WO2016027858A1 - Method for producing layered nano thin-film comprising metal oxide film and polymer compound film, method for producing metal oxide nano thin-film, and layered nano thin-film comprising metal oxide film and polymer compound film - Google Patents

Method for producing layered nano thin-film comprising metal oxide film and polymer compound film, method for producing metal oxide nano thin-film, and layered nano thin-film comprising metal oxide film and polymer compound film Download PDF

Info

Publication number
WO2016027858A1
WO2016027858A1 PCT/JP2015/073391 JP2015073391W WO2016027858A1 WO 2016027858 A1 WO2016027858 A1 WO 2016027858A1 JP 2015073391 W JP2015073391 W JP 2015073391W WO 2016027858 A1 WO2016027858 A1 WO 2016027858A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer compound
metal
metal oxide
gel
Prior art date
Application number
PCT/JP2015/073391
Other languages
French (fr)
Japanese (ja)
Inventor
弘和 下岡
Original Assignee
国立大学法人 九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 九州工業大学 filed Critical 国立大学法人 九州工業大学
Priority to JP2016544249A priority Critical patent/JPWO2016027858A1/en
Publication of WO2016027858A1 publication Critical patent/WO2016027858A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Definitions

  • the present invention relates to a method for producing a laminated nano thin film of a metal oxide film and a polymer compound film using a metal alkoxide solution as a starting material, a method for producing a metal oxide nano thin film, and a metal oxide film and a polymer compound film.
  • the present invention relates to a laminated nano thin film.
  • the inventor previously supplied a partially hydrolyzed high-concentration metal alkoxide solution to the gas-liquid interface between an inert gas and a non-aqueous solvent to form a gel film, which was aged and washed.
  • a barium titanate free-standing sintered film is further obtained (see Patent Document 1).
  • the obtained barium titanate free-standing film is a transparent film made of pseudocubic barium titanate crystals of 5 nm or less and having a thickness of tens of ⁇ m or less.
  • the strength of the obtained film is weak, it is impossible to produce a free-standing film with a large area, and a problem remains in workability.
  • (Ca 2 Nb 3 O 10 is in the paper -) layered compound using a colloid solution containing nanosheet, the nanosheet floating in the gas-liquid interface gathered in the surface direction in the same way as LB method, taking transferred it to the substrate
  • a method for producing a nano thin film having a thickness of several nanometers is disclosed (see Non-Patent Document 1). Since a layered compound is used, crystal flakes having a thickness of 0.5 to 3 nm can be obtained by peeling. However, in this method, a dense film cannot be obtained unless they are gathered in the plane direction at the gas-liquid interface, and a problem remains in workability.
  • the nanosheets are only a few ⁇ m in size, in order to obtain the required size, it is necessary to gather a large number of flakes, so that a film can be obtained only on the support substrate, so that the self-supporting property is reduced. There is also a problem of not. It can be said that the nanosheets are self-supporting in an optimal tape forming method for laminating nanosheets. Also, this method requires the use of a layered compound having a property of peeling to a molecular level thinness in order to realize a thin nanosheet.
  • Patent Document 1 has room for improvement in the strength and flexibility of the obtained film, and the workability when producing a film that can realize these characteristics is improved. There is room for room.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention A step of hydrolyzing the metal alkoxide by adding 0.01 to 6 times the molar amount of water to the metal alkoxide solution to a metal alkoxide solution; Developing a hydrolyzed metal alkoxide solution on the surface of a non-aqueous solvent to obtain a metal oxide gel film; Aging the gel film while holding the gel film as it is, A solution of a polymer compound that reacts with or adsorbs to the gel film is developed on the surface of the non-aqueous solvent on which the aged gel film develops, and the polymer compound solution is present at the interface between the gel film and the non-aqueous solvent.
  • a metal alkoxide solution of a metal species different from the metal alkoxide is added to a metal alkoxide solution of the different metal species.
  • the gel film and the polymer compound film are formed in the step of forming the gel film
  • the hydrolyzed metal alkoxide solution of the different metal species is developed on the surface of the non-aqueous solvent on which the membrane develops to form a two-layer gel film
  • a two-layer gel Membrane and polymer compound Characterized in that to obtain a three-layered laminate nano thin film.
  • a metal alkoxide solution of a metal species different from the metal alkoxide is added to the metal alkoxide solution of the different metal species.
  • the doping metal is added in a molar amount of 0.001 to 1 times the molar amount of the metal.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the metal alkoxide solution is a mixed solution of barium alkoxide and titanium alkoxide.
  • the metal alkoxide solution of a metal species different from the metal alkoxide is a mixed solution of strontium alkoxide and titanium alkoxide. It is characterized by being.
  • the metal species of the doping metal is niobium, tantalum, strontium, vanadium, lanthanum, antimony or fluorine. It is characterized by being.
  • the solvent of the metal alkoxide solution and the metal alkoxide solution of the different metal species is methanol and 2-methoxyethanol. Or a mixed solvent of isopropanol and 2-methoxyethanol.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the non-aqueous solvent is liquid paraffin.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the aging time is 0.1 to 100 hours.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the polymer compound solution is obtained by dissolving polylactic acid in acetone. .
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention preferably includes a gel film formed on the surface of a non-aqueous solvent by removing the non-aqueous solvent with a solvent. A laminated film of molecular compound films is taken out.
  • the method for producing a metal oxide nanothin film according to the present invention is a laminated nanothin film of a metal oxide film and a polymer compound film obtained by the method for producing a laminated nanothin film of a metal oxide film and a polymer compound film.
  • the polymer compound film is removed from the film.
  • the metal oxide gel thin film having a thickness of less than 100 nm (and, for example, 5 nm or more) is reinforced with a removable polymer compound substance. Composed.
  • the thickness of the polymer compound film is not specified, but is preferably less than 100 nm (and, for example, 5 nm or more).
  • the metal oxide gel thin film may be formed from a plurality of metal oxide gel thin films having different metal species.
  • the laminated nano thin film of this metal oxide film and a polymer compound film is manufactured by the manufacturing method described above.
  • the method for producing a laminated nano-thin film of a metal oxide film and a polymer compound film according to the present invention comprises adding metal in a metal alkoxide solution in a molar amount of 0.01 to 6 times the molar amount of metal in the metal alkoxide solution.
  • a step of hydrolyzing the alkoxide, a step of developing the hydrolyzed metal alkoxide solution on the surface of the non-aqueous solvent to obtain a metal oxide gel film, and a step of aging the gel film while holding the gel film as it is Develop a solution of polymer compound that reacts with gel film and adsorbs to gel film on the surface of non-aqueous solvent that develops aged gel film, and solution of polymer compound at the interface between gel film and non-aqueous solvent Intruded to form a laminated film of a gel film and a polymer compound film, and take out the laminated film of the gel film and the polymer compound film formed on the surface of the non-aqueous solvent and dry it to increase the Manufacture of laminated nano thin films of molecular compound films If, because of its a simple way, a layered nano-thin film rich in strength and flexibility can be produced in a large area.
  • the method for producing a metal oxide nanothin film according to the present invention is a laminated nanothin film of a metal oxide film and a polymer compound film obtained by the method for producing a laminated nanothin film of a metal oxide film and a polymer compound film.
  • a metal oxide nano thin film that is a porous gel film can be used as a material for a separation membrane or a gas sensor.
  • a capacitor for example, MLCC
  • a large capacitance is manufactured using the obtained metal oxide fired nano thin film (thickness is less than 100 nm, for example).
  • the laminate can be fired at once after omitting the binder removal step required in the conventional method. Since this firing can be sufficiently sintered at a low temperature by selecting a material, it can be applied to an electrode material having a low melting point.
  • the laminated nano thin film of the metal oxide film and the polymer compound film according to the present invention has a thinner, wider metal oxide film that is easy to handle because the metal oxide gel thin film is reinforced with the polymer compound film. It becomes.
  • Example 1 It is a figure which shows the result of having measured the frequency dependence of the dielectric constant and dielectric loss of a barium titanate sintered film.
  • Example 1 It is a figure which shows the result of having measured the temperature dependence of the dielectric constant and dielectric loss of a barium titanate sintered film.
  • Example 1 It is a SEM photograph (secondary electron image) of the surface (left half in FIG. 8) and the side surface (right half in FIG. 8) of the BaTiO 3 / SrTiO 3 laminated film.
  • FIG. 9 is an SEM photograph (reflected electron image) of the same place as in FIG.
  • Nb is a diagram showing an energy dispersive X-ray analysis of (EDS) spectrum of the SrTiO 3 film.
  • EDS energy dispersive X-ray analysis of
  • SrTiO 3 film of current - is a graph showing voltage characteristics.
  • It is a SEM photograph of transparent barium titanate gel baked after transferring on a preparation.
  • the method for producing a laminated nano-thin film of a metal oxide film and a polymer compound film according to the first example of this example is a molar amount 0.01 to 6 times the molar amount of metal in the metal alkoxide solution in the metal alkoxide solution.
  • metal oxide gel film metal oxide gel thin film
  • gel A process for aging the gel film while holding the film as it is and a polymer compound that modifies the surface of the gel film by reacting with the gel film or adsorbing to the gel film on the surface of the non-aqueous solvent on which the aged gel film develops
  • the polymer solution is infiltrated into the interface between the gel film and the nonaqueous solvent to form a laminated film of the gel film and the polymer compound film, and formed on the surface of the nonaqueous solvent.
  • the laminated film of gel film and polymer compound film Dried with obtaining a laminated nano thin gel film and a polymer compound film.
  • the metal alkoxide solution is a starting material for the metal oxide film.
  • the metal alkoxide is represented by the general formula M (OR) n .
  • M is a metal element and is not particularly limited in its type, but is preferably titanium, barium, magnesium, calcium, strontium, zirconium, hafnium, manganese, iron, tin, etc. Among these, titanium and barium are more preferred.
  • n is the oxidation number of the metal.
  • the metal alkoxide may be a single metal species or a mixture of a plurality of metal species.
  • the use of a mixed solution of barium alkoxide and titanium alkoxide is a preferred embodiment.
  • it is an organometallic compound which hydrolyzes, such as a metal (beta) -diketonate, a metal carboxylate, and a metal dialkylamide, it can be used instead of a metal alkoxide.
  • the solvent of the metal alkoxide solution alcohol, ether, nitrile, amide and the like can be used, and among these, lower alcohol is preferable.
  • Use of methanol, isopropanol, 2-methoxyethanol or the like as the lower alcohol is a preferred embodiment.
  • the solvent may be a single type, but is preferably a mixed solvent of a plurality of types.
  • a mixed solvent of methanol and 2-methoxyethanol or a mixed solvent of isopropanol and 2-methoxyethanol can be used.
  • the concentration of the metal alkoxide solution in the solvent is not particularly limited.
  • the concentration of the metal alkoxide solution is about 0.7 mol / l (liter) or more, preferably 1 to 1.2 mol / l (liter).
  • aging occurs after gelation, resulting in separation and a higher density gel film.
  • the concentration of the metal alkoxide By adjusting the concentration of the metal alkoxide, the bulk density, the film thickness, and the particle diameter of the particles of the obtained metal oxide film of the laminated nano thin film can be controlled to an appropriate size.
  • the ratio is not particularly limited, but is preferably equimolar.
  • the metal alkoxide solution Prior to the next hydrolysis, the metal alkoxide solution is preferably sufficiently stirred for several days at room temperature, for example, and at this time, it is preferably performed in a dry nitrogen atmosphere in order to prevent the entry of moisture.
  • a molar amount of water 0.01 to 6 times the molar amount of metal in the metal alkoxide solution is added to the metal alkoxide solution.
  • the amount of water is more preferably 2 to 3 times the molar amount of the metal in the metal alkoxide solution.
  • the metal alkoxide solution may be dissolved in a non-aqueous solvent and a gel film may not be obtained.
  • the amount of water exceeds 6 times the molar amount, the metal alkoxide solution may be in a so-called liquid lens state and a good gel film may not be formed in the next step.
  • the method for adding water to the metal alkoxide solution is not particularly limited, and an appropriate method can be adopted. It is a preferred embodiment that water vapor is sprayed onto the metal alkoxide solution, for example, for 100 to 1000 minutes to gradually hydrolyze.
  • the type of the non-aqueous solvent is not particularly limited.
  • paraffinic, cycloparaffinic, olefin, cycloolefinic hydrocarbon, etc. can be used.
  • a liquid crystal can also be used.
  • the use of liquid paraffin is a preferred embodiment.
  • a surfactant may be added as appropriate.
  • an appropriate method such as a dropping method can be used.
  • a metal oxide gel film is formed on the surface of the non-aqueous solvent, in other words, at the interface between the gas phase and the liquid phase.
  • the gas / liquid interface is most preferably a nitrogen / liquid paraffin interface.
  • the film thickness of the gel film can be controlled by adjusting the dropping amount of the metal alkoxide solution.
  • the state is maintained, for example, at room temperature for 0.1 to 100 hours. Thereby, the formation of the gel film proceeds, and the polycondensation reaction proceeds, whereby the bulk density of the gel film is improved and the crystallization of the metal oxide is promoted.
  • the polymer compound to be used is not particularly limited as long as it is a polymer compound that can chemically modify the surface of the gel film, has a low glass transition point to impart strength and flexibility to the solid, and has an appropriate molecular weight. .
  • a compound containing a carbonyl group, a hydroxyl group, an ether group, an amino group, an imino group, a nitro group, a sulfone group, or a halogen in the structure is preferable, and more specifically, polylactic acid, polymethyl methacrylate, or the like. preferable.
  • the use of polylactic acid is a preferred embodiment.
  • the solvent for dissolving the polymer compound is preferably toluene, acetone, tetrahydrofuran, ethyl acetate, methylene chloride, chloroform or the like, and acetone is a preferred embodiment.
  • the concentration of the polymer compound in the polymer compound solution is not particularly limited, but is preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass.
  • An appropriate method can be used for developing a solution of the polymer compound on the surface of the non-aqueous solvent on which the gel film is developed.
  • a dropping method can be used.
  • the solution of the polymer compound is dropped on the exposed surface of the nonaqueous solvent where the gel film is not developed.
  • the solution of the dropped polymer compound is applied to the liquid-liquid interface between the liquid in the pores and the non-aqueous solvent, the gas-liquid interface between the gas in the pores and the non-aqueous solvent, and the solid-liquid interface between the gel skeleton and the non-aqueous solvent.
  • the taking out of the laminated film is an appropriate method.
  • the laminated film may be scooped on the support substrate in the same manner as in the LB method, but may be scooped with a net or wound up from the top surface of the film.
  • the method of removing the non-aqueous solution with a solvent is a preferred embodiment.
  • the nonaqueous solvent adhering to the taken-out laminated film is removed by drying, or when it cannot be removed by drying, a nonaqueous solvent such as hexane, toluene, chloroform, etc. is dissolved, and the polymer compound film is not dissolved. Easy to remove.
  • the laminated film of the gel film and the polymer compound film is dried to obtain a laminated nano thin film of the gel film and the polymer compound film. Drying can be performed by an appropriate method. For example, drying in a nitrogen atmosphere at a temperature of about 0 to 100 ° C. for about 1 to 100 minutes is a preferred embodiment.
  • a metal oxide film having a thickness of about 5 to 1000 nm (more preferably 5 nm or more and less than 100 nm) is converted into a polymer compound having a thickness of 1 to 1000 nm (more preferably 5 nm or more and less than 10 nm).
  • a laminated nano thin film reinforced with a film can be obtained in a large area with a side length of about 0.1 to 10 cm. This thickness is determined by the amount of the metal alkoxide solution dropped and the amount of the polymer compound solution. Since the laminated nano thin film of the metal oxide film and the polymer compound film is reinforced with the polymer compound film, it is highly self-supporting and flexible, and can be tape-molded.
  • the method for producing a metal oxide nanothin film according to the second example of the present embodiment is the metal oxide film and the polymer compound film obtained by the method for producing a laminated nanothin film of the metal oxide film and the polymer compound film.
  • the polymer compound film is removed from the laminated nano thin film.
  • the method of removing the polymer compound film may be a method of dissolving in a solvent, photolysis, biodegradation, or the like, or may be baking.
  • a solvent in the case of dissolving in the former solvent toluene, acetone, tetrahydrofuran, ethyl acetate, methylene chloride, chloroform or the like can be used.
  • the latter baking may be performed by heating by heat conduction or heat transfer, or may be performed by microwave, laser irradiation, current application, or the like.
  • the firing conditions are not particularly limited. For example, it is a preferred embodiment to raise the temperature at 1 to 600 ° C./min in an air atmosphere and to heat at a temperature of 300 to 1350 ° C. for 0.1 to 1000 minutes. Thereby, the polymer compound film is burned out, and a metal oxide nanothin film having high self-supporting property is obtained.
  • a metal oxide nano thin film that is a porous gel film can be used as a material for a separation membrane or a gas sensor.
  • a capacitor having a large capacitance can be produced using the obtained metal oxide fired nanofilm.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the third example of this example is a method of producing a laminated nano film of a metal oxide film and a polymer compound film according to the first example of this example.
  • the metal alkoxide solution of a metal species different from the metal alkoxide in the thin film production method (for example, a mixed solution of strontium alkoxide and titanium alkoxide) is 0.01 to 6 times the molar amount of the metal in the metal alkoxide solution of a different metal species.
  • a three-layer laminated nano thin film of a two-layer gel film and a polymer compound film is obtained.
  • the mechanical strength of the laminated nano thin film can be improved.
  • the method for producing a metal oxide nano thin film according to the fourth example of the present example is a metal obtained by the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the third example of the present example.
  • the polymer compound film is removed from the laminated nano thin film of the oxide film and the polymer compound film.
  • the metal oxide gel thin film may be formed from a plurality (for example, two or more) of metal oxide gel thin films having different metal species.
  • the same effect as that of the method for producing a metal oxide nano thin film according to the second example of the present embodiment can be obtained.
  • the thickness of the dielectric film can be made extremely thin compared to the second example of this embodiment.
  • the electrostatic capacity of can be further increased.
  • the manufacturing method of the laminated nano thin film of the metal oxide film and the polymer compound film according to the fifth example of the present example is the laminated nano film of the metal oxide film and the polymer compound film according to the third example of the present example.
  • a molar amount 0.001 to 1 times the molar amount of the metal in the metal alkoxide solution of a different metal species is added to the metal alkoxide solution of a metal species different from the metal alkoxide in the first example of this embodiment.
  • Add the doping metal is added to the metal alkoxide solution of a metal species different from the metal alkoxide in the first example of this embodiment.
  • Add the doping metal are the same as those in the method of manufacturing the laminated nano-thin film of the metal oxide film and the polymer compound film according to the third example of the present embodiment, and therefore redundant description is omitted.
  • the doping metal is not particularly limited, but niobium, tantalum, strontium, vanadium, lanthanum, antimony or fluorine can be preferably used.
  • the physical properties of the doped metal oxide film can be suitably controlled.
  • conductivity can be obtained by doping the conductive metal.
  • the hydrolyzed alkoxide solution was dropped onto the liquid paraffin / nitrogen interface at a rate of 0.2 ml per 1 cm 2 of liquid paraffin (manufactured by Kanto Chemical Co., Ltd., special grade). An alkoxide solution developed at the interface. This state was maintained for 72 hours to gel the alkoxide.
  • FIG. 1 shows a state in which an acetone solution of polylactic acid is dropped onto liquid paraffin and a state in which the alkoxide gel becomes opaque in a few minutes. The alkoxide gel became clear in a few days.
  • FIG. 3 is a photograph confirming that the laminated film exhibits flexibility.
  • the laminated film of barium titanate gel and polylactic acid was heated in an air atmosphere at a heating rate of 600 ° C./min, heated at 950 ° C. for 10 minutes, and sintered.
  • the polylactic acid was burned out, and a barium titanate sintered film having a thickness of 500 nm was obtained.
  • a barium titanate sintered film having a thickness of 170 nm could be produced by adjusting the dropping amount of the alkoxide solution.
  • the film was a single phase of barium titanate and was transparent. Also, the film was densified and high density.
  • the external appearance of the barium titanate sintered film is shown in FIG.
  • a barium titanate sintered film having a practical thickness of 10 nm or more and less than 100 nm and an ultimate thickness of 1 nm to 10 nm can be produced. Even in this case, since the polymer compound film is laminated at the time of manufacture, it becomes a laminated nano thin film of a metal oxide film and a polymer compound film having strength necessary for work.
  • FIG. 6 shows the results of measuring the frequency dependence of the dielectric constant and dielectric loss of the barium titanate sintered film
  • FIG. 7 shows the results of measuring the temperature dependence.
  • FIG. 12 shows an example in which the transparent barium titanate gel heated at 500 ° C. has a thickness of 40 nm, but the polymer compound film is removed and placed on a preparation (for example, a glass plate). Yes.
  • the concentrated Sr—Ti alkoxide solution was dropped onto the liquid paraffin / nitrogen interface at a rate of 0.2 ml per 1 cm 2 of the surface of liquid paraffin (manufactured by Kanto Chemical Co., Ltd., special grade). An Sr—Ti alkoxide solution developed at the interface. This state was maintained for 10 minutes to gel the Sr—Ti alkoxide.
  • Liquid paraffin was washed away with hexane, and the remaining laminated film of strontium titanate gel and barium titanate gel was dried for several minutes in a nitrogen gas atmosphere to obtain a transparent laminated film of strontium titanate gel and barium titanate gel. .
  • FIG. 8 shows SEM photographs (secondary electron image acceleration voltage 1 kV) of the surface (left half in FIG. 8) and side surfaces (right half in FIG. 8) of the BaTiO 3 / SrTiO 3 laminated film.
  • FIG. 9 shows an SEM photograph (reflected electron image acceleration voltage 1 kV) at the same location as FIG. 9 that thin BaTiO 3 tens nm or less is covers the SrTiO 3 film surface, it can be seen that a two-layer film.
  • the concentrated Nb-doped Sr—Ti alkoxide solution was added dropwise to the liquid paraffin / nitrogen interface at a rate of 0.2 ml per 1 cm 2 of liquid paraffin (manufactured by Kanto Chemical Co., Ltd., special grade).
  • An Nb-doped Sr—Ti alkoxide solution developed at the interface. This state was maintained for 10 minutes to gel the Nb-doped Sr—Ti alkoxide.
  • Liquid paraffin is washed out with hexane, and the remaining layered film of niobium-doped strontium titanate gel and barium titanate gel is dried in a nitrogen gas atmosphere for several minutes to form a layer of transparent niobium-doped strontium titanate gel and barium titanate gel.
  • a membrane was obtained.
  • the laminated film of niobium-doped strontium titanate gel and barium titanate gel was heated in a vacuum at a heating rate of 600 ° C./min and heated at 850 ° C. for 10 minutes for sintering. Thereafter, the temperature was raised in the air at a heating rate of 600 ° C./min, and heating at 850 ° C. for 10 minutes was performed for reoxidation treatment.
  • FIG. 10 shows an energy dispersive X-ray analysis (EDS) spectrum of an Nb: SrTiO 3 (niobium-doped strontium titanate) film. It can be seen that Nb is doped in SrTiO 3 .
  • FIG. 11 shows current-voltage characteristics of the Nb: SrTiO 3 film. It can be seen that the Nb: SrTiO 3 film exhibits good conductivity.
  • the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film, a method for producing a metal oxide nano thin film, and a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention are further reduced in size and size. Capacitors with a capacity can be manufactured. Further, the metal oxide nano thin film can be used as a material for a separation membrane or a gas sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present invention produces a layered nano thin-film comprising a metal oxide film and a polymer compound film by: 1) adding water to a metal alkoxide solution in a manner such that the molar quantity of the water constitutes 0.01 to 6 times the molar quantity of the metal in the metal alkoxide solution, and then hydrolyzing the metal alkoxide; 2) obtaining a gel film of a metal oxide by spreading the hydrolyzed metal alkoxide solution onto the surface of a non-aqueous solvent; 3) holding the gel film as is and curing the same, and spreading a solution of a polymer compound for reacting with or adsorbing to the gel film on the non-aqueous solvent surface on which the cured gel film is spread; 4) forming a layered film comprising the gel film and a polymer compound film; and 5) producing a layered film comprising the gel film and the polymer compound film formed on the surface of the non-aqueous solvent, drying the same, and obtaining a layered nano thin-film of the gel film and the polymer compound film.

Description

金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法及び金属酸化物ナノ薄膜の製造方法並びに金属酸化物膜と高分子化合物膜の積層ナノ薄膜Method for producing laminated nano thin film of metal oxide film and polymer compound film, method for producing metal oxide nano thin film, and laminated nano thin film of metal oxide film and polymer compound film
 本発明は、金属アルコキシド溶液を出発原料とする金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法、及び金属酸化物ナノ薄膜の製造方法、並びに金属酸化物膜と高分子化合物膜の積層ナノ薄膜に関する。 The present invention relates to a method for producing a laminated nano thin film of a metal oxide film and a polymer compound film using a metal alkoxide solution as a starting material, a method for producing a metal oxide nano thin film, and a metal oxide film and a polymer compound film. The present invention relates to a laminated nano thin film.
 例えば、高誘電率を有するチタン酸バリウムの緻密で薄い膜を積層すれば、極めて静電容量が大きいコンデンサを製造することができる。
 しかし、無機化合物の結晶は有機高分子や有機-無機ハイブリッドのような柔軟性と強度の源となる網の目状の架橋構造を持たないので、まず自立膜を作ることが難しい。
For example, if a dense and thin film of barium titanate having a high dielectric constant is laminated, a capacitor having an extremely large capacitance can be manufactured.
However, since crystals of inorganic compounds do not have a network-like cross-linked structure that is a source of flexibility and strength like organic polymers and organic-inorganic hybrids, it is difficult to make a self-supporting film first.
 金属アルコキシド溶液と水界面での界面重合により金属酸化物の自立膜を作製する方法がある。
 しかし、この方法では、膜質が悪く、焼結性が低いという問題がある。
 また、大気と昇華性ナフタレンとの固体界面でアルミナやムライト等の自立膜を作製する方法がある。
 しかし、この方法では、ナフタレンの昇華により膜中に貫通気孔が生成し、また、ナフタレンに接する面の表面粗度が大きいなどの問題がある。
 更にまた、ドクターブレード法によりチタン酸バリウム厚膜を作製する方法がある。
 しかし、この方法では100nm未満の薄膜作製が難しいという問題がある。
There is a method of producing a self-supporting film of metal oxide by interfacial polymerization at the metal alkoxide solution and water interface.
However, this method has a problem that the film quality is poor and the sinterability is low.
There is also a method for producing a self-supporting film such as alumina or mullite at the solid interface between the atmosphere and sublimable naphthalene.
However, this method has a problem that through pores are generated in the film due to sublimation of naphthalene, and the surface roughness of the surface in contact with naphthalene is large.
Furthermore, there is a method for producing a barium titanate thick film by a doctor blade method.
However, this method has a problem that it is difficult to produce a thin film of less than 100 nm.
 本発明者は、先に、部分的に加水分解した高濃度の金属アルコキシド溶液を不活性ガスと非水溶媒の気液界面に供給してゲル膜を生成し、この膜を熟成し、洗浄し、不活性ガス中で乾燥することによってチタン酸バリウム自立膜を作製する方法を提案している。作製したチタン酸バリウム自立膜を酸化性雰囲気中で焼結することによって、更にチタン酸バリウム自立焼結膜を得る(特許文献1参照)。
 得られるチタン酸バリウム自立膜は、5nm以下の擬立方晶チタン酸バリウム結晶からなる、厚さが数十μm以下の透明な膜である。
 しかし、この方法では、得られる膜の強度が弱いため、大面積で自立膜を作製することが出来ず、また、作業性に問題が残る。
The inventor previously supplied a partially hydrolyzed high-concentration metal alkoxide solution to the gas-liquid interface between an inert gas and a non-aqueous solvent to form a gel film, which was aged and washed. Have proposed a method of producing a barium titanate free-standing film by drying in an inert gas. By sintering the produced barium titanate free-standing film in an oxidizing atmosphere, a barium titanate free-standing sintered film is further obtained (see Patent Document 1).
The obtained barium titanate free-standing film is a transparent film made of pseudocubic barium titanate crystals of 5 nm or less and having a thickness of tens of μm or less.
However, in this method, since the strength of the obtained film is weak, it is impossible to produce a free-standing film with a large area, and a problem remains in workability.
 また、層状化合物(論文ではCa2Nb3O10 -)のナノシートを含むコロイド溶液を用い、気液界面に浮かぶナノシートをLB法と同じ要領で面方向に寄せ集め、それを基板に移し取って数ナノメートルの厚さのナノ薄膜を作製する方法が開示されている(非特許文献1参照)。層状化合物を用いるため、剥離によって厚さ0.5~3nm薄い結晶の薄片を得ることができる。
 しかし、この方法は、気液界面で面方向に寄せ集めなければち密な膜が得られず、また、作業性に問題が残る。更に、ナノシートが数μm程の大きさに止まるため、必要な大きさを得るためには、薄片を多数寄せ集める必要があり、そのため、支持基板上でしか膜を得られないため、自立性がないという問題もある。ナノシートが自立性を有することは、ナノシートの積層化に最適なテープ成形法では必須といえる。また、この方法は、ナノシートの薄膜化を実現するためには、分子レベルの薄さに剥離する性質を持つ層状化合物を用いることが必要となる。
Further, (Ca 2 Nb 3 O 10 is in the paper -) layered compound using a colloid solution containing nanosheet, the nanosheet floating in the gas-liquid interface gathered in the surface direction in the same way as LB method, taking transferred it to the substrate A method for producing a nano thin film having a thickness of several nanometers is disclosed (see Non-Patent Document 1). Since a layered compound is used, crystal flakes having a thickness of 0.5 to 3 nm can be obtained by peeling.
However, in this method, a dense film cannot be obtained unless they are gathered in the plane direction at the gas-liquid interface, and a problem remains in workability. Furthermore, since the nanosheets are only a few μm in size, in order to obtain the required size, it is necessary to gather a large number of flakes, so that a film can be obtained only on the support substrate, so that the self-supporting property is reduced. There is also a problem of not. It can be said that the nanosheets are self-supporting in an optimal tape forming method for laminating nanosheets. Also, this method requires the use of a layered compound having a property of peeling to a molecular level thinness in order to realize a thin nanosheet.
特開2001-261434号公報JP 2001-261434 A
 解決しようとする問題点は、特許文献1の技術では、得られる膜の強度や柔軟性に改良の余地があり、また、これらの特性を実現できる膜を作製する際の作業性にも改良の余地がある点である。 The problem to be solved is that the technique of Patent Document 1 has room for improvement in the strength and flexibility of the obtained film, and the workability when producing a film that can realize these characteristics is improved. There is room for room.
 本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、
 金属アルコキシド溶液に金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて金属アルコキシドを加水分解する工程と、
 加水分解された金属アルコキシド溶液を非水溶媒の表面に展開して金属酸化物のゲル膜を得る工程と、
 ゲル膜をそのまま保持してゲル膜を熟成する工程と、
 熟成したゲル膜の展開する非水溶媒の表面に、ゲル膜と反応又はゲル膜に吸着する高分子化合物の溶液を展開して、ゲル膜と非水溶媒との界面に高分子化合物の溶液が浸入して、ゲル膜と高分子化合物の積層膜を形成する工程と、
 非水溶媒の表面に形成されるゲル膜と高分子化合物膜の積層膜を取出し、乾燥してゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程と、
を有することを特徴とする。
The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention
A step of hydrolyzing the metal alkoxide by adding 0.01 to 6 times the molar amount of water to the metal alkoxide solution to a metal alkoxide solution;
Developing a hydrolyzed metal alkoxide solution on the surface of a non-aqueous solvent to obtain a metal oxide gel film;
Aging the gel film while holding the gel film as it is,
A solution of a polymer compound that reacts with or adsorbs to the gel film is developed on the surface of the non-aqueous solvent on which the aged gel film develops, and the polymer compound solution is present at the interface between the gel film and the non-aqueous solvent. Intruding and forming a laminated film of a gel film and a polymer compound,
A step of taking a laminated film of the gel film and the polymer compound film formed on the surface of the nonaqueous solvent and drying to obtain a laminated nano thin film of the gel film and the polymer compound film;
It is characterized by having.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法において、好ましくは、前記金属アルコキシドとは異なる金属種の金属アルコキシド溶液に、該異なる金属種の金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて該異なる金属種の金属アルコキシドを加水分解し、前記ゲル膜と高分子化合物膜の積層膜を形成する工程において、該ゲル膜の展開する非水溶媒の表面に、加水分解された該異なる金属種の金属アルコキシド溶液を展開して2層のゲル膜を形成し、2層のゲル膜の展開する非水溶媒の表面に高分子化合物の溶液を展開して2層のゲル膜と高分子化合物膜の3層の積層膜を形成し、前記ゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程において、2層のゲル膜と高分子化合物膜の3層積層ナノ薄膜を得ることを特徴とする。 In the method for producing a laminated nano-thin film of a metal oxide film and a polymer compound film according to the present invention, preferably, a metal alkoxide solution of a metal species different from the metal alkoxide is added to a metal alkoxide solution of the different metal species. In the step of hydrolyzing the metal alkoxide of the different metal species by adding water in a molar amount of 0.01 to 6 times the molar amount of the metal, the gel film and the polymer compound film are formed in the step of forming the gel film The hydrolyzed metal alkoxide solution of the different metal species is developed on the surface of the non-aqueous solvent on which the membrane develops to form a two-layer gel film, In the process of developing a solution of the polymer compound to form a laminated film of two layers of a gel film and a polymer compound film and obtaining a laminated nano thin film of the gel film and the polymer compound film, a two-layer gel Membrane and polymer compound Characterized in that to obtain a three-layered laminate nano thin film.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記金属アルコキシドとは異なる金属種の金属アルコキシド溶液に、該異なる金属種の金属アルコキシド溶液の金属のモル量の0.001~1倍のモル量のドープ用金属を加えることを特徴とする。 In the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention, preferably, a metal alkoxide solution of a metal species different from the metal alkoxide is added to the metal alkoxide solution of the different metal species. The doping metal is added in a molar amount of 0.001 to 1 times the molar amount of the metal.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記金属アルコキシド溶液が、バリウムアルコキシドとチタンアルコキシドの混合溶液であることを特徴とする。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the metal alkoxide solution is a mixed solution of barium alkoxide and titanium alkoxide.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記金属アルコキシドとは異なる金属種の金属アルコキシド溶液が、ストロンチウムアルコキシドとチタンアルコキシドの混合溶液であることを特徴とする。 In the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention, preferably, the metal alkoxide solution of a metal species different from the metal alkoxide is a mixed solution of strontium alkoxide and titanium alkoxide. It is characterized by being.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記ドープ用金属の金属種が、ニオブ、タンタル、ストロンチウム、バナジウム、ランタン、アンチモン又はフッ素であることを特徴とする。 In the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention, preferably, the metal species of the doping metal is niobium, tantalum, strontium, vanadium, lanthanum, antimony or fluorine. It is characterized by being.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記金属アルコキシド溶液及び前記異なる金属種の金属アルコキシド溶液の溶媒が、メタノール及び2-メトキシエタノールの混合溶媒又はイソプロパノール及び2-メトキシエタノールの混合溶媒であることを特徴とする。 In the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention, preferably, the solvent of the metal alkoxide solution and the metal alkoxide solution of the different metal species is methanol and 2-methoxyethanol. Or a mixed solvent of isopropanol and 2-methoxyethanol.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記非水溶媒が、流動パラフィンであることを特徴とする。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the non-aqueous solvent is liquid paraffin.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、熟成時間が0.1~100時間であることを特徴とする。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the aging time is 0.1 to 100 hours.
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、前記高分子化合物の溶液が、ポリ乳酸をアセトンに溶解したものであることを特徴とする。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention is preferably characterized in that the polymer compound solution is obtained by dissolving polylactic acid in acetone. .
 また、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、好ましくは、溶剤で非水溶媒を除去することで非水溶媒の表面に形成されるゲル膜と高分子化合物膜の積層膜を取出すことを特徴とする。 In addition, the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention preferably includes a gel film formed on the surface of a non-aqueous solvent by removing the non-aqueous solvent with a solvent. A laminated film of molecular compound films is taken out.
 また、本発明に係る金属酸化物ナノ薄膜の製造方法は、上記の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法により得られる金属酸化物膜と高分子化合物膜の積層ナノ薄膜から高分子化合物膜を除去することを特徴とする。 In addition, the method for producing a metal oxide nanothin film according to the present invention is a laminated nanothin film of a metal oxide film and a polymer compound film obtained by the method for producing a laminated nanothin film of a metal oxide film and a polymer compound film. The polymer compound film is removed from the film.
 そして、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜は、厚みが100nm未満(かつ例えば5nm以上)の金属酸化物ゲル薄膜を、除去可能な高分子化合物質で補強して構成される。
なお、高分子化合物膜の厚みは特定しないが、例えば、100nm未満(かつ例えば5nm以上)とするのがよい。
更に、前記金属酸化物ゲル薄膜が金属種の異なる複数の金属酸化物ゲル薄膜から形成されている場合もある。
また、この金属酸化物膜と高分子化合物膜の積層ナノ薄膜は上記した製造方法によって製造される。
In the laminated nano thin film of the metal oxide film and the polymer compound film according to the present invention, the metal oxide gel thin film having a thickness of less than 100 nm (and, for example, 5 nm or more) is reinforced with a removable polymer compound substance. Composed.
The thickness of the polymer compound film is not specified, but is preferably less than 100 nm (and, for example, 5 nm or more).
Furthermore, the metal oxide gel thin film may be formed from a plurality of metal oxide gel thin films having different metal species.
Moreover, the laminated nano thin film of this metal oxide film and a polymer compound film is manufactured by the manufacturing method described above.
 本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、金属アルコキシド溶液に金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて金属アルコキシドを加水分解する工程と、加水分解された金属アルコキシド溶液を非水溶媒の表面に展開して金属酸化物のゲル膜を得る工程と、ゲル膜をそのまま保持してゲル膜を熟成する工程と、熟成したゲル膜の展開する非水溶媒の表面に、ゲル膜と反応又はゲル膜に吸着する高分子化合物の溶液を展開して、ゲル膜と非水溶媒との界面に高分子化合物の溶液が浸入して、ゲル膜と高分子化合物膜の積層膜を形成する工程と、非水溶媒の表面に形成されるゲル膜と高分子化合物膜の積層膜を取出し、乾燥してゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程と、を有するため、簡易な方法で、強度や柔軟性に富む積層ナノ薄膜を大面積で作製することができる。 The method for producing a laminated nano-thin film of a metal oxide film and a polymer compound film according to the present invention comprises adding metal in a metal alkoxide solution in a molar amount of 0.01 to 6 times the molar amount of metal in the metal alkoxide solution. A step of hydrolyzing the alkoxide, a step of developing the hydrolyzed metal alkoxide solution on the surface of the non-aqueous solvent to obtain a metal oxide gel film, and a step of aging the gel film while holding the gel film as it is Develop a solution of polymer compound that reacts with gel film and adsorbs to gel film on the surface of non-aqueous solvent that develops aged gel film, and solution of polymer compound at the interface between gel film and non-aqueous solvent Intruded to form a laminated film of a gel film and a polymer compound film, and take out the laminated film of the gel film and the polymer compound film formed on the surface of the non-aqueous solvent and dry it to increase the Manufacture of laminated nano thin films of molecular compound films If, because of its a simple way, a layered nano-thin film rich in strength and flexibility can be produced in a large area.
 また、本発明に係る金属酸化物ナノ薄膜の製造方法は、上記の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法により得られる金属酸化物膜と高分子化合物膜の積層ナノ薄膜から高分子化合物膜を除去するため、例えば、高分子化合物膜の除去が焼成によるものでない場合は多孔質なゲル膜である金属酸化物ナノ薄膜を分離膜やガスセンサーの材料に利用することができ、また、高分子化合物膜の除去が焼成による場合は、得られる金属酸化物焼成ナノ薄膜(膜厚が例えば100nm未満)を用いて静電容量が大きいコンデンサ(例えば、MLCC)を製造することができる。
 本発明に係る金属酸化物ナノ薄膜の製造方法においては、従来法では必要であった脱バインダ工程を省略したうえで、積層物を一度で焼成することができる。この焼成は素材を選択することによって、低温でも十分焼結できるので、低融点の電極材料にも適用できる。
 そして、本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜は、金属酸化物ゲル薄膜が高分子化合物膜で補強されているので、取り扱いが容易なより薄いより広い金属酸化物膜となる。
In addition, the method for producing a metal oxide nanothin film according to the present invention is a laminated nanothin film of a metal oxide film and a polymer compound film obtained by the method for producing a laminated nanothin film of a metal oxide film and a polymer compound film. In order to remove the polymer compound film from, for example, when the removal of the polymer compound film is not by firing, a metal oxide nano thin film that is a porous gel film can be used as a material for a separation membrane or a gas sensor. In addition, when the removal of the polymer compound film is performed by firing, a capacitor (for example, MLCC) having a large capacitance is manufactured using the obtained metal oxide fired nano thin film (thickness is less than 100 nm, for example). Can do.
In the method for producing a metal oxide nanothin film according to the present invention, the laminate can be fired at once after omitting the binder removal step required in the conventional method. Since this firing can be sufficiently sintered at a low temperature by selecting a material, it can be applied to an electrode material having a low melting point.
The laminated nano thin film of the metal oxide film and the polymer compound film according to the present invention has a thinner, wider metal oxide film that is easy to handle because the metal oxide gel thin film is reinforced with the polymer compound film. It becomes.
ポリ乳酸のアセトン溶液を流動パラフィン上に滴下したときの様子、及びアルコキシドゲルが数分で不透明化したときの様子を示す図である。(実験例1)It is a figure which shows a mode when the acetone solution of polylactic acid is dripped on a liquid paraffin, and a mode when an alkoxide gel becomes opaque in several minutes. (Experimental example 1) 透明チタン酸バリウムゲルとポリ乳酸の積層膜のSEM写真である。(実験例1)It is a SEM photograph of the laminated film of transparent barium titanate gel and polylactic acid. (Experimental example 1) 積層膜が柔軟性を示すことを確認する様子を示す図である。(実験例1)It is a figure which shows a mode that it confirms that a laminated film shows a softness | flexibility. (Experimental example 1) チタン酸バリウム焼結膜のSEM写真ある。(実験例1)It is a SEM photograph of a barium titanate sintered film. (Experimental example 1) チタン酸バリウム焼結膜の外観を示す図である。(実験例1)It is a figure which shows the external appearance of a barium titanate sintered film. (Experimental example 1) チタン酸バリウム焼結膜の誘電率及び誘電損失の周波数依存性を測定した結果を示す図である。(実験例1)It is a figure which shows the result of having measured the frequency dependence of the dielectric constant and dielectric loss of a barium titanate sintered film. (Experimental example 1) チタン酸バリウム焼結膜の誘電率及び誘電損失の温度依存性を測定した結果を示す図である。(実験例1)It is a figure which shows the result of having measured the temperature dependence of the dielectric constant and dielectric loss of a barium titanate sintered film. (Experimental example 1) BaTiO3/SrTiO3積層膜の表面(図8中、左半分)と側面(図8中、右半分)のSEM写真(二次電子像)である。(実験例2)。It is a SEM photograph (secondary electron image) of the surface (left half in FIG. 8) and the side surface (right half in FIG. 8) of the BaTiO 3 / SrTiO 3 laminated film. (Experimental example 2). 図8と同じ場所のSEM写真(反射電子像)である。(実験例2)FIG. 9 is an SEM photograph (reflected electron image) of the same place as in FIG. (Experimental example 2) Nb:SrTiO3膜のエネルギー分散型X線分析(EDS)スペクトルを示す図である。(実験例3)Nb: is a diagram showing an energy dispersive X-ray analysis of (EDS) spectrum of the SrTiO 3 film. (Experimental example 3) Nb:SrTiO3膜の電流-電圧特性を示す図である。(実験例3)Nb: SrTiO 3 film of current - is a graph showing voltage characteristics. (Experimental example 3) プレパラート上に転写した後、焼成した透明チタン酸バリウムゲルのSEM写真である。(実験例1)It is a SEM photograph of transparent barium titanate gel baked after transferring on a preparation. (Experimental example 1)
 本発明の実施例について、以下に説明する。
 本実施例の第一の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、金属アルコキシド溶液に金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて金属アルコキシドを加水分解する工程と、加水分解された金属アルコキシド溶液を非水溶媒の表面に展開して金属酸化物のゲル膜(金属酸化物ゲル薄膜)を得る工程と、ゲル膜をそのまま保持してゲル膜を熟成する工程と、熟成したゲル膜の展開する非水溶媒の表面に、ゲル膜と反応又はゲル膜に吸着して、ゲル膜の表面を修飾する高分子化合物の溶液を展開して、ゲル膜と非水溶媒との界面に高分子化合物の溶液が浸入して、ゲル膜と高分子化合物膜の積層膜を形成する工程と、非水溶媒の表面に形成されるゲル膜と高分子化合物膜の積層膜を取出し、乾燥してゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程と、を有する。
Examples of the present invention will be described below.
The method for producing a laminated nano-thin film of a metal oxide film and a polymer compound film according to the first example of this example is a molar amount 0.01 to 6 times the molar amount of metal in the metal alkoxide solution in the metal alkoxide solution. Adding metal water to hydrolyze the metal alkoxide, developing the hydrolyzed metal alkoxide solution on the surface of the non-aqueous solvent to obtain a metal oxide gel film (metal oxide gel thin film), gel A process for aging the gel film while holding the film as it is, and a polymer compound that modifies the surface of the gel film by reacting with the gel film or adsorbing to the gel film on the surface of the non-aqueous solvent on which the aged gel film develops The polymer solution is infiltrated into the interface between the gel film and the nonaqueous solvent to form a laminated film of the gel film and the polymer compound film, and formed on the surface of the nonaqueous solvent. The laminated film of gel film and polymer compound film , Dried with obtaining a laminated nano thin gel film and a polymer compound film.
 金属アルコキシド溶液を加水分解する工程において、金属アルコキシド溶液は、金属酸化物膜の出発原料である。
 金属アルコキシドは、一般式M(OR)で表される。Mは金属元素であり、特にその種類を限定するものではないが、チタン、バリウム、マグネシウム、カルシウム、ストロンチウム、ジルコニウム、ハフニウム、マンガン、鉄、スズ等が好ましく、これらのうち、チタン及びバリウムがより好ましい。Rはアルキル基であり、特にその種類を限定するものではないが、C2m+1で表される一般式においてm=1~10の範囲のものが好ましい。nは金属の酸化数である。
In the step of hydrolyzing the metal alkoxide solution, the metal alkoxide solution is a starting material for the metal oxide film.
The metal alkoxide is represented by the general formula M (OR) n . M is a metal element and is not particularly limited in its type, but is preferably titanium, barium, magnesium, calcium, strontium, zirconium, hafnium, manganese, iron, tin, etc. Among these, titanium and barium are more preferred. preferable. R is an alkyl group, and the kind thereof is not particularly limited, but is preferably in the range of m = 1 to 10 in the general formula represented by C m H 2m + 1 . n is the oxidation number of the metal.
 金属アルコキシドは、単一の金属種であってもよく、また、複数の金属種の混合物であってもよい。バリウムアルコキシドとチタンアルコキシドの混合溶液を用いることは好適な実施態様である。
 なお、金属β-ジケトネート、金属カルボキシレート、金属ジアルキルアミド等の加水分解する有機金属化合物であれば、金属アルコキシドに変えて使用可能である。
 金属アルコキシド溶液の溶媒は、アルコール、エーテル、ニトリル、アミド等を用いる
ことができ、これらのうち、低級アルコールが好ましい。低級アルコールとしてメタノール、イソプロパノール、2-メトキシエタノール等を用いることは好適な実施態様である。
 溶媒は、単一種であってもよいが、複数種の混合溶媒であることが好ましい。例えば、メタノール及び2-メトキシエタノールの混合溶媒やイソプロパノール及び2-メトキシエタノールの混合溶媒を用いることができる。
The metal alkoxide may be a single metal species or a mixture of a plurality of metal species. The use of a mixed solution of barium alkoxide and titanium alkoxide is a preferred embodiment.
In addition, if it is an organometallic compound which hydrolyzes, such as a metal (beta) -diketonate, a metal carboxylate, and a metal dialkylamide, it can be used instead of a metal alkoxide.
As the solvent of the metal alkoxide solution, alcohol, ether, nitrile, amide and the like can be used, and among these, lower alcohol is preferable. Use of methanol, isopropanol, 2-methoxyethanol or the like as the lower alcohol is a preferred embodiment.
The solvent may be a single type, but is preferably a mixed solvent of a plurality of types. For example, a mixed solvent of methanol and 2-methoxyethanol or a mixed solvent of isopropanol and 2-methoxyethanol can be used.
 金属アルコキシド溶液の溶媒中の濃度は、特に限定するものではないが、例えば、0.7モル/l(リットル)以上程度、好ましくは、1~1.2モル/l(リットル)の高濃度であると、ゲル化後に熟成すると離漿が生じてより高密度のゲル膜が得られる。金属アルコキシドの濃度を調整することで、得られる積層ナノ薄膜の金属酸化物膜の嵩密度、膜厚、粒子の粒径を適宜のサイズに制御することができる。金属アルコキシドを複数種用いる場合、その比率は特に限定するものではないが、等モルであることが好ましい。
 金属アルコキシド溶液の溶媒としてメタノールと2-メトキシエタノールの混合溶媒を用いる場合その配合比率は、モル比でメタノール:2-メトキシエタノール=1:0.1~0.7程度とすることが好ましい。
 金属アルコキシド溶液は、次に加水分解するに先立ち、例えば室温で数日間十分攪拌しておくことが好ましく、このとき、水分の混入を防止するために、乾燥窒素雰囲気中で行うことが好ましい。
The concentration of the metal alkoxide solution in the solvent is not particularly limited. For example, the concentration of the metal alkoxide solution is about 0.7 mol / l (liter) or more, preferably 1 to 1.2 mol / l (liter). In some cases, aging occurs after gelation, resulting in separation and a higher density gel film. By adjusting the concentration of the metal alkoxide, the bulk density, the film thickness, and the particle diameter of the particles of the obtained metal oxide film of the laminated nano thin film can be controlled to an appropriate size. When using multiple types of metal alkoxides, the ratio is not particularly limited, but is preferably equimolar.
When a mixed solvent of methanol and 2-methoxyethanol is used as the solvent for the metal alkoxide solution, the mixing ratio is preferably about methanol: 2-methoxyethanol = 1: 0.1 to 0.7 in terms of molar ratio.
Prior to the next hydrolysis, the metal alkoxide solution is preferably sufficiently stirred for several days at room temperature, for example, and at this time, it is preferably performed in a dry nitrogen atmosphere in order to prevent the entry of moisture.
 金属アルコキシド溶液の金属アルコキシドを加水分解するために、金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を金属アルコキシド溶液に加える。水の量は、金属アルコキシド溶液の金属のモル量の2~3倍のモル量であると、より好ましい。これにより、金属アルコキシドが部分的に加水分解し、金属アルコキシド同士が重合してコロイドとなり、それらが溶媒中に分散したゾルとなる。コロイドの表面には親水性のOH基や疎水性のアルキル基を有する。そして、金属アルコキシドは、次の工程で、良好なゲル膜を形成する。水の量が0.01倍のモル量未満であると、次の工程で、金属アル
コキシド溶液が非水溶媒に溶解してゲル膜が得られないおそれがある。一方、水の量が6倍のモル量を超えると、次の工程で、金属アルコキシド溶液がいわゆる液体レンズ状態となって良好なゲル膜が形成されないおそれがある。
 金属アルコキシド溶液に水を加える方法は、特に限定するものではなく、適宜の方法を採用することができる。水蒸気を金属アルコキシド溶液に例えば100~1000分間吹き付けて徐々に加水分解することは好適な実施態様である。
In order to hydrolyze the metal alkoxide in the metal alkoxide solution, a molar amount of water 0.01 to 6 times the molar amount of metal in the metal alkoxide solution is added to the metal alkoxide solution. The amount of water is more preferably 2 to 3 times the molar amount of the metal in the metal alkoxide solution. As a result, the metal alkoxide is partially hydrolyzed, the metal alkoxides are polymerized to form a colloid, and a sol in which they are dispersed in the solvent is obtained. The surface of the colloid has a hydrophilic OH group and a hydrophobic alkyl group. The metal alkoxide forms a good gel film in the next step. If the amount of water is less than 0.01 times the molar amount, in the next step, the metal alkoxide solution may be dissolved in a non-aqueous solvent and a gel film may not be obtained. On the other hand, if the amount of water exceeds 6 times the molar amount, the metal alkoxide solution may be in a so-called liquid lens state and a good gel film may not be formed in the next step.
The method for adding water to the metal alkoxide solution is not particularly limited, and an appropriate method can be adopted. It is a preferred embodiment that water vapor is sprayed onto the metal alkoxide solution, for example, for 100 to 1000 minutes to gradually hydrolyze.
 部分的に加水分解された金属アルコキシド溶液を非水溶媒の表面に展開して金属酸化物のゲル膜を得る工程において、非水溶媒は、その種類を特に限定するものではない。例えば、パラフィン系、シクロパラフィン系、オレフィン、シクロオレフィン系炭化水素等を用いることができる。また、液晶も使用できる。流動パラフィンを用いることは好適な実施態様である。このとき、更に、界面活性剤を適宜添加してもよい。
 金属アルコキシド溶液を非水溶媒の表面に展開する方法は、滴下法等の適宜の方法を用いることができる。これにより、非水溶媒の表面に、言い換えれば気相と液相の界面に金属酸化物のゲル膜を生成する。この気液界面としては、窒素/流動パラフィン界面が最も好ましい。金属アルコキシド溶液の滴下量を調整することにより、ゲル膜の膜厚を制御することができる。
In the step of obtaining a metal oxide gel film by spreading a partially hydrolyzed metal alkoxide solution on the surface of the non-aqueous solvent, the type of the non-aqueous solvent is not particularly limited. For example, paraffinic, cycloparaffinic, olefin, cycloolefinic hydrocarbon, etc. can be used. A liquid crystal can also be used. The use of liquid paraffin is a preferred embodiment. At this time, a surfactant may be added as appropriate.
As a method of developing the metal alkoxide solution on the surface of the non-aqueous solvent, an appropriate method such as a dropping method can be used. As a result, a metal oxide gel film is formed on the surface of the non-aqueous solvent, in other words, at the interface between the gas phase and the liquid phase. The gas / liquid interface is most preferably a nitrogen / liquid paraffin interface. The film thickness of the gel film can be controlled by adjusting the dropping amount of the metal alkoxide solution.
 ゲル膜をそのまま保持してゲル膜を熟成する工程では、例えば室温下で0.1~100時間その状態を維持する。これにより、ゲル膜の形成が進み、また、重縮合反応が進行することにより、ゲル膜の嵩密度が向上し、金属酸化物の結晶化が促進される。 In the step of aging the gel film while holding the gel film as it is, the state is maintained, for example, at room temperature for 0.1 to 100 hours. Thereby, the formation of the gel film proceeds, and the polycondensation reaction proceeds, whereby the bulk density of the gel film is improved and the crystallization of the metal oxide is promoted.
 熟成したゲル膜の展開する非水溶媒の表面に、ゲル膜と反応又はゲル膜に吸着する高分子化合物の溶液を展開して、ゲル膜と高分子化合物膜の積層膜を形成する工程において、用いる高分子化合物は、特に限定するものではなく、ゲル膜表面を化学修飾でき、固体に強度や柔軟性を付与するためにガラス転移点が低く、適当な分子量を有する高分子化合物であればよい。具体的には構造中にカルボニル基や水酸基、エーテル基、アミノ基、イミノ基、ニトロ基、スルホン基、ハロゲンを含む化合物等が好ましく、より具体的には、ポリ乳酸、ポリメタクリル酸メチル等が好ましい。ポリ乳酸を用いることは好適な実施態
様である。高分子化合物を溶解する溶媒はトルエン、アセトン、テトラヒドロフラン、酢酸エチル、塩化メチレン、クロロホルム等が好ましく、アセトンを用いることは好適な実施態様である。
 高分子化合物の溶液の高分子化合物の濃度は、特に限定するものではないが、0.1~10質量%とすることが好ましく、1~5質量%とすることがより好ましい。
In the process of forming a laminated film of the gel film and the polymer compound film by developing a solution of the polymer compound that reacts with the gel film or adsorbs to the gel film on the surface of the nonaqueous solvent on which the aged gel film develops, The polymer compound to be used is not particularly limited as long as it is a polymer compound that can chemically modify the surface of the gel film, has a low glass transition point to impart strength and flexibility to the solid, and has an appropriate molecular weight. . Specifically, a compound containing a carbonyl group, a hydroxyl group, an ether group, an amino group, an imino group, a nitro group, a sulfone group, or a halogen in the structure is preferable, and more specifically, polylactic acid, polymethyl methacrylate, or the like. preferable. The use of polylactic acid is a preferred embodiment. The solvent for dissolving the polymer compound is preferably toluene, acetone, tetrahydrofuran, ethyl acetate, methylene chloride, chloroform or the like, and acetone is a preferred embodiment.
The concentration of the polymer compound in the polymer compound solution is not particularly limited, but is preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass.
 ゲル膜の展開する非水溶媒の表面に、高分子化合物の溶液を展開するには適宜の方法を用いることができ、例えば滴下法を用いることができる。高分子化合物の溶液はゲル膜の展開していない非水溶媒の露出表面に滴下する。滴下した高分子化合物の溶液は、ゲル膜中の細孔内液体と非水溶媒の液液界面、細孔内気体と非水溶媒の気液界面、ゲル骨格と非水溶媒の固液界面に素早く拡散して展開して、ゲル膜のOH基やアルコキシ基と反応するか、静電引力や分子間力による吸着でゲル膜と高分子化合物膜の積層膜を生成する。得られる積層膜は、ゲル膜のみの場合に比べて強固であり、かつ、柔軟性に富む。 An appropriate method can be used for developing a solution of the polymer compound on the surface of the non-aqueous solvent on which the gel film is developed. For example, a dropping method can be used. The solution of the polymer compound is dropped on the exposed surface of the nonaqueous solvent where the gel film is not developed. The solution of the dropped polymer compound is applied to the liquid-liquid interface between the liquid in the pores and the non-aqueous solvent, the gas-liquid interface between the gas in the pores and the non-aqueous solvent, and the solid-liquid interface between the gel skeleton and the non-aqueous solvent. It diffuses and spreads quickly and reacts with the OH groups and alkoxy groups of the gel film, or generates a laminated film of the gel film and the polymer compound film by adsorption by electrostatic attraction or intermolecular force. The resulting laminated film is stronger and more flexible than the gel film alone.
 非水溶媒の表面に形成されるゲル膜と高分子化合物膜の積層膜を取出し、乾燥してゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程において、積層膜の取出しは、適宜の方法で行うことができ、例えば、積層膜をLB法と同じ要領で支持基板に掬い取ってもよいが、網で掬い取ったり、膜上面から巻き上げてもよい。溶剤で非水溶液を除去する方法は、好適な実施態様である。取り出した積層膜に付着した非水溶媒は、乾燥して除去するか、乾燥して除去できない場合はヘキサン、トルエン、クロロホルム等の非水溶媒を溶解し、かつ高分子化合物膜を溶解しない溶剤で簡単に除去できる。
 ゲル膜と高分子化合物膜の積層膜を乾燥してゲル膜と高分子化合物膜の積層ナノ薄膜を得る。乾燥は、適宜の方法で行うことができ、例えば、窒素雰囲気中で0~100℃程度の温度で1~100分間程度乾燥することは好適な実施態様である。
In the step of taking out the laminated film of the gel film and the polymer compound film formed on the surface of the nonaqueous solvent and drying to obtain the laminated nano thin film of the gel film and the polymer compound film, the taking out of the laminated film is an appropriate method. For example, the laminated film may be scooped on the support substrate in the same manner as in the LB method, but may be scooped with a net or wound up from the top surface of the film. The method of removing the non-aqueous solution with a solvent is a preferred embodiment. The nonaqueous solvent adhering to the taken-out laminated film is removed by drying, or when it cannot be removed by drying, a nonaqueous solvent such as hexane, toluene, chloroform, etc. is dissolved, and the polymer compound film is not dissolved. Easy to remove.
The laminated film of the gel film and the polymer compound film is dried to obtain a laminated nano thin film of the gel film and the polymer compound film. Drying can be performed by an appropriate method. For example, drying in a nitrogen atmosphere at a temperature of about 0 to 100 ° C. for about 1 to 100 minutes is a preferred embodiment.
 これにより、厚みが5~1000nm程度(5nm以上100nm未満がより好ましい)の金属酸化物膜(金属酸化物ゲル薄膜)を、厚みが1~1000nm(5nm以上10nm未満がより好ましい)の高分子化合物膜で補強した積層ナノ薄膜を一辺の長さが0.1~10cm程度の大面積で得ることができる。この厚みは滴下する金属アルコキシド溶液の量と高分子化合物溶液の量によって決まる。
 金属酸化物膜と高分子化合物膜の積層ナノ薄膜は、高分子化合物膜で補強されているので、自立性に富み、また柔軟性に富むため、テープ成形が可能である。
Accordingly, a metal oxide film (metal oxide gel thin film) having a thickness of about 5 to 1000 nm (more preferably 5 nm or more and less than 100 nm) is converted into a polymer compound having a thickness of 1 to 1000 nm (more preferably 5 nm or more and less than 10 nm). A laminated nano thin film reinforced with a film can be obtained in a large area with a side length of about 0.1 to 10 cm. This thickness is determined by the amount of the metal alkoxide solution dropped and the amount of the polymer compound solution.
Since the laminated nano thin film of the metal oxide film and the polymer compound film is reinforced with the polymer compound film, it is highly self-supporting and flexible, and can be tape-molded.
 本実施例の第二の例に係る金属酸化物ナノ薄膜の製造方法は、上記の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法により得られる金属酸化物膜と高分子化合物膜の積層ナノ薄膜から高分子化合物膜を除去する。
高分子化合物膜の除去方法は、溶剤に溶かす方法や光分解、生分解等であってもよく、また、焼成であってもよい。前者の溶剤に溶かす場合の溶剤としては、トルエン、アセトン、テトラヒドロフラン、酢酸エチル、塩化メチレン、クロロホルム等を用いることができる。一方、後者の焼成は、熱伝導や熱伝達による加熱によるものでもよく、また、マイクロ波やレーザー照射、電流印加等によるものであってもよい。たとえば、熱伝導や熱伝達による加熱による場合、焼成条件は、特に限定するものではない。例えば、大気雰囲気中で1~600℃/分で昇温し、300~1350℃の温度で0.1~1000分間加熱することは、好適な実施態様である。
 これにより、高分子化合物膜が焼失し、自立性に富む金属酸化物ナノ薄膜が得られる。高分子化合物膜の除去が焼成によるものでない場合は、多孔質なゲル膜である金属酸化物ナノ薄膜を分離膜やガスセンサーの材料に利用することができ、また、高分子化合物膜の除去が焼成による場合は、得られる金属酸化物焼成ナノ薄膜を用いて静電容量が大きいコンデンサを製造することができる。
The method for producing a metal oxide nanothin film according to the second example of the present embodiment is the metal oxide film and the polymer compound film obtained by the method for producing a laminated nanothin film of the metal oxide film and the polymer compound film. The polymer compound film is removed from the laminated nano thin film.
The method of removing the polymer compound film may be a method of dissolving in a solvent, photolysis, biodegradation, or the like, or may be baking. As a solvent in the case of dissolving in the former solvent, toluene, acetone, tetrahydrofuran, ethyl acetate, methylene chloride, chloroform or the like can be used. On the other hand, the latter baking may be performed by heating by heat conduction or heat transfer, or may be performed by microwave, laser irradiation, current application, or the like. For example, in the case of heating by heat conduction or heat transfer, the firing conditions are not particularly limited. For example, it is a preferred embodiment to raise the temperature at 1 to 600 ° C./min in an air atmosphere and to heat at a temperature of 300 to 1350 ° C. for 0.1 to 1000 minutes.
Thereby, the polymer compound film is burned out, and a metal oxide nanothin film having high self-supporting property is obtained. If the removal of the polymer compound film is not due to firing, a metal oxide nano thin film that is a porous gel film can be used as a material for a separation membrane or a gas sensor. In the case of firing, a capacitor having a large capacitance can be produced using the obtained metal oxide fired nanofilm.
 本実施例の第三の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、本実施例の第一の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法における金属アルコキシドとは異なる金属種の金属アルコキシド溶液(例えば、ストロンチウムアルコキシドとチタンアルコキシドの混合溶液)に異なる金属種の金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて異なる金属種の金属アルコキシドを加水分解し、ゲル膜と高分子化合物膜の積層膜を形成する工程において、ゲル膜の展開する非水溶媒の表面に、加水分解された異なる金属種の金属アルコキシド溶液を展開して2層のゲル膜を形成し、2層のゲル膜の展開する非水溶媒の表面に高分子化合物の溶液を展開して2層のゲル膜と高分子化合物膜の3層の積層膜を形成し、ゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程において、2層のゲル膜と高分子化合物膜の3層積層ナノ薄膜を得る。ここで、金属アルコキシド、非水溶媒及び高分子化合物膜等については、本実施例の第一の例と同様であるため、重複する記載を省略する。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the third example of this example is a method of producing a laminated nano film of a metal oxide film and a polymer compound film according to the first example of this example. The metal alkoxide solution of a metal species different from the metal alkoxide in the thin film production method (for example, a mixed solution of strontium alkoxide and titanium alkoxide) is 0.01 to 6 times the molar amount of the metal in the metal alkoxide solution of a different metal species. In the process of hydrolyzing metal alkoxides of different metal species by adding an amount of water to form a laminated film of a gel film and a polymer compound film, the hydrolyzed different on the surface of the non-aqueous solvent on which the gel film develops A metal alkoxide solution of a metal species is developed to form a two-layer gel film, and a solution of the polymer compound is developed on the surface of the nonaqueous solvent on which the two-layer gel film is developed to form a two-layer gel film Forming a laminated film of three layers of molecular compound film, in the step of obtaining a laminated nano thin gel film and a polymer compound film, obtaining a three-layered laminate nano thin gel film and a polymer compound film two layers. Here, the metal alkoxide, the non-aqueous solvent, the polymer compound film, and the like are the same as in the first example of the present embodiment, and thus redundant description is omitted.
 本実施例の第三の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法によれば、2層のゲル膜と高分子化合物膜の3層積層ナノ薄膜が得られるため、積層ナノ薄膜の機械的強度を向上することができる。
 本実施例の第四の例に係る金属酸化物ナノ薄膜の製造方法は、本実施例の第三の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法により得られる金属酸化物膜と高分子化合物膜の積層ナノ薄膜から高分子化合物膜を除去する。ここで、具体的な製造条件は本実施例の第二の例に係る金属酸化物ナノ薄膜の製造方法と同様であるので、重複する記載を省略する。なお、金属酸化物ゲル薄膜が、金属種の異なる複数(例えば、2枚以上)の金属酸化物ゲル薄膜から形成されている場合もあり得る。
According to the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the third example of this example, a three-layer laminated nano thin film of a two-layer gel film and a polymer compound film is obtained. The mechanical strength of the laminated nano thin film can be improved.
The method for producing a metal oxide nano thin film according to the fourth example of the present example is a metal obtained by the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the third example of the present example. The polymer compound film is removed from the laminated nano thin film of the oxide film and the polymer compound film. Here, since specific manufacturing conditions are the same as the manufacturing method of the metal oxide nano thin film which concerns on the 2nd example of a present Example, the overlapping description is abbreviate | omitted. In addition, the metal oxide gel thin film may be formed from a plurality (for example, two or more) of metal oxide gel thin films having different metal species.
 本実施例の第四の例に係る金属酸化物ナノ薄膜の製造方法によれば、本実施例の第二の例に係る金属酸化物ナノ薄膜の製造方法と同様の効果を得ることができ、例えば、電極としての機能を有する導電性酸化物膜に誘電体酸化物を積層すれば、本実施例の第二の例に比べて、誘電体膜の厚さを極めて薄くすることができ、コンデンサの静電容量を更に増大できる。 According to the method for producing a metal oxide nano thin film according to the fourth example of the present embodiment, the same effect as that of the method for producing a metal oxide nano thin film according to the second example of the present embodiment can be obtained. For example, if a dielectric oxide is laminated on a conductive oxide film having a function as an electrode, the thickness of the dielectric film can be made extremely thin compared to the second example of this embodiment. The electrostatic capacity of can be further increased.
 本実施例の第五の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法は、本実施例の第三の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法において、本実施例の第一の例における金属アルコキシドとは異なる金属種の金属アルコキシド溶液に、異なる金属種の金属アルコキシド溶液の金属のモル量の0.001~1倍のモル量のドープ用金属を加える。ここで、ドープ用金属以外の条件は本実施例の第三の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法と同様であるため、重複する記載を省略する。 The manufacturing method of the laminated nano thin film of the metal oxide film and the polymer compound film according to the fifth example of the present example is the laminated nano film of the metal oxide film and the polymer compound film according to the third example of the present example. In the method for producing a thin film, a molar amount 0.001 to 1 times the molar amount of the metal in the metal alkoxide solution of a different metal species is added to the metal alkoxide solution of a metal species different from the metal alkoxide in the first example of this embodiment. Add the doping metal. Here, the conditions other than the doping metal are the same as those in the method of manufacturing the laminated nano-thin film of the metal oxide film and the polymer compound film according to the third example of the present embodiment, and therefore redundant description is omitted.
 ドープ用金属は特に限定するものではないが、ニオブ、タンタル、ストロンチウム、バナジウム、ランタン、アンチモン又はフッ素を好適に用いることができる。 The doping metal is not particularly limited, but niobium, tantalum, strontium, vanadium, lanthanum, antimony or fluorine can be preferably used.
 本実施例の第五の例に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法によれば、ドープされる金属酸化物膜の物性を好適に制御することができる。
 例えば、ドープされる金属酸化物膜がもともと絶縁体である場合、導電性金属をドープするとで、導電性を得ることができる。
According to the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to the fifth example of this example, the physical properties of the doped metal oxide film can be suitably controlled.
For example, when the metal oxide film to be doped is originally an insulator, conductivity can be obtained by doping the conductive metal.
実験例Experimental example
 以下、本発明を実験例により具体的に説明するが、この実験例は何ら本発明の範囲を制限するものではない。 Hereinafter, the present invention will be described in detail by experimental examples, but these experimental examples do not limit the scope of the present invention.
(実験例1)
 Ba(OEt)2(高純度化学研究所社製、2Nup)とTi(OiPr)4(イソプロポキシチタン 高純度化学研究所社製、5N)を出発原料として、乾燥した窒素雰囲気中において、CH3OH/CH3OC24OH混合溶媒(体積比60/40)にBa:Ti=1:1のモル比でBaが2.5mol/kgとなるように溶解して高濃度の金属アルコキシド溶液を調製し、室温で約24時間攪拌した。次に、この高濃度の金属アルコキシド溶液にH2O/Ti=3の比率で水蒸気を720分間吹き付けて、金属アルコキシドを徐々に加水分解した。
(Experimental example 1)
In a dry nitrogen atmosphere using Ba (OEt) 2 (manufactured by High-Purity Chemical Laboratory, 2Nup) and Ti (O i Pr) 4 (isopropoxy titanium, high-purity chemical laboratory, 5N) as starting materials, High concentration of metal dissolved in CH 3 OH / CH 3 OC 2 H 4 OH mixed solvent (volume ratio 60/40) at a molar ratio of Ba: Ti = 1: 1 so that Ba is 2.5 mol / kg. An alkoxide solution was prepared and stirred at room temperature for about 24 hours. Next, water vapor was blown to the high concentration metal alkoxide solution at a ratio of H 2 O / Ti = 3 for 720 minutes to gradually hydrolyze the metal alkoxide.
 加水分解したアルコキシド溶液を流動パラフィン(関東化学社製、特級)の表面1cm当たり0.2mlの割合で流動パラフィンと窒素界面に滴下した。界面にはアルコキシド溶液が展開した。この状態を72時間保持して、アルコキシドをゲル化した。 The hydrolyzed alkoxide solution was dropped onto the liquid paraffin / nitrogen interface at a rate of 0.2 ml per 1 cm 2 of liquid paraffin (manufactured by Kanto Chemical Co., Ltd., special grade). An alkoxide solution developed at the interface. This state was maintained for 72 hours to gel the alkoxide.
 濃度2質量%のポリ乳酸(Polysciences Inc.、MW40000~70000)のアセトン溶液を調製し、流動パラフィンの表面1cm当たり0.2mlの割合で流動パラフィンと窒素界面に滴下した。ポリ乳酸は、アルコキシドゲルと流動パラフィンの界面に展開した。
 図1にポリ乳酸のアセトン溶液を流動パラフィン上に滴下したときの様子、及びアルコキシドゲルが数分で不透明化したときの様子を示す。アルコキシドゲルは数日で透明化した。
An acetone solution of polylactic acid (Polysciences Inc., MW 40000-70000) with a concentration of 2% by mass was prepared and dropped at a ratio of 0.2 ml per 1 cm 2 of liquid paraffin surface onto the liquid paraffin / nitrogen interface. Polylactic acid developed at the interface between alkoxide gel and liquid paraffin.
FIG. 1 shows a state in which an acetone solution of polylactic acid is dropped onto liquid paraffin and a state in which the alkoxide gel becomes opaque in a few minutes. The alkoxide gel became clear in a few days.
 ヘキサンで流動パラフィンを洗い流し、残ったチタン酸バリウムゲルとポリ乳酸の積層膜を窒素ガス雰囲気中で数分間乾燥させて、透明チタン酸バリウムゲルとポリ乳酸の積層膜を得た。図2のSEM写真に示すように、積層膜は、透明チタン酸バリウムゲルの厚みが600nm、ポリ乳酸の厚みが30nmであった。また、積層膜の展開面積が850mm程度であった。
 図3は、積層膜が柔軟性を示すことを確認した写真である。
Liquid paraffin was washed away with hexane, and the remaining laminated film of barium titanate gel and polylactic acid was dried in a nitrogen gas atmosphere for several minutes to obtain a laminated film of transparent barium titanate gel and polylactic acid. As shown in the SEM photograph of FIG. 2, the laminated film had a transparent barium titanate gel thickness of 600 nm and a polylactic acid thickness of 30 nm. Moreover, the development area of the laminated film was about 850 mm 2 .
FIG. 3 is a photograph confirming that the laminated film exhibits flexibility.
 つぎに、チタン酸バリウムゲルとポリ乳酸の積層膜を大気雰囲気中で加熱速度600℃/分で昇温し、950℃で10分間加熱して焼結した。ポリ乳酸が焼失し、厚みが500nmのチタン酸バリウム焼結膜が得られた。なお、図4のSEM写真に示すように、アルコキシド溶液の滴下量を調節することで厚みが170nmのチタン酸バリウム焼結膜も作製できた。膜はチタン酸バリウム単相であり透明であった。また、膜は緻密化して高密度であった。チタン酸バリウム焼結膜の外観を図5に示す。
 更に、アルコキシド溶液の滴下量を制御することによって、10nm以上100nm未満の実用的厚み、更に1nm~10nmの極限厚みのチタン酸バリウム焼結膜が製造できる。この場合でも製造時には高分子化合物膜が積層されているので、作業に必要な強度を有する金属酸化物膜と高分子化合物膜の積層ナノ薄膜となる。
Next, the laminated film of barium titanate gel and polylactic acid was heated in an air atmosphere at a heating rate of 600 ° C./min, heated at 950 ° C. for 10 minutes, and sintered. The polylactic acid was burned out, and a barium titanate sintered film having a thickness of 500 nm was obtained. As shown in the SEM photograph of FIG. 4, a barium titanate sintered film having a thickness of 170 nm could be produced by adjusting the dropping amount of the alkoxide solution. The film was a single phase of barium titanate and was transparent. Also, the film was densified and high density. The external appearance of the barium titanate sintered film is shown in FIG.
Furthermore, by controlling the dropping amount of the alkoxide solution, a barium titanate sintered film having a practical thickness of 10 nm or more and less than 100 nm and an ultimate thickness of 1 nm to 10 nm can be produced. Even in this case, since the polymer compound film is laminated at the time of manufacture, it becomes a laminated nano thin film of a metal oxide film and a polymer compound film having strength necessary for work.
 チタン酸バリウム焼結膜の誘電率及び誘電損失の周波数依存性を測定した結果を図6に、温度依存性を測定した結果を図7に示す。
 また、図12には、500℃で加熱処理した透明チタン酸バリウムゲルの厚みが40nmの例を示すが、高分子化合物膜は除去され、プレパラート(例えば、ガラス板)の上に載置されている。
FIG. 6 shows the results of measuring the frequency dependence of the dielectric constant and dielectric loss of the barium titanate sintered film, and FIG. 7 shows the results of measuring the temperature dependence.
FIG. 12 shows an example in which the transparent barium titanate gel heated at 500 ° C. has a thickness of 40 nm, but the polymer compound film is removed and placed on a preparation (for example, a glass plate). Yes.
(実験例2)
 Sr(OEt)2(高純度化学研究所社製、2Nup)とTi(OiPr)4(高純度化学研究所社製、5N)を出発原料として、乾燥した窒素雰囲気中において、(CH32CHOH/CH3OC24OH混合溶媒(重量比15/1)にSr:Ti=1:1のモル比で、Srが0.3mol/kgとなるように溶解して金属アルコキシド溶液を調製し、室温で約12時間攪拌した。このSr-Tiアルコキシド溶液にH2O/Ti=2.5の比率で水蒸気を720分間吹き付けて、Sr-Tiアルコキシドを徐々に加水分解した。次に、加水分解したSr-Tiアルコキシド溶液を真空中で2mol/kgの濃度になるまで減圧濃縮した。
(Experimental example 2)
Sr (OEt) 2 (manufactured by High Purity Chemical Laboratory, 2Nup) and Ti (O i Pr) 4 (manufactured by High Purity Chemical Laboratory, 5N) are used as starting materials in a dry nitrogen atmosphere (CH 3 ) Metal alkoxide solution by dissolving in 2 CHOH / CH 3 OC 2 H 4 OH mixed solvent (weight ratio 15/1) at a molar ratio of Sr: Ti = 1: 1 and Sr being 0.3 mol / kg And stirred at room temperature for about 12 hours. Water vapor was blown to the Sr—Ti alkoxide solution at a ratio of H 2 O / Ti = 2.5 for 720 minutes to gradually hydrolyze the Sr—Ti alkoxide. Next, the hydrolyzed Sr—Ti alkoxide solution was concentrated under reduced pressure in a vacuum to a concentration of 2 mol / kg.
 濃縮したSr-Tiアルコキシド溶液を流動パラフィン(関東化学社製、特級)の表面1cm当たり0.2mlの割合で流動パラフィンと窒素界面に滴下した。界面にはSr-Tiアルコキシド溶液が展開した。この状態を10分保持して、Sr-Tiアルコキシドをゲル化した。 The concentrated Sr—Ti alkoxide solution was dropped onto the liquid paraffin / nitrogen interface at a rate of 0.2 ml per 1 cm 2 of the surface of liquid paraffin (manufactured by Kanto Chemical Co., Ltd., special grade). An Sr—Ti alkoxide solution developed at the interface. This state was maintained for 10 minutes to gel the Sr—Ti alkoxide.
 一方、実験例1で調製したBa(OEt)2とTi(OiPr)4を出発原料として用いた加水分解したアルコキシド溶液を、流動パラフィンの表面1cm当たり0.2mlの割合で流動パラフィンと窒素界面に滴下した。Sr-Tiアルコキシドゲルと流動パラフィンの界面にBa-Tiアルコキシド溶液が展開した。 On the other hand, a hydrolyzed alkoxide solution using Ba (OEt) 2 and Ti (O i Pr) 4 prepared in Experimental Example 1 as starting materials was mixed with liquid paraffin at a rate of 0.2 ml per 1 cm 2 of liquid paraffin surface. It was dripped at the nitrogen interface. A Ba—Ti alkoxide solution developed at the interface between the Sr—Ti alkoxide gel and the liquid paraffin.
 ヘキサンで流動パラフィンを洗い流し、残ったチタン酸ストロンチウムゲルとチタン酸バリウムゲルの積層膜を窒素ガス雰囲気中で数分間乾燥させて、透明なチタン酸ストロンチウムゲルとチタン酸バリウムゲルの積層膜を得た。 Liquid paraffin was washed away with hexane, and the remaining laminated film of strontium titanate gel and barium titanate gel was dried for several minutes in a nitrogen gas atmosphere to obtain a transparent laminated film of strontium titanate gel and barium titanate gel. .
 つぎに、チタン酸ストロンチウムゲルとチタン酸バリウムゲルの積層膜を真空中で加熱速度600℃/分で昇温し、850℃で10分間加熱して焼結した。その後、大気中で加熱速度600℃/分で昇温し、850℃で10分間加熱して再酸化処理を行った。
図8に、BaTiO3/SrTiO3積層膜の表面(図8中、左半分)と側面(図8中、右半分)のSEM写真(二次電子像 加速電圧1kV)を示す。また、図9に図8と同じ場所のSEM写真(反射電子像 加速電圧1kV)を示す。図9より、数十nm以下の薄いBaTiO3がSrTiO3膜表面を覆っており、二層膜であることが分かる。
Next, the laminated film of strontium titanate gel and barium titanate gel was heated in a vacuum at a heating rate of 600 ° C./min and heated at 850 ° C. for 10 minutes to be sintered. Thereafter, the temperature was raised in the air at a heating rate of 600 ° C./min, and heating at 850 ° C. for 10 minutes was performed for reoxidation treatment.
FIG. 8 shows SEM photographs (secondary electron image acceleration voltage 1 kV) of the surface (left half in FIG. 8) and side surfaces (right half in FIG. 8) of the BaTiO 3 / SrTiO 3 laminated film. FIG. 9 shows an SEM photograph (reflected electron image acceleration voltage 1 kV) at the same location as FIG. 9 that thin BaTiO 3 tens nm or less is covers the SrTiO 3 film surface, it can be seen that a two-layer film.
(実験例3)
 Sr(OEt)2(高純度化学研究所社製、2Nup)とTi(OiPr)4(高純度化学研究所社製、5N)とNb(OEt)(高純度化学研究所社製、4N)を出発原料として、乾燥した窒素雰囲気中において、(CH32CHOH/CH3OC24OH混合溶媒(重量比15/1)にSr:Ti:Nb=1:0.9:0.1のモル比で、Srが0.3mol/kgとなるように溶解してNbドープSr-Tiアルコキシド溶液を調製し、室温で約12時間攪拌した。このNbドープSr-Tiアルコキシド溶液にH2O/Ti=2.5の比率で水蒸気を720分間吹き付けて、金属アルコキシドを徐々に加水分解した。
 次に、加水分解したNbドープSr-Tiアルコキシド溶液を真空中で2mol/kgの濃度になるまで減圧濃縮した。
(Experimental example 3)
Sr (OEt) 2 (manufactured by High Purity Chemical Laboratories, 2Nup) and Ti (O i Pr) 4 (manufactured by High Purity Chemical Laboratories, 5N) and Nb (OEt) 5 (manufactured by High Purity Chemical Laboratories, 4N) as a starting material in a dry nitrogen atmosphere, a (CH 3 ) 2 CHOH / CH 3 OC 2 H 4 OH mixed solvent (weight ratio 15/1) was mixed with Sr: Ti: Nb = 1: 0.9: An Nb-doped Sr—Ti alkoxide solution was prepared by dissolving so that Sr was 0.3 mol / kg at a molar ratio of 0.1, and stirred at room temperature for about 12 hours. Water vapor was blown to the Nb-doped Sr—Ti alkoxide solution at a ratio of H 2 O / Ti = 2.5 for 720 minutes to gradually hydrolyze the metal alkoxide.
Next, the hydrolyzed Nb-doped Sr—Ti alkoxide solution was concentrated under reduced pressure in a vacuum to a concentration of 2 mol / kg.
 濃縮したNbドープSr-Tiアルコキシド溶液を流動パラフィン(関東化学社製、特級)の表面1cm当たり0.2mlの割合で流動パラフィンと窒素界面に滴下した。界面にはNbドープSr-Tiアルコキシド溶液が展開した。この状態を10分保持して、NbドープSr-Tiアルコキシドをゲル化した。 The concentrated Nb-doped Sr—Ti alkoxide solution was added dropwise to the liquid paraffin / nitrogen interface at a rate of 0.2 ml per 1 cm 2 of liquid paraffin (manufactured by Kanto Chemical Co., Ltd., special grade). An Nb-doped Sr—Ti alkoxide solution developed at the interface. This state was maintained for 10 minutes to gel the Nb-doped Sr—Ti alkoxide.
 一方、実験例1で調製したBa(OEt)2とTi(OiPr)4を出発原料として用いた加水分解したアルコキシド溶液を、流動パラフィンの表面1cm当たり0.2mlの割合で流動パラフィンと窒素界面に滴下した。NbドープSr-Tiアルコキシドゲルと流動パラフィンの界面にBa-Tiアルコキシドゲルが展開した。 On the other hand, a hydrolyzed alkoxide solution using Ba (OEt) 2 and Ti (O i Pr) 4 prepared in Experimental Example 1 as starting materials was mixed with liquid paraffin at a rate of 0.2 ml per 1 cm 2 of liquid paraffin surface. It was dripped at the nitrogen interface. The Ba—Ti alkoxide gel developed at the interface between the Nb-doped Sr—Ti alkoxide gel and the liquid paraffin.
 ヘキサンで流動パラフィンを洗い流し、残ったニオブドープチタン酸ストロンチウムゲルとチタン酸バリウムゲルの積層膜を窒素ガス雰囲気中で数分間乾燥させて、透明なニオブドープチタン酸ストロンチウムゲルとチタン酸バリウムゲルの積層膜を得た。 Liquid paraffin is washed out with hexane, and the remaining layered film of niobium-doped strontium titanate gel and barium titanate gel is dried in a nitrogen gas atmosphere for several minutes to form a layer of transparent niobium-doped strontium titanate gel and barium titanate gel. A membrane was obtained.
 つぎに、ニオブドープチタン酸ストロンチウムゲルとチタン酸バリウムゲルの積層膜を真空中で加熱速度600℃/分で昇温し、850℃で10分間加熱して焼結した。その後、大気中で加熱速度600℃/分で昇温し、850℃で10分間加熱して再酸化処理を行った。 Next, the laminated film of niobium-doped strontium titanate gel and barium titanate gel was heated in a vacuum at a heating rate of 600 ° C./min and heated at 850 ° C. for 10 minutes for sintering. Thereafter, the temperature was raised in the air at a heating rate of 600 ° C./min, and heating at 850 ° C. for 10 minutes was performed for reoxidation treatment.
 図10に、Nb:SrTiO3(ニオブドープチタン酸ストロンチウム)膜のエネルギー分散型X線分析(EDS)スペクトルを示す。NbがSrTiO3にドープされていることが分かる。また、図11に、Nb:SrTiO3膜の電流-電圧特性を示す。Nb:SrTiO3膜が良好な導電性を示すことが分かる。 FIG. 10 shows an energy dispersive X-ray analysis (EDS) spectrum of an Nb: SrTiO 3 (niobium-doped strontium titanate) film. It can be seen that Nb is doped in SrTiO 3 . FIG. 11 shows current-voltage characteristics of the Nb: SrTiO 3 film. It can be seen that the Nb: SrTiO 3 film exhibits good conductivity.
本発明に係る金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法、金属酸化物ナノ薄膜の製造方法、及び金属酸化物膜と高分子化合物膜の積層ナノ薄膜によって、より小型で大容量のコンデンサを製造できる。また、金属酸化物ナノ薄膜を分離膜やガスセンサーの材料に利用することができる。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film, a method for producing a metal oxide nano thin film, and a laminated nano thin film of a metal oxide film and a polymer compound film according to the present invention are further reduced in size and size. Capacitors with a capacity can be manufactured. Further, the metal oxide nano thin film can be used as a material for a separation membrane or a gas sensor.

Claims (16)

  1.  金属アルコキシド溶液に該金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて金属アルコキシドを加水分解する工程と、
     加水分解された金属アルコキシド溶液を非水溶媒の表面に展開して金属酸化物のゲル膜を得る工程と、
     前記ゲル膜をそのまま保持して該ゲル膜を熟成する工程と、
     熟成したゲル膜の展開する前記非水溶媒の表面に、ゲル膜と反応又はゲル膜に吸着する高分子化合物の溶液を展開して、ゲル膜と高分子化合物膜の積層膜を形成する工程と、
     前記非水溶媒の表面に形成される前記ゲル膜と高分子化合物膜の積層膜を取出し、乾燥してゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程と、
    を有することを特徴とする金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。
    Adding a molar amount of water 0.01 to 6 times the molar amount of the metal in the metal alkoxide solution to hydrolyze the metal alkoxide;
    Developing a hydrolyzed metal alkoxide solution on the surface of a non-aqueous solvent to obtain a metal oxide gel film;
    Aging the gel film while holding the gel film as it is;
    A step of developing a solution of a polymer compound that reacts with or adsorbs to the gel film on the surface of the non-aqueous solvent on which the aged gel film is developed to form a laminated film of the gel film and the polymer compound film; ,
    The step of taking out the laminated film of the gel film and polymer compound film formed on the surface of the non-aqueous solvent and drying to obtain a laminated nano thin film of the gel film and polymer compound film;
    A method for producing a laminated nano thin film of a metal oxide film and a polymer compound film, characterized by comprising:
  2.  前記金属アルコキシドとは異なる金属種の金属アルコキシド溶液に該異なる金属種の金属アルコキシド溶液の金属のモル量の0.01~6倍のモル量の水を加えて該異なる金属種の金属アルコキシドを加水分解し、前記ゲル膜と高分子化合物膜の積層膜を形成する工程において、前記ゲル膜の展開する非水溶媒の表面に、加水分解された前記異なる金属種の金属アルコキシド溶液を展開して2層のゲル膜を形成し、該2層のゲル膜の展開する非水溶媒の表面に前記高分子化合物の溶液を展開して2層のゲル膜と高分子化合物膜の3層の積層膜を形成し、
     前記ゲル膜と高分子化合物膜の積層ナノ薄膜を得る工程において、2層のゲル膜と高分子化合物膜の3層積層ナノ薄膜を得ることを特徴とする
    請求項1記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。
    Water of a metal alkoxide of a different metal species is added to a metal alkoxide solution of a metal species different from the metal alkoxide by adding 0.01 to 6 times the molar amount of water of the metal of the metal alkoxide solution of the different metal species. In the step of decomposing and forming a laminated film of the gel film and the polymer compound film, the hydrolyzed metal alkoxide solution of the different metal species is developed on the surface of the non-aqueous solvent developed by the gel film. Forming a layered gel film, spreading the polymer compound solution on the surface of the non-aqueous solvent on which the two-layered gel film develops, and forming a three-layered film of the two-layered gel film and the polymer compound film. Forming,
    2. The metal oxide film according to claim 1, wherein in the step of obtaining the laminated nano thin film of the gel film and the polymer compound film, a three-layer laminated nano thin film of the two gel films and the polymer compound film is obtained. A method for producing a laminated nano thin film of a polymer compound film.
  3.  前記金属アルコキシドとは異なる金属種の金属アルコキシド溶液に、該異なる金属種の金属アルコキシド溶液の金属のモル量の0.001~1倍のモル量のドープ用金属を加えることを特徴とする請求項2記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 The metal metal alkoxide solution of a metal species different from the metal alkoxide is added with a doping metal in a molar amount of 0.001 to 1 times the molar amount of the metal in the metal alkoxide solution of the different metal species. 3. A method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to 2.
  4.  前記金属アルコキシド溶液が、バリウムアルコキシドとチタンアルコキシドの混合溶液であることを特徴とする請求項1記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to claim 1, wherein the metal alkoxide solution is a mixed solution of barium alkoxide and titanium alkoxide.
  5.  前記金属アルコキシドとは異なる金属種の金属アルコキシド溶液が、ストロンチウムアルコキシドとチタンアルコキシドの混合溶液であることを特徴とする請求項2又は3に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 4. The laminated nano thin film of a metal oxide film and a polymer compound film according to claim 2, wherein the metal alkoxide solution of a metal species different from the metal alkoxide is a mixed solution of strontium alkoxide and titanium alkoxide. Manufacturing method.
  6.  前記ドープ用金属の金属種が、ニオブ、タンタル、ストロンチウム、バナジウム、ランタン、アンチモン又はフッ素であることを特徴とする請求項3記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 4. The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to claim 3, wherein the metal species of the doping metal is niobium, tantalum, strontium, vanadium, lanthanum, antimony or fluorine. .
  7.  前記金属アルコキシド溶液の溶媒が、メタノール及び2-メトキシエタノールの混合溶媒又はイソプロパノール及び2-メトキシエタノールの混合溶媒であることを特徴とする請求項1記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 2. The metal oxide film and the polymer compound film according to claim 1, wherein a solvent of the metal alkoxide solution is a mixed solvent of methanol and 2-methoxyethanol or a mixed solvent of isopropanol and 2-methoxyethanol. Manufacturing method of nano thin film.
  8.  前記金属アルコキシド溶液及び前記異なる金属種の金属アルコキシド溶液の溶媒が、メタノール及び2-メトキシエタノールの混合溶媒又はイソプロパノール及び2-メトキシエタノールの混合溶媒であることを特徴とする請求項2又は3に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 4. The solvent of the metal alkoxide solution and the metal alkoxide solution of the different metal species is a mixed solvent of methanol and 2-methoxyethanol or a mixed solvent of isopropanol and 2-methoxyethanol. For producing a laminated nano thin film of a metal oxide film and a polymer compound film.
  9.  前記非水溶媒が、流動パラフィンであることを特徴とする請求項1~3のいずれか1項に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 The method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to any one of claims 1 to 3, wherein the non-aqueous solvent is liquid paraffin.
  10.  熟成時間が0.1~100時間であることを特徴とする請求項1~3のいずれか1項に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 The method for producing a laminated nano-thin film of a metal oxide film and a polymer compound film according to any one of claims 1 to 3, wherein the aging time is 0.1 to 100 hours.
  11.  前記高分子化合物の溶液が、ポリ乳酸をアセトンに溶解したものであることを特徴とする請求項1~3のいずれか1項に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 4. The laminated nano thin film of a metal oxide film and a polymer compound film according to claim 1, wherein the polymer compound solution is a solution of polylactic acid dissolved in acetone. Production method.
  12.  溶剤で前記非水溶媒を除去することで該非水溶媒の表面に形成される前記ゲル膜と高分子化合物膜の積層膜を取出すことを特徴とする請求項1~3のいずれか1項に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法。 The laminated film of the gel film and the polymer compound film formed on the surface of the nonaqueous solvent is removed by removing the nonaqueous solvent with a solvent, according to any one of claims 1 to 3. For producing a laminated nano thin film of a metal oxide film and a polymer compound film.
  13.  請求項1~12のいずれか1項に記載された金属酸化物膜と高分子化合物膜の積層ナノ薄膜の製造方法により得られる金属酸化物膜と高分子化合物膜の積層ナノ薄膜から高分子化合物膜を除去することを特徴とする金属酸化物ナノ薄膜の製造方法。 A polymer compound from a laminated nano thin film of a metal oxide film and a polymer compound film obtained by the method for producing a laminated nano thin film of a metal oxide film and a polymer compound film according to any one of claims 1 to 12. A method for producing a metal oxide nanothin film, comprising removing the film.
  14. 厚みが100nm未満の金属酸化物ゲル薄膜を、除去可能な高分子化合物膜で補強したことを特徴とする金属酸化物膜と高分子化合物膜の積層ナノ薄膜。 A laminated nano thin film of a metal oxide film and a polymer compound film, wherein a metal oxide gel thin film having a thickness of less than 100 nm is reinforced with a removable polymer compound film.
  15. 前記高分子化合物膜の厚みが100nm未満であることを特徴とする請求項14記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜。 The laminated nano thin film of a metal oxide film and a polymer compound film according to claim 14, wherein the polymer compound film has a thickness of less than 100 nm.
  16.  前記金属酸化物ゲル薄膜が金属種の異なる複数の金属酸化物ゲル薄膜から形成されていることを特徴とする請求項14又は15に記載の金属酸化物膜と高分子化合物膜の積層ナノ薄膜。 The laminated nano thin film of a metal oxide film and a polymer compound film according to claim 14 or 15, wherein the metal oxide gel thin film is formed of a plurality of metal oxide gel thin films having different metal species.
PCT/JP2015/073391 2014-08-21 2015-08-20 Method for producing layered nano thin-film comprising metal oxide film and polymer compound film, method for producing metal oxide nano thin-film, and layered nano thin-film comprising metal oxide film and polymer compound film WO2016027858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544249A JPWO2016027858A1 (en) 2014-08-21 2015-08-20 Method for producing laminated nano thin film of metal oxide film and polymer compound film, method for producing metal oxide nano thin film, and laminated nano thin film of metal oxide film and polymer compound film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014168124 2014-08-21
JP2014-168124 2014-08-21
JP2015033580 2015-02-24
JP2015-033580 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016027858A1 true WO2016027858A1 (en) 2016-02-25

Family

ID=55350799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073391 WO2016027858A1 (en) 2014-08-21 2015-08-20 Method for producing layered nano thin-film comprising metal oxide film and polymer compound film, method for producing metal oxide nano thin-film, and layered nano thin-film comprising metal oxide film and polymer compound film

Country Status (2)

Country Link
JP (1) JPWO2016027858A1 (en)
WO (1) WO2016027858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030426A1 (en) * 2016-08-09 2018-02-15 花王株式会社 Method for producing inorganic oxide in form of thin film
US11084733B2 (en) 2016-08-09 2021-08-10 Kao Corporation Method for producing inorganic oxide in form of thin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089001A (en) * 1998-09-07 2000-03-31 Dainippon Printing Co Ltd Optically functional film and its production
JP2002275390A (en) * 2001-03-15 2002-09-25 Fukuoka Prefecture Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution
JP2003287602A (en) * 2002-03-27 2003-10-10 Japan Science & Technology Corp Method for forming antireflection film, method for manufacturing optical component having antireflection film and optical component having antireflection film
JP2005263551A (en) * 2004-03-18 2005-09-29 Art Kagaku:Kk Method and apparatus for manufacturing oxide ceramic nanosheet
JP2006265053A (en) * 2005-03-25 2006-10-05 Hitachinaka Techno Center:Kk Hybrid ceramic nanosheet and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089001A (en) * 1998-09-07 2000-03-31 Dainippon Printing Co Ltd Optically functional film and its production
JP2002275390A (en) * 2001-03-15 2002-09-25 Fukuoka Prefecture Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution
JP2003287602A (en) * 2002-03-27 2003-10-10 Japan Science & Technology Corp Method for forming antireflection film, method for manufacturing optical component having antireflection film and optical component having antireflection film
JP2005263551A (en) * 2004-03-18 2005-09-29 Art Kagaku:Kk Method and apparatus for manufacturing oxide ceramic nanosheet
JP2006265053A (en) * 2005-03-25 2006-10-05 Hitachinaka Techno Center:Kk Hybrid ceramic nanosheet and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030426A1 (en) * 2016-08-09 2018-02-15 花王株式会社 Method for producing inorganic oxide in form of thin film
JPWO2018030426A1 (en) * 2016-08-09 2018-11-08 花王株式会社 Method for producing thin-film inorganic oxide
CN109476498A (en) * 2016-08-09 2019-03-15 花王株式会社 The manufacturing method of film-form inorganic oxide
US11066302B2 (en) 2016-08-09 2021-07-20 Kao Corporation Method for producing inorganic oxide in form of thin film
US11084733B2 (en) 2016-08-09 2021-08-10 Kao Corporation Method for producing inorganic oxide in form of thin film
CN109476498B (en) * 2016-08-09 2021-11-12 花王株式会社 Method for producing thin film inorganic oxide

Also Published As

Publication number Publication date
JPWO2016027858A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP7270667B2 (en) Low temperature sintering of ceramics and composites
US8343254B2 (en) Method of preparing composite nickel particles
JP2018117126A (en) Dielectric composite, multilayer capacitor including the same, and electronic element
KR102392041B1 (en) Dielectric material, metod of manufacturing thereof, and dielectric devices and electronic devices including the same
WO2012128175A1 (en) Laminated ceramic capacitor, dielectric ceramic, laminated ceramic electronic component, and process for producing laminated ceramic capacitor
KR20070084572A (en) Capacitors having a high energy density
JP2014144904A (en) Niobate dielectric composition and nanosheet thin film using the same
WO2016027858A1 (en) Method for producing layered nano thin-film comprising metal oxide film and polymer compound film, method for producing metal oxide nano thin-film, and layered nano thin-film comprising metal oxide film and polymer compound film
WO2012043208A1 (en) Dielectric ceramic, multilayer ceramic electronic component, and methods for producing same
KR102111825B1 (en) Silicon substrate having ferroelectric film attached thereto
JP6194559B2 (en) Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof
Li et al. Synthesis and characterization of high performance CaZrO3-doped X8R BaTiO3-based dielectric ceramics
JP6541822B2 (en) Non-ferroelectric high dielectric material and method of manufacturing the same
JP6819687B2 (en) Solid electrolyte composition, solid electrolyte green sheet, method for producing solid electrolyte green sheet, solid electrolyte sheet, method for producing solid electrolyte sheet, and all-solid-state battery.
JP2004149349A (en) Method of producing raw material powder for dielectric ceramic, dielectric ceramic, and multilayer ceramic capacitor
WO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
KR20180103550A (en) Dielectric material, metod of manufacturing thereof, and dielectric devices and electronic devices including the same
Panda et al. Tape Casting Technique for Fabrication of Piezoelectric Ceramics and Other Multilayered Devices-A Review.
JP5855159B2 (en) Bismuth niobate dielectric composition with high dielectric constant and low dielectric loss characteristics
KR102566400B1 (en) Dielectric composites, and multi-layered capacitors and electronic devices comprising thereof
KR20120078910A (en) Method for manufacturing of piezoelectric thin film without lead
JP7392015B2 (en) Calcium lithium niobate dielectric composition without dielectric dispersion and method for producing the same
JP2000169226A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same and its production
Liu et al. An Sr doping 0.65 (Bi 0.5 Na 0.5) TiO 3-0.35 (Sr 0.7+ x+ Bi 0.2) TiO 3 ceramic with tunable crystal structures and energy storage performances
CN113939476B (en) Barium titanate particles, method for producing same, and dispersion of barium titanate particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833412

Country of ref document: EP

Kind code of ref document: A1