WO2016029819A1 - 非对称上行载波聚合中辅载波的控制方法及装置 - Google Patents

非对称上行载波聚合中辅载波的控制方法及装置 Download PDF

Info

Publication number
WO2016029819A1
WO2016029819A1 PCT/CN2015/087627 CN2015087627W WO2016029819A1 WO 2016029819 A1 WO2016029819 A1 WO 2016029819A1 CN 2015087627 W CN2015087627 W CN 2015087627W WO 2016029819 A1 WO2016029819 A1 WO 2016029819A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
uplink
terminal
secondary carrier
base station
Prior art date
Application number
PCT/CN2015/087627
Other languages
English (en)
French (fr)
Inventor
徐绍君
Original Assignee
成都鼎桥通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都鼎桥通信技术有限公司 filed Critical 成都鼎桥通信技术有限公司
Publication of WO2016029819A1 publication Critical patent/WO2016029819A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method and an apparatus for controlling a secondary carrier in asymmetric uplink carrier aggregation.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • aggregation of up to 5 carriers is supported, and the number of downlink carriers is required to be greater than or equal to the number of uplink carriers.
  • the embodiment of the present invention provides a method and a device for controlling a secondary carrier in asymmetric uplink carrier aggregation, which implements control on a secondary carrier in asymmetric uplink carrier aggregation, thereby greatly improving uplink throughput.
  • the embodiment of the present invention provides a method for controlling a secondary carrier in asymmetric uplink carrier aggregation, where the carrier aggregation includes at least one carrier aggregation cluster, where the carrier aggregation cluster includes one downlink primary carrier and K uplink carriers.
  • the K uplink carriers include one uplink primary carrier, and K-1 uplinks of the K uplink carriers except the uplink primary carrier.
  • the carrier is an uplink secondary carrier, where K is an integer greater than or equal to 2, and the method for controlling the secondary carrier in the asymmetric uplink carrier aggregation includes:
  • the base station sends configuration information of the uplink secondary carrier configured for the terminal to the terminal, where the configuration information includes: public configuration information at the carrier level and/or configuration information at the terminal level;
  • the base station performs scheduling on the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal sends the uplink secondary carrier to the
  • the base station performs scheduling of the physical uplink shared channel PUSCH, where the primary carrier includes: the uplink primary carrier and the downlink primary carrier;
  • the aggregation mode includes: an aggregation mode 1 and an aggregation mode 2; the primary carrier uses a time division duplex TDD frame structure, and the uplink secondary carrier only retains an uplink subframe in a TDD frame structure; In the aggregation mode 2, the primary carrier adopts a TDD frame structure, and all subframes in the uplink secondary carrier frame structure are uplink subframes.
  • the base station sends the configuration information of the uplink secondary carrier configured for the terminal to the terminal, including:
  • the base station sends configuration information of the uplink secondary carrier configured for the terminal to the terminal, including:
  • the base station sends configuration information of the uplink secondary carrier to the terminal by using RRC dedicated signaling.
  • the base station performs scheduling on the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, including:
  • the base station sets the downlink control of the PDCCH.
  • the information DCI format zero is used to schedule the uplink secondary carrier, where the DCI format zero includes first carrier indication information, and the first carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled; or, the base station is Through RRC
  • the PDCCH DCI format zero channel is used to indicate the uplink secondary carrier by using a signaling; wherein the PDCCH is used to carry a DCI;
  • the base station schedules the uplink subframe of the uplink secondary carrier by setting the DCI format of the PDCCH.
  • the DCI format includes: second carrier indication information and uplink subframe indication information, where the second carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, and the uplink subframe indication information is used to indicate that scheduling is required. Uplink subframe.
  • the base station after the base station performs scheduling on the uplink secondary carrier by using the physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, the base station further includes:
  • the base station sends the feedback information of the PUSCH scheduling of the uplink secondary carrier to the terminal by using the hybrid automatic retransmission of the downlink primary carrier, including:
  • the base station carries the acknowledgement ACK/non-acknowledgement NACK information in the PHICH space of the extended downlink primary carrier;
  • the base station sends ACK/NACK information to the terminal by using an uplink subcarrier dedicated subspace, where the uplink secondary carrier dedicated subspace is a plurality of subspaces into which the PHICH space of the downlink primary carrier is divided into a subspace used by the uplink secondary carrier; the multiple subspaces include: the uplink secondary carrier dedicated subspace and the primary carrier dedicated subspace; or
  • the base station sends ACK/NACK information to the terminal by sharing a PHICH space of the downlink primary carrier.
  • the embodiment of the present invention provides a base station, where carrier aggregation includes at least one carrier aggregation cluster, where the carrier aggregation cluster includes one downlink primary carrier and K uplink carriers, where the K uplink carriers are included.
  • An uplink primary carrier wherein the K-1 uplink carriers other than the uplink primary carrier are uplink secondary carriers, where K is an integer greater than or equal to 2, and the base station includes:
  • a configuration module configured to send, to the terminal, a configuration information of an uplink secondary carrier configured for the terminal.
  • the configuration information includes: public configuration information at the carrier level and/or configuration information at the terminal level;
  • a scheduling module configured to schedule the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to an aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal passes the uplink secondary carrier
  • the base station performs scheduling of a physical uplink shared channel (PUSCH), where the primary carrier includes: the uplink primary carrier and the downlink primary carrier;
  • PUSCH physical uplink shared channel
  • the aggregation mode includes: an aggregation mode 1 and an aggregation mode 2; the primary carrier uses a time division duplex TDD frame structure, and the uplink secondary carrier only retains an uplink subframe in a TDD frame structure; In the aggregation mode 2, the primary carrier adopts a TDD frame structure, and all subframes in the uplink secondary carrier frame structure are uplink subframes.
  • the configuration module is specifically configured to: send the configuration information of the uplink secondary carrier to the terminal by using a broadcast form on the downlink primary carrier; or Transmitting the configuration information of the uplink secondary carrier to the terminal by using a radio resource control RRC protocol dedicated signaling;
  • the configuration module is further configured to: send the configuration information of the uplink secondary carrier to the terminal by using RRC dedicated signaling.
  • scheduling module is specifically configured to:
  • the downlink control information DCI format of the PDCCH is set.
  • the DCI format zero includes first carrier indication information
  • the first carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, or is indicated by RRC dedicated signaling.
  • PDCCH DCI format zero channel scheduling the uplink secondary carrier; wherein the PDCCH is used to carry DCI;
  • the uplink subframe of the uplink secondary carrier is scheduled by setting the DCI format of the PDCCH, where
  • the DCI format includes: the second carrier indication information is And the uplink subframe indication information, where the second carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, and the uplink subframe indication information is used to indicate an uplink subframe that needs to be scheduled.
  • the base station further includes:
  • a feedback module configured to send, by the hybrid automatic retransmission of the downlink primary carrier, the physical channel PHICH to send feedback information of the PUSCH scheduling of the uplink secondary carrier to the terminal.
  • the feedback module is specifically configured to:
  • the ACK/NACK information is sent to the terminal by using an uplink subcarrier dedicated subspace, where the uplink secondary carrier dedicated subspace is used in the multiple subspaces in which the PHICH space of the downlink primary carrier is divided into the uplink secondary carrier.
  • a subspace used; the multiple subspaces include: the uplink secondary carrier dedicated subspace and the primary carrier dedicated subspace; or
  • the ACK/NACK information is sent to the terminal by sharing the PHICH space of the downlink primary carrier.
  • the base station sends the configuration information of the uplink secondary carrier configured for the terminal to the terminal, where the configuration information includes: common configuration information at the carrier level and/or configuration information at the terminal level; further, the The base station performs scheduling on the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal performs the uplink secondary carrier to the base station by using the uplink secondary carrier.
  • the scheduling of the PUSCH implements control of the secondary carrier in the asymmetric uplink carrier aggregation, thereby greatly improving the uplink throughput.
  • FIG. 1A is a schematic diagram of asymmetric uplink carrier aggregation based on a TDD system according to the present invention
  • FIG. 1B is a schematic diagram of asymmetric uplink carrier aggregation decomposition based on a TDD system according to the present invention
  • FIG. 1C is a schematic diagram of a carrier aggregation cluster of asymmetric uplink carrier aggregation based on a TDD system according to the present invention
  • Embodiment 2 is a schematic flowchart of Embodiment 1 of a method for controlling a secondary carrier in an asymmetric uplink carrier aggregation according to the present invention
  • 3A is a schematic diagram of an aggregation manner of asymmetric uplink carrier aggregation based on a TDD system according to the present invention
  • 3B is a schematic diagram of a second aggregation mode of asymmetric uplink carrier aggregation based on a TDD system according to the present invention
  • 3C is a schematic diagram of a third aggregation mode of asymmetric uplink carrier aggregation based on a TDD system according to the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • FIG. 1A is a schematic diagram of asymmetric uplink carrier aggregation based on a TDD system according to the present invention
  • FIG. 1B is a schematic diagram of asymmetric uplink carrier aggregation decomposition based on a TDD system according to the present invention
  • FIG. 1C is a carrier aggregation of asymmetric uplink carrier aggregation based on a TDD system according to the present invention; Cluster diagram.
  • the number of uplink carriers in the carrier aggregation based on the Time Division Duplexing (TDD) system is greater than the number of downlink carriers, as shown in FIG. 1A, including N downlink carriers and M uplink carriers, where N and M are both A positive integer, and N is less than or equal to M.
  • TDD Time Division Duplexing
  • At least one carrier aggregation cluster is included in the carrier aggregation, that is, all uplink and downlink carriers can be decomposed into multiple carrier aggregation clusters, as shown in FIG. 1C.
  • the carrier aggregation cluster includes one downlink primary carrier and K uplink carriers, wherein the K uplink carriers include one uplink primary carrier, and K-excluding the uplink primary carrier among the K uplink carriers
  • One uplink carrier is an uplink secondary carrier, where K is an integer greater than or equal to two.
  • the aggregated K uplink carriers may be at least one of the following carriers: consecutive carriers in the same frequency band, and non-identical in the same frequency band. Continuous carriers and carriers in different frequency bands.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for controlling a secondary carrier in an asymmetric uplink carrier aggregation according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the base station sends, to the terminal, configuration information of an uplink secondary carrier configured for the terminal.
  • the terminal in order for the terminal to perform normal data transmission or reception on the secondary carrier configured by the base station for the terminal, the terminal needs to know the configuration information related to the secondary carrier, and therefore, the base station sends the information to the terminal.
  • the configuration information of the uplink secondary carrier configured by the terminal where the configuration information includes: public configuration information at the carrier level and/or configuration information at the terminal level.
  • the common configuration information of the carrier level may be at least one of the following: a physical random access channel (Physical Random Access Channel, PRACH) configuration, and a physical uplink control channel (PUCCH) And configuring the sounding reference signal (SRS) information;
  • the configuration information of the terminal level may be at least one of the following: a channel quality indicator (CQI), a precoding matrix indicator ( Precoding Matrix Indicator (PMI), Rank Indicator (RI), and Acknowledgement (ACK) feedback information.
  • CQI channel quality indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • ACK Acknowledgement
  • the step S201 includes:
  • the base station sends the configuration information of the uplink secondary carrier to the terminal by using a broadcast mode on the downlink primary carrier; or the base station uses a radio resource control (RRC) protocol dedicated signaling to the base station.
  • RRC radio resource control
  • the terminal sends configuration information of the uplink secondary carrier.
  • the base station may send the carrier-level common configuration information related to the uplink secondary carrier to the terminal by using a broadcast form on the downlink primary carrier. Therefore, the terminal normally performs data transmission on the uplink secondary carrier; optionally, the base station may further perform RRC protocol dedicated signaling to the terminal by using radio resource control when configuring the uplink secondary carrier for the terminal. Transmitting carrier-level common configuration information related to the uplink secondary carrier.
  • the step S201 includes:
  • the base station sends terminal configuration information related to the uplink secondary carrier to the terminal by using RRC dedicated signaling, so that the terminal is in the The data transmission is performed normally on the uplink secondary carrier.
  • the RRC dedicated signaling may be an RRC connection reconfiguration message (RRC Connection Reconfiguration) or the like.
  • the cell supporting the uplink carrier aggregation may support access of different types of terminals, where the terminal type may include, but is not limited to, type 1, terminal that does not support scheduling in the secondary carrier, and type 2, which is supported in the secondary carrier.
  • a terminal that performs scheduling, and a downlink subframe of the primary carrier may schedule an uplink subframe of all the secondary carriers, and the terminal supports simultaneous reception of the primary carrier and transmission of the secondary carrier.
  • the base station performs scheduling on the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal passes the uplink secondary carrier.
  • the base station performs scheduling of a physical uplink shared channel PUSCH.
  • the primary carrier includes: the uplink primary carrier and the downlink primary carrier; the aggregation mode includes: aggregation mode 1 and aggregation mode 2; wherein the primary carrier uses a time division duplex TDD frame in the aggregation mode 1
  • the structure and the uplink secondary carrier only retain the uplink subframe in the TDD frame structure; in the aggregation mode 2, the primary carrier adopts a TDD frame structure, and all subframes in the uplink secondary carrier frame structure are uplink subframes. .
  • the downlink downlink only has a primary carrier
  • the base station passes the physical downlink control channel (PDCCH) of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier.
  • the uplink secondary carrier performs scheduling, so that the terminal performs scheduling of a Physical Uplink Shared Channel (PUSCH) to the base station by using the uplink secondary carrier configured for the terminal.
  • PUSCH Physical Uplink Shared Channel
  • scheduling of all uplink secondary carriers needs to be scheduled by using a PDCCH of the downlink primary carrier.
  • FIG. 3A is a schematic diagram of an aggregation manner of asymmetric uplink carrier aggregation based on a TDD system according to the present invention
  • FIG. 3B is a schematic diagram of the aggregation mode 2 of the asymmetric uplink carrier aggregation based on the TDD system according to the present invention
  • FIG. 3C is a schematic diagram of the aggregation mode 3 of the asymmetric uplink carrier aggregation based on the TDD system.
  • the aggregation mode of the multiple asymmetric uplink carrier aggregation based on the TDD system includes: the aggregation mode 1 and the aggregation mode 2, and optionally, the aggregation mode 3, wherein the aggregation mode 3 is a 3GPP protocol definition.
  • the primary and secondary carrier aggregation modes as shown in Figure 3C, the primary and secondary carriers in the aggregation mode 3 adopt the normal TDD frame structure (such as the 7 uplink and downlink subframe ratios specified in the 3GPP), wherein the primary and secondary carriers are up and down.
  • the row sub-frame ratios may be the same or different. As shown in FIG.
  • the primary carrier in the aggregation mode 1 adopts a normal TDD frame structure, and the secondary carrier (that is, the uplink secondary carrier) retains only the uplink subframe in the original TDD frame structure (the original carrier TDD frame structure of the secondary carrier)
  • the downlink subframe in the uplink carrier is disabled, and the uplink subframe of the uplink secondary carrier is scheduled by using the downlink subframe of the primary carrier.
  • the base station cannot perform high-power transmission, and the downlink transmission of the base station needs to be masked by using the aggregation mode 1; optionally, the current terminal can only support the FDD frame structure or The TDD frame structure, and the downlink grant can only be sent in the downlink subframe of the primary carrier. To maintain the TDD frame structure, the downlink subframe of the secondary carrier needs to be masked. As shown in FIG.
  • the primary carrier in the aggregation mode 2 adopts a normal TDD frame structure, and the secondary subframes in the original TDD frame structure of the secondary carrier (ie, the uplink secondary carrier) are all changed to the uplink subframe, that is, All subframes in the uplink secondary carrier frame structure are uplink subframes, and all subframes of the uplink secondary carrier are scheduled by downlink subframes of the primary carrier.
  • step S202 includes:
  • the base station sets the downlink control of the PDCCH.
  • the Downlink Control Infornation (DCI) format zero is used to schedule the uplink secondary carrier, where the DCI format zero includes first carrier indication information, and the first carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled.
  • the base station by using RRC dedicated signaling, indicates that the PDCCH DCI format zero channel is used to schedule the uplink secondary carrier; wherein the PDCCH is used to carry the DCI;
  • the terminal supports the primary carrier simultaneously And receiving, by the base station, the uplink subframe of the uplink secondary carrier by using a DCI format of the PDCCH, where the DCI format includes: second carrier indication information and uplink subframe indication information, where The second carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, and the uplink subframe indication information is used to indicate an uplink subframe that needs to be scheduled.
  • the PDCCH is used to carry the DCI
  • the DCI includes multiple formats, where the DCI format 0 is used to schedule uplink resources, and the DCI format 1X (1, 1A, 1B, 1C, 1D, etc.) is used.
  • DCI format 2X (2, 2A, 2B, etc.) is used to schedule downlink resources using MIMO
  • DCI format 3X (3, 3A) is used to carry power control command information.
  • the base station first determines the aggregation mode of the primary carrier and the uplink secondary carrier, and if it is determined that the aggregation mode of the primary and secondary carriers is the aggregation mode, or if the aggregation mode of the primary and secondary carriers is determined to be the aggregation mode 2 and the terminal does not
  • the base station may perform scheduling on the uplink secondary carrier by extending the PDCCH search space, in particular, the base station sets the DCI format of the PDCCH by using the PDCCH search space. 0), wherein the DCI format 0 includes the first carrier indication information, where the first carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, and optionally, the first carrier indication information may be a required scheduling.
  • the uplink secondary carrier ID may also schedule the uplink secondary carrier by reusing the primary carrier search space.
  • the base station indicates the PDCCH DCI format zero channel pair by using RRC dedicated signaling.
  • the uplink secondary carrier is scheduled, that is, the carrier scheduled by the current DCI format 0 of the PDCCH is indicated by RRC dedicated signaling, optionally, when When the bandwidth of the wave is greater than the bandwidth of the primary carrier, the resource block (Resource Block, RB for short) of the DCI format 0 may not be able to schedule the entire secondary carrier bandwidth, which can be solved as follows: i) DCI can be increased.
  • Format 0 resource allocation granularity such as changing the original RB granularity to 2RB granularity or 3RB granularity; ii) limiting the RB area that the terminal can schedule, in which case a single user cannot fill the entire secondary carrier bandwidth, but multiple users All bandwidth can be used.
  • the base station first determines the aggregation mode of the primary carrier and the uplink secondary carrier, and determines that the aggregation mode of the primary and secondary carriers is the aggregation mode 2, and the terminal supports simultaneous reception and assistance of the primary carrier.
  • the base station performs scheduling on the uplink subframe of the uplink secondary carrier by setting a DCI format of the new PDCCH, where In the aggregation mode 2, the downlink subframe is smaller than the uplink subframe, and the downlink subframe is configured to schedule multiple uplink subframes. Therefore, the DCI format includes: second carrier indication information and uplink subframe indication information.
  • the second carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled.
  • the second carrier indication information may be an uplink secondary carrier ID that is scheduled to be scheduled. Uplink subframe.
  • the base station may determine, by using a configuration manner, a aggregation mode of the primary carrier and the uplink secondary carrier, and optionally, the base station may also learn the terminal by using a terminal to report the terminal type capability.
  • the type such as whether to support the simultaneous reception of the primary carrier and the transmission of the secondary carrier.
  • the base station sends configuration information of the uplink secondary carrier configured for the terminal to the terminal, where the configuration information includes: common configuration information at the carrier level and/or configuration information at the terminal level; further, The base station performs scheduling on the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal sends the uplink secondary carrier to the The base station performs scheduling of the PUSCH, and implements control on the secondary carrier in the asymmetric uplink carrier aggregation, thereby greatly improving the uplink throughput.
  • PDCCH physical downlink control channel
  • the method further includes:
  • the feedback information of the base station needs to be carried on the downlink primary carrier, specifically, the hybrid automatic retransmission indication of the downlink primary carrier by the base station.
  • the physical channel PHICH sends feedback information of the PUSCH scheduling of the uplink secondary carrier to the terminal, and the feedback information may be ACK/NACK (Non-Acknowledgement) information.
  • the base station carries the ACK/NACK information in the PHICH space of the extended downlink primary carrier; or
  • the base station sends ACK/NACK information to the terminal by using an uplink subcarrier dedicated subspace, where the uplink secondary carrier dedicated subspace is a plurality of subspaces into which the PHICH space of the downlink primary carrier is divided into Subspace used by the uplink secondary carrier; the multiple sub The space includes: the uplink secondary carrier dedicated subspace and the primary carrier dedicated subspace; or
  • the base station sends ACK/NACK information to the terminal by sharing a PHICH space of the downlink primary carrier.
  • the base station may send the feedback information to the terminal by extending the PHICH space of the downlink primary carrier.
  • the base station carries the ACK/NACK information of the PUSCH scheduled by the uplink secondary carrier in the extended manner.
  • PHICH space of the downlink primary carrier carries the ACK/NACK information of the PUSCH scheduled by the uplink secondary carrier in the extended manner.
  • PHICH space of the downlink primary carrier carries the ACK/NACK information of the PUSCH scheduled by the uplink secondary carrier in the extended manner.
  • the base station divides the PHICH space of the downlink primary carrier into multiple subspaces, where the multiple subspaces include: the uplink secondary carrier dedicated subspace and the primary carrier dedicated subspace, that is, the multiple sub-spaces The space is used for the primary carrier and the secondary carrier respectively.
  • the base station may send the ACK/NACK information to the terminal by using the uplink subcarrier dedicated subspace, where the uplink secondary carrier dedicated subspace is the downlink primary carrier.
  • the PHICH space is divided into subspaces of the plurality of subspaces for use by the uplink secondary carrier.
  • the base station may further send feedback information to the terminal by using a PHICH shared space of the downlink primary carrier.
  • the base station sends ACK/NACK information to the terminal by sharing the PHICH space of the downlink primary carrier. That is, the primary carrier and the uplink secondary carrier share the PHICH space of the downlink primary carrier, and if a collision occurs, the cyclic shift of the De-Modulation Reference Signal (DMRS) can be adjusted to avoid the collision.
  • DMRS De-Modulation Reference Signal
  • the base station sends the configuration information of the uplink secondary carrier configured for the terminal to the terminal, where the configuration information includes: common configuration information at the carrier level and/or configuration information at the terminal level; further, The base station performs scheduling on the uplink secondary carrier through the physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal passes the uplink secondary carrier to the base station.
  • the base station automatically transmits, by the hybrid of the downlink primary carrier, the physical channel PHICH to send the feedback information of the PUSCH scheduling of the uplink secondary carrier to the terminal, and implements the asymmetric uplink carrier.
  • the secondary carrier is controlled in the aggregation, thereby greatly improving the uplink throughput.
  • the uplink power control of the primary carrier may adopt the current 3GPP-defined mechanism, and the uplink closed-loop power control of the secondary carrier may also adopt the current mechanism, but the power control command word of the uplink PUSCH is in the downlink PDCCH grant of the primary carrier. carry.
  • the path of the downlink primary carrier may be referred to. Loss, on this basis, consider adding the path loss difference between the two.
  • the uplink synchronization of the primary carrier may adopt a current 3GPP-defined mechanism, and the uplink synchronization of the secondary carrier is divided into open-loop synchronous control and closed-loop power control, where, for closed-loop synchronous control, the same mechanism as the primary carrier may be adopted, but The TA command word of the secondary carrier is carried on the downlink primary carrier; for open-loop synchronous control, the TA adjustment amount is sent to the terminal in the downlink random response channel of the primary carrier. .
  • the base station 40 provided in this embodiment includes: a configuration module 401 and a scheduling module 402.
  • the carrier aggregation includes at least one carrier aggregation cluster, where the carrier aggregation cluster includes one downlink primary carrier and K uplink carriers, where the K uplink carriers include one uplink primary carrier, and the K uplinks
  • the K-1 uplink carriers except the uplink primary carrier are uplink secondary carriers, where K is an integer greater than or equal to 2;
  • the configuration module 401 is configured to send configuration information of an uplink secondary carrier configured for the terminal to the terminal, where the configuration information includes: public configuration information at the carrier level and/or configuration information at the terminal level;
  • the scheduling module 402 is configured to schedule the uplink secondary carrier by using a physical downlink control channel PDCCH of the downlink primary carrier according to the aggregation mode of the primary carrier and the uplink secondary carrier, so that the terminal passes the uplink secondary carrier to
  • the base station performs scheduling of a physical uplink shared channel (PUSCH), where the primary carrier includes: the uplink primary carrier and the downlink primary carrier;
  • PUSCH physical uplink shared channel
  • the aggregation mode includes: an aggregation mode 1 and an aggregation mode 2; the primary carrier uses a time division duplex TDD frame structure, and the uplink secondary carrier only retains an uplink subframe in a TDD frame structure; In the aggregation mode 2, the primary carrier adopts a TDD frame structure, and all subframes in the uplink secondary carrier frame structure are uplink subframes.
  • the configuration module is specifically configured to: send the configuration information of the uplink secondary carrier to the terminal by using a broadcast form on the downlink primary carrier; or Transmitting, by the radio resource control, RRC protocol dedicated signaling, the configuration information of the uplink secondary carrier to the terminal;
  • the configuration module is further configured to: send, by using RRC dedicated signaling, the configuration information of the uplink secondary carrier to the terminal interest.
  • the scheduling module is specifically configured to:
  • the downlink control information DCI format of the PDCCH is set.
  • the DCI format zero includes first carrier indication information
  • the first carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, or is indicated by RRC dedicated signaling.
  • PDCCH DCI format zero channel scheduling the uplink secondary carrier; wherein the PDCCH is used to carry DCI;
  • the uplink subframe of the uplink secondary carrier is scheduled by setting the DCI format of the PDCCH, where
  • the DCI format includes: second carrier indication information and uplink subframe indication information, where the second carrier indication information is used to indicate an uplink secondary carrier that needs to be scheduled, and the uplink subframe indication information is used to indicate an uplink subframe that needs to be scheduled.
  • the base station of this embodiment may be used in the technical solution of the method for controlling the secondary carrier in the asymmetric uplink carrier aggregation according to the present invention.
  • the implementation principle and technical effects are similar, and are not described herein again.
  • the base station further includes:
  • a feedback module configured to send, by the hybrid automatic retransmission of the downlink primary carrier, the physical channel PHICH to send feedback information of the PUSCH scheduling of the uplink secondary carrier to the terminal.
  • the feedback module is specifically configured to:
  • the ACK/NACK information is sent to the terminal by using an uplink subcarrier dedicated subspace, where the uplink secondary carrier dedicated subspace is used in the multiple subspaces in which the PHICH space of the downlink primary carrier is divided into the uplink secondary carrier.
  • a subspace used; the multiple subspaces include: the uplink secondary carrier dedicated subspace and the primary carrier dedicated subspace; or
  • the ACK/NACK information is sent to the terminal by sharing the PHICH space of the downlink primary carrier.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种非对称上行载波聚合中辅载波的控制方法及装置,该方法包括:基站向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;进一步地,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度,实现了对非对称上行载波聚合中辅载波进行控制,从而大幅度提高上行吞吐量。

Description

非对称上行载波聚合中辅载波的控制方法及装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种非对称上行载波聚合中辅载波的控制方法及装置。
背景技术
在目前的长期演进(Long Term Evolution,简称LTE)***中,单载波最大仅支持20M的***带宽,为了满足更大的带宽需求,则需要采用载波聚合技术。
在第三代合作伙伴计划(The 3rd Generation Partnership Project,简称3GPP)协议中,支持最大5个载波的聚合,且要求下行载波数大于等于上行载波数。
但在一些行业网络应用中,会存在大量的视频监控类业务,也即上行业务需求大于下行业务需求,现有的载波聚合方案无法很好地满足行业网络的需求,为了更好地满足大量的上行业务需求,需要引入上行载波数大于下行载波数的非对称上行载波聚合技术,但现有技术中尚未提出如何对非对称上行载波聚合中辅载波进行控制,因此,如何对非对称上行载波聚合中辅载波进行控制是本发明所要解决的技术问题。
发明内容
本发实施例提供一种非对称上行载波聚合中辅载波的控制方法及装置,实现了对非对称上行载波聚合中辅载波进行控制,从而大幅度提高上行吞吐量。
第一方面,本发明实施例提供一种非对称上行载波聚合中辅载波的控制方法,载波聚合中包含至少一个载波聚合簇,所述载波聚合簇中包含一个下行主载波以及K个上行载波,其中,所述K个上行载波中包括1个上行主载波,所述K个上行载波中除所述上行主载波之外的K-1个上行 载波为上行辅载波,其中,K为大于等于2的整数,所述非对称上行载波聚合中辅载波的控制方法,包括:
基站向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;
所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度,其中,所述主载波包括:所述上行主载波以及所述下行主载波;
其中,所述聚合方式包括:聚合方式一以及聚合方式二;所述聚合方式一中所述主载波采用时分双工TDD帧结构以及所述上行辅载波只保留TDD帧结构中的上行子帧;所述聚合方式二中所述主载波采用TDD帧结构以及所述上行辅载波帧结构中的全部子帧都为上行子帧。
进一步地,若所述配置信息为载波级的公共配置信息,所述基站向终端发送为所述终端配置的上行辅载波的配置信息,包括:
所述基站在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波的配置信息;或者,所述基站通过无线资源控制RRC协议专用信令向所述终端发送所述上行辅载波的配置信息;
对应地,若所述配置信息为终端级的配置信息,所述基站向终端发送为所述终端配置的上行辅载波的配置信息,包括:
所述基站通过RRC专用信令向所述终端发送所述上行辅载波的配置信息。
进一步地,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,包括:
所述基站确定所述主载波以及所述上行辅载波的聚合方式;
若聚合方式为所述聚合方式一,或者若聚合方式为所述聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送,则所述基站通过设置所述PDCCH的下行控制信息DCI格式零对所述上行辅载波进行调度,其中,所述DCI格式零包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波;或者,则所述基站通过RRC专 用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度;其中,所述PDCCH用于承载DCI;
若聚合方式为所述聚合方式二,且所述终端支持同时进行主载波的接收与辅载波的发送,则所述基站通过设置PDCCH的DCI格式对所述上行辅载波的上行子帧进行调度,其中,所述DCI格式包含:第二载波指示信息以及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,所述上行子帧指示信息用于指示需要调度的上行子帧。
进一步地,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度之后,还包括:
所述基站通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息。
进一步地,所述基站通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息,包括:
所述基站将确认ACK/不确认NACK信息携带于扩展的所述下行主载波的PHICH空间;或者,
所述基站通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间;所述多个子空间包括:所述上行辅载波专用子空间以及主载波专用子空间;或者,
所述基站通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息。
第二方面,本发明实施例提供一种基站,载波聚合中包含至少一个载波聚合簇,所述载波聚合簇中包含一个下行主载波以及K个上行载波,其中,所述K个上行载波中包括1个上行主载波,所述K个上行载波中除所述上行主载波之外的K-1个上行载波为上行辅载波,其中,K为大于等于2的整数,所述基站,包括:
配置模块,用于向终端发送为所述终端配置的上行辅载波的配置信 息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;
调度模块,用于根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度,其中,所述主载波包括:所述上行主载波以及所述下行主载波;
其中,所述聚合方式包括:聚合方式一以及聚合方式二;所述聚合方式一中所述主载波采用时分双工TDD帧结构以及所述上行辅载波只保留TDD帧结构中的上行子帧;所述聚合方式二中所述主载波采用TDD帧结构以及所述上行辅载波帧结构中的全部子帧都为上行子帧。
进一步地,若所述配置信息为载波级的公共配置信息,所述配置模块具体用于:在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波的配置信息;或者,通过无线资源控制RRC协议专用信令向所述终端发送所述上行辅载波的配置信息;
对应地,若所述配置信息为终端级的配置信息,所述配置模块还具体用于:通过RRC专用信令向所述终端发送所述上行辅载波的配置信息。
进一步地,所述调度模块具体用于:
确定所述主载波以及所述上行辅载波的聚合方式;
若聚合方式为所述聚合方式一,或者若聚合方式为所述聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送,则通过设置所述PDCCH的下行控制信息DCI格式零对所述上行辅载波进行调度,其中,所述DCI格式零包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波;或者,则通过RRC专用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度;其中,所述PDCCH用于承载DCI;
若聚合方式为所述聚合方式二,且所述终端支持同时进行主载波的接收与辅载波的发送,则通过设置PDCCH的DCI格式对所述上行辅载波的上行子帧进行调度,其中,所述DCI格式包含:第二载波指示信息以 及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,所述上行子帧指示信息用于指示需要调度的上行子帧。
进一步地,所述基站还包括:
反馈模块,用于通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息。
进一步地,所述反馈模块具体用于:
将确认ACK/不确认NACK信息携带于扩展的所述下行主载波的PHICH空间;或者,
通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间;所述多个子空间包括:所述上行辅载波专用子空间以及主载波专用子空间;或者,
通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息。
本发明中,基站通过向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;进一步地,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行PUSCH的调度,实现了对非对称上行载波聚合中辅载波进行控制,从而大幅度提高上行吞吐量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为本发明基于TDD***的非对称上行载波聚合示意图;
图1B为本发明基于TDD***的非对称上行载波聚合分解示意图;
图1C为本发明基于TDD***的非对称上行载波聚合的载波聚合簇示意图;
图2为本发明非对称上行载波聚合中辅载波的控制方法实施例一的流程示意图;
图3A为本发明基于TDD***的非对称上行载波聚合的聚合方式一示意图;
图3B为本发明基于TDD***的非对称上行载波聚合的聚合方式二示意图;
图3C为本发明基于TDD***的非对称上行载波聚合的聚合方式三示意图;
图4为本发明基站实施例一的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1A为本发明基于TDD***的非对称上行载波聚合示意图,图1B为本发明基于TDD***的非对称上行载波聚合分解示意图,图1C为本发明基于TDD***的非对称上行载波聚合的载波聚合簇示意图。本发明基于时分双工(Time Division Duplexing,简称TDD)***的载波聚合中上行载波数大于下行载波数,如图1A所示,包含N个下行载波以及M个上行载波,其中,N与M都为正整数,且N小于等于M,如图1B所示,载波聚合中包含至少一个载波聚合簇,也即所有的上下行载波可以被分解为多个载波聚合簇,如图1C所示,每个载波聚合簇中包含一个下行主载波以及K个上行载波,其中,所述K个上行载波中包括1个上行主载波,所述K个上行载波中除所述上行主载波之外的K-1个上行载波为上行辅载波,其中,K为大于等于2的整数。可选地,聚合的K个上行载波可以为下述至少一种载波:处于同一频带内的连续载波、处于同一频带内的非 连续载波以及处于不同频带的载波。
图2为本发明非对称上行载波聚合中辅载波的控制方法实施例一的流程示意图,如图2所示,本实施例的方法可以包括:
S201、基站向终端发送为所述终端配置的上行辅载波的配置信息。
本发明实施例中,为了终端可以在基站为所述终端配置的辅载波上正常地进行数据发送或接收,所述终端需要获知所述辅载波相关的配置信息,因此,基站向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息。可选地,所述载波级的公共配置信息可以为下述至少一种信息:物理随机接入信道(PhysicalRandom Access Channel,简称PRACH)配置、物理上行链路控制信道(Physical Uplink Control Channel,简称PUCCH)配置及探测参考信号(Sounding Reference Signal,简称SRS)信息;所述终端级的配置信息可以为下述至少一种信息:信道质量指示符(Channel Quality Indicator,简称CQI)、预编码矩阵指示(Precoding Matrix Indicator,简称PMI)、秩指示(Rank Indicator,简称RI)及确认(Acknowledgement,简称ACK)反馈信息。
具体地,若所述配置信息为载波级的公共配置信息,S201步骤包括:
所述基站在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波的配置信息;或者,所述基站通过无线资源控制(Radio Resource Control,简称RRC)协议专用信令向所述终端发送所述上行辅载波的配置信息。
本发明实施例中,若所述配置信息为载波级的公共配置信息,所述基站可在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波相关的载波级公共配置信息,以便所述终端在所述上行辅载波上正常地进行数据发送;可选地,所述基站还可以在为所述终端配置上行辅载波时通过无线资源控制RRC协议专用信令向所述终端发送所述上行辅载波相关的载波级公共配置信息。
具体地,若所述配置信息为终端级的配置信息,S201步骤包括:
所述基站通过RRC专用信令向所述终端发送所述上行辅载波的配置 信息。
本发明实施例中,若所述配置信息为终端级的配置信息,所述基站通过RRC专用信令向所述终端发送所述上行辅载波相关的终端级配置信息,以便所述终端在所述上行辅载波上正常地进行数据发送,可选地,所述RRC专用信令可以为RRC连接重配消息(RRC ConnectionReconfiguration)等。
可选地,对于支持上行载波聚合的小区可以支持不同类型的终端的接入,其中,终端类型可以包括但不限于:类型1、不支持在辅载波调度的终端;类型2、支持在辅载波进行调度的终端,并且要求主载波的下行子帧与辅载波的上行子帧构成TDD帧结构,且所述终端不支持同时进行主载波的接收与辅载波的发送;类型3、支持在辅载波进行调度的终端,并且主载波的下行子帧可以调度所有辅载波的上行子帧,且所述终端支持同时进行主载波的接收与辅载波的发送。
S202、所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度。
其中,所述主载波包括:所述上行主载波以及所述下行主载波;所述聚合方式包括:聚合方式一以及聚合方式二;所述聚合方式一中所述主载波采用时分双工TDD帧结构以及所述上行辅载波只保留TDD帧结构中的上行子帧;所述聚合方式二中所述主载波采用TDD帧结构以及所述上行辅载波帧结构中的全部子帧都为上行子帧。
本发明实施例中,由于下行只有主载波,所述基站根据所述主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)对所述上行辅载波进行调度,以使所述终端通过为所述终端配置的所述上行辅载波向所述基站进行物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)的调度。可选地,所有上行辅载波的调度都需要通过所述下行主载波的PDCCH进行调度。
图3A为本发明基于TDD***的非对称上行载波聚合的聚合方式一示 意图,图3B为本发明基于TDD***的非对称上行载波聚合的聚合方式二示意图,图3C为本发明基于TDD***的非对称上行载波聚合的聚合方式三示意图。本发明实施例中,基于TDD***的多个非对称上行载波聚合的聚合方式包括:聚合方式一以及聚合方式二,可选地,还可以包括聚合方式三,其中,聚合方式三为3GPP协议定义的主辅载波聚合方式,如图3C所示,聚合方式三中主辅载波均采用正常的TDD帧结构(如3GPP中规定的7种上下行子帧配比),其中,主辅载波的上下行子帧配比可以相同也可以不同。如图3A所示,聚合方式一中所述主载波采用正常的TDD帧结构,所述辅载波(也即上行辅载波)只保留原来TDD帧结构中的上行子帧(辅载波原来TDD帧结构中的下行子帧被禁用),其中,所述上行辅载波的上行子帧通过主载波的下行子帧进行调度。可选地,为了辅载波与其他***共存,基站无法进行大功率发送,而需要将基站的下行发送进行屏蔽时可以采用聚合方式一;可选地,由于目前的终端只能支持FDD帧结构或TDD帧结构,且下行授权只能在主载波下行子帧下发,而为了保持TDD帧结构形式,需要将辅载波的下行子帧进行屏蔽时可以采用聚合方式一。如图3C所示,聚合方式二中所述主载波采用正常的TDD帧结构,所述辅载波(也即上行辅载波)原来TDD帧结构中的下行子帧全部改为上行子帧,也即所述上行辅载波帧结构中的全部子帧都为上行子帧,其中,所述上行辅载波的所有子帧由主载波的下行子帧进行调度。
可选地,S202步骤包括:
所述基站确定所述主载波以及所述上行辅载波的聚合方式;
若聚合方式为所述聚合方式一,或者若聚合方式为所述聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送,则所述基站通过设置所述PDCCH的下行控制信息(Downlink Control Infornation,简称DCI)格式零对所述上行辅载波进行调度,其中,所述DCI格式零包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波;或者,则所述基站通过RRC专用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度;其中,所述PDCCH用于承载DCI;
若聚合方式为所述聚合方式二,且所述终端支持同时进行主载波的 接收与辅载波的发送,则所述基站通过设置PDCCH的DCI格式对所述上行辅载波的上行子帧进行调度,其中,所述DCI格式包含:第二载波指示信息以及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,所述上行子帧指示信息用于指示需要调度的上行子帧。
本发明实施例中,PDCCH用于承载DCI,所述DCI包含多种格式(format),其中,DCI format 0用于调度上行资源,DCI format 1X(1,1A,1B,1C,1D等)用于调度下行资源,DCI format 2X(2,2A,2B等)用于调度使用MIMO的下行资源,DCI format 3X(3,3A)用于承载功控命令信息。所述基站先确定所述主载波以及所述上行辅载波的聚合方式,若确定主辅载波的聚合方式为聚合方式一时,或者若确定主辅载波的聚合方式为聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送时,所述基站可通过扩展PDCCH搜索空间的方式对所述上行辅载波进行调度,具体地,所述基站通过设置所述PDCCH的DCI格式(format)0,其中,所述DCI format 0包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波,可选地,所述第一载波指示信息可以为所需调度的上行辅载波ID;可选地,所述基站还可通过重用主载波搜索空间的方式对所述上行辅载波进行调度,具体地,所述基站通过RRC专用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度,也即通过RRC专用信令指示所述PDCCH的当前DCI format 0调度的载波,可选地,当辅载波的带宽大于主载波的带宽时,可能存在DCI format 0的资源块(Resource Block,简称RB)分配比特(bit)位无法调度整个辅载波带宽,可通过如下方式解决:i)可以增大DCI format 0资源分配粒度,如将原有的RB粒度改为2RB粒度或3RB粒度等;ii)可以限制终端可调度的RB区域,此时单用户无法占满整个辅载波带宽,但多个用户时可以使用全部带宽。
本发明实施例中,所述基站先确定所述主载波以及所述上行辅载波的聚合方式,若确定主辅载波的聚合方式为聚合方式二且所述终端支持同时进行主载波的接收与辅载波的发送时,所述基站通过设置新的PDCCH的DCI格式实现对所述上行辅载波的上行子帧进行调度,其中, 聚合方式二中下行子帧少于上行子帧,必会存在一个下行子帧调度多个上行子帧的情形,因此,所述DCI格式包含:第二载波指示信息以及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,可选地,所述第二载波指示信息可以为所需调度的上行辅载波ID;所述上行子帧指示信息用于指示需要调度的上行子帧。
可选地,本发明实施例中,所述基站可通过配置方式确定所述主载波以及所述上行辅载波的聚合方式,可选地,所述基站也可通过终端上报终端类型能力方式获知终端的类型,如是否支持同时进行主载波的接收与辅载波的发送。
本发明实施例中,基站通过向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;进一步地,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行PUSCH的调度,实现了对非对称上行载波聚合中辅载波进行控制,从而大幅度提高上行吞吐量。
进一步地,S202步骤之后,还包括:
所述基站通过所述下行主载波的混合自动重传指示物理信道(Physical Hybrid ARQ indicator channel,简称PHICH)向所述终端发送所述上行辅载波的PUSCH调度的反馈信息。
本发明实施例中,由于下行只有主载波,对于辅载波的PUSCH调度,基站的反馈信息需在所述下行主载波携带,具体地,所述基站通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息,所述反馈信息可以为确认ACK/不确认NACK(Non-Acknowledgement)信息。
具体地,所述基站将ACK/NACK信息携带于扩展的所述下行主载波的PHICH空间;或者,
所述基站通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间;所述多个子 空间包括:所述上行辅载波专用子空间以及主载波专用子空间;或者,
所述基站通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息。
本发明实施例中,基站可通过扩展下行主载波的PHICH空间的方式向所述终端发送反馈信息,具体地,基站将所述上行辅载波的PUSCH调度的ACK/NACK信息携带于扩展的所述下行主载波的PHICH空间。可选地,所述基站将下行主载波的PHICH空间划分为多个子空间,其中,所述多个子空间包括:所述上行辅载波专用子空间以及主载波专用子空间,也即所述多个子空间分别供主载波、辅载波使用;对应地,所述基站可通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间。可选地,基站还可通过下行主载波的PHICH共享空间向所述终端发送反馈信息,具体地,所述基站通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息,也即所述主载波以及上行辅载波共用所述下行主载波的PHICH空间,若发生冲突时,可通过调整解调参考信号(De-Modulation Reference Signal,简称DMRS)的循环移位来进行规避。
本发明实施中,基站通过向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;进一步地,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行PUSCH的调度;进一步地,所述基站通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息,实现了对非对称上行载波聚合中辅载波进行控制,从而大幅度提高上行吞吐量。
进一步地,主载波的上行功率控制可以采用目前3GPP规定的机制,辅载波的上行闭环功率控制也可以采用目前的机制,但其中上行PUSCH的功控命令字在所述主载波的下行PDCCH授权中携带。
可选地,对于辅载波功率控制中的路损可以参考下行主载波的路 损,在此基础上再考虑加上二者之间的路损差。
可选地,主载波的上行同步可以采用目前3GPP规定的机制,辅载波的上行同步分为开环同步控制与闭环功率控制,其中,对于闭环同步控制,可以采用与主载波相同的机制,但辅载波的TA命令字在下行主载波携带;对于开环同步控制,其TA调整量在主载波的下行随机响应信道中发送给终端。。
图4为本发明基站实施例一的结构示意图,如图4所示,本实施例提供的基站40包括:配置模块401以及调度模块402。
其中,载波聚合中包含至少一个载波聚合簇,所述载波聚合簇中包含一个下行主载波以及K个上行载波,其中,所述K个上行载波中包括1个上行主载波,所述K个上行载波中除所述上行主载波之外的K-1个上行载波为上行辅载波,其中,K为大于等于2的整数;
配置模块401用于向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;
调度模块402用于根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度,其中,所述主载波包括:所述上行主载波以及所述下行主载波;
其中,所述聚合方式包括:聚合方式一以及聚合方式二;所述聚合方式一中所述主载波采用时分双工TDD帧结构以及所述上行辅载波只保留TDD帧结构中的上行子帧;所述聚合方式二中所述主载波采用TDD帧结构以及所述上行辅载波帧结构中的全部子帧都为上行子帧。
可选地,若所述配置信息为载波级的公共配置信息,所述配置模块具体用于:在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波的配置信息;或者,通过无线资源控制RRC协议专用信令向所述终端发送所述上行辅载波的配置信息;
对应地,若所述配置信息为终端级的配置信息,所述配置模块还具体用于:通过RRC专用信令向所述终端发送所述上行辅载波的配置信 息。
可选地,所述调度模块具体用于:
确定所述主载波以及所述上行辅载波的聚合方式;
若聚合方式为所述聚合方式一,或者若聚合方式为所述聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送,则通过设置所述PDCCH的下行控制信息DCI格式零对所述上行辅载波进行调度,其中,所述DCI格式零包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波;或者,则通过RRC专用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度;其中,所述PDCCH用于承载DCI;
若聚合方式为所述聚合方式二,且所述终端支持同时进行主载波的接收与辅载波的发送,则通过设置PDCCH的DCI格式对所述上行辅载波的上行子帧进行调度,其中,所述DCI格式包含:第二载波指示信息以及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,所述上行子帧指示信息用于指示需要调度的上行子帧。
本实施例的基站,可以用于本发明上述非对称上行载波聚合中辅载波的控制方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选地,所述基站还包括:
反馈模块,用于通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息。
可选地,所述反馈模块具体用于:
将确认ACK/不确认NACK信息携带于扩展的所述下行主载波的PHICH空间;或者,
通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间;所述多个子空间包括:所述上行辅载波专用子空间以及主载波专用子空间;或者,
通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种非对称上行载波聚合中辅载波的控制方法,其特征在于,载波聚合中包含至少一个载波聚合簇,所述载波聚合簇中包含一个下行主载波以及K个上行载波,其中,所述K个上行载波中包括1个上行主载波,所述K个上行载波中除所述上行主载波之外的K-1个上行载波为上行辅载波,其中,K为大于等于2的整数,所述非对称上行载波聚合中辅载波的控制方法,包括:
    基站向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;
    所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度,其中,所述主载波包括:所述上行主载波以及所述下行主载波;
    其中,所述聚合方式包括:聚合方式一以及聚合方式二;所述聚合方式一中所述主载波采用时分双工TDD帧结构以及所述上行辅载波只保留TDD帧结构中的上行子帧;所述聚合方式二中所述主载波采用TDD帧结构以及所述上行辅载波帧结构中的全部子帧都为上行子帧。
  2. 根据权利要求1所述的方法,其特征在于,若所述配置信息为载波级的公共配置信息,所述基站向终端发送为所述终端配置的上行辅载波的配置信息,包括:
    所述基站在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波的配置信息;或者,所述基站通过无线资源控制RRC协议专用信令向所述终端发送所述上行辅载波的配置信息;
    对应地,若所述配置信息为终端级的配置信息,所述基站向终端发送为所述终端配置的上行辅载波的配置信息,包括:
    所述基站通过RRC专用信令向所述终端发送所述上行辅载波的配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,包括:
    所述基站确定所述主载波以及所述上行辅载波的聚合方式;
    若聚合方式为所述聚合方式一,或者若聚合方式为所述聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送,则所述基站通过设置所述PDCCH的下行控制信息DCI格式零对所述上行辅载波进行调度,其中,所述DCI格式零包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波;或者,则所述基站通过RRC专用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度;其中,所述PDCCH用于承载DCI;
    若聚合方式为所述聚合方式二,且所述终端支持同时进行主载波的接收与辅载波的发送,则所述基站通过设置PDCCH的DCI格式对所述上行辅载波的上行子帧进行调度,其中,所述DCI格式包含:第二载波指示信息以及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,所述上行子帧指示信息用于指示需要调度的上行子帧。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述基站根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度之后,还包括:
    所述基站通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息。
  5. 根据权利要求4所述的方法,其特征在于,所述基站通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息,包括:
    所述基站将确认ACK/不确认NACK信息携带于扩展的所述下行主载波的PHICH空间;或者,
    所述基站通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间;所述多个子空间包括:所述上行辅载波专用子空间以及主载波专用子空间;或者,
    所述基站通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息。
  6. 一种基站,其特征在于,载波聚合中包含至少一个载波聚合簇,所述载波聚合簇中包含一个下行主载波以及K个上行载波,其中,所述K个上行载波中包括1个上行主载波,所述K个上行载波中除所述上行主载波之外的K-1个上行载波为上行辅载波,其中,K为大于等于2的整数,所述基站,包括:
    配置模块,用于向终端发送为所述终端配置的上行辅载波的配置信息,其中,所述配置信息包括:载波级的公共配置信息和/或终端级的配置信息;
    调度模块,用于根据主载波以及所述上行辅载波的聚合方式通过所述下行主载波的物理下行控制信道PDCCH对所述上行辅载波进行调度,以使所述终端通过所述上行辅载波向所述基站进行物理上行共享信道PUSCH的调度,其中,所述主载波包括:所述上行主载波以及所述下行主载波;
    其中,所述聚合方式包括:聚合方式一以及聚合方式二;所述聚合方式一中所述主载波采用时分双工TDD帧结构以及所述上行辅载波只保留TDD帧结构中的上行子帧;所述聚合方式二中所述主载波采用TDD帧结构以及所述上行辅载波帧结构中的全部子帧都为上行子帧。
  7. 根据权利要求6所述的基站,其特征在于,若所述配置信息为载波级的公共配置信息,所述配置模块具体用于:在所述下行主载波上通过广播形式向所述终端发送所述上行辅载波的配置信息;或者,通过无线资源控制RRC协议专用信令向所述终端发送所述上行辅载波的配置信息;
    对应地,若所述配置信息为终端级的配置信息,所述配置模块还具体用于:通过RRC专用信令向所述终端发送所述上行辅载波的配置信息。
  8. 根据权利要求7所述的基站,其特征在于,所述调度模块具体用于:
    确定所述主载波以及所述上行辅载波的聚合方式;
    若聚合方式为所述聚合方式一,或者若聚合方式为所述聚合方式二且所述终端不支持同时进行主载波的接收与辅载波的发送,则通过设置 所述PDCCH的下行控制信息DCI格式零对所述上行辅载波进行调度,其中,所述DCI格式零包含第一载波指示信息,所述第一载波指示信息用于指示需要调度的上行辅载波;或者,则通过RRC专用信令指示PDCCH DCI格式零信道对所述上行辅载波进行调度;其中,所述PDCCH用于承载DCI;
    若聚合方式为所述聚合方式二,且所述终端支持同时进行主载波的接收与辅载波的发送,则通过设置PDCCH的DCI格式对所述上行辅载波的上行子帧进行调度,其中,所述DCI格式包含:第二载波指示信息以及上行子帧指示信息,所述第二载波指示信息用于指示需要调度的上行辅载波,所述上行子帧指示信息用于指示需要调度的上行子帧。
  9. 根据权利要求6-8中任一项所述的基站,其特征在于,还包括:
    反馈模块,用于通过所述下行主载波的混合自动重传指示物理信道PHICH向所述终端发送所述上行辅载波的PUSCH调度的反馈信息。
  10. 根据权利要求9所述的基站,其特征在于,所述反馈模块具体用于:
    将确认ACK/不确认NACK信息携带于扩展的所述下行主载波的PHICH空间;或者,
    通过上行辅载波专用子空间向所述终端发送ACK/NACK信息,其中,所述上行辅载波专用子空间为所述下行主载波的PHICH空间被划分成的多个子空间中供所述上行辅载波使用的子空间;所述多个子空间包括:所述上行辅载波专用子空间以及主载波专用子空间;或者,
    通过共用所述下行主载波的PHICH空间向所述终端发送ACK/NACK信息。
PCT/CN2015/087627 2014-08-28 2015-08-20 非对称上行载波聚合中辅载波的控制方法及装置 WO2016029819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410433129.1A CN105450376B (zh) 2014-08-28 2014-08-28 非对称上行载波聚合中辅载波的控制方法及装置
CN201410433129.1 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016029819A1 true WO2016029819A1 (zh) 2016-03-03

Family

ID=55398751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087627 WO2016029819A1 (zh) 2014-08-28 2015-08-20 非对称上行载波聚合中辅载波的控制方法及装置

Country Status (2)

Country Link
CN (1) CN105450376B (zh)
WO (1) WO2016029819A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490790B (zh) * 2014-10-13 2019-03-05 成都鼎桥通信技术有限公司 载波聚合中辅载波的配置方法和装置
CN107612671A (zh) * 2017-10-24 2018-01-19 厦门美图移动科技有限公司 载波功率控制方法及装置
CN109729595A (zh) * 2017-10-27 2019-05-07 成都鼎桥通信技术有限公司 非对称上行载波聚合的pdcch处理方法及设备
CN109729584B (zh) * 2017-10-27 2022-06-10 成都鼎桥通信技术有限公司 非对称上行载波聚合的上行带宽压缩方法及装置
CN109728887A (zh) * 2017-10-27 2019-05-07 成都鼎桥通信技术有限公司 载波聚合的载波配置方法及设备
CN109756312A (zh) * 2017-11-02 2019-05-14 成都鼎桥通信技术有限公司 一种pdcch搜索空间的设置方法和装置
CN108183782B (zh) * 2017-11-28 2020-11-17 上海华为技术有限公司 在非对称载波聚合中信号传输方法、基站和用户设备
CN109963338B (zh) * 2017-12-25 2023-07-21 成都鼎桥通信技术有限公司 一种特殊的lte-fdd小区中上行载波的调度方法和***
CN110913494B (zh) * 2018-09-17 2023-04-07 成都鼎桥通信技术有限公司 上行语音业务的传输方法、装置、设备和存储介质
CN111555839B (zh) * 2019-02-11 2022-04-15 成都鼎桥通信技术有限公司 载波聚合中上行载波资源的分配方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263627A (zh) * 2011-08-11 2011-11-30 中兴通讯股份有限公司 一种载波聚合配置方法及装置
CN102548007A (zh) * 2010-12-31 2012-07-04 ***通信集团公司 载波聚合***中的调度方法、***和设备
CN103548398A (zh) * 2011-05-17 2014-01-29 Lg电子株式会社 在无线通信***中由采用时分双工(tdd)方案的终端控制上行链路传输功率的方法及其终端装置
EP2750463A1 (en) * 2012-12-28 2014-07-02 Alcatel Lucent Sharing of uplink physical layer signaling by two or more mobile stations in a mobile system supporting carrier aggregation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135998A1 (en) * 2011-04-04 2012-10-11 Renesas Mobile Corporation Random access procedures with cross-carrier scheduling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548007A (zh) * 2010-12-31 2012-07-04 ***通信集团公司 载波聚合***中的调度方法、***和设备
CN103548398A (zh) * 2011-05-17 2014-01-29 Lg电子株式会社 在无线通信***中由采用时分双工(tdd)方案的终端控制上行链路传输功率的方法及其终端装置
CN102263627A (zh) * 2011-08-11 2011-11-30 中兴通讯股份有限公司 一种载波聚合配置方法及装置
EP2750463A1 (en) * 2012-12-28 2014-07-02 Alcatel Lucent Sharing of uplink physical layer signaling by two or more mobile stations in a mobile system supporting carrier aggregation

Also Published As

Publication number Publication date
CN105450376B (zh) 2018-07-27
CN105450376A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016029784A1 (zh) 非对称上行载波聚合中辅载波的控制方法及装置
US10880065B2 (en) Systems and methods for carrier aggregation
WO2016029819A1 (zh) 非对称上行载波聚合中辅载波的控制方法及装置
US10057935B2 (en) System and method for D2D resource allocation
US20210045100A1 (en) Method and apparatus for determining harq timing in wireless communications
KR20210145846A (ko) 무선 통신 시스템에서 v2x 사이드링크 harq 절차를 위한 방법 및 장치
US10938496B2 (en) Multiplexing signals with scalable numerology for new radio (NR) networks
US20240195581A1 (en) Data block transmissions
WO2021026683A1 (en) Power control for pucch transmissions with multiple trps
WO2014197493A1 (en) Central processing unit and methods for supporting coordinated multipoint transmission in an lte network
US11252675B2 (en) Method for transmitting sidelink signals through plurality of carriers in wireless communication system
CN115399045A (zh) 用于上行链路取消指示的取消时间线
US20230171745A1 (en) Integrated access and backhaul node configuration
EP3123647B1 (en) Enhancing group communication services
US20230371113A1 (en) Energy saving method and device in sidelink system
KR20230038712A (ko) 업링크 전송 구성 표시 상태들의 구성
TWI551091B (zh) 處理通訊運作的方法及其通訊裝置
US20230112922A1 (en) Channel state information report configuration
US20230396386A1 (en) Downlink control information indicating transmission control indicator states
US20230048881A1 (en) Updating sounding reference signal spatial relation information
US12003444B2 (en) Determining resources for phase tracking reference signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836513

Country of ref document: EP

Kind code of ref document: A1