WO2016027588A1 - 有機系電解質および有機系電解質蓄電池 - Google Patents

有機系電解質および有機系電解質蓄電池 Download PDF

Info

Publication number
WO2016027588A1
WO2016027588A1 PCT/JP2015/069994 JP2015069994W WO2016027588A1 WO 2016027588 A1 WO2016027588 A1 WO 2016027588A1 JP 2015069994 W JP2015069994 W JP 2015069994W WO 2016027588 A1 WO2016027588 A1 WO 2016027588A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen
organic electrolyte
alkyl group
linear
carbon atoms
Prior art date
Application number
PCT/JP2015/069994
Other languages
English (en)
French (fr)
Inventor
西澤 剛
小丸 篤雄
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2016027588A1 publication Critical patent/WO2016027588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an organic electrolyte and an organic electrolyte storage battery using the same.
  • Patent Document 1 a compound having a cyclohexyl group improves the initial storage capacity
  • Non-Patent Document 1 formation of lithium dendrite on an alloy electrode is suppressed when a saturated hydrocarbon such as decalin is added to an electrolyte in an energization experiment using a lithium-indium alloy electrode. It has been reported. This report suggests the effect of suppressing deterioration in a secondary battery using a lithium metal negative electrode, but it is not clear whether it can be applied to an actual storage battery because the details of the experiment may not be clear. .
  • the object of the present invention is to improve the long-term durability of an organic electrolyte storage battery.
  • the present inventors have found that the durability is improved by including a compound containing a cyclohexyl group in the organic electrolyte. It has been found that durability can be further improved by adjusting the type and blending amount of the viscosity solvent, and the present invention has been completed.
  • the present invention provides an organic electrolyte comprising an organic solvent comprising a high dielectric constant solvent and a low viscosity solvent, and a compound represented by any of the following formulas (1) to (4), wherein the low viscosity solvent is diethyl
  • the organic electrolyte is characterized in that it is carbonate and / or ethyl methyl carbonate, and the proportion of the low-viscosity solvent in the organic solvent is 70% by volume or more.
  • R 1 to R 11 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen.
  • R 12 to R 13 are a hydrogen atom, a methyl group, an ethyl group or a methyl group containing a halogen, an ethyl group or a halogen; and R 14 is an unsubstituted or substituted cyclohexyl group.
  • the number of substituents is 11 at the maximum, and each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkyl group having 1 to 4 carbon atoms including halogen, or halogen.
  • R 1 to R 11 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen.
  • R 12 is an alkyl group or halogen, and R 12 is a linear alkylene group having 3 or 4 carbon atoms, and a part of hydrogen may be substituted with halogen and / or a methyl group or a methyl group containing a halogen.
  • R 13 is an unsubstituted or substituted cyclohexyl group, having a maximum of 11 substituents, each independently a linear or branched alkyl group having 1 to 4 carbon atoms, or a carbon number containing halogen 1 to 4 linear or branched alkyl groups, or halogen.)
  • R 1 to R 14 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen.
  • R 1 to R 16 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen.
  • the present invention also relates to an organic electrolyte storage battery using the organic electrolyte.
  • the durability of the storage battery can be improved by using the organic electrolyte of the present invention. Therefore, when the storage battery using the organic electrolyte of the present invention is mounted on an electric vehicle, it is possible to suppress deterioration due to repeated charge and discharge over a long period of time and extend the use period of the electric vehicle. Further, due to its high durability, charging with a relatively high voltage is possible.
  • the organic electrolyte of the present invention contains a compound represented by any of the following formulas (1) to (4).
  • R 1 to R 11 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen.
  • R 12 to R 13 are a hydrogen atom, a methyl group, an ethyl group or a methyl group containing a halogen, an ethyl group or a halogen, and R 14 is an unsubstituted or substituted cyclohexyl group.
  • the maximum number of substituents is 11, and each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkyl group having 1 to 4 carbon atoms including halogen, or halogen. is there.
  • R 1 to R 11 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen.
  • R 12 is a straight-chain alkylene group having 3 or 4 carbon atoms, and a part of hydrogen may be substituted with halogen and / or a methyl group or a methyl group containing a halogen.
  • R 13 is an unsubstituted or substituted cyclohexyl group, having a maximum of 11 substituents, each independently a linear or branched alkyl group having 1 to 4 carbon atoms, or a carbon number containing halogen 1 to 4 linear or branched alkyl groups, or halogen.
  • R 1 to R 14 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen. Group, or halogen.
  • R 1 to R 16 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms including halogen. Group, or halogen.
  • Specific examples of the compound represented by any one of the formulas (1) to (4) include cyclohexyl (3,4-dimethylcyclohexyl) methane, 1-cyclohexyl-1- (3,4-dimethylcyclohexyl) ethane.
  • 1,1-dicyclohexylethane 1-cyclohexyl-1- (2,5-dimethylcyclohexyl) ethane, 1-cyclohexyl-1- (2,3-dimethylcyclohexyl) ethane, 1-cyclohexyl-1 -(2,4-dimethylcyclohexyl) ethane, 1-cyclohexyl-1- (4-ethylcyclohexyl) ethane, 1,3-dicyclohexylpropane, 1,4-dicyclohexylbutane, 1,3-dicyclohexylbutane, trans-hydrindane Cis-hydrindane is preferred, and 1,1-dicyclohexylethane, 1-cyclohexyl-1- (2,5-dimethylcyclohexyl) ethane, trans-hydrindane, and cis-hydrindane are particularly preferred.
  • the compounding ratio of the compound represented by any one of formulas (1) to (4) is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more in the organic electrolyte. On the other hand, it is preferably 10% by weight or less, and more preferably 5% by weight or less. If the compounding ratio of the compound represented by the formula (1) is less than 0.05% by weight, the effect of the present invention may not be obtained. If it is more than 10% by weight, the solubility of the electrolyte salt may decrease, When the viscosity of the system electrolyte increases, the performance of the storage battery may be deteriorated.
  • the purity of the compound represented by any one of formulas (1) to (4) is preferably 95% or more, more preferably 96% or more, and even more preferably 97% or more. If the purity is lower than 95%, impurities that inhibit the effect of the present invention may be contained, and the original effect may not be obtained.
  • the organic electrolyte of the present invention is mainly composed of a compound represented by any one of formulas (1) to (4), an organic solvent and an electrolyte salt, and a high dielectric constant solvent and a low viscosity solvent are used as the organic solvent. It is done.
  • the content of the high dielectric constant solvent in the organic solvent is preferably 5 to 30% by volume, more preferably 10 to 25% by volume, and particularly preferably 15 to 25% by volume.
  • the content of the low-viscosity solvent in the organic electrolyte is preferably 70 to 95% by volume, more preferably 75 to 90% by volume, and particularly preferably 75 to 85% by volume.
  • Examples of the high dielectric constant solvent include, in addition to ethylene carbonate and propylene carbonate, butylene carbonate, ⁇ -butyllactone, ⁇ -valerolactone, tetrahydrofuran, 1,4-dioxane, N-methyl-2-pyrrolidone, N— And methyl-2-oxazolidinone, sulfolane, 2-methylsulfolane and the like.
  • diethyl carbonate and / or ethyl methyl carbonate are used as the low viscosity solvent.
  • diethyl carbonate is particularly preferable.
  • Low viscosity solvents include dimethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, dimethoxyethane, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate,
  • Various solvents such as isobutyl acetate, methyl propionate, ethyl propionate, methyl formate, ethyl formate, methyl butyrate and methyl isobutyrate are known.
  • diethyl carbonate and / or ethyl methyl are used as the low-viscosity solvents.
  • organic solvent containing 70% by volume or more of carbonate and combining with the compound represented by the formula (1) By using an organic solvent containing 70% by volume or more of carbonate and combining with the compound represented by the formula (1), the durability of the storage battery can be improved. Electric vehicle equipped with storage battery using the electrolyte, it is possible to suppress the deterioration due to long-term repeated charging and discharging.
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium hexafluoroarsenate LiAsF 6
  • lithium hexafluoro antimonate LiSbF 6
  • Inorganic lithium salts such as lithium perchlorate (LiClO 4 ) and lithium tetrachloroaluminate (LiAlCl 4 ), and lithium trifluoromethanesulfonate (CF 3 SO 3 Li)
  • lithium bis (trifluoromethanesulfone) imide [(CF 3 SO 2 ) 2 NLi]
  • lithium bis (pentafluoroethanesulfone) imide [(C 2 F 5 SO 2 ) 2 NLi]
  • lithium tris (trifluoromethanesulfone) methide [(CF 3 SO 2 ) 3 CLi]
  • One electrolyte salt may be used alone, or a plurality of electrolyte salts may be mixed and used.
  • the electrolyte salt is usually contained in the organic electrolyte at a concentration of 0.5 to 3 mol / liter, preferably 0.8 to 2 mol / liter, more preferably 1.0 to 1.6 mol / liter. It is desirable.
  • the electrolyte may contain an electrode protective material such as vinylene carbonate, fluoroethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, ethylene sulfite, and the like.
  • an electrode protective material such as vinylene carbonate, fluoroethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, ethylene sulfite, and the like.
  • the present invention also provides an organic electrolyte storage battery using the above-described organic electrolyte of the present invention.
  • any material that can occlude and release lithium can be used as the positive electrode active material.
  • the lithium-containing composite oxide LiMO 2 (M is one kind selected from metals such as Mn, Fe, Co, Ni, or a mixture of two or more kinds, and some of them are other cations such as Mg, Al, Ti, etc.
  • Olivine type materials represented by LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4 , LiMnPO 4, etc. can also be used.
  • lithium-rich materials such as Li 2 MnO 3 and Li 2 MSiO 4 (M is a metal) can also be used.
  • the positive electrode preferably contains lithium and a transition metal, and particularly preferably contains a layered oxide containing cobalt.
  • a carbon-based negative electrode material containing artificial graphite or natural graphite is used for the negative electrode.
  • the negative electrode active material a negative electrode active material into which lithium can be inserted or reacts with lithium is used.
  • graphite is mainly used, but a carbon material such as amorphous carbon, or a material that forms an alloy with Li, such as Li metal, Si, Sn, Al, Si oxide, Si and Si.
  • Si composite oxides containing other metal elements than the above, Sn oxides, Sn composite oxides containing other metal elements other than Sn and Sn, Li 4 Ti 5 O 12, and the like may be mixed and used.
  • the separator should just be formed from the electrically insulating porous body, for example, polymer films, such as polyolefin, such as polyethylene and a polypropylene, polyester, polyethylene terephthalate, a polyimide, or a fiber nonwoven fabric.
  • the material may be used alone or in combination.
  • the separator may be a single layer or a multilayer (composite film).
  • an electrolyte that is gelled by containing a polymer compound that swells with an organic solvent and becomes a holding body that holds the organic electrolyte may be used. This is because by including a polymer compound that swells with an organic solvent, high ionic conductivity can be obtained, excellent charge / discharge efficiency can be obtained, and battery leakage can be prevented.
  • the organic electrolyte contains a polymer compound, the content of the polymer compound is preferably in the range of 0.1% by mass to 10% by mass.
  • the mass ratio of the organic electrolyte to the polymer compound is preferably in the range of 50: 1 to 10: 1. By setting it within this range, higher charge / discharge efficiency can be obtained.
  • polymer compound examples include polyvinyl formal, polyethylene oxide, and ether-based polymer compounds such as crosslinked products containing polyethylene oxide, ester-based polymer compounds such as polymethacrylate, acrylate-based polymer compounds, and polyvinylidene fluoride,
  • a vinylidene fluoride polymer such as a copolymer of vinylidene fluoride and hexafluoropropylene may be used.
  • a high molecular compound may be used individually by 1 type, and multiple types may be mixed and used for it.
  • it is desirable to use a fluorine-based polymer compound such as polyvinylidene fluoride.
  • the higher the voltage (charging voltage) when charging a battery the more power can be charged into the battery, and the output during discharging can be improved.
  • the charging voltage is high, the electrode material and the like are liable to be deteriorated, and there are problems in terms of reduction in repeatability, safety and economy. Therefore, the current charging voltage of the organic electrolyte storage battery is generally 4.10 to 4.20V.
  • a higher charging voltage can be adopted. Specifically, it can be used at a charging voltage higher than 4.20V, preferably 4.25V or higher, more preferably 4.35V or higher, and still more preferably 4.45V or higher.
  • the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
  • the coin type organic electrolyte storage battery will be described with reference to FIG. 1, but the type of the organic electrolyte storage battery of the present invention is not limited to the coin type.
  • the button type, the pouch type, the corner type, etc. The present invention can also be applied to organic electrolyte storage batteries such as a mold or a cylinder having a spiral structure.
  • the size of the organic electrolyte storage battery is also arbitrary, and may be large, small, or thin.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a coin-type organic electrolyte storage battery.
  • a positive electrode 12 and a negative electrode 14 are laminated via a separator 15.
  • Each of the positive electrode 12, the negative electrode 14, and the separator 15 has a disk shape, and is accommodated in a space defined by the metal exterior component 11 and the exterior component 13.
  • the interiors of the exterior parts 11 and 13 are filled with an organic electrolyte, and the peripheral parts of the exterior parts 11 and 13 are sealed by caulking through a seal gasket 17.
  • a metal spring 18 and a spacer 19 are disposed between the exterior component 13 and the negative electrode 14.
  • the positive electrode was produced as follows. Active material: LiNi 1/3 Mn 1/3 Co 1/3 O 2 90 weight percent, conductive additive: acetylene black 5 weight percent, binder: polyvinylidene fluoride 5 weight percent in a mixture of N-methylpyrrolidone (hereinafter And abbreviated as NMP) and kneaded to prepare a slurry.
  • NMP N-methylpyrrolidone
  • the prepared slurry was dropped onto an aluminum current collector, formed into a film using a film applicator with a micrometer and an automatic coating machine, and dried in an oven at 100 ° C. in a nitrogen atmosphere.
  • the produced positive electrode was punched into a circle having a diameter of 15 mm, and then pressed.
  • the amount of the positive electrode active material was about 16 mg.
  • the negative electrode was produced as follows. NMP was added to a mixture of active material: 94% by weight of artificial graphite, conductive auxiliary agent: 1% by weight of acetylene black, binder: 5% by weight of polyvinylidene fluoride, and kneaded to prepare a slurry. The prepared slurry was dropped on a copper current collector, formed into a film using a film applicator with a micrometer and an automatic coating machine, and dried in an oven at 110 ° C. in a nitrogen atmosphere. The produced negative electrode was punched into a circle having a diameter of 15 mm, and then pressed. The amount of the negative electrode active material was about 10 mg.
  • a coin-type storage battery was produced using a positive electrode produced by the above-described method, a negative electrode made of a polypropylene separator having a thickness of 25 micrometers punched out in a circular shape, and various organic electrolytes.
  • the organic solvent a high dielectric constant solvent and a low viscosity solvent were used, and LiPF 6 was dissolved at a rate of 1 mol / liter in a solvent in which these were mixed at a predetermined volume ratio. The purity of all the compounds was 97% or more.
  • Ethylene carbonate (hereinafter abbreviated as EC) is used as the high dielectric constant solvent, and diethyl carbonate (hereinafter abbreviated as DEC), ethyl methyl carbonate (hereinafter abbreviated as EMC), or dimethyl carbonate (hereinafter referred to as DMC) as the low viscosity solvent. (Abbreviated) was used.
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 1 An organic electrolyte was prepared as shown in Table 1 below, and a coin-type storage battery was produced as described above.
  • Example 2 As shown in Table 4 below, an organic electrolyte in which the ratio of the high dielectric constant solvent and the low viscosity solvent was changed was prepared, and a coin-type storage battery was produced in the same manner as in Example 1.
  • the coin-type storage battery and pouch-type storage battery produced by the above-described method were installed in a room temperature incubator, and a charge / discharge test was performed.
  • the battery was charged at a constant current of 0.840 mA for 8 hours at a constant voltage of 4.45 V, and then discharged to 3.00 V at a constant current of 0.840 mA.
  • the discharge capacity at this time is defined as the initial storage capacity.
  • the battery was charged with a constant current of 1.68 mA and a constant voltage of 4.45 V for 4 hours, left in a constant temperature bath at 60 ° C. in a charged state, and stored at a high temperature for 3 weeks.
  • the battery After storage, the battery was discharged to 3.00 V at a current of 1.68 mA, charged at a constant current of 1.68 mA for 4 hours at a constant voltage of 4.45 V, and then discharged again to 3.00 V at a current of 1.68 mA. .
  • the discharge capacity at this time is defined as the storage capacity after storage.
  • Table 6 shows the initial storage capacity and the storage capacity after storage of each battery. Since the battery of Comparative 1-4 deteriorated during the initial charge / discharge, a storage test was not performed.
  • the organic electrolyte of the present invention has the effect of increasing the storage capacity of the storage battery after high-temperature storage, and when the storage battery using the organic electrolyte of the present invention is mounted on an electric vehicle, the durability of the battery is improved. It is possible to improve the long-term reliability of the automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 電気自動車の走行可能距離を左右する有機系電解質蓄電池の初期蓄電容量を向上させることが可能な有機系電解質として、高誘電率溶媒および低粘度溶媒からなる有機溶媒、並びに1,1-ジシクロヘキシルエタン、その誘導体、あるいはヒドリンダン等の化合物を含有する有機電解質であって、低粘度溶媒がジエチルカーボネートおよび/またはエチルメチルカーボネートであり、有機溶媒中の低粘度溶媒の割合が70容量%以上であることを特徴とする有機系電解質が提供される。 

Description

有機系電解質および有機系電解質蓄電池
 本発明は、有機系電解質およびそれを用いた有機系電解質蓄電池に関する。
 近年、地球環境との調和を目指した社会構築に向け、化石燃料利用によるCO排出を抑制する試みが多くされている。なかでも自動車等、運輸部門におけるCO排出に関しては、政府により規制がなされ、自動車会社各社によるハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)、蓄電池駆動式電気自動車(BEV)の開発、製品化が加速されている。これら電気自動車のエネルギー源として、安定的に長期間繰返して充放電可能な大型蓄電池の開発が盛んに行われている。有機系電解質蓄電池は、ニッケル水素電池を含む他の蓄電池に比べ、その動作電圧が高く、高出力、高エネルギー密度を達成しやすい有力な電池であり、電気自動車のエネルギー源として益々重要性が増している。このため種々の開発が進められてきており、例えば、電気自動車の走行可能距離を左右する初期蓄電容量を向上させるための化合物等が検討されている。発明者らも種々の化合物を検討した結果、シクロヘキシル基を有する化合物が初期蓄電容量を向上させることを見出している(特許文献1)。
 一方、自動車用途においては、初期蓄電容量とともに約10年間程度の長期間にわたる使用が可能であること、すなわち高い耐久性が求められている。例えば、非特許文献1においては、リチウム―インジウム合金電極を用いた通電実験により、デカリン等の飽和炭化水素を電解質に添加した場合において、合金電極上へのリチウムデンドライトの形成が抑制されることが報告されている。本報告は、リチウム金属負極を用いた二次電池での劣化抑制効果を示唆するものであるが、詳細な実験内容が不明であることもあり、実際の蓄電池へ適応可能かどうかは明らかではない。
国際公開2013/094603
Journal of Power Sources,20巻,253―258頁
 本発明は有機系電解質蓄電池の長期耐久性を向上させることを目的とする。
 本発明者らは、前記課題について鋭意検討を行った結果、シクロヘキシル基を含有する化合物を有機系電解質に含有させることにより、耐久性が向上することを見出したが、有機系電解質に含まれる低粘度溶媒の種類、および配合量を調整することにより、耐久性をさらに向上させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、高誘電率溶媒および低粘度溶媒からなる有機溶媒、並びに下記式(1)~(4)のいずれかで示される化合物を含有する有機電解質であって、低粘度溶媒がジエチルカーボネートおよび/またはエチルメチルカーボネートであり、有機溶媒中の低粘度溶媒の割合が70容量%以上であることを特徴とする有機系電解質に関する。
Figure JPOXMLDOC01-appb-C000005
(式(1)において、R~R11は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンであり、R12~R13は水素原子、メチル基、エチル基もしくはハロゲンを含むメチル基、エチル基またはハロゲンであり、R14は無置換または置換基の付いたシクロヘキシル基であって、置換基数は最大で11であり、それぞれ独立して、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
Figure JPOXMLDOC01-appb-C000006
(式(2)において、R~R11は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンであり、R12は炭素数3もしくは4の直鎖のアルキレン基であり、水素の一部がハロゲンおよび/またはメチル基もしくはハロゲンを含むメチル基で置換されていてもよい。R13は無置換または置換基の付いたシクロヘキシル基であって、置換基数は最大で11であり、それぞれ独立して、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
Figure JPOXMLDOC01-appb-C000007
(式(3)において、R~R14は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
Figure JPOXMLDOC01-appb-C000008
(式(4)において、R~R16は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
 また本発明は、前記有機系電解質を用いた有機系電解質蓄電池に関する。
 本発明の有機系電解質を用いることにより、蓄電池の耐久性を向上させることができる。したがって、本発明の有機系電解質を用いた蓄電池を電気自動車に搭載した場合には、長期にわたる繰り返し充放電による劣化を抑制し、電気自動車の使用期間を延ばすことが可能となる。またその高い耐久性ゆえ比較的高い電圧による充電が可能となる。
コイン型の有機系電解質蓄電池の構造を示す模式断面図である。
 以下、本発明について詳述する。
 本発明の有機系電解質は、下記式(1)~(4)のいずれかで示される化合物を含有する。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、R~R11は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンであり、R12~R13は水素原子、メチル基、エチル基もしくはハロゲンを含むメチル基、エチル基またはハロゲンであり、R14は無置換または置換基の付いたシクロヘキシル基であって、置換基数は最大で11であり、それぞれ独立して、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。
Figure JPOXMLDOC01-appb-C000010
 式(2)において、R~R11は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンであり、R12は炭素数3もしくは4の直鎖のアルキレン基であり、水素の一部がハロゲンおよび/またはメチル基もしくはハロゲンを含むメチル基で置換されていてもよい。R13は無置換または置換基の付いたシクロヘキシル基であって、置換基数は最大で11であり、それぞれ独立して、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。
Figure JPOXMLDOC01-appb-C000011
 式(3)において、R~R14は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。
Figure JPOXMLDOC01-appb-C000012
 式(4)において、R~R16は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。
 かかる式(1)~(4)のいずれかで示される化合物としては、具体的には、シクロヘキシル(3、4-ジメチルシクロヘキシル)メタン、1-シクロヘキシル-1-(3、4-ジメチルシクロヘキシル)エタン、2-(3、4-ジメチルシクロヘキシル)-2-シクロヘキシルプロパン、シクロヘキシル(2、4-ジメチルシクロヘキシル)メタン、1-シクロヘキシル-1-(2、4-ジメチルシクロヘキシル)エタン、2-(2、4-ジメチルシクロヘキシル)-2-シクロヘキシルプロパン、シクロヘキシル(2、5-ジメチルシクロヘキシル)メタン、1-シクロヘキシル-1-(2、5-ジメチルシクロヘキシル)エタン、2-(2、5-ジメチルシクロヘキシル)-2-シクロヘキシルプロパン、シクロヘキシル(2-エチルシクロヘキシル)メタン、1-シクロヘキシル-1-(2-エチルシクロヘキシル)エタン、2-シクロヘキシル-2-(2-エチルシクロヘキシル)プロパン、シクロヘキシル(3-エチルシクロヘキシル)メタン、1-シクロヘキシル-1-(3-エチルシクロヘキシル)エタン、2-シクロヘキシル-2-(3-エチルシクロヘキシル)プロパン、シクロヘキシル(4-エチルシクロヘキシル)メタン、1-シクロヘキシル-1-(4-エチルシクロヘキシル)エタン、2-シクロヘキシル-2-(4-エチルシクロヘキシル)プロパン、シクロヘキシル(2-メチルシクロヘキシル)メタン、1-シクロヘキシル-1-(2-メチルシクロヘキシル)エタン、シクロヘキシル(3-メチルシクロヘキシル)メタン、1-シクロヘキシル-1-(3-メチルシクロヘキシル)エタン、2-シクロヘキシル-2-(3-メチルシクロヘキシル)プロパン、シクロヘキシル(4-メチルシクロヘキシル)メタン、1-シクロヘキシル-1-(4-メチルシクロヘキシル)エタン、(2-メチルシクロヘキシル)(4-メチルシクロヘキシル)メタン、1-(2-メチルシクロヘキシル)-1-(4-メチルシクロヘキシル)エタン、2-(2-メチルシクロヘキシル)-2-(4-メチルシクロヘキシル)プロパン、(2-メチルシクロヘキシル)(3-メチルシクロヘキシル)メタン、1-(2-メチルシクロヘキシル)-1-(3-メチルシクロヘキシル)エタン、2-(2-メチルシクロヘキシル)-2-(3-メチルシクロヘキシル)プロパン、(4-メチルシクロヘキシル)(3-メチルシクロヘキシル)メタン、1-(4-メチルシクロヘキシル)-1-(3-メチルシクロヘキシル)エタン、2-(4-メチルシクロヘキシル)-2-(3-メチルシクロヘキシル)プロパン、シクロヘキシル(4-イソブチルフェニル)メタン、シクロヘキシル(4-イソブチルシクロヘキシル)メタン、1-シクロヘキシル-1-(4-イソブチルシクロヘキシル)エタン、2-シクロヘキシル-2-(4-イソブチルシクロヘキシル)プロパン、シクロヘキシル(2-イソブチルシクロヘキシル)メタン、1-シクロヘキシル-1-(2-イソブチルシクロヘキシル)エタン、2-シクロヘキシル-2-(2-イソブチルシクロヘキシル)プロパン、シクロヘキシル(3-イソブチルシクロヘキシル)メタン、1-シクロヘキシル-1-(3-イソブチルシクロヘキシル)エタン、2-シクロヘキシル-2-(3-イソブチルシクロヘキシル)プロパン、シクロヘキシル(4-イソプロピルフェニル)メタン、シクロヘキシル(4-イソプロピルシクロヘキシル)メタン、1-シクロヘキシル-1-(4-イソプロピルシクロヘキシル)エタン、2-シクロヘキシル-2-(4-イソプロピルシクロヘキシル)プロパン、シクロヘキシル(2-イソプロピルシクロヘキシル)メタン、1-シクロヘキシル-1-(2-イソプロピルシクロヘキシル)エタン、2-シクロヘキシル-2-(2-イソプロピルシクロヘキシル)プロパン、2-シクロヘキシル-2-(2-イソプロピルシクロヘキシル)プロパン、シクロヘキシル(3-イソプロピルシクロヘキシル)メタン、1-シクロヘキシル-1-(3-イソプロピルシクロヘキシル)エタン、2-シクロヘキシル-2-(3-イソプロピルシクロヘキシル)プロパン、2、2-ジシクロヘキシルブタン、1,3-ジシクロヘキシルブタン、1、4-ジシクロヘキシルブタン、1、1-ジシクロヘキシル-2-メチルプロパン、ジシクロヘキシルメタン、1、1-ジシクロヘキシルエタン、2、2-ジシクロヘキシルプロパン、ビス(4-メチルシクロヘキシル)メタン、1、1-ビス(4-メチルシクロヘキシル)エタン、1、1-ビス(2-メチルシクロヘキシル)エタン、1、1-ビス(3-メチルシクロヘキシル)エタン、1、1-ビス(4-エチルシクロヘキシル)エタン、1、1-ビス(2-エチルシクロヘキシル)エタン、1、1-ビス(3-エチルシクロヘキシル)エタン、1、1-ビス(4-(イソプロピルシクロヘキシル))エタン、1、1-ビス(2-(イソプロピルシクロヘキシル))エタン、1、1-ビス(3-(イソプロピルシクロヘキシル))エタン、1、1-ビス(3、4-ジメチルシクロヘキシル)エタン、1、1-ビス(3、5-ジメチルシクロヘキシル)エタン、1、1-ビス(2、5-ジメチルシクロヘキシル)エタン、1、1-ビス(3、4、5-トリメチルシクロヘキシル)エタン、1、1-ビス(3-フルオロシクロヘキシル)エタン、1、1-ビス(2、5-ジフルオロシクロヘキシル)エタン、1、1-ビス(3、5-ジフルオロシクロヘキシル)エタン、1、1-ビス(2、4-ジフルオロシクロヘキシル)エタン、1、1-ビス(3、4、5-トリフルオロシクロヘキシル)エタン、ビス(4-メチルシクロヘキシル)メタン、ビス(2-メチルシクロヘキシル)メタン、ビス(3-メチルシクロヘキシル)メタン、ビス(4-エチルシクロヘキシル)メタン、ビス(2-エチルシクロヘキシル)メタン、ビス(3-エチルシクロヘキシル)メタン、ビス(4-イソプロピルシクロヘキシル))メタン、ビス(2-イソプロピルシクロヘキシル))メタン、ビス(3-イソプロピルシクロヘキシル))メタン、ビス(3、4-ジメチルシクロヘキシル)メタン、ビス(3、5-ジメチルシクロヘキシル)メタン、ビス(2、5-ジメチルシクロヘキシル)メタン、ビス(3、4、5-トリメチルシクロヘキシル)メタン、ビス(3-フルオロシクロヘキシル)メタン、ビス(2、5-ジフルオロシクロヘキシル)メタン、ビス(3、4-ジフルオロシクロヘキシル)メタン、ビス(3、5-ジフルオロシクロヘキシル)メタン、ビス(3、4、5-トリフルオロシクロヘキシル)メタン、2,2-ビス(4-メチルシクロヘキシル)プロパン、2、2-ビス(2-メチルシクロヘキシル)プロパン、2、2-ビス(3-メチルシクロヘキシル)プロパン、2、2-ビス(4-エチルシクロヘキシル)プロパン、2、2-ビス(2-エチルシクロヘキシル)プロパン、2、2-ビス(3-エチルシクロヘキシル)プロパン、2、2-ビス(4-イソプロピルフェニル)プロパン、2、2-ビス(2-イソプロピルフェニル)プロパン、2、2-ビス(3-イソプロピルフェニル)プロパン、2、2-ビス(3、4-ジメチルシクロヘキシル)プロパン、2、2-ビス(3、5-ジメチルシクロヘキシル)プロパン、2、2-ビス(2、5-ジメチルシクロヘキシル)プロパン、2、2-ビス(3、4、5-トリメチルシクロヘキシル)プロパン、2、2-ビス(3-フルオロシクロヘキシル)プロパン、2、2-ビス(2、5-ジフルオロシクロヘキシル)プロパン、2、2-ビス(3、4-ジフルオロシクロヘキシル)プロパン、2、2-ビス(3、5-ジフルオロシクロヘキシル)プロパン、トランス-ヒドリンダン、シス-ヒドリンダンなどが挙げられる。これらは1種を単独で使用しても2種以上を併用しても良い。
 これらの中でも、1,1-ジシクロヘキシルエタン、1-シクロヘキシル-1-(2,5-ジメチルシクロヘキル)エタン、1-シクロヘキシル-1-(2,3-ジメチルシクロヘキル)エタン、1-シクロヘキシル-1-(2,4-ジメチルシクロヘキル)エタン、1-シクロヘキシル-1-(4-エチルシクロヘキシル)エタン、1,3-ジシクロヘキシルプロパン、1,4-ジシクロヘキシルブタン、1,3-ジシクロヘキシルブタン、トランス-ヒドリンダン、シス-ヒドリンダンが好ましく、1,1-ジシクロヘキシルエタン、1-シクロヘキシル-1-(2,5-ジメチルシクロヘキル)エタン、トランス-ヒドリンダン、シス-ヒドリンダンが特に好ましい。
 式(1)~(4)のいずれかで示される化合物の配合割合は、有機系電解質中に0.05重量%以上が好ましく、0.1重量%以上がより好ましい。一方、10重量%以下が好ましく、5重量%以下がより好ましい。式(1)で示される化合物の配合割合が0.05重量%より少ないと、本発明による効果が得られない可能性があり、10重量%より多いと電解質塩の溶解度が低下したり、有機系電解質の粘度が増加することにより、蓄電池の性能が悪化する可能性がある。
 なお、式(1)~(4)のいずれかで示される化合物の純度は、95%以上であることが好ましく、96%以上がより好ましく、97%以上がさらに好ましい。純度が95%より低い場合には、本発明の効果を阻害する不純物が含まれる可能性があり、本来の効果が得られないおそれがある。
 本発明の有機系電解質は、主として、式(1)~(4)のいずれかで示される化合物、有機溶媒および電解質塩から構成され、該有機溶媒としては高誘電率溶媒および低粘度溶媒が用いられる。
 有機溶媒における高誘電率溶媒の含有割合は、5~30容量%であることが好ましく、10~25容量%がより好ましく、15~25容量%が特に好ましい。
 一方、有機系電解質における低粘度溶媒の含有割合は、70~95容量%であることが好ましく、75~90容量%がより好ましく、75~85容量%が特に好ましい
 前記高誘電率溶媒としては、エチレンカーボネート、プロピレンカーボネートの他に、例えば、ブチレンカーボネート、γ―ブチルラクトン、γ―バレロラクトン、テトラヒドロフラン、1、4-ジオキサン、N-メチル-2-ピロリドン、N-メチル-2-オキサゾリジノン、スルホラン、2-メチルスルホランなどが挙げられる。
 前記低粘度溶媒としては、本発明においては、ジエチルカーボネートおよび/またはエチルメチルカーボネートが用いられる。なかでもジエチルカーボネートが特に好ましい。
 低粘度溶媒としては、ジメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、ジメトキシエタン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、プロピオン酸メチル、プロピオン酸エチル、ギ酸メチル、ギ酸エチル、酪酸メチル、イソ酪酸メチルなどの各種溶媒が知られているが、本発明においては、低粘度溶媒としてジエチルカーボネートおよび/またはエチルメチルカーボネートを70容量%以上含有する有機溶媒を用い、かつ前記式(1)で示される化合物と組み合わせることにより、蓄電池の耐久性を向上させることができ、本発明の有機系電解質を用いた蓄電池を搭載した電気自動車は、長期にわたる繰り返し充放電による劣化を抑制することが可能となる。
 電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化アンチモン酸リチウム(LiSbF)、過塩素酸リチウム(LiClO)および四塩化アルミニウム酸リチウム(LiAlCl)などの無機リチウム塩、並びにトリフルオロメタンスルホン酸リチウム(CFSOLi)、リチウムビス(トリフルオロメタンスルホン)イミド[(CFSONLi]、リチウムビス(ペンタフルオロエタンスルホン)イミド[(CSONLi]およびリチウムトリス(トリフルオロメタンスルホン)メチド[(CFSOCLi]などのパーフルオロアルカンスルホン酸誘導体のリチウム塩が挙げられる。電解質塩は1種を単独で用いてもよく、複数種を混合して用いてもよい。
 電解質塩は、通常、0.5~3モル/リットル、好ましくは0.8~2モル/リットル、より好ましくは1.0~1.6モル/リットルの濃度で有機系電解質中に含まれていることが望ましい。
 電解質へは本発明による化合物の他に、例えば、ビニレンカーボネート、フルオロエチレンカーボネート、ビニルエチレンカーボネート、1,3-プロパンスルトン、エチレンサルファイトなどの電極保護材等を含有させてもよい。
 また、本発明は、前記した本発明の有機系電解質を用いた有機系電解質蓄電池を提供する。
 本発明の有機系電解質蓄電池において、正極活物質としてはリチウムを吸蔵、放出可能な材料であれば用いることができる。例えば、リチウム含有複合酸化物LiMO(MはMn、Fe、Co、Niなどの金属より選ばれる1種のみ、または2種以上の混合物であり、一部をMg、Al、Tiなどその他カチオンで置換してもよい)、LiMn、LiNi0.5Mn1.5などや、LiFePO、LiMnPOなどに代表されるオリビン型材料を用いることもできる。その他、LiMnO、LiMSiO(Mは金属)などのリチウム過剰系材料も用いることができる。
 正極としては、リチウムと遷移金属が含まれるものが好ましく、特にコバルトを含む層状酸化物が含まれることが好ましい。
 負極には、人造黒鉛または天然黒鉛を含む炭素系負極材料が用いられる。
 負極活物質としては、リチウムが挿入可能なもしくはリチウムと反応する負極活物質が用いられる。かかる負極活物質としては、黒鉛を主体とするが、非晶質炭素などの炭素材料、あるいはLi金属、Si、Sn、Al、などのLiと合金を形成する材料、Si酸化物、SiとSi以外の他金属元素を含むSi複合酸化物、Sn酸化物、SnとSn以外の他金属元素を含むSn複合酸化物、LiTi12などを混合して用いてもよい。
 セパレータは、電気絶縁性の多孔体から形成されていればよく、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリエチレンテレフタレート、ポリイミドなどのポリマー製の膜または繊維不織布が挙げられる。材質は、単独でもよく複数種を用いてもよい。また、セパレータは単層でも良く、多層(複合化膜)であっても良い。また、セラミックなどの無機材料ナノ粒子を含有しても良い。
 また、セパレータの両面にポリフッ化ビニリデン等の高分子化合物を塗布して用いても良い。
 本発明の有機系電解質蓄電池では、有機溶媒により膨潤して有機系電解質を保持する保持体となる高分子化合物を含むことによりゲル状となった電解質を用いてもよい。有機溶媒により膨潤する高分子化合物を含むことにより高いイオン伝導率を得ることができ、優れた充放電効率が得られると共に、電池の漏液を防止することができるからである。有機系電解質に高分子化合物が含有されている場合、高分子化合物の含有量は、0.1質量%以上10質量%以下の範囲内とすることが好ましい。
 また、セパレータの両面にポリフッ化ビニリデン等の高分子化合物を塗布して用いる場合は、有機系電解質と高分子化合物の質量比を50:1~10:1の範囲内とすることが好ましい。この範囲内とすることにより、より高い充放電効率が得られる。
 前記高分子化合物としては、例えば、ポリビニルホルマール、ポリエチレンオキサイド並びにポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物、およびポリフッ化ビニリデン、並びにフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ化ビニリデンの重合体が挙げられる。高分子化合物は1種を単独で用いてもよく、複数種を混合して用いてもよい。特に、高温保存時の膨潤防止効果の観点からは、ポリフッ化ビニリデンなどのフッ素系高分子化合物を用いることが望ましい。
 一般に電池を充電する際の電圧(充電電圧)が高ければ高いほどより多くの電力を電池に充電することができ、また放電時の出力も向上させることができる。一方、充電電圧が高いと電極材料等の劣化を招きやすく、繰り返し性の低下や安全性や経済性の点で問題がある。このことから有機系電解質蓄電池の充電電圧は現状4.10~4.20Vが一般的である。しかし本発明の有機系電解質蓄電池は高い耐久性を有するためより高い充電電圧を採用できる。具体的には4.20Vより高く、好ましくは4.25V以上、より好ましくは4.35V以上、さらに好ましくは4.45V以上の充電電圧で使用することができる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、ここでは図1を用いてコイン型の有機系電解質蓄電池について説明するが、本発明の有機系電解質蓄電池のタイプはコイン型に限定されるものではなく、例えば、ボタン型、パウチ型、角型、あるいはスパイラル構造を有する筒型などの有機系電解質蓄電池に適用することもできる。また、有機系電解質蓄電池の大きさも任意であり、大型、小型または薄型としてもよい。
 図1は、コイン型の有機系電解質蓄電池の構造を示す模式断面図である。この電池は、正極12と負極14とがセパレータ15を介して積層されたものである。正極12、負極14およびセパレータ15はいずれも円板状であり、金属製の外装部品11および外装部品13によって画成される空間内に収容されている。外装部品11、13の内部は有機系電解質が満たされており、外装部品11、13の周縁部はシールガスケット17を介してかしめられることにより密閉されている。なお、外装部品13と負極14の間には金属製のバネ18とスペーサ19が配置されている。
 正極は以下のように作製した。活物質:LiNi1/3Mn1/3Co1/32 90重量パーセント、導電助剤:アセチレンブラック5重量パーセント、結着材:ポリフッ化ビニリデン5重量パーセントの混合物にN-メチルピロリドン(以下、NMPと略す)を加え、混練し、スラリーを作製した。作製したスラリーをアルミニウム集電体上に滴下し、マイクロメーター付フィルムアプリケーターおよび自動塗工機を用いて製膜し、オーブン中100℃、窒素雰囲気下にて乾燥させた。作製した正極を直径15mmの円形に打ち抜いた後、プレスを行った。正極活物質量は約16mgであった。
 負極は以下のように作製した。活物質:人造黒鉛94重量パーセント、導電助剤:アセチレンブラック1重量パーセント、結着材:ポリフッ化ビニリデン5重量パーセントの混合物にNMPを加え、混練し、スラリーを作製した。作製したスラリーを銅集電体上に滴下し、マイクロメーター付フィルムアプリケーターおよび自動塗工機を用いて製膜し、オーブン中110℃、窒素雰囲気下にて乾燥させた。作製した負極を直径15mmの円形に打ち抜いた後、プレスを行った。負極活物質量は約10mgであった。
 上述の方法で作製した正極、負極と円形に打ち抜いた、厚さ25マイクロメートルのポリプロピレン製のセパレータ、および種々調製した有機系電解質を用いてコイン型蓄電池を作製した。有機溶媒には、高誘電率溶媒と低粘度溶媒を使用し、これらをそれぞれ所定の体積比で混合した溶媒にLiPFを1モル/リットルの割合で溶解させた。また化合物の純度は全て97%以上とした。高誘電率溶媒にはエチレンカーボネート(以下ECと略す)を用い、低粘度溶媒には、ジエチルカーボネート(以下DECと略す)、もしくはエチルメチルカーボネート(以下EMCと略す)、またはジメチルカーボネート(以下DMCと略す)を用いた。
(実施例1)
 以下の表1に示すように有機系電解質を調製し、前記記載のようにコイン型蓄電池を作製した。
Figure JPOXMLDOC01-appb-T000013
(比較例1)
 以下の表2に示すように、化合物なし、および化合物を変えた有機系電解質を調整し、実施例1と同様にコイン型蓄電池を作製した。
Figure JPOXMLDOC01-appb-T000014
(比較例2)
 以下の表3に示すように、低粘度溶媒をDMCに変更した有機系電解質を調整し、実施例1と同様にコイン型蓄電池を作製した。
Figure JPOXMLDOC01-appb-T000015
(実施例2)
 以下の表4に示すように高誘電率溶媒と低粘度溶媒の割合を変えた有機系電解質を調整し、実施例1と同様にコイン型蓄電池を作製した。
Figure JPOXMLDOC01-appb-T000016
(比較例3)
 以下の表5に示すように高誘電率溶媒と低粘度溶媒の割合を変えた有機系電解質を調整し、実施例1と同様にコイン型蓄電池を作製した。
Figure JPOXMLDOC01-appb-T000017
 上述の方法で作製したコイン型蓄電池およびパウチ型蓄電池を室温の恒温器内に設置し、充放電試験を行った。まず0.840mAの定電流、4.45Vの定電圧にて8時間充電を行った後、0.840mAの定電流で3.00Vまで放電を行った。この時の放電容量を初期蓄電容量とする。初期充放電後、1.68mAの定電流、4.45Vの定電圧にて4時間充電し、充電状態にて60℃の恒温槽へ静置し、3週間高温保存した。保存後、1.68mAの電流で3.00Vまで放電、1.68mAの定電流、4.45Vの定電圧にて4時間充電後、再度1.68mAの電流で3.00Vまで放電を行った。この時の放電容量を保存後蓄電容量とする。
 各電池における初期蓄電容量および保存後蓄電容量を表6にまとめた。なお、比較1-4の電池は初期充放電時に劣化したため、保存試験は実施していない。
Figure JPOXMLDOC01-appb-T000018
(参考例1)
 以下の表7に示すように有機系電解質を調整し、実施例1と同様にコイン型蓄電池を作製した。充電電圧を4.20V(参考1-1~1-9)、もしくは4.35V(参考1-10~1-18)に変更して各電池における初期蓄電容量および保存後蓄電容量を測定した。測定結果は表8にまとめた。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 以上の結果より、高誘電率溶媒、およびジエチルカーボネートおよび/またはエチルメチルカーボネートを低粘度溶媒として用いた有機溶媒に、式(1)~(4)のいずれかで示される化合物を適量含有した本発明の有機系電解質は、高温保存後の蓄電容量を増加させる効果、すなわち耐久性を改善させる効果があることが明らかである。また、その耐久性ゆえ従来よりも高い充電電圧で使用することができる。
 本発明の有機系電解質は蓄電池の高温保存後の蓄電容量を増加させる効果があり、本発明の有機系電解質を用いた蓄電池を電気自動車に搭載した場合には電池の耐久性を向上させることで自動車の長期信頼性を向上させることが可能となる。

Claims (6)

  1.  高誘電率溶媒および低粘度溶媒からなる有機溶媒、並びに下記式(1)~(4)のいずれかで示される化合物を含有する有機電解質であって、低粘度溶媒がジエチルカーボネートおよび/またはエチルメチルカーボネートであり、有機溶媒中の低粘度溶媒の割合が70容量%以上であることを特徴とする有機系電解質。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R~R11は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンであり、R12~R13は水素原子、メチル基、エチル基もしくはハロゲンを含むメチル基、エチル基またはハロゲンであり、R14は無置換または置換基の付いたシクロヘキシル基であって、置換基数は最大で11であり、それぞれ独立して、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R~R11は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンであり、R12は炭素数3もしくは4の直鎖のアルキレン基であり、水素の一部がハロゲンおよび/またはメチル基もしくはハロゲンを含むメチル基で置換されていてもよい。R13は無置換または置換基の付いたシクロヘキシル基であって、置換基数は最大で11であり、それぞれ独立して、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)において、R~R14は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)において、R~R16は、それぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐のアルキル基、ハロゲンを含む炭素数1~4の直鎖もしくは分岐のアルキル基、またはハロゲンである。)
  2.  式(1)~(4)のいずれかで示される化合物が、有機系電解質中に0.05~10重量%配合されていることを特徴とする請求項1に記載の有機系電解質。
  3.  式(1)~(4)のいずれかで示される化合物が、1,1-ジシクロヘキシルエタン、1-シクロヘキシル-1-(2,5-ジメチルシクロヘキル)エタン、1-シクロヘキシル-1-(2,3-ジメチルシクロヘキル)エタン、1-シクロヘキシル-1-(2,4-ジメチルシクロヘキル)エタン、1-シクロヘキシル-1-(4-エチルシクロヘキシル)エタン、1,3-ジシクロヘキシルプロパン、1,4-ジシクロヘキシルブタン、1,3-ジシクロヘキシルブタン、トランス-ヒドリンダンおよびシス-ヒドリンダンから選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の有機系電解質。
  4.  請求項1~3のいずれかに記載の有機系電解質を用いたことを特徴とする有機系電解質蓄電池。
  5.  充電電圧が4.20Vより高いことを特徴とする請求項4に記載の有機系電解質蓄電池。
  6.  正極にコバルト、ニッケル、マンガンが含まれることを特徴とする請求項4または5に記載の有機系電解質蓄電池。
PCT/JP2015/069994 2014-08-19 2015-07-13 有機系電解質および有機系電解質蓄電池 WO2016027588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166581A JP2016042448A (ja) 2014-08-19 2014-08-19 有機系電解質および有機系電解質蓄電池
JP2014-166581 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016027588A1 true WO2016027588A1 (ja) 2016-02-25

Family

ID=55350538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069994 WO2016027588A1 (ja) 2014-08-19 2015-07-13 有機系電解質および有機系電解質蓄電池

Country Status (3)

Country Link
JP (1) JP2016042448A (ja)
TW (1) TW201622226A (ja)
WO (1) WO2016027588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170772A4 (en) * 2020-11-03 2024-05-01 Lg Energy Solution Ltd NON-AQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY COMPRISING SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111359A (ja) * 2002-07-24 2004-04-08 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液
JP2012234834A (ja) * 2012-08-31 2012-11-29 Mitsubishi Chemicals Corp 二次電池用非水系電解液及び非水系電解液二次電池
WO2013094603A1 (ja) * 2011-12-22 2013-06-27 Jx日鉱日石エネルギー株式会社 有機系電解質および有機系電解質蓄電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111359A (ja) * 2002-07-24 2004-04-08 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液
WO2013094603A1 (ja) * 2011-12-22 2013-06-27 Jx日鉱日石エネルギー株式会社 有機系電解質および有機系電解質蓄電池
JP2012234834A (ja) * 2012-08-31 2012-11-29 Mitsubishi Chemicals Corp 二次電池用非水系電解液及び非水系電解液二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170772A4 (en) * 2020-11-03 2024-05-01 Lg Energy Solution Ltd NON-AQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY COMPRISING SAME

Also Published As

Publication number Publication date
TW201622226A (zh) 2016-06-16
JP2016042448A (ja) 2016-03-31

Similar Documents

Publication Publication Date Title
US9954254B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
US9595710B2 (en) Cathode active material for lithium secondary battery and lithium secondary battery including the same
WO2014196177A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
US10170796B2 (en) Lithium secondary battery of improved rate capability with cathode containing nickel manganese complex oxide for high-voltage applications
JP6109746B2 (ja) 有機系電解質および有機系電解質蓄電池
US9472830B2 (en) Lithium secondary battery having improved lifespan characteristics
JP2019057356A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6031450B2 (ja) 有機系電解質および有機系電解質蓄電池
WO2013094603A1 (ja) 有機系電解質および有機系電解質蓄電池
JP4959465B2 (ja) 高温保存特性に優れたリチウム二次電池用非水系電解液
WO2016027588A1 (ja) 有機系電解質および有機系電解質蓄電池
US9246189B2 (en) Secondary battery including electrolyte additive
KR101190463B1 (ko) 고온 저장 성능을 향상시키는 전해액 및 이를 포함하는이차 전지
WO2013153996A1 (ja) 有機系電解質及びそれを用いた有機系電解質蓄電池
WO2014080752A1 (ja) 有機系電解質および有機系電解質蓄電池
JP2022514515A (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833731

Country of ref document: EP

Kind code of ref document: A1