WO2016024301A1 - Co2 reduction device and co2 reduction method - Google Patents

Co2 reduction device and co2 reduction method Download PDF

Info

Publication number
WO2016024301A1
WO2016024301A1 PCT/JP2014/004173 JP2014004173W WO2016024301A1 WO 2016024301 A1 WO2016024301 A1 WO 2016024301A1 JP 2014004173 W JP2014004173 W JP 2014004173W WO 2016024301 A1 WO2016024301 A1 WO 2016024301A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tube
microwave
reduction
reduction device
Prior art date
Application number
PCT/JP2014/004173
Other languages
French (fr)
Japanese (ja)
Inventor
大前 伸夫
明彦 豊島
Original Assignee
株式会社ティサポート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティサポート filed Critical 株式会社ティサポート
Priority to PCT/JP2014/004173 priority Critical patent/WO2016024301A1/en
Publication of WO2016024301A1 publication Critical patent/WO2016024301A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • carbon (C) of carbon dioxide (CO 2 ) contained in the atmosphere is fixed to reduce CO 2 emission to the environment, and an advanced carbon material having high added value such as carbon nanowall is provided.
  • the present invention relates to a CO 2 reduction device and a CO 2 reduction method that can be manufactured.
  • CO 2 carbon dioxide
  • HC hydrocarbon
  • the CO 2 recycling apparatus includes a substrate on which a catalyst layer such as iron is formed, a heat source means for heating the substrate, a gas introduction means for introducing CO 2 gas to the substrate surface, and a micro on the substrate surface.
  • An apparatus includes microwave plasma generating means for generating wave plasma and power supply means for supplying electric power to the microwave plasma generating means.
  • the present inventors also provide a microwave oscillator, a microwave waveguide, and a reaction tube provided inside the microwave waveguide, and the gas introduction tube and the gas exhaust tube are folded in the microwave waveguide. Equipped with a reaction tube and a ceramic heater provided on the inner wall of the gas introduction tube, microwave plasma is generated at the folded portion of the reaction tube, and the generated multi-walled carbon nanotube, carbon onion, A CO 2 recycling apparatus for adhering any of the nanocarbons has been proposed (Patent Document 2).
  • the carbon (C) in the CO 2 gas can be fixed, and the gas introduction pipe and the gas exhaust pipe are folded back in the microwave waveguide, thereby producing quartz.
  • the restriction on the size of the tube can be halved, the device can be made compact, and the power consumption can be reduced.
  • a microwave oscillator and a muffle furnace are installed around a quartz tube having a length of 800 mm, and hydrogen (H 2 ) is used as a carrier gas.
  • H 2 hydrogen
  • Two carbons are converted into plasma and decomposed to produce nanocarbon particles on a substrate installed in a muffle furnace. Therefore, in the proposed CO 2 recycling device, the combined power consumption of the microwave oscillation device and the muffle furnace occurs, and the carbon (C) in the CO 2 gas is fixed, but the accompanying power consumption is large. There's a problem. Further, since a quartz tube having a length of 800 mm is used as a component of the apparatus, there is a problem that the apparatus size is large.
  • the microwave oscillating means is an oscillator that oscillates microwaves.
  • a magnetron with an oscillation frequency of 2.45 GHz and a maximum output of 500 W attached to a commercially available microwave oven can be suitably used.
  • the microwave waveguide means a microwave waveguide in which microwaves resonate in the waveguide and resonates, or a coaxial cable for microwave waveguide can be suitably used.
  • the CO 2 reduction device generates microwave plasma at the site where the reaction tube is folded, and the CO 2 gas is immobilized on the base material disposed inside the gas exhaust pipe. It is possible to generate and attach a wall (CNW: Carbon Nano Wall).
  • the base material may be a coiled iron wire inserted into the gas exhaust pipe.
  • Carbon nanowall (CNW) is a material reported by Wu et al. Of Singapore National University in 2002.
  • the carbon nano-wall structure is shaped like a wall that is perpendicular to the substrate and rises like a wall. Have. Utilization as an adsorbent and energy storage material is expected from the fact that the end of the sheet is exposed on the surface and the specific surface area specific to the nanomaterial.
  • graphene is included in the deposits deposited on the substrate.
  • the pressure in the reaction tube in the CO 2 reduction device of the present invention is preferably 100 to 200 Pa.
  • the pressure in the reaction tube is lower than 100 Pa, or when the pressure in the reaction tube is higher than 200 Pa, plasma is hardly generated by the microwave. If the pressure is too low or too high, it will be difficult to generate plasma by the microwave.
  • the reaction tube may be formed of a material selected from transparent quartz glass, opaque quartz glass, ceramic material, and metal material.
  • a quartz tube using transparent quartz glass is preferably used.
  • transparent quartz glass natural quartz is used as a raw material, an ingot is manufactured at a high temperature of about 1800 ° C. or higher using an oxyhydrogen flame or an electric furnace, and graphite is used as a mold at a high temperature of about 2000 ° C. or higher.
  • a transparent reaction tube is produced by molding in a U-shape.
  • silica is used as a raw material, and bubbles in the raw material remain to become an opaque reaction tube.
  • a reaction tube can be manufactured using a ceramic material, a metal material, or the like.
  • the scale size of the microwave waveguide in the CO 2 reduction device of the present invention is preferably 400 mm or less in length, 200 mm or less in width, and 100 mm or less in height.
  • a portion where the reaction tube is folded is provided at substantially the center of the microwave waveguide of the above size to generate microwave plasma.
  • the present inventor has been able to reduce the scale size of the microwave waveguide to 400 mm or less in length, 200 mm or less in width, and 100 mm or less in height through trial and error. By making this size, the power of the microwave oscillator could be reduced.
  • the microwave waveguide means in the CO 2 reduction device of the present invention is a microwave waveguide or a coaxial cable for microwave waveguide.
  • a microwave matching device is further provided, and the microwave waveguide coaxial cable is provided.
  • a coaxial type slistab tuner is further provided.
  • the arrangement of the microwave oscillator is a position adjacent to the right end of the microwave waveguide 1, but the microwave oscillator is not shown.
  • a U-shaped tube 10 is provided inside the microwave waveguide 1. In the U-shaped tube 10, the gas introduction tube 5 and the gas exhaust tube 4 are folded around the center of the microwave waveguide 1. Microwave plasma is generated near the portion 8 where the U-shaped tube 10 is folded.
  • a microwave matching unit 12 for adjusting the resonance of the microwave and tuning the conditions for generating the microwave plasma is provided (see FIG. 3).
  • Table 1 shows experimental results in which a microwave is generated by flowing a microwave current of 36 mA (this is a current value corresponding to an input power of 100 W) through a microwave oscillator.
  • the gas introduced into the gas introduction pipe has a flow rate of CO 2 gas and water gas of 20-80 sccm (total 100 sccm), 40-60 sccm (total 100 sccm), 60-240 sccm (total 300 sccm), 100-400 sccm (total 500 sccm).
  • the decomposition rate and the amount of decomposition of CO 2 were measured for each of three different shapes such as a U-shaped tube, a spiral tube, and a bead-shaped tube. In the experiment, CO 2 decomposition is performed while maintaining the plasma state for 10 to 20 minutes.
  • the amount of CO 2 decomposition is obtained when microwave plasma CVD is performed with a U-shaped tube, and the CO 2 decomposition is most performed when the CO 2 and water gas flow rates are 40-60 sccm (total 100 sccm).
  • Table 1 The results of Table 1 are graphed in FIGS.
  • FIG. 4 is a graph showing the CO 2 decomposition rate when the CO 2 and water gas flow rates are changed
  • FIG. 5 is a graph showing the CO 2 decomposition amount.
  • FIG. 6 is a graph showing the CO 2 decomposition rate when the input power is changed
  • FIG. 7 is a graph showing the CO 2 decomposition amount. From the results of Tables 1 and 2, it can be seen that the U-shaped tube is the most efficient type of reaction tube. In the following experimental results, all reaction tube types are U-tubes.
  • Table 3 below shows the results of measuring the CO 2 decomposition rate and CO 2 decomposition amount when CO 2 , water gas flow rate, and input power are changed. 8 and 10 are graphs showing the CO 2 decomposition rate, and FIGS. 9 and 11 are graphs showing the CO 2 decomposition amount. From these experimental results, when the CO 2 and water gas flow rates are 40-60 sccm (total 100 sccm), the CO 2 decomposition rate is the highest at 81%, the CO 2 decomposition amount is 29 (sccm), and the most excellent CO 2 It can be seen that 2 reductions have been made.
  • microwave plasma CVD was performed with a microwave current of 90 mA (corresponding to input power of 250 W).
  • the total of CO 2 and water gas flow rate was 100 (sccm), and CO 2 and water gas flow rate
  • the results of measuring the CO 2 decomposition rate and CO 2 decomposition amount when the ratio is changed from 3: 7 to 5: 5 are shown.
  • the CO 2 decomposition rate exceeds 80%, and the amount of CO 2 decomposition is highest when the CO 2 containing the most CO 2 and the water gas flow ratio is 50:50. As a result.
  • Table 7 shows the performance of the system of the three-stage apparatus in which three apparatuses are connected in series, that is, the gas exhaust pipe of the preceding apparatus and the gas introduction pipe of the latter apparatus are connected and connected in series. It is shown.
  • the CO 2 and water gas flow rate (sccm) is 10:90, and the total is 100 (sccm).
  • the total input power is 600W with three 72mA (equivalent to 200W), or 750W with three 90mA (equivalent to 250W).
  • the respective CO 2 decomposition rates and CO 2 decomposition amounts were 95 (%) and 9.5 (sccm). In this manner, if three devices are connected in series (three-stage connection), CO 2 can be reduced by nearly 100%.
  • microwave plasma CVD was performed with a microwave current of 72 mA (corresponding to input power of 200 W) and 90 mA (corresponding to input power of 250 W), and the CO 2 and water gas flow rates were 60:40 or Shows the results of measuring the CO 2 decomposition rate and CO 2 decomposition amount when the CO 2 and water gas flow rate total (sccm) is 100.
  • the microwave current is 90 mA (corresponding to 250 W)
  • the CO 2 decomposition rate and the CO 2 decomposition amount are high, the microwave current value is further increased, and the input power is increased. It can be inferred that the CO 2 decomposition rate and the large amount of CO 2 decomposition can be achieved.
  • CO 2 decomposition results in CO 2 reduction and, as will be described later, a compound with high added value can be generated from CO 2 .
  • CO 2 reduction method aims to synthesize the nano-carbon material from CO 2, and finally are characterized by having a high added value compounds, not reducing CO 2 alone, the CO 2 effective It is attributed to use.
  • an iron wire or a thin iron plate was used as the substrate inside the gas exhaust pipe.
  • the purity of iron (Fe) is 99.999% to 99.5%.
  • the reason for using Fe is based on experience in producing carbon nanotubes by depositing Fe fine particles on Si.
  • the tip of the iron wire was placed a few centimeters away from the center of the U-shaped tube, and the other end was the closest to the plasma generator.
  • the length of the iron wire is about 25 cm.
  • Example 1 a U-shaped tube was used as the reaction tube, but two tubes having different diameters, the smaller diameter side being the gas introduction tube and the larger diameter side being the gas exhaust tube.
  • the gas introduction pipe may be inserted into the gas exhaust pipe (see FIGS. 15 and 16).
  • the shape of the reaction vessel may be a spiral shape or a meandering shape, as long as the path through which the gas flows is long.
  • the microwave waveguide is used in the first embodiment, a coaxial waveguide for microwave waveguide may be used. In the case of a microwave waveguide coaxial cable, it is provided adjacent to the folded portion of the reaction tube.
  • the present invention is useful as a device for reducing CO 2 present in the atmospheric environment, CO 2 emitted from public facilities, commercial facilities, and general households.

Abstract

In the present invention, a CO2 reduction device is provided with a microwave oscillating means, a microwave guiding means, and a reaction tube that is provided to the interior of or an adjacent part of the microwave guiding means and is composed of a gas introduction tube and a gas exhaust tube, microwave plasma being generated in the reaction tube, and microwave plasma CVD being used to reduce CO2 gas in carbon oxide-containing gas flowing through the inside of the reaction tube, wherein water gas is used as a carrier gas of the carbon oxide-containing gas. In order to render the device more compact, the reaction tube is looped back so that the gas introduction tube and gas exhaust tube are disposed in the interior or an adjacent part of the microwave guiding means. This CO2 reduction method comprises using CO2 gas as a carbon source and water gas as a carrier gas, and using microwave plasma CVD to manufacture carbon nanowalls.

Description

CO2削減装置およびCO2削減方法CO2 reduction device and CO2 reduction method
 本発明は、大気中に含まれる二酸化炭素(CO)の炭素(C)を固定化して、COの環境への排出量を低減すると共に、カーボンナノウォールといった付加価値の高い先進炭素材料を作製できるCO削減装置およびCO削減方法に関するものである。 In the present invention, carbon (C) of carbon dioxide (CO 2 ) contained in the atmosphere is fixed to reduce CO 2 emission to the environment, and an advanced carbon material having high added value such as carbon nanowall is provided. The present invention relates to a CO 2 reduction device and a CO 2 reduction method that can be manufactured.
 一般に、二酸化炭素(CO)は、一酸化炭素(CO)やハイドロカーボン(HC)に比べて、その結合を解離するに必要なエネルギーが極めて高いことから、COの処理は困難である。 In general, carbon dioxide (CO 2 ) has a very high energy required to dissociate its bonds as compared with carbon monoxide (CO) and hydrocarbon (HC), so that it is difficult to treat CO 2 .
 かかる状況下、本発明者の大前は、炭素酸化物含有ガス中の二酸化炭素(COガス)を炭素源として、マイクロ波プラズマCVD(Chemical Vapor Deposition)法を用いて、多層カーボンナノチューブ、カーボンオニオン、ナノカーボンのいずれかを作製できることの知見を得て、既にCOリサイクリング装置を提案している(特許文献1)。
 既に提案したCOリサイクリング装置は、鉄などの触媒層が表面に形成された基板と、基板を加熱する熱源手段と、基板表面にCOガスを導入するガス導入手段と、基板表面にマイクロ波プラズマを発生させるマイクロ波プラズマの発生手段と、マイクロ波プラズマの発生手段に電力を供給する電源手段を備えた装置である。
Under such circumstances, the present inventor has proposed that multi-walled carbon nanotubes, carbons using carbon plasma (CO 2 gas) in a carbon oxide-containing gas as a carbon source using a microwave plasma CVD (Chemical Vapor Deposition) method. Obtaining knowledge that either onion or nanocarbon can be produced, a CO 2 recycling apparatus has already been proposed (Patent Document 1).
The CO 2 recycling apparatus that has already been proposed includes a substrate on which a catalyst layer such as iron is formed, a heat source means for heating the substrate, a gas introduction means for introducing CO 2 gas to the substrate surface, and a micro on the substrate surface. An apparatus includes microwave plasma generating means for generating wave plasma and power supply means for supplying electric power to the microwave plasma generating means.
 また、本発明者らは、マイクロ波発振器と、マイクロ波導波管と、マイクロ波導波管の内部に設けられた反応管であって、ガス導入管とガス排気管がマイクロ波導波管内で折り返される反応管と、ガス導入管の内壁に設けられたセラミック系ヒーターを備え、反応管の折り返される部位でマイクロ波プラズマを発生させ、ガス排気管の内壁に、生成された多層カーボンナノチューブ、カーボンオニオン、ナノカーボンのいずれかを付着させるCOリサイクリング装置を提案している(特許文献2)。 The present inventors also provide a microwave oscillator, a microwave waveguide, and a reaction tube provided inside the microwave waveguide, and the gas introduction tube and the gas exhaust tube are folded in the microwave waveguide. Equipped with a reaction tube and a ceramic heater provided on the inner wall of the gas introduction tube, microwave plasma is generated at the folded portion of the reaction tube, and the generated multi-walled carbon nanotube, carbon onion, A CO 2 recycling apparatus for adhering any of the nanocarbons has been proposed (Patent Document 2).
 特許文献2に開示されたCOリサイクリング装置では、COガス中の炭素(C)を固定化でき、ガス導入管とガス排気管がマイクロ波導波管内で折り返されるようにすることにより、石英管のサイズの制約を半減し、装置のコンパクト化、消費電力の低減を図ることができる。 In the CO 2 recycling apparatus disclosed in Patent Document 2, the carbon (C) in the CO 2 gas can be fixed, and the gas introduction pipe and the gas exhaust pipe are folded back in the microwave waveguide, thereby producing quartz. The restriction on the size of the tube can be halved, the device can be made compact, and the power consumption can be reduced.
国際公開パンフレットWO2011/004609International publication pamphlet WO2011 / 004609 国際公開パンフレットWO2013/175806International publication pamphlet WO2013 / 175806
 特許文献1のCOリサイクリング装置は、長さ800mmの石英管の周囲にマイクロ波発振装置とマッフル炉が設置され、キャリアガスとして水素(H)を用いており、石英管の中でCOガスのプラズマ化、分解を生じさせて、ナノカーボン粒子をマッフル炉中に設置した基板上に生成する。そのため、提案中のCOリサイクリング装置では、マイクロ波発振装置とマッフル炉の合算の消費電力が生じ、COガス中の炭素(C)を固定化するものの、それに伴う消費電力量が大きいといった問題がある。また、長さ800mmの石英管を装置の構成要素とするため、装置サイズが大きいといった問題がある。 In the CO 2 recycling apparatus of Patent Document 1, a microwave oscillator and a muffle furnace are installed around a quartz tube having a length of 800 mm, and hydrogen (H 2 ) is used as a carrier gas. Two carbons are converted into plasma and decomposed to produce nanocarbon particles on a substrate installed in a muffle furnace. Therefore, in the proposed CO 2 recycling device, the combined power consumption of the microwave oscillation device and the muffle furnace occurs, and the carbon (C) in the CO 2 gas is fixed, but the accompanying power consumption is large. There's a problem. Further, since a quartz tube having a length of 800 mm is used as a component of the apparatus, there is a problem that the apparatus size is large.
 かかる問題を解消すべく提案された特許文献2のCOリサイクリング装置では、装置サイズのコンパクト化、消費電力の低減を図るために、ガス導入管とガス排気管がマイクロ波導波管内で折り返されるようにし、ガス導入管の内壁に設けられたセラミック系ヒーターを設け、キャリアガスとして水素(H)を用いて、反応管の折り返される部位でマイクロ波プラズマを発生させることとした。これにより、ガス排気管の内壁に、生成された多層カーボンナノチューブなどを付着させることができた。
 しかしながら、COガスの濃度が高い場合や投入電力が小さい場合は、COガスの分解率が低くなるという問題があった。本発明者らは、COガスの分解率の向上を図るべく、様々な条件にて実験を繰り返し行って、キャリアガスとして水ガスを用いることにより、より安定的にCOの分解が行え、また付加価値の高い先進炭素材料を作製することに成功した。
In the CO 2 recycling apparatus of Patent Document 2 proposed to solve such problems, the gas introduction pipe and the gas exhaust pipe are folded back in the microwave waveguide in order to reduce the size of the apparatus and reduce the power consumption. Thus, a ceramic heater provided on the inner wall of the gas introduction tube was provided, and microwave (plasma) was generated at the part where the reaction tube was folded using hydrogen (H 2 ) as a carrier gas. Thereby, the produced | generated multilayer carbon nanotube etc. were made to adhere to the inner wall of a gas exhaust pipe.
However, when the concentration of CO 2 gas is high or when the input power is small, there is a problem that the decomposition rate of CO 2 gas becomes low. In order to improve the decomposition rate of CO 2 gas, the present inventors have repeatedly conducted experiments under various conditions, and by using water gas as a carrier gas, CO 2 can be decomposed more stably. We have also succeeded in producing advanced carbon materials with high added value.
 本発明は、COの分解率、すなわちCOの削減率の向上を図り、かつ、付加価値の高い先進炭素材料を作製できるCO削減装置およびCO削減方法を提供することを目的とする。 The present invention, degradation rate of the CO 2, i.e. aims to improve the reduction rate of CO 2, and aims to provide a CO 2 reduction apparatus and CO 2 reduction method can be produced with high added value advanced carbon materials .
 上記課題を解決すべく、本発明者らは、試行錯誤を重ね、本発明に係るCO削減装置およびCO削減方法を完成した。
 本発明のCO削減装置は、マイクロ波発振手段と、マイクロ波導波手段と、マイクロ波導波手段の内部または隣接部に設けられ、ガス導入管とガス排気管から成る反応管を備え、反応管内でマイクロ波プラズマを発生させ、マイクロ波プラズマCVD法を用いて、反応管内を流れる炭素酸化物含有ガス中のCOガスを削減する装置であって、水ガスが、炭素酸化物含有ガスのキャリアガスとして用いられたことを特徴とする。
In order to solve the above-mentioned problems, the present inventors have repeated trial and error and have completed the CO 2 reduction device and the CO 2 reduction method according to the present invention.
The CO 2 reduction device according to the present invention includes a microwave oscillating means, a microwave waveguide means, and a reaction tube provided inside or adjacent to the microwave waveguide means, and comprising a gas introduction pipe and a gas exhaust pipe. in to generate a microwave plasma by using a microwave plasma CVD method, an apparatus for reducing the CO 2 gas carbon oxides-containing gas flowing through the reaction tube, water gas, carbon oxide-containing gas carrier It was used as a gas.
 ここで、水ガスとしては、水分(水分子)を含む不活性ガス(窒素ガス等)などが用いられる。
 また、マイクロ波発振手段とは、マイクロ波を発振させる発振器であり、例えば、市販の電子レンジに付属する発振周波数2.45GHz, 最大出力500Wのマグネトロンを好適に用いることができる。マイクロ波導波手段とは、導波管内をマイクロ波が行き来して共振するマイクロ波導波管や、マイクロ波導波用同軸ケーブルが好適に用いることができる。
Here, as the water gas, an inert gas (nitrogen gas or the like) containing moisture (water molecules) is used.
The microwave oscillating means is an oscillator that oscillates microwaves. For example, a magnetron with an oscillation frequency of 2.45 GHz and a maximum output of 500 W attached to a commercially available microwave oven can be suitably used. As the microwave waveguide means, a microwave waveguide in which microwaves resonate in the waveguide and resonates, or a coaxial cable for microwave waveguide can be suitably used.
 上記装置は、反応管内でマイクロ波プラズマを発生させ、マイクロ波プラズマCVD法を用いて、反応管内を流れる炭素酸化物含有ガス中のCOガスを削減する。
 本発明では、水ガスが、炭素酸化物含有ガスのキャリアガスとして用いられることに特徴がある。従来は、キャリアガスとして水素(H)が用いられていた。上述の特許文献1や2の装置において、キャリアガスとして水素(H)が用いられていた。そのため取扱いの際には安全上の注意を行う必要があった。本発明では、水ガスをキャリアガスとして用いるため、安全性の向上が図れ、また、コスト面でも水ガスの方が水素(H)よりも安価に入手できるという利点がある。
The apparatus generates microwave plasma in the reaction tube, and reduces the CO 2 gas in the carbon oxide-containing gas flowing in the reaction tube using a microwave plasma CVD method.
The present invention is characterized in that water gas is used as a carrier gas for a carbon oxide-containing gas. Conventionally, hydrogen (H 2 ) has been used as a carrier gas. In the devices described in Patent Documents 1 and 2, hydrogen (H 2 ) is used as a carrier gas. Therefore, it was necessary to take safety precautions during handling. In the present invention, since water gas is used as the carrier gas, safety can be improved, and water gas can be obtained at a lower cost than hydrogen (H 2 ) in terms of cost.
 また、特許文献2の装置では、セラミック系ヒーターを用いていた。これは、セラミック系ヒーターを用いることにより、マイクロ波照射によって自然に昇温でき、COガスからナノカーボン類を作製するために必要だからであった。
 一方、本発明の装置では、セラミック系ヒーターは用いておらず、後述するように微結晶のカーボンナノウォールを生成できている。従来からセラミック系ヒーターの有無は、COガスの削減率にはあまり影響しないことが知られているが、セラミック系ヒーターは用いないことで、装置のコンパクト化、軽量化を図ることができる。
Further, the apparatus of Patent Document 2 uses a ceramic heater. This is because the ceramic heater can be used to raise the temperature naturally by microwave irradiation and is necessary for producing nanocarbons from CO 2 gas.
On the other hand, in the apparatus of the present invention, a ceramic heater is not used, and microcrystalline carbon nanowalls can be generated as described later. Conventionally, it is known that the presence or absence of a ceramic heater does not significantly affect the CO 2 gas reduction rate, but by not using a ceramic heater, the apparatus can be made compact and lightweight.
 上記の本発明のCO削減装置において、反応管は、ガス導入管とガス排気管がマイクロ波導波手段内部または隣接部で折り返されることがより好ましい。反応管のガス導入管とガス排気管がマイクロ波導波管内で折り返されるようにすることにより、石英管のサイズの制約を半減し、装置をコンパクト化できる。反応管は、ガスが流れる行路を長くすればいいので、例えばスパイラル形状や蛇行形状でも有用である。 In the above-described CO 2 reduction device of the present invention, it is more preferable that the gas introducing pipe and the gas exhaust pipe are folded inside or adjacent to the microwave waveguide means. By making the gas introduction tube and the gas exhaust tube of the reaction tube be folded in the microwave waveguide, the size restriction of the quartz tube can be reduced by half and the apparatus can be made compact. Since the reaction tube only needs to have a longer path for gas flow, for example, a spiral shape or a meandering shape is also useful.
 CO削減装置は、上記の構成によって、反応管の折り返される部位でマイクロ波プラズマを発生させ、ガス排気管の内部に配設された基材上に、COガスが固定化され、カーボンナノウォール(CNW:Carbon Nano Wall)を生成し付着させることが可能である。基材は、ガス排気管の内部に挿入する鉄線をコイル状にしたものでもよい。
 カーボンナノウォール (CNW) は、2002年にシンガポール国立大の Wuらによって報告された材料であり、炭素からなるシート状のナノサイズ構造体が基板に対して垂直に、壁のようにそびえ立つ形状を有している。シート端部が表面に露出していることやナノ材料特有の比表面積の大きさから、吸着剤やエネルギー貯蔵材としての利用が期待されている。
 なお、カーボンナノウォール (CNW)以外にも、基材上に堆積している堆積物の中にはグラフェンも含まれている。
With the above configuration, the CO 2 reduction device generates microwave plasma at the site where the reaction tube is folded, and the CO 2 gas is immobilized on the base material disposed inside the gas exhaust pipe. It is possible to generate and attach a wall (CNW: Carbon Nano Wall). The base material may be a coiled iron wire inserted into the gas exhaust pipe.
Carbon nanowall (CNW) is a material reported by Wu et al. Of Singapore National University in 2002. The carbon nano-wall structure is shaped like a wall that is perpendicular to the substrate and rises like a wall. Have. Utilization as an adsorbent and energy storage material is expected from the fact that the end of the sheet is exposed on the surface and the specific surface area specific to the nanomaterial.
In addition to carbon nanowalls (CNW), graphene is included in the deposits deposited on the substrate.
 本発明のCO削減装置における反応管は、具体的にはU字状の管であり、一方の管をガス導入管とし、他方の管をガス排気管とするものである。反応管をU字状の管とすることで、石英管のサイズの制約を半減し、装置をコンパクト化できる。また好ましくは、反応管におけるガス導入管は、スパイラル形状や蛇行形状を呈し、ガスが流れる行路を長くする。 The reaction tube in the CO 2 reduction device of the present invention is specifically a U-shaped tube, one tube being a gas introduction tube and the other tube being a gas exhaust tube. By making the reaction tube a U-shaped tube, the size restriction of the quartz tube can be halved and the apparatus can be made compact. Preferably, the gas introduction tube in the reaction tube has a spiral shape or a meandering shape, and lengthens the path through which the gas flows.
 本発明のCO削減装置における反応管は、具体的には径の異なる2本の管であって、径の小さい側をガス導入管とし、径の大きい側をガス排気管とし、ガス導入管をガス排気管内に挿入したものである。反応管において、ガス導入管をガス排気管内に挿入した構成とすることで、石英管のサイズの制約を半減し、装置をコンパクト化できる。上述の如く、反応管は、ガスが流れる行路を長くすればよく、例えば直線形状でなくともスパイラル形状や蛇行形状にして、径の小さいガス導入管を、径の大きいガス排気管内に挿入してもよい。 Specifically, the reaction tubes in the CO 2 reduction device of the present invention are two tubes having different diameters, the side having a smaller diameter is a gas introduction tube, the side having a larger diameter is a gas exhaust tube, and the gas introduction tube Is inserted into the gas exhaust pipe. By adopting a configuration in which the gas introduction pipe is inserted into the gas exhaust pipe in the reaction tube, the size restriction of the quartz tube can be halved and the apparatus can be made compact. As described above, the reaction tube only needs to have a longer gas flow path. For example, the reaction tube may be formed in a spiral shape or a meandering shape instead of a linear shape, and a gas inlet tube having a small diameter may be inserted into a gas exhaust tube having a large diameter. Also good.
 本発明のCO削減装置における反応管内の圧力は、100~200Paであることが好ましい。反応管内の圧力が100Paより低い場合や、反応管内の圧力が200Paより高い場合、マイクロ波によってプラズマが発生しにくくなる。圧力が低すぎたり、高すぎるとマイクロ波によってプラズマが発生しにくくなる。 The pressure in the reaction tube in the CO 2 reduction device of the present invention is preferably 100 to 200 Pa. When the pressure in the reaction tube is lower than 100 Pa, or when the pressure in the reaction tube is higher than 200 Pa, plasma is hardly generated by the microwave. If the pressure is too low or too high, it will be difficult to generate plasma by the microwave.
 なお、反応管は、透明石英ガラス、不透明石英ガラス、セラミック材料、金属材料から選択される材で形成されるのが良い。特に、透明石英ガラスを用いた石英管が好適に用いられる。透明石英ガラスを用いる場合、天然の水晶を原料とし、酸水素炎あるいは電気炉を用いて略1800℃以上の高温でインゴットを製造し、グラファイトをモールドとして電気炉中で略2000℃以上の高温でU字状に成形して作製され透明の反応管になる。不透明石英管を用いる場合、原料としてはケイ石を用い、原料中の気泡が残存して不透明の反応管になる。その他、セラミック材料、金属材料などを使用して反応管を作製することも可能である。 The reaction tube may be formed of a material selected from transparent quartz glass, opaque quartz glass, ceramic material, and metal material. In particular, a quartz tube using transparent quartz glass is preferably used. When transparent quartz glass is used, natural quartz is used as a raw material, an ingot is manufactured at a high temperature of about 1800 ° C. or higher using an oxyhydrogen flame or an electric furnace, and graphite is used as a mold at a high temperature of about 2000 ° C. or higher. A transparent reaction tube is produced by molding in a U-shape. When an opaque quartz tube is used, silica is used as a raw material, and bubbles in the raw material remain to become an opaque reaction tube. In addition, a reaction tube can be manufactured using a ceramic material, a metal material, or the like.
 また、本発明のCO削減装置におけるマイクロ波導波管のスケールサイズは、長さ400mm以下、幅200mm以下、高さ100mm以下であることが好ましい。上記サイズのマイクロ波導波管の略中央に反応管の折り返される部位を設け、マイクロ波プラズマを発生させる。本発明者は、試行錯誤の上、マイクロ波導波管のスケールサイズを、長さ400mm以下、幅200mm以下、高さ100mm以下にすることができた。この程度の大きさにすることで、マイクロ波発振器の電力を低減できた。 The scale size of the microwave waveguide in the CO 2 reduction device of the present invention is preferably 400 mm or less in length, 200 mm or less in width, and 100 mm or less in height. A portion where the reaction tube is folded is provided at substantially the center of the microwave waveguide of the above size to generate microwave plasma. The present inventor has been able to reduce the scale size of the microwave waveguide to 400 mm or less in length, 200 mm or less in width, and 100 mm or less in height through trial and error. By making this size, the power of the microwave oscillator could be reduced.
 本発明のCO削減装置におけるマイクロ波導波手段は、マイクロ波導波管またはマイクロ波導波用同軸ケーブルであり、マイクロ波導波管の場合、マイクロ波整合器が更に設けられ、マイクロ波導波用同軸ケーブルの場合、同軸タイプのスリースタブチューナーが更に設けられることが好ましい。 The microwave waveguide means in the CO 2 reduction device of the present invention is a microwave waveguide or a coaxial cable for microwave waveguide. In the case of the microwave waveguide, a microwave matching device is further provided, and the microwave waveguide coaxial cable is provided. In this case, it is preferable that a coaxial type slistab tuner is further provided.
 本発明のCO削減システムは、上記のCO削減装置を多段に設けたシステムであって、前段のCO削減装置のガス排気管と、後段のCO削減装置のガス導入管を接続するものである。多段に接続することによって、COガスの削減率を更に高めることができる。
 また、上記のCO削減装置を大型化する場合、すなわち、処理すべきCOガス量が多い場合、多数のCO削減装置を並列化したシステムを構築する。CO削減装置のガス導入管を並列に並べ、大きな配管ダクトから排出されるCOガスを、小さな径のガス導入管の束で取り込み、各々のガス導入管から個々のCO削減装置が分担してCOガスを処理する。
CO 2 reduction system of the present invention, the above-mentioned CO 2 reduction device a system provided in multiple stages, for connecting the gas exhaust pipe of the preceding CO 2 reduction unit, a gas introduction pipe of the subsequent CO 2 reduction device Is. By connecting in multiple stages, the CO 2 gas reduction rate can be further increased.
When the above-mentioned CO 2 reduction device is enlarged, that is, when the amount of CO 2 gas to be processed is large, a system in which a large number of CO 2 reduction devices are arranged in parallel is constructed. The gas introduction pipes of the CO 2 reduction devices are arranged in parallel, the CO 2 gas discharged from the large pipe duct is taken in by a bundle of small diameter gas introduction pipes, and the individual CO 2 reduction devices share the respective gas introduction pipes. To treat the CO 2 gas.
 次に、本発明のCO削減方法について説明する。本発明のCO削減方法は、COガスを炭素源として、キャリアガスとして水ガスを用い、マイクロ波プラズマCVD法を用いて、カーボンナノウォールを作製する。
 ここで、COガスと水ガスの流量比は、3:7から5:5の割合であることが好ましい。同じ投入電力の場合に、その他の割合より、COガスの分解率、削減率が向上する。マイクロ波プラズマの発生用の投入電力は、太陽光発電により生成された電力を用いることで、化石燃料から生まれた電力を消費しないで、COガスを削減することになり、より効果があるものになる。
Next, the CO 2 reduction method of the present invention will be described. In the CO 2 reduction method of the present invention, carbon nanowalls are produced using a microwave plasma CVD method using CO 2 gas as a carbon source and water gas as a carrier gas.
Here, the flow rate ratio between the CO 2 gas and the water gas is preferably a ratio of 3: 7 to 5: 5. In the case of the same input power, the decomposition rate and the reduction rate of the CO 2 gas are improved as compared with other ratios. The input power for generating the microwave plasma is more effective because it uses the power generated by photovoltaic power generation, reducing the CO 2 gas without consuming the power generated from fossil fuel. become.
 本発明のCO削減装置およびCO削減方法によれば、COガス中の炭素(C)を効率よく高い分解率で固定化することができ、COを削減できるといった効果を有する。また付加価値の高いカーボンナノウォールを作製できるといった効果を有する。 According to the CO 2 reduction device and the CO 2 reduction method of the present invention, carbon (C) in CO 2 gas can be efficiently fixed at a high decomposition rate, and CO 2 can be reduced. Moreover, it has the effect that a high value-added carbon nanowall can be produced.
CO削減装置のブロック図Block diagram of CO 2 reduction device 実施例1のCO削減装置の構成図(平面図)Configuration diagram (plan view) of CO 2 reduction device of embodiment 1 実施例1のCO削減装置の構成図(正面図)Configuration diagram (front view) of the CO 2 reduction device of Example 1 CO分解率を示すグラフ1(COと水ガス流量を変化)Graph 1 showing CO 2 decomposition rate (CO 2 and water gas flow rate are changed) CO分解量を示すグラフ1(COと水ガス流量を変化)Graph 1 showing CO 2 decomposition amount (changes CO 2 and water gas flow rate) CO分解率を示すグラフ2(投入電力を変化) Graph 2 showing CO 2 decomposition rate (change in input power) CO分解量を示すグラフ2(投入電力を変化) Graph 2 showing the amount of CO 2 decomposition (changes input power) CO分解率を示すグラフ3(COと水ガス流量、投入電力を変化) Graph 3 showing CO 2 decomposition rate (CO 2 , water gas flow rate, and input power are changed) CO分解量を示すグラフ3(COと水ガス流量、投入電力を変化) Graph 3 showing CO 2 decomposition amount (CO 2 , water gas flow rate, and input power are changed) CO分解率を示すグラフ4(COと水ガス流量、投入電力を変化) Graph 4 showing CO 2 decomposition rate (CO 2 , water gas flow rate, and input power are changed) CO分解量を示すグラフ4(COと水ガス流量、投入電力を変化) Graph 4 showing CO 2 decomposition amount (CO 2 , water gas flow rate, and input power are changed) カーボンナノウォールのSEM写真SEM photo of carbon nanowall カーボンナノウォールのTEM写真TEM photo of carbon nanowall カーボンナノウォールの電子線回折写真Electron diffraction photograph of carbon nanowall 他の実施形態のCO削減装置の構成図(平面図)Configuration diagram (plan view) of CO 2 reduction device of other embodiment 他の実施形態のCO削減装置の構成図(正面図)Configuration diagram (front view) of CO 2 reduction device of other embodiment
 以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.
 図1は、CO削減装置のブロック図を示している。CO削減装置は、マイクロ波導波管1とマイクロ波発振器2と、マイクロ波導波管1の内部に設けられた反応管3を備える。反応管3は、ガス導入管5とガス排気管4から成り、マイクロ波導波管1内で折り返される(折り返し部位8)。 FIG. 1 shows a block diagram of a CO 2 reduction device. The CO 2 reduction device includes a microwave waveguide 1, a microwave oscillator 2, and a reaction tube 3 provided inside the microwave waveguide 1. The reaction tube 3 includes a gas introduction tube 5 and a gas exhaust tube 4, and is folded back in the microwave waveguide 1 (folded portion 8).
 マイクロ波発振器2が作動すると、マイクロ波導波管1でマイクロ波が共振して、反応管3の折り返される部位8付近で、マイクロ波プラズマ20が発生する。マイクロ波発振器2は、電源7から電力供給される。電源7は、例えば、一般家庭用の100Wコンセントから供給されるものをいう。COガスは、マイクロ波導波管1の外部からガス導入管5に供給され、反応管3の折り返し部位8を通り、マイクロ波プラズマ20の発生場所を通って、ガス排気管4から排気される。ガス導入管5とガス排気管4がマイクロ波導波管1内で折り返されるようにすることにより、反応管3の全長を短くすることができ、その結果、装置全体をコンパクト化できる。 When the microwave oscillator 2 is operated, the microwave resonates in the microwave waveguide 1, and the microwave plasma 20 is generated near the portion 8 where the reaction tube 3 is folded. The microwave oscillator 2 is supplied with power from a power source 7. The power source 7 is, for example, one supplied from a general household 100W outlet. The CO 2 gas is supplied from the outside of the microwave waveguide 1 to the gas introduction tube 5, passes through the folded portion 8 of the reaction tube 3, passes through the generation location of the microwave plasma 20, and is exhausted from the gas exhaust tube 4. . By making the gas introduction pipe 5 and the gas exhaust pipe 4 be folded back in the microwave waveguide 1, the overall length of the reaction tube 3 can be shortened, and as a result, the entire apparatus can be made compact.
 また、マイクロ波導波管1の内部であって、ガス導入管5の内壁には、セラミック系ヒーターが設けられており、マイクロ波照射によって自然に昇温されるようになっている。
 外部から供給されてガス導入管5に流れるCOガスは、セラミック系ヒーター6を通過する際に加熱される。そして、折り返し部位8を通過した付近で、マイクロ波プラズマ20の発生場所付近で、マイクロ波プラズマCVDより、カーボンナノウォールが作製される。
Further, a ceramic heater is provided inside the microwave waveguide 1 and on the inner wall of the gas introduction tube 5 so that the temperature is naturally raised by microwave irradiation.
The CO 2 gas supplied from the outside and flowing into the gas introduction pipe 5 is heated when passing through the ceramic heater 6. A carbon nanowall is produced by microwave plasma CVD in the vicinity of the place where the microwave plasma 20 is generated in the vicinity of passing through the folded portion 8.
 以下の実施例では、反応管3のより具体的な形状と、装置の投入電力に対するCO分解率について説明し、CO削減効果について定量的に示す。 In the following examples, a more specific shape of the reaction tube 3 and the CO 2 decomposition rate with respect to the input power of the apparatus will be described, and the CO 2 reduction effect will be quantitatively shown.
 実施例1では、図1における反応管3がU字管であるCO削減装置について説明する。図2、図3は、それぞれ実施例1のCO削減装置の平面図と正面図を示している。
 平面図(図2)に示すように、マイクロ波導波管1は、上から見ると長方形の形状を呈しており、中央付近までU字管10が挿入されている。また、正面図(図3)に示すように、マイクロ波導波管1は、U字管10が挿入されている側とは反対側は高さが高く(断面積が広く)、途中から断面積が狭まっている。図3の左側から真ん中に向かうに従い、高さは狭まり、真ん中から右側は高さが一定である。ここで、左端の高さh,左側から真ん中の距離A,真ん中から右側の距離Bとする。AとBは略等しい距離であり、実際の装置のスケールは、180mm程度である。hは50mm程度である。
In Example 1, a CO 2 reduction device in which the reaction tube 3 in FIG. 1 is a U-shaped tube will be described. 2 and 3 respectively show a plan view and a front view of the CO 2 reduction device of the first embodiment.
As shown in the plan view (FIG. 2), the microwave waveguide 1 has a rectangular shape when viewed from above, and a U-shaped tube 10 is inserted to the vicinity of the center. Further, as shown in the front view (FIG. 3), the microwave waveguide 1 has a high height (wide cross-sectional area) on the side opposite to the side where the U-shaped tube 10 is inserted, and a cross-sectional area from the middle. Is narrowing. The height decreases from the left side of FIG. 3 toward the middle, and the height is constant from the middle to the right side. Here, the height h at the left end, the distance A from the left side to the middle, and the distance B from the middle to the right side are set. A and B are substantially equal distances, and the actual scale of the apparatus is about 180 mm. h is about 50 mm.
 図2,3において、マイクロ波発振器の配置は、マイクロ波導波管1の右端に隣接する位置であるが、マイクロ波発振器は図示していない。
 マイクロ波導波管1の内部にU字管10が設けられている。U字管10は、ガス導入管5とガス排気管4がマイクロ波導波管1の真ん中辺りで折り返されている。U字管10の折り返される部位8付近でマイクロ波プラズマが発生する。マイクロ波の共振を調整し、マイクロ波プラズマを発生する条件のチューニングするためのマイクロ波整合器12が設けられている(図3参照)。
2 and 3, the arrangement of the microwave oscillator is a position adjacent to the right end of the microwave waveguide 1, but the microwave oscillator is not shown.
A U-shaped tube 10 is provided inside the microwave waveguide 1. In the U-shaped tube 10, the gas introduction tube 5 and the gas exhaust tube 4 are folded around the center of the microwave waveguide 1. Microwave plasma is generated near the portion 8 where the U-shaped tube 10 is folded. A microwave matching unit 12 for adjusting the resonance of the microwave and tuning the conditions for generating the microwave plasma is provided (see FIG. 3).
 マイクロ波プラズマによって、U字管10のガス排気管4の内部に挿し込んだ鉄ワイヤーの周囲に、カーボンナノウォールが付着する。これらの付着物はCOの炭素(C)を固定化した産物であり、COが分解されているため、ガス排気管4から排気されるガスには、ガス導入管5から流入したガスからCOが削減されている。 The carbon nanowall adheres around the iron wire inserted into the gas exhaust pipe 4 of the U-shaped tube 10 by the microwave plasma. These deposits are products obtained by immobilizing carbon (C) of CO 2, because the CO 2 is decomposed, the gas exhausted from the gas exhaust pipe 4 from the gas flowing from the gas inlet pipe 5 CO 2 has been reduced.
 次に、本装置を用いた場合のCO分解率や分解量について具体的に説明する。
 下表1~8は、COガス(原料ガス)および水ガス(キャリアガス)を、様々な流量比の割合、流量で、U字管10のガス導入管5から導入し、マイクロ波プラズマによってCOを分解し、U字管10のガス排気管4の内部に付着物を生じさせた状態で、装置の投入電力(マイクロ波電流量)とCO分解率/分解量の関係について測定した結果を示している。
 従来、キャリアガスとして、水素(H2)を用いていたが、水ガスを用いたことで安全性が向上し、かつ、COガスの分解率を高めることができた。
Next, the CO 2 decomposition rate and decomposition amount when this apparatus is used will be specifically described.
The following Tables 1 to 8 show that CO 2 gas (source gas) and water gas (carrier gas) are introduced from the gas introduction pipe 5 of the U-shaped tube 10 at various flow rate ratios and flow rates, and by microwave plasma. In a state where CO 2 was decomposed and deposits were generated inside the gas exhaust pipe 4 of the U-shaped tube 10, the relationship between the input power (microwave current amount) of the apparatus and the CO 2 decomposition rate / decomposition amount was measured. Results are shown.
Conventionally, hydrogen (H 2 ) has been used as the carrier gas, but the use of water gas has improved the safety and increased the decomposition rate of CO 2 gas.
 先ず、表1では、マイクロ波電流36mA(これは100Wの投入電力に相当する電流値である)をマイクロ波発振器に流して、マイクロ波を発生させた実験結果を示している。ガス導入管に導入するガスは、COガスと水ガスの流量が、20-80sccm(合計100sccm)、40-60sccm(合計100sccm)、60-240sccm(合計300sccm)、100-400sccm(合計500sccm)の4通りで、反応管の形状がU字管、スパイラル管、数珠型管といった異なる3通りの形状毎に、COの分解率、分解量を測定した。
 実験では、10~20分間、プラズマ状態を持続させてCO分解を行っている。
First, Table 1 shows experimental results in which a microwave is generated by flowing a microwave current of 36 mA (this is a current value corresponding to an input power of 100 W) through a microwave oscillator. The gas introduced into the gas introduction pipe has a flow rate of CO 2 gas and water gas of 20-80 sccm (total 100 sccm), 40-60 sccm (total 100 sccm), 60-240 sccm (total 300 sccm), 100-400 sccm (total 500 sccm). The decomposition rate and the amount of decomposition of CO 2 were measured for each of three different shapes such as a U-shaped tube, a spiral tube, and a bead-shaped tube.
In the experiment, CO 2 decomposition is performed while maintaining the plasma state for 10 to 20 minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1から、COと水ガス流量が、20-80sccm(合計100sccm)、40-60sccm(合計100sccm)の場合、COガスの分解率が高く、60-240sccm(合計300sccm)、100-400sccm(合計500sccm)になるとCO分解率が下がっていくことがわかった。
 また、反応管の形状がU字管、スパイラル管、数珠型管の内、U字管が最もCOガスの分解率が高いことがわかった。CO分解量は、U字管でマイクロ波プラズマCVDを行った場合で、COと水ガス流量が40-60sccm(合計100sccm)の場合が最もCO分解が行われていることがわかる。
 表1の結果をグラフにしたのが図4,5である。図4はCOと水ガス流量を変化させた場合におけるCO分解率を示すグラフであり、図5はCO分解量を示すグラフである。
From Table 1 above, when the CO 2 and water gas flow rates are 20-80 sccm (total 100 sccm) and 40-60 sccm (total 100 sccm), the decomposition rate of CO 2 gas is high, and 60-240 sccm (total 300 sccm), 100- It was found that the CO 2 decomposition rate decreased at 400 sccm (total 500 sccm).
It was also found that the U-tube has the highest CO 2 gas decomposition rate among U-tubes, spiral tubes, and beaded tubes. The amount of CO 2 decomposition is obtained when microwave plasma CVD is performed with a U-shaped tube, and the CO 2 decomposition is most performed when the CO 2 and water gas flow rates are 40-60 sccm (total 100 sccm).
The results of Table 1 are graphed in FIGS. FIG. 4 is a graph showing the CO 2 decomposition rate when the CO 2 and water gas flow rates are changed, and FIG. 5 is a graph showing the CO 2 decomposition amount.
 また、下記表2は、COと水ガス流量が20-80sccm(合計100sccm)の場合で、マイクロ波電流を36mA(投入電力100Wに相当)、40mA、50mA、60mA、72mA(投入電力200Wに相当)に変化させて、CO分解率およびCO分解量を測定した結果を示している。表2から、U字管で72mA(投入電力200Wに相当)の場合が、最もCO分解が行われていることがわかる。なお、表2において空欄部分は未測定の箇所である。 Table 2 below shows that when the flow rate of CO 2 and water gas is 20-80 sccm (total 100 sccm), the microwave current is 36 mA (corresponding to input power 100 W), 40 mA, 50 mA, 60 mA, 72 mA (input power 200 W). The results of measuring the CO 2 decomposition rate and the amount of CO 2 decomposition are shown. From Table 2, it can be seen that the case of 72 mA (corresponding to input power of 200 W) with a U-shaped tube is the most CO 2 decomposition. In Table 2, the blank part is an unmeasured part.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果をグラフにしたのが図6,7である。図6は投入電力を変化させた場合におけるCO分解率を示すグラフであり、図7はCO分解量を示すグラフである。
 上記表1,2の結果から、反応管のタイプとしてU字管が最も効率がよいことがわかる。以下の実験結果では、反応管のタイプは全てU字管の場合のものを示している。
The results of Table 2 are graphed in FIGS. FIG. 6 is a graph showing the CO 2 decomposition rate when the input power is changed, and FIG. 7 is a graph showing the CO 2 decomposition amount.
From the results of Tables 1 and 2, it can be seen that the U-shaped tube is the most efficient type of reaction tube. In the following experimental results, all reaction tube types are U-tubes.
 下記表3は、COと水ガス流量、投入電力を変化させた場合におけるCO分解率およびCO分解量を測定した結果を示している。また、図8,10はCO分解率を示すグラフであり、図9,11はCO分解量を示すグラフである。
 これらの実験結果から、COと水ガス流量が40-60sccm(合計100sccm)の場合、CO分解率が81%と最も高く、CO分解量も29(sccm)であり、最も優れたCO削減が行われていたことがわかる。
Table 3 below shows the results of measuring the CO 2 decomposition rate and CO 2 decomposition amount when CO 2 , water gas flow rate, and input power are changed. 8 and 10 are graphs showing the CO 2 decomposition rate, and FIGS. 9 and 11 are graphs showing the CO 2 decomposition amount.
From these experimental results, when the CO 2 and water gas flow rates are 40-60 sccm (total 100 sccm), the CO 2 decomposition rate is the highest at 81%, the CO 2 decomposition amount is 29 (sccm), and the most excellent CO 2 It can be seen that 2 reductions have been made.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 下記表4では、マイクロ波電流90mA(投入電力250Wに相当)を流してマイクロ波プラズマCVDを行ったもので、COと水ガス流量の合計を100(sccm)とし、COと水ガス流量比を3:7~5:5に変化させた場合におけるCO分解率およびCO分解量を測定した結果を示している。
 表4に示すように、CO分解率はいずれも80%を超えており、CO分解量は、COが最も多く含まれるCOと水ガス流量比が50:50の場合が最も高い結果となった。
In Table 4 below, microwave plasma CVD was performed with a microwave current of 90 mA (corresponding to input power of 250 W). The total of CO 2 and water gas flow rate was 100 (sccm), and CO 2 and water gas flow rate The results of measuring the CO 2 decomposition rate and CO 2 decomposition amount when the ratio is changed from 3: 7 to 5: 5 are shown.
As shown in Table 4, the CO 2 decomposition rate exceeds 80%, and the amount of CO 2 decomposition is highest when the CO 2 containing the most CO 2 and the water gas flow ratio is 50:50. As a result.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 下記表5では、マイクロ波電流90mA(投入電力250Wに相当)を流してマイクロ波プラズマCVDを行ったもので、COと水ガス流量の合計が100(sccm)、500(sccm)、1000(sccm)の場合で、COと水ガス流量比を40:60、100:400に変化させた場合におけるCO分解率およびCO分解量を測定した結果を示している。
 表5に示すように、COと水ガス流量の合計が500(sccm)、1000(sccm)と増加するに従い、CO分解率は下がり、CO分解量が変化しないといった結果となった。
In Table 5 below, microwave plasma CVD was performed with a microwave current of 90 mA (corresponding to an input power of 250 W), and the total of CO 2 and water gas flow rates was 100 (sccm), 500 (sccm), 1000 ( In the case of sccm), the CO 2 decomposition rate and the CO 2 decomposition amount when the CO 2 and water gas flow rate ratio is changed to 40:60 and 100: 400 are shown.
As shown in Table 5, as the total of CO 2 and water gas flow rate increased to 500 (sccm) and 1000 (sccm), the CO 2 decomposition rate decreased and the CO 2 decomposition amount did not change.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 下記表6では、マイクロ波電流を36mA(投入電力100Wに相当)、72mA(投入電力200Wに相当)、90mA(投入電力250Wに相当)を流してマイクロ波プラズマCVDを行ったもので、COと水ガスの流量比を4:6に固定して、COと水ガス流量合計(sccm)が、200、300、400、500、1000の場合におけるCO分解率およびCO分解量を測定した結果を示している。
 表6に示すように、90mA(投入電力250Wに相当)を流してマイクロ波プラズマCVDを行った場合が、CO分解率およびCO分解量が最大値となっており、また、COと水ガス流量の合計が200(sccm)より大きくなるとCO分解率は下がり、COと水ガス流量の合計が500(sccm)の場合にCO分解量が最も大きくなるといった結果となった。
 これから、COと水ガスの流量合計(sccm)が、500,1000と大きくなる場合は、更にマイクロ波電流値を高くし、投入電力を大きくすることで、CO分解率を高く維持でき、CO分解量を大きくできることが推察できる。
In Table 6, (corresponding to input power 100W) microwave currents 36 mA, 72 mA (corresponding to input power 200 W), which was subjected to microwave plasma CVD by supplying a 90 mA (corresponding to input power 250 W), CO 2 The CO 2 decomposition rate and CO 2 decomposition amount when the CO 2 and water gas flow rate total (sccm) is 200, 300, 400, 500, 1000 are fixed at a flow ratio of 4 to 6 Shows the results.
As shown in Table 6, when subjected to microwave plasma CVD by supplying a 90 mA (corresponding to input power 250 W) is, CO 2 decomposition rate and CO 2 decomposition amount has the maximum value, also with CO 2 When the total water gas flow rate was greater than 200 (sccm), the CO 2 decomposition rate decreased, and when the total CO 2 and water gas flow rate was 500 (sccm), the result was that the CO 2 decomposition amount was the largest.
From this, when the total flow rate (sccm) of CO 2 and water gas becomes as large as 500,1000, the CO 2 decomposition rate can be maintained high by further increasing the microwave current value and increasing the input power, It can be inferred that the amount of CO 2 decomposition can be increased.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 下記表7は、装置を直列に3台結合させ、すなわち、前段の装置のガス排気管と、後段の装置のガス導入管を接続して3台直列に接続した3段装置のシステムの性能について示したものである。
 COと水ガス流量(sccm)は10:90であり、合計が100(sccm)である。投入電力は72mA(200Wに相当)を3台合計して600W、或は、90mA(250Wに相当)を3台合計して750Wである。それぞれのCO分解率およびCO分解量は、95(%)、9.5(sccm)となった。
 このように、装置を3台直列に結合(3段連結)すれば、100%近くCOを削減することができる。
Table 7 below shows the performance of the system of the three-stage apparatus in which three apparatuses are connected in series, that is, the gas exhaust pipe of the preceding apparatus and the gas introduction pipe of the latter apparatus are connected and connected in series. It is shown.
The CO 2 and water gas flow rate (sccm) is 10:90, and the total is 100 (sccm). The total input power is 600W with three 72mA (equivalent to 200W), or 750W with three 90mA (equivalent to 250W). The respective CO 2 decomposition rates and CO 2 decomposition amounts were 95 (%) and 9.5 (sccm).
In this manner, if three devices are connected in series (three-stage connection), CO 2 can be reduced by nearly 100%.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 下記表8では、マイクロ波電流を72mA(投入電力200Wに相当)、90mA(投入電力250Wに相当)を流してマイクロ波プラズマCVDを行ったもので、COと水ガス流量を60:40或は70:30とし、COと水ガス流量合計(sccm)が100の場合におけるCO分解率およびCO分解量を測定した結果を示している。
 表8に示すように、マイクロ波電流90mA(250Wに相当)の場合が、CO分解率およびCO分解量が高く、更にマイクロ波電流値を高くし、投入電力を大きくすることで、高いCO分解率、大きなCO分解量にできることが推察できる。
In Table 8 below, microwave plasma CVD was performed with a microwave current of 72 mA (corresponding to input power of 200 W) and 90 mA (corresponding to input power of 250 W), and the CO 2 and water gas flow rates were 60:40 or Shows the results of measuring the CO 2 decomposition rate and CO 2 decomposition amount when the CO 2 and water gas flow rate total (sccm) is 100.
As shown in Table 8, when the microwave current is 90 mA (corresponding to 250 W), the CO 2 decomposition rate and the CO 2 decomposition amount are high, the microwave current value is further increased, and the input power is increased. It can be inferred that the CO 2 decomposition rate and the large amount of CO 2 decomposition can be achieved.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上、CO分解率、分解量について説明した。ここで、CO分解に伴う電気代について説明する。一般家庭の消費電力としては、100(Wh)が2.5円程度である。マイクロ波電流36mA(100Wに相当)で10分間、マイクロ波プラズマCVDを行った場合、100W×10分/60分=16.7Whとなる。この電気代としては0.4円程度である。マイクロ波電流72mA(200Wに相当)で10分間、マイクロ波プラズマCVDを行った場合は、電気代として0.8円程度である。これは、非常に経済的であり、マイクロ波電流36mA(100Wに相当)で10分間、マイクロ波プラズマCVDを行う電気は、500Wの家庭用電子レンジで2分使用する電気と同じである。 The CO 2 decomposition rate and decomposition amount have been described above. Here, a description will be given electricity bill accompanying the CO 2 decomposition. As for the power consumption of a general household, 100 (Wh) is about 2.5 yen. When microwave plasma CVD is performed at a microwave current of 36 mA (corresponding to 100 W) for 10 minutes, 100 W × 10 minutes / 60 minutes = 16.7 Wh. This electricity bill is about 0.4 yen. When microwave plasma CVD is performed for 10 minutes at a microwave current of 72 mA (corresponding to 200 W), the electricity bill is about 0.8 yen. This is very economical and the electricity to perform microwave plasma CVD for 10 minutes at a microwave current of 36 mA (equivalent to 100 W) is the same as that used for 2 minutes in a 500 W home microwave oven.
 一方、電気を使えばそれをCOに換算するという話があり、現在のところ、0.475kgのCO/kWh、または、0.000550tonのCO/kWhと言われている。1kWh=0.5kgのCO(1Wh=0.5gのCO)とすると、投入電力100W,200W, 250Wで10分間のマイクロ波プラズマCVDでは、それぞれ、16.7Wh (8.35g), 33.3Wh (16.65g), 41.7Wh (20.85g)のCO換算量になる。CO分解量が20sccmの場合、20sccmはg/分に換算すると、20×44/(2.24×10)=0.0393g/分であり(但し、COの質量44g)、10分では0.393gを分解したことになる。従って、0.395/8.35=4.7%がCO換算した場合の効率と見做すことができる。 On the other hand, there is talk of converting it if you use electricity to CO 2, at present, 0.475kg of CO 2 / kWh or, it is said that the CO 2 / kWh of 0.000550ton. Assuming 1 kWh = 0.5 kg of CO 2 (1 Wh = 0.5 g of CO 2 ), microwave plasma CVD for 10 minutes with input powers of 100 W, 200 W, and 250 W, respectively, 16.7 Wh (8.35 g), 33 .3 Wh (16.65 g), 41.7 Wh (20.85 g) CO 2 equivalent. When the CO 2 decomposition amount is 20 sccm, 20 sccm is 20 × 44 / (2.24 × 10 4 ) = 0.0393 g / min when converted to g / min (however, the mass of CO 2 is 44 g), 10 min. Then, 0.393 g was decomposed. Therefore, 0.395 / 8.35 = 4.7% can be regarded as the efficiency when converted to CO 2 .
 上記の表6において、COと水ガスの流量が200、300の場合で、250W(10分)の場合、CO分解量が55sccmであるが、この場合1.086/20.85=5.2%がCO換算した場合の効率と見做すことができる。
 なお、化石燃料に頼らない発電方式、例えば太陽光発電方式を採用した場合には、CO換算は、まったく意味をもたないであろう。例えば、本装置の上部に太陽電池パネルを取り付ければ、100W~数100Wの発電は可能であり、本装置の作動のための電力供給には十分である。
In Table 6 above, when the flow rates of CO 2 and water gas are 200 and 300 and 250 W (10 minutes), the CO 2 decomposition amount is 55 sccm. In this case, 1.086 / 20.85 = 5 .2% can be regarded as efficiency when converted to CO 2 .
When a power generation method that does not rely on fossil fuels, such as a solar power generation method, is adopted, CO 2 conversion will have no meaning at all. For example, if a solar cell panel is attached to the upper part of the apparatus, power generation of 100 W to several hundreds W is possible, which is sufficient for supplying power for the operation of the apparatus.
 CO分解は、CO削減となり、さらに後述するように、COから高い付加価値を持つ合成物を生成できる。
  CO削減方法は、COからナノカーボン材料を合成することを目的とし、最終的には合成物が高い付加価値を持つことを特徴としており、COの削減のみならず、COの有効利用に帰するものである。
CO 2 decomposition results in CO 2 reduction and, as will be described later, a compound with high added value can be generated from CO 2 .
CO 2 reduction method aims to synthesize the nano-carbon material from CO 2, and finally are characterized by having a high added value compounds, not reducing CO 2 alone, the CO 2 effective It is attributed to use.
 本実施例では、ガス排気管の内部に基板として鉄線あるいは鉄の薄板を用いた。鉄(Fe)の純度は99.999%から99.5%である。Feを用いた理由は、SiにFe微粒子を蒸着し、カーボンナノチューブを作成した経験に基づいたものである。U字管の中央部から数センチ離れた所に鉄線の先端を置き、他端をプラズマ発生部に最も近いところとした。鉄線の長さは約25センチである。 In this example, an iron wire or a thin iron plate was used as the substrate inside the gas exhaust pipe. The purity of iron (Fe) is 99.999% to 99.5%. The reason for using Fe is based on experience in producing carbon nanotubes by depositing Fe fine particles on Si. The tip of the iron wire was placed a few centimeters away from the center of the U-shaped tube, and the other end was the closest to the plasma generator. The length of the iron wire is about 25 cm.
 図12は、本実施例において、ナノ炭素として合成したカーボンナノウォールのSEM写真を示している。図12の写真から、針状に直立した特徴を持つことがわかる。また、根元にはグラファイトと思われる微小片が多く観察できる。図13のTEM写真は、針状のカーボンナノウォールの集合した箇所を観察したもので、結晶構造のコントラストがうかがえる。 FIG. 12 shows an SEM photograph of carbon nanowall synthesized as nanocarbon in this example. It can be seen from the photograph in FIG. 12 that the needle has an upright feature. In addition, many small pieces that are thought to be graphite can be observed at the base. The TEM photograph in FIG. 13 is an observation of the location where the acicular carbon nanowalls are gathered, indicating the contrast of the crystal structure.
 図13のTEM写真と同じ箇所の電子線回折写真(図14を参照)から、これらは非常に微小なグラファイト結晶をもつ薄片で、多方位に成長したものであることがわかる。カーボンナノウォールは微小グラフェンの集合体である可能性がきわめて高い。また、プラズマに近いところでは、温度上昇の影響で分厚いグラファイトが生成されていた。一方、プラズマに遠いところでは、このグラファイトの厚さは薄い。結晶性が良好なので、機械材料(構造物、複合体、潤滑剤など)、電気材料(電極、キャパシタ―、接点など)の実用に供される可能性が高い。また、カーボンナノウォールも水素吸蔵、極薄固体潤滑剤など新しい用途に有望である。 From the electron beam diffraction photograph (see FIG. 14) at the same location as the TEM photograph in FIG. 13, it can be seen that these are flakes having very fine graphite crystals and grown in multiple directions. Carbon nanowalls are very likely to be a collection of fine graphene. In addition, thick graphite was generated near the plasma due to the temperature rise. On the other hand, the graphite is thin at a location far from the plasma. Since crystallinity is good, there is a high possibility that it will be put into practical use for mechanical materials (structures, composites, lubricants, etc.) and electrical materials (electrodes, capacitors, contacts, etc.). Carbon nanowalls are also promising for new applications such as hydrogen storage and ultra-thin solid lubricants.
(その他の実施例)
(1)上記実施例1では、反応管としてU字管を用いたが、径の異なる2本の管であって、径の小さい側をガス導入管とし、径の大きい側をガス排気管とし、ガス導入管をガス排気管内に挿入したものでもよい(図15、図16を参照)。また、反応菅の形状は、ガスが流れる行路を長くすればよく、スパイラル形状や蛇行形状でも構わない。
(2)上記実施例1では、マイクロ波導波管を用いたが、マイクロ波導波用同軸ケーブルを用いてもよい。マイクロ波導波用同軸ケーブルの場合、反応管の折り返し部位に隣接して設ける。
(Other examples)
(1) In Example 1 above, a U-shaped tube was used as the reaction tube, but two tubes having different diameters, the smaller diameter side being the gas introduction tube and the larger diameter side being the gas exhaust tube. The gas introduction pipe may be inserted into the gas exhaust pipe (see FIGS. 15 and 16). Further, the shape of the reaction vessel may be a spiral shape or a meandering shape, as long as the path through which the gas flows is long.
(2) Although the microwave waveguide is used in the first embodiment, a coaxial waveguide for microwave waveguide may be used. In the case of a microwave waveguide coaxial cable, it is provided adjacent to the folded portion of the reaction tube.
 本発明は、大気環境に存在するCO、公共施設、商業施設、一般家庭から排出されるCOの削減装置として有用である。 The present invention is useful as a device for reducing CO 2 present in the atmospheric environment, CO 2 emitted from public facilities, commercial facilities, and general households.
  1  マイクロ波導波管
  2  マイクロ波発振器
  3  反応管
  4  ガス排気管
  5  ガス導入管
  7  電源
  8  折り返される部位
  10 U字管
  11 2層管
  12 マイクロ波整合器(スタブ)
  14 フランジ
  16 プレート
  17 ストッパー
  18 支持部材
  20 プラズマ発生部
 
DESCRIPTION OF SYMBOLS 1 Microwave waveguide 2 Microwave oscillator 3 Reaction tube 4 Gas exhaust pipe 5 Gas introduction pipe 7 Power supply 8 Folded part 10 U-shaped pipe 11 Two-layer pipe 12 Microwave matching device (stub)
14 Flange 16 Plate 17 Stopper 18 Support member 20 Plasma generator

Claims (12)

  1.  マイクロ波発振手段と、マイクロ波導波手段と、前記マイクロ波導波手段の内部または隣接部に設けられ、ガス導入管とガス排気管から成る反応管を備え、
     前記反応管内でマイクロ波プラズマを発生させ、マイクロ波プラズマCVD法を用いて、前記反応管内を流れる炭素酸化物含有ガス中のCOガスを削減する装置であって、
     水ガスが、炭素酸化物含有ガスのキャリアガスとして用いられたことを特徴とするCO削減装置。
    A microwave oscillation means, a microwave waveguide means, and a reaction tube provided inside or adjacent to the microwave waveguide means, comprising a gas introduction pipe and a gas exhaust pipe,
    An apparatus that generates microwave plasma in the reaction tube and reduces CO 2 gas in the carbon oxide-containing gas flowing in the reaction tube using a microwave plasma CVD method,
    A CO 2 reduction device, wherein water gas is used as a carrier gas for a carbon oxide-containing gas.
  2.  前記反応管は、前記ガス導入管と前記ガス排気管が前記マイクロ波導波手段内部または隣接部で折り返されることを特徴とする請求項1に記載のCO削減装置。 2. The CO 2 reduction device according to claim 1, wherein in the reaction tube, the gas introduction tube and the gas exhaust tube are folded inside or adjacent to the microwave waveguide unit.
  3.  前記ガス排気管の内部に配設された基材上に、COガスが固定化され、カーボンナノウォールを生成することを特徴とする請求項1に記載のCO削減装置。 2. The CO 2 reduction device according to claim 1, wherein CO 2 gas is immobilized on a base material disposed inside the gas exhaust pipe to generate carbon nanowalls.
  4.  前記反応管は、U字状の管であり、一方の管を前記ガス導入管とし、他方の管を前記ガス排気管とすることを特徴とする請求項1に記載のCO削減装置。 2. The CO 2 reduction device according to claim 1, wherein the reaction tube is a U-shaped tube, one tube being the gas introduction tube and the other tube being the gas exhaust tube.
  5.  前記反応管は、径の異なる2本の管であって、径の小さい管を前記ガス導入管とし、径の大きい管を前記ガス排気管とし、前記ガス導入管を前記ガス排気管内に挿入することを特徴とする請求項1に記載のCO削減装置。 The reaction tubes are two tubes having different diameters. A tube having a small diameter is used as the gas introduction tube, a tube having a large diameter is used as the gas exhaust tube, and the gas introduction tube is inserted into the gas exhaust tube. The CO 2 reduction device according to claim 1.
  6.  前記反応管における前記ガス導入管は、スパイラル形状や蛇行形状を呈し、ガスが流れる行路を長くすることを特徴とする請求項4または5に記載のCO削減装置。 6. The CO 2 reduction device according to claim 4, wherein the gas introduction pipe in the reaction pipe has a spiral shape or a meandering shape, and lengthens a path through which the gas flows.
  7.  前記反応管内の圧力は、100~200Paであることを特徴とする請求項1に記載のCO削減装置。 The CO 2 reduction device according to claim 1, wherein the pressure in the reaction tube is 100 to 200 Pa.
  8.  前記マイクロ波導波手段は、マイクロ波導波管またはマイクロ波導波用同軸ケーブルであり、
     マイクロ波導波管の場合、マイクロ波整合器が更に設けられ、
     マイクロ波導波用同軸ケーブルの場合、同軸タイプのスリースタブチューナーが更に設けられたことを特徴とする請求項1に記載のCO削減装置。
    The microwave waveguide means is a microwave waveguide or a coaxial cable for microwave waveguide,
    In the case of a microwave waveguide, a microwave matching device is further provided,
    2. The CO 2 reduction device according to claim 1, further comprising a coaxial type slew tab tuner in the case of the coaxial cable for microwave waveguide.
  9.  請求項1~8に記載のCO削減装置を多段に設けたシステムであって、前段のCO削減装置のガス排気管と、後段のCO削減装置のガス導入管を接続することを特徴とするCO削減システム。 Wherein CO 2 reduction apparatus according to claims 1 to 8, a system which is provided in multiple stages, a gas exhaust pipe of the preceding CO 2 reduction unit, to connect the gas inlet pipe of the subsequent CO 2 reduction device CO 2 reduction system.
  10.  COガスを炭素源として、キャリアガスとして水ガスを用い、マイクロ波プラズマCVD法を用いて、カーボンナノウォールを作製するCO削減方法。 A CO 2 reduction method for producing carbon nanowalls using a microwave plasma CVD method using CO 2 gas as a carbon source and water gas as a carrier gas.
  11.  COガスと水ガスの流量比は、3:7から5:5の割合であることを特徴とする請求項10に記載のCO削減方法。 The CO 2 reduction method according to claim 10, wherein the flow rate ratio between the CO 2 gas and the water gas is a ratio of 3: 7 to 5: 5.
  12.  マイクロ波プラズマの発生用の投入電力は、太陽光発電により生成された電力を用いることを特徴とする請求項10または11に記載のCO削減方法。
     
    12. The CO 2 reduction method according to claim 10, wherein power generated by solar power generation is used as input power for generating microwave plasma.
PCT/JP2014/004173 2014-08-11 2014-08-11 Co2 reduction device and co2 reduction method WO2016024301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004173 WO2016024301A1 (en) 2014-08-11 2014-08-11 Co2 reduction device and co2 reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004173 WO2016024301A1 (en) 2014-08-11 2014-08-11 Co2 reduction device and co2 reduction method

Publications (1)

Publication Number Publication Date
WO2016024301A1 true WO2016024301A1 (en) 2016-02-18

Family

ID=55303949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004173 WO2016024301A1 (en) 2014-08-11 2014-08-11 Co2 reduction device and co2 reduction method

Country Status (1)

Country Link
WO (1) WO2016024301A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019238206A1 (en) 2018-06-11 2019-12-19 Jozef Stefan Institute Carbon nanostructured materials and methods for forming carbon nanostructured materials
WO2021115596A1 (en) 2019-12-11 2021-06-17 Jozef Stefan Institute Method and apparatus for deposition of carbon nanostructures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326155A (en) * 2002-05-09 2003-11-18 Kaken:Kk Method for reducing carbon dioxide in atmosphere and its device
WO2013175806A1 (en) * 2012-05-25 2013-11-28 株式会社ティサポート Co2 recycling device and co2 recycling system
JP2014015342A (en) * 2012-07-06 2014-01-30 T-Support Corp Method for manufacturing carbon onion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326155A (en) * 2002-05-09 2003-11-18 Kaken:Kk Method for reducing carbon dioxide in atmosphere and its device
WO2013175806A1 (en) * 2012-05-25 2013-11-28 株式会社ティサポート Co2 recycling device and co2 recycling system
JP2014015342A (en) * 2012-07-06 2014-01-30 T-Support Corp Method for manufacturing carbon onion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019238206A1 (en) 2018-06-11 2019-12-19 Jozef Stefan Institute Carbon nanostructured materials and methods for forming carbon nanostructured materials
US11673807B2 (en) 2018-06-11 2023-06-13 National University Corporation Tokai National Higher Education And Research System Carbon nanostructured materials and methods for forming carbon nanostructured materials
WO2021115596A1 (en) 2019-12-11 2021-06-17 Jozef Stefan Institute Method and apparatus for deposition of carbon nanostructures

Similar Documents

Publication Publication Date Title
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
Baddour et al. A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst
Lim et al. Plasma-assisted synthesis of carbon nanotubes
US20080182027A1 (en) Synthesis of Carbon Nanotubes by Selectively Heating Catalyst
US20140170057A1 (en) Method and apparatus for manufacturing graphene sheet
JP4934316B2 (en) Method for producing fibrous carbon material
CN111170309B (en) Preparation method of ultra-long few-wall carbon nanotube array
JP5678369B2 (en) CO2 recycling device and CO2 recycling system
WO2008013309A1 (en) Carbon nanowall with controlled structure and method of controlling structure of carbon nanowall
CN102923686B (en) Graphene/carbon nanotube composite material preparation method
Riyajuddin et al. Study of field emission properties of pure graphene-CNT heterostructures connected via seamless interface
CN101948105A (en) Method for preparing vertical array of high-purity single-walled carbon nanotubes
JP2019523695A (en) Process, reactor and system for the fabrication of free-standing two-dimensional nanostructures using plasma technology
Wang et al. Preparation of carbon nanotubes and nano-particles by microwave plasma-enhanced chemical vapor deposition
Li et al. Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge
Roy et al. Synthesis of single-walled, bamboo-shaped and Y-junction carbon nanotubes using microwave plasma CVD on low-temperature and chemically processed catalysts
Sun et al. Strategies for scalable gas-phase preparation of free-standing graphene
WO2016024301A1 (en) Co2 reduction device and co2 reduction method
JP5302279B2 (en) Diamond thin film growth equipment
KR20110078405A (en) Forming method of carbon nanotube fibers
CN108383102B (en) Method and device for preparing carbon nano material by plasma in open environment
Srivastava et al. Carbon Nanowalls: A potential 2-Dimensional material for field emission and energy-related applications
Guo et al. Hollow “graphene” microtubes using polyacrylonitrile nanofiber template and potential applications of field emission
KR101092860B1 (en) Method For Separating Metallic Carbon Nanotubes By Using Microwave

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14899730

Country of ref document: EP

Kind code of ref document: A1