WO2016031745A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2016031745A1
WO2016031745A1 PCT/JP2015/073648 JP2015073648W WO2016031745A1 WO 2016031745 A1 WO2016031745 A1 WO 2016031745A1 JP 2015073648 W JP2015073648 W JP 2015073648W WO 2016031745 A1 WO2016031745 A1 WO 2016031745A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
crystal display
formula
alignment film
Prior art date
Application number
PCT/JP2015/073648
Other languages
English (en)
French (fr)
Inventor
宮地 弘一
真伸 水▲崎▼
敢 岡▲崎▼
博司 土屋
敢 三宅
松本 俊寛
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/507,084 priority Critical patent/US10203558B2/en
Publication of WO2016031745A1 publication Critical patent/WO2016031745A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/04Anhydrides, e.g. cyclic anhydrides
    • C08F22/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/06Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen
    • C09K15/08Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen containing a phenol or quinone moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133397Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device driven by an active matrix method.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display.
  • a typical display method is to irradiate light from a backlight onto a liquid crystal panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal panel is controlled by applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal molecules.
  • Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as smartphones, tablet PCs, and car navigation systems.
  • Patent Document 1 discloses that an antioxidant and a light stabilizer are added to the liquid crystal composition.
  • Patent Document 2 also discloses adding a stabilizer to the liquid crystal composition (see Table C in paragraphs [0208] to [0211]).
  • the present inventors examined the relationship between the above-described defects of burn-in and stains and the narrowing of the width of the seal portion for making the liquid crystal panel into a frame.
  • a seal part for sealing the TFT substrate and the color filter substrate and enclosing the liquid crystal material is formed on the outer periphery of the liquid crystal panel.
  • moisture, Oxygen and other impurities easily enter the liquid crystal layer.
  • the intrusion of oxygen into the liquid crystal panel is one of the causes of the malfunction. That is, it has been found that it is necessary to take measures to prevent the oxidation reaction in the liquid crystal panel.
  • a photocurable sealing material is drawn on one of the substrates with a dispenser, and after dropping the liquid crystal material on one of the substrates, the two substrates are bonded together, The sealing material is cured by irradiation with ultraviolet rays or visible light.
  • the light to be irradiated is selected depending on the main reaction wavelength of the photopolymerization initiator contained in the sealing material. However, it is necessary to secure a region where a light shielding member such as a wiring is disposed on the outer peripheral portion, and when the width of the seal portion is narrowed, a region that does not overlap with the light shielding member may not be sufficiently secured.
  • the normal composition of the sealing material includes a photopolymerization initiator in addition to the main components of epoxy and acrylic, and the highly reactive photopolymerization initiator elutes in the liquid crystal material, increasing the brightness. It is considered that there is a high possibility of causing a malfunction when the light from the backlight is irradiated.
  • the radical generation liquid crystal panel is irradiated with backlight light (amount of energy: h ⁇ ).
  • amount of energy h ⁇
  • the liquid crystal panel does not react during the photocuring treatment of the sealing material.
  • the photopolymerization initiator of the reaction is excited and a radical is generated.
  • radical generation becomes significant.
  • (2-1) Radicals generated from the unreacted photopolymerization initiator in the first ion-generating sealing material are eluted into the liquid crystal layer, and the eluted radicals are ionized.
  • the unreacted photopolymerization initiator in the sealing material is eluted into the liquid crystal layer, and the eluted photopolymerization initiator is radicalized and further ionized by irradiation with backlight light.
  • the radicals generated from the unreacted photopolymerization initiator in the second ion generation sealing material are eluted into the liquid crystal layer, the radicals are transferred from the photopolymerization initiator to the liquid crystal molecules, and the liquid crystal molecules are ionized.
  • the unreacted photopolymerization initiator in the sealing material is eluted into the liquid crystal layer, and the eluted photopolymerization initiator is radicalized by irradiation with light from the backlight, and the radical is further converted from the photopolymerization initiator to the liquid crystal molecules.
  • the liquid crystal molecules are ionized.
  • VHR voltage holding ratio
  • liquid crystal compositions are added with additives such as antioxidants and light stabilizers, but these additives are unique when a liquid crystal panel is framed. It was not intended to solve the problem. That is, when the liquid crystal material is oxidized by the dissolved oxygen remaining slightly at the time of manufacturing the liquid crystal material itself and the oxygen that has entered the liquid crystal panel from the outside during the manufacture of the liquid crystal panel, Display burn-in and spots may occur. In order to prevent this, conventionally, an antioxidant or the like having a function of desorbing oxygen from an oxide generated under the influence of light or heat in the presence of oxygen has been added to the liquid crystal composition.
  • the consumption of the antioxidant is increased as compared with the conventional case, so that the liquid crystal molecules and the alignment film are oxidized. Oxides generated thereby may also be ionized, causing a decrease in voltage holding ratio.
  • the present invention has been made in view of the above situation, and even when the liquid crystal panel is framed, a good voltage holding ratio is maintained over a long period of time, and the occurrence of burn-in and spots on the display screen is prevented.
  • Another object of the present invention is to provide a liquid crystal display device.
  • the inventors have reduced the voltage holding ratio at the edge of the screen of the liquid crystal panel and the edge of the box pattern display. Therefore, it was noted that problems such as burn-in and spots on the display screen are particularly likely to occur. Therefore, as a result of intensive studies, the present inventors are the first to explain that the main cause of the failure is that radicals are generated from the seal portion by being exposed to the light of the backlight, and this is eluted into the liquid crystal layer. I found it. As a result, it was conceived that the above problem can be solved by including at least one of a radical scavenger and an antioxidant in the liquid crystal layer, and the present invention has been achieved.
  • one embodiment of the present invention includes an active matrix liquid crystal panel and a backlight
  • the liquid crystal panel includes a liquid crystal layer, a pair of substrates that sandwich the liquid crystal layer, and the liquid crystal layer side of the pair of substrates.
  • the liquid crystal panel is formed by a liquid crystal dropping method.
  • the liquid crystal panel has an alignment film disposed on the surface of each of the liquid crystal layers and a seal portion that adheres the pair of substrates to each other and is disposed around the liquid crystal layer.
  • the liquid crystal layer contains a liquid crystal material and at least one of a radical scavenger and an antioxidant, and the width of the seal part is at least partly 0.6 mm or less. Also good.
  • the liquid crystal display device of the present invention since it has the above-described configuration, radicals eluted in the liquid crystal layer can be deactivated by at least one of a radical scavenger and an antioxidant, and a decrease in voltage holding ratio is prevented. can do. Thereby, even if the width of the seal portion is narrowed, a good voltage holding ratio can be maintained over a long period of time, and the occurrence of burn-in and spots on the display screen can be prevented.
  • FIG. It is a figure explaining the reaction mechanism which deactivates the radical generated from the photo-alignment film with a hindered amine compound (radical scavenger). It is the enlarged plan view which showed another example of the gate terminal part. It is a figure explaining the effect
  • FIG. 1 is a cross-sectional view schematically showing the liquid crystal display device of the present embodiment.
  • 2A is a plan view schematically showing the liquid crystal display device of the present embodiment
  • FIG. 2B is an enlarged plan view showing a gate terminal portion
  • FIG. FIG. 3 is an enlarged plan view showing a source terminal portion.
  • the liquid crystal display device of this embodiment includes an active matrix liquid crystal panel 20 and a backlight 10, and the liquid crystal panel 20 includes a liquid crystal layer 23, a pair of substrates 21 that sandwich the liquid crystal layer 23, and the pair of pairs.
  • An alignment film 22 disposed on the surface of the substrate 21 on the liquid crystal layer 23 side; and a seal portion 24 that adheres the pair of substrates 21 to each other and is disposed around the liquid crystal layer 23.
  • the liquid crystal panel 20 is formed by a liquid crystal dropping method
  • the liquid crystal layer 23 contains a liquid crystal material and at least one of a radical scavenger and an antioxidant
  • the width of the seal portion 24 is at least Some are 0.6
  • the active matrix liquid crystal panel 20 includes a liquid crystal layer 23, a pair of substrates 21 sandwiching the liquid crystal layer 23, an alignment film 22 disposed on the surface of the pair of substrates 21 on the liquid crystal layer 23 side, Any substrate having a pair of substrates 21 bonded to each other and having a seal portion 24 disposed around the liquid crystal layer 23 may be used, and a normal liquid crystal panel employing an active matrix display method can be used.
  • the active matrix display method normally, when an active element such as a thin film transistor (TFT) provided in each pixel is on, a signal voltage is applied to the electrode through the TFT, and the charge charged in the pixel at this time is , Hold while the active element is off.
  • TFT thin film transistor
  • a voltage holding ratio indicates a ratio of holding the charged charge during one frame period (for example, 16.7 ms). That is, a low VHR means that the voltage applied to the liquid crystal layer tends to decay with time. In the active matrix display method, it is required to increase the VHR.
  • Examples of the pair of substrates 21 include a combination of an active matrix substrate (TFT substrate) and a color filter (CF) substrate.
  • TFT substrate active matrix substrate
  • CF color filter
  • the active matrix substrate those normally used in the field of liquid crystal display devices can be used.
  • the configuration is such that a plurality of parallel gate signal lines 28g; a plurality of gate signal lines extending in a direction perpendicular to the gate signal lines 28g and formed in parallel to each other on the transparent substrate.
  • Source signal line 28s ; active elements such as TFTs arranged corresponding to the intersections of the gate signal line 28g and the source signal line 28s; in a matrix form in a region partitioned by the gate signal line 28g and the source signal line 28s
  • active elements such as TFTs arranged corresponding to the intersections of the gate signal line 28g and the source signal line 28s; in a matrix form in a region partitioned by the gate signal line 28g and the source signal line 28s
  • a configuration in which arranged pixel electrodes and the like are provided can be given.
  • a common wiring; a counter electrode connected to the common wiring, and the like are further provided.
  • a TFT in which a channel is formed by amorphous silicon, polysilicon, or IGZO (indium-gallium-zinc-oxygen) which is an oxide semiconductor is preferably used.
  • an oxide semiconductor has low off-leakage, which is advantageous for low-frequency driving of a liquid crystal display device.
  • VHR of the liquid crystal layer 23 when the VHR of the liquid crystal layer 23 is low, low-frequency driving cannot be performed. Since the VHR of the liquid crystal layer 23 can be increased according to the present invention, low frequency driving is possible. That is, the combination of an oxide semiconductor and the present invention is particularly preferable.
  • the color filter substrate those usually used in the field of liquid crystal display devices can be used.
  • the configuration of the color filter substrate include a configuration in which a black matrix formed in a lattice shape, a color filter formed inside a lattice, that is, a pixel, and the like are provided on a transparent substrate.
  • the pair of substrates 21 may be one in which both the color filter and the active matrix are formed on one substrate.
  • An alignment film 22 is interposed between the pair of substrates 21 and the liquid crystal layer 23.
  • the alignment film 22 has a function of controlling the alignment of the liquid crystal molecules in the liquid crystal layer 23.
  • the alignment film 22 mainly functions.
  • the alignment of the liquid crystal molecules in the liquid crystal layer 23 is controlled.
  • an angle formed by the major axis of the liquid crystal molecules with respect to the surfaces of the pair of substrates 21 is called a “pretilt angle”.
  • the “pretilt angle” means an angle of inclination of liquid crystal molecules from a direction parallel to the substrate surface, the angle parallel to the substrate surface is 0 °, and the normal angle of the substrate surface is 90 °. It is.
  • the size of the pretilt angle of the liquid crystal molecules provided by the alignment film 22 is not particularly limited, and the alignment film 22 may be a horizontal alignment film or a vertical alignment film, but preferably a horizontal alignment. It is a membrane.
  • the pretilt angle is preferably substantially 0 ° (for example, less than 10 °), and is 0 ° from the viewpoint of obtaining an effect of maintaining good contrast characteristics over a long period of time. More preferred.
  • the pretilt angle is preferably 0 ° from the viewpoint of viewing angle characteristics, but when the display mode is the TN mode, Due to restrictions, the pretilt angle is set to about 2 °, for example.
  • the alignment film 22 may be a photo-alignment film formed from a material exhibiting photo-alignment properties.
  • a material exhibiting photo-alignment property has a property (alignment regulating force) that causes structural changes when irradiated with light (electromagnetic waves) such as ultraviolet light and visible light, and regulates the orientation of liquid crystal molecules present in the vicinity thereof. It means all the materials that develop and the materials whose orientation regulating force changes in size and / or direction.
  • Examples of the material exhibiting photo-alignment include those containing a photoreactive site in which a reaction such as dimerization (dimer formation), isomerization, photofleece transition, or decomposition occurs due to light irradiation.
  • Examples of photoreactive sites (functional groups) that are dimerized and isomerized by light irradiation include, for example, cinnamate represented by the following formula (B-1), 4-chalcone represented by the following formula (B-2-1), 4′-chalcone represented by the formula (B-2-2), coumarin represented by the following formula (B-3), and stilbene represented by the following formula (B-4) are preferably used.
  • the following formula (B-1-I) shows the isomerization reaction and dimerization reaction of cinnamate.
  • azobenzene is used suitably, for example.
  • the trans form of azobenzene is shown in the following formula (B-5-1), and the cis isomer of azobenzene is shown in the following formula (B-5-2).
  • a phenol ester structure represented by the following formula (B-6) is preferably used as a photoreactive site that undergoes photofleece transition upon irradiation with light.
  • the phenol ester structure undergoes optical fleece transition as shown in the following formula (B-6-I).
  • a cyclobutane structure is preferably used as the photoreactive site that is decomposed by light irradiation.
  • a photo-alignment film containing a cyclobutane structure for example, an acid anhydride having a cyclobutane structure represented by the following formula (B-7-1) and an amine compound represented by the following formula (B-7-2) are used as monomers. Examples thereof include polymers obtained by copolymerization.
  • the cyclobutane structure is ring-opened and exhibits photo-alignment.
  • the hydrogen atom in the cyclobutane structure represented by the following formula (B-7-1) may be substituted with another atom or a functional group.
  • a polymer supported alignment (PSA) technique may be used.
  • PSA polymer supported alignment
  • a liquid crystal composition containing a photopolymerizable monomer is sealed between a pair of substrates 21, and then the liquid crystal layer 23 is irradiated with light to polymerize the photopolymerizable monomer, whereby the surface of the alignment film 22 is obtained.
  • a polymer (polymer) is formed on the substrate, and the initial tilt (pretilt) of the liquid crystal is fixed by this polymer.
  • the PSA technology for example, a form having a layer containing a polymer obtained by polymerizing a photopolymerizable monomer represented by the following formula (C) on the surface of the alignment film 22 on the liquid crystal layer 23 side Is mentioned.
  • A1-Y-A2 (C) (In the formula, Y represents a structure containing at least one benzene ring and / or a condensed benzene ring, and a hydrogen atom in the benzene ring and the condensed benzene ring may be replaced by a halogen atom, and A1 and A2 At least one represents acrylate or methacrylate, and A1 and A2 are directly bonded to the benzene ring or the condensed benzene ring.
  • the skeleton Y in the above formula (C) preferably has a structure represented by the following formula (C-1), (C-2) or (C-3). Note that hydrogen atoms in the following formulas (C-1), (C-2), and (C-3) may be independently replaced with halogen atoms.
  • photopolymerizable monomer represented by the above formula (C) include the following formulas (C-1-1), (C-1-2), and (C-3-1).
  • the liquid crystal layer 23 contains a liquid crystal material and at least one of a radical scavenger and an antioxidant.
  • the liquid crystal material may have a negative dielectric anisotropy ( ⁇ ) defined by the following formula (P), or a positive value. That is, the liquid crystal material may have a negative dielectric anisotropy or a positive dielectric anisotropy.
  • (dielectric constant in the major axis direction) ⁇ (dielectric constant in the minor axis direction) (P)
  • At least one component of the liquid crystal material is preferably a compound having an alkenyl structure.
  • Examples of the compound having an alkenyl structure include compounds represented by the following formula (D-1), (D-2) or (D-3).
  • n are the same or different integers, preferably 1 to 6)
  • At least one component of the liquid crystal material is preferably a compound containing an alkoxy structure.
  • the compound containing an alkoxy structure include compounds represented by the following formula (E-1), (E-2), (E-3), (E-4) or (E-5).
  • n are the same or different integers, preferably 1 to 7.
  • the radical scavenger is not particularly limited as long as it reacts with the seal radical generated from the seal portion 24 or the liquid crystal radical transferred to the liquid crystal and deactivates the seal radical or liquid crystal radical.
  • a hindered amine compound is preferably used.
  • FIG. 3 is a diagram illustrating a reaction mechanism that deactivates radicals generated from the seal portion 24 by a hindered amine compound (radical scavenger).
  • the unreacted photopolymerization initiator Sini in the seal portion 24 is excited by irradiation with light (energy amount: h ⁇ ), and the seal radical R ini occurs.
  • the hindered amine compound added to the liquid crystal material constituting the liquid crystal layer 23 is selected from the seal radical R ini generated from the photopolymerization initiator eluted from the seal portion 24. It can react and can inactivate seal radical Rini . However, the hindered amine compound itself becomes a hindered amine radical by reacting with the seal radical Rini generated from the seal portion 24.
  • R h represents a hydrocarbon group derived from a hindered amine compound. As shown in the formula (A-III) in FIG. 3, the hindered amine radical is combined with another seal radical R ini generated from the seal portion 24, so that the hindered amine radical and the seal radical generated from the seal portion 24 are combined.
  • the compound generated by combining the hindered amine radical with the seal radical Rini generated from the seal portion 24 also functions as a radical scavenger, and the seal portion It reacts with another seal radical Rini generated from 24 to generate a hindered amine radical.
  • This hindered amine radical is a radical scavenger that reacts with the seal radical Rini generated from the seal portion 24 as shown in the formula (A-III).
  • the radical scavenger does not decrease, the generated radical can be inactivated, and the generation of ions from the radical can be inhibited for a long time. That is, according to the hindered amine compound (radical scavenger), a decrease in VHR due to exposure to backlight light can be suppressed for a long time with a small addition amount.
  • the hindered amine compound has high reactivity with the radical generated from the seal portion 24, the radical in the liquid crystal layer 23 can be quickly deactivated. Therefore, when an antioxidant is used in combination, the antioxidant can be effectively suppressed from being consumed by reacting with radicals generated from the seal portion 24. As a result, in the liquid crystal layer, Oxide generation can also be suppressed. Therefore, seizure and stains derived from the oxide can also be prevented.
  • the liquid crystal display device can be driven at a low frequency, and as a result, the power consumption can be kept low.
  • Examples of the hindered amine compounds include compounds represented by the following formula (F-1) or (F-2), and among them, compounds represented by the following formula (F-1) are preferably used.
  • hindered amine compound represented by the formula (F-1) include, for example, the following formulas (F-1-1), (F-1-2), (F-1-3), (F- And compounds represented by 1-4) or (F-1-5).
  • hindered amine compound represented by the above formula (F-2) include compounds represented by the following formula (F-2-1) or (F-2-2).
  • a compound in which a hydrogen atom is substituted with a methyl group as in the following formula (F-2-3) can also be used.
  • the hindered amine compound may have a structure having a radical moiety as shown in the following formula (F-3). Specific examples thereof include, for example, the following formulas (F-3-1), ( And a structure represented by (F-3-2) or (F-3-3).
  • the concentration of the radical scavenger (hindered amine compound) is preferably 1 ppm or more and 1000 ppm or less. Within this range, radicals generated from the seal portion 24 can be sufficiently deactivated, and the effect of suppressing the reduction in VHR can be obtained particularly sufficiently.
  • the radical of a hindered amine can exist stably, when the density
  • a more preferable upper limit of the concentration of the radical scavenger (hindered amine compound) is 500 ppm, and a more preferable upper limit is 250 ppm.
  • the antioxidant is not particularly limited as long as it has higher reactivity with respect to oxygen or oxide than the liquid crystal material.
  • a phenol-based antioxidant is preferably used.
  • FIG. 5 is a diagram illustrating the action of the phenolic antioxidant in the present invention.
  • the alkyl group (R) contained in the liquid crystal material, the alignment film, and the seal material is oxidized.
  • ROOH oxidizing substance
  • the structure is such that oxygen is more likely to enter than in the past. Radicals are generated from the oxidizing substance, and the radicals are ionized under the condition that no antioxidant or radical scavenger is present.
  • the liquid crystal material is oxidized and ionized, ions are generated in the liquid crystal layer 23.
  • the oxidized material dissociated from the polymer constituting the alignment film or the sealant is ionized and eluted into the liquid crystal layer 23. Ions are generated inside. Therefore, the VHR is lowered by the ions in the liquid crystal layer 23.
  • an antioxidant as shown in the formulas (2) and (3) of FIG. 5, it can be reacted with an antioxidant before the radical is ionized, and a liquid crystal material, an alignment film, and It is possible to prevent generation of ions due to oxidation of the sealing material.
  • the amount of the antioxidant is not reduced, so that radical ionization can be prevented over a long period of time.
  • the antioxidant has a function of desorbing (reducing) oxygen from the oxide by repeating a cycle of hydrogen group desorption ⁇ addition ⁇ desorption. It suppresses deterioration (decomposition and ionization) due to oxidation over a long period of time.
  • the radical scavenger has a function of trapping radicals in the alignment film and liquid crystal regardless of whether it is an oxide or not, and prevents radical ionization by repeating radical capture and release.
  • phenolic antioxidant examples include those represented by the following formula (G). More specifically, for example, the following formula (G-1), (G-2) or (G-3) ).
  • n is an integer, preferably 3 to 20.
  • phenolic antioxidant represented by the above formula (G) include, for example, the following formulas (Ga), (Gb), (Gc), (Gd), (G -E), a compound represented by (Gf) or (Gg).
  • the concentration of the antioxidant is preferably 1 ppm or more and 10% by weight or less. Within this range, oxygen that has entered the liquid crystal panel from the outside can be prevented from oxidizing the liquid crystal material, so that display burn-in and spots caused by the oxide can be effectively prevented.
  • an antioxidant can partially deactivate radicals generated from the seal portion, so that the effect of suppressing the decrease in VHR can be obtained particularly sufficiently.
  • a more preferred lower limit of the concentration is 10 ppm, a more preferred upper limit is 5% by weight, and a still more preferred upper limit is 1% by weight.
  • the pair of substrates 21 are bonded to each other by the seal portion 24 provided so as to surround the periphery of the liquid crystal layer 23, and the liquid crystal layer 23 is held in a predetermined region.
  • the width of the seal portion 24 is set to 0.8 mm or more in order to ensure the reliability.
  • the reliability is improved by the radical scavenger and / or the antioxidant. From the figure, at least a part is set to 0.6 mm or less. If it exceeds 0.6 mm, the improvement effect by the radical scavenger and / or antioxidant cannot be clearly confirmed.
  • the width of the seal part is preferably at least partly 0.4 mm or less, and more preferably at least partly 0.2 mm or less.
  • the seal portion 24 is provided at an end portion (frame region) of the liquid crystal panel 20.
  • a gate terminal portion 26 and a source terminal portion 27 may be provided at the end of the liquid crystal panel 20 on the TFT substrate side.
  • a gate signal line 28g drawn out from the display area and a gate terminal 29g provided at the end of the gate signal line 28g are arranged.
  • a source signal line 28s led out from the display area and a source terminal 29s provided at the end of the source signal line 28s are arranged.
  • a gate driver connection terminal is electrically connected to the gate terminal 29g
  • a source driver connection terminal is electrically connected to the source terminal 29s.
  • FIG. 4 is an enlarged plan view showing another example of the gate terminal portion.
  • the configuration shown in FIG. 4 in which the monolithic gate driver 30 is arranged under the seal portion 24 is a configuration that is advantageous for forming the frame of the liquid crystal panel 20.
  • the monolithic gate driver 30 includes a shift register circuit for providing a function as a gate driver.
  • the seal portion 24 has the gate signal line 28g on the gate signal line 28g and the source signal line 28s in the gate terminal portion 26 and the source terminal portion 27. And the source signal line 28s. Since the gate signal line 28g and the source signal line 28s are usually made of a light shielding material such as metal, a part of the light irradiated to the seal portion 24 from the back side is transmitted by the gate signal line 28g and the source signal line 28s. It will be blocked. In the form shown in FIG. 4, the seal portion 24 is formed so as to overlap with the monolithic gate driver 30.
  • the monolithic gate driver 30 is formed of an oxide semiconductor (for example, an oxide semiconductor containing indium, gallium, or zinc), low-temperature polysilicon (LTPS), or the like.
  • the monolithic gate driver 30 is also formed of a light shielding material. Therefore, a part of the light irradiated on the seal portion 24 from the back side is blocked by the monolithic gate driver 30. Therefore, when the seal part 24 is formed of a photo-curing material, the seal part 24 may be incompletely cured. If the curing of the seal portion 24 is incomplete, the photopolymerization initiator remaining in the seal portion 24 elutes into the liquid crystal layer 23 and radicals are generated in the liquid crystal layer 23.
  • oxide semiconductor for example, an oxide semiconductor containing indium, gallium, or zinc
  • LTPS low-temperature polysilicon
  • the seal part 24 can be formed of a photocuring material containing a photopolymerization initiator.
  • the photocuring material is not particularly limited as long as it contains a photopolymerization initiator, and a photocuring material usually used for sealing a liquid crystal can be used, for example, epoxy resin, (meth) acrylic resin, etc.
  • the composition which added additives, such as a photoinitiator and a filler, to the main component which consists of a photopolymerizable monomer and / or oligomer for photocurable resin of this is mentioned.
  • a photoradical polymerization initiator that generates radicals by light
  • the radical photopolymerization initiator is not particularly limited.
  • a benzophenone compound, an acetophenone compound, an acyl phosphine oxide compound, a titanocene compound, an oxime ester compound, a benzoin ether compound, or a thioxanthone is preferably used. it can.
  • photo radical polymerization initiator examples include, for example, diphenyl-2,4,6-trimethylbenzoylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-acetyldiphenyl sulfide oxime ester (4-acetyl diphenylsulfideoxime ester) represented by the following formula (H-1) can be mentioned.
  • photo radical polymerization initiators examples include Irgacure 184, Irgacure 369, Irgacure 379, Irgacure 651, Irgacure 819, Irgacure 907, Irgacure 2959, Irgacure OXE01, Irgacure OXE02, Lucyrin TPO, DAROCUR TPO (all manufactured by BASF Japan), benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.), ESACURE TPO (manufactured by DKSH Japan), MICURE TPO (manufactured by MIWON), etc.
  • Irgacure 184 examples include Irgacure 184, Irgacure 369, Irgacure 379, Irgacure 651, Irgacure 819, Irgacure 90
  • Irgacure 651, Irgacure 907, benzoin isopropyl ether, and Lucillin TPO are preferable because of their wide absorption wavelength range.
  • a radical photopolymerization initiator may be used independently and may use 2 or more types together.
  • a photoinitiator you may use what contains a photoinitiating compound and a visible light sensitizing compound.
  • a photoinitiating compound for example, a compound represented by the following formula (H-2) obtained by reacting diaminobenzoic acid and diethylene glycol diglycidyl ether can be used.
  • a visible light sensitizing compound for example, a compound represented by the following formula (H-3) obtained by reacting hydroxythioxanthone and diethylene glycol diglycidyl ether can be used.
  • content of the said photoinitiator is not specifically limited, A preferable minimum is 0.1 weight part and a preferable upper limit is 10 weight part with respect to 100 weight part of main components. If the content of the photo radical polymerization initiator is less than 0.1 parts by weight, the photo-curing material may not be sufficiently cured. When content of the said photoinitiator exceeds 10 weight part, storage stability may fall.
  • the liquid crystal panel 20 is formed by a liquid crystal dropping method. Therefore, in order to dispose the liquid crystal composition in the liquid crystal panel 20, the seal portion is not provided with an injection port formed in the liquid crystal injection method, and there is no portion where the injection port is sealed. According to the liquid crystal dropping method, the liquid crystal panel can be manufactured more efficiently than the liquid crystal injection method by forming the seal portion 24 using a photocurable material containing a photopolymerization initiator.
  • the alignment mode of the liquid crystal panel 20 is not particularly limited.
  • a horizontal alignment mode such as a fringe field switching (FFS) mode, an in-plane switching (IPS) mode, or the like; vertical Alignment mode; Twisted Nematic (TN) mode can be used.
  • FFS fringe field switching
  • IPS in-plane switching
  • TN Twisted Nematic
  • the alignment mode of the liquid crystal panel is a horizontal alignment mode
  • radicals are easily generated from the photo-alignment film, so that the effect of adding a radical scavenger and / or an antioxidant is remarkably obtained. That is, in the vertical alignment mode photo-alignment process (polarized UV irradiation), the pretilt angle only needs to be slightly tilted from 90 °, but in the horizontal alignment mode photo-alignment process, the orientation of the liquid crystal alignment (the direction in the substrate plane) ) Must be controlled with higher accuracy.
  • the irradiation amount in the photo-alignment process in the horizontal alignment mode is usually larger by one digit or more than in the vertical alignment mode, and more radicals are likely to be generated due to side reactions than in the vertical alignment mode. Since the radical scavenger and / or antioxidant contained in the liquid crystal layer can inactivate radicals generated during the photo-alignment treatment, the radical remains after completion of the liquid crystal panel (after liquid crystal injection). It can be effectively prevented.
  • At least one substrate 21 is provided with a structure (FFS electrode structure) including a planar electrode, a slit electrode, and an insulating film disposed between the planar electrode and the slit electrode.
  • An oblique electric field is formed in the adjacent liquid crystal layer 23.
  • the slit electrode, the insulating film, and the planar electrode are arranged in this order from the liquid crystal layer 23 side.
  • the slit electrode for example, a slit having a linear opening surrounded by the electrode around the entire circumference, or a linear notch provided with a plurality of comb teeth and disposed between the comb teeth.
  • the comb-shaped thing which comprises a slit can be used.
  • a pair of comb electrodes are provided on at least one substrate 21, and a lateral electric field is formed in the liquid crystal layer 23 adjacent to the substrate 21.
  • the pair of comb-shaped electrodes for example, an electrode pair that includes a plurality of comb-tooth portions and is arranged so that the comb-tooth portions mesh with each other can be used.
  • polarizing plates linear polarizers
  • a typical example of the polarizing plate is a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism.
  • PVA polyvinyl alcohol
  • a protective film such as a triacetyl cellulose film is laminated on both sides of the PVA film and put to practical use.
  • An optical film such as a retardation film may be disposed between the polarizing plate and the pair of substrates 21.
  • a backlight 10 is disposed on the back side of the liquid crystal panel.
  • a liquid crystal display device having such a configuration is generally called a transmissive liquid crystal display device.
  • the backlight 10 is not particularly limited as long as it emits light including visible light, may emit light including only visible light, and emits light including both visible light and ultraviolet light. It may be.
  • a backlight 10 that emits white light is preferably used.
  • a light emitting diode (LED) is preferably used.
  • visible light means light (electromagnetic wave) having a wavelength of 380 nm or more and less than 800 nm.
  • the present invention is characterized in that radicals generated from the seal portion 24 and the photo-alignment film when exposed to light from the backlight 10 are deactivated by a radical scavenger and / or an antioxidant. Therefore, when at least a part of the emission spectrum of the backlight 10 overlaps with at least a part of the absorption spectrum of the photopolymerization initiator and the photo-alignment film in the seal portion, a radical scavenger and / or an antioxidant. Can function effectively.
  • the liquid crystal display device includes an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel 20 and the backlight 10; opticals such as a viewing angle widening film and a brightness enhancement film.
  • Film It is comprised by several members, such as a bezel (frame), and may be integrated in the other member depending on the member. Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
  • a fringe field switching mode (FFS mode) liquid crystal panel was actually fabricated by the following method. First, a TFT substrate having a TFT, FFS electrode structure, and the like, and a color filter substrate (CF substrate) having a black matrix, a color filter, and the like were prepared. Then, an alignment film solution was applied on the surface of each of the TFT substrate and the CF substrate. The solid content of the alignment film solution was a polymer material containing a polyamic acid structure in the main chain.
  • both substrates were heated at 70 ° C. in order to volatilize the solvent in the alignment film solution.
  • substrates were heated at 220 degreeC as main baking.
  • imidization dehydration ring closure reaction
  • a rubbing treatment was performed to obtain a horizontal alignment film exhibiting a sufficient alignment regulating force.
  • the film thickness after the main firing was 100 nm.
  • a liquid crystal composition is dropped onto the TFT substrate, and a photocurable sealing material containing a photopolymerization initiator (UV-curable sealing agent manufactured by Sekisui Chemical Co., Ltd., trade name: Photorec S-) WB) was drawn with a dispenser.
  • a photocurable sealing material containing a photopolymerization initiator UV-curable sealing agent manufactured by Sekisui Chemical Co., Ltd., trade name: Photorec S- WB
  • the substrate on which the sealing material is drawn and the substrate on which the liquid crystal composition is dropped may be interchanged, or both may be applied to one of the substrates.
  • the TFT substrate and the CF substrate were bonded together, and the liquid crystal composition was sealed between the substrates. After the substrates were bonded together, the display area was shielded from light and irradiated with ultraviolet rays to cure the sealing material.
  • the width of the sealing portion (cured material of the sealing material) is changed in increments of 0.1 mm, and 11 kinds in a range of 0.1 mm to 1.0 mm. A sample was made.
  • liquid crystal composition a liquid crystal material containing a compound having an alkenyl structure represented by the following formula (D-1-1) and a hindered amine compound (radical scavenger) represented by the following formula (F-1-5) is used. It was. The concentration of the hindered amine compound was 200 ppm with respect to the total amount of the liquid crystal composition.
  • the liquid crystal molecules were realigned by heating at 130 ° C. for 40 minutes. Then, a pair of polarizing plates are provided on the back surface side of the TFT substrate (backlight light incident surface side) and the CF substrate observation surface side (backlight light emission surface side) so that the polarization axes have a crossed Nicols relationship. Was pasted. As described above, an FFS mode liquid crystal panel was produced. Then, the backlight provided with white LED was attached to the back side of a liquid crystal panel, and the liquid crystal display device of Example 1 was completed.
  • Comparative Example 1 A liquid crystal display device of Comparative Example 1 was produced in the same manner as in Example 1 except that the hindered amine compound was not added to the liquid crystal composition.
  • the width of the photocuring type sealing material during drawing is changed to change the width of the sealing portion (cured material of the sealing material) in increments of 0.1 mm, resulting in 0.1 mm to 1.0 mm. 11 types of samples were produced in the range of.
  • the liquid crystal component having an alkenyl structure used in this example is effective in reducing the viscosity of the liquid crystal material.
  • the double bond contained in the alkenyl structure is easily attacked by radicals, and thus tends to cause a decrease in VHR.
  • the addition of a hindered amine compound to the liquid crystal material can effectively prevent radical attack on the alkenyl structure.
  • the liquid crystal component having an alkenyl structure is not limited to a liquid crystal material having a positive dielectric anisotropy but also a liquid crystal material having a negative dielectric anisotropy from the viewpoint of improving the response speed of the liquid crystal display device. Is also preferably added.
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1 except that the types of the liquid crystal material and the radical scavenger were changed and the antioxidant was added.
  • the liquid crystal composition include a hindered amine compound (radical scavenger) of the following formula (F-1-2), a liquid crystal material containing a compound having an alkoxy structure of the following formula (E-3-1), and the following formula ( Gg) to which an antioxidant was added was used.
  • the concentration of the hindered amine compound was 200 ppm with respect to the total amount of the liquid crystal composition.
  • the concentration of the antioxidant was 0.1% by weight with respect to the total amount of the liquid crystal composition.
  • Comparative Example 2 A liquid crystal display device of Comparative Example 2 was produced in the same manner as in Example 2 except that the hindered amine compound and the antioxidant were not added to the liquid crystal composition.
  • Comparative Example 2 the degree of deterioration due to light was larger than that of Comparative Example 1. The reason is considered that the liquid crystal material having a positive dielectric anisotropy was used in Comparative Example 1, whereas the liquid crystal material having a negative dielectric anisotropy was used in Comparative Example 2. It is done.
  • the alkoxy structure in the liquid crystal material used in Example 2 and Comparative Example 2 is suitable for adjusting the magnitude of the dielectric anisotropy of the liquid crystal material having negative dielectric anisotropy (negative liquid crystal). It is used for.
  • size of dielectric anisotropy can be adjusted easily, without using an alkoxy group.
  • VHR tends to be low when a liquid crystal material containing an alkoxy structure is used, and this tendency is particularly remarkable when combined with a photo-alignment film.
  • a radical scavenger is added, the fall of VHR can be suppressed. The reason can be explained by the following hypothesis models 1 to 4.
  • the radical RAL generated from the photo-alignment film or the like combines with oxygen in the liquid crystal layer to form a peroxide structure (ROO.).
  • Alkoxy structures (-OR) are susceptible to peroxide structure attacks, resulting in five patterns of radical generation reactions. In each pattern, another radical generation reaction is repeated in a chain manner after the radical generation reaction. The generated radicals are ionized to cause a reduction in VHR.
  • the radical chain reaction via this peroxide structure is known as an autoxidation reaction.
  • the following formula represents a part of a compound having an alkoxy structure, and shows three resonance structures corresponding to the alkoxy structure.
  • the resonance structure (a) shown in the center and the resonance structure (b) shown on the right are in an ionic state, which causes a decrease in VHR.
  • the resonance structures (a) and (b) are changed to structures (a ′) and (b ′) having a peroxide structure by the presence of oxygen, respectively.
  • the structures (a ′) and (b ′) having a peroxide structure are easily radicalized as shown in (a ′′) and (b ′′), respectively.
  • the generated radicals are ionized to cause a reduction in VHR.
  • a negative liquid crystal containing an alkoxy structure is composed of a highly polarized molecular structure, so the solubility of impurity ions is higher than that of positive liquid crystals, and mobile ions are likely to exist in the liquid crystal. Mobile ions have the effect of canceling the charged charge, resulting in a decrease in VHR.
  • hypothesis model 4 explains that negative liquid crystal is more affected by ionic impurities generated through radical generation and oxidation than positive liquid crystal. Desorption is also a countermeasure against hypothesis model 4 indirectly. From the above, by containing a radical scavenger and an antioxidant in the liquid crystal layer, it is possible to obtain an effect of suppressing a decrease in VHR that occurs when a liquid crystal material containing an alkoxy structure is used.
  • Example 3 An FFS mode liquid crystal panel was actually produced by the following method. First, a TFT substrate having a TFT, FFS electrode structure, and the like, and a CF substrate having a black matrix, a color filter, and the like were prepared. Then, an alignment film solution was applied on the surface of each of the TFT substrate and the CF substrate. The solid content of the alignment film solution was a polymer material containing a polyamic acid structure and a photoreactive azobenzene structure in the main chain.
  • both substrates were heated at 70 ° C. in order to volatilize the solvent in the alignment film solution.
  • the surfaces of both substrates were irradiated with linearly polarized light having a dominant wavelength of 365 nm at an intensity of 2000 mJ / cm 2 .
  • the polarization direction of the linearly polarized light was set to be orthogonal to the direction in which the liquid crystal is aligned. Irradiation with linearly polarized light caused a trans-cis isomerization reaction in the azobenzene structure, and the orientation regulating power was expressed.
  • the trans form of the azobenzene structure has the structure shown in the following (B-5-1), and the cis form has the structure shown in the following (B-5-2).
  • substrates were heated at 220 degreeC as this baking.
  • imidization dehydration ring closure reaction
  • a horizontal alignment film in which sufficient alignment regulating force was expressed by light irradiation was obtained.
  • the film thickness after the main firing was 100 nm.
  • the liquid crystal composition was dropped on the TFT substrate, and a photocurable sealing material containing a photopolymerization initiator was drawn on the CF substrate with a dispenser. Then, the TFT substrate and the CF substrate were bonded together, and the liquid crystal composition was sealed between the substrates. After the substrates were bonded together, the display area was shielded from light and irradiated with ultraviolet rays to cure the sealing material. The width of the seal part (cured material of the seal material) was 0.6 mm.
  • liquid crystal composition a liquid crystal material containing a compound having an alkenyl structure represented by the following formula (D-1-1) and an antioxidant represented by the following formula (Gg) was used.
  • concentration of the antioxidant was 0.1% by weight with respect to the total amount of the liquid crystal composition.
  • the liquid crystal molecules were realigned by heating at 130 ° C. for 40 minutes. Then, a pair of polarizing plates are provided on the back surface side of the TFT substrate (backlight light incident surface side) and the CF substrate observation surface side (backlight light emission surface side) so that the polarization axes have a crossed Nicols relationship. Was pasted. As described above, an FFS mode liquid crystal panel was produced. Then, the backlight provided with white LED was attached to the back side of a liquid crystal panel, and the liquid crystal display device of Example 3 was completed.
  • Comparative Example 3 A liquid crystal display device of Comparative Example 3 was produced in the same manner as in Example 3 except that the antioxidant was not added to the liquid crystal composition.
  • Example 3 and Comparative Example 3 since the photo-alignment film was used, the photo-alignment film itself becomes a radical generation source. For this reason, in Comparative Example 3, the degree of deterioration due to light was large.
  • the reason why the voltage holding ratio decreases due to the photo-alignment film is considered as follows.
  • the azobenzene structure contained in the photo-alignment film used in Example 3 and Comparative Example 3 is subjected to an alignment process with light having a wavelength of 365 nm close to the visible light region.
  • the backlight of the liquid crystal display device mainly emits light in the visible light region for color display.
  • cinnamate, chalcone, coumarin, stilbene, a phenol ester, etc. are mentioned as a photoreaction site
  • the cyclobutane structure that is a photoreactive site usually absorbs light having a wavelength of 300 nm or less to cause a decomposition reaction in which the cyclobutane site is cleaved. Generate radicals.
  • a photo-alignment film containing a cyclobutane structure may be improved to a structure with good light absorption in order to reduce the amount of exposure during the alignment process, for example, a film having a high light absorption in the skeleton of the diamine moiety. And the absorbed light energy transitions to a cyclobutane moiety to promote photocleavage of the cyclobutane moiety.
  • the absorbance for light on the longer wavelength side increases, but the short wavelength side of the emission spectrum of the backlight may overlap with the long wavelength side of the absorption spectrum of the photo-alignment film. is there.
  • the exposure amount during the alignment treatment is usually as high as several hundred mJ / cm 2 or more, some of the radicals generated during the alignment treatment may not be deactivated even after the liquid crystal panel is completed. . Therefore, even in the decomposition type photo-alignment film having a cyclobutane structure, there is a cause of image sticking.
  • liquid crystal component having an alkenyl structure used in this example when used in combination with a photo-alignment film that can be a radical generation source, double bonds contained in the alkenyl structure are easily attacked by radicals. , which is likely to cause a decrease in VHR.
  • a photo-alignment film that can be a radical generation source when the liquid crystal component having an alkenyl structure used in this example is used in combination with a photo-alignment film that can be a radical generation source, double bonds contained in the alkenyl structure are easily attacked by radicals. , which is likely to cause a decrease in VHR.
  • Example 3 by adding an antioxidant to the liquid crystal material, radical attack on the alkenyl structure can be effectively prevented.
  • Example 4 A liquid crystal display device including an FFS mode liquid crystal panel was actually produced by the following method. First, a TFT substrate having a TFT, FFS electrode structure, and the like, and a CF substrate having a black matrix, a color filter, and the like were prepared. Then, an alignment film solution was applied on the surface of each of the TFT substrate and the CF substrate. The solid content of the alignment film solution was a polymer material having a polysiloxane structure as a main skeleton and a photofunctional group in the side chain and a cinnamate group of the following formula (B-1).
  • both substrates were heated at 70 ° C. in order to volatilize the solvent in the alignment film solution. Subsequently, both substrates were heated at 230 ° C. for the main firing. Thereafter, as a photo-alignment treatment, the surfaces of both substrates were irradiated with linearly polarized light having a dominant wavelength of 313 nm with an intensity of 20 mJ / cm 2 .
  • the polarization direction of the linearly polarized light was set to be orthogonal to the direction in which the liquid crystal is aligned.
  • a horizontal alignment film in which the alignment regulating force was expressed by light irradiation was obtained.
  • the film thickness after the main firing was 100 nm.
  • the amount of exposure during the photo-alignment process was reduced, but as described later, the photopolymerizable monomer added to the liquid crystal material was polymerized on the surface of the alignment film, thereby improving the alignment regulating power. It was.
  • the liquid crystal composition was dropped on the TFT substrate, and a photocurable sealing material containing a photopolymerization initiator was drawn on the CF substrate with a dispenser. Then, the TFT substrate and the CF substrate were bonded together, and the liquid crystal composition was sealed between the substrates. After the substrates were bonded together, the display area was shielded from light and irradiated with ultraviolet rays to cure the sealing material. The width of the seal part (cured material of the seal material) was 0.4 mm.
  • the same photopolymerizable monomer of the following formula (C-1-1) as that of Example 3 was added to the liquid crystal material containing the compound having the alkenyl structure of the above formula (D-1-1).
  • the same hindered amine compound (radical scavenger) of the above formula (F-1-2) and the same antioxidant of the above formula (Gg) as in Example 3 were used.
  • the blending amount of the photopolymerizable monomer was 0.25 wt% with respect to the total amount of the liquid crystal composition.
  • the concentration of the hindered amine compound was 200 ppm with respect to the total amount of the liquid crystal composition.
  • the concentration of the antioxidant was 0.1% by weight with respect to the total amount of the liquid crystal composition.
  • a monomer other than the monomer represented by the formula (C-1-1) may be used.
  • the monomer of the formula (C-1-1) the monomer of the formula (C-1-2) in which the terminal methacrylate group is changed to an acrylate group, or the formula (C-1-2) in which the skeleton portion is changed to phenanthrene A monomer of C-3-1) may be used.
  • hydrogen atoms present in the skeleton may be independently replaced with halogen atoms. .
  • the display area of the liquid crystal panel was irradiated with black light with an intensity of 3000 mJ / cm 2 .
  • the photopolymerizable monomer in the liquid crystal layer was polymerized on the alignment film surface while taking in liquid crystal molecules.
  • the liquid crystal alignment on the surface of the alignment film was fixed by the polymer of the photopolymerizable monomer, and a sufficient alignment regulating force could be obtained.
  • the liquid crystal molecules were realigned by heating at 130 ° C. for 40 minutes. Then, a pair of polarizing plates are provided on the back surface side of the TFT substrate (backlight light incident surface side) and the CF substrate observation surface side (backlight light emission surface side) so that the polarization axes have a crossed Nicols relationship.
  • a pair of polarizing plates are provided on the back surface side of the TFT substrate (backlight light incident surface side) and the CF substrate observation surface side (backlight light emission surface side) so that the polarization axes have a crossed Nicols relationship.
  • the backlight provided with white LED was attached to the back side of the liquid crystal panel, and the liquid crystal display device of Example 4 was completed.
  • Comparative Example 4 A liquid crystal display device of Comparative Example 4 was produced in the same manner as in Example 4 except that the hindered amine compound and the antioxidant were not added to the liquid crystal composition.
  • the photopolymerizable monomer used in Example 4 and Comparative Example 4 serves as a radical generation source, the conditions are such that radicals are easily generated in the liquid crystal layer.
  • the photopolymerizable monomer remaining after the PSA treatment can be effectively deactivated. From the above, unevenness occurred in the liquid crystal display device of Comparative Example 4, but unevenness could be effectively prevented in the liquid crystal display device of Example 4.
  • One embodiment of the present invention includes an active matrix liquid crystal panel and a backlight.
  • the liquid crystal panel includes a liquid crystal layer, a pair of substrates that sandwich the liquid crystal layer, and a surface of the pair of substrates on the liquid crystal layer side.
  • the liquid crystal panel is formed by a liquid crystal dropping method, and the liquid crystal panel has an alignment film disposed on each of the liquid crystal layers and a seal portion disposed around the liquid crystal layer.
  • the liquid crystal layer may be a liquid crystal display device containing a liquid crystal material and at least one of a radical scavenger and an antioxidant, and at least part of the width of the seal portion is 0.6 mm or less. .
  • the radical eluted in the liquid crystal layer can be deactivated by at least one of the radical scavenger and the antioxidant, and the VHR can be prevented from being lowered.
  • the radical scavenger preferably contains a compound represented by the following formula (1). If a hindered amine compound of the following formula (1) is used as a radical scavenger, radicals can be kept inactivated by a cyclic cycle. Therefore, a small amount of addition suppresses VHR reduction due to exposure to backlight for a long period of time. be able to. Moreover, since the reactivity with a radical is high, the radical in a liquid-crystal layer can be deactivated rapidly.
  • the antioxidant preferably contains a compound represented by the following formula (2). If the compound of the following formula (2) is used as an antioxidant, radicals can be kept inactivated by a cyclic cycle, so that a reduction in VHR due to exposure to backlight light can be suppressed for a long time with a small addition amount. Can do.
  • the seal portion is preferably formed from a photocuring material containing a photopolymerization initiator.
  • the photopolymerization initiator generates radicals when irradiated with light from the backlight and causes a decrease in VHR.
  • the radical polymerization agent and / or the antioxidant can be applied by applying a radical scavenger and / or an antioxidant. Such a decrease in VHR can be sufficiently prevented. Therefore, a photocuring material containing a photopolymerization initiator suitable for the liquid crystal dropping method can be utilized.
  • the width of the seal part is preferably at least partly 0.4 mm or less, and more preferably at least partly 0.2 mm or less.
  • a radical scavenger and / or an antioxidant is applied. As a result, a decrease in VHR can be sufficiently prevented. Therefore, by further reducing the width of the seal portion, it is possible to realize further pinching of the liquid crystal panel.
  • the alignment film may be a photo-alignment film formed from a material exhibiting photo-alignment properties.
  • the photo-alignment film include those containing at least one photoreactive site selected from the group consisting of cinnamate, chalcone, coumarin, stilbene, azobenzene, and phenol ester.
  • the photo-alignment film may be a polymer obtained by polymerizing a monomer containing an acid anhydride represented by the following formula (3). In these photo-alignment films, the long wavelength side of the absorption spectrum overlaps the short wavelength side of the emission spectrum of the backlight, and radicals are generated when irradiated with light from the backlight. Therefore, when the radical scavenger and / or the antioxidant is applied, the effect of preventing the VHR from being lowered can be sufficiently obtained.
  • a compound having an alkenyl structure may be used as at least one component of the liquid crystal material, and the compound having the alkenyl structure may be represented by the following formula (4-1), (4-2), or (4-3). The compound which is made is mentioned.
  • a liquid crystal component having an alkenyl structure is effective in reducing the viscosity of the liquid crystal material, but a double bond contained in the alkenyl structure is easily attacked by radicals. Therefore, when the radical scavenger and / or the antioxidant is applied, the effect of preventing the VHR from being lowered can be sufficiently obtained.
  • the liquid crystal material may have a negative dielectric anisotropy.
  • a liquid crystal material having negative dielectric anisotropy defects of image sticking and spots tend to appear more obvious than when using a liquid crystal material having positive dielectric anisotropy. It was in. Therefore, when the radical scavenger and / or the antioxidant is applied, the effect of preventing the decrease in VHR can be obtained more sufficiently.
  • At least one component of the liquid crystal material may be a compound containing an alkoxy structure.
  • the compound containing the alkoxy structure include the following formulas (5-1), (5-2), (5-3), ( And compounds represented by 5-4) or (5-5).
  • Alkoxy structures (especially methoxy and ethoxy groups) include an ionic state in the resonance structure, which causes a reduction in VHR. Therefore, it is required to prevent further reduction in VHR by applying a radical scavenger and / or an antioxidant.
  • a fringe field switching mode or an in-plane switching mode is preferably used.
  • the irradiation amount in the horizontal alignment mode photo-alignment treatment is usually more than an order of magnitude higher than in the vertical alignment mode, More radicals are more likely to be generated by side reactions than in the vertical alignment mode. Therefore, when the radical scavenger and / or the antioxidant is applied, the effect of preventing the VHR from being lowered can be sufficiently obtained.
  • the liquid crystal panel may have a layer containing a polymer obtained by polymerizing a photopolymerizable monomer represented by the following formula (6) on the liquid crystal layer side surface of the alignment film.
  • Y in the formula (6) include structures represented by the following formula (7-1), (7-2) or (7-3).
  • A1-Y-A2 (6) (In the formula, Y represents a structure containing at least one benzene ring and / or a condensed benzene ring, and a hydrogen atom in the benzene ring and the condensed benzene ring may be replaced by a halogen atom, and A1 and A2 At least one represents acrylate or methacrylate, and A1 and A2 are directly bonded to the benzene ring or the condensed benzene ring.
  • a hydrogen atom may be replaced by a halogen atom.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、液晶パネルを挟額縁化した場合であっても、長期にわたって良好な電圧保持率を維持し、表示画面における焼き付き及びシミの発生が防止された液晶表示装置を提供する。 本発明の液晶表示装置は、アクティブマトリクス型液晶パネル及びバックライトを有し、上記液晶パネルは、液晶層と、上記液晶層を挟持する一対の基板と、上記一対の基板の上記液晶層側の表面にそれぞれ配置された配向膜と、上記一対の基板を互いに接着し、かつ上記液晶層の周囲に配置されたシール部とを有し、上記液晶パネルは、液晶滴下方式により形成されたものであり、上記液晶層は、液晶材料と、ラジカル捕捉剤及び酸化防止剤の少なくとも一方とを含有し、上記シール部の幅は、少なくとも一部が0.6mm以下である。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、アクティブマトリクス方式で駆動される液晶表示装置に関するものである。
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に液晶組成物を封入した液晶パネルに対してバックライトから光を照射し、液晶組成物に電圧を印加して液晶分子の配向を変化させることにより、液晶パネルを透過する光の量を制御するものである。このような液晶表示装置は、薄型、軽量及び低消費電力といった特長を有することから、スマートフォン、タブレットPC、カーナビゲーション等の電子機器に利用されている。
特にスマートフォン、タブレットPC等の用途では、限られた本体サイズにおいて大画面化を実現するために、画面外の領域を狭くする必要があった。このため、液晶表示装置においては、液晶パネルの外周部(以下、「額縁」ともいう)の幅を狭めることが求められている。
また、近年、スマートフォン等の用途では、画素の高精細化が進展しており、これに伴い、液晶パネル内に設ける配線、ブラックマトリクスの数や面積が増加し、表示に利用できる開口部の面積割合(開口率)が低下する傾向にあった。開口率の低下は、液晶パネルを透過できる光の量の減少に直結することから、コントラスト比等の液晶表示装置の表示性能を維持するために、バックライトの輝度を大幅に向上させることが検討されている。
一方、液晶表示装置で用いられる液晶組成物については、液晶表示装置の製造工程における負荷に耐え、製造された液晶表示装置が長期間にわたって安定した特性を発揮できるように、その安定性を高めることが求められていた。例えば、特許文献1においては、液晶組成物に、酸化防止剤、光安定剤を添加することが開示されている。また、特許文献2においても、液晶組成物に安定剤を添加することが開示されている(段落[0208]~[0211]の表C参照。)
特開2007-197731号公報 特表2011-515543号公報
以上のように、近年では、スマートフォン、タブレットPC等の用途向けの開発が進められ、液晶パネルの挟額縁化やバックライトの高輝度化が図られてきたが、その結果として、液晶パネルの画面の端部や、ボックスパターン表示の端部に、シミ(ムラ)が生じやすくなっていることが分かった。なお、ボックスパターン表示の端部の不具合は、焼き付きとして検知されることになる。
本発明者らは、上述した焼き付き及びシミの不具合と、液晶パネルの挟額縁化のためにシール部の幅を狭めたこととの関連を検討した。液晶パネルの外周部には、TFT基板とカラーフィルタ基板を貼り合わせて液晶材料を封入するためのシール部が形成されるが、シール部の幅を狭めたことにより、液晶パネルの外部から水分、酸素、その他の不純物が液晶層内に侵入しやすくなる。そして、本発明者らの試験によると、液晶パネルを窒素雰囲気に置いた場合には不具合は発生せず、酸素雰囲気下では顕著な不具合が発生することが分かった。これにより、酸素の液晶パネル内への侵入が不具合の発生原因の一つであることを突き止めた。すなわち、液晶パネル内での酸化反応に対する防止手段を講じる必要があることが分かった。
また、液晶パネルを液晶滴下方式によって製造する場合、光硬化型のシール材料をいずれかの基板にディスペンサで描画し、液晶材料をいずれかの基板に滴下したうえで、両基板を貼り合わせ、更に紫外線又は可視光を照射してシール材料を硬化する。照射する光はシール材料に含まれる光重合開始剤の主たる反応波長で選択する。しかしながら、外周部には配線等の遮光部材を配置する領域を確保する必要があり、シール部の幅を狭くする場合には、遮光部材と重ならない領域を充分に確保できないことがある。遮光部材と重なった遮光領域では、シール材料に充分な光が照射されないために、シール材料の硬化が不充分になり、シール材料中の主に低分子成分が液晶層中の液晶材料に溶出しやすくなる。シール材料の通常の組成には、主成分であるエポキシ材やアクリル材に加えて、光重合開始剤も含まれており、反応性の高い光重合開始剤が液晶材料に溶出し、高輝度化されたバックライトの光が照射された場合には、不具合を引き起こす可能性が高いと考えられる。一方で、液晶パネルの挟額縁化のためには、遮光領域とシール部の重なり面積を確保しつつ、シール部の幅を狭める必要があり、液晶層への溶出の量を減少させることは難しかった。
種々の検討の結果、光重合開始剤は、以下のフローによって焼き付き及びシミを発生させると考えられた。
(1)ラジカル発生
液晶パネルにバックライトの光(エネルギー量:hν)が照射されることで、下記式(A-I)に示したように、シール材料の光硬化処理時に反応しなかった未反応の光重合開始剤が励起され、ラジカルが発生する。特に高輝度化したバックライトを用いた場合には、ラジカルの発生が顕著になる。
Figure JPOXMLDOC01-appb-C000007
ini:未反応の光重合開始剤
ini:未反応の光重合開始剤から発生したラジカル 
(2-1)第一のイオン生成
シール材料中の未反応の光重合開始剤から発生したラジカルが液晶層に溶出し、溶出したラジカルがイオン化する。あるいは、シール材料中の未反応の光重合開始剤が液晶層に溶出し、溶出した光重合開始剤がバックライトの光を照射されることによってラジカル化し、更にイオン化される。
(2-2)第二のイオン生成
シール材料中の未反応の光重合開始剤から発生したラジカルが液晶層に溶出し、ラジカルが光重合開始剤から液晶分子に転移し、液晶分子がイオン化される。あるいは、シール材料中の未反応の光重合開始剤が液晶層に溶出し、溶出した光重合開始剤がバックライトの光を照射されることによってラジカル化し、更にラジカルが光重合開始剤から液晶分子に転移し、液晶分子がイオン化される。
(3)酸化物の発生
シール部の幅が狭いと、シール部を介して液晶層に水分や酸素の侵入が起こりやすい。侵入した水分や酸素によって、液晶、配向膜、溶出した未反応の光重合開始剤由来のラジカル等が酸化し、それによって生じた酸化物からイオン化が起こる。
(4)電圧保持率の低下
液晶層中のイオンが、液晶パネルの画面の端部や、ボックスパターン表示の端部に溜まり、その部分の電圧保持率(VHR)が低下することにより、上述した焼き付き及びシミが発生する。
なお、上述したように、従来の液晶組成物には酸化防止剤、光安定剤等の添加物が添加されたものもあるが、それらの添加物は、液晶パネルを挟額縁化した場合に特有の不具合を解決するためのものではなかった。すなわち、液晶材料自体を製造した時点でわずかながらに残存している溶存酸素、及び、液晶パネルの製造中に外部から液晶パネル内に侵入した酸素により、液晶材料が酸化されると、酸化物によって表示の焼き付きやシミが生じることがあった。これを防止するために、従来、酸素存在下、光や熱の影響で生じた酸化物から酸素を脱離させる働きを有する酸化防止剤等を液晶組成物に添加していた。しかしながら、シール部の幅を狭めたことにより、液晶パネル製品の使用段階において酸素の侵入量が顕著に増加したり、反応性の高い光重合開始剤等のシール材料由来の不純物が侵入したりすることによって、従来と比べて酸化防止剤の消費量が増加するため、液晶分子や配向膜の酸化が進行してしまう。これにより発生した酸化物もイオン化する場合があり、電圧保持率の低下を引き起こす原因であった。
本発明は、上記現状に鑑みてなされたものであり、液晶パネルを挟額縁化した場合であっても、長期にわたって良好な電圧保持率を維持し、表示画面における焼き付き及びシミの発生が防止された液晶表示装置を提供することを目的とするものである。
本発明者らは、シール部の幅を0.6mm以下に狭めた液晶表示装置において、液晶パネルの画面の端部、及び、ボックスパターン表示の端部で、電圧保持率の低下が生じており、それによって表示画面における焼き付き及びシミといった不具合が特に生じやすいことに着目した。そこで、本発明者らは、鋭意検討した結果、不具合の主な原因が、バックライトの光に曝露されることによってシール部からラジカルが発生し、これが液晶層中に溶出したためであることをはじめて見出した。これにより、ラジカル捕捉剤及び酸化防止剤の少なくとも一方を液晶層中に含有させることによって、上記課題をみごとに解決することができることに想到し、本発明に到達することができた。
すなわち、本発明の一態様は、アクティブマトリクス型液晶パネル及びバックライトを有し、上記液晶パネルは、液晶層と、上記液晶層を挟持する一対の基板と、上記一対の基板の上記液晶層側の表面にそれぞれ配置された配向膜と、上記一対の基板を互いに接着し、かつ上記液晶層の周囲に配置されたシール部とを有し、上記液晶パネルは、液晶滴下方式により形成されたものであり、上記液晶層は、液晶材料と、ラジカル捕捉剤及び酸化防止剤の少なくとも一方とを含有し、上記シール部の幅は、少なくとも一部が0.6mm以下である液晶表示装置であってもよい。
本発明の液晶表示装置によれば、上述した構成を有するので、液晶層中に溶出したラジカルをラジカル捕捉剤及び酸化防止剤の少なくとも一方によって失活させることができ、電圧保持率の低下を防止することができる。これにより、シール部の幅を狭めたとしても、長期にわたって良好な電圧保持率を維持することができ、表示画面における焼き付き及びシミの発生を防止することができる。
本実施形態の液晶表示装置を模式的に示した断面図である。 (a)は、本実施形態の液晶表示装置を模式的に示した平面図であり、(b)は、ゲート端子部を示した拡大平面図であり、(c)は、ソース端子部を示した拡大平面図である。 ヒンダードアミン化合物(ラジカル捕捉剤)によって、光配向膜から発生したラジカルを失活させる反応機構を説明した図である。 ゲート端子部の別の例を示した拡大平面図である。 本発明におけるフェノール系酸化防止剤の作用を説明した図である。
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。
図1は、本実施形態の液晶表示装置を模式的に示した断面図である。図2(a)は、本実施形態の液晶表示装置を模式的に示した平面図であり、図2(b)は、ゲート端子部を示した拡大平面図であり、図2(c)は、ソース端子部を示した拡大平面図である。本実施形態の液晶表示装置は、アクティブマトリクス型液晶パネル20及びバックライト10を有し、上記液晶パネル20は、液晶層23と、上記液晶層23を挟持する一対の基板21と、上記一対の基板21の上記液晶層23側の表面にそれぞれ配置された配向膜22と、上記一対の基板21を互いに接着し、かつ上記液晶層23の周囲に配置されたシール部24とを有し、上記液晶パネル20は、液晶滴下方式により形成されたものであり、上記液晶層23は、液晶材料と、ラジカル捕捉剤及び酸化防止剤の少なくとも一方とを含有し、上記シール部24の幅は、少なくとも一部が0.6mm以下である。
アクティブマトリクス型液晶パネル20としては、液晶層23と、上記液晶層23を挟持する一対の基板21と、上記一対の基板21の液晶層23側の表面にそれぞれ配置された配向膜22と、上記一対の基板21を互いに接着し、かつ上記液晶層23の周囲に配置されたシール部24とを有するものであればよく、アクティブマトリクス型の表示方式を採用した通常の液晶パネルを用いることができる。アクティブマトリクス型の表示方式では、通常、各画素に設けられた薄膜トランジスタ(TFT)等のアクティブ素子がオンのときに、TFTを通じて信号電圧が電極に印加され、このときに画素に充電された電荷を、アクティブ素子がオフの期間中に保持する。充電された電荷を1フレーム期間(例えば、16.7ms)中に保持した割合を示すのが電圧保持率(VHR:Voltage Holding Ratio)である。すなわち、VHRが低いということは、液晶層に印加される電圧が時間とともに減衰しやすいことを意味し、アクティブマトリクス型の表示方式においては、VHRを高くすることが求められる。
一対の基板21としては、例えば、アクティブマトリクス基板(TFT基板)及びカラーフィルタ(CF)基板の組み合わせが挙げられる。アクティブマトリクス基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。アクティブマトリクス基板を平面視したときの構成としては、透明基板上に、複数本の平行なゲート信号線28g;ゲート信号線28gに対して直交する方向に伸び、かつ互いに平行に形成された複数本のソース信号線28s;ゲート信号線28gとソース信号線28sとの交点に対応して配置されたTFT等のアクティブ素子;ゲート信号線28gとソース信号線28sとによって区画された領域にマトリクス状に配置された画素電極等が設けられた構成が挙げられる。水平配向モードの場合には、更に、共通配線;共通配線に接続された対向電極等が設けられる。TFTは、アモルファスシリコン、ポリシリコン、又は、酸化物半導体であるIGZO(インジウム-ガリウム-亜鉛-酸素)によって、チャネルを形成したものが好適に用いられる。特に酸化物半導体はオフリークが小さいため、液晶表示装置の低周波駆動に有利であるが、液晶層23のVHRが低い場合は、低周波駆動を行えなくなる。本願発明により液晶層23のVHRを高めることができるので、低周波駆動が可能となる。すなわち、酸化物半導体と本願発明の組み合わせは、特に好適と言える。
上記カラーフィルタ基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。カラーフィルタ基板の構成としては、透明基板上に、格子状に形成されたブラックマトリクス、格子すなわち画素の内側に形成されたカラーフィルタ等が設けられた構成が挙げられる。
なお、一対の基板21は、カラーフィルタ及びアクティブマトリクスの両方が片側の基板に形成されたものであってもよい。
また、一対の基板21と液晶層23との間には、配向膜22が介在する。配向膜22は、液晶層23中の液晶分子の配向を制御する機能を有し、液晶層23への印加電圧が閾値電圧未満(電圧無印加を含む)のときには、主に配向膜22の働きによって液晶層23中の液晶分子の配向が制御される。この状態において、一対の基板21の表面に対して液晶分子の長軸が形成する角度が「プレチルト角」と呼ばれる。なお、本明細書において「プレチルト角」とは、基板面と平行な方向からの液晶分子の傾きの角度を表し、基板面と平行な角度が0°、基板面の法線の角度が90°である。
配向膜22によって付与される液晶分子のプレチルト角の大きさは特に限定されず、配向膜22は、水平配向膜であってもよいし、垂直配向膜であってもよいが、好ましくは水平配向膜である。水平配向膜の場合、プレチルト角は、実質的に0°(例えば、10°未満)であることが好ましく、長期にわたって良好なコントラスト特性を維持する効果を得る観点からは、0°であることがより好ましい。なお、表示モードがIPSモード又はFFSモードである場合には、視野角特性の観点からも、プレチルト角は0°であることが好ましいが、表示モードがTNモードである場合には、モードとしての制約のため、プレチルト角は例えば約2°に設定される。
配向膜22は、光配向性を示す材料から形成された光配向膜であってもよい。光配向性を示す材料とは、紫外光、可視光等の光(電磁波)が照射されることによって構造変化を生じ、その近傍に存在する液晶分子の配向を規制する性質(配向規制力)を発現する材料や、配向規制力の大きさ及び/又は向きが変化する材料全般を意味する。
光配向性を示す材料としては、例えば、二量化(二量体形成)、異性化、光フリース転移、分解等の反応が光照射によって起こる光反応部位を含むものが挙げられる。光照射によって二量化及び異性化する光反応部位(官能基)としては、例えば、下記式(B-1)に示したシンナメート、下記式(B-2-1)に示した4-カルコン、下記式(B-2-2)に示した4’-カルコン、下記式(B-3)に示したクマリン、下記式(B-4)に示したスチルベンが好適に用いられる。なお、下記式(B-1-I)にシンナメートの異性化反応及び二量化反応を示した。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
また、光照射によって異性化する光反応部位(官能基)としては、例えば、アゾベンゼンが好適に用いられる。下記式(B-5-1)に、アゾベンゼンのトランス体を示し、下記式(B-5-2)に、アゾベンゼンのシス体を示した。
Figure JPOXMLDOC01-appb-C000010
光照射によって光フリース転移する光反応部位としては、例えば、下記式(B-6)に示したフェノールエステル構造が好適に用いられる。フェノールエステル構造は、下記式(B-6-I)に示したように光フリース転移する。
Figure JPOXMLDOC01-appb-C000012
光照射によって分解する光反応部位としては、例えば、シクロブタン構造が好適に用いられる。シクロブタン構造を含む光配向膜としては、例えば、下記式(B-7-1)に示したシクロブタン構造を有する酸無水物と下記式(B-7-2)に示したアミン化合物とをモノマーとして共重合させて得られるポリマーが挙げられる。下記式(B-7-I)に示したように、このポリマーは、光照射されるとシクロブタン構造が開環し、光配向性を示す。なお、下記式(B-7-1)に示したシクロブタン構造中の水素原子は、他の原子又は官能基に置換されていてもよい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
また、本実施形態において、ポリマー支持配向(PSA:Polymer Sustained Alignment)技術を用いてもよい。PSA技術は、光重合性モノマーを含有させた液晶組成物を一対の基板21間に封入し、その後に液晶層23に光を照射して光重合性モノマーを重合させることにより、配向膜22表面に重合体(ポリマー)を形成し、この重合体により液晶の初期傾斜(プレチルト)を固定化するものである。
PSA技術を適用した例としては、例えば、配向膜22の液晶層23側の表面に、下記式(C)で表される光重合性モノマーを重合して得られたポリマーを含む層を有する形態が挙げられる。
A1-Y-A2 (C)
(式中、Yは、少なくとも1つのベンゼン環及び/又は縮合ベンゼン環を含む構造を表し、上記ベンゼン環及び上記縮合ベンゼン環中の水素原子はハロゲン原子に置き換えられていてもよく、A1及びA2の少なくとも一方は、アクリレート又はメタクリレートを表し、A1及びA2は、上記ベンゼン環又は上記縮合ベンゼン環に直接結合している。)
上記式(C)中の骨格Yは、下記式(C-1)、(C-2)又は(C-3)で表される構造であることが好ましい。なお、下記式(C-1)、(C-2)、(C-3)中の水素原子は、それぞれ独立して、ハロゲン原子に置き換えられていてもよい。
Figure JPOXMLDOC01-appb-C000015
上記式(C)で表される光重合性モノマーの具体例としては、例えば、下記式(C-1-1)、(C-1-2)、(C-3-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000016
本実施形態において、液晶層23は、液晶材料と、ラジカル捕捉剤及び酸化防止剤の少なくとも一方とを含有するものである。
<液晶材料>
液晶材料は、下記式(P)で定義される誘電率異方性(Δε)が負の値を有するものであってもよく、正の値を有するものであってもよい。すなわち、液晶材料は、負の誘電率異方性を有するものであってもよく、正の誘電率異方性であってもよい。負の誘電率異方性を有する液晶材料としては、例えば、Δεが-1~-20のものを用いることができる。正の誘電率異方性を有する液晶材料としては、例えば、Δεが1~20のものを用いることができる。
Δε=(長軸方向の誘電率)-(短軸方向の誘電率)  (P)
なお、従来の液晶表示装置では、負の誘電異方性を有する液晶材料を用いたときの方が、正の誘電率異方性を有する液晶材料を用いたときよりも、焼き付き及びシミの不具合はより顕在化して現れる傾向にあった。これは、負の誘電異方性を有する液晶材料では短軸方向に大きな分極が存在するため、イオン化した際のVHRの低下の影響が大きくなるためと推測される。すなわち、本発明で用いられるラジカル捕捉剤及び/又は酸化防止剤は、負の誘電異方性を有する液晶材料を用いた系において、大きな効果を発揮する。
液晶材料の少なくとも一成分は、アルケニル構造を有する化合物であることが好ましい。アルケニル構造を有する化合物としては、例えば、下記式(D-1)、(D-2)又は(D-3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
(式中、m、nは、同一の又は異なる整数であり、好ましくは1~6である。)
上記式(D-1)で表されるアルケニル構造を有する化合物の具体例としては、例えば、下記式(D-1-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000018
液晶材料の少なくとも一成分は、アルコキシ構造を含む化合物であることが好ましい。アルコキシ構造を含む化合物としては、例えば、下記式(E-1)、(E-2)、(E-3)、(E-4)又は(E-5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式中、m、nは、同一の又は異なる整数であり、好ましくは1~7である。)
上記式(E-3)で表されるアルコキシ構造を含む化合物の具体例としては、例えば、下記式(E-3-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000020
<ラジカル捕捉剤>
ラジカル捕捉剤は、シール部24から発生したシールラジカルや、そのシールラジカルが液晶に転移した液晶ラジカルと反応し、そのシールラジカルや液晶ラジカルを失活させるものであれば特に限定されず、例えば、ヒンダードアミン化合物が好適に用いられる。図3は、ヒンダードアミン化合物(ラジカル捕捉剤)によって、シール部24から発生したラジカルを失活させる反応機構を説明した図である。図3の式(A-I)に示したように、シール部24中の未反応の光重合開始剤Siniは、光(エネルギー量:hν)を照射されることで励起され、シールラジカルRiniが発生する。図3の式(A-II)に示したように、液晶層23を構成する液晶材料に添加されたヒンダードアミン化合物は、シール部24から溶出した光重合開始剤から発生したシールラジカルRiniと選択的に反応し、シールラジカルRiniを失活させることができる。但し、ヒンダードアミン化合物自身は、シール部24から発生したシールラジカルRiniと反応することによってヒンダードアミンラジカルになる。なお、式(A-II)中のRは、ヒンダードアミン化合物由来の炭化水素基を表す。図3の式(A-III)に示したように、ヒンダードアミンラジカルは、シール部24から発生した発生した別のシールラジカルRiniと結合することから、ヒンダードアミンラジカル及びシール部24から発生したシールラジカルRiniのいずれも消滅する。また、図3の式(A-IV)に示したように、ヒンダードアミンラジカルがシール部24から発生したシールラジカルRiniと結合して生成された化合物もまた、ラジカル捕捉剤として機能し、シール部24から発生した更に別のシールラジカルRiniと反応し、ヒンダードアミンラジカルを生成する。このヒンダードアミンラジカルは、式(A-III)に示したように、シール部24から発生したシールラジカルRiniと反応するラジカル捕捉剤である。以上のようにして、ヒンダードアミン化合物(ラジカル捕捉剤)が添加された系では、式(A-I)⇒式(A-II)⇒式(A-III)⇒式(A-I)⇒式(A-IV)⇒式(A-III)⇒・・・の循環的なサイクルが進行する。その結果、ラジカル捕捉剤は減少せずに、発生したラジカルを失活させ続けることでき、ラジカルからイオンが発生することを長期にわたって阻害し続けることができる。すなわち、ヒンダードアミン化合物(ラジカル捕捉剤)によれば、少ない添加量で、バックライト光への曝露によるVHR低下を長期間抑制することができる。
また、ヒンダードアミン化合物は、シール部24から発生したラジカルとの反応性が高いことから、液晶層23中のラジカルを速やかに失活させることができる。したがって、酸化防止剤が併用された場合には、この酸化防止剤がシール部24から発生したラジカルと反応して消費されることを効果的に抑制することができ、その結果として、液晶層中に酸化物が発生することも抑制できる。したがって、酸化物に由来する焼き付き及びシミについても防止することもできる。
更に、ヒンダードアミン化合物等のラジカル捕捉剤を用いることで、液晶層23中のイオンの発生を大幅に抑制できる効果として、液晶表示装置を駆動する際のフレーム期間を長く設定することが可能になる。すなわち、液晶表示装置の低周波駆動が可能となり、その結果、消費電力を低く抑えることが可能となる。
ヒンダードアミン化合物としては、例えば、下記式(F-1)又は(F-2)で表される化合物が挙げられ、なかでも下記式(F-1)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000021
(式中、Xは、一価の有機基を表し、Rは、炭化水素基を表す。)
上記式(F-1)で表されるヒンダードアミン化合物の具体例としては、例えば、下記式(F-1-1)、(F-1-2)、(F-1-3)、(F-1-4)又は(F-1-5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
上記式(F-2)で表されるヒンダードアミン化合物の具体例としては、例えば、下記式(F-2-1)又は(F-2-2)で表される化合物が挙げられる。また、上記式(F-2)に類似の構造として、下記式(F-2-3)のように、水素原子をメチル基に置換した化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000023
また、ヒンダードアミン化合物としては、下記式(F-3)に示したように、ラジカル部を有する構造であってもよく、その具体例としては、例えば、下記式(F-3-1)、(F-3-2)又は(F-3-3)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
ラジカル捕捉剤(ヒンダードアミン化合物)の濃度は、1ppm以上、1000ppm以下であることが好ましい。この範囲内であれば、シール部24から発生したラジカルを充分に失活させることができ、VHRの低下を抑制する効果が特に充分に得られる。なお、ヒンダードアミンのラジカルは安定的に存在できるため、ヒンダードアミン化合物の濃度が高過ぎると、VHRの低減に望ましくないおそれがある。このため、ヒンダードアミン化合物の濃度を高くする代わりに、後述する酸化防止剤を添加してもよい。ラジカル捕捉剤(ヒンダードアミン化合物)の濃度のより好ましい上限は、500ppmであり、更に好ましい上限は、250ppmである。
<酸化防止剤>
酸化防止剤としては、液晶材料よりも酸素又は酸化物に対する反応性が高いものであれば特に限定されず、例えば、フェノール系酸化防止剤が好適に用いられる。
図5は、本発明におけるフェノール系酸化防止剤の作用を説明した図である。図5の式(1)に示したように、液晶パネルに酸素が侵入し、光や熱のエネルギーが加わると、液晶材料、配向膜、シール材に含まれるアルキル基(R)等が酸化され、酸化物質(ROOH)が生じる。本実施形態では、シール部24の幅の少なくとも一部が0.6mm以下であることから、従来よりも酸素が侵入しやすい構造とされている。酸化物質からはラジカルが発生し、酸化防止剤やラジカル捕捉剤が存在しない条件下では、ラジカルがイオン化する。液晶材料が酸化されてイオン化された場合には、液晶層23中にイオンが発生する。これに加えて、配向膜やシール剤が酸化された場合であっても、配向膜やシール剤を構成するポリマーから解離した酸化物質がイオン化されて液晶層23中に溶出するため、液晶層23中にイオンが発生することになる。したがって、液晶層23中のイオンによってVHRの低下が引き起こされる。一方、酸化防止剤を添加することで、図5の式(2)及び(3)に示したように、ラジカルがイオン化する前に酸化防止剤と反応させることができ、液晶材料、配向膜及びシール材の酸化によってイオンが発生することを防止できる。また、図5の式(2)及び(3)に示したサイクルによれば、酸化防止剤の量は減少しないので、長期にわたってラジカルのイオン化を防止することができる。
なお、図5に示したように、酸化防止剤は、水素基の脱離→付加→脱離、というサイクルを繰り返すことによって、酸化物からの酸素の脱離(還元)を行わせる機能を持ち、酸化による劣化(分解やイオン化)を長期にわたって抑制するものである。一方、ラジカル捕捉剤は、酸化物か否かに関わらず、配向膜や液晶中のラジカルを捕捉する機能を持ち、ラジカルの捕捉と放出を繰り返すことで、ラジカルのイオン化を防止するものである。酸化防止剤及びラジカル捕捉剤を併用することによって、VHRの低下を抑制する効果を特に充分に得ることができる。
フェノール系酸化防止剤としては、例えば、下記式(G)で表されるものが挙げられ、より具体的には、例えば、下記式(G-1)、(G-2)又は(G-3)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000026
(式中、Xは、一価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000027
(式中、nは、整数であり、好ましくは3~20である。)
上記式(G)で表されるフェノール系酸化防止剤の具体例としては、例えば、下記式(G-a)、(G-b)、(G-c)、(G-d)、(G-e)、(G-f)又は(G-g)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
酸化防止剤の濃度は、1ppm以上、10重量%以下であることが好ましい。この範囲内であれば、外部から液晶パネル内に侵入した酸素が、液晶材料を酸化することを防止できることから、酸化物に起因する表示の焼き付き及びシミを効果的に防止できる。また、ラジカル捕捉剤に加えて酸化防止剤によっても、シール部から発生したラジカルの一部を失活させることができるので、VHRの低下を抑制する効果を特に充分に得ることができる。濃度のより好ましい下限は10ppmであり、より好ましい上限は5重量%であり、更に好ましい上限は1重量%である。
本実施形態の液晶パネル20は、液晶層23の周囲を囲むように設けられたシール部24によって一対の基板21同士が互いに接着され、液晶層23が所定の領域に保持される。シール部24の幅は、従来の液晶表示装置では、信頼性を確保するため0.8mm以上にされていたが、本実施形態では、ラジカル捕捉剤及び/又は酸化防止剤によって信頼性の向上が図られることから、少なくとも一部が0.6mm以下とされる。0.6mmを超えると、ラジカル捕捉剤及び/又は酸化防止剤による改善効果が明確には確認できなくなる。シール部の幅は、少なくとも一部が0.4mm以下であることが好ましく、少なくとも一部が0.2mm以下であることがより好ましい。このようにシール部の幅を狭くするほど、ラジカル捕捉剤及び/又は酸化防止剤による改善効果が顕著になる。
シール部24は、液晶パネル20の端部(額縁領域)に設けられる。図2(b)及び図2(c)に示したように、TFT基板側の液晶パネル20の端部には、ゲート端子部26及びソース端子部27が設けられてもよい。ゲート端子部26は、表示領域から引き出されたゲート信号線28gと、ゲート信号線28gの末端に設けられたゲート端子29gが配置されている。ソース端子部27には、表示領域から引き出されたソース信号線28sと、ソース信号線28sの末端に設けられたソース端子29sが配置されている。なお、ゲート端子29gには、ゲートドライバの接続端子が電気的に接続され、ソース端子29sには、ソースドライバの接続端子が電気的に接続されることになる。
また、液晶パネル20の端部に、ゲート端子29gを配置する代わりに、ゲートドライバを設けることも可能である。図4は、ゲート端子部の別の例を示した拡大平面図である。図4に示した、シール部24の下にモノリシック型ゲートドライバ30を配置した構成は、液晶パネル20の挟額縁化に有利な構成である。なお、図4では、モノリシック型ゲートドライバ30の詳細な回路構成は図示していないが、モノリシック型ゲートドライバ30には、ゲートドライバとしての機能を持たせるためのシフトレジスタ回路が含まれる。
図2(b)及び図2(c)に示した形態では、シール部24は、ゲート端子部26及びソース端子部27において、ゲート信号線28g及びソース信号線28sの上に、ゲート信号線28g及びソース信号線28sと交差するように形成される。ゲート信号線28g及びソース信号線28sは、通常、金属等の遮光材料で構成されるため、背面側からシール部24に照射された光の一部は、ゲート信号線28g及びソース信号線28sによって遮られることになる。
また、図4に示した形態では、シール部24は、モノリシック型ゲートドライバ30と重なって形成される。モノリシック型ゲートドライバ30は、酸化物半導体(例えば、インジウム、ガリウム、亜鉛を含有する酸化物半導体)、低温ポリシリコン(LTPS)等で形成されるが、モノリシック型ゲートドライバ30もまた遮光材料で構成されるため、背面側からシール部24に照射された光の一部は、モノリシック型ゲートドライバ30によって遮られることになる。
したがって、光硬化材料でシール部24を形成した場合には、シール部24の硬化が不完全になるおそれがある。シール部24の硬化が不完全であった場合には、シール部24中に残留した光重合開始剤が液晶層23中へ溶出し、液晶層23中にラジカルが生成してしまう。
本実施形態においては、ラジカル捕捉剤及び/又は酸化防止剤を添加することによって、液晶層23中のラジカルを効果的に失活させることができる。したがって、シール部24を、光重合開始剤を含む光硬化材料によって形成することができる。光硬化材料としては光重合開始剤を含むものであれば特に限定されず、液晶の封止に通常用いられる光硬化型の材料を用いることができ、例えば、エポキシ樹脂、(メタ)アクリル樹脂等の光硬化樹脂用の光重合性モノマー及び/又はオリゴマーからなる主成分に、光重合開始剤、フィラー等の添加物を添加した組成物が挙げられる。
光重合開始剤としては、光によりラジカルを発生する光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤としては特に限定されないが、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントンを好適に用いることができる。上記光ラジカル重合開始剤に含まれる具体的な化合物名としては、例えば、ジフェニル-2,4,6-トリメチルベンゾイルフォスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキシド、下記式(H-1)で表される4-アセチルジフェニルスルフィドオキシムエステル(4-acetyl diphenyl sulfideoxime ester)が挙げられる。
Figure JPOXMLDOC01-appb-C000029
また、上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、イルガキュア184、イルガキュア369、イルガキュア379、イルガキュア651、イルガキュア819、イルガキュア907、イルガキュア2959、イルガキュアOXE01、イルガキュアOXE02、ルシリンTPO、DAROCUR TPO(いずれもBASF Japan社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)、ESACURE TPO(DKSHジャパン社製)、MICURE TPO(MIWON社製)等が挙げられる。なかでも吸収波長域が広いことから、イルガキュア651、イルガキュア907、ベンゾインイソプロピルエーテル、及び、ルシリンTPOが好適である。光ラジカル重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
光重合開始剤としては、光開始性化合物及び可視光増感性化合物を含むものを用いてもよい。光開始性化合物としては、例えば、ジアミノ安息香酸とジエチレングリコールジグリシジルエーテルとを反応させて得られる下記式(H-2)で表される化合物を用いることができる。可視光増感性化合物としては、例えば、ヒドロキシチオキサントンとジエチレングリコールジグリシジルエーテルとを反応させて得られる下記式(H-3)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000030
上記光重合開始剤の含有量は特に限定されないが、主成分100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.1重量部未満であると、光硬化材料を充分に硬化させることができないことがある。上記光重合開始剤の含有量が10重量部を超えると、貯蔵安定性が低下することがある。
上記液晶パネル20は、液晶滴下方式により形成されたものである。したがって、シール部には、液晶パネル20内に液晶組成物を配置するために、液晶注入方式において形成される注入口が設けられず、注入口を封止した部分も存在しない。液晶滴下方式によれば、光重合開始剤を含む光硬化材料を用いてシール部24を形成することによって、液晶注入方式に比べて製造効率よく、液晶パネルを製造することができる。
上記液晶パネル20の配向モードは特に限定されず、例えば、フリンジ・フィールド・スイッチング(FFS:Fringe Field Switching)モード、イン・プレーン・スイッチング(IPS:In-Plane Switching)モード等の水平配向モード;垂直配向モード;ツイステッド・ネマチック(TN:Twisted Nematic)モードを用いることができる。
なお、上記液晶パネルの配向モードが水平配向モードであるときには、光配向膜からラジカルが発生しやすいことから、ラジカル捕捉剤及び/又は酸化防止剤を添加した効果が顕著に得られる。すなわち、垂直配向モードの光配向処理(偏光UV照射)では、プレチルト角を90°からわずかに傾かせるだけでよいが、水平配向モードの光配向処理では、液晶配向の方位(基板面内における向き)をより高精度に制御する必要がある。そのため、水平配向モードの光配向処理における照射量は、通常、垂直配向モードの場合よりも一桁以上大きく、副反応によりラジカルが、垂直配向モードの場合より多く発生しやすい。液晶層に含有されるラジカル捕捉剤及び/又は酸化防止剤は、光配向処理時に発生したラジカルを失活させることができるので、液晶パネルの完成後(液晶注入後)にラジカルが残存することを効果的に防止できる。
FFSモードでは、少なくとも一方の基板21に、面状電極と、スリット電極と、面状電極及びスリット電極の間に配置された絶縁膜とを含む構造(FFS電極構造)が設けられ、基板21に隣接する液晶層23中に斜め電界(フリンジ電界)が形成される。通常では、液晶層23側から、スリット電極、絶縁膜、面状電極の順に配置される。スリット電極としては、例えば、その全周を電極に囲まれた線状の開口部をスリットとして備えるものや、複数の櫛歯部を備え、かつ櫛歯部間に配置された線状の切れ込みがスリットを構成する櫛型形状のものを用いることができる。
IPSモードでは、少なくとも一方の基板21に、一対の櫛形電極が設けられ、基板21に隣接する液晶層23中に横電界が形成される。一対の櫛形電極としては、例えば、それぞれ複数の櫛歯部を備え、かつ櫛歯部が互いに噛み合うように配置された電極対を用いることができる。
また、一対の基板21の液晶層23とは反対側にはそれぞれ、偏光板(直線偏光子)が配置されてもよい。偏光板としては、典型的には、ポリビニルアルコール(PVA)フィルムに、二色性を有するヨウ素錯体等の異方性材料を、吸着配向させたものが挙げられる。通常は、PVAフィルムの両面にトリアセチルセルロースフィルム等の保護フィルムをラミネートして実用に供される。また、偏光板と一対の基板21との間には、位相差フィルム等の光学フィルムが配置されていてもよい。
図1に示したように、本実施形態の液晶表示装置においては、バックライト10が液晶パネルの背面側に配置されている。このような構成を有する液晶表示装置は、一般的に、透過型の液晶表示装置と呼ばれる。バックライト10としては、可視光を含む光を発するものであれば特に限定されず、可視光のみを含む光を発するものであってもよく、可視光及び紫外光の両方を含む光を発するものであってもよい。液晶表示装置によるカラー表示が可能とするためには、白色光を発するバックライト10が好適に用いられる。バックライト10の種類としては、例えば、発光ダイオード(LED)が好適に用いられる。なお、本明細書において、「可視光」とは、波長380nm以上、800nm未満の光(電磁波)を意味する。
なお、本発明は、バックライト10の光に曝露されることでシール部24や光配向膜から発生するラジカルをラジカル捕捉剤及び/又は酸化防止剤によって失活させることに特徴がある。したがって、バックライト10の発光スペクトルの少なくとも一部が、シール部中の光重合開始剤や光配向膜の吸収スペクトルの少なくとも一部と重複している場合に、ラジカル捕捉剤及び/又は酸化防止剤を有効に機能させることができる。
本実施形態の液晶表示装置は、液晶パネル20及びバックライト10の他、TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。既に説明した部材以外の部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。
以上、本発明の実施形態について説明したが、説明された個々の事項は、すべて本発明全般に対して適用され得るものである。
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
フリンジ・フィールド・スイッチングモード(FFSモード)の液晶パネルを以下の方法により実際に作製した。
まず、TFT、FFS電極構造等を備えるTFT基板、及び、ブラックマトリクス、カラーフィルタ等を備えるカラーフィルタ基板(CF基板)を用意した。そして、TFT基板及びCF基板の各々の表面上に、配向膜溶液を塗布した。配向膜溶液の固形分は、主鎖中に、ポリアミック酸構造を含むポリマー材料であった。
次に、配向膜溶液中の溶媒を揮発させるために、両基板を70℃で加熱した。続いて、本焼成として、両基板を220℃で加熱した。本焼成により、ポリアミック酸構造の一部においてイミド化(脱水閉環反応)が起こり、ポリイミド構造が形成された。その後、ラビング処理を行い、充分な配向規制力を発現させた水平配向膜が得られた。本焼成後の膜厚は100nmであった。
続いて、TFT基板上に液晶組成物を滴下し、CF基板上には光重合開始剤を含有する光硬化型シール材(積水化学社製の紫外線硬化性シール剤、商品名:フォトレックS-WB)をディスペンサにより描画した。なお、シール材を描画する基板と液晶組成物を滴下する基板は入れ替えてもよく、また、どちらか一方の基板に両方を施してもよい。そして、TFT基板とCF基板とを貼り合わせ、基板間に液晶組成物を封入した。基板の貼り合わせ後に、表示領域を遮光し、紫外線を照射してシール材を硬化させた。なお、光硬化型シール材の描画時の幅を変えることにより、シール部(シール材の硬化物)の幅を0.1mm刻みで変化させ、0.1mm~1.0mmの範囲で11種のサンプルを作製した。
液晶組成物としては、下記式(D-1-1)のアルケニル構造を有する化合物を含む液晶材料に、下記式(F-1-5)のヒンダードアミン化合物(ラジカル捕捉剤)を添加したものを用いた。ヒンダードアミン化合物の濃度は、液晶組成物の全量に対して、200ppmとした。液晶材料は、正の誘電異方性を有するものであった(△ε=+9.0)。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
その後、130℃で40分加熱することで液晶分子の再配向処理を行った。そして、偏光軸がクロスニコルの関係になるように、TFT基板の裏面側(バックライト光の入射面側)及びCF基板の観察面側(バックライト光の出射面側)に、一対の偏光板を貼り付けた。以上のようにして、FFSモード用の液晶パネルを作製した。続いて、液晶パネルの背面側に、白色LEDを備えるバックライトを取り付け、実施例1の液晶表示装置が完成した。
(比較例1)
液晶組成物中にヒンダードアミン化合物を添加しなかったこと以外は、実施例1と同様にして、比較例1の液晶表示装置を作製した。なお、比較例1においても、光硬化型シール材の描画時の幅を変えることにより、シール部(シール材の硬化物)の幅を0.1mm刻みで変化させ、0.1mm~1.0mmの範囲で11種のサンプルを作製した。
(評価試験1)
実施例1及び比較例1で作製した液晶表示装置を、バックライトを点灯させた状態で通電し続け、500時間後に観察した。その結果を下記表1に示した。
Figure JPOXMLDOC01-appb-T000033
表1に示したように、ヒンダードアミン化合物(ラジカル捕捉剤)を添加しなかった比較例1では、シール部の幅を0.6mm以下にしたときに、画面端にムラが発生した。このムラは、シール部の幅を小さくするほど悪化した。また、シール部の幅を0.2mm以下にしたときには、画面内の焼き付きも発生した。これに対して、ヒンダードアミン化合物を添加した実施例1では、シール幅を変更しても、画面端のムラ、及び、画面内の焼き付きのいずれも発生しなかった。
また、本実施例で用いたアルケニル構造を有する液晶成分は、液晶材料の粘度低減に有効である。一方で、アルケニル構造に含まれる二重結合は、ラジカルによる攻撃を受けやすいため、VHR低下の要因となりやすい。実施例1では、ヒンダードアミン化合物を液晶材料に添加したことにより、アルケニル構造へのラジカルの攻撃を効果的に防止できる。なお、アルケニル構造を有する液晶成分は、液晶表示装置の応答速度を改善する観点から、正の誘電異方性を有する液晶材料だけでなく、負の誘電率異方性を有する液晶材料に対しても添加されることが好ましい。
(実施例2)
液晶材料とラジカル捕捉剤の種類を変更したこと、及び、酸化防止剤を添加したこと以外は、実施例1と同様にして、液晶表示装置を作製した。
液晶組成物としては、下記式(E-3-1)のアルコキシ構造を有する化合物を含む液晶材料に、下記式(F-1-2)のヒンダードアミン化合物(ラジカル捕捉剤)、及び、下記式(G-g)の酸化防止剤を添加したものを用いた。ヒンダードアミン化合物の濃度は、液晶組成物の全量に対して、200ppmとした。酸化防止剤の濃度は、液晶組成物の全量に対して、0.1重量%とした。液晶材料は、負の誘電異方性を有するものであった(△ε=-3.5)。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(比較例2)
液晶組成物中にヒンダードアミン化合物及び酸化防止剤を添加しなかったこと以外は、実施例2と同様にして、比較例2の液晶表示装置を作製した。
(評価試験2)
実施例2及び比較例2で作製した液晶表示装置を、バックライトを点灯させた状態で通電し続け、500時間後に観察した。その結果を下記表2に示した。
Figure JPOXMLDOC01-appb-T000037
表2に示したように、ヒンダードアミン化合物(ラジカル捕捉剤)を添加しなかった比較例2では、シール部の幅を0.6mm以下にしたときに、画面端にムラが発生した。このムラは、シール部の幅を小さくするほど悪化した。また、シール部の幅を0.4mm以下にしたときには、画面内の焼き付きも発生した。これに対して、ヒンダードアミン化合物及び酸化防止剤を添加した実施例2では、シール幅を変更しても、画面端のムラ、及び、画面内の焼き付きのいずれも発生しなかった。
また、比較例2は、比較例1と比べて、光による劣化の度合いが大きかった。その理由としては、比較例1において誘電率異方性が正の液晶材料が用いられたのに対して、比較例2において誘電率異方性が負の液晶材料が用いられたためであると考えられる。
また、実施例2及び比較例2で用いられた液晶材料中のアルコキシ構造は、負の誘電異方性を有する液晶材料(ネガ型液晶)の誘電異方性の大きさを調整するのに好適に用いられるものである。なお、正の誘電異方性を有する液晶材料(ポジ型液晶)については、アルコキシ基を用いることなく誘電異方性の大きさを容易に調整できる。従来の液晶表示装置では、アルコキシ構造が含まれる液晶材料を用いた場合にVHRが低くなる傾向があり、特に光配向膜と組合せた場合にはその傾向が顕著であったが、実施例2のようにラジカル捕捉剤を添加した場合には、VHRの低下を抑制することができる。その理由については、下記の仮説モデル1~4によって説明できる。
[仮説モデル1]
下記反応式に示したように、アルコキシ構造(-OR)は、光配向膜等から発生したラジカルRALの攻撃を受けやすく、4パターンのラジカル生成反応を生じる。発生したラジカルがイオン化することで、VHRの低下が引き起こされる。
Figure JPOXMLDOC01-appb-C000038
[仮説モデル2]
下記反応式に示したように、光配向膜等から発生したラジカルRALは、液晶層中の酸素と結合してペルオキシド構造(ROO・)を形成する。アルコキシ構造(-OR)は、ペルオキシド構造の攻撃を受けやすく、5パターンのラジカル生成反応を生じる。また、各パターンにおいて、ラジカル生成反応後にも、連鎖的に別のラジカル生成反応が繰り返される。発生したラジカルがイオン化することで、VHRの低下が引き起こされる。なお、このペルオキシド構造を経たラジカル連鎖反応は、自動酸化反応として知られる。
Figure JPOXMLDOC01-appb-C000039
[仮説モデル3]
アルコキシ構造(特にメトキシ、エトキシ基)は、電子供与基であり、光曝露下では共鳴構造を取る。下記式は、アルコキシ構造を有する化合物の一部を表しており、アルコキシ構造に対応した3つの共鳴構造を示している。このうち、中央に示された共鳴構造(a)、及び、右に示された共鳴構造(b)はイオン状態であることから、VHRを低下させる原因となる。更に、共鳴構造(a)及び(b)はそれぞれ、酸素の存在によって、ペルオキシド構造を持つ構造(a’)及び(b’)に変化する。ペルオキシド構造を持つ構造(a’)及び(b’)はそれぞれ、(a’’)及び(b’’)に示したように容易にラジカル化する。発生したラジカルがイオン化することで、VHRの低下が引き起こされる。
Figure JPOXMLDOC01-appb-C000040
[仮説モデル4]
アルコキシ構造を含むネガ型液晶は、分極が大きい分子構造で構成されているため、不純物イオンの溶解度がポジ型液晶よりも高く、液晶中に可動イオンが存在しやすい。可動イオンは充電した電荷を打ち消す効果があるため、結果としてVHRが低下する。
以上の仮説モデル1~3にはラジカルが関与し、仮説モデル2、3には酸化が関与していることから、ラジカル捕捉剤によってラジカルを捕捉することや、酸化防止剤によって酸化物からの酸素の脱離(還元)を行うことで対策できるものである。また、仮説モデル4は、ポジ型液晶よりもネガ液晶の方が、ラジカル生成や酸化を経て生じるイオン性不純物によって受ける影響が大きいことを説明しており、ラジカルの捕捉や酸化物からの酸素の脱離は、間接的には、仮説モデル4への対策にもなっている。以上のことから、液晶層にラジカル捕捉剤や酸化防止剤を含有させることによって、アルコキシ構造が含まれる液晶材料を用いた場合に生じるVHRの低下を抑制する効果を得ることができる。
(実施例3)
FFSモードの液晶パネルを以下の方法により実際に作製した。
まず、TFT、FFS電極構造等を備えるTFT基板、及び、ブラックマトリクス、カラーフィルタ等を備えるCF基板を用意した。そして、TFT基板及びCF基板の各々の表面上に、配向膜溶液を塗布した。配向膜溶液の固形分は、主鎖中に、ポリアミック酸構造と、光反応性を有するアゾベンゼン構造を含むポリマー材料であった。
次に、配向膜溶液中の溶媒を揮発させるために、両基板を70℃で加熱した。続いて、光配向処理として、両基板の表面に対して、主波長が365nmの直線偏光を2000mJ/cmの強度で照射した。直線偏光の偏光方向は、液晶を配向させる方向に対して直交するように設定した。直線偏光の照射により、アゾベンゼン構造においてトランス-シス異性化反応が生じ、配向規制力が発現した。アゾベンゼン構造のトランス体は、下記(B-5-1)に示した構造を有し、シス体は、下記(B-5-2)に示した構造を有する。
Figure JPOXMLDOC01-appb-C000041
その後、本焼成として、両基板を220℃で加熱した。本焼成により、ポリアミック酸構造の一部においてイミド化(脱水閉環反応)が起こり、ポリイミド構造が形成された。以上によって、光照射によって充分な配向規制力を発現させた水平配向膜が得られた。本焼成後の膜厚は100nmであった。
続いて、TFT基板上に液晶組成物を滴下し、CF基板上には光重合開始剤を含有する光硬化型シール材をディスペンサにより描画した。そして、TFT基板とCF基板とを貼り合わせ、基板間に液晶組成物を封入した。基板の貼り合わせ後に、表示領域を遮光し、紫外線を照射してシール材を硬化させた。なお、シール部(シール材の硬化物)の幅は0.6mmにした。
液晶組成物としては、下記式(D-1-1)のアルケニル構造を有する化合物を含む液晶材料に、下記式(G-g)の酸化防止剤を添加したものを用いた。酸化防止剤の濃度は、液晶組成物の全量に対して、0.1重量%とした。液晶材料は、負の誘電異方性を有するものであった(△ε=-3.5)。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
その後、130℃で40分加熱することで液晶分子の再配向処理を行った。そして、偏光軸がクロスニコルの関係になるように、TFT基板の裏面側(バックライト光の入射面側)及びCF基板の観察面側(バックライト光の出射面側)に、一対の偏光板を貼り付けた。以上のようにして、FFSモード用の液晶パネルを作製した。続いて、液晶パネルの背面側に、白色LEDを備えるバックライトを取り付け、実施例3の液晶表示装置が完成した。
(比較例3)
液晶組成物中に酸化防止剤を添加しなかったこと以外は、実施例3と同様にして、比較例3の液晶表示装置を作製した。
(評価試験3)
実施例3及び比較例3で作製した液晶表示装置を、バックライトを点灯させた状態で通電し続けた。このとき、液晶表示装置の画面全体を白表示にした。500時間後に、画面全体を64階調のグレー表示にしたところ、比較例3の液晶表示装置では、画面の端に極めて顕著なシミ状のムラが観察された。一方、実施例3の液晶表示装置では、そのような不具合は観察されなかった。
なお、実施例3及び比較例3では、光配向膜を用いたことから、光配向膜自身がラジカル発生源となる。このため、比較例3では、光による劣化の度合いが大きかった。光配向膜に起因して電圧保持率が低下する理由は、以下のように考えられる。
実施例3及び比較例3で用いた光配向膜に含まれるアゾベンゼン構造は、可視光領域に近い波長365nmの光によって配向処理されるものである。一方、液晶表示装置のバックライトは、カラー表示のために主に可視光領域の光を発するが、比較例3の結果から、バックライトの発光スペクトルの短波長側とアゾベンゼン構造の吸収スペクトルの長波長側とが、実際のスペクトル分析では検出が難しいレベルではあるものの、わずかながら重なっており、ラジカルが発生しているものと推察される。例えば、下記の反応式に示したように、バックライトの光によってアゾベンゼン構造において光開裂反応が生じることが考えられる。これに対して、実施例3の結果から、上記式(G-g)の酸化防止剤が、光配向膜の反応によって生じたラジカルを効果的に失活させ、電圧保持率の低下を防止できることが分かった。
Figure JPOXMLDOC01-appb-C000044
なお、アゾベンゼン構造と同様に可視光領域に近い波長の光によって配向処理される光反応部位としては、シンナメート、カルコン、クマリン、スチルベン、フェノールエステル等が挙げられる。これらの光反応部位はいずれも340nm以上の波長の光をわずかながらではあるものの吸収すると考えられることから、アゾベンゼン構造と同様にバックライトの光を吸収してラジカルの発生源となり得る。例えば、シンナメート、カルコン及びフェノールエステルでは、光フリース転移(エステル基の開裂)が起こってラジカルが発生し、カルコンでは、下記の反応式に示したように、水素の引き抜き又は光開裂が起こってラジカルが発生する。したがって、これらの光反応部位を含む光配向膜を用いる場合にも、ラジカル捕捉剤や酸化防止剤を液晶材料に添加することが好ましい。
Figure JPOXMLDOC01-appb-C000045
また、光反応部位であるシクロブタン構造は、下記の反応式に示したように、通常、波長300nm以下の光を主に吸収することによって、シクロブタン部位が開裂する分解反応を生じ、その中間段階でラジカルを生成する。但し、シクロブタン構造を含む光配向膜は、配向処理時の露光量を低減するために、光吸収性の良い構造に改良されることがあり、例えば、ジアミン部位の骨格に光吸収性が高いものを選択し、かつ、その吸収した光エネルギーがシクロブタン部位に遷移して、シクロブタン部位の光開裂を助長することが挙げられる。そのような改良が行われた場合には、より長波長側の光に対する吸光度が増大する反面、バックライトの発光スペクトルの短波長側が、光配向膜の吸収スペクトルの長波長側と重なる可能性がある。また、通常、配向処理時の露光量が数百mJ/cm以上と多いことから、配向処理時に生成したラジカルの一部が、液晶パネルの完成後においても失活していない可能性もある。したがって、シクロブタン構造を有する分解型の光配向膜においても、焼き付きの発生原因が存在する。
Figure JPOXMLDOC01-appb-C000046
また、本実施例で用いたアルケニル構造を有する液晶成分は、ラジカルの発生源となり得る光配向膜と組み合わせて用いた場合には、アルケニル構造に含まれる二重結合がラジカルによる攻撃を受けやすいため、VHR低下の要因となりやすい。実施例3では、酸化防止剤を液晶材料に添加したことにより、アルケニル構造へのラジカルの攻撃を効果的に防止できている。
(実施例4)
FFSモードの液晶パネルを備える液晶表示装置を、以下の方法により実際に作製した。
まず、TFT、FFS電極構造等を備えるTFT基板、及び、ブラックマトリクス、カラーフィルタ等を備えるCF基板を用意した。そして、TFT基板及びCF基板の各々の表面上に、配向膜溶液を塗布した。配向膜溶液の固形分は、ポリシロキサン構造を主骨格とし、側鎖に光官能基として、下記式(B-1)のシンナメート基を含むポリマー材料であった。
Figure JPOXMLDOC01-appb-C000047
次に、配向膜溶液中の溶媒を揮発させるために、両基板を70℃で加熱した。続いて、本焼成として、両基板を230℃で加熱した。その後、光配向処理として、両基板の表面に対して、主波長が313nmの直線偏光を20mJ/cmの強度で照射した。直線偏光の偏光方向は、液晶を配向させる方向に対して直交するように設定した。直線偏光の照射により、シンナメート基において異性化反応及び二量化反応が生じ、配向規制力が発現した。以上によって、光照射によって配向規制力を発現させた水平配向膜が得られた。本焼成後の膜厚は100nmであった。なお、本実施例では、光配向処理時の露光量を小さくしたが、後述するように、液晶材料中に添加した光重合性モノマーを配向膜表面で重合させることにより、配向規制力を向上させた。
続いて、TFT基板上に液晶組成物を滴下し、CF基板上には光重合開始剤を含有する光硬化型シール材をディスペンサにより描画した。そして、TFT基板とCF基板とを貼り合わせ、基板間に液晶組成物を封入した。基板の貼り合わせ後に、表示領域を遮光し、紫外線を照射してシール材を硬化させた。なお、シール部(シール材の硬化物)の幅は0.4mmにした。
液晶組成物としては、実施例3と同じ上記式(D-1-1)のアルケニル構造を有する化合物を含む液晶材料に、下記式(C-1-1)の光重合性モノマー、実施例2と同じ上記式(F-1-2)のヒンダードアミン化合物(ラジカル捕捉剤)、及び、実施例3と同じ上記式(G-g)の酸化防止剤を添加したものを用いた。光重合性モノマーの配合量は、液晶組成物の全量に対して0.25wt%とした。ヒンダードアミン化合物の濃度は、液晶組成物の全量に対して、200ppmとした。酸化防止剤の濃度は、液晶組成物の全量に対して、0.1重量%とした。液晶材料は、負の誘電異方性を有するものであった(△ε=-3.5)。
Figure JPOXMLDOC01-appb-C000048
なお、光重合性モノマーとしては、上記式(C-1-1)のモノマー以外のものを用いてもよい。例えば、上記式(C-1-1)のモノマーに対して、末端のメタクリレート基をアクリレート基に変更した上記式(C-1-2)のモノマーや、骨格部分をフェナントレンに変更した上記式(C-3-1)のモノマーを用いてもよい。更に、上記式(C-1-1)、(C-1-2)及び(C-3-1)において、骨格部分に存在する水素原子は、独立して、ハロゲン原子に置き換えられてもよい。
シール材の硬化後に、液晶パネルの表示領域にブラックライトの光を3000mJ/cmの強度で照射した。これにより、液晶層中の光重合性モノマーが液晶分子を取り込みつつ配向膜表面で重合した。その結果、配向膜表面の液晶配向を光重合性モノマーの重合体によって固定化し、充分な配向規制力を得ることができた。
その後、130℃で40分加熱することで液晶分子の再配向処理を行った。そして、偏光軸がクロスニコルの関係になるように、TFT基板の裏面側(バックライト光の入射面側)及びCF基板の観察面側(バックライト光の出射面側)に、一対の偏光板を貼り付け、FFSモード用の液晶パネルを作製した。続いて、液晶パネルの背面側に、白色LEDを備えるバックライトを取り付け、実施例4の液晶表示装置が完成した。
(比較例4)
液晶組成物中にヒンダードアミン化合物及び酸化防止剤を添加しなかったこと以外は、実施例4と同様にして、比較例4の液晶表示装置を作製した。
(評価試験4)
実施例4及び比較例4で作製した液晶表示装置を、バックライトを点灯させた状態で通電し続けた。このとき、液晶表示装置の画面全体を白表示にした。500時間後に、画面全体を64階調のグレー表示にしたところ、比較例4の液晶表示装置では、画面の端にシミ状のムラが観察された。このムラは、電圧保持率の低下が原因であると考えられる。一方、実施例4の液晶表示装置では、そのような不具合は観察されなかった。
実施例4及び比較例4で用いた光重合性モノマーは、ラジカル発生源となるため、液晶層中にラジカルが生じやすい条件とされている。これに対して、液晶材料にヒンダードアミン化合物及び酸化防止剤を添加することによって、PSA処理後に残留した光重合性モノマーについても効果的に失活させることができる。以上のことから、比較例4の液晶表示装置では、ムラが発生したが、実施例4の液晶表示装置では、ムラを効果的に防止することができた。
[付記]
本発明の一態様は、アクティブマトリクス型液晶パネル及びバックライトを有し、上記液晶パネルは、液晶層と、上記液晶層を挟持する一対の基板と、上記一対の基板の上記液晶層側の表面にそれぞれ配置された配向膜と、上記一対の基板を互いに接着し、かつ上記液晶層の周囲に配置されたシール部とを有し、上記液晶パネルは、液晶滴下方式により形成されたものであり、上記液晶層は、液晶材料と、ラジカル捕捉剤及び酸化防止剤の少なくとも一方とを含有し、上記シール部の幅は、少なくとも一部が0.6mm以下である液晶表示装置であってもよい。上記態様によれば、液晶層中に溶出したラジカルをラジカル捕捉剤及び酸化防止剤の少なくとも一方によって失活させることができ、VHRの低下を防止することができる。これにより、シール部の幅を狭めたとしても、長期にわたって良好なVHRを維持することができ、表示画面における焼き付き及びシミの発生を防止することができる。
上記ラジカル捕捉剤は、下記式(1)で表される化合物を含むことが好ましい。ラジカル捕捉剤として下記式(1)のヒンダードアミン化合物を用いれば、循環的なサイクルによってラジカルを失活させ続けることできることから、少ない添加量で、バックライト光への曝露によるVHR低下を長期間抑制することができる。また、ラジカルとの反応性が高いことから、液晶層中のラジカルを速やかに失活させることができる。
Figure JPOXMLDOC01-appb-C000049
(式中、Xは、一価の有機基を表し、Rは、炭化水素基を表す。)
上記酸化防止剤は、下記式(2)で表される化合物を含むことが好ましい。酸化防止剤として下記式(2)の化合物を用いれば、循環的なサイクルによってラジカルを失活させ続けることできることから、少ない添加量で、バックライト光への曝露によるVHR低下を長期間抑制することができる。
Figure JPOXMLDOC01-appb-C000050
(式中、Xは、一価の有機基を表す。)
上記シール部は、光重合開始剤を含む光硬化材料から形成されたものであることが好ましい。光重合開始剤は、バックライトの光が照射されたときにラジカルを発生し、VHRの低下を引き起こすが、本発明によれば、ラジカル捕捉剤及び/又は酸化防止剤を適用することによって、そのようなVHRの低下を充分に防止することができる。したがって、液晶滴下方式に適した、光重合開始剤を含む光硬化材料を活用することができる。
上記シール部の幅は、少なくとも一部が0.4mm以下であることが好ましく、少なくとも一部が0.2mm以下であることがより好ましい。挟額縁化のためにシール部の幅を狭くすると、通常は、液晶パネルの信頼性が低下することが懸念されるが、本発明によれば、ラジカル捕捉剤及び/又は酸化防止剤を適用することによって、VHRの低下を充分に防止することができる。したがって、シール部の幅を小さくすることによって、液晶パネルの更なる挟額縁化を実現することができる。
上記配向膜は、光配向性を示す材料から形成された光配向膜であってもよい。上記光配向膜としては、シンナメート、カルコン、クマリン、スチルベン、アゾベンゼン及びフェノールエステルからなる群より選択された少なくとも一つの光反応部位を含むものが挙げられる。また、上記光配向膜としては、下記式(3)で表される酸無水物を含んだモノマーを重合して得られたポリマーであってもよい。これらの光配向膜は、その吸収スペクトルの長波長側がバックライトの発光スペクトルの短波長側と重なっており、バックライトの光が照射されることによってラジカルを発生する。したがって、ラジカル捕捉剤及び/又は酸化防止剤を適用したときにVHRの低下を防止する効果を充分に得ることができる。
Figure JPOXMLDOC01-appb-C000051
(式中、水素原子は置換されていてもよい。)
上記液晶材料の少なくとも一成分として、アルケニル構造を有する化合物を用いてもよく、上記アルケニル構造を有する化合物としては、下記式(4-1)、(4-2)又は(4-3)で表される化合物が挙げられる。アルケニル構造を有する液晶成分は、液晶材料の粘度低減に有効であるが、アルケニル構造に含まれる二重結合は、ラジカルによる攻撃を受けやすい。したがって、ラジカル捕捉剤及び/又は酸化防止剤を適用したときにVHRの低下を防止する効果を充分に得ることができる。
Figure JPOXMLDOC01-appb-C000052
(式中、m、nは、同一の又は異なる整数である。)
上記液晶材料は、負の誘電異方性を有するものであってもよい。従来、負の誘電異方性を有する液晶材料を用いたときの方が、正の誘電率異方性を有する液晶材料を用いたときよりも、焼き付き及びシミの不具合はより顕在化して現れる傾向にあった。したがって、ラジカル捕捉剤及び/又は酸化防止剤を適用したときにVHRの低下を防止する効果をより充分に得ることができる。
上記液晶材料の少なくとも一成分は、アルコキシ構造を含む化合物であってもよく、上記アルコキシ構造を含む化合物としては、下記式(5-1)、(5-2)、(5-3)、(5-4)又は(5-5)で表される化合物が挙げられる。アルコキシ構造(特にメトキシ、エトキシ基)は、その共鳴構造にイオン状態を含むことから、VHRを低下させる原因となる。したがって、ラジカル捕捉剤及び/又は酸化防止剤を適用することにより、VHRの更なる低下を防止することが求められる。
Figure JPOXMLDOC01-appb-C000053
(式中、m、nは、同一の又は異なる整数である。)
上記液晶パネルの配向モードとしては、フリンジ・フィールド・スイッチングモード又はイン・プレーン・スイッチングモードが好適に用いられる。水平配向モードの光配向処理では、液晶配向の方位を高精度に制御する必要があるため、水平配向モードの光配向処理における照射量は、通常、垂直配向モードの場合よりも一桁以上大きく、副反応によりラジカルが、垂直配向モードの場合より多く発生しやすい。したがって、ラジカル捕捉剤及び/又は酸化防止剤を適用したときにVHRの低下を防止する効果を充分に得ることができる。
上記液晶パネルは、上記配向膜の上記液晶層側の表面に、下記式(6)で表される光重合性モノマーを重合して得られたポリマーを含む層を有していてもよく、下記式(6)中のYとして、下記式(7-1)、(7-2)又は(7-3)で表される構造が挙げられる。PSA処理のために光重合性モノマーを液晶層に添加した場合には、光配向膜に加えて、光重合性モノマーがラジカル発生源となるため、液晶層中にラジカルがより生じやすい条件となる。したがって、ラジカル捕捉剤及び/又は酸化防止剤を適用したときにVHRの低下を防止する効果を充分に得ることができる。
A1-Y-A2 (6)
(式中、Yは、少なくとも1つのベンゼン環及び/又は縮合ベンゼン環を含む構造を表し、上記ベンゼン環及び上記縮合ベンゼン環中の水素原子はハロゲン原子に置き換えられていてもよく、A1及びA2の少なくとも一方は、アクリレート又はメタクリレートを表し、A1及びA2は、上記ベンゼン環又は上記縮合ベンゼン環に直接結合している。)
Figure JPOXMLDOC01-appb-C000054
(式中、水素原子はハロゲン原子に置き換えられていてもよい。)
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
10:バックライト
20:液晶パネル
21:基板
22:配向膜
23:液晶層
24:シール部
26:ゲート端子部
27:ソース端子部
28g:ゲート信号線
28s:ソース信号線
29g:ゲート端子
29s:ソース端子
30:モノリシック型ゲートドライバ

Claims (17)

  1. アクティブマトリクス型液晶パネル及びバックライトを有し、
    前記液晶パネルは、液晶層と、前記液晶層を挟持する一対の基板と、前記一対の基板の前記液晶層側の表面にそれぞれ配置された配向膜と、前記一対の基板を互いに接着し、かつ前記液晶層の周囲に配置されたシール部とを有し、
    前記液晶パネルは、液晶滴下方式により形成されたものであり、
    前記液晶層は、液晶材料と、ラジカル捕捉剤及び酸化防止剤の少なくとも一方とを含有し、
    前記シール部の幅は、少なくとも一部が0.6mm以下であることを特徴とする液晶表示装置。
  2. 前記ラジカル捕捉剤は、下記式(1)で表される化合物を含むことを特徴とする請求項1記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、一価の有機基を表し、Rは、炭化水素基を表す。)
  3. 前記酸化防止剤は、下記式(2)で表される化合物を含むことを特徴とする請求項1又は2記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは、一価の有機基を表す。)
  4. 前記シール部は、光重合開始剤を含む光硬化材料から形成されたものであることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記シール部の幅は、少なくとも一部が0.4mm以下であることを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記シール部の幅は、少なくとも一部が0.2mm以下であることを特徴とする請求項5記載の液晶表示装置。
  7. 前記配向膜は、光配向性を示す材料から形成された光配向膜であることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記光配向膜は、シンナメート、カルコン、クマリン、スチルベン、アゾベンゼン及びフェノールエステルからなる群より選択された少なくとも一つの光反応部位を含むことを特徴とする請求項7記載の液晶表示装置。
  9. 前記光配向膜は、下記式(3)で表される酸無水物を含んだモノマーを重合して得られたポリマーであることを特徴とする請求項7記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000003
    (式中、水素原子は置換されていてもよい。)
  10. 前記液晶材料の少なくとも一成分は、アルケニル構造を有する化合物であることを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
  11. 前記アルケニル構造を有する化合物は、下記式(4-1)、(4-2)又は(4-3)で表される化合物であることを特徴とする請求項10記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000004
    (式中、m、nは、同一の又は異なる整数である。)
  12. 前記液晶材料は、負の誘電異方性を有することを特徴とする請求項1~11のいずれかに記載の液晶表示装置。
  13. 前記液晶材料の少なくとも一成分は、アルコキシ構造を含む化合物であることを特徴とする請求項12記載の液晶表示装置。
  14. 前記アルコキシ構造を含む化合物は、下記式(5-1)、(5-2)、(5-3)、(5-4)又は(5-5)で表される化合物であることを特徴とする請求項13記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000005
    (式中、m、nは、同一の又は異なる整数である。)
  15. 前記液晶パネルの配向モードは、フリンジ・フィールド・スイッチングモード又はイン・プレーン・スイッチングモードであることを特徴とする請求項1~14のいずれかに記載の液晶表示装置。
  16. 前記液晶パネルは、前記配向膜の前記液晶層側の表面に、下記式(6)で表される光重合性モノマーを重合して得られたポリマーを含む層を有することを特徴とする請求項1~15のいずれかに記載の液晶表示装置。
    A1-Y-A2 (6)
    (式中、Yは、少なくとも1つのベンゼン環及び/又は縮合ベンゼン環を含む構造を表し、前記ベンゼン環及び前記縮合ベンゼン環中の水素原子はハロゲン原子に置き換えられていてもよく、A1及びA2の少なくとも一方は、アクリレート又はメタクリレートを表し、A1及びA2は、前記ベンゼン環又は前記縮合ベンゼン環に直接結合している。)
  17. 前記式(6)中のYは、下記式(7-1)、(7-2)又は(7-3)で表される構造であることを特徴とする請求項16記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000006
    (式中、水素原子はハロゲン原子に置き換えられていてもよい。)
PCT/JP2015/073648 2014-08-29 2015-08-24 液晶表示装置 WO2016031745A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/507,084 US10203558B2 (en) 2014-08-29 2015-08-24 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-176377 2014-08-29
JP2014176377 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031745A1 true WO2016031745A1 (ja) 2016-03-03

Family

ID=55399637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073648 WO2016031745A1 (ja) 2014-08-29 2015-08-24 液晶表示装置

Country Status (2)

Country Link
US (1) US10203558B2 (ja)
WO (1) WO2016031745A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192834A1 (de) * 2015-05-29 2016-12-08 Merck Patent Gmbh Flüssigkristallines medium
WO2017164113A1 (ja) * 2016-03-24 2017-09-28 シャープ株式会社 液晶セル及び液晶表示装置
CN108933199A (zh) * 2017-05-29 2018-12-04 乐金显示有限公司 显示装置
CN109791328A (zh) * 2016-09-29 2019-05-21 夏普株式会社 液晶显示装置及液晶显示装置的制造方法
KR20190100909A (ko) * 2016-12-26 2019-08-29 제이엔씨 주식회사 액정 조성물 및 액정 표시 소자
JP2019199491A (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197829B2 (en) * 2014-08-29 2019-02-05 Sharp Kabushiki Kaisha Liquid crystal display device
US20190033666A1 (en) * 2017-07-25 2019-01-31 HKC Corporation Limited Display panel, method for manufacturing same, and display apparatus using same
JP7134728B2 (ja) * 2018-06-15 2022-09-12 株式会社ジャパンディスプレイ 表示装置
CN109946883B (zh) * 2019-04-24 2020-10-27 深圳市华星光电技术有限公司 聚合物稳定垂直配向液晶显示面板及其制造方法
US11802209B2 (en) 2020-02-20 2023-10-31 Lg Chem, Ltd. Adhesive composition, adhesive film, adhesive optical filter and display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121223A (ko) * 2012-04-27 2013-11-06 엘지디스플레이 주식회사 액정표시장치
JP2014063153A (ja) * 2012-08-28 2014-04-10 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
JP2014077850A (ja) * 2012-10-09 2014-05-01 Asahi Glass Co Ltd シール構造体、液晶表示パネル用部材の製造方法
JP2014084460A (ja) * 2012-10-18 2014-05-12 Merck Patent Gmbh 液晶媒体、その安定化方法、および液晶ディスプレイ
JP2014142585A (ja) * 2013-01-24 2014-08-07 Samsung Display Co Ltd 液晶表示装置
US20150002797A1 (en) * 2013-06-28 2015-01-01 Lg Display Co., Ltd. Liquid crystal material and liquid crystal display device including the same
US20150070646A1 (en) * 2013-09-12 2015-03-12 Samsung Display Co., Ltd. Liquid crystal composition and liquid crystal display device including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523657B2 (ja) 2007-03-12 2014-06-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 安定化した液晶材料およびこれを用いた液晶素子
US8697200B2 (en) 2008-03-25 2014-04-15 Merck Patent Gmbh Liquid-crystal display
US10197829B2 (en) * 2014-08-29 2019-02-05 Sharp Kabushiki Kaisha Liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121223A (ko) * 2012-04-27 2013-11-06 엘지디스플레이 주식회사 액정표시장치
JP2014063153A (ja) * 2012-08-28 2014-04-10 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
JP2014077850A (ja) * 2012-10-09 2014-05-01 Asahi Glass Co Ltd シール構造体、液晶表示パネル用部材の製造方法
JP2014084460A (ja) * 2012-10-18 2014-05-12 Merck Patent Gmbh 液晶媒体、その安定化方法、および液晶ディスプレイ
JP2014142585A (ja) * 2013-01-24 2014-08-07 Samsung Display Co Ltd 液晶表示装置
US20150002797A1 (en) * 2013-06-28 2015-01-01 Lg Display Co., Ltd. Liquid crystal material and liquid crystal display device including the same
US20150070646A1 (en) * 2013-09-12 2015-03-12 Samsung Display Co., Ltd. Liquid crystal composition and liquid crystal display device including the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192834A1 (de) * 2015-05-29 2016-12-08 Merck Patent Gmbh Flüssigkristallines medium
WO2017164113A1 (ja) * 2016-03-24 2017-09-28 シャープ株式会社 液晶セル及び液晶表示装置
CN109791328A (zh) * 2016-09-29 2019-05-21 夏普株式会社 液晶显示装置及液晶显示装置的制造方法
KR20190100909A (ko) * 2016-12-26 2019-08-29 제이엔씨 주식회사 액정 조성물 및 액정 표시 소자
JPWO2018123180A1 (ja) * 2016-12-26 2019-10-31 Jnc株式会社 液晶組成物および液晶表示素子
KR102462887B1 (ko) * 2016-12-26 2022-11-02 제이엔씨 주식회사 액정 조성물 및 액정 표시 소자
CN108933199A (zh) * 2017-05-29 2018-12-04 乐金显示有限公司 显示装置
CN108933199B (zh) * 2017-05-29 2020-05-12 乐金显示有限公司 显示装置
JP2019199491A (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子
WO2019221253A1 (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子
JPWO2019221253A1 (ja) * 2018-05-14 2021-08-12 Jnc株式会社 液晶組成物および液晶表示素子

Also Published As

Publication number Publication date
US10203558B2 (en) 2019-02-12
US20170363891A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2016031745A1 (ja) 液晶表示装置
JP6348600B2 (ja) 液晶表示装置
JP5815950B2 (ja) 液晶表示装置及びその製造方法
CN109416486B (zh) 液晶显示装置及其制造方法
CN107407842B (zh) 液晶显示装置
JP6363731B2 (ja) 液晶表示装置
TW200422715A (en) Liquid crystal display and method of manufacturing the same
US8455062B2 (en) Liquid crystal display panel and process for production thereof
KR20110014284A (ko) 액정표시패널 및 이의 제조방법
WO2014045923A1 (ja) 液晶表示装置及びその製造方法
WO2016148042A1 (ja) 液晶表示装置
WO2017119376A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
WO2016084778A1 (ja) 液晶表示装置
CN110998425A (zh) 液晶显示面板和液晶显示面板的制造方法
WO2018008583A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
KR20140068530A (ko) 감광성 유기물질의 절연층을 포함하는 표시장치용 기판 및 그 제조방법
WO2016080491A1 (ja) 液晶表示装置及びその製造方法
JP6568640B2 (ja) 液晶表示装置
CN111373319B (zh) 液晶显示装置
JP2023016533A (ja) 液晶表示装置及び液晶表示装置の製造方法
KR20050105034A (ko) 횡전계모드 액정표시소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15507084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15835980

Country of ref document: EP

Kind code of ref document: A1