する必要がある。 However, the elongation rate in the temper rolling process is about 0.05 to 3%, and the elongation difference in the longitudinal direction in the width direction of the steel sheet before the temper rolling is about the same as the strain applied in the rolling process. For this reason, in the temper rolling process, the shape of the steel plate before rolling has a great influence on the shape of the steel plate after rolling, and shape defects before rolling often remain after rolling. Therefore, it is necessary to consider the shape of the steel plate before rolling in the initial setting of the rolling mill.
 このような背景から、特許文献1には、圧延荷重の予測値及び素材クラウンと圧延前の鋼板形状の実測値とを予め作成した数式モデルに代入することによって鋼板形状が目標の形状となるように形状制御手段の操作量の初期値を算出する冷間圧延工程における鋼板の形状制御方法が提案されている。 From such a background, Patent Document 1 discloses that the steel plate shape becomes the target shape by substituting the predicted value of the rolling load and the material crown and the actual measured value of the steel plate shape before rolling into a mathematical model created in advance. In addition, a steel sheet shape control method in the cold rolling process for calculating the initial value of the operation amount of the shape control means has been proposed.
特開2005-177818号公報JP 2005-177818 A
 しかしながら、特許文献1には、圧延前の鋼板形状の実測値の測定方法は開示、示唆されていない。圧延前の鋼板形状の実測値は熱間圧延機の最終スタンドの出側において非接触の距離センサを用いて測定できる。ところが、鋼板形状は、その後のコイル巻取工程や冷却工程でのクリープ変形によって変化する。このため、熱間圧延機の出側における鋼板形状は冷間圧延機や調質圧延機の入側での鋼板形状とは異なっている場合があり、熱間圧延機の出側における鋼板形状の実測値を用いても冷間圧延工程や調質圧延工程において鋼板形状を目標の形状に制御することは困難である。 However, Patent Document 1 does not disclose or suggest a method for measuring an actual measurement value of a steel plate shape before rolling. The actual measured value of the steel plate shape before rolling can be measured using a non-contact distance sensor on the exit side of the final stand of the hot rolling mill. However, the steel plate shape changes due to creep deformation in the subsequent coil winding process and cooling process. For this reason, the steel plate shape on the exit side of the hot rolling mill may be different from the steel plate shape on the entry side of the cold rolling mill or temper rolling mill. Even if the measured values are used, it is difficult to control the steel plate shape to the target shape in the cold rolling process or the temper rolling process.
 また、特許文献1記載の実施例では、例えば急峻度(鋼板形状を長手方向のピッチあたりの山高さで示した指標)が約1.5%の耳伸び形状等のように1箇所の値でしか圧延前の鋼板形状を取り扱っていない。一般に、鋼板の長手方向の形状は一定ではないために、特許文献1記載の実施例のように代表値1点の鋼板形状だけでは、冷間圧延工程や調質圧延工程において鋼板形状を目標の形状に制御するのには不十分である。具体的には、鋼板の長手方向で形状が変動している場合、形状制御手段の操作量の初期値によっては、形状制御手段の操作量が操作範囲の上限値又は下限値に到達し、鋼板形状を十分に矯正できなくなることがある。 Further, in the example described in Patent Document 1, for example, the steepness (an index indicating the steel plate shape as a peak height per pitch in the longitudinal direction) has a value at one location such as an ear extension shape with about 1.5%. Only the shape of the steel plate before rolling is handled. In general, since the shape of the steel sheet in the longitudinal direction is not constant, the steel sheet shape in the cold rolling process or the temper rolling process is the target of the steel sheet shape with only one representative value as in the embodiment described in Patent Document 1. It is insufficient to control the shape. Specifically, when the shape varies in the longitudinal direction of the steel sheet, depending on the initial value of the operation amount of the shape control means, the operation amount of the shape control means reaches the upper limit value or the lower limit value of the operation range, The shape may not be sufficiently corrected.
 ここで、このような問題点を解決するために、冷間圧延工程や調質圧延工程を実施する前に熱延コイルを巻きほぐして形状検出装置を用いて鋼板の全長の形状を計測する方法が考えられる。しかしながら、このような方法によれば、コイルを巻きほぐすという工程が別途必要になるために、多くの労力が必要になる。 Here, in order to solve such problems, a method of measuring the shape of the entire length of a steel sheet using a shape detection device by unwinding a hot-rolled coil before performing a cold rolling process or a temper rolling process Can be considered. However, according to such a method, a separate process of unwinding the coil is required, and thus a lot of labor is required.
 また、鋼板の全長の形状を計測したとしても、特許文献1記載の技術は圧下率が予め決まっている冷間圧延工程を主対象としている。このため、調質圧延工程のように圧下率が極めて小さい圧延工程である場合、特許文献1記載の技術は圧延前の鋼板形状を矯正するのに十分ではない可能性がある。 Further, even if the shape of the entire length of the steel plate is measured, the technique described in Patent Document 1 is mainly intended for a cold rolling process in which the rolling reduction is determined in advance. For this reason, when it is a rolling process with a very small rolling reduction like a temper rolling process, the technique of patent document 1 may not be enough to correct the steel plate shape before rolling.
 本発明は、上記課題に鑑みてなされたものであって、その目的は、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正可能な調質圧延機の制御装置及び制御方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to accurately predict the steel plate shape before temper rolling without requiring much labor, and based on the predicted steel plate shape. It is providing the control apparatus and control method of a temper rolling mill which can correct | amend this to a desired shape.
 本発明の第1の態様に係る調質圧延機の制御装置は、熱延鋼板を調質圧延する調質圧延機の制御装置であって、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測手段と、前記予測手段によって予測された調質圧延前の熱延鋼板の形状に基づいて調質圧延での熱延鋼板の目標伸張率を算出する伸張率算出手段と、前記伸張率算出手段によって算出された調質圧延での熱延鋼板の目標伸張率に従って前記調質圧延機の圧下位置及び張力を制御する制御手段と、を備えることを特徴とする。 The control device for a temper rolling mill according to the first aspect of the present invention is a control device for a temper rolling mill for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling. Predicting means for predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model simulating the process, and temper rolling based on the shape of the hot rolled steel sheet before temper rolling predicted by the predicting means The elongation ratio calculating means for calculating the target elongation ratio of the hot-rolled steel sheet at the above, and the reduction position and tension of the temper rolling mill according to the target elongation ratio of the hot-rolled steel sheet in the temper rolling calculated by the elongation ratio calculation means And a control means for controlling.
 本発明の第1の態様に係る調質圧延機の制御装置は、上記発明において、前記伸張率算出手段は、前記予測手段によって予測された調質圧延前の熱延鋼板の形状での最大伸び差率Δεmaxを以下に示す数式(3)に代入することによって調質圧延での熱延鋼板の目標伸張率ELを算出することを特徴とする。但し、数式(3)中のα1は形状制御安全率を示す。
Figure JPOXMLDOC01-appb-M000005
In the control device for a temper rolling mill according to the first aspect of the present invention, in the above invention, the elongation rate calculating means is the maximum elongation in the shape of the hot-rolled steel sheet before temper rolling predicted by the predicting means. The target elongation ratio EL of the hot-rolled steel sheet in the temper rolling is calculated by substituting the difference rate Δε max into the following formula (3). However, (alpha) 1 in Numerical formula (3) shows a shape control safety factor.
Figure JPOXMLDOC01-appb-M000005
 本発明の第1の態様に係る調質圧延機の制御装置は、上記発明において、前記伸張率算出手段は、前記予測手段によって予測された調質圧延前の熱延鋼板の形状での最大伸び差率Δεmaxを以下に示す数式(4)に代入することによって調質圧延での熱延鋼板の目標伸張率ELを算出することを特徴とする。但し、数式(4)中のα2は形状制御安全率を示す。
Figure JPOXMLDOC01-appb-M000006
In the control device for a temper rolling mill according to the first aspect of the present invention, in the above invention, the elongation rate calculating means is the maximum elongation in the shape of the hot-rolled steel sheet before temper rolling predicted by the predicting means. The target elongation ratio EL of the hot-rolled steel sheet in the temper rolling is calculated by substituting the difference rate Δε max into the following formula (4). However, (alpha) 2 in Numerical formula (4) shows a shape control safety factor.
Figure JPOXMLDOC01-appb-M000006
 本発明の第1の態様に係る調質圧延機の制御方法は、熱延鋼板を調質圧延する調質圧延機の制御方法であって、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測ステップと、前記予測ステップにおいて予測された調質圧延前の熱延鋼板の形状に基づいて調質圧延での熱延鋼板の目標伸張率を算出する伸張率算出ステップと、前記伸張率算出ステップにおいて算出された調質圧延での熱延鋼板の目標伸張率に従って前記調質圧延機の圧下位置及び張力を制御する制御ステップと、を含むことを特徴とする。 A method for controlling a temper rolling mill according to the first aspect of the present invention is a method for controlling a temper rolling mill for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling. Prediction step of predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model simulating the process, and temper rolling based on the shape of the hot rolled steel sheet before temper rolling predicted in the prediction step An elongation ratio calculating step for calculating a target elongation ratio of the hot-rolled steel sheet in step, and a reduction position and tension of the temper rolling mill according to the target elongation ratio of the hot-rolled steel sheet in the temper rolling calculated in the elongation ratio calculation step And a control step for controlling.
 本発明の第2の態様に係る調質圧延機の制御装置は、熱延鋼板を調質圧延する調質圧延機の制御装置であって、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測手段と、前記予測手段によって予測された調質圧延前の熱延鋼板の形状に基づいて熱延鋼板の形状を矯正する形状制御手段の初期設定値を制御する制御手段と、を備えることを特徴とする。 The temper rolling mill control device according to the second aspect of the present invention is a temper rolling mill control device for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling. Predicting means for predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model simulating the process, and hot rolled steel sheet based on the shape of the hot rolled steel sheet before temper rolling predicted by the predicting means Control means for controlling the initial setting value of the shape control means for correcting the shape of the above.
 本発明の第2の態様に係る調質圧延機の制御装置は、上記発明において、前記形状制御手段は、圧延ロールの撓み量を制御するロールベンダーであることを特徴とする。 The control device for a temper rolling mill according to the second aspect of the present invention is characterized in that, in the above invention, the shape control means is a roll bender for controlling a deflection amount of the rolling roll.
 本発明の第2の態様に係る調質圧延機の制御方法は、熱延鋼板を調質圧延する調質圧延機の制御方法であって、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測ステップと、前記予測ステップにおいて予測された調質圧延前の熱延鋼板の形状に基づいて熱延鋼板の形状を矯正する形状制御手段の初期設定値を制御する制御ステップと、を含むことを特徴とする。 The temper rolling mill control method according to the second aspect of the present invention is a temper rolling mill control method for temper rolling a hot-rolled steel sheet, and includes a hot rolling step, a coil winding step, and coil cooling. Prediction step of predicting the shape of the hot-rolled steel plate before temper rolling using a mathematical model simulating the process, and hot-rolled steel plate based on the shape of the hot-rolled steel plate before temper rolling predicted in the prediction step And a control step for controlling an initial setting value of the shape control means for correcting the shape of the shape.
 本発明に係る調質圧延機の制御装置及び制御方法によれば、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正することができる。 According to the control device and control method for a temper rolling mill according to the present invention, the steel plate shape before temper rolling is accurately predicted without requiring much labor, and the steel plate shape is desired based on the predicted steel plate shape. The shape can be corrected.
図1は、本発明の第1の実施形態である調質圧延機の制御装置及びこの制御装置が適用される調質圧延機の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態である調質圧延制御処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of the temper rolling control process according to the first embodiment of the present invention. 図3は、一般的な熱間圧延工程の流れを説明するための模式図である。FIG. 3 is a schematic diagram for explaining the flow of a general hot rolling process. 図4は、伸び差率の算出例を示す図である。FIG. 4 is a diagram illustrating an example of calculating the elongation difference rate. 図5は、発明例及び比較例の調質圧延後の鋼板形状の実測値を示す図である。FIG. 5 is a diagram showing measured values of the shape of the steel sheet after the temper rolling of the invention example and the comparative example. 図6は、本発明の第2の実施形態である調質圧延機の制御装置及びこの制御装置が適用される調質圧延機の構成を示す模式図である。FIG. 6 is a schematic diagram showing a configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the second embodiment of the present invention. 図7は、本発明の第2の実施形態である調質圧延制御処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of the temper rolling control process according to the second embodiment of the present invention. 図8は、ワークロールベンダーの操作量と伸び差率との関係を示す図である。FIG. 8 is a diagram showing the relationship between the operation amount of the work roll bender and the elongation difference rate. 図9は、発明例及び比較例における調質圧延後の鋼板形状の実測値を示す図である。FIG. 9 is a diagram showing measured values of the shape of the steel sheet after temper rolling in the invention example and the comparative example.
 以下、図面を参照して、本発明の第1及び第2の実施形態である調質圧延機の制御装置の構成及びその動作について詳しく説明する。 Hereinafter, with reference to the drawings, the configuration and operation of the control device for the temper rolling mill according to the first and second embodiments of the present invention will be described in detail.
〔第1の実施形態〕
〔調質圧延機の構成〕
 始めに、図1を参照して、本発明の第1の実施形態である調質圧延機の制御装置が適用される調質圧延機の構成について説明する。
[First Embodiment]
[Configuration of temper rolling mill]
First, with reference to FIG. 1, the structure of the temper rolling mill to which the control apparatus of the temper rolling mill which is the 1st Embodiment of this invention is applied is demonstrated.
 図1は、本発明の第1の実施形態である調質圧延機の制御装置及びこの制御装置が適用される調質圧延機の構成を示す模式図である。図1に示すように、本発明の第1の実施形態である調質圧延機の制御装置が適用される調質圧延機1は、4段圧延機2及びリール3a,3bを主な構成要素として備えている。この調質圧延機1は、リール3a及びリール3bを用いて熱間圧延後の鋼板(以下、鋼板と略記)Sの払い出し及び巻き取りを行いながら鋼板Sを4段圧延機2に通板することによって、鋼板Sの形状を矯正する。 FIG. 1 is a schematic diagram showing the configuration of a temper rolling mill control apparatus according to a first embodiment of the present invention and a temper rolling mill to which the control apparatus is applied. As shown in FIG. 1, a temper rolling mill 1 to which a control device for a temper rolling mill according to a first embodiment of the present invention is applied includes a four-high rolling mill 2 and reels 3a and 3b as main components. As prepared. The temper rolling machine 1 passes the steel sheet S through the four-high rolling mill 2 while discharging and winding the hot-rolled steel sheet (hereinafter abbreviated as steel sheet) S using the reel 3a and the reel 3b. As a result, the shape of the steel sheet S is corrected.
 鋼板Sの圧下制御は4段圧延機2のワークロールの圧下位置を制御することによって行われ、鋼板Sの圧延張力の制御はリール3a,3bを回転させるモータのトルク制御によって行われる。また、図示しないが、4段圧延機2は、鋼板Sの形状制御手段として、ワークロールの軸心撓み量を制御することによって鋼板Sの形状を制御するワークロールベンダーを備えている。 The reduction control of the steel sheet S is performed by controlling the reduction position of the work roll of the four-high rolling mill 2, and the rolling tension of the steel sheet S is controlled by the torque control of the motor that rotates the reels 3a and 3b. Although not shown, the four-high rolling mill 2 includes a work roll bender that controls the shape of the steel sheet S by controlling the amount of axial deflection of the work roll as the shape control means of the steel sheet S.
〔制御装置の構成〕
 次に、図1を参照して、本発明の第1の実施形態である調質圧延機の制御装置の構成について説明する。
[Configuration of control device]
Next, with reference to FIG. 1, the structure of the control apparatus of the temper rolling mill which is the 1st Embodiment of this invention is demonstrated.
 図1に示すように、本発明の第1の実施形態である調質圧延機の制御装置10は、パーソナルコンピュータ等の情報処理装置によって構成され、情報処理装置内の演算処理装置がコンピュータプログラムを実行することにより鋼板形状予測部11、目標伸張率設定部12、及び圧下位置・張力制御部13として機能する。これら各部の機能については後述する。 As shown in FIG. 1, a control device 10 for a temper rolling mill according to the first embodiment of the present invention is configured by an information processing device such as a personal computer, and the arithmetic processing device in the information processing device stores a computer program. By executing this, it functions as a steel plate shape prediction unit 11, a target elongation rate setting unit 12, and a reduction position / tension control unit 13. The functions of these units will be described later.
 このような構成を有する調質圧延機の制御装置10は、以下に示す調質圧延制御処理を実行することによって、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正する。以下、図2~図4を参照して、調質圧延制御処理を実行する際の調質圧延機の制御装置10の動作について説明する。 The control device 10 of the temper rolling mill having such a configuration predicts the steel plate shape before temper rolling with high accuracy without requiring much labor by executing the temper rolling control process shown below, The steel plate shape is corrected to a desired shape based on the predicted steel plate shape. Hereinafter, the operation of the control device 10 of the temper rolling mill when the temper rolling control process is executed will be described with reference to FIGS.
〔調質圧延制御処理〕
 図2は、本発明の第1の実施形態である調質圧延制御処理の流れを示すフローチャートである。図2に示すフローチャートは、調質圧延工程の実行命令が入力されたタイミングで開始となり、調質圧延制御処理はステップS1の処理に進む。
[Temperature rolling control processing]
FIG. 2 is a flowchart showing the flow of the temper rolling control process according to the first embodiment of the present invention. The flowchart shown in FIG. 2 starts at the timing when the execution command for the temper rolling process is input, and the temper rolling control process proceeds to step S1.
 ステップS1の処理では、鋼板形状予測部11が、調質圧延を実行する鋼板Sの鋼板情報及び熱延情報を取得する。詳しくは、図3に示すように、一般的な熱間圧延工程では、鋼板Sは、仕上圧延機21において所定の厚みまで圧延された後、図示しないランアウトテーブルを通過している時に水冷装置22によって冷却され、コイラー23によってコイル状に巻き取られる(コイル巻取工程)。そして、コイル状の鋼板Sは、コイルヤードにおいて常温になるまで冷却される(コイル冷却工程)。 In the process of step S1, the steel plate shape prediction unit 11 acquires the steel plate information and hot rolling information of the steel plate S that performs temper rolling. Specifically, as shown in FIG. 3, in a general hot rolling process, the steel sheet S is rolled to a predetermined thickness in the finish rolling mill 21 and then passes through a run-out table (not shown). Is cooled by the coiler 23 and wound in a coil shape by the coiler 23 (coil winding process). And the coil-shaped steel plate S is cooled until it becomes normal temperature in a coil yard (coil cooling process).
 そこで、鋼板形状予測部11は、鋼板情報として、仕上圧延機21の出側における鋼板Sの寸法形状や温度及び変形抵抗等の材質特性に関する情報を取得する。また、鋼板形状予測部11は、熱延情報として、水冷装置22による鋼板Sの冷却条件、及び通板中の鋼板Sに付加される張力や速度に関する情報を取得する。なお、コイラー23による巻取前に鋼板Sの温度は計測可能である場合には、計測された温度を鋼板情報に含めるようにしてもよい。これにより、ステップS1の処理は完了し、調質圧延制御処理はステップS2の処理に進む。 Therefore, the steel plate shape prediction unit 11 acquires information on material characteristics such as the dimensional shape, temperature, and deformation resistance of the steel plate S on the exit side of the finish rolling mill 21 as steel plate information. Moreover, the steel plate shape prediction unit 11 acquires, as hot rolling information, information on the cooling condition of the steel plate S by the water cooling device 22 and the tension and speed applied to the steel plate S in the passing plate. In addition, when the temperature of the steel plate S can be measured before winding by the coiler 23, the measured temperature may be included in the steel plate information. Thereby, the process of step S1 is completed and a temper rolling control process progresses to the process of step S2.
 ステップS2の処理では、鋼板形状予測部11が、ステップS1の処理において取得した鋼板Sの鋼板情報及び熱延情報に基づいて、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを用いて調質圧延前の鋼板Sの形状を予測する(鋼板形状予測処理)。この鋼板形状予測処理の詳細については後述する。これにより、ステップS2の処理は完了し、調質圧延制御処理はステップS3の処理に進む。 In the process of step S2, the steel plate shape prediction unit 11 simulates the hot rolling process, the coil winding process, and the coil cooling process based on the steel sheet information and hot rolling information of the steel sheet S acquired in the process of step S1. The shape of the steel plate S before temper rolling is predicted using a mathematical model (steel plate shape prediction process). Details of the steel plate shape prediction process will be described later. Thereby, the process of step S2 is completed and a temper rolling control process progresses to the process of step S3.
 ステップS3の処理では、目標伸張率設定部12が、ステップS2の処理において予測された調質圧延前の鋼板Sの形状に基づいて、調質圧延での鋼板Sの目標伸張率ELを算出する。具体的には、始めに、目標伸張率設定部12は、以下に示す数式(5)を利用して調質圧延前の鋼板Sの形状での伸び差率Δεを算出する。 In the process of step S3, the target elongation rate setting unit 12 calculates the target elongation rate EL of the steel sheet S in the temper rolling based on the shape of the steel sheet S before the temper rolling predicted in the process of step S2. . Specifically, first, the target elongation rate setting unit 12 calculates the elongation difference rate Δε in the shape of the steel sheet S before temper rolling using the following formula (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、数式(5)中、le,lcはそれぞれ、鋼板Sの幅方向中心位置及び幅方向端部位置における鋼板Sの長さを表している。数式(5)によって求められる伸び差率Δεが正である場合、鋼板Sの形状は耳伸び形状となり、負である場合には、鋼板Sの形状は腹伸び形状となる。 Here, in Equation (5), le and lc represent the length of the steel sheet S at the center position in the width direction and the end position in the width direction of the steel sheet S, respectively. When the elongation difference rate Δε obtained by the equation (5) is positive, the shape of the steel sheet S is an ear-extending shape, and when it is negative, the shape of the steel sheet S is an abdominal elongation shape.
 図4は、伸び差率の算出例を示す図である。本例は、厚み2.0mm及び幅1200mmの低炭素鋼板の形状予測結果から求められた伸び差率を示している。本例では、鋼板の長手方向先端部(長手方向位置0m)から長手方向中央部(長手方向位置450m)付近にかけては、鋼板形状は伸び差率0.1%の耳伸び形状である。これに対して、鋼板の長手方向中央部付近から長手方向尾端部(長手方向位置850m)にかけては、鋼板形状は伸び差率約-0.2%の腹伸び形状(形状不良)になっていることがわかる。なお、伸び差率が0.1%である場合、鋼板の単位長さあたりの山高さを指標とした急峻度は2%程度になる。 FIG. 4 is a diagram showing a calculation example of the elongation difference rate. This example shows the elongation difference obtained from the shape prediction result of a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm. In this example, the shape of the steel plate is an ear extension shape with an elongation difference rate of 0.1% from the front end in the longitudinal direction (longitudinal position 0 m) to the vicinity of the central portion in the longitudinal direction (longitudinal position 450 m). On the other hand, from the vicinity of the central portion in the longitudinal direction of the steel plate to the longitudinal tail end portion (longitudinal position 850 m), the shape of the steel plate becomes a belly stretch shape (defective shape) with an elongation difference rate of about −0.2%. I understand that. When the elongation difference is 0.1%, the steepness using the peak height per unit length of the steel sheet as an index is about 2%.
 調質圧延工程において鋼板の形状不良を矯正するためには、鋼板の伸び差率よりも大きな伸張率を鋼板に与える必要がある。例えば図4に示した例では、伸び差率-0.2%の形状不良を有する鋼板形状を矯正するためには、調質圧延工程において最低でも伸張率+0.2%を付与する必要がある。例えば伸張率+0.1%を付与した場合、鋼板の長手方向中央部付近から長手方向尾端部にかけて腹伸び形状が残存してしまう。 In order to correct the shape defect of the steel sheet in the temper rolling process, it is necessary to give the steel sheet a higher elongation rate than the differential elongation rate of the steel plate. For example, in the example shown in FIG. 4, in order to correct the shape of a steel sheet having a shape defect with an elongation difference of −0.2%, it is necessary to provide an elongation of at least + 0.2% in the temper rolling process. . For example, when an elongation rate of + 0.1% is given, an abdominal stretch shape remains from the vicinity of the central portion in the longitudinal direction of the steel plate to the tail end portion in the longitudinal direction.
 そこで、本実施形態では、調質圧延前の鋼板形状で最も形状が悪い部分、すなわち伸び差率Δεの最大値(最大伸び差率)Δεmaxよりも大きな伸張率を目標伸張率ELとして設定する。具体的には、目標伸張率設定部12は、算出された最大伸び差率Δεmaxを以下に示す数式(6)に代入することによって、調質圧延での鋼板Sの目標伸張率ELを算出する。但し、以下に示す数式(6)中のα1は、数式モデルの誤差や調質圧延工程における操業変動を考慮した形状制御安全率を表している。 Therefore, in this embodiment, the portion having the worst shape in the steel plate shape before temper rolling, that is, an elongation rate larger than the maximum value (maximum elongation difference rate) Δε max of the elongation difference rate Δε is set as the target elongation rate EL. . Specifically, the target elongation rate setting unit 12 calculates the target elongation rate EL of the steel sheet S in the temper rolling by substituting the calculated maximum elongation difference rate Δε max into the following formula (6). To do. However, α1 in the following formula (6) represents a shape control safety factor considering an error of the formula model and an operation variation in the temper rolling process.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、目標伸張率設定部12は、ステップS2の処理において予測された調質圧延前の鋼板Sの形状での最大伸び差率Δεmaxを以下に示す数式(7)に代入することによって、調質圧延での鋼板Sの目標伸張率ELを算出してもよい。但し、以下に示す数式(7)中のα2は数式モデルの誤差や調質圧延工程における操業変動を考慮した形状制御安全率を表している。 Note that the target elongation rate setting unit 12 substitutes the maximum elongation difference Δε max in the shape of the steel sheet S before temper rolling predicted in the process of step S2 into the following equation (7). The target elongation ratio EL of the steel sheet S in quality rolling may be calculated. However, α2 in the following formula (7) represents a shape control safety factor considering an error of the formula model and an operation variation in the temper rolling process.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、形状制御安全率α1,α2の値は数式モデルの予測精度や調質圧延機の操業変動量、及び要求する鋼板形状の精度に応じて調質圧延機毎に決定すればよいが、形状制御安全率α1の値は1.1~5.0の範囲内、形状制御安全率α2の値は0.1~1.0の範囲内で設定することが好ましい。 The shape control safety factors α1 and α2 may be determined for each temper rolling mill according to the prediction accuracy of the mathematical model, the amount of fluctuation in the operation of the temper rolling mill, and the accuracy of the required steel plate shape. The value of the control safety factor α1 is preferably set within a range of 1.1 to 5.0, and the value of the shape control safety factor α2 is preferably set within a range of 0.1 to 1.0.
 また、調質圧延工程における伸張率は、調質圧延後の鋼板の降伏強度や伸び等の機械的特性にも影響を受ける。このため、鋼板の機械的特性によって伸張率の範囲に制約がある場合には、機械的特性による伸張率の制約と形状矯正のための伸張率との両方を勘案して目標伸張率ELを求めることが望ましい。これにより、ステップS3の処理は完了し、調質圧延制御処理はステップS4の処理に進む。 Also, the elongation rate in the temper rolling process is affected by mechanical properties such as yield strength and elongation of the steel sheet after temper rolling. For this reason, when the range of the stretch rate is limited due to the mechanical properties of the steel sheet, the target stretch rate EL is obtained in consideration of both the stretch rate constraint due to the mechanical properties and the stretch rate for shape correction. It is desirable. Thereby, the process of step S3 is completed and a temper rolling control process progresses to the process of step S4.
 ステップS4の処理では、圧下位置・張力制御部13が、ステップS3の処理において算出された調質圧延での鋼板Sの目標伸張率ELに基づいて、圧延理論モデル式を用いて調質圧延機1における4段圧延機2の圧下位置及び鋼板Sの張力を制御する。なお、圧下位置・張力制御部13は、予め用意された鋼種毎の目標伸張率ELと圧下位置及び張力との関係を示すテーブルを参照して圧下位置及び張力を制御してもよい。 In the process of step S4, the rolling position / tension control unit 13 uses a theoretical rolling model to calculate the temper rolling mill based on the target elongation ratio EL of the steel sheet S in the temper rolling calculated in the process of step S3. 1, the rolling position of the four-high rolling mill 2 and the tension of the steel sheet S are controlled. The reduction position / tension control unit 13 may control the reduction position and the tension by referring to a table indicating the relationship between the target elongation rate EL, the reduction position, and the tension for each steel type prepared in advance.
 また、ワークロールベンダーの操作量の初期値は、調質圧延中におけるオペレータによる操作に備えて操作範囲の中心値に設定するとよい。また、調質圧延中は、圧延前後の鋼板Sの厚み又は通板速度の測定結果から伸張率の実績値を算出し、算出結果に基づいて目標伸張率を維持できるように圧下位置及び張力をフィードバック制御するとよい。これにより、ステップS4の処理は完了し、一連の調質圧延制御処理は終了する。 Also, the initial value of the work roll bender's operation amount may be set to the center value of the operation range in preparation for the operation by the operator during temper rolling. Further, during temper rolling, the actual value of the elongation rate is calculated from the measurement result of the thickness or the sheet passing speed of the steel sheet S before and after rolling, and the reduction position and the tension are set so that the target elongation rate can be maintained based on the calculated result. It is good to perform feedback control. Thereby, the process of step S4 is completed and a series of temper rolling control processes are complete | finished.
〔鋼板形状予測処理〕
 次に、上記ステップS2の鋼板形状予測処理について詳しく説明する。
[Steel shape prediction processing]
Next, the steel plate shape prediction process in step S2 will be described in detail.
 熱間圧延後の鋼板形状を正確に予測するためには、ランナウトテーブル、コイラー、及びコイルヤードの各部における鋼板内部の組織、温度、及び変形の各現象の変化を連成して解く必要がある。このため、本実施形態では、各部における数式モデルは、相変態モデル、伝熱モデル、及び応力・歪モデルによって構成されている。そして、数式モデルの計算時間を短縮するために、温度計算には差分モデルを、応力・歪モデルには簡単な物理モデルによる粘塑性解析を行う(ランナウトテーブル上ではスリットモデル、巻取後は積層円筒モデル)。以下、各モデルの概要について説明する。 In order to accurately predict the shape of a steel plate after hot rolling, it is necessary to jointly solve changes in the structure, temperature, and deformation phenomena inside the steel plate in each part of the runout table, coiler, and coil yard. . For this reason, in this embodiment, the mathematical model in each part is constituted by a phase transformation model, a heat transfer model, and a stress / strain model. In order to shorten the calculation time of the mathematical model, a viscoplastic analysis is performed using a differential model for the temperature calculation and a simple physical model for the stress / strain model (slit model on the runout table, lamination after winding). Cylindrical model). The outline of each model will be described below.
[ランナウト解析モデル]
 ランナウトテーブル上での温度推移は、仕上圧延機の出側における鋼板の状態(板クラウン、平坦度、及び幅方向温度分布)を初期条件として、冷却条件を境界条件とした伝熱解析と変態解析とを連成して解くことにより求める。鋼板のC断面の温度分布は、以下の数式(8)に示す非定常伝導方程式と以下の数式(9)に示す境界条件式を解くことによって求める(陽解法差分モデル)。なお、本実施形態では、板厚方向の温度分布を均一と仮定し、板幅方向のみの1次元モデルとして扱う。相変態は、等温変態曲線(TTT線図)を利用して任意の冷却曲線に対する変態挙動を計算する手法を用い、変態による物性値の変化と変態発熱とを考慮する。
[Runout analysis model]
The temperature transition on the run-out table is the heat transfer analysis and transformation analysis with the condition of the steel sheet at the delivery side of the finishing mill (sheet crown, flatness, and temperature distribution in the width direction) as the initial condition and the cooling condition as the boundary condition. It is calculated by solving The temperature distribution of the C cross section of the steel sheet is obtained by solving the unsteady conduction equation shown in the following formula (8) and the boundary condition formula shown in the following formula (9) (explicit differential model). In the present embodiment, the temperature distribution in the plate thickness direction is assumed to be uniform, and is treated as a one-dimensional model only in the plate width direction. The phase transformation uses a method of calculating transformation behavior for an arbitrary cooling curve using an isothermal transformation curve (TTT diagram), and considers changes in physical property values due to transformation and transformation heat generation.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
ここで、Tは鋼板の温度、tは時間、λは熱伝導率、qは相変態に伴う単位時間あたりの発熱量、ρは密度、cは比熱、nは鋼板表面に垂直な座標、hは熱伝達係数、Tcは冷却材又は雰囲気の温度を表している。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Where T is the temperature of the steel sheet, t is the time, λ is the thermal conductivity, q is the calorific value per unit time associated with the phase transformation, ρ is the density, c is the specific heat, n is the coordinate perpendicular to the steel sheet surface, h Represents the heat transfer coefficient, and Tc represents the temperature of the coolant or the atmosphere.
 また、本実施形態では、ランナウトテーブル上での温度分布によって発生する歪として、熱収縮及び相変態に伴う体積膨張の和ε、ランナウト張力によるクリープ歪ε、及び塑性変形を考慮する。時刻tから時刻t+Δtまでの間の体積歪増分Δε及びクリープ歪み増分Δεは以下に示す数式(10),(11)で与えられる。 Further, in the present embodiment, as the strain generated by the temperature distribution on the run-out table, the sum ε T of volume expansion accompanying thermal contraction and phase transformation, the creep strain ε c due to run-out tension, and plastic deformation are considered. Volume strain increment Δε t and creep strain increment Δε c between time t and time t + Δt are given by the following equations (10) and (11).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
ここで、αは線膨張係数、xは変態率であり、αは温度及び変態率に異存する。また、C,C,nはクリープ変形を表すパラメータである。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Here, α is a linear expansion coefficient, x is a transformation rate, and α depends on temperature and transformation rate. C 1 , C 2 and n are parameters representing creep deformation.
 時間増分Δtを十分小さくとることによって温度増分及び応力増分は小さくなるので、t→t+Δtでの平均温度をTとすると、結局、上記数式(11)は以下に示す数式(12)のように応力増分の一次式として近似できる。 Since the temperature increment and the stress increment are reduced by making the time increment Δt sufficiently small, if the average temperature at t → t + Δt is T m , the above formula (11) is eventually expressed as the following formula (12): It can be approximated as a linear expression of the stress increment.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、本実施形態では、ランナウトテーブル上での応力・歪解析にはスリットモデルを用いる。スリットモデルでは、各スリットでの伸び又は収縮変形が隣り合う各スリット間にて弾性的に拘束されるとし、長手方向平均歪(上付きのバー付きのε)を導入して以下に示す数式(13)を用いて各スリットに発生する長手方向応力を求める。長手方向平均歪は、以下に示す数式(13)から求まる各スリットでの長手方向応力を板幅方向に積分した平均応力がランナウト張力と等しくなるという条件にて決定する。 In this embodiment, a slit model is used for stress / strain analysis on the run-out table. In the slit model, it is assumed that elongation or contraction deformation in each slit is elastically constrained between adjacent slits, and the following mathematical formula is introduced by introducing a longitudinal average strain (ε m with a superscript bar). (13) is used to determine the longitudinal stress generated in each slit. The average strain in the longitudinal direction is determined under the condition that the average stress obtained by integrating the longitudinal stress in each slit obtained from the following formula (13) in the plate width direction is equal to the run-out tension.
Figure JPOXMLDOC01-appb-M000015
ここで、Eはヤング率であり、応力σが降伏応力σを超えた場合には鋼板を弾完全塑性体としてεを用いる。
Figure JPOXMLDOC01-appb-M000015
Here, E is Young's modulus, and when the stress σ e exceeds the yield stress σ Y , ε p is used with the steel plate as an elastic perfect plastic body.
[コイル巻き付き解析モデル]
 コイル状態での解析には、円筒を積層したモデル(以下、積層円筒モデルと表記)を考える。コイル巻取工程は、積層円筒モデルにおいて最外周に巻き取り張力に等しい周方向抗力が作用する円筒を嵌め込むことによって表現できる。しかしながら、鋼板の巻き付き時には、既に巻き取られているコイルの表面形状に沿って鋼板を巻き付ける必要があると共に、巻き付ける鋼板のクラウンも考慮に入れて接触を考えなければならない。そこで、本実施形態では、板クラウン及びコイルの表面形状を表す変数を以下の数式(14),(15)に示す歪の形で導入する。
[Analysis model with coil winding]
For the analysis in the coil state, a model in which cylinders are stacked (hereinafter referred to as a stacked cylinder model) is considered. The coil winding process can be expressed by fitting a cylinder on which the circumferential drag equal to the winding tension acts on the outermost periphery in the laminated cylinder model. However, at the time of winding the steel plate, it is necessary to wind the steel plate along the surface shape of the coil that has already been wound, and contact must be considered in consideration of the crown of the steel plate to be wound. Therefore, in the present embodiment, variables representing the surface shapes of the plate crown and the coil are introduced in the form of distortion shown in the following formulas (14) and (15).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
ここで、Criはiスリットでの板クラウン量(板幅中央との板厚差)、Rは接触面の半径、εθは円周方向歪を表している。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Here, the strip crown amount at C ri is i slits (plate thickness difference between the plate width central), R n is the radius of the contact surface, the epsilon theta represents the circumferential strain.
 また、コイル巻取工程における板幅方向の張力分布の解析には、板クラウン及びコイル表面形状を考慮したスリットモデルの修正モデルを用いる。ランナウトテーブル上での解析と同様、この際の長手方向応力は以下に示す数式(16)で表され、長手方向の平均応力がコイル張力と等しくなるように長手方向平均歪(上付きのバー付きのε)を求めて張力分布を計算する。また、N巻き後のコイル表面は以下に示す数式(17)を用いて求めた張力分布によるコイル巻き締まり力を外力として、後述するコイル冷却解析で求まるコイル変形との連成解析により求める。 A slit model correction model that takes into account the plate crown and the coil surface shape is used for analysis of the tension distribution in the plate width direction in the coil winding process. Similar to the analysis on the run-out table, the longitudinal stress at this time is expressed by the following formula (16), and the longitudinal average strain (with superscript bar) is set so that the longitudinal average stress becomes equal to the coil tension. Of ε m ) and the tension distribution is calculated. Further, the coil surface after N turns is obtained by a coupled analysis with a coil deformation obtained by a coil cooling analysis to be described later, with the coil winding tightening force based on the tension distribution obtained using the following formula (17) as an external force.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
[コイル状態での冷却・応力・歪解析モデル]
 コイル状態での温度推移は、板幅方向及び半径方向の対称性を仮定した2次元対象モデルにて、数式(8)に示す非定常熱伝導方程式及び数式(9)に示す境界条件式を解くことによって求める(陽解法差分モデル)。この際、接触している鋼板間では、接触熱伝導率hが接触圧力pに依存するとして数式(17)を解き、以下に示す数式(18)を用いて半径方向の熱伝導率を算出する。また、板クラウンが大きい場合には、鋼板の幅方向端部近傍で鋼板間に隙間が生じるため、隙間の空気の熱伝導率を考慮して数式(19)を利用して等価接触熱伝導率hc_eq、数式(20)を利用して半径方向の等価熱伝導率λr_eqを求める。
[Cooling / Stress / Strain Analysis Model in Coil]
The temperature transition in the coil state is obtained by solving the unsteady heat conduction equation shown in Equation (8) and the boundary condition equation shown in Equation (9) with a two-dimensional object model assuming symmetry in the plate width direction and radial direction. (Explicit difference model). At this time, Equation (17) is solved by assuming that the contact thermal conductivity h c depends on the contact pressure p between the steel plates in contact, and the thermal conductivity in the radial direction is calculated using the following Equation (18). To do. Further, when the plate crown is large, a gap is formed between the steel plates in the vicinity of the end in the width direction of the steel plate. Therefore, the equivalent contact thermal conductivity is calculated using Equation (19) in consideration of the thermal conductivity of the air in the gap. The equivalent thermal conductivity λ r_eq in the radial direction is obtained using h c_eq , Equation (20).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
ここで、λは板幅方向の熱伝導率、λは空気の熱伝導率、tは板厚、dは鋼板間の隙間の大きさを表している。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Here, lambda w is the thermal conductivity of the plate width direction, lambda A thermal conductivity of the air, the t h sheet thickness, d represents the size of the gap between the steel plates.
 また、コイル状態での解析には積層円筒モデルを用いるが、コイルを一体物として解析する場合と異なり、積層円筒モデルではコイルの各鋼板間の接触を求めて鋼板間の接触・非接触を考慮しているために、正確な応力・歪み解析ができる。詳しくは、接触力pが鋼板に作用している時、ある鋼板jに作用する半径方向応力及び周方向応力は以下に示す数式(21)によって解析に与えられる。 In addition, the laminated cylindrical model is used for the analysis in the coil state. Unlike the case where the coil is analyzed as an integrated object, the laminated cylindrical model calculates the contact between the steel plates of the coil and considers contact / non-contact between the steel plates. Therefore, accurate stress / strain analysis can be performed. Specifically, when the contact force p acts on the steel plate, the radial stress and the circumferential stress acting on a certain steel plate j are given to the analysis by the following formula (21).
Figure JPOXMLDOC01-appb-M000023
ここで、rは鋼板中の半径方向の位置を表し、Rが内径、Rj+1が外径を表している。
Figure JPOXMLDOC01-appb-M000023
Here, r represents the position in the radial direction in the steel sheet, R j represents the inner diameter, and R j + 1 represents the outer diameter.
 また、以下に示す数式(22)を用いて接触面の板幅方向に作用する摩擦力を求め、板幅方向の拘束を与える。 Also, the frictional force acting in the plate width direction of the contact surface is obtained using the following formula (22) to give a constraint in the plate width direction.
Figure JPOXMLDOC01-appb-M000024
ここで、μは摩擦係数、dは幅方向のすべりの向きを表す符号である。
Figure JPOXMLDOC01-appb-M000024
Here, μ is a friction coefficient, and dj is a sign representing the direction of slip in the width direction.
 そして、コイル冷却工程時に発生する体積歪(熱収縮)ε、クリープ歪ε、塑性歪εを考慮すると、各鋼板に発生する円周方向歪みは以下に示す数式(23)にて求められる。 Then, considering the volume strain (heat shrinkage) ε T , creep strain ε c , and plastic strain ε p generated during the coil cooling step, the circumferential strain generated in each steel sheet is obtained by the following formula (23). It is done.
Figure JPOXMLDOC01-appb-M000025
ここで、νはポアソン比を表している。
Figure JPOXMLDOC01-appb-M000025
Here, ν represents the Poisson's ratio.
 実際には、数式(23)を増分形に変形した以下に示す数式(24)を用いて、接触面での各鋼板の周方向歪増分が等しくなるという適合条件のもとに計算できる。 Actually, the following equation (24) obtained by transforming equation (23) into an incremental form can be used to calculate under the matching condition that the circumferential strain increment of each steel plate at the contact surface becomes equal.
Figure JPOXMLDOC01-appb-M000026
ここで、ΔEはヤング率の増分を表している。
Figure JPOXMLDOC01-appb-M000026
Here, ΔE represents an increase in Young's modulus.
 コイル巻取工程時には、最内層の鋼板とマンドレルとの接触を考慮し、巻き締まり力によるマンドレルの弾性変形も計算する。そして、コイル巻取工程終了後には、マンドレルからコイル抜き出しを模擬するために剛性をゼロとする。 In the coil winding process, the elastic deformation of the mandrel due to the tightening force is calculated in consideration of the contact between the innermost steel plate and the mandrel. And after completion | finish of a coil winding-up process, rigidity is set to zero in order to simulate coil extraction from a mandrel.
 以上の計算モデルを総合し、コイル状態での冷却解析では、まず各時間ステップにて伝熱モデルと相変態モデルとを連成して解いて時刻t+Δtにおける各種物性値を求める。初期条件として、全ての円筒が接触していると仮定して接触条件式を立てて接触力を計算し、接触力が引張となった部分は非接触として接触条件の再計算を行う。全ての接触力が圧縮力又は0(非接触)になるまで繰り返し計算を行い、時刻t+Δtにおける応力・歪状態を決定する。そして、コイルの温度が常温程度になるまで解析を継続し、最終的な応力・歪状態を評価する。 In the cooling analysis in the coil state by integrating the above calculation models, first, the heat transfer model and the phase transformation model are coupled and solved at each time step to obtain various physical property values at time t + Δt. As an initial condition, assuming that all the cylinders are in contact, a contact condition formula is established and the contact force is calculated, and the contact condition is recalculated assuming that the portion where the contact force is tensile is non-contact. The calculation is repeated until all contact forces become compressive force or 0 (non-contact), and the stress / strain state at time t + Δt is determined. The analysis is continued until the temperature of the coil reaches about room temperature, and the final stress / strain state is evaluated.
(実施例)
 本実施例では、調質圧延機は、直径500mm、胴長1600mmのワークロールと、直径1000mm、胴長1600mmのバックアップロールと、からなる4段圧延機を備え、ワークロールベンダーの操作範囲はインクリース側(上下のワークロール端部を支えるチョック間に圧力を付与する方向)で0~60ton/チョックであった。また、鋼板Sは、厚み2.0mm、幅1200mmの低炭素鋼板であり、図3に示す熱間圧延工程において圧延され、コイル状に巻き取られた後、常温まで冷却されたものであった。予測された鋼板形状は図4に示したものであった。すなわち、最大伸び差率Δεmaxの絶対値は0.2%であった。
(Example)
In this embodiment, the temper rolling mill includes a four-stage rolling mill including a work roll having a diameter of 500 mm and a barrel length of 1600 mm and a backup roll having a diameter of 1000 mm and a barrel length of 1600 mm, and the operation range of the work roll bender is ink. It was 0 to 60 ton / chock on the lease side (direction in which pressure was applied between the chock supporting the upper and lower work roll ends). The steel plate S is a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm, which was rolled in the hot rolling process shown in FIG. 3 and wound into a coil shape, and then cooled to room temperature. . The predicted steel plate shape was as shown in FIG. That is, the absolute value of the maximum elongation difference Δε max was 0.2%.
 発明例1として、形状安全率α1の値を1.5として、数式(6)を利用して最大伸び差率Δεmaxから目標伸張率ELを算出したところ、目標伸張率ELは0.3%であった。圧延理論モデル式を用いて目標伸張率0.3%を得るための調質圧延機の圧下位置及び張力の設定値を計算し、圧下位置1.85mm、入側張力2.0ton、出側張力4.5tonに設定した。ワークロールベンダーの操作量の初期値は、操作範囲の中心値である30ton/チョックに設定した。そして、調質圧延中は圧延機入側及び出側で測定した鋼板速度の測定結果から伸び差率の実績値を算出し、目標伸張率ELを維持するようにワークロールの圧下位置を制御した。調質圧延後の鋼板形状を図5に示す。 As Inventive Example 1, the shape as 1.5 the value of the safety factor [alpha] 1, was calculated target expansion rate EL from the maximum elongation difference ratio [Delta] [epsilon] max using Equation (6), the target expansion ratio EL is 0.3% Met. Calculate the set values of the rolling position and tension of the temper rolling mill to obtain the target elongation of 0.3% using the rolling theory model formula. The rolling position is 1.85 mm, the entry side tension is 2.0 ton, and the exit side tension. Set to 4.5 tons. The initial value of the operation amount of the work roll bender was set to 30 ton / chock, which is the center value of the operation range. And during the temper rolling, the actual value of the elongation difference rate was calculated from the measurement results of the steel plate speed measured on the entry side and the exit side of the rolling mill, and the work roll reduction position was controlled so as to maintain the target elongation rate EL. . The steel plate shape after temper rolling is shown in FIG.
 発明例2として、形状安全率α2の値を0.2として、数式(7)を利用して最大伸び差率Δεmaxから目標伸張率ELを算出したところ、目標伸張率は0.4%であった。発明例1と同様にして、調質圧延機の圧下位置及び張力を設定し、圧下位置を制御した。調質圧延後の鋼板形状を図5に示す。 As Inventive Example 2, a 0.2 the value of shape factor of safety [alpha] 2, was calculated target expansion rate EL from the maximum elongation difference ratio [Delta] [epsilon] max using Equation (7), the target decompression rate is 0.4% there were. In the same manner as in Invention Example 1, the reduction position and tension of the temper rolling mill were set, and the reduction position was controlled. The steel plate shape after temper rolling is shown in FIG.
 比較例として、圧延理論モデル式を用いて通常の設定値である目標伸張率0.1%を得るための調質圧延機の圧下位置及び張力を設定した。そして、発明例1,2と同様にして、圧下位置を制御した。調質圧延後の図5に示す。なお、発明例1,2及び比較例では、調質圧延中、オペレータが、圧延機の出側における鋼板形状に応じてワークロールベンダーを適宜操作した。 As a comparative example, the rolling position and tension of a temper rolling mill for obtaining a target elongation rate of 0.1%, which is a normal set value, were set using a rolling theory model formula. The reduction position was controlled in the same manner as in Invention Examples 1 and 2. It shows in FIG. 5 after temper rolling. In invention examples 1 and 2 and the comparative example, during temper rolling, the operator appropriately operated the work roll bender according to the shape of the steel plate on the exit side of the rolling mill.
 図5に示すように、発明例1,2では、鋼板形状が良好に目標範囲R1(伸び差率0.0±0.1%)内に収まった。これに対して、比較例では、鋼板の尾端部において腹伸び形状が残存し、鋼板形状が目標範囲R1から外れた。以上のことから、発明例1,2によれば、鋼板形状を所望の形状に矯正できることが確認された。 As shown in FIG. 5, in Invention Examples 1 and 2, the shape of the steel sheet was well within the target range R1 (elongation difference rate 0.0 ± 0.1%). On the other hand, in the comparative example, the belly stretch shape remained at the tail end portion of the steel plate, and the steel plate shape deviated from the target range R1. From the above, according to Invention Examples 1 and 2, it was confirmed that the steel plate shape can be corrected to a desired shape.
 以上の説明から明らかなように、本発明の第1の実施形態である調質圧延機の制御装置10では、鋼板形状予測部11が、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の鋼板Sの形状を予測し、目標伸張率設定部12が、予測された調質圧延前の鋼板Sの形状に基づいて調質圧延での鋼板Sの目標伸張率ELを算出し、圧下位置・張力制御部13が、目標伸張率設定部12によって算出された目標伸張率ELに従って4段圧延機2のワークロールの圧下位置及び張力を制御する。これにより、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正できる。 As is clear from the above description, in the temper rolling mill control apparatus 10 according to the first embodiment of the present invention, the steel plate shape prediction unit 11 includes a hot rolling process, a coil winding process, and a coil cooling process. Is used to predict the shape of the steel sheet S before temper rolling, and the target elongation rate setting unit 12 performs the temper rolling in the temper rolling based on the predicted shape of the steel sheet S before temper rolling. The target elongation rate EL of the steel sheet S is calculated, and the reduction position / tension control unit 13 controls the reduction position and tension of the work roll of the four-high rolling mill 2 according to the target elongation rate EL calculated by the target elongation rate setting unit 12. To do. Thereby, the steel plate shape before temper rolling can be accurately predicted without requiring much labor, and the steel plate shape can be corrected to a desired shape based on the predicted steel plate shape.
〔第2の実施形態〕
 次に、図6を参照して、本発明の第2の実施形態である調質圧延機の制御装置の構成について説明する。なお、図6には、本発明の第2の実施形態である調質圧延機の制御装置が適用される調質圧延機の構成も図示されているが、この調質圧延機の構成は図1に示す調質圧延機の構成と同じであるので、以下ではその説明を省略する。
[Second Embodiment]
Next, with reference to FIG. 6, the structure of the control apparatus of the temper rolling mill which is the 2nd Embodiment of this invention is demonstrated. FIG. 6 also shows the configuration of the temper rolling mill to which the control device for the temper rolling mill according to the second embodiment of the present invention is applied. Since it is the same as the structure of the temper rolling mill shown in 1, the description is abbreviate | omitted below.
〔制御装置の構成〕
 図6は、本発明の第2の実施形態である調質圧延機の制御装置及びこの制御装置が適用される調質圧延機の構成を示す模式図である。図6に示すように、本発明の第2の実施形態である調質圧延機の制御装置30は、パーソナルコンピュータ等の情報処理装置によって構成され、情報処理装置内の演算処理装置がコンピュータプログラムを実行することにより鋼板形状予測部31、操作量設定部32、及び鋼板形状制御部33として機能する。これら各部の機能については後述する。
[Configuration of control device]
FIG. 6 is a schematic diagram showing a configuration of a temper rolling mill control apparatus and a temper rolling mill to which the control apparatus is applied according to the second embodiment of the present invention. As shown in FIG. 6, the control device 30 of the temper rolling mill according to the second embodiment of the present invention is configured by an information processing device such as a personal computer, and the arithmetic processing device in the information processing device stores a computer program. By executing, it functions as the steel plate shape prediction unit 31, the operation amount setting unit 32, and the steel plate shape control unit 33. The functions of these units will be described later.
 このような構成を有する調質圧延機の制御装置30は、以下に示す調質圧延制御処理を実行することによって、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正する。以下、図7,図8を参照して、調質圧延制御処理を実行する際の調質圧延機の制御装置30の動作について説明する。 The control device 30 of the temper rolling mill having such a configuration predicts the steel plate shape before the temper rolling with high accuracy without requiring much labor by executing the temper rolling control process shown below. The steel plate shape is corrected to a desired shape based on the predicted steel plate shape. Hereinafter, with reference to FIG. 7, FIG. 8, operation | movement of the control apparatus 30 of the temper rolling mill at the time of performing a temper rolling control process is demonstrated.
〔調質圧延制御処理〕
 図7は、本発明の第2の実施形態である調質圧延制御処理の流れを示すフローチャートである。図7に示すフローチャートは、調質圧延工程の実行命令が入力されたタイミングで開始となり、調質圧延制御処理はステップS11の処理に進む。
[Temperature rolling control processing]
FIG. 7 is a flowchart showing the flow of the temper rolling control process according to the second embodiment of the present invention. The flowchart shown in FIG. 7 starts at the timing when the execution command for the temper rolling process is input, and the temper rolling control process proceeds to the process of step S11.
 ステップS11の処理では、鋼板形状予測部31が、調質圧延を実行する鋼板Sの鋼板情報及び熱延情報を取得する。詳しくは、鋼板形状予測部31は、鋼板情報として、図3に示す仕上圧延機21の出側における鋼板Sの寸法形状や温度及び変形抵抗等の材質特性に関する情報を取得する。また、鋼板形状予測部31は、熱延情報として、図3に示す水冷装置22による鋼板Sの冷却条件、及び通板中の鋼板Sに付加される張力や速度に関する情報を取得する。なお、図3に示すコイラー23による巻き取り前に鋼板Sの温度は計測可能である場合には、計測された温度を鋼板情報に含めるようにしてもよい。これにより、ステップS11の処理は完了し、調質圧延制御処理はステップS12の処理に進む。 In the process of step S11, the steel plate shape prediction unit 31 acquires the steel plate information and hot rolling information of the steel plate S that performs temper rolling. Specifically, the steel plate shape prediction unit 31 acquires information on material characteristics such as the dimensional shape, temperature, and deformation resistance of the steel plate S on the exit side of the finish rolling mill 21 shown in FIG. 3 as steel plate information. Moreover, the steel plate shape prediction unit 31 acquires, as hot rolling information, information on the cooling conditions of the steel plate S by the water cooling device 22 shown in FIG. 3 and the tension and speed applied to the steel plate S in the passing plate. In addition, when the temperature of the steel plate S can be measured before winding by the coiler 23 illustrated in FIG. 3, the measured temperature may be included in the steel plate information. Thereby, the process of step S11 is completed and a temper rolling control process progresses to the process of step S12.
 ステップS12の処理では、鋼板形状予測部31が、ステップS11の処理において取得した鋼板Sの鋼板情報及び熱延情報に基づいて、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを用いて調質圧延前の鋼板Sの形状を予測する(鋼板形状予測処理)。なお、この鋼板形状予測処理は上記ステップS2の鋼板形状予測処理と同じ内容であるので、その詳細な説明は省略する。これにより、ステップS12の処理は完了し、調質圧延制御処理はステップS13の処理に進む。 In the process of step S12, the steel plate shape prediction unit 31 simulates the hot rolling process, the coil winding process, and the coil cooling process based on the steel sheet information and hot rolling information of the steel sheet S acquired in the process of step S11. The shape of the steel plate S before temper rolling is predicted using a mathematical model (steel plate shape prediction process). Since the steel plate shape prediction process has the same contents as the steel plate shape prediction process in step S2, the detailed description thereof is omitted. Thereby, the process of step S12 is completed and a temper rolling control process progresses to the process of step S13.
 ステップS13の処理では、操作量設定部32が、ステップS12の処理において予測された調質圧延前の鋼板Sの形状に基づいて、ワークロールベンダーの初期設定値を設定する。具体的には、始めに、操作量設定部32は、既に述べた数式(3)を利用して調質圧延前の鋼板Sの形状での伸び差率Δε(図4参照)を算出する。 In the process of step S13, the operation amount setting unit 32 sets the initial setting value of the work roll bender based on the shape of the steel sheet S before the temper rolling predicted in the process of step S12. Specifically, first, the operation amount setting unit 32 calculates the elongation difference rate Δε (see FIG. 4) in the shape of the steel sheet S before the temper rolling using the already described mathematical formula (3).
 図8は、図6に示す調質圧延機を用いて実験的に算出された、ワークロールベンダーの操作量と伸び差率との関係を示す図である。本実験では、厚み2.0mm及び幅1200mmの低炭素鋼板に対して調質圧延を施した。図8に示すように、ワークロールベンダーの操作量を大きくしていくと、伸び差率は小さくなる。これは、ワークロールベンダーの操作量を大きくすると、上下のワークロールの軸心撓みが両端部のギャップが広がる方向に変化するために、鋼板形状が耳伸び形状から腹伸び形状に変化することを意味している。具体的には、図8に示す実験例によれば、厚み2.0mm及び幅1200mmの低炭素鋼板では、ワークロールの操作量を操作範囲の下限値0ton/チョックから操作範囲の上限値60ton/チョックまで操作すると、伸び差率が約-0.3%変化する。 FIG. 8 is a diagram showing the relationship between the operation amount of the work roll bender and the elongation difference calculated experimentally using the temper rolling mill shown in FIG. In this experiment, temper rolling was performed on a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm. As shown in FIG. 8, as the operation amount of the work roll bender increases, the elongation difference rate decreases. This is because when the work roll bender's operating amount is increased, the axial center deflection of the upper and lower work rolls changes in the direction in which the gap at both ends widens, so that the steel plate shape changes from the ear extension shape to the belly extension shape. I mean. Specifically, according to the experimental example shown in FIG. 8, in the low carbon steel sheet having a thickness of 2.0 mm and a width of 1200 mm, the operation amount of the work roll is changed from the lower limit value 0 ton / chock of the operation range to the upper limit value 60 ton / of the operation range. When operating up to chock, the differential elongation changes by about -0.3%.
 そこで、本実施形態では、操作量設定部32は、調質圧延前の鋼板形状で最も形状が悪い部分、すなわち伸び差率Δεが最大になる部分においても十分な形状制御が行える、換言すれば、伸び差率Δεが最大になる部分においてもワークロールベンダーの操作量が操作範囲の上限値又は下限値に到達しないように、ワークロールベンダーの操作量の初期値を設定する。つまり、本実施形態では、操作量設定部32は、鋼板全長での形状を考慮してワークロールベンダーの操作量の初期値を設定する。 Therefore, in the present embodiment, the operation amount setting unit 32 can perform sufficient shape control even in the portion having the worst shape in the steel plate shape before temper rolling, that is, in the portion where the elongation difference rate Δε is maximized, in other words, The initial value of the work roll bender's operation amount is set so that the work roll bender's operation amount does not reach the upper limit value or the lower limit value of the operation range even in the portion where the elongation difference rate Δε is maximum. That is, in this embodiment, the operation amount setting unit 32 sets the initial value of the operation amount of the work roll bender in consideration of the shape of the entire length of the steel plate.
 例えば図4に示す鋼板形状では、鋼板の長手方向約850mの位置で伸び差率-0.2%の腹伸び形状となっている。このような鋼板を調質圧延するに際して、一般的なワークロールベンダーの操作量の初期設定方法に従って初期値を操作範囲の中心値である30ton/チョックに設定した場合、約850mの位置での腹伸び形状を矯正するためにワークロールベンダーの操作量を耳伸び側へ操作範囲の下限値である0ton/チョックまで操作しても鋼板形状の変化は0.15%しかなく、腹伸び形状は残存してしまう。 For example, the steel plate shape shown in FIG. 4 has a belly stretch shape with an elongation difference of −0.2% at a position of about 850 m in the longitudinal direction of the steel plate. When temper-rolling such a steel sheet, when the initial value is set to 30 ton / chock, which is the center value of the operation range, according to the initial setting method of the operation amount of a general work roll bender, the belly at a position of about 850 m. Even when the operation amount of the work roll bender is adjusted to 0 ton / chock, which is the lower limit of the operation range, to correct the stretch shape, the steel plate shape change is only 0.15%, and the abdominal stretch shape remains. Resulting in.
 このため、操作量設定部32は、約850mの位置での腹伸び形状に対してもワークロールベンダーの操作量が操作範囲の下限値に張り付かないようにワークロールベンダーの操作量の初期値を算出、設定する。具体的には、操作量設定部32は、以下に示す数式(25)を用いて鋼板形状の中心値SHAPE(Med)を算出し、鋼板形状の中心値に対してワークロールベンダーの操作範囲の中心値がくるようにワークロールベンダーの操作量の初期値を設定する。 For this reason, the operation amount setting unit 32 sets the initial value of the operation amount of the work roll bender so that the operation amount of the work roll bender does not stick to the lower limit value of the operation range even for the stretched shape at a position of about 850 m. Is calculated and set. Specifically, the operation amount setting unit 32 calculates the center value SHAPE (Med) of the steel plate shape using the following formula (25), and the operation range of the work roll bender is calculated with respect to the center value of the steel plate shape. Set the initial value of the work roll vendor's operation amount so that the center value comes.
Figure JPOXMLDOC01-appb-M000027
ここで、SHAPE(Max),SHAPE(Min)はそれぞれ調質圧延前の鋼板形状の最大値及び最小値を表している。
Figure JPOXMLDOC01-appb-M000027
Here, SHAPE (Max) and SHAPE (Min) represent the maximum value and the minimum value of the steel sheet shape before temper rolling, respectively.
 例えば図4に示す鋼板形状では、調質圧延前の鋼板形状の最大値SHAPE(Max)及び最小値SHAPE(Min)はそれぞれ0.1,-0.2であるから鋼板形状の中心値SHAPE(Med)は-0.05%と算出される。そこで、操作量設定部32は、図8に示す関係に基づいて-0.05%に対応する40ton/チョックをワークロールベンダーの操作量の初期値に設定する。ワークロールベンダーの操作量の初期値を40ton/チョックに設定することによって、約850mの位置での腹伸び形状に対してもワークロールベンダーの操作量を40ton/チョック小さくできるので、伸び差率が0になるまで鋼板形状を改善できる。これにより、ステップS13の処理は完了し、調質圧延制御処理はステップS14の処理に進む。 For example, in the steel plate shape shown in FIG. 4, the maximum value SHAPE (Max) and the minimum value SHAPE (Min) of the steel plate shape before temper rolling are 0.1 and −0.2, respectively. Med) is calculated as -0.05%. Therefore, the operation amount setting unit 32 sets 40 ton / chock corresponding to −0.05% as an initial value of the operation amount of the work roll vendor based on the relationship shown in FIG. By setting the initial value of the work roll bender's operation amount to 40 ton / chock, the work roll bender's operation amount can be reduced by 40 ton / chock even for the abdominal stretch shape at a position of about 850 m. The steel plate shape can be improved until zero. Thereby, the process of step S13 is completed and a temper rolling control process progresses to the process of step S14.
 ステップS14の処理では、鋼板形状制御部33が、調質圧延機1における4段圧延機2の圧下位置及び鋼板Sの張力を制御する。また、鋼板形状制御部33は、オペレータの操作に従ってワークロールベンダーの操作量を制御することによって鋼板形状を制御する。これにより、ステップS14の処理は完了し、一連の調質圧延制御処理は終了する。 In the process of step S14, the steel plate shape control unit 33 controls the reduction position of the four-high rolling mill 2 and the tension of the steel plate S in the temper rolling mill 1. The steel plate shape control unit 33 controls the steel plate shape by controlling the operation amount of the work roll bender according to the operation of the operator. Thereby, the process of step S14 is completed and a series of temper rolling control processes are complete | finished.
(実施例)
 本実施例では、調質圧延機は、直径500mm、胴長1600mmのワークロールと、直径1000mm、胴長1600mmのバックアップロールと、からなる4段圧延機を備え、ワークロールベンダーの操作範囲はインクリース側(上下のワークロール端部を支えるチョック間に圧力を付与する方向)で0~60ton/チョックであった。また、鋼板Sは、厚み2.0mm、幅1200mmの低炭素鋼板であり、図3に示す熱間圧延工程において圧延され、コイル状に巻き取られた後、常温まで冷却されたものであった。予測された鋼板形状は図4に示したものであった。すなわち、鋼板の長手方向先端部から長手方向中央部付近にかけては、鋼板形状は伸び差率0.1%の耳伸び形状であり、鋼板の長手方向中央部付近から長手方向尾端部にかけては、伸び差率は約-0.2%と形状不良(腹伸び形状)になっている。
(Example)
In this embodiment, the temper rolling mill includes a four-stage rolling mill including a work roll having a diameter of 500 mm and a barrel length of 1600 mm and a backup roll having a diameter of 1000 mm and a barrel length of 1600 mm, and the operation range of the work roll bender is ink. It was 0 to 60 ton / chock on the lease side (direction in which pressure was applied between the chock supporting the upper and lower work roll ends). The steel plate S is a low carbon steel plate having a thickness of 2.0 mm and a width of 1200 mm, which was rolled in the hot rolling process shown in FIG. 3 and wound into a coil shape, and then cooled to room temperature. . The predicted steel plate shape was as shown in FIG. That is, from the longitudinal direction tip of the steel plate to the vicinity of the central portion in the longitudinal direction, the steel plate shape is an ear extension shape with an elongation difference of 0.1%, and from the vicinity of the central portion of the steel plate in the longitudinal direction to the longitudinal tail end, The difference in elongation is about -0.2%, indicating a poor shape (belly stretched shape).
 発明例では、図4に示す鋼板形状に基づいて鋼板形状の中心値SHAPE(Med)を-0.05%と算出し、図5に示す関係に基づいて鋼板形状の中心値に対応するワークロールベンダーの操作量(40ton/チョック)をワークロールベンダーの操作量の初期値に設定した。そして、調質圧延中は圧延機出側で測定した鋼板形状に基づいてワークロールベンダーの操作量をフィードバック制御した。比較例では、ワークロールベンダーの操作範囲の中心値(30ton/チョック)をワークロールベンダーの操作量の初期値に設定した。 In the invention example, the center value SHAPE (Med) of the steel plate shape is calculated as -0.05% based on the steel plate shape shown in FIG. 4, and the work roll corresponding to the center value of the steel plate shape is calculated based on the relationship shown in FIG. The operating amount of the vendor (40 ton / chock) was set to the initial value of the operating amount of the work roll vendor. And during the temper rolling, the operation amount of the work roll bender was feedback controlled based on the steel plate shape measured on the delivery side of the rolling mill. In the comparative example, the center value (30 ton / chock) of the operation range of the work roll vendor was set as the initial value of the operation amount of the work roll vendor.
 図9は、発明例及び比較例における調質圧延後の鋼板形状の実測値を示す図である。図9に示すように、発明例では、鋼板形状は良好であるのに対して、比較例では、鋼板の尾端部において腹伸び形状が残存して目標範囲から外れており、形状不良になっていることがわかる。以上のことから、発明例によれば、鋼板形状を精度よく所望の形状に矯正できることが確認された。 FIG. 9 is a diagram showing measured values of the steel sheet shape after temper rolling in the invention example and the comparative example. As shown in FIG. 9, in the invention example, the steel plate shape is good, whereas in the comparative example, the belly stretch shape remains at the tail end portion of the steel plate and deviates from the target range, resulting in a poor shape. You can see that From the above, according to the invention example, it was confirmed that the steel plate shape can be accurately corrected to a desired shape.
 以上の説明から明らかなように、本発明の第2の実施形態である調質圧延機1の制御装置10によれば、鋼板形状予測部31が、熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の鋼板Sの形状を予測し、操作量設定部32が、鋼板形状予測部31によって予測された調質圧延前の鋼板Sの形状に基づいて鋼板Sの形状を矯正するワークロールベンダーの初期設定値を制御する。これにより、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正することができる。 As is apparent from the above description, according to the control device 10 of the temper rolling mill 1 according to the second embodiment of the present invention, the steel plate shape prediction unit 31 includes a hot rolling process, a coil winding process, and The shape of the steel sheet S before the temper rolling is predicted using a mathematical model simulating the coil cooling process, and the shape of the steel sheet S before the temper rolling which the operation amount setting unit 32 predicts by the steel plate shape prediction unit 31 is predicted. The initial setting value of the work roll bender that corrects the shape of the steel sheet S is controlled based on the above. Thereby, the steel plate shape before temper rolling can be accurately predicted without requiring much labor, and the steel plate shape can be corrected to a desired shape based on the predicted steel plate shape.
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 As mentioned above, although the embodiment to which the invention made by the present inventors is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
 本発明によれば、多くの労力を要することなく調質圧延前の鋼板形状を精度高く予測し、予測された鋼板形状に基づいて鋼板形状を所望の形状に矯正可能な調質圧延機の制御装置及び制御方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, control of the temper rolling mill which can predict the steel plate shape before temper rolling with high precision without requiring much labor, and can correct the steel plate shape to a desired shape based on the predicted steel plate shape. An apparatus and a control method can be provided.
 1 調質圧延機
 2 4段圧延機
 3a,3b リール
 10 制御装置
 11 鋼板形状予測部
 12 目標伸張率設定部
 13 圧下位置・張力制御部
 21 仕上圧延機
 22 水冷装置
 23 コイラー
 30 制御装置
 31 鋼板形状予測部
 32 操作量設定部
 33 圧下位置・張力制御部
 S 鋼板
DESCRIPTION OF SYMBOLS 1 Temper rolling mill 2 4-high rolling mill 3a, 3b Reel 10 Control apparatus 11 Steel plate shape prediction part 12 Target elongation rate setting part 13 Reduction position and tension control part 21 Finishing mill 22 Water cooling device 23 Coiler 30 Control apparatus 31 Steel plate shape Prediction unit 32 Operation amount setting unit 33 Rolling position / tension control unit S Steel plate

Claims (7)

  1.  熱延鋼板を調質圧延する調質圧延機の制御装置であって、
     熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測手段と、
     前記予測手段によって予測された調質圧延前の熱延鋼板の形状に基づいて調質圧延での熱延鋼板の目標伸張率を算出する伸張率算出手段と、
     前記伸張率算出手段によって算出された調質圧延での熱延鋼板の目標伸張率に従って前記調質圧延機の圧下位置及び張力を制御する制御手段と、
     を備えることを特徴とする調質圧延機の制御装置。
    A control device for a temper rolling mill for temper rolling a hot rolled steel sheet,
    Prediction means for predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model that simulates the hot rolling process, coil winding process, and coil cooling process,
    An elongation rate calculating means for calculating a target elongation rate of the hot rolled steel sheet in the temper rolling based on the shape of the hot rolled steel sheet before the temper rolling predicted by the predicting means;
    Control means for controlling the reduction position and tension of the temper rolling mill according to the target elongation ratio of the hot-rolled steel sheet in the temper rolling calculated by the elongation ratio calculating means;
    A control device for a temper rolling mill, comprising:
  2.  前記伸張率算出手段は、前記予測手段によって予測された調質圧延前の熱延鋼板の形状での最大伸び差率Δεmaxを以下に示す数式(1)に代入することによって調質圧延での熱延鋼板の目標伸張率ELを算出することを特徴とする請求項1に記載の調質圧延機の制御装置。但し、数式(1)中のα1は形状制御安全率を示す。
    Figure JPOXMLDOC01-appb-M000001
    The elongation rate calculation means substitutes the maximum elongation difference Δε max in the shape of the hot-rolled steel sheet before temper rolling predicted by the prediction means into the following formula (1), thereby performing temper rolling. The temper rolling mill control device according to claim 1, wherein a target elongation ratio EL of the hot-rolled steel sheet is calculated. However, (alpha) 1 in Numerical formula (1) shows a shape control safety factor.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記伸張率算出手段は、前記予測手段によって予測された調質圧延前の熱延鋼板の形状での最大伸び差率Δεmaxを以下に示す数式(2)に代入することによって調質圧延での熱延鋼板の目標伸張率ELを算出することを特徴とする請求項1に記載の調質圧延機の制御装置。但し、数式(2)中のα2は形状制御安全率を示す。
    Figure JPOXMLDOC01-appb-M000002
    The elongation rate calculating means substitutes the maximum elongation difference Δε max in the shape of the hot-rolled steel sheet before the temper rolling predicted by the prediction means in the temper rolling by substituting into the following formula (2). The temper rolling mill control device according to claim 1, wherein a target elongation ratio EL of the hot-rolled steel sheet is calculated. However, (alpha) 2 in Numerical formula (2) shows a shape control safety factor.
    Figure JPOXMLDOC01-appb-M000002
  4.  熱延鋼板を調質圧延する調質圧延機の制御方法であって、
     熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測ステップと、
     前記予測ステップにおいて予測された調質圧延前の熱延鋼板の形状に基づいて調質圧延での熱延鋼板の目標伸張率を算出する伸張率算出ステップと、
     前記伸張率算出ステップにおいて算出された調質圧延での熱延鋼板の目標伸張率に従って前記調質圧延機の圧下位置及び張力を制御する制御ステップと、
     を含むことを特徴とする調質圧延機の制御方法。
    A method for controlling a temper rolling mill for temper rolling a hot rolled steel sheet,
    Prediction step of predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model that simulates the hot rolling process, coil winding process, and coil cooling process;
    An elongation ratio calculating step for calculating a target elongation ratio of the hot-rolled steel sheet in the temper rolling based on the shape of the hot-rolled steel sheet before the temper rolling predicted in the prediction step;
    A control step of controlling the rolling position and tension of the temper rolling mill according to the target elongation rate of the hot rolled steel sheet in the temper rolling calculated in the elongation rate calculation step;
    A method for controlling a temper rolling mill, comprising:
  5.  熱延鋼板を調質圧延する調質圧延機の制御装置であって、
     熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測手段と、
     前記予測手段によって予測された調質圧延前の熱延鋼板の形状に基づいて熱延鋼板の形状を矯正する形状制御手段の初期設定値を制御する制御手段と、
     を備えることを特徴とする調質圧延機の制御装置。
    A control device for a temper rolling mill for temper rolling a hot rolled steel sheet,
    Prediction means for predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model that simulates the hot rolling process, coil winding process, and coil cooling process,
    Control means for controlling the initial setting value of the shape control means for correcting the shape of the hot-rolled steel sheet based on the shape of the hot-rolled steel sheet before temper rolling predicted by the prediction means;
    A control device for a temper rolling mill, comprising:
  6.  前記形状制御手段は、圧延ロールの撓み量を制御するロールベンダーであることを特徴とする請求項5に記載の調質圧延機の制御装置。 6. The temper rolling mill control device according to claim 5, wherein the shape control means is a roll bender for controlling a deflection amount of the rolling roll.
  7.  熱延鋼板を調質圧延する調質圧延機の制御方法であって、
     熱間圧延工程、コイル巻取工程、及びコイル冷却工程を模擬した数式モデルを利用して調質圧延前の熱延鋼板の形状を予測する予測ステップと、
     前記予測ステップにおいて予測された調質圧延前の熱延鋼板の形状に基づいて熱延鋼板の形状を矯正する形状制御手段の初期設定値を制御する制御ステップと、
     を含むことを特徴とする調質圧延機の制御方法。
    A method for controlling a temper rolling mill for temper rolling a hot rolled steel sheet,
    Prediction step of predicting the shape of the hot rolled steel sheet before temper rolling using a mathematical model that simulates the hot rolling process, coil winding process, and coil cooling process;
    A control step for controlling the initial setting value of the shape control means for correcting the shape of the hot-rolled steel sheet based on the shape of the hot-rolled steel sheet before temper rolling predicted in the prediction step;
    A method for controlling a temper rolling mill, comprising:
PCT/JP2015/072370 2014-09-01 2015-08-06 Control device and control method for tempering mill WO2016035505A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014177066A JP5971293B2 (en) 2014-09-01 2014-09-01 Control device and control method for temper rolling mill
JP2014177056A JP5971292B2 (en) 2014-09-01 2014-09-01 Control device and control method for temper rolling mill
JP2014-177066 2014-09-01
JP2014-177056 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035505A1 true WO2016035505A1 (en) 2016-03-10

Family

ID=55439573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072370 WO2016035505A1 (en) 2014-09-01 2015-08-06 Control device and control method for tempering mill

Country Status (1)

Country Link
WO (1) WO2016035505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107520256A (en) * 2017-09-12 2017-12-29 首钢集团有限公司 The control method of smooth elongation percentage during a kind of planisher start and stop car

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213209A (en) * 1985-07-09 1987-01-22 Mitsubishi Electric Corp Elongation control device
JPH11254017A (en) * 1998-03-11 1999-09-21 Kawasaki Steel Corp Method for controlling hydraulic rolling reduction in temper rolling mill and device therefor
JP2013123726A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method and device for estimating rolling load of temper rolling of steel strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213209A (en) * 1985-07-09 1987-01-22 Mitsubishi Electric Corp Elongation control device
JPH11254017A (en) * 1998-03-11 1999-09-21 Kawasaki Steel Corp Method for controlling hydraulic rolling reduction in temper rolling mill and device therefor
JP2013123726A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method and device for estimating rolling load of temper rolling of steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107520256A (en) * 2017-09-12 2017-12-29 首钢集团有限公司 The control method of smooth elongation percentage during a kind of planisher start and stop car
CN107520256B (en) * 2017-09-12 2019-07-02 首钢集团有限公司 The control method of smooth elongation percentage during a kind of planisher start and stop vehicle

Similar Documents

Publication Publication Date Title
Abvabi et al. The influence of residual stress on a roll forming process
WO2016155603A1 (en) Rolling method for boards with different longitudinal thicknesses
JPWO2009113719A1 (en) Learning method of rolling load prediction in hot plate rolling.
JP2007216246A (en) Method for controlling shape of metal strip in hot rolling
JP5971293B2 (en) Control device and control method for temper rolling mill
JP4523010B2 (en) Steel plate manufacturing method
JP6028871B2 (en) Thickness control device for rolling mill
JP2016078057A (en) Slab camber suppression method, camber suppression device, and slab guiding device
WO2016035505A1 (en) Control device and control method for tempering mill
JP4990747B2 (en) Temper rolling method
JP2016215219A (en) Coil insertion device and coil insertion method
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
JP5971292B2 (en) Control device and control method for temper rolling mill
Mazur et al. Stability loss and defects in coils of cold-rolled strip
JP6806099B2 (en) Rolling machine leveling setting method, rolling mill leveling setting device, and steel sheet manufacturing method
JP6939161B2 (en) Method for predicting flatness of hot-rolled steel sheet
JP4986463B2 (en) Shape control method in cold rolling
JP4018572B2 (en) Manufacturing method of steel sheet with small variation in yield stress and residual stress
JP6070737B2 (en) Control device and control method for temper rolling equipment
JP2003311326A (en) Steel plate manufacturing method
Maksimov et al. Calculation of Residual Stress and Parameters of Sheet Springing on a Roller Leveler
JP2000301220A (en) Steel plate and method and device for manufacturing steel plate
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP2007268566A (en) Method for controlling shape in cold rolling
KR101462332B1 (en) Method and device for controlling speed of rolling mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837742

Country of ref document: EP

Kind code of ref document: A1