WO2016021692A1 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
WO2016021692A1
WO2016021692A1 PCT/JP2015/072384 JP2015072384W WO2016021692A1 WO 2016021692 A1 WO2016021692 A1 WO 2016021692A1 JP 2015072384 W JP2015072384 W JP 2015072384W WO 2016021692 A1 WO2016021692 A1 WO 2016021692A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
meth
resin layer
base material
cured resin
Prior art date
Application number
PCT/JP2015/072384
Other languages
French (fr)
Japanese (ja)
Inventor
聖 金子
広希 飯田
一裕 東
Original Assignee
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協立化学産業株式会社 filed Critical 協立化学産業株式会社
Priority to CN201580042355.XA priority Critical patent/CN106660067B/en
Priority to KR1020177006004A priority patent/KR102312162B1/en
Publication of WO2016021692A1 publication Critical patent/WO2016021692A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation

Definitions

  • the present invention relates to a method for manufacturing a laminate, and more specifically, to a method for manufacturing a laminate that is an image display device.
  • a light transmissive member is usually provided on a display body such as a liquid crystal display panel or an organic EL panel. It is known to use a photocurable resin composition for adhesion between a display body and a light transmissive member.
  • a light shielding layer such as a black matrix is often provided at the periphery of the light transmissive member in order to improve contrast and the like. Therefore, even if the display body and the light transmissive member are overlapped with each other through the photocurable resin composition and irradiated with light, the light is blocked by the presence of the light shielding layer, and the curing does not proceed sufficiently, resulting in flow out. Or a lack of adhesion may occur.
  • thermopolymerization initiator is blended in a photocurable resin composition, followed by light irradiation and further thermosetting (Patent Document 1).
  • the photocurable resin composition is applied to the surface of the display body so as to be thicker than the thickness of the light shielding layer, and ultraviolet rays are 10 to 80%.
  • a method in which light curing is performed so as to achieve a curing rate, and then a light transmissive member is stacked and then ultraviolet light is irradiated to perform main curing Patent Document 2.
  • An object of the present invention is to solve the above problems and to provide a method for manufacturing a laminate, for example, an image display device, in which substrates are bonded to each other with sufficient adhesive force using only a photocuring process.
  • the present invention 1 is a step of applying a photocurable resin composition to a substrate 1 to form a coating layer, and irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 to temporarily cure the resin layer Laminating, including the step of bonding the base material 2 onto the temporarily cured resin layer, and the step of irradiating the temporary cured resin layer between the base material 1 and the base material 2 with light and performing the main curing.
  • the present invention relates to a method for manufacturing a body.
  • the present invention 2 relates to the method for producing a laminate of the present invention 1, wherein the light in the step of forming the temporarily cured resin layer is light having an ultraviolet irradiation intensity of 1 to 50 mW / cm 2 .
  • the present invention 3 forms the temporarily cured resin layer by irradiating light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 so that the curing rate of the photocurable resin composition in the coating layer is 40 to 90%.
  • Invention 4 is a process for producing a laminate according to any one of Inventions 1 to 3, wherein light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 is an LED having a peak at 365 nm and / or an LED having a peak at 405 nm. Regarding the method.
  • the present invention 5 is the present invention, wherein light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 is light that has passed through an optical filter that cuts light having a wavelength of 300 nm or less and / or an optical filter that cuts wavelength of 500 nm or more.
  • the present invention relates to a method for producing any one of the laminates 1 to 4.
  • the present invention 6 relates to a method for producing a laminate according to any one of the present inventions 1 to 5, wherein the photocurable resin composition contains a (meth) acrylate oligomer and a photopolymerization initiator.
  • This invention 7 is related with the manufacturing method of the laminated body of this invention 6 whose (meth) acrylate oligomer is the (meth) acrylate oligomer which has (hydrogenated) polyisoprene, (hydrogenated) polybutadiene, or a polyurethane structure in frame
  • the invention 8 is any one of the inventions 1 to 7, wherein one of the substrate 1 and the substrate 2 is a liquid crystal display panel, an organic EL display panel, a protective panel or a touch panel, and the other is a light transmissive member.
  • the present invention relates to a method for producing a laminate.
  • the present invention 9 relates to a method for producing a laminate according to any one of the present inventions 1 to 8, wherein the laminate is an image display device.
  • a laminate in which substrates are bonded to each other with a sufficient adhesive force using only a photocuring process for example, an image display device is provided.
  • the method for producing a laminate of the present invention includes the following steps (A) to (D).
  • the base material 1 and the base material 2 are adhere
  • the substrate 1 and the substrate 2 are not particularly limited, and may be the same substrate or different substrates.
  • the laminated body may contain the further base material, and the adhesion method of the base material is not specifically limited.
  • a liquid crystal display device can be manufactured by using one of the substrate 1 or the substrate 2 as a liquid crystal display panel and the other as a light transmissive member, one as an organic EL display panel, and the other as a light transmissive member. By doing so, an organic EL display device can be manufactured.
  • a touch panel can be manufactured by using one of the substrate 1 or the substrate 2 as a light-transmitting substrate on which a transparent electrode is formed and the other as a light-transmitting member.
  • one of the substrate 1 or the substrate 2 can be a touch panel, and the other can be an icon sheet or a decorative board.
  • an image display device with a protection panel or a substrate with a protection panel can be manufactured by using one of the base material 1 or the base material 2 as a protection panel and the other as an image display device or various substrates.
  • the base material 1 can be a protective panel
  • the base material 2 can be a light transmissive member.
  • the light transmissive member When the light transmissive member is used, the light transmissive member only needs to have light transmittance according to the purpose of the laminated body. For example, when the laminated body is an image display device, an image formed on the display body is not necessary. What is necessary is just to have the light transmittance of the grade which can be visually recognized.
  • the light transmissive member include glass, (meth) acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyester, cycloolefin polymer, and other plate-like materials and sheet-like materials.
  • a light shielding layer may be formed on the light transmissive member.
  • Step A is a step of forming a coating layer by applying a photocurable resin composition to the substrate 1.
  • a photocurable resin composition the composition containing a (meth) acrylate oligomer and a photoinitiator can be used.
  • the (meth) acrylate oligomer is not particularly limited, and examples thereof include (hydrogenated) polyisoprene, (hydrogenated) polybutadiene, and (meth) acrylate oligomer having a polyurethane as a skeleton. These (meth) acrylate oligomers can be used alone or in combination of two or more.
  • (hydrogenated) polyisoprene includes polyisoprene and / or hydrogenated polyisoprene
  • (hydrogenated) polybutadiene includes polybutadiene and / or hydrogenated polybutadiene.
  • (Meth) acrylate oligomer having (hydrogenated) polyisoprene as a skeleton is also called (meth) acryl-modified polyisoprene, and preferably has a molecular weight of 1000 to 100,000, more preferably 10,000 to 50,000.
  • An example of a commercially available product is “UC-1” (molecular weight 25000) manufactured by Kuraray.
  • (Meth) acrylate oligomer having (hydrogenated) polybutadiene as a skeleton is also called (meth) acryl-modified polybutadiene, and preferably has a molecular weight of 500 to 100,000, more preferably 1,000 to 30,000.
  • An example of a commercially available product is “TE2000” (molecular weight 2000) manufactured by Nippon Oil Corporation.
  • the (meth) acrylate oligomer having a polyurethane as a skeleton is also called (meth) acryl-modified polyurethane, and preferably has a molecular weight of 1000 to 100,000, more preferably 10,000 to 50,000.
  • Examples of commercially available products include “UA-1” manufactured by Light Chemical Co., Ltd. and “UV3630ID80” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • a (meth) acrylate oligomer having a polyurethane skeleton is particularly preferable.
  • (Meth) acrylate oligomers may be used alone or in combination of two or more.
  • the photopolymerization initiator is not particularly limited, but is 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxy-cyclohexyl-phenyl- Ketone, benzophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 2-benzyl- 2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- [4-methylthio] phenyl] -2 -Morpholinopropan-1-one, benzoin methyl ether, benzoin ethyl ether Benzoin isobutyl ether, benzoin isopropyl ether, bis (2,4,6-trimethyl
  • the photopolymerization initiator is preferably 1-hydroxy-cyclohexyl-phenyl-ketone, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide or the like.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the photopolymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and further preferably 1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylate oligomer. Part by mass.
  • the photocurable resin composition can contain a (meth) acrylate monomer as a reaction diluent, for example, 2-ethylhexyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate Alkyl (meth) acrylates such as t-butyl (meth) acrylate and lauryl (meth) acrylate; alkoxy-substituted alkyl (meth) acrylates such as methoxyethyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate and 2-hydroxy Hydroxy-substituted alkyl (meth) acrylates such as propyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, etc .; ethylene glycol di (meth) acrylate, diethylene Recall
  • alkyl (meth) acrylate such as lauryl (meth) acrylate, methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate and the like are preferable.
  • (Meth) acrylate monomers may be used alone or in combination of two or more.
  • the (meth) acrylate monomer is preferably 1 to 250 parts by weight, more preferably 20 to 200 parts by weight, and still more preferably 50 to 150 parts by weight with respect to 100 parts by weight of the (meth) acrylate oligomer. is there.
  • the photocurable resin composition may contain a plasticizer.
  • Plasticizers include dibutyl phthalate, diisononyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, etc .; dioctyl adipate, diisononyl adipate, dioctyl sebacate, diisononyl sebacate Polycarboxylic esters such as 1,2-cyclohexanedicarboxylic acid diisononyl; Phosphate esters such as tricresyl phosphate and tributyl phosphate; Trimellitic acid esters; Rubber-based polymers such as polyisoprene, polybutadiene and polybutene; Thermoplastic elastomers Petroleum resin; alicyclic saturated hydrocarbon resin; terpene resin such as terpene resin,
  • plasticizer polyvalent carboxylic acid esters, rosin ester resins, and the like are preferable, and 1,2-cyclohexanedicarboxylic acid diisononyl, (hydrogenated) rosin ester resins are more preferable.
  • the plasticizer may be used alone or in combination of two or more.
  • the plasticizer is preferably 10 to 500 parts by mass, more preferably 30 to 400 parts by mass, and still more preferably 50 to 300 parts by mass with respect to 100 parts by mass of the (meth) acrylate oligomer.
  • the photocurable resin composition can further contain an adhesion-imparting agent.
  • an adhesion-imparting agent a silane coupling agent such as vinyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldi Ethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3- Methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (
  • ⁇ Adhesive agents may be used alone or in combination of two or more.
  • the adhesion-imparting agent is preferably 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the (meth) acrylate oligomer. Part.
  • the photocurable resin composition can contain an antioxidant.
  • Antioxidants include BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl.
  • Tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethyle Bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4- Hydroxybenzyl) benzene, tris- (3,5-di-t
  • the antioxidant is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, and further preferably 1 to 5 parts by weight with respect to 100 parts by weight of the (meth) acrylate oligomer. Part.
  • an antifoaming agent a pigment, a filler, a chain transfer agent, a light stabilizer, a surface tension adjusting agent, a leveling agent, an ultraviolet absorber, and an antifoam are within the range not impairing the effects of the present invention.
  • An agent or the like can be blended.
  • the photocurable resin composition can be prepared by mixing each component.
  • the mixing method is not particularly limited, and various metals, plastic containers, stirring blades, and a stirrer can be used.
  • the method for applying the photocurable resin composition to the substrate 1 is not particularly limited, and a method using a die coater, a dispenser, screen printing, or the like can be used.
  • the thickness of the coating layer is not particularly limited, and can be, for example, 10 to 500 ⁇ m, and preferably 30 to 350 ⁇ m.
  • Step (B) is a step of irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 to form a temporarily cured resin layer.
  • the light used for the irradiation in the step (B) has an ultraviolet irradiation intensity of less than 100 mW / cm 2 , and is preferably 50 mW / cm 2 or less, more preferably from the viewpoint of intensity development after the main curing. Is 30 mW / cm 2 or less, and is preferably 1 mW / cm 2 or more from the point of time until the provisionally cured resin layer can be formed.
  • the ultraviolet irradiation intensity is the maximum intensity measured with an illuminometer, and the illuminance having sensitivity in the wavelength region corresponding to the wavelength with the highest irradiation intensity in the wavelength distribution of 300 to 500 nm of the light source used. It can be measured by a meter.
  • the light source may have a single peak or a plurality of peaks in a wavelength distribution of 300 to 500 nm, as long as the highest irradiation intensity is less than 100 mW / cm 2 .
  • the integrated value of the irradiation intensity of the wavelength of 300 to 500 nm with respect to the integrated value of the irradiation intensity of all wavelengths is not particularly limited, but is preferable from the viewpoint of the intensity expression after the main curing. Is 90% or more, more preferably 95% or more, and still more preferably 98% or more.
  • a light source that emits ultraviolet rays (UV) can be used, and examples thereof include a metal halide lamp, a high-pressure mercury lamp, a xenon lamp, a mercury xenon lamp, a halogen lamp, and a pulse xenon lamp.
  • the light emitted from these light sources may be adjusted to light of a specific wavelength by passing through an optical filter. Specifically, it can be adjusted by passing through an optical filter that cuts light of a wavelength of 300 nm or less and / or an optical filter that cuts a wavelength of 500 nm or more.
  • optical filters examples include quartz interference filters (model number: A7028-05, manufactured by Hamamatsu Photonics), LT filters, RT filters (both manufactured by HOYA), and bandpass filters (produced by Eye Graphics). It is done.
  • Light with LED as light source can also be used. LED with 365 nm peak, LED with 405 nm peak, LED with 375 nm peak, LED with 385 nm peak, LED with 395 nm peak, etc. Can be mentioned.
  • the resin composition of the coating layer is temporarily cured to form a temporarily cured resin layer.
  • the irradiation method is not particularly limited, and for example, the irradiation can be performed so that the accumulated ultraviolet light amount is 30 to 7500 mJ / cm 2 .
  • Integrated light quantity is preferably 50 ⁇ 5000mJ / cm 2, more preferably 100 ⁇ 2000mJ / cm 2.
  • the curing rate of the temporary curable resin layer is preferably 40 to 90%, more preferably 45 to 80%, and still more preferably 50 from the viewpoints of strength development, flow-out, and prevention of dripping after the main curing. ⁇ 70%.
  • the curing rate is defined by the rate of reduction of (meth) acrylic groups before and after ultraviolet irradiation of the photocurable resin composition, and can be measured by FT-IR.
  • Step C is a step of bonding the base material 2 on the temporarily cured resin layer.
  • the substrate 2 is placed on the substrate 1 on which the temporarily cured resin layer is formed so as to be in contact with the temporarily cured resin layer, and in some cases, the substrate 1 and the substrate 2 are pressurized by pressing from the substrate 1 side and / or the substrate 2 side. Can be pasted together.
  • the pressurizing method is not particularly limited, and a rubber roller, a flat plate press device or the like can be used.
  • Process D is a process in which the temporarily cured resin layer between the base material 1 and the base material 2 is further cured by irradiating light.
  • the base material 1 and the base material 2 is a light transmissive member
  • light can be irradiated from the base material side which is a light transmissive member, and this can be hardened.
  • the light is not particularly limited, and active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams can be used, and preferably ultraviolet rays.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams can be used, and preferably ultraviolet rays.
  • the light irradiation method is not particularly limited.
  • light having an intensity of 10 to 1500 mW / cm 2 can be irradiated so as to have an integrated light amount of 500 to 10000 mJ / cm 2 .
  • the intensity is preferably 100 to 1000 mW / cm 2 , more preferably 200 to 500 mW / cm 2
  • the integrated light amount is preferably 1000 to 6000 mJ / cm 2 , more preferably 1500 to 4500 mJ / cm 2 .
  • Each component of the composition shown in Table 1 was weighed into a polyethylene container and uniformly mixed using a three-one motor (manufactured by Tokyo Science Equipment Co., Ltd., MAZELA) and a stirring blade to prepare a photocurable resin composition.
  • Example 1 A metal squeegee is pasted on a 26mm x 75mm x 1.1mmt glass with a 150 ⁇ m thick spacer created using 3 pieces of cellophane tape (50 ⁇ mt) so that the coated part of the photo-curing resin becomes a 10mm x 10mm square shape. After the photocurable resin composition coating layer was formed using, the spacer was removed (FIG. 1 (1)). Under the temporary curing conditions shown in Table 2, using a mercury xenon lamp (manufactured by HOYA, EXECURE 4000, emission spectrum shown in FIG.
  • ultraviolet irradiation intensity (365 nm) 30 mW / cm 2 (measured by Hamamatsu Photonics) was irradiated to form a temporarily cured resin layer.
  • the integrated value of the irradiation intensity of the wavelength of 300 to 500 nm with respect to the integrated value of the irradiation intensity of all wavelengths is obtained by integrating the emission intensity in the wavelength distribution measurement, it is found to be about 85%.
  • the curing rate of the temporarily cured resin layer was measured by FT-IR (Perkin Elmer, Spectrum 100) as a decrease rate of the acrylic group before and after the ultraviolet irradiation of the photocurable resin composition.
  • the rate of decrease is the absorption peak height (X) of 800 to 820 cm ⁇ 1 from the baseline in the FT-IR measurement chart of the resin composition layer before ultraviolet irradiation, and the FT-IR measurement of the resin composition layer after ultraviolet irradiation.
  • the absorption peak height (Y) of 800 to 820 cm ⁇ 1 from the base line in the chart was determined by substituting into the following formula (1).
  • Curing rate (%) ⁇ (XY) / X ⁇ ⁇ 100 (1)
  • Another 26 mm ⁇ 75 mm ⁇ 1.1 mmt glass was prepared, placed on the glass on which the temporarily cured resin layer was formed so that the temporarily cured resin layer was in contact, and pressed and bonded together (FIG. 1 (2)). ).
  • Example 2 Under the temporary curing conditions shown in Table 3, using a mercury xenon lamp (manufactured by HOYA, EXECURE 4000, emission spectrum is shown in FIG. 2), irradiation with ultraviolet irradiation intensity (365 nm) of 10 mW / cm 2 is performed to perform temporary curing resin A glass laminate was prepared and the tensile strength was measured in the same manner as in Example 1 except that the layer was formed.
  • a laminate in which substrates are bonded to each other with sufficient adhesive force using only a photocuring process, for example, an image display device is provided. high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 Provided is a laminate production method in which a photocuring process alone is used to bond base materials to each other with sufficient adhesive strength. The laminate production method comprises: a step in which a coating layer is formed on a base material 1 by applying a photocurable resin composition; a step in which a partially-cured resin layer is formed on the coating layer by irradiating light having an ultraviolet light intensity of less than 100 mW/cm2; a step in which a base material 2 is bonded to the temporarily-cured resin layer; and a step in which the temporarily-cured resin layer between the base material 1 and the base material 2 is irradiated with light to completely cure said resin layer.

Description

積層体の製造方法Manufacturing method of laminate
 本発明は、積層体の製造方法に関し、具体的には画像表示装置である積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate, and more specifically, to a method for manufacturing a laminate that is an image display device.
 スマートフォン等に用いられる画像表示装置には、液晶表示パネルや有機ELパネルといった表示体の上に、通常、光透過性部材が設けられている。表示体と光透過性部材との接着に、光硬化性樹脂組成物を使用することが知られている。画像表示装置においては、コントラスト向上等を図るため、光透過性部材の周縁部に、ブラックマトリックスといった遮光層が設けられていることが多い。そのため、表示体と光透過性部材とを光硬化性樹脂組成物を介して重ねて、光照射しても、遮光層の存在によって光が遮られ、硬化が十分に進行せず、流れ出しが生じたり、接着不足になるといった事態が生じ得る。 In an image display device used for a smartphone or the like, a light transmissive member is usually provided on a display body such as a liquid crystal display panel or an organic EL panel. It is known to use a photocurable resin composition for adhesion between a display body and a light transmissive member. In image display devices, a light shielding layer such as a black matrix is often provided at the periphery of the light transmissive member in order to improve contrast and the like. Therefore, even if the display body and the light transmissive member are overlapped with each other through the photocurable resin composition and irradiated with light, the light is blocked by the presence of the light shielding layer, and the curing does not proceed sufficiently, resulting in flow out. Or a lack of adhesion may occur.
 このような問題を解決するため、光硬化性樹脂組成物に熱重合開始剤を配合して、光照射した後、さらに熱硬化させる方法が提案されている(特許文献1)。 In order to solve such a problem, there has been proposed a method in which a thermopolymerization initiator is blended in a photocurable resin composition, followed by light irradiation and further thermosetting (Patent Document 1).
 さらに、熱硬化プロセスを使用せずに、光硬化プロセスのみを用いる方法として、表示体の表面に、光硬化性樹脂組成物を遮光層の厚さよりも厚く塗布し、紫外線を10~80%の硬化率となるように照射し仮硬化させた後に、光透過性部材を重ね、さらに紫外線を照射して本硬化させる方法が提案されている(特許文献2)。 Further, as a method of using only the photocuring process without using the thermosetting process, the photocurable resin composition is applied to the surface of the display body so as to be thicker than the thickness of the light shielding layer, and ultraviolet rays are 10 to 80%. There has been proposed a method in which light curing is performed so as to achieve a curing rate, and then a light transmissive member is stacked and then ultraviolet light is irradiated to perform main curing (Patent Document 2).
国際公開2008/126860号公報International Publication No. 2008/126860 特開2013-151151号公報JP 2013-151151 A
 しかしながら、特許文献2の方法では、仮硬化における硬化率を高くすると、その後、光透過性部材を重ねて本硬化した際に、十分な接着力が発揮されず、一方、仮硬化における硬化率を低くすると、従来のとおり、遮光層の存在によって、硬化が十分に進行しない部分が生じてしまうという問題があった。 However, in the method of Patent Document 2, if the curing rate in temporary curing is increased, then, when the light transmissive member is stacked and main curing is performed, sufficient adhesive force is not exhibited, while the curing rate in temporary curing is increased. When it is lowered, there is a problem that a portion where curing does not proceed sufficiently occurs due to the presence of the light-shielding layer as in the past.
 本発明は、上記の問題を解決し、光硬化プロセスのみを用いて、十分な接着力によって基材同士が接着した積層体、例えば画像表示装置の製造方法を提供することを目的とする。 An object of the present invention is to solve the above problems and to provide a method for manufacturing a laminate, for example, an image display device, in which substrates are bonded to each other with sufficient adhesive force using only a photocuring process.
 本発明1は、基材1に、光硬化性樹脂組成物を塗布して塗布層を形成する工程、塗布層に、紫外線照射強度が100mW/cm未満の光を照射して仮硬化樹脂層を形成する工程、仮硬化樹脂層の上に基材2を貼り合わせる工程、及び基材1及び基材2の間の仮硬化樹脂層に、光を照射して本硬化させる工程を含む、積層体の製造方法に関する。
 本発明2は、仮硬化樹脂層を形成する工程の光が、紫外線照射強度が1~50mW/cmの光である、本発明1の積層体の製造方法に関する。
 本発明3は、仮硬化樹脂層を、塗布層における光硬化性樹脂組成物の硬化率が40~90%となるように、紫外線照射強度が100mW/cm未満の光を照射することにより形成する、本発明1又は2の積層体の製造方法。
 本発明4は、紫外線照射強度100mW/cm未満の光が、365nmをピークとするLED及び/又は405nmをピークとするLEDを光源とする、本発明1~3のいずれかの積層体の製造方法に関する。
 本発明5は、紫外線照射強度が100mW/cm未満の光が、300nm以下の波長の光をカットする光学フィルター及び/又は500nm以上の波長をカットする光学フィルターを通した光である、本発明1~4のいずれかの積層体の製造方法に関する。
 本発明6は、光硬化性樹脂組成物が、(メタ)アクリレートオリゴマー及び光重合開始剤を含む、本発明1~5のいずれかの積層体の製造方法に関する。
 本発明7は、(メタ)アクリレートオリゴマーが、(水添)ポリイソプレン、(水添)ポリブタジエン又はポリウレタン構造を骨格に有する(メタ)アクリレートオリゴマーである、本発明6の積層体の製造方法に関する。
 本発明8は、基材1又は基材2の一方が、液晶表示パネル、有機EL表示パネル、保護パネル又はタッチパネルであり、もう一方が光透過性部材である、本発明1~7のいずれかの積層体の製造方法に関する。
 本発明9は、積層体が画像表示装置である、本発明1~8のいずれかの積層体の製造方法に関する。
The present invention 1 is a step of applying a photocurable resin composition to a substrate 1 to form a coating layer, and irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 to temporarily cure the resin layer Laminating, including the step of bonding the base material 2 onto the temporarily cured resin layer, and the step of irradiating the temporary cured resin layer between the base material 1 and the base material 2 with light and performing the main curing. The present invention relates to a method for manufacturing a body.
The present invention 2 relates to the method for producing a laminate of the present invention 1, wherein the light in the step of forming the temporarily cured resin layer is light having an ultraviolet irradiation intensity of 1 to 50 mW / cm 2 .
The present invention 3 forms the temporarily cured resin layer by irradiating light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 so that the curing rate of the photocurable resin composition in the coating layer is 40 to 90%. The manufacturing method of the laminated body of this invention 1 or 2.
Invention 4 is a process for producing a laminate according to any one of Inventions 1 to 3, wherein light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 is an LED having a peak at 365 nm and / or an LED having a peak at 405 nm. Regarding the method.
The present invention 5 is the present invention, wherein light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 is light that has passed through an optical filter that cuts light having a wavelength of 300 nm or less and / or an optical filter that cuts wavelength of 500 nm or more. The present invention relates to a method for producing any one of the laminates 1 to 4.
The present invention 6 relates to a method for producing a laminate according to any one of the present inventions 1 to 5, wherein the photocurable resin composition contains a (meth) acrylate oligomer and a photopolymerization initiator.
This invention 7 is related with the manufacturing method of the laminated body of this invention 6 whose (meth) acrylate oligomer is the (meth) acrylate oligomer which has (hydrogenated) polyisoprene, (hydrogenated) polybutadiene, or a polyurethane structure in frame | skeleton.
The invention 8 is any one of the inventions 1 to 7, wherein one of the substrate 1 and the substrate 2 is a liquid crystal display panel, an organic EL display panel, a protective panel or a touch panel, and the other is a light transmissive member. The present invention relates to a method for producing a laminate.
The present invention 9 relates to a method for producing a laminate according to any one of the present inventions 1 to 8, wherein the laminate is an image display device.
 本発明の積層体の製造方法によれば、光硬化プロセスのみを用いて、十分な接着力によって基材同士が接着した積層体、例えば画像表示装置が提供される。 According to the method for producing a laminate of the present invention, a laminate in which substrates are bonded to each other with a sufficient adhesive force using only a photocuring process, for example, an image display device is provided.
実施例の接着力の評価プロセスである。It is an evaluation process of the adhesive force of an Example. 実施例及び比較例の仮硬化で用いた光の発光スペクトルである。It is the emission spectrum of the light used by the temporary hardening of an Example and a comparative example.
 本発明の積層体の製造方法は、下記の工程(A)~(D)を含む。
 工程(A):基材1に、光硬化性樹脂組成物を塗布して塗布層を形成する工程、
 工程(B):塗布層に、紫外線照射強度が100mW/cm未満の光を照射して仮硬化樹脂層を形成する工程、
 工程(C):仮硬化樹脂層の上に基材2を貼り合わせる工程、及び
 工程(D):基材1及び基材2の間の仮硬化樹脂層に、光を照射して本硬化させる工程。
The method for producing a laminate of the present invention includes the following steps (A) to (D).
Step (A): A step of applying a photocurable resin composition to the substrate 1 to form a coating layer,
Step (B): A step of irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 to form a temporarily cured resin layer,
Step (C): A step of bonding the base material 2 onto the temporarily cured resin layer, and Step (D): The temporary cured resin layer between the base material 1 and the base material 2 is irradiated with light to be fully cured. Process.
<積層体>
 本発明の製造方法の目的物である積層体は、基材1及び基材2が、光硬化性樹脂組成物を用いて接着されている。基材1及び基材2は、特に限定されず、同じ基材であっても、異なる基材であってもよい。工程Dで、仮硬化樹脂層に光を照射する点から、基材1及び基材2の少なくとも一方は、光透過性部材であることが好ましい。積層体は、基材1及び基材2に加えて、さらなる基材を含んでいてもよく、その基材の接着方法は、特に限定されない。
<Laminated body>
As for the laminated body which is the target object of the manufacturing method of this invention, the base material 1 and the base material 2 are adhere | attached using the photocurable resin composition. The substrate 1 and the substrate 2 are not particularly limited, and may be the same substrate or different substrates. In the step D, it is preferable that at least one of the base material 1 and the base material 2 is a light transmissive member from the viewpoint of irradiating the temporarily cured resin layer with light. In addition to the base material 1 and the base material 2, the laminated body may contain the further base material, and the adhesion method of the base material is not specifically limited.
 例えば、基材1又は基材2の一方を表示体とし、他方を光透過性部材とすることにより、種々の画像表示装置である積層体を製造することができる。例えば、基材1又は基材2の一方を液晶表示パネルとし、他方を光透過性部材とすることにより、液晶表示装置が製造でき、一方を有機EL表示パネルとし、他方を光透過性部材とすることにより、有機EL表示装置を製造することができる。 For example, by using one of the base material 1 or the base material 2 as a display body and the other as a light-transmitting member, it is possible to manufacture laminates that are various image display devices. For example, a liquid crystal display device can be manufactured by using one of the substrate 1 or the substrate 2 as a liquid crystal display panel and the other as a light transmissive member, one as an organic EL display panel, and the other as a light transmissive member. By doing so, an organic EL display device can be manufactured.
 例えば、基材1又は基材2の一方を透明電極が形成された光透過性基板とし、他方を光透過性部材とすることにより、タッチパネルを製造することができる。さらに、基材1又は基材2の一方をタッチパネルとし、他方をアイコンシートや化粧板とすることもできる。 For example, a touch panel can be manufactured by using one of the substrate 1 or the substrate 2 as a light-transmitting substrate on which a transparent electrode is formed and the other as a light-transmitting member. Furthermore, one of the substrate 1 or the substrate 2 can be a touch panel, and the other can be an icon sheet or a decorative board.
 例えば、基材1又は基材2の一方を保護パネルとし、他方を画像表示装置や種々の基板等とすることにより、保護パネル付きの画像表示装置や保護パネル付の基板を製造することができる。さらに、基材1を保護パネルとし、基材2を光透過性部材とすることもできる。 For example, an image display device with a protection panel or a substrate with a protection panel can be manufactured by using one of the base material 1 or the base material 2 as a protection panel and the other as an image display device or various substrates. . Furthermore, the base material 1 can be a protective panel, and the base material 2 can be a light transmissive member.
 光透過性部材を用いる場合、光透過性部材は、積層体の目的に応じた光透過性を有していればよく、例えば積層体が画像表示装置の場合、表示体に形成された画像が視認可能な程度の光透過性を有していればよい。光透過性部材としては、ガラス、(メタ)アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、ポリエステル、シクロオレフィンポリマー等の板状材料やシート状材料が挙げられる。これらは、片面又は両面に、ハードコード処理、反射防止処理、防眩処理、防汚処理、防曇処理、偏光処理、波長カット処理等がなされていてもよい。また、光透過性部材には遮光層が形成されていてもよい。 When the light transmissive member is used, the light transmissive member only needs to have light transmittance according to the purpose of the laminated body. For example, when the laminated body is an image display device, an image formed on the display body is not necessary. What is necessary is just to have the light transmittance of the grade which can be visually recognized. Examples of the light transmissive member include glass, (meth) acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyester, cycloolefin polymer, and other plate-like materials and sheet-like materials. These may be subjected to hard code processing, antireflection processing, antiglare processing, antifouling processing, antifogging processing, polarization processing, wavelength cut processing, or the like on one side or both sides. In addition, a light shielding layer may be formed on the light transmissive member.
<工程A>
 工程Aは、基材1に、光硬化性樹脂組成物を塗布して塗布層を形成する工程である。光硬化性樹脂組成物としては、(メタ)アクリレートオリゴマー及び光重合開始剤を含む組成物を使用することができる。
<Process A>
Step A is a step of forming a coating layer by applying a photocurable resin composition to the substrate 1. As a photocurable resin composition, the composition containing a (meth) acrylate oligomer and a photoinitiator can be used.
 (メタ)アクリレートオリゴマーとしては、特に限定されず、(水添)ポリイソプレン、(水添)ポリブタジエン又はポリウレタンを骨格にもつ(メタ)アクリレートオリゴマーが挙げられる。これらの(メタ)アクリレートオリゴマーは、1種類又は2種類以上を使用できる。ここで、(水添)ポリイソプレンは、ポリイソプレン及び/又は水添ポリイソプレンを包含し、(水添)ポリブタジエンは、ポリブタジエン及び/又は水添ポリブタジエンを包含する。 The (meth) acrylate oligomer is not particularly limited, and examples thereof include (hydrogenated) polyisoprene, (hydrogenated) polybutadiene, and (meth) acrylate oligomer having a polyurethane as a skeleton. These (meth) acrylate oligomers can be used alone or in combination of two or more. Here, (hydrogenated) polyisoprene includes polyisoprene and / or hydrogenated polyisoprene, and (hydrogenated) polybutadiene includes polybutadiene and / or hydrogenated polybutadiene.
 (水添)ポリイソプレンを骨格にもつ(メタ)アクリレートオリゴマーは、(メタ)アクリル変性ポリイソプレンとも呼ばれ、好ましくは1000~100000、より好ましくは10000~50000の分子量を有する。市販品として、例えば、クラレ社製の「UC-1」(分子量25000)がある。 (Meth) acrylate oligomer having (hydrogenated) polyisoprene as a skeleton is also called (meth) acryl-modified polyisoprene, and preferably has a molecular weight of 1000 to 100,000, more preferably 10,000 to 50,000. An example of a commercially available product is “UC-1” (molecular weight 25000) manufactured by Kuraray.
 (水添)ポリブタジエンを骨格にもつ(メタ)アクリレートオリゴマーは、(メタ)アクリル変性ポリブタジエンとも呼ばれ、好ましくは500~100000、より好ましくは1000~30000の分子量を有する。市販品として、例えば、日本石油社製の「TE2000」(分子量2000)がある。 (Meth) acrylate oligomer having (hydrogenated) polybutadiene as a skeleton is also called (meth) acryl-modified polybutadiene, and preferably has a molecular weight of 500 to 100,000, more preferably 1,000 to 30,000. An example of a commercially available product is “TE2000” (molecular weight 2000) manufactured by Nippon Oil Corporation.
 ポリウレタンを骨格にもつ(メタ)アクリレートオリゴマーは、(メタ)アクリル変性ポリウレタンとも呼ばれ、好ましくは1000~100000、より好ましくは10000~50000の分子量を有する。市販品として、例えば、ライトケミカル社製の「UA-1」、日本合成化学工業社製の「UV3630ID80」がある。 The (meth) acrylate oligomer having a polyurethane as a skeleton is also called (meth) acryl-modified polyurethane, and preferably has a molecular weight of 1000 to 100,000, more preferably 10,000 to 50,000. Examples of commercially available products include “UA-1” manufactured by Light Chemical Co., Ltd. and “UV3630ID80” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
 (メタ)アクリレートオリゴマーとしては、ポリウレタンを骨格にもつ(メタ)アクリレートオリゴマーが特に好ましい。 As the (meth) acrylate oligomer, a (meth) acrylate oligomer having a polyurethane skeleton is particularly preferable.
 (メタ)アクリレートオリゴマーは、1種でも、又は2種以上を併用してもよい。 (Meth) acrylate oligomers may be used alone or in combination of two or more.
 光重合開始剤としては、特に限定されず、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、ベンゾフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-メチルチオ]フェニル]-2-モルホリノプロパンー1-オン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー,2-ヒドロキシ-2-メチル-1-フェニル-1-プロパノン、イソプロピルチオキサントン、o-ベンゾイル安息香酸メチル、[4-(メチルフェニルチオ)フェニル]フェニルメタン、2,4-ジエチルチオキサントン、2ークロロチオキサントン、ベンゾフェノン、エチルアントラキノン、ベンゾフェノンアンモニウム塩、チオキサントンアンモニウム塩、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、1,4ジベンゾイルベンゼン、10-ブチル-2-クロロアクリドン、2,2’ビス(o-クロロフェニル)4,5,4’,5’-テトラキス(3,4,5-トリメトキシフェニル)1,2’-ビイミダゾール、2,2’ビス(o-クロロフェニル)4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾール、2-ベンゾイルナフタレン、4-ベンゾイル ビフェニル、4-ベンゾイルジフェニルエーテル、アクリル化ベンゾフェノン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、o-メチルベンゾイルベンゾエート、p-ジメチルアミノ安息香酸エチルエステル、p-ジメチルアミノ安息香酸イソアミルエチルエステル、活性ターシャリアミン、カルバゾール・フェノン系光重合開始剤、アクリジン系光重合開始剤、トリアジン系光重合開始剤、ベンゾイル系光重合開始剤などを例示できる。 The photopolymerization initiator is not particularly limited, but is 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxy-cyclohexyl-phenyl- Ketone, benzophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, 2-benzyl- 2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- [4-methylthio] phenyl] -2 -Morpholinopropan-1-one, benzoin methyl ether, benzoin ethyl ether Benzoin isobutyl ether, benzoin isopropyl ether, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, 2-hydroxy- 2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, 2-hydroxy-2-methyl-1-phenyl-1-propanone, isopropylthioxanthone, methyl o-benzoylbenzoate, [4- (methylphenyl) Thio) phenyl] phenylmethane, 2,4-diethylthioxanthone, 2-chlorothioxanthone, benzophenone, ethyl anthraquinone, benzophenone ammonium salt, thioxanthone ammonium salt, bis (2,6-dimethoxyben Yl) -2,4,4-trimethyl-pentylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone 4,4′-bisdiethylaminobenzophenone, 1,4 dibenzoylbenzene, 10-butyl-2-chloroacridone, 2,2′bis (o-chlorophenyl) 4,5,4 ′, 5′-tetrakis (3 , 4,5-trimethoxyphenyl) 1,2′-biimidazole, 2,2′bis (o-chlorophenyl) 4,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole, 2- Benzoylnaphthalene, 4-benzoyl biphenyl, 4-benzoyl diphenyl ether, acrylated benzophenone, bis (Η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, o-methylbenzoylbenzoate, p-dimethylaminobenzoate Acid ethyl ester, p-dimethylaminobenzoic acid isoamyl ethyl ester, active tertiary amine, carbazole / phenone photopolymerization initiator, acridine photopolymerization initiator, triazine photopolymerization initiator, benzoyl photopolymerization initiator, etc. It can be illustrated.
 光重合開始剤は、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド等が好ましい。 The photopolymerization initiator is preferably 1-hydroxy-cyclohexyl-phenyl-ketone, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide or the like.
 光重合開始剤は、1種でも、又は2種以上を併用してもよい。 The photopolymerization initiator may be used alone or in combination of two or more.
 光重合開始剤は、(メタ)アクリレートオリゴマー100質量部に対して、0.1~20質量部であることが好ましく、より好ましくは0.5~15質量部であり、さらに好ましくは1~10質量部である。 The photopolymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and further preferably 1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylate oligomer. Part by mass.
 光硬化性樹脂組成物には、反応希釈剤として、(メタ)アクリレートモノマーを含むことができ、例えば、2-エチルヘキシル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;メトキシエチル(メタ)アクリレート等のアルコキシ置換アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ置換アルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート等;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等のジ(メタ)アクリレート;ジシクロペンテニルオキシエチル(メタ)アクリレート、ノルボネン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート等を例示できる。 The photocurable resin composition can contain a (meth) acrylate monomer as a reaction diluent, for example, 2-ethylhexyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate Alkyl (meth) acrylates such as t-butyl (meth) acrylate and lauryl (meth) acrylate; alkoxy-substituted alkyl (meth) acrylates such as methoxyethyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate and 2-hydroxy Hydroxy-substituted alkyl (meth) acrylates such as propyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, etc .; ethylene glycol di (meth) acrylate, diethylene Recall di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, Examples include di (meth) acrylates such as 6-hexanediol di (meth) acrylate; dicyclopentenyloxyethyl (meth) acrylate, norbornene (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, etc. it can.
 (メタ)アクリレートモノマーとしては、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が好ましい。 As the (meth) acrylate monomer, alkyl (meth) acrylate such as lauryl (meth) acrylate, methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate and the like are preferable.
 (メタ)アクリレートモノマーは、1種でも、又は2種以上を併用してもよい。 (Meth) acrylate monomers may be used alone or in combination of two or more.
 (メタ)アクリレートモノマーは、(メタ)アクリレートオリゴマー100質量部に対して、1~250質量部であることが好ましく、より好ましくは20~200質量部であり、さらに好ましくは50~150質量部である。 The (meth) acrylate monomer is preferably 1 to 250 parts by weight, more preferably 20 to 200 parts by weight, and still more preferably 50 to 150 parts by weight with respect to 100 parts by weight of the (meth) acrylate oligomer. is there.
 光硬化性樹脂組成物には、可塑剤を含むことができる。可塑剤としては、ジブチルフタレート、ジイソノニルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル;アジピン酸ジオクチル、アジピン酸ジイソノニル、セバシン酸ジオクチル、セバシン酸ジイソノニル、1,2-シクロヘキサンジカルボン酸ジイソノニル等の多価カルボン酸エステル;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル;トリメリット酸エステル;ポリイソプレン、ポリブタジエン、ポリブテン等のゴム系ポリマー;熱可塑性エラストマー;石油樹脂;脂環族飽和炭化水素樹脂;テルペン樹脂、テルペンフェノール樹脂、変性テルペン樹脂、水添テルペン樹脂等のテルペン系樹脂;ロジンフェノール等のロジン系樹脂;不均化ロジンエステル系樹脂、重合ロジンエステル系樹脂、水添(水素化)ロジンエステル系樹脂等のロジンエステル系樹脂等が挙げられる。 The photocurable resin composition may contain a plasticizer. Plasticizers include dibutyl phthalate, diisononyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, etc .; dioctyl adipate, diisononyl adipate, dioctyl sebacate, diisononyl sebacate Polycarboxylic esters such as 1,2-cyclohexanedicarboxylic acid diisononyl; Phosphate esters such as tricresyl phosphate and tributyl phosphate; Trimellitic acid esters; Rubber-based polymers such as polyisoprene, polybutadiene and polybutene; Thermoplastic elastomers Petroleum resin; alicyclic saturated hydrocarbon resin; terpene resin such as terpene resin, terpene phenol resin, modified terpene resin, hydrogenated terpene resin; Rosin resins such Lumpur; disproportionated rosin ester resin, polymerized rosin ester resin, hydrogenated (hydrogenated) rosin ester resins such as rosin ester resins.
 可塑剤としては、多価カルボン酸エステル、ロジンエステル系樹脂等が好ましく、1,2-シクロヘキサンジカルボン酸ジイソノニル、(水素化)ロジンエステル系樹脂がより好ましい。 As the plasticizer, polyvalent carboxylic acid esters, rosin ester resins, and the like are preferable, and 1,2-cyclohexanedicarboxylic acid diisononyl, (hydrogenated) rosin ester resins are more preferable.
 可塑剤は、1種でも、又は2種以上を併用してもよい。 The plasticizer may be used alone or in combination of two or more.
 可塑剤は、(メタ)アクリレートオリゴマー100質量部に対して、10~500質量部であることが好ましく、より好ましくは30~400質量部であり、さらに好ましくは50~300質量部である。 The plasticizer is preferably 10 to 500 parts by mass, more preferably 30 to 400 parts by mass, and still more preferably 50 to 300 parts by mass with respect to 100 parts by mass of the (meth) acrylate oligomer.
 光硬化性樹脂組成物は、さらに、接着付与剤を含むことができる。接着付与剤として、シランカップリング剤、例えば、ビニルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピル、メチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどを例示できる。 The photocurable resin composition can further contain an adhesion-imparting agent. As an adhesion-imparting agent, a silane coupling agent such as vinyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldi Ethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3- Methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxy Lan, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl- Butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyl, methyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, Examples thereof include bis (triethoxysilylpropyl) tetrasulfide and 3-isocyanatopropyltriethoxysilane.
 接着付与剤は、1種でも、又は2種以上を併用してもよい。 ¡Adhesive agents may be used alone or in combination of two or more.
 接着付与剤は、(メタ)アクリレートオリゴマー100質量部に対して、0.01~15質量部であることが好ましく、より好ましくは0.1~10質量部であり、さらに好ましくは1~5質量部である。 The adhesion-imparting agent is preferably 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the (meth) acrylate oligomer. Part.
 光硬化性樹脂組成物は、酸化防止剤を含むことができる。酸化防止剤としては、BHT、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、オクチル化ジフェニルアミン、2,4,-ビス[(オクチルチオ)メチル]-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジブチルヒドロキシトルエンを例示できる。 The photocurable resin composition can contain an antioxidant. Antioxidants include BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl. Tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethyle Bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4- Hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, octylated diphenylamine, 2,4, -bis [(octylthio) methyl] -O-cresol, isooctyl- Examples include 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and dibutylhydroxytoluene.
 酸化防止剤は、(メタ)アクリレートオリゴマー100質量部に対して、0.01~15質量部であることが好ましく、より好ましくは0.1~10質量部であり、さらに好ましくは1~5質量部である。 The antioxidant is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, and further preferably 1 to 5 parts by weight with respect to 100 parts by weight of the (meth) acrylate oligomer. Part.
 光硬化性樹脂組成物には、本発明の効果を損なわない範囲で、消泡剤、顔料、充填剤、連鎖移動剤、光安定剤、表面張力調整剤、レベリング剤、紫外線吸収剤、抑泡剤等を配合することができる。 In the photocurable resin composition, an antifoaming agent, a pigment, a filler, a chain transfer agent, a light stabilizer, a surface tension adjusting agent, a leveling agent, an ultraviolet absorber, and an antifoam are within the range not impairing the effects of the present invention. An agent or the like can be blended.
 光硬化性樹脂組成物は、各成分を混合することにより調製することができる。混合の方法は、特に限定されず、各種金属、プラスチック容器、攪拌羽、攪拌機を用いることができる。 The photocurable resin composition can be prepared by mixing each component. The mixing method is not particularly limited, and various metals, plastic containers, stirring blades, and a stirrer can be used.
 光硬化性樹脂組成物を基材1に塗布する方法は、特に限定されず、ダイコーター、ディスペンサー、スクリーン印刷等による方法を利用することができる。 The method for applying the photocurable resin composition to the substrate 1 is not particularly limited, and a method using a die coater, a dispenser, screen printing, or the like can be used.
 塗布層の厚みは、特に限定されず、例えば10~500μmとすることができ、30~350μmが好ましい。 The thickness of the coating layer is not particularly limited, and can be, for example, 10 to 500 μm, and preferably 30 to 350 μm.
<工程B>
 工程(B)は、塗布層に、紫外線照射強度が100mW/cm未満の光を照射して仮硬化樹脂層を形成する工程である。
<Process B>
Step (B) is a step of irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 to form a temporarily cured resin layer.
 工程(B)の照射に用いられる光は、紫外線照射強度が100mW/cm未満であるものであり、本硬化後の強度発現の点から、好ましくは、50mW/cm以下であり、より好ましくは、30mW/cm以下であり、また、仮硬化樹脂層を形成できるまでの時間の点から、好ましくは、1mW/cm以上である。本明細書において、紫外線照射強度は、照度計を用いて測定された最大強度であり、使用する光源の300~500nmの波長分布において最も照射強度が高い波長に対応する波長域に感度を持つ照度計によって、測定することができる。光源は、300~500nmの波長分布において、単一又は複数のピークを有していてもよいが、最も高い照射強度が100mW/cm未満であればよい。このような光源を使用することにより、仮硬化での液だれ、流れ出しを防止と本硬化後の強度発現が両立できる。 The light used for the irradiation in the step (B) has an ultraviolet irradiation intensity of less than 100 mW / cm 2 , and is preferably 50 mW / cm 2 or less, more preferably from the viewpoint of intensity development after the main curing. Is 30 mW / cm 2 or less, and is preferably 1 mW / cm 2 or more from the point of time until the provisionally cured resin layer can be formed. In this specification, the ultraviolet irradiation intensity is the maximum intensity measured with an illuminometer, and the illuminance having sensitivity in the wavelength region corresponding to the wavelength with the highest irradiation intensity in the wavelength distribution of 300 to 500 nm of the light source used. It can be measured by a meter. The light source may have a single peak or a plurality of peaks in a wavelength distribution of 300 to 500 nm, as long as the highest irradiation intensity is less than 100 mW / cm 2 . By using such a light source, it is possible to prevent dripping and flow-out during temporary curing and to develop strength after main curing.
 工程(B)の照射に用いられる光について、全波長の照射強度の積算値に対する300~500nmの波長の照射強度の積算値は、特に限定されないが、本硬化後の強度発現の点から、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。 Regarding the light used for the irradiation in the step (B), the integrated value of the irradiation intensity of the wavelength of 300 to 500 nm with respect to the integrated value of the irradiation intensity of all wavelengths is not particularly limited, but is preferable from the viewpoint of the intensity expression after the main curing. Is 90% or more, more preferably 95% or more, and still more preferably 98% or more.
 光源としては、紫外線(UV)が発せられる光源を使用することができ、例えば、メタルハライドランプ、高圧水銀ランプ、キセノンランプ、水銀キセノンランプ、ハロゲンランプ、パルスキセノンランプ等が挙げられる。これらの光源から発せられる光を、光学フィルターを通すことによって、特定の波長の光に調整してもよい。具体的には、300nm以下の波長の光をカットする光学フィルター及び/又は500nm以上の波長をカットする光学フィルターを通すことにより調整することができる。このような光学フィルターとしては、石英製干渉フィルター(型番:A7028-05、浜松フォトニクス社製)、LTフィルター、RTフィルター(ともにHOYA社製)、バンドパスフィルター(アイグラフィックス社製)等が挙げられる。LEDを光源とした光も使用することができ、光源として365nmをピークとするLED、405nmピークとするLED、375nmをピークとするLED、385nmをピークとするLED、395nmをピークとするLED等が挙げられる。 As the light source, a light source that emits ultraviolet rays (UV) can be used, and examples thereof include a metal halide lamp, a high-pressure mercury lamp, a xenon lamp, a mercury xenon lamp, a halogen lamp, and a pulse xenon lamp. The light emitted from these light sources may be adjusted to light of a specific wavelength by passing through an optical filter. Specifically, it can be adjusted by passing through an optical filter that cuts light of a wavelength of 300 nm or less and / or an optical filter that cuts a wavelength of 500 nm or more. Examples of such optical filters include quartz interference filters (model number: A7028-05, manufactured by Hamamatsu Photonics), LT filters, RT filters (both manufactured by HOYA), and bandpass filters (produced by Eye Graphics). It is done. Light with LED as light source can also be used. LED with 365 nm peak, LED with 405 nm peak, LED with 375 nm peak, LED with 385 nm peak, LED with 395 nm peak, etc. Can be mentioned.
 塗布層に対して、紫外線照射強度が100mW/cm未満の光を照射することにより、塗布層の樹脂組成物を仮硬化させて仮硬化樹脂層を形成する。照射方法は、特に限定されず、例えば紫外線積算光量が30~7500mJ/cmとなるように照射することができる。積算光量は、好ましくは50~5000mJ/cm、より好ましくは100~2000mJ/cmである。 By irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 , the resin composition of the coating layer is temporarily cured to form a temporarily cured resin layer. The irradiation method is not particularly limited, and for example, the irradiation can be performed so that the accumulated ultraviolet light amount is 30 to 7500 mJ / cm 2 . Integrated light quantity is preferably 50 ~ 5000mJ / cm 2, more preferably 100 ~ 2000mJ / cm 2.
 仮硬化性樹脂層の硬化率は、本硬化後の強度発現や流れ出し、液ダレ防止の点から、40~90%であることが好ましく、より好ましくは45~80%であり、さらに好ましくは50~70%である。硬化率は、光硬化性樹脂組成物の紫外線照射前後の(メタ)アクリル基の減少率で定義され、FT-IRによって測定することができる。 The curing rate of the temporary curable resin layer is preferably 40 to 90%, more preferably 45 to 80%, and still more preferably 50 from the viewpoints of strength development, flow-out, and prevention of dripping after the main curing. ~ 70%. The curing rate is defined by the rate of reduction of (meth) acrylic groups before and after ultraviolet irradiation of the photocurable resin composition, and can be measured by FT-IR.
<工程C>
 工程Cは、仮硬化樹脂層の上に基材2を貼り合わせる工程である。仮硬化樹脂層を形成した基板1の上に、仮硬化樹脂層に接するように基板2を載置し、場合により、基板1側及び/基板2側から加圧して、基板1と基板2とを貼り合わせることができる。加圧方法は、特に限定されず、ゴムローラ、平板プレス装置等を用いることができる。
<Process C>
Step C is a step of bonding the base material 2 on the temporarily cured resin layer. The substrate 2 is placed on the substrate 1 on which the temporarily cured resin layer is formed so as to be in contact with the temporarily cured resin layer, and in some cases, the substrate 1 and the substrate 2 are pressurized by pressing from the substrate 1 side and / or the substrate 2 side. Can be pasted together. The pressurizing method is not particularly limited, and a rubber roller, a flat plate press device or the like can be used.
<工程D>
 工程Dは、基材1及び基材2の間の仮硬化樹脂層に、さらに光を照射して本硬化させる工程である。基材1、基材2のいずれかが光透過性部材である場合、光透過性部材である基材側から光を照射して、本硬化させることができる。
<Process D>
Process D is a process in which the temporarily cured resin layer between the base material 1 and the base material 2 is further cured by irradiating light. When either of the base material 1 and the base material 2 is a light transmissive member, light can be irradiated from the base material side which is a light transmissive member, and this can be hardened.
 光は、特に限定されず、可視光線、紫外線、X線、電子線等の活性エネルギー線を使用することができ、好ましくは紫外線である。光源としては、メタルハライドランプ、高圧水銀ランプ、キセノンランプ、ハロゲンランプ、パルスキセノンランプ等を用いることができる。 The light is not particularly limited, and active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams can be used, and preferably ultraviolet rays. As the light source, a metal halide lamp, a high-pressure mercury lamp, a xenon lamp, a halogen lamp, a pulse xenon lamp, or the like can be used.
 光の照射方法は、特に限定されず、例えば強度10~1500mW/cmの光を、積算光量500~10000mJ/cmとなるように照射することができる。強度は、好ましくは100~1000mW/cm、より好ましくは200~500mW/cmであり、積算光量は、好ましくは1000~6000mJ/cm、より好ましくは1500~4500mJ/cmである。 The light irradiation method is not particularly limited. For example, light having an intensity of 10 to 1500 mW / cm 2 can be irradiated so as to have an integrated light amount of 500 to 10000 mJ / cm 2 . The intensity is preferably 100 to 1000 mW / cm 2 , more preferably 200 to 500 mW / cm 2 , and the integrated light amount is preferably 1000 to 6000 mJ / cm 2 , more preferably 1500 to 4500 mJ / cm 2 .
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。表示は、特に断りがない限り、質量部、質量%である。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. The indications are parts by mass and% by mass unless otherwise specified.
 表1に示す配合の各成分をポリエチレン容器に秤量し、スリーワンモーター(東京理科機器社製、MAZELA)、攪拌羽を用いて均一に混合し、光硬化性樹脂組成物を調製した。 Each component of the composition shown in Table 1 was weighed into a polyethylene container and uniformly mixed using a three-one motor (manufactured by Tokyo Science Equipment Co., Ltd., MAZELA) and a stirring blade to prepare a photocurable resin composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 26mm×75mm×1.1mmtガラスに、光硬化性樹脂の塗布部分が10mm×10mmの正方形状になるようにセロハンテープ(50μmt)3枚を用いて作成した150μmtの厚みのスペーサーを貼り、金属スキージを用いて光硬化性樹脂組成物塗布層を形成した後、スペーサーを除去した(図1(1))。
 表2に示す仮硬化条件で、水銀キセノンランプ(HOYA社製、EXECURE4000、図2に発光スペクトルを示す)を用いて、紫外線照射強度(365nm)30mW/cm(浜松ホトニクス社製にて測定)で照射をして、仮硬化樹脂層を形成した。全波長の照射強度の積算値に対する300~500nmの波長の照射強度の積算値を波長分布測定における発光強度を積算して求めたところ、約85%であることがわかる。
 仮硬化樹脂層の硬化率は、光硬化性樹脂組成物の紫外線照射前後のアクリル基の減少率としてFT-IR(Perkin Elmer社製、Spectrum100)により測定した。減少率は、紫外線照射前の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの800~820cm-1の吸収ピーク高さ(X)と紫外線照射後の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの800~820cm-1の吸収ピーク高さ(Y)とを以下の数式(1)に代入することにより求めた。
 
硬化率(%)={(X-Y)/X}×100    ・・・(1)
 
 別の26mm×75mm×1.1mmtガラスを用意し、仮硬化樹脂層を形成したガラス上に、仮硬化樹脂層が接するようにして載置し、加圧して貼り合わせた(図1(2))。
 仮硬化樹脂層の流れ出し、液だれについて観察し、以下の基準で評価した。結果を表2に示す。
流れ出し・液だれ大:×
流れ出し・液だれ小:△
流れ出し・液だれなし:○
 メタルハライドランプ(200~400mW/cm)にて3000mJ/cmで、ガラス越しに仮硬化樹脂層に光照射し、本硬化させた。
 接着したガラス積層体について、引っ張り試験機(ミネベア製、テクノグラフTG-2kN)を用いて、せん断方向に10mm/分にて引っ張り強度を測定し、以下の基準で評価した(図1(3))。結果を表2に示す。
 0.3MPa未満:×
 0.3~0.5MPa未満:△
 0.5MPa以上:○
<Example 1>
A metal squeegee is pasted on a 26mm x 75mm x 1.1mmt glass with a 150μm thick spacer created using 3 pieces of cellophane tape (50μmt) so that the coated part of the photo-curing resin becomes a 10mm x 10mm square shape. After the photocurable resin composition coating layer was formed using, the spacer was removed (FIG. 1 (1)).
Under the temporary curing conditions shown in Table 2, using a mercury xenon lamp (manufactured by HOYA, EXECURE 4000, emission spectrum shown in FIG. 2), ultraviolet irradiation intensity (365 nm) 30 mW / cm 2 (measured by Hamamatsu Photonics) Was irradiated to form a temporarily cured resin layer. When the integrated value of the irradiation intensity of the wavelength of 300 to 500 nm with respect to the integrated value of the irradiation intensity of all wavelengths is obtained by integrating the emission intensity in the wavelength distribution measurement, it is found to be about 85%.
The curing rate of the temporarily cured resin layer was measured by FT-IR (Perkin Elmer, Spectrum 100) as a decrease rate of the acrylic group before and after the ultraviolet irradiation of the photocurable resin composition. The rate of decrease is the absorption peak height (X) of 800 to 820 cm −1 from the baseline in the FT-IR measurement chart of the resin composition layer before ultraviolet irradiation, and the FT-IR measurement of the resin composition layer after ultraviolet irradiation. The absorption peak height (Y) of 800 to 820 cm −1 from the base line in the chart was determined by substituting into the following formula (1).

Curing rate (%) = {(XY) / X} × 100 (1)

Another 26 mm × 75 mm × 1.1 mmt glass was prepared, placed on the glass on which the temporarily cured resin layer was formed so that the temporarily cured resin layer was in contact, and pressed and bonded together (FIG. 1 (2)). ).
The flow of the temporarily cured resin layer and the dripping were observed and evaluated according to the following criteria. The results are shown in Table 2.
Flowing out and dripping large: ×
Small outflow and dripping: △
No outflow or dripping: ○
The pre-cured resin layer was irradiated with light through a glass with a metal halide lamp (200 to 400 mW / cm 2 ) at 3000 mJ / cm 2 to be fully cured.
About the bonded glass laminate, the tensile strength was measured at 10 mm / min in the shearing direction using a tensile tester (Minebea, Technograph TG-2kN), and evaluated according to the following criteria (FIG. 1 (3)). ). The results are shown in Table 2.
Less than 0.3 MPa: x
0.3 to less than 0.5 MPa: △
0.5 MPa or more: ○
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例2>
 表3に示す仮硬化条件で、水銀キセノンランプ(HOYA社製、EXECURE4000、図2に発光スペクトルを示す)を用いて、紫外線照射強度(365nm)10mW/cmで照射をして、仮硬化樹脂層を形成した他は、実施例1と同様にして、ガラス積層体を調製し、引っ張り強度を測定した。
<Example 2>
Under the temporary curing conditions shown in Table 3, using a mercury xenon lamp (manufactured by HOYA, EXECURE 4000, emission spectrum is shown in FIG. 2), irradiation with ultraviolet irradiation intensity (365 nm) of 10 mW / cm 2 is performed to perform temporary curing resin A glass laminate was prepared and the tensile strength was measured in the same manner as in Example 1 except that the layer was formed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<比較例1>
 表4に示す仮硬化条件で、水銀キセノンランプ(HOYA社製、EXECURE4000、図2に発光スペクトルを示す)を用いて、紫外線照射強度(365nm)100mW/cmで照射をして、仮硬化樹脂層を形成した他は、実施例1と同様にして、ガラス積層体を調製し、引っ張り強度を測定した。
<Comparative Example 1>
Under the temporary curing conditions shown in Table 4, a mercury xenon lamp (manufactured by HOYA, EXECURE 4000, emission spectrum is shown in FIG. 2) was irradiated at an ultraviolet irradiation intensity (365 nm) of 100 mW / cm 2 to provide a temporary cured resin. A glass laminate was prepared and the tensile strength was measured in the same manner as in Example 1 except that the layer was formed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1及び2では、仮硬化樹脂層の硬化率が高くても、十分な接着力でガラス同士が接着した積層体が得られることがわかる。 In Examples 1 and 2, it can be seen that even when the curing rate of the temporarily cured resin layer is high, a laminated body in which the glasses are bonded with sufficient adhesive strength can be obtained.
 本発明の積層体の製造方法によれば、光硬化プロセスのみを用いて、十分な接着力によって基材同士が接着した積層体、例えば画像表示装置が提供されるため、産業上の有用性が高い。 According to the method for producing a laminate of the present invention, a laminate in which substrates are bonded to each other with sufficient adhesive force using only a photocuring process, for example, an image display device is provided. high.
 1 ガラス板
 2 塗布層
 3 仮硬化樹脂層
 4 引っ張り試験機(模式図)
DESCRIPTION OF SYMBOLS 1 Glass plate 2 Coating layer 3 Temporarily cured resin layer 4 Tensile tester (schematic diagram)

Claims (9)

  1.  基材1に、光硬化性樹脂組成物を塗布して塗布層を形成する工程、
     塗布層に、紫外線照射強度が100mW/cm未満の光を照射して仮硬化樹脂層を形成する工程、
     仮硬化樹脂層の上に基材2を貼り合わせる工程、及び
     基材1及び基材2の間の仮硬化樹脂層に、光を照射して本硬化させる工程を含む、
    積層体の製造方法。
    A step of applying a photocurable resin composition to the substrate 1 to form a coating layer;
    A step of irradiating the coating layer with light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 to form a temporarily cured resin layer;
    Including a step of bonding the base material 2 on the temporarily cured resin layer, and a step of irradiating light to the temporary cured resin layer between the base material 1 and the base material 2 to perform main curing.
    A method for producing a laminate.
  2.  仮硬化樹脂層を形成する工程の光が、紫外線照射強度が1~50mW/cmの光である、請求項1記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the light in the step of forming the temporarily cured resin layer is light having an ultraviolet irradiation intensity of 1 to 50 mW / cm 2 .
  3.  仮硬化樹脂層を、塗布層における光硬化性樹脂組成物の硬化率が40~90%となるように、紫外線照射強度が100mW/cm未満の光を照射することにより形成する、請求項1又は2記載の積層体の製造方法。 The pre-cured resin layer is formed by irradiating light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 so that the curing rate of the photo-curable resin composition in the coating layer is 40 to 90%. Or the manufacturing method of the laminated body of 2.
  4.  紫外線照射強度が100mW/cm未満の光が、365nmをピークとするLED及び/又は405nmをピークとするLEDを光源とする、請求項1~3のいずれか1項記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 uses an LED having a peak at 365 nm and / or an LED having a peak at 405 nm as a light source. .
  5.  紫外線照射強度が100mW/cm未満の光が、300nm以下の波長の光をカットする光学フィルター及び/又は500nm以上の波長をカットする光学フィルターを通した光である、請求項1~4のいずれか1項記載の積層体の製造方法。 The light having an ultraviolet irradiation intensity of less than 100 mW / cm 2 is light that has passed through an optical filter that cuts light having a wavelength of 300 nm or less and / or an optical filter that cuts wavelength of 500 nm or more. The manufacturing method of the laminated body of Claim 1.
  6.  光硬化性樹脂組成物が、(メタ)アクリレートオリゴマー及び光重合開始剤を含む、請求項1~5のいずれか1項記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the photocurable resin composition comprises a (meth) acrylate oligomer and a photopolymerization initiator.
  7.  (メタ)アクリレートオリゴマーが、(水添)ポリイソプレン、(水添)ポリブタジエン又はポリウレタン構造を骨格に有する(メタ)アクリレートオリゴマーである、請求項6記載の積層体の製造方法。 The manufacturing method of the laminated body of Claim 6 whose (meth) acrylate oligomer is a (meth) acrylate oligomer which has (hydrogenated) polyisoprene, (hydrogenated) polybutadiene, or a polyurethane structure in frame | skeleton.
  8.  基材1又は基材2の一方が、液晶表示パネル、有機EL表示パネル、保護パネル又はタッチパネルであり、もう一方が光透過性部材である、請求項1~7のいずれか1項記載の積層体の製造方法。 The laminate according to any one of claims 1 to 7, wherein one of the substrate 1 and the substrate 2 is a liquid crystal display panel, an organic EL display panel, a protective panel, or a touch panel, and the other is a light transmissive member. Body manufacturing method.
  9.  積層体が画像表示装置である、請求項1~8のいずれか1項記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 8, wherein the laminate is an image display device.
PCT/JP2015/072384 2014-08-08 2015-08-06 Laminate production method WO2016021692A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580042355.XA CN106660067B (en) 2014-08-08 2015-08-06 Method for producing laminate
KR1020177006004A KR102312162B1 (en) 2014-08-08 2015-08-06 Laminate production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-162521 2014-08-08
JP2014162521A JP2016036780A (en) 2014-08-08 2014-08-08 Method of manufacturing laminate

Publications (1)

Publication Number Publication Date
WO2016021692A1 true WO2016021692A1 (en) 2016-02-11

Family

ID=55263949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072384 WO2016021692A1 (en) 2014-08-08 2015-08-06 Laminate production method

Country Status (5)

Country Link
JP (1) JP2016036780A (en)
KR (1) KR102312162B1 (en)
CN (1) CN106660067B (en)
TW (1) TWI671205B (en)
WO (1) WO2016021692A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905325B2 (en) * 2016-10-31 2021-07-21 デクセリアルズ株式会社 Method of manufacturing a laminate
JP6538252B1 (en) * 2018-09-19 2019-07-03 デクセリアルズ株式会社 Method of manufacturing image display device
JP7160745B2 (en) * 2019-04-15 2022-10-25 デクセリアルズ株式会社 Method for manufacturing image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079573A (en) * 1993-06-29 1995-01-13 Sekisui Finechem Co Ltd Production of decorative element or display element
JPH11223819A (en) * 1998-02-09 1999-08-17 Toshiba Corp Production of liquid crystal display device
JP2000288381A (en) * 1999-04-08 2000-10-17 Kawamura Inst Of Chem Res Manufacture of microchemical device
JP2013045755A (en) * 2011-08-26 2013-03-04 Sekisui Chem Co Ltd Insulation material, laminate and connection structure
WO2013111810A1 (en) * 2012-01-25 2013-08-01 デクセリアルズ株式会社 Image display device fabrication method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186957A (en) * 2007-04-09 2009-08-20 Sony Chemical & Information Device Corp Resin composition and display device
JP5218802B1 (en) * 2012-11-13 2013-06-26 デクセリアルズ株式会社 Manufacturing method of image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079573A (en) * 1993-06-29 1995-01-13 Sekisui Finechem Co Ltd Production of decorative element or display element
JPH11223819A (en) * 1998-02-09 1999-08-17 Toshiba Corp Production of liquid crystal display device
JP2000288381A (en) * 1999-04-08 2000-10-17 Kawamura Inst Of Chem Res Manufacture of microchemical device
JP2013045755A (en) * 2011-08-26 2013-03-04 Sekisui Chem Co Ltd Insulation material, laminate and connection structure
WO2013111810A1 (en) * 2012-01-25 2013-08-01 デクセリアルズ株式会社 Image display device fabrication method

Also Published As

Publication number Publication date
CN106660067B (en) 2020-08-25
KR102312162B1 (en) 2021-10-14
TW201622986A (en) 2016-07-01
CN106660067A (en) 2017-05-10
JP2016036780A (en) 2016-03-22
TWI671205B (en) 2019-09-11
KR20170039715A (en) 2017-04-11

Similar Documents

Publication Publication Date Title
KR102277736B1 (en) Method of manufacturing image display device
JP5370706B1 (en) Manufacturing method of image display device
KR102122759B1 (en) Photocurable resin composition
US20170225443A1 (en) Method of producing image display device and resin dispenser
JP5485834B2 (en) Image display device manufacturing method and image display device manufacturing apparatus
WO2013168532A1 (en) Method for manufacturing image display device
JP6220123B2 (en) Manufacturing method of image display device
JP5991531B2 (en) Manufacturing method of pressure-sensitive adhesive sheet for image display device
TWI501002B (en) A method of manufacturing a video display device, and an image display device
WO2016021692A1 (en) Laminate production method
JP2019094485A (en) Photocurable resin composition, and method for manufacturing image display device
TW202332587A (en) Method for producing laminate
JP6251636B2 (en) Manufacturing method of laminate
JP6348266B2 (en) Photocurable resin composition
JP6496901B2 (en) Manufacturing method of laminate
JP6653825B2 (en) Photocurable resin composition
JP6471527B2 (en) Manufacturing method of laminate
JP6273193B2 (en) Manufacturing method of laminate
JP6409177B2 (en) Photocurable resin composition
WO2019102928A1 (en) Photocurable resin composition and method for manufacturing image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006004

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15830689

Country of ref document: EP

Kind code of ref document: A1