WO2016029530A1 - 基于theed纤维阵列的二氧化碳传感器及其制备方法 - Google Patents

基于theed纤维阵列的二氧化碳传感器及其制备方法 Download PDF

Info

Publication number
WO2016029530A1
WO2016029530A1 PCT/CN2014/088111 CN2014088111W WO2016029530A1 WO 2016029530 A1 WO2016029530 A1 WO 2016029530A1 CN 2014088111 W CN2014088111 W CN 2014088111W WO 2016029530 A1 WO2016029530 A1 WO 2016029530A1
Authority
WO
WIPO (PCT)
Prior art keywords
theed
pcb board
carbon dioxide
micro
nano
Prior art date
Application number
PCT/CN2014/088111
Other languages
English (en)
French (fr)
Inventor
陈然
阮晓东
刘伟庭
傅新
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2016029530A1 publication Critical patent/WO2016029530A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the invention relates to the field of carbon dioxide sensors, in particular to a carbon dioxide sensor based on THEED (N, N, N', N'-tetrahydroxyethyl ethylene diamine) fiber array and a preparation method thereof.
  • THEED N, N, N', N'-tetrahydroxyethyl ethylene diamine
  • the object of the present invention is to provide a carbon dioxide sensor based on THEED fiber array and a preparation method thereof according to the deficiencies of the prior art.
  • a carbon dioxide sensor based on THEED fiber array comprising a PCB board substrate, at least one pair of equidistantly arranged electrodes on the PCB board substrate; two opposite sides
  • the PCB board substrate between the electrodes is hollowed out with a pitch of 5-10 mm; the PCB board substrate and the electrodes constitute a sensing unit PCB board; and each pair of electrodes is connected with a plurality of directed and non-intersecting carbon dioxide sensitive micro/nano fibers; the carbon dioxide is sensitive
  • the micro-nano fiber is composed of a THEED polymer micro-nano fiber and a nickel-chromium alloy film resistive layer attached to the surface of the THEED polymer micro-nano fiber.
  • a method for preparing a carbon dioxide sensor based on the THEED fiber array comprising the following steps:
  • the catheter is connected to the micro-injection pump, and the conductive part of the electrospinning needle is connected with the high-pressure source;
  • the THEED solution is fed at a rate of 6-10 ml/h through a micro-injection pump, the high-voltage source is adjusted to 10-12 KV, and the linear high-speed mobile station is operated to 5 -10mm / s speed laterally uniform motion, to obtain the directional density controllable THEED polymer micro-nano fiber array;
  • the invention has the beneficial effects that the invention adopts the electrospinning and magnetron sputtering method, and combines the linear high-speed mobile station feeding to realize the preparation of the directed hydrogen-sensitive micro-nano fiber array; the whole preparation process is short in time and consumes less energy. High efficiency; only a small amount of polymer solution and target are used in materials, and the material cost is low; by adjusting the feed speed of the linear high-speed mobile station, the density of the directed micro-nano fiber array can be freely controlled; by solvent parameters and operating parameters The adjustment can more precisely control the diameter of the directed micro-nano fiber array; by adjusting the sputtering parameters, the thickness of the thin film resistive layer can be adjusted.
  • FIG. 1 is a schematic view of an apparatus for electrospinning a THEED polymer micro/nano fiber array
  • FIG. 2 is a schematic structural view of a PCB of a sensing unit
  • Figure 3 is a schematic diagram of a linear feed electrode pair electrospinning method
  • FIG. 4 is a schematic structural view of a carbon dioxide sensor based on a THEED fiber array
  • Figure 5 is a schematic view showing the structure of a carbon dioxide sensitive micro/nano fiber array
  • sensor unit PCB board 1 linear high speed mobile station 2, bracket 3, high voltage source 4, electrospinning needle 5, solution delivery catheter 6, micro syringe pump 7, electrode 8, PCB board substrate 9, THEED polymer Micro-nano fiber 10, carbon dioxide-sensitive micro-nano fiber 11, and nickel-chromium alloy film resistive layer 12.
  • the THEED polymer micro-nano fiber array electrospinning preparation platform consists of a sensing unit PCB board 1, a linear high-speed moving table 2, a bracket 3, a high-voltage source 4, an electrospinning needle 5, a solution conveying conduit 6 and The microinjection pump 7 is composed.
  • the sensing unit PCB board 1 is mounted on the linear high-speed moving table 2, and the electrode 8 is grounded; the bracket 3 is placed directly above the linear high-speed moving table 2, and the electrospinning needle 5 is mounted on the bracket 3 to adjust the electrospinning needle
  • the height and position of 5 are such that the front end thereof is perpendicular to the center line of the sensing unit PCB board 1, and the rear end of the electrospinning needle 5 is connected to the micro syringe pump 7 through the solution delivery conduit 6.
  • the conductive portion of the electrospinning needle 5 is connected to the high voltage source 4; finally, the THEED solution is fed by the microinjection pump 7 at a speed of 6-10 ml/h, the high voltage source is adjusted to 4 to 10-12 KV, and the computer operates the linear high speed mobile station 2 to The 5-10mm/s speed moves at a uniform speed in the transverse direction. At the end of the stroke, an array of THEED polymer micro/nano fibers 10 with controlled directional density is obtained.
  • the preparation process of the THEED solution is as follows: The THEED particles are added to a solvent of chloroform at room temperature, and stirred to obtain a THEED solution having a mass fraction of 20% to 30%.
  • the sensing unit PCB board 1 is composed of a PCB board substrate 9 and electrodes 8, and at least one pair of equidistantly arranged electrodes 8 are provided on the PCB board substrate 9, preferably 4 pairs;
  • the PCB board substrate 9 between the electrodes 8 is hollowed out with a pitch of 5-10 mm.
  • the principle of the electrospinning method for the linear feed electrode is as follows: the high voltage source 4 provides a potential of 10 kV during spinning, and the electric field is generated by the electrospinning needle 5 pointing to the grounded electrode 8 on the surface, and the THEED solution is electrospun.
  • the charge at the needle 5 is moved along the electric field line to one side of the pair of electrodes 8; when the solution contacts the electrode 8, the electrode 8 in contact with the solution is instantaneously charged due to the influence of the charge of the solution, and the electric field is deflected, causing the solution to be At the same time, the linear high-speed mobile station 2 drives the electrode 8 to move in the direction of the vertical electric field; after the solution leaves the electrospinning needle 5, the solvent evaporates in the air to cause the solute to solidify, forming a directed THEED between the electrodes 8 10 arrays of polymeric micro/nanofibers.
  • the sensing unit PCB board 1 is sent into the magnetron sputtering machine cavity, and the mask board is covered on the surface of the sensing unit PCB board 1.
  • the mask board blocks the electrode 9 and the PCB board substrate 9, and the THEED polymer micro-nano
  • the array of fibers 10 is partially sputtered to obtain a nickel-chromium alloy film resistive layer 12 having a single-sided thickness of 50-80 nm; cooling and drying to realize preparation of a carbon dioxide sensor based on THEED fiber array.
  • the resulting carbon dioxide sensor based on THEED polymer micro/nano fiber array is shown in Figure 4.
  • a plurality of directional and non-intersecting carbon dioxide-sensitive micro-nano fibers 11 are connected between each pair of electrodes 8, and the carbon dioxide-sensitive micro-nano fibers 11 are made of THEED polymer micro-nano fibers 10 and nickel-chromium alloys attached to the surface of the THEED polymer micro-nano fibers 10.
  • the thin film resistive layer 12 is composed of a THEED polymer micro/nano fiber 10 as a main sensitive material, and a nickel-chromium alloy thin film resistive layer 12 as a signal conversion medium. When contacted with carbon dioxide, the volume of the THEED polymer micro/nano fiber 10 changes, resulting in nickel. The resistance value of the chrome alloy film resistive layer 12 is changed, and the carbon dioxide concentration is detected by measuring the resistance value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种基于THEED纤维阵列的二氧化碳传感器及其制备方法。该制备方法通过静电纺丝装置喷射聚合物溶液,结合直线高速移动台(2)进给实现密度可控有向的THEED聚合物微纳纤维阵列纺丝;之后,通过磁控溅射在微纳纤维上修饰镍铬合金薄膜电阻层,获得基于THEED纤维阵列的二氧化碳传感器。该制备方法仅使用少量的聚合物溶液和靶材,材料成本低;通过调节直线高速移动台进给速度,可以自由控制有向微纳纤维阵列密度;通过对溶剂参数和操作参数的调整,可以更为精确地控制有向微纳纤维的直径;通过调节溅射参数,可以实现薄膜电阻层厚度的调节。

Description

基于THEED纤维阵列的二氧化碳传感器及其制备方法 技术领域
本发明涉及二氧化碳传感器领域,尤其涉及一种基于THEED(N,N,N',N'-四羟乙基乙二胺)纤维阵列的二氧化碳传感器及其制备方法。
背景技术
温室效应已经成为影响人类社会发展的重大环境问题,我国是二氧化碳排放量最大的国家之一,为应对全球气候变化,国家中长期科技发展纲要指出:“加强全球环境公约履约对策与气候变化科学不确定性及其影响研究,开发全球环境变化监测和温室气体减排技术,提升应对环境变化及履约能力”。并在2009年哥本哈根世界气候大会上向世界郑重承诺:“到2020年单位国内生产总值二氧化碳排放比2005年下降40%-45%”。
我国现有能源结构以煤为主,降低排放仍然存在困难,如何快速检测环境中二氧化碳的含量,研究二氧化碳的排放规律,进而为二氧化碳的减排提供总体优化策略,已经成为当务之急。通过最近几十年的研究,已经有许多种气体检测技术得以工业化,其中应用最为广泛的方法是金属氧化物检测法和光谱分析法。然而目前的检测技术均存在一定问题,例如半导体金属氧化物和固体电解质传感器的选择性差、精度低,而红外光谱分析技术抗干扰性差、成本高。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于THEED纤维阵列的二氧化碳传感器及其制备方法。
本发明的目的是通过以下技术方案来实现的:一种基于THEED纤维阵列的二氧化碳传感器,包括PCB板基底,在PCB板基底上设有至少一对等距排布的电极;正对的两个电极之间的PCB板基底镂空,间距为5-10mm;PCB板基底和电极构成传感单元PCB板;每对电极之间连接若干有向且不交叉的二氧化碳敏感微纳纤维;所述二氧化碳敏感微纳纤维由THEED聚合物微纳纤维和附着在THEED聚合物微纳纤维表面的镍铬合金薄膜电阻层构成。
一种上述基于THEED纤维阵列的二氧化碳传感器制备方法,包括以下步骤:
(1)室温下,将THEED颗粒加入三氯甲烷溶剂中,搅拌混合得到质量分数20%-30%的THEED溶液;
(2)将传感单元PCB板安装在直线高速移动台上,并将电极接地;支架置 于直线高速移动台正上方,将静电纺丝针头安装于支架上,调节静电纺丝针头的高度与位置使其前端垂直正对传感单元PCB板中心线,静电纺丝针头后端通过溶液输送导管与微量注射泵相连,静电纺丝针头导电部分与高压源连接;通过微量注射泵以6-10ml/h的速度进给THEED溶液,调节高压源到10-12KV,操作直线高速移动台以5-10mm/s速度横向匀速运动,待行程结束即可得到有向密度可控的THEED聚合物微纳纤维阵列;
(3)将传感单元PCB板送入磁控溅射机腔体内,在传感单元PCB板表面覆盖掩模板,通过掩模板遮挡电极与PCB板基底,对THEED聚合物微纳纤维阵列进行溅射得到单面厚度为50-80nm的镍铬合金薄膜电阻层;冷却干燥,最终得到基于THEED聚合物微纳纤维阵列的二氧化碳传感器。
本发明的有益效果是:本发明采用静电纺丝与磁控溅射方法,结合直线高速移动台进给实现有向氢敏微纳纤维阵列的制备;整个制备过程耗时短,耗能少,效率高;在材料方面仅用到少量的聚合物溶液与靶材,材料成本低;通过调节直线高速移动台进给速度,可以自由控制有向微纳纤维阵列密度;通过对溶剂参数和操作参数的调整,可以更为精确的控制有向微纳纤维阵列的直径;通过调节溅射参数,可以实现薄膜电阻层厚度的调节。
附图说明
图1是静电纺丝制备THEED聚合物微纳纤维阵列的装置示意图;
图2是传感单元PCB板结构示意图;
图3是直线进给电极对静电纺丝法原理图;
图4是基于THEED纤维阵列的二氧化碳传感器结构示意图;
图5是二氧化碳敏感微纳纤维阵列的结构示意图;
图中:传感单元PCB板1、直线高速移动台2、支架3、高压源4、静电纺丝针头5、溶液输送导管6、微量注射泵7、电极8、PCB板基底9、THEED聚合物微纳纤维10、二氧化碳敏感微纳纤维11、镍铬合金薄膜电阻层12。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,THEED聚合物微纳纤维阵列静电纺丝制备平台由传感单元PCB板1、直线高速移动台2、支架3、高压源4、静电纺丝针头5、溶液输送导管6和微量注射泵7组成。传感单元PCB板1安装在直线高速移动台2上,并将电极8接地;支架3置于直线高速移动台2正上方,将静电纺丝针头5安装于支架3上,调节静电纺丝针头5的高度与位置使其前端垂直正对传感单元PCB板1中心线,静电纺丝针头5后端通过溶液输送导管6与微量注射泵7相连, 静电纺丝针头5导电部分与高压源4连接;最后,通过微量注射泵7以6-10ml/h的速度进给THEED溶液,调节高压源4到10-12KV,计算机操作直线高速移动台2以5-10mm/s速度横向匀速运动,待行程结束即可得到有向密度可控的THEED聚合物微纳纤维10阵列。
所述THEED溶液的制备过程如下:室温下,将THEED颗粒加入三氯甲烷溶剂中,搅拌混合得到质量分数20%-30%的THEED溶液。
如图2所示,传感单元PCB板1由PCB板基底9和电极8构成,在PCB板基底9上设有至少一对等距排布的电极8,优选为4对;正对的两个电极8之间的PCB板基底9镂空,间距为5-10mm。
如图3所示,直线进给电极对静电纺丝法原理如下:纺丝时高压源4提供10KV电势,产生电场由静电纺丝针头5指向接地的电极8对表面,THEED溶液在静电纺丝针头5处带上电荷沿电场线向电极8对的某一侧移动;在溶液接触电极8瞬间,由于溶液所带电荷影响,与溶液接触的电极8瞬间带电,电场发生偏转,导致溶液向另一侧移动;同时,直线高速移动台2带动电极8对延垂直电场方向运动;在溶液离开静电纺丝针头5后,溶剂在空中不断挥发导致溶质固化,在电极8对间形成有向的THEED聚合物微纳纤维10阵列。
纺丝结束后将传感单元PCB板1送入磁控溅射机腔体内,在传感单元PCB板1表面覆盖掩模板,掩模板遮挡电极9与PCB板基底9,对THEED聚合物微纳纤维10阵列部分进行溅射得到单面厚度为50-80nm的镍铬合金薄膜电阻层12;冷却干燥,实现基于THEED纤维阵列的二氧化碳传感器的制备。
最终得到的基于THEED聚合物微纳纤维阵列的二氧化碳传感器如图4所示。每对电极8之间连接若干有向且不交叉的二氧化碳敏感微纳纤维11,二氧化碳敏感微纳纤维11由THEED聚合物微纳纤维10和附着在THEED聚合物微纳纤维10表面的镍铬合金薄膜电阻层12构成,其中THEED聚合物微纳纤维10作为主要敏感材料,镍铬合金薄膜电阻层12作为信号转换介质,与二氧化碳接触时,THEED聚合物微纳纤维10的体积发生变化,导致镍铬合金薄膜电阻层12电阻值发生变化,通过对电阻值的测量实现二氧化碳浓度的检测。

Claims (2)

  1. 一种基于THEED纤维阵列的二氧化碳传感器,其特征在于,包括PCB板基底(9),在PCB板基底(9)上设有至少一对等距排布的电极(8);正对的两个电极(8)之间的PCB板基底(9)镂空,间距为5-10mm;PCB板基底(9)和电极(8)构成传感单元PCB板(1);每对电极(8)之间连接若干有向且不交叉的二氧化碳敏感微纳纤维(11);所述二氧化碳敏感微纳纤维(11)由THEED聚合物微纳纤维(10)和附着在THEED聚合物微纳纤维(10)表面的镍铬合金薄膜电阻层(12)构成。
  2. 一种权利要求1所述的基于THEED纤维阵列的二氧化碳传感器制备方法,其特征在于,包括以下步骤:
    (1)室温下,将THEED颗粒加入三氯甲烷溶剂中,搅拌混合得到质量分数20%-30%的THEED溶液;
    (2)将传感单元PCB板(1)安装在直线高速移动台(2)上,并将电极(8)接地;支架(3)置于直线高速移动台(2)正上方,将静电纺丝针头(5)安装于支架(3)上,调节静电纺丝针头(5)的高度与位置使其前端垂直正对传感单元PCB板(1)中心线,静电纺丝针头(5)后端通过溶液输送导管(6)与微量注射泵(7)相连,静电纺丝针头(5)导电部分与高压源(4)连接;通过微量注射泵(7)以6-10ml/h的速度进给THEED溶液,调节高压源(4)到10-12KV,操作直线高速移动台(2)以5-10mm/s速度横向匀速运动,待行程结束即可得到有向密度可控的THEED聚合物微纳纤维(10)阵列;
    (3)将传感单元PCB板(1)送入磁控溅射机腔体内,在传感单元PCB板(1)表面覆盖掩模板,通过掩模板遮挡电极(9)与PCB板基底(9),对THEED聚合物微纳纤维(10)阵列进行溅射得到单面厚度为50-80nm的镍铬合金薄膜电阻层(12);冷却干燥,最终得到基于THEED聚合物微纳纤维阵列的二氧化碳传感器。
PCT/CN2014/088111 2014-08-25 2014-10-08 基于theed纤维阵列的二氧化碳传感器及其制备方法 WO2016029530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422521.6A CN104215668A (zh) 2014-08-25 2014-08-25 基于theed纤维阵列的二氧化碳传感器及其制备方法
CN201410422521.6 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016029530A1 true WO2016029530A1 (zh) 2016-03-03

Family

ID=52097385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088111 WO2016029530A1 (zh) 2014-08-25 2014-10-08 基于theed纤维阵列的二氧化碳传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN104215668A (zh)
WO (1) WO2016029530A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321475A (zh) * 2020-04-17 2020-06-23 中广核达胜加速器技术有限公司 一种无机纤维原丝纺丝***及其纺丝方法
CN114734452B (zh) * 2022-05-17 2024-02-23 浙江理工大学 一种基于压阻信号的机械臂碰撞监测方法
CN114808279B (zh) * 2022-05-20 2023-06-27 俞平 汽车坐垫用织物传感阵列的制造方法及产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065527A (zh) * 1991-04-05 1992-10-21 明尼苏达州采矿制造公司 以毫微结构复合膜为基的传感器
US20080101994A1 (en) * 2006-10-28 2008-05-01 Shabnam Virji Polyaniline Nanofiber Hydrogen Sensors
US20090101501A1 (en) * 2007-10-17 2009-04-23 Tao Xiao-Ming Room temperature gas sensors
CN101563599A (zh) * 2006-12-22 2009-10-21 研究三角协会 聚合物纳米纤维基电子鼻
CN103336092A (zh) * 2013-06-14 2013-10-02 浙江大学 基于涡街与压电薄膜的氢气传感器及其制备方法
CN103344673A (zh) * 2013-06-14 2013-10-09 浙江大学 基于微纳纤维的氢气传感器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1461360B1 (en) * 2002-01-03 2010-08-18 Bayer Schering Pharma Aktiengesellschaft Conjugates comprising an antibody specific for the ed-b domain of fibronectin and their use for the detection and treatment of tumours
CN100374392C (zh) * 2002-10-09 2008-03-12 格雷斯公司 含胺水泥加工添加剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065527A (zh) * 1991-04-05 1992-10-21 明尼苏达州采矿制造公司 以毫微结构复合膜为基的传感器
US20080101994A1 (en) * 2006-10-28 2008-05-01 Shabnam Virji Polyaniline Nanofiber Hydrogen Sensors
CN101563599A (zh) * 2006-12-22 2009-10-21 研究三角协会 聚合物纳米纤维基电子鼻
US20090101501A1 (en) * 2007-10-17 2009-04-23 Tao Xiao-Ming Room temperature gas sensors
CN103336092A (zh) * 2013-06-14 2013-10-02 浙江大学 基于涡街与压电薄膜的氢气传感器及其制备方法
CN103344673A (zh) * 2013-06-14 2013-10-09 浙江大学 基于微纳纤维的氢气传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO, ZHONG ET AL.: "Studies on Coated Piezoelectric Crystal Carbon Dioxide Sensor", JOURNAL OF HUNAN UNIVERSITY, vol. 23, no. 6, 31 December 1996 (1996-12-31), pages 58 - 63, ISSN: 1674-2974 *

Also Published As

Publication number Publication date
CN104215668A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2016029530A1 (zh) 基于theed纤维阵列的二氧化碳传感器及其制备方法
CN109855526B (zh) 一种基于干燥介导自组装的电阻式柔性应变传感器及其制备方法
US20200406542A1 (en) Electrohydrodynamic bioprinter and methods of use
KR101689740B1 (ko) 드럼 컬렉터를 이용한 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
CN103898618B (zh) 针对微纳加工的电纺射流快速稳定控制装置及其控制方法
CN109228304A (zh) 一种电场诱导辅助电喷射的三维打印装置
CN105170359B (zh) 一种程控式静电喷涂装置
CN102080268A (zh) 有序排列In2O3纳米纤维及用于制备超快响应酒精传感器
CN103344673B (zh) 基于微纳纤维的氢气传感器及其制备方法
CN103962658B (zh) 微细射流电极电火花加工装置
CN107429428A (zh) 喷嘴头模块及电场纺丝装置
CN102978719A (zh) 一种真空电纺装置
CN202247042U (zh) 一种新型的静电纺丝装置
CN106498512B (zh) 一种可调节的静电纺丝针头及其实现方法
CN203772790U (zh) 基于氧化锌纳米结构的乙醇传感器
CN111678624A (zh) 一种多通道柔性压力传感器及其制备方法
Ahmad et al. A low-cost printed humidity sensor on cellulose substrate by EHD printing
KR101676760B1 (ko) 전기장을 이용한 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
KR101701603B1 (ko) 전기 방사 장치 및 이를 이용한 투명 전극의 제조 방법
CN105940459A (zh) 包括石墨烯和金属纳米线的导电薄膜的制备
CN103215665A (zh) 一种复式环形电极静电纺丝装置
CN203782281U (zh) 一种针对微纳加工的电纺射流快速稳定控制装置
CN109228305A (zh) 一种电场诱导辅助电喷射的三维打印方法
CN102409417A (zh) 一种人工智能型静电纺丝仪
CN112254848A (zh) 一种基于喷墨打印制备的多通道柔性压力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900790

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14900790

Country of ref document: EP

Kind code of ref document: A1