WO2016021517A1 - 光学部材の製造方法及びそれに用いる硬化性樹脂組成物 - Google Patents

光学部材の製造方法及びそれに用いる硬化性樹脂組成物 Download PDF

Info

Publication number
WO2016021517A1
WO2016021517A1 PCT/JP2015/071868 JP2015071868W WO2016021517A1 WO 2016021517 A1 WO2016021517 A1 WO 2016021517A1 JP 2015071868 W JP2015071868 W JP 2015071868W WO 2016021517 A1 WO2016021517 A1 WO 2016021517A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
meth
acrylate
liquid crystal
Prior art date
Application number
PCT/JP2015/071868
Other languages
English (en)
French (fr)
Inventor
貴文 水口
隼 本橋
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201580042136.1A priority Critical patent/CN106575052A/zh
Priority to JP2016540201A priority patent/JP6353908B2/ja
Priority to KR1020177003296A priority patent/KR20170039183A/ko
Publication of WO2016021517A1 publication Critical patent/WO2016021517A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a method for producing an optical member by laminating an optical substrate having a light shielding part and another optical substrate, and a curable resin composition therefor.
  • a touch panel In recent years, display devices that allow screen input by attaching a touch panel to a display screen of a display device such as a liquid crystal display, a plasma display, or an organic EL display have been widely used.
  • a glass plate or a resin film on which a transparent electrode is formed is bonded with a slight gap facing each other. If necessary, a transparent protection made of glass or resin is provided on the touch surface. It has a structure in which plates are bonded together.
  • Patent Documents 1 and 2 when creating an image display device by forming a peripheral wall portion so as to completely partition the adhesive filling region and the outer region into a rectangular shape as described in Patent Documents 1 and 2,
  • the adhesive is cured to form a cured product layer, there is no problem that the internal stress caused by the shrinkage of the adhesive due to curing causes distortion of the substrate, and there is no way for voids generated during bonding to be discharged to the external area. For this reason, there is a problem in that voids need to be repaired.
  • An object of the present invention is to provide a method for producing an optical member that is unlikely to cause warpage of the substrate and can provide an optical member that is excellent in productivity, and a curable resin composition used therefor.
  • the present invention relates to the following (1) to (14).
  • a second curable resin composition application step that defines: An application step of a first curable resin composition that applies the first curable resin composition having fluidity when uncured to the application region; A laminating step of laminating the liquid crystal display unit and the protective plate via the first curable resin composition; A first curable resin composition curing step for curing the first curable resin composition and bonding the liquid crystal display unit and the protective plate together, A cured product layer obtained by curing the second curable resin composition is laminated as a linearly extending layer or a dot-like layer between the liquid crystal display unit and a protective plate, whereby the first Formed as a partition that separates the inner region and the outer region of the filling chamber filled with the curable resin composition, and at least a part of the partition is provided with a communication portion that communicates the inner region and the outer region of the filling chamber.
  • Method for manufacturing an image display device (2) A method for manufacturing the image display device according to (1), The partition formed as a layer extending on the line is formed in a rectangular frame shape, There are a plurality of communication portions that connect the inner region and the outer region, The partition wall has an object of rotation around the axis of the image display device as a center of rotation, or an object of line around the center axis when the image display device is viewed in plan. Manufacturing method of image display apparatus. (3) A method for manufacturing an image display device according to (1) or (2), Manufacturing of an image display device, wherein the partition wall is formed in a rectangular frame shape, the partition wall is formed on four sides forming the rectangular frame, and the communication portion is formed in a square forming the rectangular frame. Method.
  • a method for manufacturing an image display device according to (1) or (2) The method for manufacturing an image display device, wherein the partition wall is formed in a rectangular frame shape, the communication portion is formed on four sides forming the rectangular frame, and the partition wall is formed on a square of the rectangular frame. .
  • the protective plate is a transparent glass substrate having a light shielding portion, a transparent resin substrate having a light shielding portion, a glass substrate having a light shielding portion and a transparent electrode formed thereon, and a glass having a transparent electrode formed on the transparent substrate having the light shielding portion.
  • a resin composition having a storage rigidity of 3 to 20 times, and a storage rigidity (25 ° C.) at a curing rate of 80% is 1 ⁇ 10 2 Pa to 1 ⁇ 10 5 Pa
  • (10) One selected from the group consisting of (meth) acrylate (A), urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, and (meth) acrylate monomer
  • (11) The curable resin composition according to any one of (5) to (10), wherein the protective plate is a touch panel.
  • (12) A touch panel obtained by the method for manufacturing an image display device according to any one of (1) to (11).
  • An image display device in which a protective plate is bonded to a liquid crystal display unit, A first cured product layer obtained by curing the first curable resin composition formed on the polarizing plate; A second cured product layer obtained by curing a second curable resin composition that defines a peripheral wall portion of the first cured product layer; The second cured product layer is laminated as a layer extending on the line between the liquid crystal display unit and the protective plate, whereby an inner region and an outer region of the filling chamber filled with the first curable resin composition.
  • An image display device that is formed as a partition wall that separates the first and second partition walls, and a communication portion that communicates the inner region and the outer region of the filling chamber is provided in at least a part of the partition wall.
  • the first curable resin composition and the second curable resin composition are a urethane (meth) acrylate compound, a (meth) acrylate compound having a polyisoprene skeleton, or a (meth) acrylate compound having a polybutadiene skeleton.
  • FIG. 1 is a schematic diagram of a configuration of a liquid crystal display unit 1.
  • FIG. 2 is a schematic diagram of a configuration of a protection plate 2.
  • FIG. It is the schematic which shows the specific example of the formation aspect of a partition part. It is process drawing which shows 2nd Embodiment of the manufacturing method of this invention. It is process drawing which shows 3rd Embodiment of the manufacturing method of this invention. It is the schematic which shows the one aspect
  • the present invention relates to a method for manufacturing an image display device in which a protective plate is bonded to a liquid crystal display unit.
  • the image display device is manufactured by the following [Step A] to [Step D]. .
  • curing the said 2nd curable resin composition is laminated
  • Step A A second curable resin composition having fluidity when uncured is applied to at least one of the liquid crystal display unit or the protective plate, and the first curable resin composition is formed by the second curable resin composition.
  • coating process which demarcates the application
  • Step B A step of applying a first curable resin composition in which the first curable resin composition having fluidity when uncured is applied to the application region.
  • Step C A laminating step of laminating the liquid crystal display unit and the protective plate via the first curable resin composition.
  • Step D A first curable resin composition curing step in which the first curable resin composition is cured and the liquid crystal display unit and the protective plate are bonded together.
  • FIG. 1 is a process diagram showing a first embodiment of a manufacturing process of an optical member of the present invention. This method is a method of obtaining an optical member (image display device) by bonding the liquid crystal display unit 1 and the protective plate 2 together.
  • the liquid crystal display unit 1 is a liquid crystal display unit in which a liquid crystal material is sealed between a pair of substrates on which electrodes are formed, and a polarizing plate, a driving circuit, a signal input cable, and a backlight unit are provided.
  • FIG. 2 is a cross-sectional view showing a main part of an example of the liquid crystal display unit 1.
  • a polarizing plate 22 is disposed on the liquid crystal display cell 21, and a sealing body 23 is disposed on the liquid crystal display cell 21 so as to surround the polarizing plate 22. ing.
  • the structure in which the polarizing plate 22 is directly laminated on the liquid crystal display cell 21 is shown, but it is not necessary to directly laminate the polarizing plate 22 as long as the polarizing plate is disposed on the liquid crystal display cell.
  • An optical member such as another functional film may be interposed between the cell and the polarizing plate.
  • a gap 24 having a maximum width of several mm is formed between the polarizing plate 22 and the sealing body 23, and a sealing film 25 is provided so that the surface of the liquid crystal display cell 21 is not exposed on the bottom surface of the gap 24. Shows an example in which is arranged. That is, as shown in the example of FIG.
  • the liquid crystal display which is the bottom surface of the gap 24 between the polarizing plate 22 and the sealing body 23.
  • a sealing film 25 having adhesiveness can be disposed to block a part of the gap 24. Since one end of the sealing film 25 in the width direction is adjacent to the polarizing plate 22 and the other end is in close contact with the sealing body 23, the bottom of the gap 24 is sealed.
  • the sealing film 25 may not be arranged on the bottom surface of the gap 24 and the surface of the liquid crystal display cell 21 may be exposed.
  • an adhesive film having polyethylene terephthalate or the like as a film base and having an adhesive layer such as acrylate or an adhesive layer is preferable.
  • the polarizing plate 22 known ones used in image display devices can be used. For example, a film-like absorption polarizer, a wire grid polarizer, or the like can be used.
  • the sealing film 25 does not necessarily need to be a solid pressure-sensitive adhesive layer or adhesive layer at the time of disposition, and may have a high viscosity so as not to enter the gaps between the constituent members of the liquid crystal display unit. More specifically, a curable resin composition having a viscosity of about 65 Pa ⁇ s can be used. Further, an adhesive having a thixo ratio of about 3 may be used from the viewpoint of maintaining the shape so as not to enter the gap.
  • a backlight side polarizing plate 27 can be laminated on the surface of the liquid crystal display cell 21 opposite to the surface on which the polarizing plate 22 is formed.
  • the structure is not limited to the structure in which the backlight side polarizing plate 27 is directly laminated on the liquid crystal display cell 21, and the liquid crystal display cell 21 and the backlight side polarizing plate need only be disposed on the liquid crystal display cell 21. 27 and another optical member such as a functional film may be interposed.
  • the backlight 28 can be formed on the surface opposite to the surface on which the liquid crystal display cell 21 is disposed.
  • the light source constituting the backlight for example, a cold cathode tube, an LED (Light Emitting Diode), or the like can be used.
  • an edge light system in which the light source 30 is disposed at one end of the light guide plate 31 and linear light from the light source 30 is converted into planar light by the light guide plate 31 can be exemplified.
  • the backlight method is not limited to the edge light method.
  • a direct type system in which the light source 30 is disposed directly below the diffusion plate may be employed.
  • the liquid crystal display unit 1 is usually covered with a casing 26.
  • the casing 26 is generally made of a metal material. Specifically, an alloy such as stainless steel, iron, aluminum, or silver can be used.
  • a liquid crystal display cell, a backlight, a light guide plate, and an optical film can be accommodated in the housing 26.
  • a sealing body 23 is disposed so as to cover the liquid crystal display cell 21.
  • the sealing body 23 is disposed so as to surround the polarizing film with a gap 24 interposed in the peripheral wall portion of the polarizing film 22.
  • the sealing body 23 is coated on the liquid crystal display cell 21 with the sealing film 25 interposed therebetween, but the liquid crystal display cell 21 may be coated directly.
  • the sealing body 23 is an example in which the outer wall of the image display device is coated, and in FIG. 2, the casing 26 disposed adjacent to the peripheral wall portion of the liquid crystal display cell 21 is directly coated. In particular, it is not necessary to limit the arrangement.
  • the backlight side polarizing plate 27 is laminated on the surface of the liquid crystal display cell 21 opposite to the surface on which the polarizing plate 22 is formed as described above.
  • the backlight 28 is laminated
  • casing 26 can be set as the structure which the sealing body 23 has coat
  • an organic polymer material is generally used. Specifically, a pressure-sensitive adhesive film having an acrylic polymer-based pressure-sensitive adhesive layer or adhesive layer on a film substrate such as PET is used. Can be used.
  • a protective plate 2 shown in FIG. 3 protects the liquid crystal display unit 1.
  • the protective plate 2 is a member having a transparent substrate 3 and a light shielding portion 4 formed on one surface of the transparent substrate 3.
  • Examples of the transparent substrate 3 used for the protective plate 2 include a glass plate or a transparent resin plate.
  • the transparent substrate 3 has a high transparency with respect to light emitted from the display panel and reflected light, as well as light resistance and low birefringence.
  • a glass plate is preferable because it has high plane accuracy, surface scratch resistance, and high mechanical strength.
  • the material for the glass plate examples include glass materials such as sodaime glass, and high transmittance glass having lower iron content and less bluishness is more preferable. In order to improve safety, tempered glass may be used as a surface material. In particular, when a thin glass plate is used, it is preferable to use a chemically strengthened glass plate.
  • the material for the transparent resin plate include highly transparent resin materials such as a polymethyl methacrylate (PMMA) plate, a polycarbonate (PC) plate, and an alicyclic polyolefin polymer (COP) plate.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • COP alicyclic polyolefin polymer
  • the protective plate 2 may be subjected to a surface treatment in order to improve the interfacial adhesive force with the cured resin layer.
  • a surface treatment method include a method of treating the surface of the protective plate 2 with a silane coupling agent, a method of forming a silicon oxide thin film by an oxidation flame using a frame burner, and the like.
  • the protective plate 2 is cured by curing a first cured layer 13 or a second curable resin composition 12 obtained by curing a first curable resin composition 11 described later.
  • An antireflection layer may be provided on the surface opposite to the side on which the obtained second cured product layer 14 is formed.
  • the antireflection layer can be provided by a method of directly forming an inorganic thin film on the surface of the protective plate 2 or a method of bonding a transparent resin film provided with an antireflection layer to the protective plate 2.
  • a part or the whole of the protective plate 2 is colored, or a part or the whole of the surface of the protective plate 2 is polished to form a glass to scatter light, or a part of the surface of the protective plate 2 is scattered.
  • the transmitted light may be refracted or reflected by forming fine irregularities on the entire surface.
  • a colored film, a light scattering film, a photorefractive film, a light reflecting film or the like may be attached to a part or the whole of the surface of the protective plate 2.
  • the shape of the protection plate 2 is usually rectangular.
  • the size of the protective plate 2 is suitably 0.5 m ⁇ 0.4 m in the case of a television receiver because the manufacturing method of the present invention is particularly suitable for manufacturing a relatively large area image display device. 0.7 m ⁇ 0.4 m or more is particularly preferable.
  • the upper limit of the size of the protection plate 2 is often determined by the size of the display panel. Also, an image display device that is too large is likely to be difficult to handle during installation or the like.
  • the upper limit of the size of the protective plate 2 is usually about 2.5 m ⁇ 1.5 m due to these restrictions.
  • the thickness of the protective plate 2 is usually 0.5 to 25 mm in the case of a glass plate in view of mechanical strength, transparency and the like. For applications such as television receivers and PC displays used indoors, 1 to 6 mm is preferable from the viewpoint of reducing the weight of the display device, and for public display applications installed outdoors, 3 to 20 mm is preferable. When chemically strengthened glass is used, the thickness of the glass is preferably about 0.5 to 1.5 mm in terms of strength. In the case of a transparent resin plate, 2 to 10 mm is preferable.
  • the light-shielding portion 4 hides the wiring member connected to the display panel so that the area other than the image display area of the liquid crystal display cell to be described later cannot be seen from the protective plate 2 side.
  • the light shielding unit 4 can be formed on the surface on the side where the second cured product layer 14 to the first cured product layer 13 described later are formed, and reduces the parallax between the light shielding unit 4 and the image display area.
  • the protective plate 2 is a glass plate, it is preferable to use ceramic printing containing a black pigment in the light-shielding printing portion because of high light shielding properties.
  • the light shielding part 4 may be provided on the surface to be bonded to the protective plate 2, and a film provided with an antireflection layer on the back surface thereof, that is, the outermost surface of the display device may be bonded to the protective plate.
  • the light-shielding portion 4 is formed by attaching a tape, applying paint, printing, or the like.
  • the present invention can also be applied to a device that does not have the light shielding portion 4.
  • the case where the light shielding portion 4 is provided will be described as a specific example.
  • the 2nd curable resin composition 12 containing the (meth) acrylate (A) mentioned later and a photoinitiator (B) is used for the said sealing body 23 of the liquid crystal display unit 1.
  • the coating method include a screen printing method and a dispensing method.
  • the 2nd curable resin composition 12 becomes a dam part of the 1st curable resin composition mentioned later at the time of bonding, the 1st cured product obtained by hardening
  • the first curable resin composition and the second curable resin composition applied to the surfaces of the liquid crystal display unit 1 and the protective plate 2 may be the same or different curable resin compositions may be used. I do not care.
  • the second hardened material layer 14 is laminated as a layer extending linearly between the liquid crystal display unit 1 and the protective plate 2 or a layer dotted in the form of dots, whereby the first hardenability layer 14 is laminated. It is formed as a partition wall 16 that separates the inner region and the outer region of the filling chamber 17 filled with the resin composition, and a communication portion that connects the inner region and the outer region of the filling chamber is provided in at least a part of the partition wall. .
  • the internal region indicates a region inside the filling chamber 17 filled with the first curable resin composition partitioned by the partition 16 (formed as the second cured product layer).
  • the external area refers to an area of the partition wall 16 opposite to the internal area.
  • the atmosphere is normally present. If a member is further arranged and separated from the atmosphere, such another member will be present.
  • the partition wall 16 as shown in FIGS. 4A to 4D, the inner surface of the liquid crystal display unit 1 or the protective plate 2 on the side to which the first curable resin composition is applied, A partition wall 16 that is a coating film of the second curable resin composition is formed in a rectangular frame shape as a coating film extending linearly.
  • the partition wall 16 is provided as a peripheral wall that separates the inner region 18 and the outer region 19 of the filling chamber 17 filled with the first curable resin composition, and the first curable resin composition 11 is separated by the partition wall 16.
  • coating when the 1st curable resin composition 11 spreads and spreads, the application area
  • the partition wall 16 can be appropriately designed based on the shape of the image display device and the intended filling state of the filling chamber 17 filled with the first curable resin composition 11. As a specific example, it is formed in a rectangular shape in plan view as shown in FIGS. 4 (a) to 4 (d), and the rotation target property is set around the axis of the liquid crystal display unit 1 or the protective plate 2 as a rotation center. It is formed to have.
  • the image display device may be formed so as to have line symmetry with a central axis when viewed in plan.
  • the partition wall 16 when the coating films constituting the partition wall 16 are discretely present, they are preferably provided in a rectangular frame shape at equal intervals. It is preferable to have discrete objectivity when viewed as one.
  • the partition wall 16 has four sides on the rotation target or the image display device in plan view with the axis of the liquid crystal display unit 1 or the protective plate 2 as the rotation center.
  • the liquid crystal display unit 1 or the protection is linearly formed so as to have line symmetry with respect to the central axis thereof, or provided at four corners to form rectangular sides therefrom as shown in FIG.
  • the plate 2 is formed so as to have a rotation target property about the axis of the plate 2 or a line target property about the central axis when the image display device is viewed in plan.
  • the shape of the partition 16 is not particularly limited to the above shape.
  • the partition wall 16 may be formed in a frame shape having a specific shape such as a rectangle when the partition wall 16 is regarded as an integral part, and may be formed so as to partly separate the inner region and the outer region of the filling chamber 17. It is not restricted and may be scattered in the form of dots.
  • the partition wall 16 when the partition wall 16 is formed in a rectangular frame shape without any communication portion in the filling chamber 17, internal stress caused by curing shrinkage due to curing of the first curable resin composition 11. Since there is no portion that relaxes the liquid crystal display unit 1 or the protective plate 2, a deformation such as a warp is caused, thereby causing display unevenness or the like. In addition, when there is a gap between the first curable resin composition 11 and the liquid crystal display unit 1 or the protective plate 2 at the time of bonding, there is no air passage, so the inside of the filling chamber 17 The problem that voids remain is likely to occur.
  • the second cured product layer 14 is laminated between the liquid crystal display unit 1 and the protective plate 2 as a linearly extending layer or a dotted layer, whereby the first curable resin composition is It is formed as a partition wall 16 that separates the inner region and the outer region of the filled filling chamber 17, and is formed so that a communication portion that communicates the inner region and the outer region of the filling chamber is provided in at least a part of the partition wall. Therefore, the internal stress generated when the first curable resin composition is cured can be relaxed, and the distortion of the liquid crystal display unit 1 and the protective plate 2 can be suppressed. Furthermore, even when a gap is generated when the liquid crystal display unit 1 and the protective plate 2 are bonded together, the gap flows to the communication portion, so that problems during bonding can be suppressed.
  • the 2nd curable resin composition 12 is laminated
  • cured material obtained by hardening
  • a layer is formed on the encapsulant 23.
  • cured material layer 14 is laminated
  • the intermediate point of the coating film width of the second cured product layer is arranged so as not to exist in the projection area of the liquid crystal display cell, and surrounds the liquid crystal display cell 21 instead of on the projection area of the gap 24.
  • the width of the coating film by the second curable resin composition 12 forming the coating film is preferably narrow.
  • the width is preferably 0.5 to 3 mm, more preferably 0.5 to 1.6 mm, and still more preferably 0.5 to 1.0 mm.
  • the thickness of the coating film of the first curable resin composition 11 to be formed is substantially equal to the average thickness of the coating film of the second curable resin composition 12 to be formed or the first coating film to be formed.
  • the 1 curable resin composition 11 is preferably 0.005 to 1 mm thick, more preferably 0.01 to 0.08 mm thicker than the thickness of the second curable resin composition 12 to be formed, and 0.01 to More preferably, it is 0.05 mm thick.
  • the storage rigidity at 25 ° C. at the time of curing in the second curable resin composition 12 is preferably larger than the storage rigidity at 25 ° C. of the cured product layer of the first curable resin composition 11. If the storage rigidity of the second cured product layer 14 is larger than the storage rigidity of the first cured product layer 13 obtained by curing the first curable resin composition, the liquid crystal display unit 1 and the protective plate 2 are When bonding, even if voids remain at the interface between the protective plate 2 and the first cured product layer 13 at the peripheral edge of the first cured product layer 13, the voids are not easily opened to the outside and are independent. It is easy to become.
  • the liquid crystal display unit 1 and the protective plate 2 are bonded together in a reduced pressure atmosphere, when the pressure is returned to the atmospheric pressure atmosphere, the pressure in the gap (remains reduced pressure) and the cured resin layer 15 are applied.
  • the volume of the void is reduced by the pressure difference from the pressure (atmospheric pressure), and the void is likely to disappear.
  • the second curable resin composition 12 and the first curable resin so that the shrinkage rate at the time of curing of the second curable resin composition 12 is larger than the shrinkage rate at the time of curing of the first curable resin composition 11. It is preferable to design the composition 11. In the first cured product layer 13 formed by curing the first curable resin composition 11, it is considered that the shrinkage stress corresponding to the shrinkage rate at the time of curing remains in the thickness direction of the first cured product layer 13. In addition, the thickness of the first cured product layer 13 slightly decreases due to the shrinkage stress in the thickness direction remaining in the layered portion at the time of curing. By using the first curable resin composition 11 having a smaller shrinkage rate at the time of curing than the second curable resin composition 12, it is possible to relieve the stress in the display region and suppress the occurrence of display unevenness.
  • One of means for increasing the shrinkage rate at the time of curing of the second curable resin composition 12 to be larger than the shrinkage rate at the time of curing of the first curable resin composition 11 is that of the curable group of the second curable resin composition 12.
  • the number is to be larger than the number of curable groups of the first curable resin composition 11.
  • the viscosity of the second curable resin composition 12 may be higher than the viscosity of the first curable resin composition 11.
  • the uncured viscosity of the second curable resin composition 12 is preferably 2 times or more, more preferably 5 times or more of the uncured viscosity of the first curable resin composition 11. More than double is more preferable.
  • the viscosity at the time of uncured at 25 degreeC of the 2nd curable resin composition 12 shall be 3000 Pa.s or less. Is preferred.
  • the preferable viscosity of the second curable resin composition 12 is specifically 40 to 70 Pa ⁇ s.
  • the second curable resin composition 12 cannot maintain its shape and spreads, and it becomes difficult to control the thickness, and the second curable resin resin composition 12 becomes the second curable resin composition. There is a risk of the object 12 being destroyed. On the other hand, when the viscosity exceeds 70 Pa ⁇ s, it may be difficult to discharge from the applicator.
  • the second cured product layer 14 has a liquid first curable resin composition from the interface between the second cured product layer 14 and the liquid crystal display unit 1 and the interface between the second cured product layer 14 and the protective plate 2. It is necessary to have an interface adhesion strength that does not leak out and a hardness that can maintain the shape. Therefore, it is preferable to use the second curable resin composition 12 having a high viscosity for the second cured product layer 14.
  • the second curable resin composition 12 may be a photocurable resin composition or a thermosetting resin composition.
  • the photocurable resin composition containing a curable compound and a photoinitiator is preferable from the point which can be hardened
  • the second curable resin composition 12 formed as described above is to form the weir part, and it can be applied to the next step B. It is also possible to form the weir portion by preliminarily curing to obtain a cured coating film.
  • the second curable resin composition 12 after coating is irradiated with ultraviolet rays 5, and a cured portion (on the liquid crystal display unit side as viewed from the curable resin composition) on the lower side of the coating layer (see FIG. Is not displayed) and the second cured product layer 14 having an uncured portion (not shown in the drawing) existing on the upper side (opposite side of the liquid crystal display unit side) of the coating layer (atmosphere side in the atmosphere).
  • the irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 , and particularly preferably 10 to 500 mJ / cm 2 . If the amount of irradiation is too small, there is a possibility that the degree of curing of the resin of the optical member that is finally bonded will be insufficient. If the amount of irradiation is too large, the amount of uncured components decreases, and the liquid crystal display unit 1 and the protective plate 2 There is a possibility that the bonding of the will become defective.
  • “uncured” refers to a fluid state in a 25 ° C. environment.
  • any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, LED lamp or electrodeless lamp can be used.
  • the protective plate 2 which has the light-shielding part 4 for the 1st curable resin composition 11 containing the (meth) acrylate (A) and photoinitiator (B) which are mentioned later. It is applied to the surface of the surface on which the light shielding portion 4 is formed.
  • the coating method include a slit coater, a roll coater, a spin coater, and a screen printing method.
  • the obtained coating film is preferably formed so as to be within the frame formed by the second cured product layer formed in step A.
  • the first curable resin composition 11 may be pressed when the liquid crystal display unit 1 and the protective plate 2 are bonded together, which may cause a problem.
  • the coating film of the first curable resin composition 11 does not necessarily have to be formed strictly along the second cured product layer 14, and is contained within the frame formed by the second cured product layer 14. It suffices if it is formed so as to fill the viewing area of the image display device.
  • the elastic modulus at 25 ° C. of the first cured product layer obtained by curing the first curable resin composition 11 is preferably 10 3 to 10 7 Pa, and 10 4 to 10. 6 Pa is more preferable. Furthermore, 10 4 to 10 5 Pa is particularly preferable in order to eliminate the void at the time of bonding in a shorter time. If the elastic modulus is 10 3 Pa or more, it is easy to maintain the shape of the first cured product layer 13. Moreover, even when the thickness of the first curable resin composition 11 to be formed is relatively thick, the thickness can be kept uniform throughout the first cured product layer 13, and the protective plate 2 and the liquid crystal display unit 1 can be maintained.
  • the liquid crystal display unit 1 and the protective plate 2 are bonded together in a reduced pressure atmosphere, and then returned to the atmospheric pressure atmosphere.
  • the void volume tends to decrease due to the differential pressure between the pressure of the material (with reduced pressure) and the pressure applied to the hardened material layer of the fill material (atmospheric pressure). Easily dissolved and absorbed.
  • the thickness of the first curable resin composition 11 is preferably 50 to 500 ⁇ m, more preferably 50 to 350 ⁇ m, and particularly preferably 100 to 350 ⁇ m. If the thickness of the 1st curable resin composition 11 is 50 micrometers or more, the 1st hardened
  • cured material layer 13 is 500 micrometers or less, a space
  • the thickness of the first cured product layer 13 the thickness of the second cured product layer 14 is adjusted, and the liquid second curable resin composition 11 supplied to the surface of the protective plate 2 is adjusted.
  • a method of adjusting the supply amount can be mentioned.
  • the viscosity of the first curable resin composition 11 is preferably 0.05 to 50 Pa ⁇ s, and more preferably 1 to 20 Pa ⁇ s. If the viscosity is 0.05 Pa ⁇ s or more, a decrease in physical properties of the first cured product layer 13 is suppressed. Moreover, since the component having a low boiling point is reduced, volatilization in a reduced-pressure atmosphere described later is suppressed, which is preferable. If the viscosity is 50 Pa ⁇ s or less, voids hardly remain in the first cured product layer 13. The viscosity of the first curable resin composition 11 is measured using an E-type viscometer at 25 ° C.
  • the first curable resin composition 11 may be a photocurable resin composition or a thermosetting resin composition.
  • a photocurable resin composition containing a curable compound and a photopolymerization initiator is preferable because it can be cured at a low temperature and has a high curing rate.
  • the first curable resin composition 11 may be used for pasting without being cured, but is preferably temporarily cured as described in FIG. Specifically, the coating film of the first curable resin composition 11 after application is irradiated with ultraviolet rays 5, and a cured portion (on the transparent substrate side as viewed from the curable resin composition) on the lower side of the application layer (on the transparent substrate side) A cured product layer having an uncured portion (not shown in the figure) existing on the upper side (opposite side of the transparent substrate side) of the coating layer (on the atmosphere side when performed in the atmosphere) is obtained.
  • the irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 , and particularly preferably 10 to 500 mJ / cm 2 . If the amount of irradiation is too small, the degree of cure of the resin of the optical member that is finally bonded may be insufficient. If the amount of irradiation is too large, the amount of uncured components decreases, and the liquid crystal display unit 1 and the light-shielding portion There is a possibility that the bonding of the transparent substrate 2 will be defective.
  • “uncured” refers to a fluid state in a 25 ° C. environment.
  • any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, LED lamp or electrodeless lamp can be used.
  • the maximum illuminance ratio (illuminance ratio) at 200 to 320 nm is preferably when the maximum illuminance in the range of 320 to 450 nm is set to 100 for the ultraviolet rays irradiated to the curable resin composition.
  • the illuminance at 200 to 320 nm is particularly preferably 10 or less.
  • the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of maximum illuminance (illuminance ratio) at 200 to 320 nm is higher than 30, the adhesive strength of the finally obtained optical member will be inferior.
  • the illuminance is usually 30 to 1000 mW / cm 2 at each wavelength (for example, 365 nm).
  • the method of irradiating ultraviolet rays so as to achieve the above illuminance ratio includes, for example, a method of applying a lamp that satisfies the illuminance ratio as a lamp that irradiates ultraviolet to near ultraviolet rays, Even if it does not meet the above conditions, by using a base material (for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.) that cuts short wavelength ultraviolet rays at the time of ultraviolet irradiation in the temporary curing of this step, Irradiation at such an illuminance ratio is possible.
  • a base material for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.
  • the ultraviolet rays from the upper surface (on the side opposite to the transparent substrate as viewed from the curable resin composition layer) (normal air surface) on the coating side in normal air. Further, ultraviolet irradiation may be performed while spraying a curing-inhibiting gas on the upper surface of the coating layer after evacuation.
  • the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side is the atmosphere side.
  • the state of the uncured portion and the film thickness of the uncured portion can be adjusted by spraying oxygen or ozone onto the surface of the ultraviolet curable resin layer (coating layer) during the ultraviolet irradiation. That is, by spraying oxygen or ozone on the surface of the coating layer, oxygen inhibition of curing of the curable resin composition occurs on the surface, so that the uncured portion of the surface can be ensured, The film thickness can be increased.
  • the curing rate represents the curing rate as seen from the curing component of the curable resin composition, and represents a value calculated by excluding components that are not cured such as a softening agent.
  • the first curable resin composition 11 of the present invention has a storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays in the above [Step B], when the ultraviolet rays are irradiated in [Step D].
  • the resin composition is preferably a resin composition characterized in that the storage rigidity of the resin layer is 3 to 20 times (preferably 3 to 10 times).
  • a method for measuring the storage rigidity for example, it can be measured by the following method. Specifically, two 40 ⁇ m-thick PET films coated with a fluorine-based mold release agent are prepared, and a film obtained by curing the obtained curable resin composition on one of the release agent-coated surfaces. It was applied so that the thickness was 600 ⁇ m.
  • the resin composition was cured by irradiating ultraviolet rays with an integrated light amount of 2000 mJ / cm 2 through a PET film with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two PET films are peeled off to produce a cured product for measuring the rigidity.
  • the rigidity can be measured in a temperature range of 20 to 40 ° C. using ARES (TA Instruments).
  • the curing rate during the main curing in [Step D] is 95% or more.
  • the first curable resin composition 11 of the present invention preferably has a storage rigidity of 1 ⁇ 10 2 Pa to 1 ⁇ 10 4 Pa at 25 ° C. during the temporary curing.
  • the storage rigidity is greater than 1 ⁇ 10 4 Pa
  • the first curable resin composition 11 contracts due to curing, and a contracting force is generated. Therefore, the first curable resin composition 11 is applied to the substrate.
  • display unevenness occurs due to the fact that it does not follow, peels off, the base material is distorted, and the stress is not sufficiently relaxed.
  • the storage rigidity at the time of pre-curing is in the above range, so that the space created at the time of bonding can be made of resin without causing problems when moved to atmospheric pressure.
  • the storage rigidity is preferably 300 to 3000 Pa, and more preferably 500 to 2000 Pa.
  • the curing rate of the resin at the time of temporary curing is 60 to 90%, and in the cured product of the curing rate, the storage rigidity is the above value and the preferred value, so that the distortion of the substrate and Display unevenness can be prevented.
  • the curing rate during the main curing in [Step D] to be described later is usually 95% or more.
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays in [Step D] to be described later is 1.5 to the storage rigidity at 25 ° C. of the resin layer at the time of temporary curing.
  • the resin composition is preferably 10 times.
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 98% is 1.5 with respect to the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 80%.
  • a resin composition characterized in that it is ⁇ 10 times is preferable.
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays in [Step D] to be described later is 2 to 7 times the storage rigidity at 25 ° C. of the resin layer during temporary curing. 2.5 to 5 times is particularly preferable.
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 98% is 2 to 7 with respect to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays at a curing rate of 80%. Is preferably doubled, and is particularly preferably 2.5 to 5 times.
  • the curable resin composition of the present invention preferably has a storage rigidity of 1 ⁇ 10 3 Pa to 1 ⁇ 10 6 Pa at 25 ° C. during the main curing.
  • the storage rigidity is higher than 1 ⁇ 10 6 Pa, the shrinkage of the curable resin composition becomes too large due to curing, and thus the base material may be distorted or the stress is not sufficiently relaxed. The possibility of display unevenness when the member is obtained is reduced.
  • the storage rigidity is preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 5 Pa, and more preferably 1.0 ⁇ 10 3 to 3.0 ⁇ 10 4 Pa.
  • Step C Next, the surface of the liquid crystal display unit 1 on which the second curable resin composition 12 is formed and the surface of the protective plate 2 on which the first curable resin composition 11 is formed face each other in FIG. ), The liquid crystal display unit 1 and the transparent substrate 2 having a light shielding portion are bonded together. Bonding can be performed either in air or in vacuum. Here, in order to make it easy to prevent bubbles from being generated at the time of bonding, it is preferable to bond in a vacuum.
  • the first curable resin composition 11 is bonded together after obtaining a cured product of an ultraviolet curable resin having a cured portion and an uncured portion, an improvement in adhesion can be expected.
  • the 1st curable resin composition 11 is spread by press etc., and the 1st curable resin composition 11 is filled in space.
  • the first cured product layer 13 with few or no voids is formed when exposed to a high pressure atmosphere thereafter.
  • the first curable resin composition 11 is more The coating film is crushed and the liquid crystal display unit 1 and the protective plate 2 can be firmly bonded.
  • the pressure is 1 kPa, preferably 10 to 300 Pa, and more preferably 15 to 100 Pa.
  • the optical member obtained by bonding the protective plate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 5 from the protective plate 2 side, and curable resin composition (application
  • the dose of ultraviolet rays is preferably from about 100 ⁇ 4000mJ / cm 2 in accumulated light quantity, particularly preferably from 200 ⁇ 3000mJ / cm 2 or so, more highly preferably 1500 ⁇ 3000mJ / cm 2.
  • the light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, LED lamp or electrodeless lamp can be used. In this way, the optical member shown in FIG. 7 can be obtained.
  • the 1st curable resin composition 11 and the 2nd ultraviolet curable resin composition 12 harden
  • the cured resin layer 15 includes a first cured product layer 13 that extends along the surface of the protective plate 2 and a second cured product layer that is disposed on the periphery of the first cured product layer and surrounds the first cured product layer 13.
  • the resin cured product layer 15 includes the second cured product layer
  • the peripheral edge of the first cured product layer 13 can be prevented from spreading outward, that is, thinning at the peripheral portion can be suppressed.
  • the entire thickness can be kept uniform. By making the thickness of the entire second resin cured product layer uniform, it is preferable to easily prevent the voids from remaining at the interface in bonding with other face materials.
  • the thickness of the first curable resin composition 11 and the second curable resin composition 12 is not particularly limited.
  • the thickness A of the coating film of the first curable resin composition 11 is the same as the thickness B of the coating film of the second curable resin composition 12, or the second curable resin composition 12 It is preferable to make it thinner than the thickness B of the coating film. Advantages of the setting will be described.
  • the liquid crystal display unit 1 and the protective plate 2 are bonded together, they are usually pressed and bonded.
  • the thickness of the coating film of the second curable resin composition 12 is smaller when the thickness A is the same as or thicker than the thickness B, the first curable resin The composition 1211 is crushed and pasted. Therefore, since the second curable resin composition 12 generates stress on the liquid crystal display unit 1 or the protective plate 2 due to the difference between the thickness A and the thickness B, the first curable resin composition is more strongly bonded. This is because it can be bonded.
  • the thickness A of the coating film of the first curable resin composition 11 is made thinner than the thickness B of the coating film of the second curable resin composition 12 in the cured resin layer 15, the first curable property.
  • the thickness A of the coating film of the resin composition is more preferably 0.005 mm or more and more preferably 0.01 mm or more than the thickness B of the coating film of the second curable resin composition 12. More preferably.
  • the thickness A of the coating film of the first curable resin composition 11 suppresses the generation of voids due to a step between the coating film of the second curable resin composition 12 and the coating film of the first curable resin composition 11. Therefore, the thickness is preferably 0.05 mm or less and more preferably 0.03 mm or less than the thickness B of the coating film of the second curable resin composition 12.
  • the region where the coating film of the second curable resin composition 12 in the resin cured product layer 15 (the layer obtained by combining the first cured product layer and the second cured product layer) is close to the coating film of the first curable resin composition 11
  • the thickness A of the coating film of the first curable resin composition 11 is smaller than the thickness B of the coating film of the second curable resin composition 12 in at least a part of the second curable resin composition 12.
  • the thickness B of the thinnest part of the coating film of the second curable resin composition 12 is formed of the first curable resin composition 11. It is preferable that it is 1/2 or more of the thickness A of the weir-like part, more preferably 90/100 or more.
  • the gap should be open to the outside. It is sufficient to become an independent void and disappear at atmospheric pressure.
  • the difference between the thickness A of the coating film 11 of the first curable resin composition and the thickness B of the coating film of the second curable resin composition 12 was measured using a laser displacement meter (LK-H052K, manufactured by Keyence Corporation). The total thickness of the transparent substrate and the coating film of the first curable resin composition 11 or the coating film of the second curable resin composition 12 formed thereon is measured and obtained from the difference.
  • the thickness A of the coating film of the first curable resin composition 11 is the thickness of the peripheral edge of the coating film of the first curable resin composition 11 adjacent to the coating film of the second cured resin composition 12. Say it. Usually, a flat face material is used as the transparent substrate, but there are a portion where the coating film of the first curable resin composition 11 is formed and a portion where the coating film of the second curable resin composition 12 is formed. When using a face material having a stepped surface shape, the thickness A of the coating film of the first curable resin composition 11 and the thickness B of the coating film of the second curable resin composition 12 are used.
  • the surface step shape is the same as the difference between the thickness A of the coating film of the first curable resin composition 11 and the thickness B of the coating film of the second curable resin composition 12 described above. It only has to be.
  • the thickness A of the coating film of the first curable resin composition 11 and the thickness B of the coating film of the second curable resin composition 12 are the first cured by the coating film of the second curable resin composition 12. It is preferable that the thickness is uniform over the entire transparent surface material except for at least a part of the region adjacent to the coating film of the conductive resin composition 11. Also, depending on the surface shape of the coating film of the first curable resin composition 11 or the coating film of the second curable resin composition 12, it may be difficult to measure the thickness with the laser displacement meter.
  • the thickness A of the coating film of the first cured resin composition 11 and the thickness of the coating film of the second curable resin composition 12 using a 3D shape measuring machine (high precision shape measurement system KS-1100) or the like. B may be measured.
  • the case where the first curable resin composition is applied to the protective plate 2 and the second curable resin composition is applied to the liquid crystal display unit 1 to form a coating film is described. It is also possible to apply the structure in which the first curable resin composition is applied to the liquid crystal display unit 1 and the second curable resin composition is applied to the protective plate 2 to form a coating film. .
  • the optical member of the present invention may be manufactured by the second modified embodiment described below.
  • the light-shielding part 4 on the protection board 2 is formed in the 2nd curable resin composition 12 containing (meth) acrylate (A) and a photoinitiator (B). Apply to the surface.
  • the second cured product layer 14 is laminated as a layer extending linearly or a layer dotted in the form of dots between the liquid crystal display unit 1 and the protective plate 2.
  • a partition wall 16 is formed that separates the inner region and the outer region of the filling chamber 17 filled with the first curable resin composition.
  • the communication part which connects is provided. Further, as shown in FIGS.
  • a coating film extending linearly is formed on the inner surface of the liquid crystal display unit 1 or the protective plate 2 on the side where the first curable resin composition is applied.
  • a partition wall 16 that is a coating film of the second curable resin composition is formed on a rectangular frame.
  • the partition wall 16 is provided as a peripheral wall that separates the inner region 18 and the outer region 19 of the filling chamber 17 filled with the first curable resin composition, and the first curable resin composition 11 is separated by the partition wall 16.
  • the partition wall 16 can be appropriately designed based on the shape of the image display device and the intended filling state of the filling chamber 17 filled with the first curable resin composition 11. As a specific example, it is formed in a rectangular shape in plan view as shown in FIGS. 4 (a) to 4 (d), and the rotation target property is set around the axis of the liquid crystal display unit 1 or the protective plate 2 as a rotation center. It is formed to have.
  • the image display device may be formed so as to have line symmetry with a central axis when viewed in plan.
  • Step B After apply
  • the ratio of the maximum illuminance at 200 to 320 nm is 30 or less, particularly preferably 200 to 320 nm.
  • the illuminance at 10 is 10 or less.
  • Step C Next, as shown in FIG. 5C, the liquid crystal is formed such that the uncured portions of the obtained first and second curable resin compositions 11 and 2 and the display surface of the liquid crystal display unit 1 face each other.
  • the display unit 1 and the protective plate 2 are bonded together. Bonding can be performed either in air or in vacuum.
  • Step D Next, as shown in FIG. 5 (d), the optical member obtained by laminating the protective plate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 5 from the protective plate 2 side, and the curable resin composition is not yet applied.
  • the cured product layer having a cured portion is cured.
  • first curable resin composition and the second curable resin composition are applied to the protective plate 2 to form a coating film.
  • the first curable resin composition and the second curable resin composition may be applied to the liquid crystal display unit 1 to form a coating film and applied without any problem.
  • the optical member of the present invention may be manufactured by the following modified third embodiment.
  • Step A First, as shown to Fig.6 (a), the 2nd curable resin composition 12 containing (meth) acrylate (A) and a photoinitiator (B) is used for the display surface and the protective plate 2 of the liquid crystal display unit 1. It is applied to the surface of the surface on which the light shielding portion 4 is formed.
  • the second cured product layer 14 is laminated as a layer extending linearly or a layer dotted in the form of dots between the liquid crystal display unit 1 and the protective plate 2.
  • a partition wall 16 is formed that separates the inner region and the outer region of the filling chamber 17 filled with the first curable resin composition.
  • the communication part which connects is provided.
  • a coating film extending linearly is formed on the inner surface of the liquid crystal display unit 1 or the protective plate 2 on the side where the first curable resin composition is applied.
  • a partition wall 16 that is a coating film of the second curable resin composition is formed on a rectangular frame.
  • the partition wall 16 is provided as a peripheral wall that separates the inner region 18 and the outer region 19 of the filling chamber 17 filled with the first curable resin composition, and the first curable resin composition 11 is separated by the partition wall 16.
  • coating when the 1st curable resin composition 11 spreads and spreads, the application area
  • the partition wall 16 can be appropriately designed based on the shape of the image display device and the intended filling state of the filling chamber 17 filled with the first curable resin composition 11. As a specific example, it is formed in a rectangular shape in plan view as shown in FIGS. 4 (a) to 4 (d), and the rotation target property is set around the axis of the liquid crystal display unit 1 or the protective plate 2 as a rotation center. It is formed to have.
  • the image display device may be formed so as to have line symmetry with a central axis when viewed in plan.
  • the first curable resin composition 11 containing (meth) acrylate (A) and the photopolymerization initiator (B) is applied to the display surface of the liquid crystal display unit 1 and the protective plate 2. It is applied to the surface of the surface where the light shielding part 4 is formed.
  • the obtained coating film is irradiated with ultraviolet rays 5, and the cured part existing on the lower side of the coating film (on the transparent substrate side as viewed from the curable resin composition) and the upper side of the coating layer (on the side opposite to the transparent substrate side) A cured product layer having an uncured portion present in is obtained.
  • the ratio of the maximum illuminance at 200 to 320 nm is 30 or less, particularly preferably 200 to 320 nm.
  • the illuminance at 10 is 10 or less.
  • Step C Next, as shown in FIG. 6C, the liquid crystal display unit 1 and the protective plate 2 are bonded so that the uncured portions face each other. Bonding can be performed either in air or in vacuum. Here, in order to make it easy to prevent bubbles from being generated at the time of bonding, it is preferable to bond in a vacuum. As described above, when a cured product of an ultraviolet curable resin having a cured portion and an uncured portion is obtained on each of the liquid crystal display unit and the transparent substrate, bonding can be expected.
  • the optical member obtained by bonding the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 5 from the protective plate 2 side, and curable resin composition (application
  • the dose of ultraviolet rays is preferably from about 100 ⁇ 4000mJ / cm 2 in accumulated light quantity, particularly preferably from 200 ⁇ 3000mJ / cm 2 or so, more highly preferably 1500 ⁇ 3000mJ / cm 2.
  • the light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, LED lamp or electrodeless lamp can be used. In this way, the optical member shown in FIG. 7 can be obtained.
  • an optical substrate In the above embodiments, some of the embodiments of the method for producing an optical member of the present invention are described with one specific optical substrate.
  • the liquid crystal display unit and the transparent substrate having the light-shielding portion have been described, but in the manufacturing method of the present invention, various members described later can be used as an optical substrate instead of the liquid crystal display unit.
  • the various members mentioned later as an optical base material can be used.
  • an optical base material such as a liquid crystal display unit and a transparent substrate, other various optical base material layers (for example, a film bonded with a cured product layer of a curable resin composition, or the like) Other optical base material layers laminated) may be used.
  • the coating method of the curable resin composition described in the section of the first embodiment, the film thickness of the resin cured product, the irradiation amount and the light source at the time of ultraviolet irradiation, and oxygen or oxygen on the surface of the ultraviolet curable resin layer Any method for adjusting the film thickness of the uncured portion by spraying ozone is not applied only to the above-described embodiment, and can be applied to any manufacturing method included in the present invention.
  • the optical base material is an optical base material
  • the optical base material bonded thereto is at least one display field unit selected from the group consisting of a liquid crystal display unit, a plasma display unit, and an organic EL unit.
  • One optical base material is a protective base material having a light-shielding part, and another optical base material bonded to it is a touch panel or a display unit having a touch panel, and at least two optical base materials are bonded.
  • a mode in which the optical member is a touch panel having a protective base material having a light-shielding portion or a display unit having the same.
  • the curable resin composition is applied to either the surface of the protective base material having the light shielding portion provided with the light shielding portion, the touch surface of the touch panel, or both of them. It is preferable to do this.
  • One optical substrate is an optical substrate having a light-shielding portion, the other optical substrate bonded to it is a display unit, and an optical member having at least two optical substrates bonded thereto
  • the aspect which is a display body unit which has an optical base material which has a light-shielding part.
  • the above-described curability is applied to either the surface of the optical substrate having the light-shielding portion on the side where the light-shielding portion is provided, the display surface of the display unit, or both. It is preferable to apply a resin composition.
  • the optical substrate having a light shielding part include a display screen protective plate having a light shielding part, or a touch panel provided with a protective substrate having a light shielding part.
  • the optical substrate having the light-shielding portion is a protective plate for a display screen having the light-shielding portion
  • the surface of the optical substrate having the light-shielding portion is provided on the side on which the light-shielding portion is provided. It is the surface on the side where the part is provided.
  • the optical substrate having the light shielding portion is a touch panel having a protective substrate having the light shielding portion
  • the surface having the light shielding portion of the protective substrate having the light shielding portion is bonded to the touch surface of the touch panel.
  • the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided means the substrate surface of the touch panel opposite to the touch surface of the touch panel.
  • the light-shielding part of the optical base material having the light-shielding part may be provided on any of the optical base materials, but is usually formed in a frame shape around the optical base material in the form of a transparent plate or sheet, and the width is The thickness is preferably about 0.5 to 10 mm, more preferably about 1 to 8 mm, and still more preferably about 2 to 8 mm.
  • the curable resin composition that can be used as the first curable resin composition 11 to the second curable resin composition 12 of the present invention will be described.
  • the curable resin composition of the present invention preferably contains (meth) acrylate (A) and a photopolymerization initiator (B).
  • the other component which can be added to the curable resin composition used for optics as an arbitrary component can be contained.
  • the phrase “can be added to the curable resin composition used for optics” means that an additive that lowers the transparency of the cured product to the extent that it cannot be used for optics is not included.
  • a preferable average transmittance of the sheet with light having a wavelength of 400 to 800 nm is at least It is preferably 90% or more.
  • a suitable composition ratio of the curable resin composition is such that (meth) acrylate (A) is 25 to 90% by weight and the photopolymerization initiator (B) is 0.2% with respect to the total amount of the curable resin composition. ⁇ 5% by weight, other components are the balance.
  • any commonly used photopolymerization initiator can be used as the photopolymerization initiator (B).
  • the (meth) acrylate (A) in the curable resin composition of the present invention is not particularly limited, but urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, ( It is preferable to use any selected from the group consisting of (meth) acrylate monomers. More preferably, it is an embodiment containing both (i) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer.
  • “(meth) acrylate” means either one or both of methacrylate and acrylate. The same applies to “(meth) acrylic acid” and the like.
  • the urethane (meth) acrylate is obtained by reacting polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • polyhydric alcohol examples have 1 to 10 carbon atoms such as neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, etc.
  • Triols such as alkylene glycol, trimethylolpropane, pentaerythritol, alcohols having a cyclic skeleton such as tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, and the like; , Phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride, etc.) polyester polyol obtained by reaction with polyhydric alcohol and ⁇ -caprolactone Tone alcohol, polycarbonate polyol (for example, polycarbonate diol obtained by reaction of 1,6-hexanediol and diphenyl carbonate), polyether polyol (for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide modified bisphenol A, etc.) And polyolefin polyols such as hydrogenated polybutadiene diol.
  • the polyhydric alcohol is preferably polypropylene glycol or hydrogenated polybutadiene diol.
  • polypropylene glycol having a weight average molecular weight of 2000 or more and water.
  • An added polybutadiene diol is particularly preferred.
  • the upper limit of the weight average molecular weight at this time is not particularly limited, but is preferably 10,000 or less, and more preferably 5000 or less.
  • the hydrogenated polybutadiene polyol (A) can be used as long as it is a hydrogenated reduction product of a general polybutadiene polyol, but particularly for optical applications, those having few residual double bonds are preferred, and the iodine value is 20
  • the following are particularly preferred:
  • the molecular weight those having a molecular weight distribution that is generally available can be used, but those having a molecular weight of 500 to 3000 are particularly preferred when a balance between flexibility and curability is achieved.
  • organic polyisocyanate examples include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and dicyclopentanyl isocyanate.
  • the hydroxyl group-containing (meth) acrylate is a compound having at least one hydroxyl group and one (meth) acrylate in one molecule.
  • the reaction for obtaining the urethane (meth) acrylate is performed, for example, as follows. That is, the polyhydric alcohol is mixed with an organic polyisocyanate per equivalent of the hydroxyl group so that the isocyanate group is preferably 1.1 to 2.0 equivalent, more preferably 1.1 to 1.5 equivalent. Is preferably reacted at 70 to 90 ° C. to synthesize a urethane oligomer (first reaction). Next, the hydroxy (meth) acrylate compound is mixed so that the hydroxyl group is preferably 1 to 1.5 equivalents per equivalent of the isocyanate group of the urethane oligomer, and reacted at 70 to 90 ° C. to react with the target urethane (meth). ) Acrylate can be obtained (second reaction).
  • the first reaction can be carried out without a solvent, but in a solvent having a high viscosity of the product and having no alcoholic hydroxyl group for improving workability or in a polymerizable compound (F) described later. It is preferable to do so.
  • the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene, and tetramethylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and dipropylene glycol.
  • Glycol ethers such as dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate , Propylene glycol monoethyl ether acetate, Propylene glycol monomethyl ether acetate, esters such as dialkyl glutarate, dialkyl succinate, dialkyl adipate, cyclic esters such as ⁇ -butyrolactone, petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, solvent naphtha, etc. Can be carried out alone or in a mixed organic solvent.
  • the reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C.
  • the end point of the reaction is confirmed by a decrease in the amount of isocyanate.
  • a catalyst may be added for the purpose of shortening the reaction time.
  • this catalyst either a basic catalyst or an acidic catalyst is used.
  • the basic catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine and ammonia, and phosphines such as tributylphosphine and triphenylphosphine.
  • acidic catalysts examples include copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, titanium tetraisopropoxide, zirconium tetrabutoxide, aluminum chloride, tin octylate, octyltin trilaurate, dibutyltin dilaurate, Mention may be made of Lewis acid catalysts such as octyltin diacetate. The amount of these catalysts added is usually 0.1 to 1 part by weight based on 100 parts by weight of the total weight of the diol compound (A + D) and the polyisocyanate compound (B).
  • the polyurethane compound (E) of the present invention is obtained by reacting (second reaction) a (meth) acrylate compound (C) having at least one hydroxyl group with respect to the remaining isocyanate group after the first reaction. be able to.
  • the second reaction of the present invention is charged in an equivalent relationship such that the isocyanate group of the intermediate obtained after the first reaction is eliminated.
  • the OH group of the (meth) acrylate compound (C) having at least one hydroxyl group is 1.0 to 3.3 mol per 1.0 mol of the NCO group of the intermediate obtained after the first reaction.
  • the amount is 0 mol, more preferably 1.0 to 2.0 mol.
  • the second reaction of the present invention can also be carried out in the absence of a solvent, but in the above-mentioned solvent and / or polymerizable compound (F) described later in the present invention in order to improve the workability because the product has a high viscosity. Preferably it is done.
  • the reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C.
  • the end point of the reaction is confirmed by a decrease in the amount of isocyanate.
  • the aforementioned catalyst may be added for the purpose of shortening the reaction time.
  • a polymerization inhibitor such as 4-methoxyphenol is already added to the acrylate compound used as a raw material, but a polymerization inhibitor may be added again during the reaction.
  • examples of such polymerization inhibitors include hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-4-cresol, 3-hydroxythiophenol, Examples include p-benzoquinone, 2,5-dihydroxy-p-benzoquinone, and phenothiazine. The amount used is 0.01 to 1% by weight based on the reaction raw material mixture.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably about 7000 to 25000, and more preferably 10,000 to 20000. When the weight average molecular weight is less than 7000, shrinkage tends to increase, and when the weight average molecular weight is greater than 25000, curability tends to be poor.
  • urethane (meth) acrylates can be used alone or in admixture of two or more.
  • the weight ratio of urethane (meth) acrylate in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the (meth) acrylate having the polyisoprene skeleton has a (meth) acryloyl group at the terminal or side chain of the polyisoprene molecule.
  • a (meth) acrylate having a polyisoprene skeleton can be obtained as “UC-203” (manufactured by Kuraray Co., Ltd.).
  • the (meth) acrylate having a polyisoprene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 50,000, more preferably about 25,000 to 45,000.
  • the weight ratio of the (meth) acrylate having a polyisoprene skeleton in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the (meth) acrylate having a polybutadiene skeleton has a (meth) acryloyl group at the terminal or side chain of the polybutadiene molecule.
  • the (meth) acrylates having a polybutadiene skeleton are "TEAI-1000 (Nippon Soda Co., Ltd.)", “TE-2000 (Nippon Soda Co., Ltd.)", “EMA-3000 (Nippon Soda Co., Ltd.)” Manufactured by Kogyo Co., Ltd.).
  • the (meth) acrylate having a polybutadiene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 30,000, more preferably about 1,000 to 10,000.
  • the (meth) acrylate monomer a (meth) acrylate having one (meth) acryloyl group in the molecule can be preferably used.
  • the (meth) acrylate monomer indicates (meth) acrylate excluding the urethane (meth) acrylate, the following epoxy (meth) acrylate, and the (meth) acrylate having the polyisoprene skeleton.
  • the (meth) acrylate having one (meth) acryloyl group in the molecule include isooctyl (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having 5 to 20 carbon atoms such as (meth) acrylate, isostearyl (meth) acrylate, cetyl (meth) acrylate, isomyristyl (meth) acrylate, tridecyl (meth) acrylate, benzyl (meth) acrylate, tetrahydro Furfuryl (meth) acrylate, acryloylmorpholine, phenylglycidyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyeth
  • alkyl (meth) acrylates having 10 to 20 carbon atoms 2-ethylhexyl carbitol acrylate, acryloylmorpholine, 4-hydroxybutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isostearyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate and polypropylene oxide-modified nonylphenyl (meth) acrylate are preferred.
  • alkyl (meth) acrylate having 10 to 20 carbon atoms, dicyclopentenyloxyethyl (meth) Preferred are acrylate, polypropylene oxide-modified nonylphenyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate.
  • an alkyl (meth) acrylate having 1 to 5 carbon atoms having a hydroxyl group and acryloylmorpholine are preferable, and acryloylmorpholine is particularly preferable.
  • composition of the present invention can contain (meth) acrylates other than (meth) acrylate having one (meth) acryloyl group as long as the characteristics of the present invention are not impaired.
  • Trimethylol C2-C10 alkanes such as caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate and ethylene oxide-modified phosphoric acid di (meth) acrylate
  • Tri (meth) acrylate trimethylolpropane polyethoxytri (me
  • these (meth) acrylate monomer components can be used 1 type or in mixture of 2 or more types by arbitrary ratios.
  • the weight ratio of the (meth) acrylate monomer in the photocurable transparent adhesive composition of the present invention is usually preferably 5 to 70% by weight, more preferably 10 to 50% by weight. If it is less than 5% by weight, the curability tends to be poor, and if it is more than 70% by weight, the shrinkage tends to increase.
  • both (i) urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer in the curable resin composition The total content of both i) and (ii) is usually preferably 25 to 90% by weight, more preferably 40 to 90% by weight, still more preferably 40 to 80% by weight, based on the total amount of the resin composition. It is.
  • epoxy (meth) acrylate can be used as long as the characteristics of the present invention are not impaired.
  • Epoxy (meth) acrylate has a function of improving curability and improving the hardness and curing speed of a cured product. Any epoxy (meth) acrylate can be used as long as it is obtained by reacting a glycidyl ether type epoxy compound with (meth) acrylic acid, and preferably used epoxy (meth) acrylate.
  • Examples of the glycidyl ether type epoxy compound to be obtained include diglycidyl ether of bisphenol A or its alkylene oxide adduct, diglycidyl ether of bisphenol F or its alkylene oxide adduct, diglycidyl of hydrogenated bisphenol A or its alkylene oxide adduct.
  • Diglycidyl ether ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether of ether, hydrogenated bisphenol F or its alkylene oxide adduct Neopentyl glycol diglycidyl ether, butanediol diglycidyl ether hexanediol diglycidyl ether to, cyclohexanedimethanol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Epoxy (meth) acrylate is obtained by reacting these glycidyl ether type epoxy compounds with (meth) acrylic acid under the following conditions.
  • (Meth) acrylic acid is reacted at a ratio of 0.9 to 1.5 mol, more preferably 0.95 to 1.1 mol, per 1 equivalent of epoxy group of the glycidyl ether type epoxy compound.
  • the reaction temperature is preferably 80 to 120 ° C., and the reaction time is about 10 to 35 hours.
  • a catalyst such as triphenylphosphine, TAP, triethanolamine, or tetraethylammonium chloride.
  • paramethoxyphenol, methylhydroquinone or the like can be used as a polymerization inhibitor.
  • An epoxy (meth) acrylate that can be suitably used in the present invention is a bisphenol A type epoxy (meth) acrylate obtained from a bisphenol A type epoxy compound.
  • the weight average molecular weight of the epoxy (meth) acrylate is preferably 500 to 10,000.
  • the weight ratio of the epoxy (meth) acrylate in the curable resin composition of the present invention is usually 1 to 80% by weight, preferably 5 to 30% by weight.
  • the content ratio of (meth) acrylate (A) in the curable resin composition of the present invention is preferably 25 to 90% by weight, more preferably 40 to 90% by weight, based on the total amount of the curable resin composition. More preferably, it is 40 to 80% by weight.
  • the (meth) acrylate (A) is selected from the group consisting of the urethane (meth) acrylate, the (meth) acrylate having the polyisoprene skeleton, and the (meth) acrylate monomer. It is preferable to contain at least one.
  • the content of the urethane (meth) acrylate is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, and the content of the (meth) acrylate having a polyisoprene skeleton is preferably 20 to 80%.
  • the content ratio of the (meth) acrylate monomer is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
  • the (meth) acrylate (A) contains the urethane (meth) acrylate or the (meth) acrylate having a polyisoprene skeleton, and the content ratio is 20 to 80% by weight, preferably Is more preferably 30 to 70% by weight and contains a (meth) acrylate monomer, and its content is 5 to 70% by weight, preferably 10 to 50% by weight.
  • the photopolymerization initiator (B) contained in the composition of the present invention is not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzoylphenylethoxyphosphine.
  • Fin oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ( Irgacure (trade name) 184; manufactured by BASF), 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer (Esacure (trade name) ONE; manufactured by Lambarti), 1- [4- (2-Hydroxyethoxy) -phenyl] -2 Hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-Methyl-propan-1-one (Irgacure 127; manufactured by BASF
  • the photopolymerization initiator (B) has a molar extinction coefficient at 302 nm or 313 nm measured in acetonitrile or methanol of 300 ml / (g ⁇ cm) or more and a molar extinction coefficient at 365 nm of 100 ml. It is preferable to use a photopolymerization initiator that is not more than / (g ⁇ cm). By using such a photopolymerization initiator, it is possible to contribute to an improvement in adhesive strength.
  • Examples of such a photopolymerization initiator (B) include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173). Manufactured by BASF), 1- [4- (2-hydroxyethoxy) -phenyl-]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), phenylglyoxylic acid And methyl ester (Darocur MBF; manufactured by BASF).
  • these photopolymerization initiators (B) can be used alone or in admixture of two or more at any ratio.
  • the weight ratio of the photopolymerization initiator (B) in the photocurable resin composition of the present invention is usually preferably 0.2 to 5% by weight, more preferably 0.3 to 3% by weight. When it is more than 5% by weight, when obtaining a cured product layer having a cured part and an uncured part on the side opposite to the optical substrate side, the uncured part cannot be formed or the transparency of the resin cured product layer is low. There is a risk of getting worse.
  • the curable resin composition of the present invention includes, as other components, a photopolymerization initiation assistant described below, a general formula (1) described later.
  • the compound which has the structure shown by this, the softening component mentioned later, the additive mentioned later, etc. can be included.
  • the content ratio of the other components with respect to the total amount of the curable resin composition of the present invention is a balance obtained by subtracting the total amount of the (meth) acrylate (A) and the photopolymerization initiator (B) from the total amount.
  • the total amount of the other components is preferably 0 to 74% by weight, more preferably about 5 to 70% by weight, based on the total amount of the curable resin composition of the present invention.
  • amines that can serve as photopolymerization initiation assistants can be used in combination with the above photopolymerization initiator.
  • examples of amines that can be used include benzoic acid 2-dimethylaminoethyl ester, dimethylaminoacetophenone, p-dimethylaminobenzoic acid ethyl ester, and p-dimethylaminobenzoic acid isoamyl ester.
  • the content in the adhesive resin composition of the present invention is usually preferably 0.005 to 5% by weight, more preferably 0.01 to 3% by weight. is there.
  • the curable resin composition of the present invention can contain a compound having a structure represented by the general formula (1) as necessary.
  • n represents an integer of 0 to 40
  • m represents an integer of 10 to 50.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 have 1 to 18 carbon atoms.
  • the compound having the structure represented by the general formula (1) can be obtained, for example, as Unisafe (trade name) PKA-5017 (polyethylene glycol-polypropylene glycol allyl butyl ether) manufactured by NOF Corporation.
  • the weight ratio in the curable resin composition when using the compound having the structure represented by the general formula (1) is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
  • a softening component can be used as necessary.
  • the softening component that can be used include the polymer or oligomer excluding the (meth) acrylate and the compound having the structure represented by the general formula (1), phthalates, phosphates, glycol esters, Examples thereof include acid esters, aliphatic dibasic acid esters, fatty acid esters, epoxy plasticizers, castor oils, and terpene hydrogenated resins.
  • oligomer and polymer examples include an oligomer or a polymer having a polyisoprene skeleton, a polybutadiene skeleton, a polybutene skeleton or a xylene skeleton, and an esterified product thereof. In some cases, a polymer or an oligomer having a polybutadiene skeleton and an ester thereof. It is preferred to use a compound.
  • polystyrene resin composition examples include butadiene homopolymer, epoxy-modified polybutadiene, butadiene-styrene random copolymer, maleic acid-modified polybutadiene, and terminal hydroxyl group-modified liquid polybutadiene or liquid hydrogenated polybutadiene. It is done. Further, in the softening component, the above-mentioned softening components can be mixed and used.
  • the weight ratio of the softening component in the curable resin composition is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
  • an antioxidant an organic solvent, a silane coupling agent, a polymerization inhibitor, a leveling agent, an antistatic agent, a surface lubricant, a fluorescent whitening agent, and a light stabilizer are optionally added.
  • antioxidants include, for example, BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, , N-hexamethylenebis (3,5-di-di
  • organic solvent examples include alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene and the like.
  • silane coupling agent examples include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, ⁇ -mercapropropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltri
  • polymerization inhibitor examples include paramethoxyphenol and methylhydroquinone.
  • the light stabilizer include, for example, 1,2,2,6,6-pentamethyl-4-piperidyl alcohol, 2,2,6,6-tetramethyl-4-piperidyl alcohol, 1,2,2, 6,6-pentamethyl-4-piperidyl (meth) acrylate (LA-82, manufactured by ADEKA Corporation), tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (2,2,6,6-totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5 Mixed esterified product with undecane, bis (2,2,6,6-tetramethyl-4-piperidy
  • the filler include, for example, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like.
  • examples thereof include powder or beads obtained by spheroidizing these.
  • the weight ratio of the various additives in the photocurable transparent adhesive composition is preferably 0.01 to 3% by weight, more preferably 0.01 to 1% by weight. More preferably, it is 0.02 to 0.5% by weight.
  • the curable resin composition of the present invention can be obtained by mixing and dissolving the aforementioned components at room temperature to 80 ° C. If necessary, impurities may be removed by an operation such as filtration.
  • impurities may be removed by an operation such as filtration.
  • the curable resin composition of the present invention is used in a method for producing an optical member by laminating at least two optical substrates by the above [Step A] to [Step D].
  • the curing shrinkage of the cured product of the curable resin composition of the present invention is preferably 3.0% or less, particularly preferably 2.0% or less, in the first curable resin composition.
  • the second curable resin composition it is preferably 4.0% or less, and particularly preferably 3.0% or less.
  • the transmittance of the cured product of the curable resin composition of the present invention at 400 nm to 800 nm is preferably 90% or more.
  • the transmittance at 400 to 450 nm is preferably 90% or more.
  • the first curable resin composition 11 or the second curable resin composition 12 of the present invention (I) urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (II) (meth) acrylate It is preferable to contain a monomer and a photopolymerization initiator. And both the 1st curable resin composition 11 and the 2nd curable resin composition 12 use the resin composition containing the said (I) component and (II) component, and obtain an image display apparatus. Is preferred.
  • the softening component as a softening agent, and it is preferable that especially the 1st curable resin composition 11 and the 2nd curable resin composition 12 contain the softening component.
  • the softening components terpene resins (particularly solid terpene resins) are preferably used.
  • the curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B) used in the production method of the present invention are described below.
  • “Wt%” in the content of each component indicates a content ratio with respect to the total amount of the curable resin composition of the present invention.
  • the (meth) acrylate (A) is at least one (meth) acrylate selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, and a (meth) acrylate monomer.
  • (A2) As the (meth) acrylate (A), (I) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton, and (Ii) (meth) acrylate monomers,
  • (A3) As the (meth) acrylate (A), (I) urethane (meth) acrylate obtained by reaction of poly C2-C4 alkylene glycol, diisocyanate and hydroxy C2-C4 alkyl (meth) acrylate, and (Ii) (meth) acrylate monomers,
  • (A4) The curable resin composition according to any one of (A1) to (A3) above, wherein the urethane (meth) acrylate has a weight average molecular weight of 7000 to 25000.
  • (A5) In the curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B), as the photopolymerization initiator (B), a curable resin composition containing an acylphosphine oxide compound, or The curable resin composition according to any one of the above (A1) to (A4), which contains an acylphosphine oxide compound as a photopolymerization initiator (B).
  • Acylphosphine oxide compounds are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • the curable resin composition according to (A5) which is at least one compound selected from the group consisting of bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide.
  • (A9) (Meth) acrylate (A) includes (i) at least one of urethane (meth) acrylate or polyisoprene (meth) acrylate in an amount of 20 to 80% by weight and (ii) (meth) acrylate monomer in an amount of 5 to 70% by weight,
  • (A10) The curable resin composition according to any one of the above (A7) to (A9), which contains 10 to 80% by weight of the compound represented by the general formula (1) as another component.
  • the cured product sheet of the curable resin composition having a thickness of 200 ⁇ m has an average transmittance of at least 90% in a wavelength region of 400 to 450 nm and an average transmittance of at least a wavelength region of 400 to 800 nm. 90% of a curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B), or the curable resin according to any one of (A1) to (A11) above Composition.
  • the curable resin composition of the present invention can be suitably used as an adhesive for producing an optical member by laminating a plurality of optical substrates by the [Step A] to [Step D].
  • the optical substrate used in the method for producing an optical member of the present invention include a protective plate, a transparent plate, a sheet, a touch panel, and a display unit.
  • the “optical substrate” means both an optical substrate having no light shielding part on the surface and an optical substrate having a light shielding part on the surface.
  • it is preferable that at least one of a plurality of optical substrates used is an optical substrate having a light shielding portion.
  • the position of the light shielding part in the optical substrate having the light shielding part is not particularly limited.
  • a band-shaped light shielding portion having a width of 0.05 to 20 mm, preferably about 0.05 to 10 mm, more preferably about 0.1 to 6 mm is formed in the peripheral portion of the optical substrate.
  • the light-shielding portion on the optical substrate can be formed by attaching a tape, applying a coating or printing.
  • Various materials can be used as the material of the optical substrate used in the present invention. Specifically, resins such as PET, PC, PMMA, a composite of PC and PMMA, glass, COC, COP, plastic (such as acrylic resin), and the like can be given.
  • an optical substrate used in the present invention for example, a transparent plate or sheet, a sheet or transparent plate obtained by laminating a plurality of films or sheets such as polarizing plates, a non-laminated sheet or transparent plate, and a transparent made from inorganic glass Plates (inorganic glass plates and processed products thereof, such as lenses, prisms, ITO glass) and the like can be used.
  • the optical substrate used in the present invention is a laminate composed of a plurality of functional plates or sheets (hereinafter referred to as “functional laminate”) such as a touch panel (touch panel input sensor) or the following display unit in addition to the polarizing plate described above. Also called “body”).
  • Examples of the sheet that can be used as the optical substrate used in the present invention include an icon sheet, a decorative sheet, and a protective sheet.
  • Examples of the plate (transparent plate) that can be used in the method for producing an optical member of the present invention include a decorative plate and a protective plate.
  • materials for these sheets or plates those listed as materials for transparent plates can be applied.
  • Examples of the material of the touch panel surface that can be used as the optical substrate used in the present invention include glass, PET, PC, PMMA, a composite of PC and PMMA, COC, and COP.
  • the thickness of a plate-like or sheet-like optical substrate such as a transparent plate or a sheet is not particularly limited, and is usually about 5 ⁇ m to 5 cm, preferably about 10 ⁇ m to 10 mm, more preferably about 50 ⁇ m to 3 mm. Is the thickness.
  • a plate-shaped or sheet-shaped transparent optical substrate having a light-shielding portion and the functional laminate are a cured product of the curable resin composition of the present invention.
  • a bonded optical member can be exemplified.
  • a display unit with an optical functional material by using a display unit such as a liquid crystal display device as one of optical substrates and an optical functional material as another optical substrate ( Hereinafter, it is also referred to as a display panel).
  • the display unit include display devices such as LCD, EL display, EL illumination, electronic paper, and plasma display in which a polarizing plate is attached to glass.
  • the optical functional material include transparent plastic plates such as acrylic plates, PC plates, PET plates, and PEN plates, tempered glass, and touch panel input sensors.
  • the visibility of the display image is further improved when the refractive index of the cured product is 1.45 to 1.55 for improving the visibility. .
  • the difference in refractive index from the base material used as the optical base material can be reduced, and the light loss can be reduced by suppressing the irregular reflection of light.
  • Preferred embodiments of the optical member obtained by the production method of the present invention include the following (i) to (vii).
  • An optical base selected from the group consisting of a transparent glass substrate having a light shielding part, a transparent resin substrate having a light shielding part, and a glass substrate on which a light shielding material and a transparent electrode are formed, as the optical base material having the light shielding part.
  • the optical member according to (i), which is a material and the functional laminate is a display unit or a touch panel.
  • a touch panel or touch panel input sensor in which a plate-shaped or sheet-shaped optical substrate having a light-shielding portion is bonded to the surface on the touch surface side of the touch panel using a cured product of the curable resin composition of the present invention.
  • V A display panel in which a plate-like or sheet-like optical substrate having a light-shielding portion is bonded to the display screen of the display unit using the cured product of the curable resin composition of the present invention.
  • the optical member of the present invention is obtained by laminating a plurality of optical substrates selected from each of the above optical substrates by the method described in Steps A to D above. It is done.
  • the curable resin composition may be applied to only one of the surfaces facing each other through the cured product layer in the two optical substrates to be bonded, or may be applied to both surfaces.
  • any one surface of the protective base material having a light shielding portion, preferably light shielding.
  • the resin composition may be applied to only one of the surface provided with the portion and the touch surface of the touch panel or the display surface of the display unit, or may be applied to both of them.
  • a light shielding portion of the protective base material is provided in steps A and B.
  • the resin composition may be applied to only one of the substrate surface opposite to the touched surface or the touch surface of the touch panel and the display surface of the display unit, or may be applied to both of them. .
  • the optical member including the display unit obtained by the manufacturing method of the present invention and the optical base material having the light shielding portion can be incorporated into an electronic device such as a television, a small game machine, a mobile phone, and a personal computer.
  • curable resin composition 16 parts by weight of urethane acrylate (hydrogenated polybutadiene diol (molecular weight 3000), isophorone diisocyanate, 2-hydroxyethyl acrylate, 3 components (molar ratio 1: 1.2: 2)), GI-2000 (both end hydroxyl groups) 18 parts by weight of hydrogenated polybutadiene (manufactured by Nippon Soda Co., Ltd.), 13 parts of Nisseki Polybutene LV-100 (liquid polybutene, JX Nippon Steel & Nisseki Energy Co., Ltd.) 16 parts of modified hydrogenated terpene resin (manufactured by Yasuhara Chemical Co., Ltd.), 11 parts by weight of LA (lauryl acrylate, Osaka Organic Chemical Co., Ltd.), S-1800A (isostearyl acrylate, Shin-Nakamura Chemical Co., Ltd.) 25 parts, speed cure (
  • LIR-390 isoprene block polymer, manufactured by Kuraray Co., Ltd.
  • UC-203 reactive isoprene polymer, manufactured by Kuraray Co., Ltd.
  • FA-512A dicyclopentenyl axethyl acrylate, Hitachi Chemical
  • A-NOD-N nonanediol diacrylate, 3 parts, Shin-Nakamura Chemical Co., Ltd.
  • Speed Cure trade name
  • TPO 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • Irgacure trade name
  • Example 1 As shown in FIG. 1 (a), the second curable composition a is applied to the projection region of the sealing body 23 of the liquid crystal display unit 1 to a thickness of 300 ⁇ m, and the formation of the coating film is shown in FIG. 4 (b). It arranged so that the communication part which connects the internal area
  • the first curable composition A was applied to the protective plate with a thickness of 250 ⁇ m. Thereafter, the liquid crystal display unit 1 and the protective plate 2 were bonded together so that the uncured portion opposed.
  • the cured resin layer is cured by irradiating ultraviolet rays 5 with an integrated light quantity of 2000 mJ / cm 2 from the protective plate side using an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy). Then, the optical member FIG. 7 was created.
  • an electrodeless ultraviolet lamp D bulb, manufactured by Heraeus Noblelight Fusion Ubuy.
  • Example 2 The first curable composition applied to the protective plate is changed to B, and the coating film is formed in the same manner as shown in FIG. FIG. 7 was created.
  • Comparative Example 1 Resin cured product layer is similarly applied except that the second curable composition is applied by forming the application site by forming a rectangular frame so as not to provide a communication portion that connects the inner region and the outer region of the application site. Was cured to produce an optical member.
  • Optical members were obtained according to Examples 1 and 2 and Comparative Example 1 with a 0.1 mm gap between the substrates.
  • the stress required until the substrates of the obtained optical member were separated was measured at room temperature.
  • the pressing speed was 5 mm / min, and the obtained stress was divided by the unit area to obtain the adhesive strength.
  • ⁇ ⁇ ⁇ ⁇ 10N / cm 2 or more ⁇ ⁇ ⁇ ⁇ 5 ⁇ 10N / cm 2 ⁇ ... 5 N / cm 2 or less The obtained optical member was confirmed by visual recognition.
  • ⁇ ⁇ ⁇ ⁇ Display unevenness and substrate warpage are not observed ⁇ ⁇ ⁇ ⁇ No display unevenness, but there is some warpage of substrate ⁇ ⁇ ⁇ ⁇ Display unevenness
  • the obtained curable resin composition was fully cured, and the durometer E hardness was measured using a durometer hardness meter (type E) by a method based on JIS K7215 to evaluate flexibility. More specifically, the curable resin composition was poured into a cylindrical mold so that the film thickness became 1 cm, and the resin composition was sufficiently cured by irradiation with ultraviolet rays. The hardness of the obtained cured product was measured with a durometer hardness meter (type E).
  • the test results are summarized in the following table.
  • the rigidity of the first curable composition C is out of the measurement range because the hardness is too high.
  • the method for producing an optical member of the present invention can provide an optical member such as a display unit that has excellent visibility and is less likely to cause display unevenness.
  • the optical member obtained by the present invention can be suitably incorporated in a display device such as a liquid crystal display, a plasma display, or an organic EL display.
  • SYMBOLS 1 Liquid crystal display unit, 2 Protection board, 3 Transparent substrate, 4 Light-shielding part, 5 Ultraviolet rays, 11 1st curable resin composition, 12 2nd curable resin composition, 13 1st cured material layer, 14 Layer, 15 resin cured material layer, 21 liquid crystal display cell, 22 polarizing plate, 23 sealing body, 24 gap, 25 sealing film, 26 housing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 基板の反りが生じ難く、生産性に優れる光学部材であって、液晶表示ユニット又は保護板の少なくとも一方に、未硬化時に流動性を有する第2硬化性樹脂組成物を塗布し、前記組成物を硬化して得られる硬化物層が、液晶表示ユニットと保護板との間に線状又は点状に積層され、第1硬化性樹脂組成物が充填された領域と充填されていない領域との隔壁として形成され、前記隔壁の少なくとも一部において前記2領域間の連通部が設けられている画像表示装置の製造方法及びそれに用いる硬化性樹脂組成物を提供する。

Description

光学部材の製造方法及びそれに用いる硬化性樹脂組成物
 本発明は、遮光部を有する光学基材と他の光学基材を貼り合わせて、光学部材を製造する方法及びそのための硬化性樹脂組成物に関する。
 近年、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の表示装置の表示画面にタッチパネルを貼り合わせ、画面入力を可能とした表示装置が広く利用されている。このタッチパネルは、透明電極が形成されたガラス板又は樹脂製フィルムが僅かな隙間を空けて向き合って貼り合されており、必要に応じて、そのタッチ面の上に、ガラス又は樹脂製の透明保護板を貼り合せた構造を有している。
 タッチパネルにおける透明電極が形成されたガラス板又はフィルムと、ガラス又は樹脂製の透明保護板との貼り合せ、又はタッチパネルと表示体ユニットの貼り合わせには、両面粘着シートを用いる技術がある。しかし、両面粘着シートを用いると気泡が入りやすいという問題があった。両面粘着シートに代わる技術として、柔軟性のある硬化性樹脂組成物で貼り合せる技術が提案されている。
 そこで、柔軟性のある紫外線硬化型樹脂で貼り合わせる方法として、特許文献1及び特許文献2に記載のような2種類の接着剤を使用して、一方の接着剤で流止め部(堰部)を形成し、その後他方の流動性のある接着剤で流止め部で形成された枠内に充填を施し、両者を硬化させて硬化物層を形成することで、表示素子に光学部材を貼り合わせる技術が提案されている。
 しかしながら、特許文献1及び2に記載のように流止部を矩形に接着剤の充填領域と外部領域を完全に隔壁するように周壁部を形成させることにより画像表示装置を作成した場合には、硬化物層を形成させるために接着剤を硬化させた際に硬化による接着剤の収縮により生じる内面応力により基板の歪みが生じる問題や、貼り合わせ時に生じる空隙が外部領域に排出される通り道がないために、空隙が残存してリペアする必要が生じる問題があった。
 そこで、上記状況において、接着剤の硬化収縮による内面応力が生じても、当該応力を緩和でき、貼り合わせ時の空隙の存在による歩留りの低下を期待できる画像表示装置及びその製造方法の開発が望まれていた。
日本国特許第5451015号公報 国際公開第2011/148990号パンフレット
 本発明は、基板の反りが生じ難く、生産性に優れる光学部材を得ることができる光学部材の製造方法及びそれに用いる硬化性樹脂組成物を提供することを目的とする。
 本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。即ち、本発明は、下記(1)~(14)に関する。
(1)液晶表示ユニットに保護板を接着した画像表示装置の製造方法であって、
 前記液晶表示ユニット又は前記保護板の少なくとも一方に、未硬化時に流動性を有する第2硬化性樹脂組成物を塗布し、前記第2硬化性樹脂組成物によって第1硬化性樹脂組成物の塗布領域を画定する第2硬化性樹脂組成物塗布工程と、
 前記塗布領域に、未硬化時に流動性を有する前記第1硬化性樹脂組成物を塗布する第1硬化性樹脂組成物の塗布工程と、
 前記第1硬化性樹脂組成物を介して前記液晶表示ユニットおよび前記保護板を貼合わせる貼合わせ工程と、
 前記第1硬化性樹脂組成物を硬化させて前記液晶表示ユニットおよび前記保護板を貼合わせる第1硬化性樹脂組成物硬化工程と、を含み、
 前記第2硬化性樹脂組成物を硬化して得られる硬化物層が、前記液晶表示ユニットと保護板との間に線状に延びる層又は点状の層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室の内部領域と外部領域を隔てる隔壁として形成され、前記隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている画像表示装置の製造方法。
(2)(1)に記載の画像表示装置の製造方法であって、
 線上に延びる層として形成された前記隔壁が矩形の枠状に形成され、
 前記内部領域と前記外部領域を連通する連通部が複数存在し、
 前記隔壁が画像表示装置の軸線を回転中心に回転対象性、又は画像表示装置を平面視した際の中心軸を中心に線対象性を有していることを特徴とする、
 画像表示装置の製造方法。
(3)(1)又は(2)に記載の画像表示装置の製造方法であって、
 前記隔壁が矩形の枠状に形成され、矩形の枠を形成する四辺において隔壁が形成され、矩形の枠を形成する四角に前記連通部が形成されていることを特徴とする画像表示装置の製造方法。
(4)(1)又は(2)に記載の画像表示装置の製造方法であって、
 前記隔壁が矩形の枠状に形成され、矩形の枠を形成する四辺において前記連通部が形成され、矩形の枠の四角に前記隔壁が形成されていることを特徴とする画像表示装置の製造方法。
(5)(1)~(4)のいずれか一項に記載の光学部材の製造方法の、前記第1硬化性樹脂組成物又は前記第2硬化性樹脂組成物用の、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物。
(6)(メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上の(メタ)アクリレートである(5)に記載の硬化性樹脂組成物。
(7)アセトニトリル又はメタノール中で測定した光重合開始剤(B)のモル吸光係数が、302nm又は313nmでは300ml/(g・cm)以上であり、365nmでは100ml/(g・cm)以下である(5)又は(6)に記載の硬化性樹脂組成物。
(8)前記保護板が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、遮光部と透明電極が形成されたガラス基板、遮光部を有する透明基板に透明電極が形成されたガラス基板またはフィルムが貼りあわされた基板の群から選ばれる1種以上からなる(5)~(7)のいずれか一項に記載の硬化性樹脂組成物。
(9)前記第1硬化性樹脂組成物が紫外線を照射した際の硬化率80%における樹脂層の25℃における貯蔵剛性率に対して、紫外線を照射した際の硬化率98%における樹脂層の貯蔵剛性率が3~20倍であることを特徴とする樹脂組成物であって、硬化率80%における貯蔵剛性率(25℃)が1×10Pa~1×10Paである(5)~(8)のいずれか一項に記載の硬化性樹脂組成物。
(10)(メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上の(メタ)アクリレートである(5)~(9)のいずれか一項に記載の硬化性樹脂組成物。
(11)前記保護板が、タッチパネルである(5)~(10)のいずれか一項に記載の硬化性樹脂組成物。
(12)(1)~(11)のいずれか一項に記載の画像表示装置の製造方法によって得られるタッチパネル。
(13)液晶表示ユニットに保護板を接着した画像表示装置であって、
 前記偏光板上に形成された第1硬化性樹脂組成物を硬化して得られる第1硬化物層と、
 前記第1硬化物層の周壁部を画成する第2硬化性樹脂組成物を硬化して得られる第2硬化物層を有し、
 前記第2硬化物層が、前記液晶表示ユニットと保護板との間に線上に延びる層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室の内部領域と外部領域を隔てる隔壁として形成され、前記隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている画像表示装置。
(14)前記第1硬化性樹脂組成物及び前記第2硬化性樹脂組成物が、ウレタン(メタ)アクリレート化合物、ポリイソプレン骨格を有する(メタ)アクリレート化合物又はポリブタジエン骨格を有する(メタ)アクリレート化合物からなる群から選択される少なくとも1種の(メタ)アクリレート化合物、及び光重合開始剤を含有している硬化性樹脂組成物である、前記(13)に記載の画像表示装置。
本発明の製造方法の第1の実施形態を示す工程図である。 液晶表示ユニット1の構成の概略図である。 保護板2の構成の概略図である。 隔壁部の形成態様の具体例を示す概略図である。 本発明の製造方法の第2の実施形態を示す工程図である。 本発明の製造方法の第3の実施形態を示す工程図である。 本発明により得られる光学部材の一態様を示す概略図である。
 本発明は液晶表示ユニットに保護板を接着した画像表示装置の製造方法であって、当該画像表示装置の製造方法においては、下記[工程A]~[工程D]により、画像表示装置を製造する。そして、前記第2硬化性樹脂組成物を硬化して得られる硬化物層が、前記液晶表示ユニットと保護板との間に線状に延びる層又は点状に点在する層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室の内部領域と外部領域を隔てる隔壁として形成され、前記隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられていることを特徴としている。
[工程A]前記液晶表示ユニット又は前記保護板の少なくとも一方に、未硬化時に流動性を有する第2硬化性樹脂組成物を塗布し、前記第2硬化性樹脂組成物によって第1硬化性樹脂組成物の塗布領域を画定する第2硬化性樹脂組成物塗布工程。
[工程B]前記塗布領域に、未硬化時に流動性を有する前記第1硬化性樹脂組成物を塗布する第1硬化性樹脂組成物の塗布工程。
[工程C]前記第1硬化性樹脂組成物を介して前記液晶表示ユニットおよび前記保護板を貼合わせる貼合わせ工程。
[工程D]前記第1硬化性樹脂組成物を硬化させて前記液晶表示ユニットおよび前記保護板を貼合わせる第1硬化性樹脂組成物硬化工程。
 以下、本発明の製造方法、及びこの方法により製造した画像表示装置の形態について、図面を参照しつつ説明する。尚、第1~第3の実施形態は具体例であり、これらの具体例に限定されるものではない。
(第1の実施形態)
 図1は、本発明の光学部材の製造工程の第1の実施形態を示す工程図である。
 この方法は、液晶表示ユニット1と保護板2を貼り合わせることにより光学部材(画像表示装置)を得る方法である。
 液晶表示ユニット1は、電極を形成した一対の基板間に液晶材料が封入されたものに偏光板、駆動用回路、信号入力ケーブル、バックライトユニットが備わったものを言う。
図2は、液晶表示ユニット1の一例の要部を示す断面図である。この液晶表示ユニット1では、図2に示すように、液晶表示セル21上に偏光板22が配置され、液晶表示セル21上に偏光板22を取り囲むように封止体23を配置した構成となっている。ここで、液晶表示セル21上に偏光板22が直接積層された構造について示されているが、直接積層させる必要はなく、液晶表示セルの上に偏光板が配置されていればよく、液晶表示セルと偏光板との間に別の機能性フィルム等の光学部材を介在させても構わない。
 この状態では、偏光板22と封止体23の間には最大幅数mmの隙間24が形成されており、隙間24の底面には、液晶表示セル21の表面が露出しないように密閉フィルム25が配置されている例を示している。即ち、図2の例に示すように、偏光板22上に第2硬化性樹脂組成物11を塗布する前に、偏光板22と封止体23との間の隙間24の底面である液晶表示セル21の表面上に、接着性を有する密閉フィルム25を配置し、隙間24の一部を閉塞することができる。密閉フィルム25の幅方向の一端は偏光板22に隣接し、他端は封止体23に密着するため、隙間24の底部が密閉される。ここで、図2においては、密閉フィルム25を配置している例を示したが、隙間24の底面において密閉フィルム25が配置されず、液晶表示セル21の表面が露出していても構わない。
 このような密閉フィルム25としては、ポリエチレンテレフタレート等をフィルム基材とし、アクリレート等の粘着剤層あるいは接着剤層を有する粘着フィルムが好ましい。
 上記偏光板22としては、画像表示装置に使用される公知のものを使用できるが、例えばフィルム状の吸収型偏光子、ワイヤグリッド型偏光子等が使用できる。
 なお、密閉フィルム25は、配置時に必ずしも粘着剤層あるいは接着剤層は固体である必要はなく、液晶表示ユニットの各構成部材間の間隙に侵入しない程度に高粘度であればよい。より具体的には粘度65Pa・s程度の硬化性樹脂組成物を使用することができる。また、隙間に入り込まない程度に形状を保持させる点から、チキソ比3程度の接着剤を使用してもよい。
 液晶表示セル21には偏光板22が形成された面とは反対側の面に、バックライト側偏光板27を積層させることができる。ここで、液晶表示セル21にバックライト側偏光板27が直接積層された構造に限らず、液晶表示セル21に偏光板22が配置されていればよく、液晶表示セル21とバックライト側偏光板27との間に別の機能性フィルム等の光学部材を介在させても構わない。
 さらに、バックライト側偏光板27において、液晶表示セル21が配置されている面とは反対側の面にバックライト28を形成することができる。バックライトを構成する光源としては、例えば、冷陰極管やLED(Light Emitting Diode)等を用いることができる。具体例としては、光源30を導光板31の一端に配設し、光源30からの線状光を導光板31で面状光に変換するエッジライト方式を例示できる。なお、バックライト方式は、エッジライト方式に限定されるものではない。例えば、拡散板の直下に光源30を配置する直下型方式を採用してもよい。
 液晶表示ユニット1を保護するため、液晶表示ユニット1は通常筐体26で覆われている。筐体26は、金属製の材料が使用されることが一般的であり、具体的には、ステンレス等の合金、鉄、アルミ、銀が使用されること可能である。
 筐体26内には、液晶表示セル、バックライト、導光板、光学フィルムを収容することができる。
 液晶表示ユニット1においては、液晶表示セル21を被膜するように封止体23が配置されている。図2においては、偏光フィルム22の周壁部に隙間24を介在した状態で偏光フィルムを囲い込んで封止体23が配置されている。また、図2においては、液晶表示セル21上に密閉フィルム25を介在させて封止体23を被膜しているが、液晶表示セル21に直接被膜しても構わない。
 封止体23は、画像表示装置の外壁を被膜しており、図2においては液晶表示セル21の周壁部に隣接して配置されている筐体26を直接被膜している例であるが、特に当該態様に限定して配置される必要はない。尚、図示していないが、前記の通り液晶表示セル21の偏光板22が形成された面とは反対側の面に、バックライト側偏光板27を積層させ、さらにバックライト側偏光板27にバックライト28が積層され、バックライト28を筐体26が隣接して覆っており、当該筐体26がこれらの部材の周壁部を覆う態様で配置することができる。そして、筐体26をさらに封止体23が被膜している構成とすることができる。
 封止体23としては、有機高分子材料が使用されることが一般的であり、具体的には、PET等のフィルム基材に、アクリルポリマー系等の粘着層又は接着層を有する粘着フィルムが使用できる。
 図3に示す保護板2は、前記液晶表示ユニット1を保護するものである。そして、保護板2は透明基板3と透明基板3の片面表面上に形成された遮光部4を有する部材である。
 保護板2に使用する透明基板3としては、ガラス板、または透明樹脂板が挙げられ、表示パネルからの出射光や反射光に対して透明性が高い点はもちろん、耐光性、低複屈折率、高い平面精度、耐表面傷付性、および高い機械的強度を有する点から、ガラス板が好ましい。
 ガラス板の材料としては、ソーダイムガラス等のガラス材料が挙げられ、鉄分がより低く、青みの少ない高透過ガラスがより好ましい。安全性を高めるために表面材として強化ガラスを用いても良い。特に薄いガラス板を用いる場合には、化学強化を施したガラス板を用いることが好ましい。
 透明樹脂板の材料としては、ポリメチルメタクリレート(PMMA)板、ポリカーボネート(PC)板、脂環式ポリオレフィンポリマー(COP)板等の透明性の高い樹脂材料が挙げられる。
 保護板2には、樹脂硬化物層との界面接着力を向上させるために、表面処理を施してもよい。表面処理の方法としては、保護板2の表面をシランカップリング剤で処理する方法、フレームバーナーによる酸化炎によって酸化ケイ素の薄膜を形成する方法等が挙げられる。
 保護板2には、表示画像のコントラストを高めるために、後述する第1硬化性樹脂組成物11を硬化して得られる第1硬化物層13ないし第2硬化性樹脂組成物12を硬化して得られる第2硬化物層14が形成された側に対して反対側の表面に反射防止層を設けてもよい。反射防止層は、保護板2の表面に無機薄膜を直接形成する方法、または反射防止層を設けた透明樹脂フィルムを保護板2に貼合する方法によって設けることができる。
 また、目的に応じて、保護板2の一部または全体を着色したり、保護板2の表面の一部または全体を磨りガラス状にして光を散乱させたり、保護板2の表面の一部または全体に微細な凹凸等を形成して透過光を屈折または反射させたりしてもよい。また、着色フィルム、光散乱フィルム、光屈折フィルム、光反射フィルム等を、保護板2の表面の一部または全体に貼着してもよい。
 保護板2の形状は、通常矩形である。
 保護板2の大きさは、本発明の製造方法が比較的大面積の画像表示装置の製造に特に適していることから、テレビ受像機の場合、0.5m×0.4m以上が適当であり、0.7m×0.4m以上が特に好ましい。保護板2の大きさの上限は、表示パネルの大きさで決まることが多い。また、あまりに大きい画像表示装置は、設置等における取り扱いが困難となりやすい。保護板2の大きさの上限は、これらの制約から、通常2.5m×1.5m程度である。
 保護板2の厚さは、機械的強度、透明性等の点から、ガラス板の場合は通常0.5~25mmである。屋内で使用するテレビ受像機、PC用ディスプレイ等の用途では、表示装置の軽量化の点から、1~6mmが好ましく、屋外に設置する公衆表示用途では、3~20mmが好ましい。化学強化ガラスを用いる場合は、ガラスの厚さは、強度の点で、0.5~1.5mm程度が好ましい。透明樹脂板の場合は、2~10mmが好ましい。
 遮光部4は、後述する液晶表示セルの画像表示領域以外が保護板2側から視認できないようにして、表示パネルに接続されている配線部材等を隠蔽するものである。遮光部4は、後述する第2硬化物層14ないし第1硬化物層13が形成される側の表面に形成することができ、遮光部4と画像表示領域との視差を低減する。保護板2がガラス板の場合、遮光印刷部に黒色顔料を含むセラミック印刷を用いると遮光性が高く好ましい。保護板2に貼合される面に遮光部4を設け、その裏面、すなわち表示装置の最表面に反射防止層を設けたフィルムを保護板に貼合してもよい。例えば、遮光部4はテープの貼付や塗料の塗布又は印刷等によって形成されている。
尚、本発明においては遮光部4を有さないものにも適用できるが、以下の第1~3の実施形態の説明では、遮光部4を備える場合を具体例として説明を行う。
[工程A]
 図1(a)に示すように、後述する(メタ)アクリレート(A)および光重合開始剤(B)を含む第2硬化性樹脂組成物12を、液晶表示ユニット1の前記封止体23の表面に塗布する。塗布の方法としては、スクリーン印刷法、ディスペンス方式等が挙げられる。ここで、第2硬化性樹脂組成物12は、貼合わせ時に後述する第1硬化性樹脂組成物の堰部となるため、第1硬化性樹脂組成物11を硬化して得られる第1硬化物層13を画成したい形状に塗布する。具体的には、正方形ないし長方形等の枠の形状(即ち、矩形の枠状)に形成する。枠状の形態については後述する。
ここで、液晶表示ユニット1と保護板2の表面に塗布する第1硬化性樹脂組成物及び第2硬化性樹脂組成物は同一であってもよいし、異なる硬化性樹脂組成物を用いても構わない。
 また、液晶表示ユニット1と保護板2との間隔を保持するために、第2硬化性樹脂組成物12に所定の粒子径のスペーサー粒子を配合してもよい。
 ここで、上記枠の形状について図4に基づいて具体的に説明する。本発明においては、第2硬化物層14は液晶表示ユニット1と保護板2との間に線状に延びる層、又は点状に点在する層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室17の内部領域と外部領域を隔てる隔壁16として形成され、隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている。ここで、内部領域とは、(第2硬化物層として形成される)隔壁16によって区画された第1硬化性樹脂組成物が充填された充填室17の内部の領域を示している。また、外部領域とは、隔壁16における前記内部領域とは反対側の領域を示し、大気中で画像表示装置を使用する場合には通常大気が存在しており、画像表示装置の構成として別の部材がさらに配置されて大気と隔てている場合には、かかる別の部材が存在することとなる。
 具体的な隔壁16の例として、図4(a)~(d)に示すように、液晶表示ユニット1又は保護板2の第1硬化性樹脂組成物が塗布される側の内表面には、線状に延びる塗布膜として矩形の枠状に第2硬化性樹脂組成物の塗布膜である隔壁16が形成されている。
 隔壁16は、第1硬化性樹脂組成物が充填される充填室17の内部領域18と外部領域19とを隔てる周壁として設けられたものであり、隔壁16により第1硬化性樹脂組成物11を塗布後、第1硬化性樹脂組成物11が塗り広がる際に外部領域19まで漏れ出さないように第1硬化性樹脂組成物11の塗布領域を制限することができる。
 当該隔壁16は、画像表示装置の形状や第1硬化性樹脂組成物11を充填する充填室17の意図した充填状態に基づいて適宜設計することが可能である。具体的な例としては、図4(a)~(d)で示したように形状平面視矩形状で形成されており、液晶表示ユニット1又は保護板2の軸線を回転中心に回転対象性を有するように形成されている。ここで、画像表示装置を平面視した際の中心軸を中心に線対象性を有するように形成されても構わない。
 ここで、矩形の枠状において一対の辺に線上で隔壁16が存在できるように第2硬化性樹脂組成物を塗布することが好ましい。
 図4(b)~(c)の形態のように、隔壁16を構成する塗布膜が離散して存在している場合には、矩形の枠状に等間隔で設けられることが好ましく、これらを一体として捉えた場合に離散対象性を有していることが好ましい。
 また、より具体的な形状としては、図4(b)に示すように隔壁16は四辺に液晶表示ユニット1又は保護板2の軸線を回転中心に回転対象性又は画像表示装置を平面視した際の中心軸を中心に線対象性を有するように形成されているか、図4(c)に示すように四隅に設けられそこから矩形の辺を形成するように線状に液晶表示ユニット1又は保護板2の軸線を回転中心に回転対象性、又は画像表示装置を平面視した際の中心軸を中心に線対象性を有するように形成されていることが好適である。
 尚、隔壁16の形状は特に上記形状に限定されない。隔壁16を一体として捉えた際に矩形等の特定形状の枠状に形成され、一部に充填室17の内部領域と外部領域を隔てるように形成されていればよく、隔壁16は線状に限られず、点状の形態で点在していてもよい。
 ここで、隔壁16を充填室17内に連通部を存在させることなく、矩形の枠状に途切れ目なく形成した場合には、第1硬化性樹脂組成物11の硬化による硬化収縮により生じる内面応力を緩和させる部位が存在しないため、液晶表示ユニット1又は保護板2を反らせる等の変形を生じさせるため、表示ムラ等の発生を誘発してしまう。また、貼り合わせ時に第1硬化性樹脂組成物11と、液晶表示ユニット1又は保護板2との間に空隙が存在してしまった場合には、空気の通り道がないため、充填室17内に空隙が残存してしまうという不具合が生じ易くなる。
 しかしながら、第2硬化物層14は液晶表示ユニット1と保護板2との間に線状に延びる層又は点状に点在する層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室17の内部領域と外部領域を隔てる隔壁16として形成され、隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられているように形成しているため、第1硬化性樹脂組成物の硬化時に生じる内面応力を緩和することができ、また液晶表示ユニット1及び保護板2の歪みを抑制することができる。さらに、液晶表示ユニット1と保護板2を貼り合わせた際に空隙が生じた場合においても、空隙が連通部へ流れるため、貼り合わせ時の不具合を抑制することができる。
 ここで、本発明において、第2硬化性樹脂組成物12は、前記封止体の投影領域に積層され、かつ前記偏光板の投影領域には積層されないことが好ましい。このように偏光板の投影領域を避け、封止体の投影領域に第2硬化性樹脂組成物12を塗布することで、第2硬化性樹脂組成物12を硬化して得られる第2硬化物層が封止体23上に形成される。当該箇所に第2硬化物層を積層させることにより、指等による押圧により第2硬化物層14上に圧力をかけても、画像表示部に波紋が生じることを防止することができる。一方、第2硬化物層14が偏光板上に積層されると、第2硬化物層上ないし画像表示領域の周壁部に圧力を加えると、干渉により波紋が生じることとなる。
 さらに、第2硬化物層の塗膜幅の中間地点が、前記液晶表示セルの投影領域に存在していないように配置し、隙間24の投影領域上ではなく前記液晶表示セル21を取り囲んで存在している別の光学部材の投影領域上に配置することにより、押圧により液晶表示セル上に加わる圧力が低減されるため、圧力を加えても液晶表示セルの画像表示を乱すことが低減され、より波紋が生じることを防ぐことが可能となる。
 液晶表示ユニット1の画像表示領域の外側の領域が比較的狭いため、塗布膜を形成する第2硬化性樹脂組成物12による塗布膜の幅は狭くすることが好ましい。当該幅は、0.5~3mmが好ましく、0.5~1.6mmがより好まく、0.5~1.0mmがさらに好ましい。また、形成される第1硬化性樹脂組成物11の塗布膜の厚さは、形成される第2硬化性樹脂組成物12の塗布膜の平均的な厚みとほぼ等しいか、または形成される第1硬化性樹脂組成物11が、形成される第2硬化性樹脂組成物12の厚みより0.005~1mm厚いことが好ましく、0.01~0.08mm厚いことがより好ましく、0.01~0.05mm厚いことがより好ましい。
 第2硬化性樹脂組成物12における硬化時の25℃における貯蔵剛性率は、第1硬化性樹脂組成物11の硬化物層の25℃における貯蔵剛性率よりも大きいことが好ましい。第2硬化物層14の貯蔵剛性率が、第1硬化性樹脂組成物を硬化して得られる第1硬化物層13の貯蔵剛性率よりも大きければ、液晶表示ユニット1と保護板2とを貼合する際に、第1硬化物層13の周縁部において、保護板2と第1硬化物層13との界面に空隙が残存していても、空隙が外部に開放されにくく、独立した空隙となりやすい。よって、減圧雰囲気下にて液晶表示ユニット1と保護板2とを貼合した後、これを大気圧雰囲気下に戻した際に、空隙内の圧力(減圧のまま)と樹脂硬化物層15にかかる圧力(大気圧)との差圧によって空隙の体積が減少し、空隙は消失しやすい。
 第2硬化性樹脂組成物12の硬化時の収縮率が、第1硬化性樹脂組成物11の硬化時の収縮率より大きくなるように、第2硬化性樹脂組成物12および第1硬化性樹脂組成物11を設計することが好ましい。第1硬化性樹脂組成物11を硬化してなる第1硬化物層13には、硬化時の収縮率に応じた収縮応力が第1硬化物層13の厚さ方向に残留していると考えられ、硬化時において層状部に残留する厚さ方向の収縮応力により第1硬化物層13の厚さがわずかに減少する。第2硬化性樹脂組成物12より硬化時の収縮率の小さい第1硬化性樹脂組成物11を用いることで、表示領域内における応力を緩和し、表示ムラの発生を抑制する事が出来る。
 第2硬化性樹脂組成物12の硬化時の収縮率を第1硬化性樹脂組成物11の硬化時の収縮率より大きくする手段のひとつは、第2硬化性樹脂組成物12の硬化性基の数を第1硬化性樹脂組成物11の硬化性基の数より多くすることである。そのためには、第2硬化性樹脂組成物12において(i)分子量の小さい硬化性化合物(モノマー)の含有量を多くしたり、(ii)反応基を分子中に複数有する多官能成分の含有量を多くしたりすればよい。
 すなわち、第2硬化性樹脂組成物12の粘度を、第1硬化性樹脂組成物11の粘度より高くすればよい。具体的には、第2硬化性樹脂組成物12の未硬化時の粘度は、第1硬化性樹脂組成物11の未硬化時の粘度の2倍以上が好ましく、5倍以上がより好ましく、10倍以上がさらに好ましい。また、第2硬化性樹脂組成物12を塗布により透明面材上に形成するためには、第2硬化性樹脂組成物12の25℃における未硬化時の粘度は、3000Pa・s以下であることが好ましい。
 ここで、第2硬化性樹脂組成物12の好適な粘度は具体的には、40~70Pa・sである。40Pa・s未満であると第2硬化性樹脂組成物12が形状を保持できず広がってしまい、厚みの制御が困難となる上、第2硬化性樹脂樹脂組成物12が第2硬化性樹脂組成物12を決壊させてしまう恐れがある。一方、粘度が70Pa・sを超える場合には、塗布器から吐出させることが困難となる恐れがある。
 また、第2硬化物層14には、第2硬化物層14と液晶表示ユニット1との界面、および第2硬化物層14と保護板2との界面から液状の第1硬化性樹脂組成物11が漏れ出さない程度以上の界面密着力、および形状を維持できる程度の固さが必要である。よって、第2硬化物層14には、粘度の高い第2硬化性樹脂組成物12を用いることが好ましい。
 第2硬化性樹脂組成物12は、光硬化性樹脂組成物であってもよく、熱硬化性樹脂組成物であってもよい。第2硬化性樹脂組成物12としては、低温で硬化でき、かつ硬化速度が速い点から、硬化性化合物および光重合開始剤を含む光硬化性樹脂組成物が好ましい。
 上記の通り形成した第2硬化性樹脂組成物12をそのまま塗布膜として堰部を形成することとし、次の工程Bに適用することが可能であるが、当該第2硬化性樹脂組成物12を仮硬化させて硬化塗布膜を得ることで堰部を形成することも可能である。
 硬化させる場合においては、塗布後の第2硬化性樹脂組成物12に紫外線5を照射して、塗布層の下部側(硬化性樹脂組成物からみて液晶表示ユニット側)に存在する硬化部分(図では未表示)と塗布層の上部側(液晶表示ユニット側と反対側)(大気中で行うときは大気側)に存在する未硬化部分(図では未表示)を有する第2硬化物層14を得る。照射量は5~2000mJ/cmが好ましく、特に好ましくは、10~1000mJ/cm、特に好ましくは10~500mJ/cmである。照射量が少なすぎると、最終的に貼り合せた光学部材の樹脂の硬化度が不十分となるおそれがあり、照射量が多すぎると未硬化成分が少なくなり、液晶表示ユニット1と保護板2の貼り合せが不良となる恐れがある。
 本発明において、「未硬化」とは25℃環境下で流動性がある状態を示すものとする。また、紫外線照射後に樹脂組成物層を指で触り、指に液状成分が付着する場合は、未硬化部分を有するものと判断される。
 紫外~近紫外の紫外線照射による硬化には、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、LEDランプまたは無電極ランプ等が挙げられる。
[工程B]
 次に、図1(b)に示すように、後述する(メタ)アクリレート(A)および光重合開始剤(B)を含む第1硬化性樹脂組成物11を、遮光部4を有する保護板2の遮光部4が形成されている面の表面に塗布する。塗布の方法としては、スリットコーター、ロールコーター、スピンコーター、スクリーン印刷法等が挙げられる。
 得られる塗布膜としては、工程Aで形成された第2硬化物層で形成された枠内となるように形成されることが好ましい。枠外の箇所があると、液晶表示ユニット1と保護板2を貼合わせた際に第1硬化性樹脂組成物11が押されてしまい不具合が生じる恐れがあるためである。ここで、第1硬化性樹脂組成物11の塗布膜は第2硬化物層14に必ずしも厳密に沿って形成される必要はなく、第2硬化物層14で形成された枠内に収まっており、画像表示装置の視認領域を充填するように形成されていればよい。
 第1硬化性樹脂組成物11において、第1硬化性樹脂組成物11を硬化して得られる第1硬化物層の25℃における弾性率は、10~10Paが好ましく、10~10Paがより好ましい。更に、貼合時の空隙をより短時間に消失させるためには、10~10Paが特に好ましい。弾性率が10Pa以上であれば、第1硬化物層13の形状を維持しやすい。また、形成される第1硬化性樹脂組成物11の厚さが比較的厚い場合であっても、第1硬化物層13全体で厚さを均一に維持でき、保護板2と液晶表示ユニット1とを貼合する際に、液晶表示ユニット1と第1硬化物層13との界面に空隙が発生しにくい。弾性率が10Pa以下であれば、良好な密着性を発揮できる。また、形成する樹脂材の分子運動性が比較的高いため、減圧雰囲気下にて液晶表示ユニット1と保護板2とを貼合した後、これを大気圧雰囲気下に戻した際に、空隙内の圧力(減圧のまま)とフィル材硬化物層にかかる圧力(大気圧)との差圧によって空隙の体積が減少しやすくなり、また、体積が減少した空隙内の気体がフィル材硬化物層に溶解し、吸収されやすい。
 第1硬化性樹脂組成物11の厚さは、50~500μmが好ましく、50~350μmがより好ましく、100~350μmが特に好ましい。第1硬化性樹脂組成物11の厚さが50μm以上であれば、保護板2側からの外力による衝撃等を第1硬化物層13が効果的に緩衝して、液晶表示ユニット1を保護できる。また、本発明の画像表示装置の製造方法において、液晶表示ユニット1と保護板2との間に第1硬化物層13の厚さを超えない異物が混入しても、第1硬化物層13の厚さが大きく変化することなく、光透過性能への影響が少ない。第1硬化物層13の厚さが500μm以下であれば、第1硬化物層13に空隙が残留しにくく、また、画像表示装置の全体の厚さが不要に厚くならない。
 第1硬化物層13の厚さを調整する方法としては、第2硬化物層14の厚さを調節するとともに、保護板2の表面に供給される液状の第2硬化性樹脂組成物11の供給量を調節する方法が挙げられる。
 第1硬化性樹脂組成物11の粘度は、0.05~50Pa・sが好ましく、1~20Pa・sがより好ましい。粘度が0.05Pa・s以上であれば、第1硬化物層13の物性の低下が抑えられる。また、低沸点の成分が少なくなるため、後述する減圧雰囲気下における揮発が抑えられ好適となる。粘度が50Pa・s以下であれば、第1硬化物層13に空隙が残留しにくい。
 第1硬化性樹脂組成物11の粘度は、25℃においてE型粘度計を用いて測定する。
 第1硬化性樹脂組成物11は、光硬化性樹脂組成物であってもよく、熱硬化性樹脂組成物であってもよい。第1硬化性樹脂組成物としては、低温で硬化でき、かつ硬化速度が速い点から、硬化性化合物および光重合開始剤を含む光硬化性樹脂組成物が好ましい。
 ここで、第1硬化性樹脂組成物11を未硬化のまま貼合わせに用いてもよいが、図1(b)に記載したように仮硬化させることが好ましい。
 具体的には、塗布後の第1硬化性樹脂組成物11の塗布膜に紫外線5を照射して、塗布層の下部側(硬化性樹脂組成物からみて透明基板側)に存在する硬化部分(図では未表示)と塗布層の上部側(透明基板側と反対側)(大気中で行うときは大気側)に存在する未硬化部分(図では未表示)を有する硬化物層を得る。照射量は5~2000mJ/cmが好ましく、特に好ましくは、10~1000mJ/cm、特に好ましくは10~500mJ/cmである。照射量が少なすぎると、最終的に貼り合せた光学部材の樹脂の硬化度が不十分となるおそれがあり、照射量が多すぎると未硬化成分が少なくなり、液晶表示ユニット1と遮光部を有する透明基板2の貼り合せが不良となる恐れがある。
 本発明において、「未硬化」とは25℃環境下で流動性がある状態を示すものとする。また、紫外線照射後に樹脂組成物層を指で触り、指に液状成分が付着する場合は、未硬化部分を有するものと判断される。
 紫外~近紫外の紫外線照射による硬化には、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、LEDランプまたは無電極ランプ等が挙げられる。
 本工程の仮硬化においては、硬化性樹脂組成物に照射される紫外線が、320nm~450nmの範囲での最大照度を100とした時、好ましくは200~320nmにおける最大照度の比率(照度比)は30以下であり、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率(照度比)は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまう。これは、低波長での照度が高いと、本工程の仮硬化時に過度に硬化性樹脂組成物の硬化が進んでしまい、後述の工程Dにおける紫外線の照射における硬化の際の密着性に対する寄与が減少してしまうためと考えられる。尚、照度としては通常、各波長(例えば、365nm)で例えば30~1000mW/cmである。
 ここで、上記照度比率となるように紫外線を照射する方法は、例えば、紫外~近紫外の光線を照射するランプとして、当該照度比率の条件を満たすランプを適用する方法や、ランプ自体が当該照度の条件を満たさない場合であっても、本工程の仮硬化における紫外線照射時において短波長の紫外線をカットする基材(例えば、短波紫外線カットフィルター、ガラス板、フィルム等)を使用することで、このような照度比率で照射することが可能となる。紫外線の照度比率を調整する基材としては特には限定されないが、例えば、短波紫外線カット処理が施されたガラス板、ソーダ石灰ガラス、PETフィルム等が挙げられる。
 この場合において、紫外線の照射は、通常大気中で、塗布側の上部側表面(硬化性樹脂組成物層から見て、透明基板側と反対側)(通常大気面)から照射するのが好ましい。また、真空にした後に硬化阻害性の気体を塗布層の上面表面に噴霧しながら紫外線の照射を行っても構わない。大気中で樹脂組成物を硬化した場合には、液晶表示ユニット側と反対側または透明基板側と反対側は大気側となる。
 紫外線照射時に、紫外線硬化型樹脂層(塗布層)表面に酸素又はオゾンを吹きかけることにより、未硬化部分の状態や未硬化部分の膜厚を調整することができる。
 即ち、塗布層の表面に酸素又はオゾンを吹きかけることにより、その表面において、硬化性樹脂組成物の硬化の酸素阻害が生じるため、その表面の未硬化部分を確実にしたり、また、未硬化部分の膜厚を厚くすることができる。
 ここで、本明細書において、硬化率とは硬化性樹脂組成物の硬化成分からみた硬化率を表しており、柔軟化剤等の硬化しない成分は除いて算出されるものを表す。尚、硬化率は本発明において、硬化収縮率は、25℃における硬化前の液比重と硬化して得られる25℃における膜比重から下記の数式(1)から算出できる
(数式1)
硬化収縮率=(膜比重-液比重)/膜比重×100  (1)
 本発明の第1硬化性樹脂組成物11は、上記[工程B]において紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、上記[工程D]において紫外線を照射した際の樹脂層の貯蔵剛性率が3~20倍(好ましくは、3~10倍)であることを特徴とする樹脂組成物であることが好ましい。
 貯蔵剛性率の測定方法としては、例えば下記の手法で測定することができる。具体的には、フッ素系離型剤を塗布した厚さ40μmのPETフィルム2枚を用意し、そのうちの1枚の離型剤塗布面に、得られた硬化性樹脂組成物を硬化後の膜厚が600μmとなるように塗布した。その後、2枚のPETフィルムを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせた。PETフィルム越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線照射し、該樹脂組成物を硬化させた。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製する。そして、剛性率については、ARES(TA Instruments)を用いて、20~40℃の温度領域において剛性率を測定できる。
 [工程D]における本硬化時における硬化率は95%以上である。
 本発明の第1硬化性樹脂組成物11は、前記仮硬化時に25℃における貯蔵剛性率が1×10Pa~1×10Paであることが好ましい。
 貯蔵剛性率が1×10Paより大きいと第1硬化性樹脂組成物11は硬化により収縮するところ、収縮する力が生じることとなることから、第1硬化性樹脂組成物11が基材に追従せず、剥がれが生じたり、基材が歪んでしまったり、応力が十分に緩和されないことで、光学部材を得た際に表示ムラが生じることとなる。また、真空中での貼り合わせにおいては、仮硬化時の貯蔵剛性率が上記範囲にあることで、大気圧下に移動させた際に不具合を生じさせることなく貼り合わせ時に生じた空間を樹脂で埋めることが可能となる。一方、1×10Pa以下であると、剛性率が低すぎるために十分に硬化物としての形状を保つことができないことから、仮硬化時に適した硬化物を得ることができなくなる。ここで、上記貯蔵剛性率が300~3000Paであることが好ましく、500~2000Paであることがより好ましい。
 仮硬化時の樹脂の硬化率としては、仮硬化時の硬化率は60~90%であり、当該硬化率の硬化物において貯蔵剛性率が上記値及び好適値であることで、基板の歪み及び表示ムラを防止することができる。
 ここで、後述する[工程D]における本硬化時における硬化率は通常95%以上である。
 本発明においては、上記の通り、仮硬化時の樹脂層の25℃における貯蔵剛性率に対して、後述する[工程D]において紫外線を照射した際の樹脂層の貯蔵剛性率が1.5~10倍であることを特徴とする樹脂組成物であることが好ましい。硬化率で表すと硬化率80%における紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、硬化率98%における紫外線を照射した際の樹脂層の貯蔵剛性率が1.5~10倍であることを特徴とする樹脂組成物であることが好ましい。
 このように、急激に剛性率が硬化率に応じて変化する樹脂であって、硬化率が低い場合における剛性率を一定の範囲に抑えることで、硬化率が低い状態においては、基材に容易に接着させることが可能で、基材の反りに沿って接着することから容易に接着させることが可能となる。そして、基材の反りの変化に追従することとなり、基材に応力を生じさせることも防止できる。一方で、硬化率が高い状態においては、貼り合された光学基材同士の接着が剛直になるため、接着強度が顕著に高めることが可能となる。さらに、得られた硬化部材において、適度な柔軟性を保ちつつ耐湿熱性にも優れた硬化物となる。
 ここで、仮硬化時の樹脂層の25℃における貯蔵剛性率に対して、後述する[工程D]において紫外線を照射した際の樹脂層の貯蔵剛性率が2~7倍であることがより好ましく、2.5~5倍であることが特に好ましい。硬化率で表すと硬化率80%における紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、硬化率98%における紫外線を照射した際の樹脂層の貯蔵剛性率が2~7倍であることが好ましく、2.5~5倍であることが特に好ましい。
 また、本発明の硬化性樹脂組成物は、前記本硬化時に25℃における貯蔵剛性率が1×10Pa~1×10Paであることが好ましい。ここで、貯蔵剛性率が1×10Paより大きいことで硬化性樹脂組成物は硬化により収縮が大きくなりすぎることから基材が歪んでしまう恐れや、応力が十分に緩和されないことで、光学部材を得た際に表示ムラが生じる恐れが低減される。一方、1×10Pa以下であると、剛性率が低すぎるため接着強度が低いものとなる。ここで、上記貯蔵剛性率が1.0×10~1.0×10Paであることが好ましく、1.0×10~3.0×10Paであることがより好ましい。
[工程C]
 次に、液晶表示ユニット1の第2硬化性樹脂組成物12が形成された面と、保護板2の第1硬化性樹脂組成物11が形成された面が対向する形で、図1(c)に示すように、液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
 ここで、貼り合わせの際に気泡が生じることを防ぎやすくするために、真空中で貼り合わせることが好適である。
 ここで、第1硬化性樹脂組成物11において硬化部分及び未硬化部分を有する紫外線硬化型樹脂の硬化物を得てから貼り合わせると、接着力の向上を期待することができる。
 貼合わせの際、押圧等によって第1硬化性樹脂組成物11が押し広げられ、空間内に第1硬化性樹脂組成物11が充満する。真空下で行った場合には、その後高い圧力雰囲気に曝した際に、空隙の少ないまたは空隙のない第1硬化物層13が形成される。ここで、上記第1硬化性樹脂組成物11の塗布膜の厚さAが前記第2硬化性樹脂組成物12の塗布膜の厚さBより大きいと、より第1硬化性樹脂組成物11の塗布膜が押しつぶされ、強固に液晶表示ユニット1と保護板2を接着できる。
 貼合わせを減圧雰囲気で行う場合には、1kPaであり、10~300Paが好ましく、15~100Paがより好ましい。減圧雰囲気状態を貼合わせ後すぐに解除してもよい。一方、減圧雰囲気を所定時間維持(例えば10分以内)することで、第1硬化性樹脂組成物11が空間内を流れて、液晶表示ユニット1と保護板2との間隔を均一とすることが行いやすくなる。
[工程D]
 次に、図1(d)に示すように、保護板2及び液晶表示ユニット1を貼り合せて得た光学部材に、保護板2側から紫外線5を照射して、硬化性樹脂組成物(塗布層)を硬化させる。
 紫外線の照射量は積算光量で約100~4000mJ/cmが好ましく、特に好ましくは、200~3000mJ/cm程度であり、さらには1500~3000mJ/cmが極めて好ましい。紫外~近紫外の光線照射による硬化に使用する光源については、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、LEDランプまたは無電極ランプ等が挙げられる。
 こうして、図7に示す光学部材を得ることができる。
 このようにして、第1硬化性樹脂組成物11と第2紫外線硬化型樹脂組成物12が硬化することで、樹脂硬化物層15が形成される。
 樹脂硬化物層15は、保護板2の表面に沿って広がる第1硬化物層13と、前記第1硬化物層の周縁に配置され、これを囲む第2硬化物層とを有する。樹脂硬化物層15が第2硬化物層を有することによって、第1硬化物層13の周縁部の外方への拡がり、すなわち周縁部における薄肉化を抑えることができ、第1硬化物層13全体の厚さを均一に保つことができる。第2樹脂硬化物層全体の厚さを均一にすることで、他の面材との貼合において、その界面に空隙が残留することを抑制しやすく好ましい。
 樹脂硬化物層15においては、特に第1硬化性樹脂組成物11及び第2硬化性樹脂組成物12の厚みについて限定はされない。好適な例としては、第1硬化性樹脂組成物11の塗布膜の厚さAを第2硬化性樹脂組成物12の塗布膜の厚さBと同じか、第2硬化性樹脂組成物12の塗布膜の厚さBより薄くすることが好ましい。当該設定による利点について説明する。液晶表示ユニット1と保護板2を貼合わせる際に通常押圧して接着させる。その際、前記厚さAが厚さBと同じか、それより厚いことにより押圧した際に第2硬化性樹脂組成物12の塗布膜の方が、厚みが薄いことから、第1硬化性樹脂組成物1211が押しつぶされて貼り合される。そのため、厚さAと厚さBの差分によって、第2硬化性樹脂組成物12は液晶表示ユニット1ないし保護板2に対して応力を発生させるため、より強固に第1硬化性樹脂組成物を接着させることが可能となるためである。
 樹脂硬化物層15において、第1硬化性樹脂組成物11の塗布膜の厚さAが第2硬化性樹脂組成物12の塗布膜の厚さBよりも薄くされている場合、第1硬化性樹脂組成物の塗布膜の厚さAは、第2硬化性樹脂組成物12の塗布膜の厚さBよりも0.005mm以上薄くされていることがより好ましく、0.01mm以上薄くされていることがさらに好ましい。
 第1硬化性樹脂組成物11の塗布膜の厚さAは、第2硬化性樹脂組成物12の塗布膜と第1硬化性樹脂組成物11の塗布膜との段差による空隙の発生を抑える点から、第2硬化性樹脂組成物12の塗布膜の厚さBよりも0.05mm以下薄くされていることが好ましく、0.03mm以下薄くされていることがより好ましい。
 樹脂硬化物層15(第1硬化物層と第2硬化物層を合わせた層)における第2硬化性樹脂組成物12の塗布膜が第1硬化性樹脂組成物11の塗布膜と近接する領域の少なくとも一部において、第1硬化性樹脂組成物11の塗布膜の厚さAが第2硬化性樹脂組成物12の塗布膜の厚さBよりも小さい場合、第2硬化性樹脂組成物12が第1硬化性樹脂組成物11の塗布膜と近接する領域において、第2硬化性樹脂組成物12の塗布膜の最も薄い部分の厚さBが第1硬化性樹脂組成物11で形成された堰状部の厚さAの1/2以上、より好ましくは90/100以上であることが好ましい。第2硬化性樹脂組成物の塗布膜の最も薄い部分の厚さBが第1硬化性樹脂組成物11の塗布膜の厚さAの1/2以上であれば、空隙が外部に開放することがなく、独立した空隙となり、大気圧下で消滅するのに充分である。
 第1硬化性樹脂組成物の塗布膜11の厚さAおよび第2硬化性樹脂組成物12の塗布膜の厚さBの差は、レーザー変位計(キーエンス社製、LK-H052K)を用い、透明基材とその上に形成された第1硬化性樹脂組成物11の塗布膜または第2硬化性樹脂組成物12の塗布膜の総厚を計測し、その差より求める。また、第1硬化性樹脂組成物11の塗布膜の厚さAは、第2硬化物製樹脂組成物12の塗布膜に隣接する第1硬化性樹脂組成物11の塗布膜の周縁部の厚さとする。通常、透明基材としては平坦な面材を用いるが、第1硬化性樹脂組成物11の塗布膜が形成される部分と第2硬化性樹脂組成物12の塗布膜が形成される部分とが段差状となっている面形状を有する面材を用いる場合には、第1硬化性樹脂組成物11の塗布膜の厚さAや第2硬化性樹脂組成物12の塗布膜の厚さBに関わらず、表面の段差形状が、先に示した第1硬化性樹脂組成物11の塗布膜の厚みAと第2硬化性樹脂組成物12の塗布膜の厚さBの差異と同様の段差となっていればよい。なお、第1硬化性樹脂組成物11の塗布膜の厚さAや第2硬化性樹脂組成物12の塗布膜の厚さBは、第2硬化性樹脂組成物12の塗布膜が第1硬化性樹脂組成物11の塗布膜と近接する領域の少なくとも一部を除き、透明面材全体にわたって、均一な厚さであることが好ましい。
 また、第1硬化性樹脂組成物11の塗布膜または第2硬化性樹脂組成物12の塗布膜の表面形状によっては、前記レーザー変位計による厚さの計測が難しいこともあり、その場合には、3D形状測定機(高精度形状測定システム KS-1100)などを用いて、第1硬化物性樹脂組成物11の塗布膜の厚さAおよび第2硬化性樹脂組成物12の塗布膜の厚さBを計測してもよい。
 貼合わせ時において、図1(c)に示すように、減圧雰囲気下にて液晶表示ユニット1と保護板2とを樹脂組成物層15を介して貼合した際に、液晶表示ユニット1または保護板2と、硬化性樹脂組成物との界面に独立した空隙が残存していても、これを大気圧雰囲気下に戻した際に、空隙内の圧力(減圧のまま)と硬化性樹脂組成物にかかる圧力(大気圧)との差圧によって空隙の体積が減少し、微細化した空隙は硬化性樹脂組成物に吸収されるなどして消失する。
 第1の実施形態においては、第1硬化性樹脂組成物を保護板2に、第2硬化性樹脂組成物を液晶表示ユニット1に塗布して塗布膜を形成した場合を挙げたが、当然逆となる構成、即ち第1硬化性樹脂組成物を液晶表示ユニット1に塗布し、第2硬化性樹脂組成物を保護板2に塗布して塗布膜を形成することも問題なく適用することができる。
(第2の実施形態)
 第1の実施形態に加えて、次のような変形した第2の実施形態により本発明の光学部材を製造しても構わない。
[工程A]
 まず、図5(a)に示すように、(メタ)アクリレート(A)及び光重合開始剤(B)を含む第2硬化性樹脂組成物12を、保護板2上の遮光部4が形成された面に塗布する。
 ここで、第1の実施形態と同様に本発明においては、第2硬化物層14は液晶表示ユニット1と保護板2との間に線状に延びる層又は点状に点在する層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室17の内部領域と外部領域を隔てる隔壁16として形成され、隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている。また、図4(a)~(d)に示すように、液晶表示ユニット1又は保護板2の第1硬化性樹脂組成物が塗布される側の内表面には、線状に延びる塗布膜として矩形の枠上に第2硬化性樹脂組成物の塗布膜である隔壁16が形成されている。
 隔壁16は、第1硬化性樹脂組成物が充填される充填室17の内部領域18と外部領域19とを隔てる周壁として設けられたものであり、隔壁16により第1硬化性樹脂組成物11を塗布後、第1硬化性樹脂組成物11が塗り広がる際に外部領域19まで漏れ出さないように第1硬化性樹脂組成物11の塗布領域を制限することができる。
 当該隔壁16は、画像表示装置の形状や第1硬化性樹脂組成物11を充填する充填室17の意図した充填状態に基づいて適宜設計することが可能である。具体的な例としては、図4(a)~(d)で示したように形状平面視矩形状で形成されており、液晶表示ユニット1又は保護板2の軸線を回転中心に回転対象性を有するように形成されている。ここで、画像表示装置を平面視した際の中心軸を中心に線対象性を有するように形成されても構わない。
 ここで、矩形の枠状において一対の辺に線上で隔壁16が存在できるように第2硬化性樹脂組成物を塗布することが好ましい。
[工程B]
 その後、図5(b)に示すように、第1硬化性樹脂組成物11を、保護板2上の遮光部4が形成された面に塗布した後、得られた塗布膜に紫外線5を照射して、塗布層の下部側(前記硬化性樹脂組成物からみて透明基板側)に存在する硬化部分と塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層を得る。
 このとき、硬化性樹脂組成物に照射される紫外線が、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下であり、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまう。
[工程C]
 次に、図5(c)に示すように、得られた第1硬化性樹脂組成物11及び第2硬化性樹脂組成物の未硬化部分と液晶表示ユニット1の表示面が対向する形で液晶表示ユニット1と保護板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
[工程D]
 次に、図5(d)に示すように、保護板2及び液晶表示ユニット1を貼り合わせて得た光学部材に、保護板2側から紫外線5を照射して、硬化性樹脂組成物の未硬化部分を有する硬化物層を硬化させる。
 こうして、図7に示された光学部材を得ることが出来る。
 第2の実施形態においては、第1硬化性樹脂組成物及び第2硬化性樹脂組成物を共に保護板2に塗布して塗布膜を形成した場合を挙げたが、当然逆となる構成、即ち第1硬化性樹脂組成物及び第2硬化性樹脂組成物を共に液晶表示ユニット1に塗布して塗布膜を形成して、適用することも問題なく行うことができる。
(第3の実施形態)
 第1、2の実施形態に加えて、次のような変形した第3の実施形態により本発明の光学部材を製造しても構わない。
[工程A]
 まず、図6(a)に示すように、(メタ)アクリレート(A)および光重合開始剤(B)を含む第2硬化性樹脂組成物12を、液晶表示ユニット1の表示面と保護板2の遮光部4が形成されている面の表面に塗布する。
 ここで、第1の実施形態と同様に本発明においては、第2硬化物層14は液晶表示ユニット1と保護板2との間に線状に延びる層又は点状に点在する層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室17の内部領域と外部領域を隔てる隔壁16として形成され、隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている。また、図4(a)~(d)に示すように、液晶表示ユニット1又は保護板2の第1硬化性樹脂組成物が塗布される側の内表面には、線状に延びる塗布膜として矩形の枠上に第2硬化性樹脂組成物の塗布膜である隔壁16が形成されている。
 隔壁16は、第1硬化性樹脂組成物が充填される充填室17の内部領域18と外部領域19とを隔てる周壁として設けられたものであり、隔壁16により第1硬化性樹脂組成物11を塗布後、第1硬化性樹脂組成物11が塗り広がる際に外部領域19まで漏れ出さないように第1硬化性樹脂組成物11の塗布領域を制限することができる。
 当該隔壁16は、画像表示装置の形状や第1硬化性樹脂組成物11を充填する充填室17の意図した充填状態に基づいて適宜設計することが可能である。具体的な例としては、図4(a)~(d)で示したように形状平面視矩形状で形成されており、液晶表示ユニット1又は保護板2の軸線を回転中心に回転対象性を有するように形成されている。ここで、画像表示装置を平面視した際の中心軸を中心に線対象性を有するように形成されても構わない。
 ここで、矩形の枠状において一対の辺に線上で隔壁16が存在できるように第2硬化性樹脂組成物を塗布することが好ましい。
[工程B]
 その後、図6(b)に示すように(メタ)アクリレート(A)および光重合開始剤(B)を含む第1硬化性樹脂組成物11を、液晶表示ユニット1の表示面と保護板2の遮光部4が形成されている面の表面に塗布する。
 得られた塗布膜に紫外線5を照射して、塗布膜の下部側(前記硬化性樹脂組成物からみて透明基板側)に存在する硬化部分と塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層を得る。
 このとき、硬化性樹脂組成物に照射される紫外線が、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下であり、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまう。
[工程C]
 次に、未硬化部分同士が対向する形で、図6(c)に示すように、液晶表示ユニット1と保護板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
 ここで、貼り合わせの際に気泡が生じることを防ぎやすくするために、真空中で貼り合わせることが好適である。
 このように、液晶表示ユニット及び透明基板の各々に硬化部分及び未硬化部分を有する紫外線硬化型樹脂の硬化物を得てから貼り合わせると、接着力の向上を期待することができる。
[工程D]
 次に、図6(d)に示すように、透明基板2及び液晶表示ユニット1を貼り合せて得た光学部材に、保護板2側から紫外線5を照射して、硬化性樹脂組成物(塗布層)を硬化させる。
 紫外線の照射量は積算光量で約100~4000mJ/cmが好ましく、特に好ましくは、200~3000mJ/cm程度であり、さらには1500~3000mJ/cmが極めて好ましい。紫外~近紫外の光線照射による硬化に使用する光源については、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、LEDランプまたは無電極ランプ等が挙げられる。
 こうして、図7に示す光学部材を得ることができる。
 上記各実施形態は本発明の光学部材の製造方法の実施態様のいくつかを一つの具体的な光学基材で説明したものである。各実施形態では液晶表示ユニットおよび遮光部を有する透明基板を用いて説明したが、本発明の製造方法においては、液晶表示ユニットに代えて光学基材として後述する各種部材を使用することができ、透明基板についても、光学基材として後述する各種部材を使用することができる。
 それだけでなく、液晶表示ユニットおよび透明基板等の光学基材としては、これら各種部材に、更に、他の光学基材層(例えば、硬化性樹脂組成物の硬化物層で貼り合されたフィルム又はその他の光学基材層を積層したもの)を使用しても構わない。
 さらに、第1の実施形態の項で記載した、硬化性樹脂組成物の塗布方法、樹脂硬化物の膜厚、紫外線照射の際の照射量及び光源、及び、紫外線硬化型樹脂層表面に酸素又はオゾンを吹きかけることによる未硬化部分の膜厚調整方法等はいずれも、上記実施形態にのみ適用されるものでは無く、本発明に含まれるいずれの製造方法にも適用できる。
 上記液晶表示ユニットも含め、上記の第1~第3の実施形態で製造し得る光学部材の具体的態様を下記に示す。
(i) 遮光部を有する光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、及び遮光部と透明電極が形成してあるガラス基板からなる群から選ばれる少なくとも一つの光学基材であり、それと貼り合される光学基材が液晶表示ユニット、プラズマ表示ユニットおよび有機ELユニットからなる群から選ばれる少なくとも一つの表示田ユニットであり、得られる光学部材が、該遮光部を有する光学基材を有する表示体ユニットである態様。
(ii) 一方の光学基材が遮光部を有する保護基材であり、それと貼り合される他の光学基材がタッチパネル又はタッチパネルを有する表示体ユニットであり、少なくとも2つの光学基材が貼り合された光学部材が、遮光部を有する保護基材を有するタッチパネル又はそれを有する表示体ユニットである態様。
 この場合、工程Bにおいては、遮光部を有する保護基材の遮光部を設けられた面、又は、タッチパネルのタッチ面の何れか一方の面又はその両者に、前記の硬化性樹脂組成物を塗布するのが好ましい。
(iii) 一方の光学基材が遮光部を有する光学基材であり、それと貼り合される他の光学基材が表示体ユニットであり、少なくとも2つの光学基材が貼り合された光学部材が遮光部を有する光学基材を有する表示体ユニットである態様。
 この場合、工程A、Bにおいて、遮光部を有する光学基材の遮光部が設けられた側の面、又は、表示体ユニットの表示面の何れか一方、又は、その両者に、前記の硬化性樹脂組成物を塗布するのが好ましい。
 遮光部を有する光学基材の具体例としては、例えば、遮光部を有する表示画面用の保護板、又は、遮光部を有する保護基材を設けたタッチパネル等を挙げることが出来る。
 遮光部を有する光学基材の遮光部が設けられた側の面とは、例えば、遮光部を有する光学基材が遮光部を有する表示画面用の保護板であるときは、該保護板の遮光部が設けられた側の面である。また、遮光部を有する光学基材が、遮光部を有する保護基材を有するタッチパネルであるときには、遮光部を有する保護基材は遮光部を有する面がタッチパネルのタッチ面に貼り合されることから、遮光部を有する光学基材の遮光部が設けられた側の面とは、該タッチパネルのタッチ面とは反対のタッチパネルの基材面を意味する。
 遮光部を有する光学基材の遮光部は、光学基材の何れに設けられても良いが、通常透明板状又はシート状の光学基材の周囲に、枠状に作成され、その幅は、0.5~10mm程度が好ましく、より好ましくは1~8mm程度、さらに好ましくは2~8mm程度である。
 本発明の上記第1硬化性樹脂組成物11ないし上記第2硬化性樹脂組成物12として使用できる硬化性樹脂組成物について説明する。
 本発明の硬化性樹脂組成物は、好ましくは(メタ)アクリレート(A)及び光重合開始剤(B)を含有する。また、任意成分として、光学用に使用する硬化性樹脂組成物に添加可能なその他の成分を含有することができる。
 なお、「光学用に使用する硬化性樹脂組成物に添加可能」とは、硬化物の透明性を、光学用に使用出来ない程度に低下させる添加物が含まれないことを意味する。
 本発明に使用する硬化性樹脂組成物で、硬化後の厚さが200μmとなる硬化物のシートを作製したとき、該シートの、400~800nmの波長の光での好ましい平均透過率は、少なくとも90%以上であることが好ましい。
 該硬化性樹脂組成物の好適な組成割合は、該硬化性樹脂組成物の総量に対して、(メタ)アクリレート(A)が25~90重量%、光重合開始剤(B)が0.2~5重量%、その他の成分が残部である。
 本発明の硬化性樹脂組成物において、光重合開始剤(B)としては、通常使用されている光重合開始剤は何れも使用出来る。
 本発明の硬化性樹脂組成物における(メタ)アクリレート(A)としては、特に限定されないが、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選択されるいずれかを使用することが好ましい。より好ましくは(i)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートの少なくとも何れか一方、及び、(ii)(メタ)アクリレートモノマーの両者を含む態様である。
 なお、本明細書において「(メタ)アクリレート」とは、メタアクリレート及びアクリレートのいずれか一方又は両者を意味する。「(メタ)アクリル酸」等についても同様である。
 上記ウレタン(メタ)アクリレートは多価アルコール、ポリイソシアネート及びヒドロキシル基含有(メタ)アクリレートを反応させることによって得られる。
 多価アルコールとしては、例えば、ネオペンチルグリコール、3-メチル-1、5-ペンタンジオール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1、6-ヘキサンジオール等の炭素数1~10のアルキレングリコール、トリメチロールプロパン、ペンタエリスリトール等のトリオール、トリシクロデカンジメチロール、ビス-〔ヒドロキシメチル〕-シクロヘキサン等の環状骨格を有するアルコール等;及びこれら多価アルコールと多塩基酸(例えば、コハク酸、フタル酸、ヘキサヒドロ無水フタル酸、テレフタル酸、アジピン酸、アゼライン酸、テトラヒドロ無水フタル酸等)との反応によって得られるポリエステルポリオール、多価アルコールとε-カプロラクトンとの反応によって得られるカプロラクトンアルコール、ポリカーボネートポリオール(例えば1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートジオール等)、ポリエーテルポリオール(例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキサイド変性ビスフェノールA等)、水添ポリブタジエンジオール等のポリオレフィンポリオール等が挙げられる。他の(A)成分との相溶性の観点から、上記多価アルコールとしてはポリプロピレングリコール、水添ポリブタジエンジオールが好ましく、基材への密着性の観点から重量平均分子量が2000以上のポリプロピレングリコール及び水添ポリブタジエンジオールが特に好ましい。このときの重量平均分子量の上限は特に限定されないが、10000以下が好ましく、5000以下がより好ましい。また、水添ポリブタジエンポリオール(A)としては、一般的なポリブタジエンポリオールの水素添加還元生成物であれば使用できるが、特に光学用途に関しては残留二重結合が少ないものが好ましく、ヨウ素価としては20以下が特に好ましい。また、の分子量に関しては一般的に入手できる分子量分布のものは全て使用できるが、特に柔軟性と硬化性のバランスをとった場合には分子量が500~3000のものが特に好ましい。
 有機ポリイソシアネートとしては、例えばイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート又はジシクロペンタニルイソシアネート等が挙げられる。
 又、ヒドロキシル基含有(メタ)アクリレートとしては、1分子中にヒドロキシル基と(メタ)アクリレートを少なくとも各々1個づつ有する化合物であり、具体的には、2-ヒドロキシエチル(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ペンタンジオールモノ(メタ)アクリレート、ヘキサンジオールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、エトキシ化ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレートなどの2価アルコールのモノ(メタ)アクリレート;
トリメチロールプロパンモノ(メタ)アクリレート、エトキシ化トリメチロールプロパンモノ(メタ)アクリレート、プロポキシ化トリメチロールプロパンモノ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパンジ(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等の3価のアルコールのモノアクリレート及びジ(メタ)アクリレートや、これらアルコールの水酸基の一部をアルキル基やε-カプロラクトンで変性したモノ及びジ(メタ)アクリレート;
ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、ジトリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の、4価以上のアルコールの多官能(メタ)アクリレートでヒドロキシル基を有するものや、これらアルコールの水酸基の一部をアルキル基やε-カプロラクトンで変性したヒドロキシル基を有する多官能(メタ)アクリレート、等が挙げられる。
上記した少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物(C)のうち、硬化性と柔軟性に優れる点から、2-ヒドロキシエチル(メタ)アクリレートが特に好ましい。作業性容易な点から、本発明の中で後述する重合性化合物(F)を反応時に添加してもよい。
 上記ウレタン(メタ)アクリレートを得るための反応は、例えば、以下のようにして行う。即ち、多価アルコールにその水酸基1当量あたり有機ポリイソシアネートをそのイソシアネート基が好ましくは1.1~2.0当量、さらに好ましくは1.1~1.5当量になるように混合し、反応温度を好ましくは70~90℃で反応させ、ウレタンオリゴマーを合成する(第一の反応)。次いで、ウレタンオリゴマーのイソシアネート基1当量あたり、ヒドロキシ(メタ)アクリレート化合物をその水酸基が好ましくは1~1.5当量となるように混合し、70~90℃で反応させて目的とするウレタン(メタ)アクリレートを得ることができる(第二の反応)。
 本発明において、第一の反応は、無溶剤で行うことができるが、生成物の粘度が高く作業性向上のためアルコール性水酸基を有さない溶剤中あるいは後述する重合性化合物(F)中で行なうことが好ましい。溶剤の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のエステル類、γ-ブチロラクトン等の環状エステル類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等の単独又は混合有機溶媒中で行うことができる。
 反応温度は通常30~150℃、好ましくは50~100℃の範囲である。反応の終点はイシアネート量の減少で確認する。また、これらの反応時間の短縮を目的として触媒を添加してもよい。この触媒としては、塩基性触媒及び酸性触媒のいずれかが用いられる。塩基性触媒の例としては、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン、アンモニアなどのアミン類、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン類を挙げることができる。また酸性触媒の例としては、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、トリブトキシアルミニウム、チタニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、塩化アルミニウム、オクチル酸スズ、オクチルスズトリラウレート、ジブチルスズジラウレート、オクチルスズジアセテート等のルイス酸触媒を挙げることができる。これら触媒の添加量は、ジオール化合物(A+D)とポリイソシアネート化合物(B)の総重量部100重量部に対して、通常0.1~1重量部である。
 本発明のポリウレタン化合物(E)は第一の反応後、続いて残存するイソシアネート基に対し少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物(C)を反応(第二の反応)させて得ることができる。
 本発明の第二の反応は、第一の反応後に得られた中間体のイソシアネート基が無くなるような当量関係で仕込む。具体的に好ましくは、第一の反応後に得られた中間体のNCO基1.0molに対し少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物(C)のOH基を1.0~3.0mol、更に好ましくは1.0~2.0molとする。
 本発明の第二の反応も、無溶剤で行うことができるが、生成物の粘度が高く作業性向上のため上述した溶剤中及び/又は本発明の中で後述する重合性化合物(F)で行うことが好ましい。また、反応温度は通常30~150℃、好ましくは50~100℃の範囲である。反応の終点はイシアネート量の減少で確認する。これらの反応時間の短縮を目的として前述の触媒を添加してもよい。
 原料として用いるアクリレート化合物には、既に4-メトキシフェノール等の重合禁止剤が添加されているのが普通であるが、反応時に改めて重合禁止剤を添加してもよい。そのような重合禁止剤の例としては、ハイドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチル-4-クレゾール、3-ヒドロキシチオフェノール、p-ベンゾキノン、2,5-ジヒドロキシ-p-ベンゾキノン、フェノチアジン等が挙げられる。その使用量は反応原料混合物に対し0.01~1重量%である。
 上記ウレタン(メタ)アクリレートの重量平均分子量としては7000~25000程度が好ましく、10000~20000がより好ましい。重量平均分子量が7000より小さいと収縮が大きくなる傾向があり、重量平均分子量が25000より大きいと硬化性が乏しくなる傾向がある。
 本発明の硬化性樹脂組成物においては、ウレタン(メタ)アクリレートは、1種または2種以上を任意の割合で混合して使用することができる。ウレタン(メタ)アクリレートの本発明の光硬化型透明接着剤組成物中における重量割合は通常20~80重量%が好ましく、より好ましくは30~70重量%である。
 上記ポリイソプレン骨格を有する(メタ)アクリレートは、ポリイソプレン分子の末端又は側鎖に(メタ)アクリロイル基を有する。ポリイソプレン骨格を有する(メタ)アクリレートは「UC-203」(クラレ社製)として入手することができる。ポリイソプレン骨格を有する(メタ)アクリレートはポリスチレン換算の数平均分子量が1000~50000が好ましく、25000~45000程度がより好ましい。
 ポリイソプレン骨格を有する(メタ)アクリレートの本発明の光硬化型透明接着剤組成物中における重量割合は通常20~80重量%が好ましく、より好ましくは30~70重量%である。
 上記ポリブタジエン骨格を有する(メタ)アクリレートは、ポリブタジエン分子の末端又は側鎖に(メタ)アクリロイル基を有する。ポリブタジエン骨格を有する(メタ)アクリレートは「TEAI-1000(日本曹達社製)」「TE-2000(日本曹達社製)」「EMA-3000(日本曹達社製)」「SPBDA-S30(大阪有機化学工業社製)」として入手する事が出来る。ポリブタジエン骨格を有する(メタ)アクリレートはポリスチレン換算の数平均分子量が1000~30000が好ましく、1000~10000程度がより好ましい。
 上記(メタ)アクリレートモノマーとしては、好適には分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレートを使用することができる。
 ここで、(メタ)アクリレートモノマーとは、上記ウレタン(メタ)アクリレート、下記エポキシ(メタ)アクリレート及び上記ポリイソプレン骨格を有する(メタ)アクリレートを除いた(メタ)アクリレートを示す。
 分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレートとしては、具体的にはイソオクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、セチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、トリデシル(メタ)アクリレート等の炭素数5~20のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリロイルモルホリン、フェニルグリシジル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、1-アダマンチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、1-アダマンチルメタクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート、ジシクロペンタジエンオキシエチル(メタ)アクリレート、等の環状骨格を有する(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する炭素数1~5のアルキル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート、エチレンオキシド変性フェノキシ化リン酸(メタ)アクリレート、エチレンオキシド変性ブトキシ化リン酸(メタ)アクリレート及びエチレンオキシド変性オクチルオキシ化リン酸(メタ)アクリレート等を挙げることができる。中でも、炭素数10~20のアルキル(メタ)アクリレート、2-エチルヘキシルカルビトールアクリレート、アクリロイルモルホリン、4-ヒドロキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレートが好ましく、特に、樹脂の柔軟性の観点から、炭素数10~20のアルキル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートが好ましい。
 一方、ガラスへの密着性を向上させる観点からは、水酸基を有する炭素数1~5のアルキル(メタ)アクリレート、アクリロイルモルホリンが好ましく、アクリロイルモルホリンが特に好ましい。
 本発明の組成物には、本発明の特性を損なわない範囲で(メタ)アクリロイル基を1個有する(メタ)アクリレート以外の(メタ)アクリレートを含有することができる。例えば、トリシクロデカンジメチロールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、アルキレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート及びエチレンオキシド変性リン酸ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート等のトリメチロールC2~C10アルカントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート等のトリメチロールC2~C10アルカンポリアルコキシトリ(メタ)アクリレート、トリス[(メタ)アクロイルオキシエチル]イソシアヌレ-ト、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート等のアルキレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレートペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
 本発明においては、併用する場合は、硬化収縮を抑えるために、1又は2官能の(メタ)アクリレートを使用することが好ましい。
 本発明の硬化性樹脂組成物においては、これら(メタ)アクリレートモノマー成分は、1種または2種以上を任意の割合で混合して使用することができる。(メタ)アクリレートモノマーの本発明の光硬化型透明接着剤組成物中における重量割合は通常5~70重量%が好ましく、より好ましくは10~50重量%である。5重量%より少ないと硬化性が乏しくなる傾向があり、70重量%より多いと収縮が大きくなる傾向がある。
 該硬化性樹脂組成物における(i)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートの少なくとも何れか一方、及び、(ii)(メタ)アクリレートモノマーの両者を含む態様においては、(i)及び(ii)の両者の合計含量が、該樹脂組成物の総量に対して、通常、25~90重量%が好ましく、より好ましくは40~90重量%、さらに好ましくは40~80重量%である。
 本発明の硬化性樹脂組成物には、本発明の特性を損なわない範囲でエポキシ(メタ)アクリレートを使用することができる。エポキシ(メタ)アクリレートは、硬化性の向上や硬化物の硬度や硬化速度を向上させる機能がある。また、エポキシ(メタ)アクリレートとしては、グリシジルエーテル型エポキシ化合物と、(メタ)アクリル酸を反応させることにより得られたものであればいずれも使用できるが、好ましく使用されるエポキシ(メタ)アクリレートを得るためのグリシジルエーテル型エポキシ化合物としては、ビスフェノールA或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、ビスフェノールF或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、水素添加ビスフェノールA或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、水素添加ビスフェノールF或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、へキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等を挙げることができる。
 エポキシ(メタ)アクリレートは、これらグリシジルエーテル型エポキシ化合物と、(メタ)アクリル酸を、下記のような条件で反応させることにより得られる。
 グリシジルエーテル型エポキシ化合物のエポキシ基1当量に対して、(メタ)アクリル酸を0.9~1.5モル、より好ましくは0.95~1.1モルの比率で反応させる。反応温度は80~120℃が好ましく、反応時間は10~35時間程度である。反応を促進させるために、例えばトリフェニルフォスフィン、TAP、トリエタノールアミン、テトラエチルアンモニウムクロライド等の触媒を使用するのが好ましい。又、反応中、重合を防止するために重合禁止剤として、例えば、パラメトキシフェノール、メチルハイドロキノン等を使用することもできる。
 本発明において好適に使用することができるエポキシ(メタ)アクリレートとしては、ビスフェノールA型のエポキシ化合物より得られた、ビスフェノールA型エポキシ(メタ)アクリレートである。エポキシ(メタ)アクリレートの重量平均分子量としては500~10000が好ましい。
 エポキシ(メタ)アクリレートの本発明の硬化性樹脂組成物中における重量割合は通常1~80重量%、好ましくは5~30重量%である。
 本発明の硬化性樹脂組成物における(メタ)アクリレート(A)の含有割合としては、硬化性樹脂組成物の総量に対して、25~90重量%が好ましく、より好ましくは40~90重量%であり、さらに好ましくは40~80重量%である。
 本発明の硬化性樹脂組成物において、(メタ)アクリレート(A)として、前記ウレタン(メタ)アクリレート、前記ポリイソプレン骨格を有する(メタ)アクリレート及び前記(メタ)アクリレートモノマーからなる群から選択される少なくとも一つを含有することが好ましい。前記ウレタン(メタ)アクリレートの含有割合は、好ましくは20~80重量%、より好ましくは30~70重量%であり、前記ポリイソプレン骨格を有する(メタ)アクリレートの含有割合は、好ましくは20~80重量%、より好ましくは30~70重量%であり、前記(メタ)アクリレートモノマーの含有割合は、好ましくは5~70重量%、より好ましくは10~50重量%である。
 本発明の硬化性樹脂組成物において、(メタ)アクリレート(A)として、前記ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートを含有し、その含有割合が20~80重量%、好ましくは30~70重量%であり、且つ、(メタ)アクリレートモノマーを含有し、その含有割合が5~70重量%、好ましくは10~50重量%であるとき、さらに好ましい。
 本発明の組成物に含有される光重合開始剤(B)としては、特に限定されないが、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアー(商品名)184;BASF製)、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー(エサキュア(商品名)ONE;ランバルティ製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュアー2959;BASF製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(イルガキュアー127;BASF製)、2,2-ジメトキシ-2-フェニルアセトフェノン(イルガキュアー651;BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア(商品名)1173;BASF製)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(イルガキュアー907;BASF製)、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルとオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステルの混合物(イルガキュアー754;BASF製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、イソプロピルチオキサントン等を挙げることができる。
 本発明においては、前記光重合開始剤(B)について、アセトニトリル又はメタノール中で測定した302nm又は313nmにおけるモル吸光係数が300ml/(g・cm)以上であって、365nmでのモル吸光係数が100ml/(g・cm)以下である光重合開始剤を使用することが好ましい。このような光重合開始剤を使用することで、接着強度の向上に寄与させることができる。302nm又は313nmにおけるモル吸光係数が300ml/(g・cm)以上であることで、前述の工程Dでの硬化時の硬化がより十分となる。一方、365nmでのモル吸光係数が100ml/(g・cm)以下であることで、前述の工程A、Bの仮硬化における硬化時に過度な硬化を適切に抑制でき、密着性をより向上させることが可能となる。
 このような光重合開始剤(B)としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアー184;BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア1173;BASF製)、1-[4-(2-ヒドロキシエトキシ)-フェニル-]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュアー2959;BASF製)、フェニルグリオキシリックアシッドメチルエステル(ダロキュアMBF;BASF製)等が挙げられる。
 本発明の硬化性樹脂組成物においては、これら光重合開始剤(B)は、1種または2種以上を任意の割合で混合して使用することができる。光重合開始剤(B)の本発明の光硬化型樹脂組成物中における重量割合は通常0.2~5重量%が好ましく、より好ましくは0.3~3重量%である。5重量%より多いと、硬化部分と光学基材側と反対側に存在する未硬化部分を有する硬化物層を得る際に、未硬化部分が形成できなかったり、樹脂硬化物層の透明性が悪くなったりするおそれがある。
 本発明の硬化性樹脂組成物は、前記(メタ)アクリレート(A)及び上記光重合開始剤(B)以外に、その他の成分として、下記する光重合開始助剤、後記する一般式(1)で示される構造を有する化合物、後記する柔軟化成分、及び、後記する添加剤等を含むことができる。本発明の硬化性樹脂組成物の総量に対するその他の成分の含有割合は、総量から、前記(メタ)アクリレート(A)及び上記光重合開始剤(B)の合計量を減じた残部である。具体的には該その他の成分の総量は、本発明の硬化性樹脂組成物の総量に対して0~74重量%が好ましく、より好ましくは5~70重量%程度である。
 更に、光重合開始助剤となりうるアミン類等を上記の光重合開始剤と併用することもできる。使用しうるアミン類等としては、安息香酸2-ジメチルアミノエチルエステル、ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチルエステルまたはp-ジメチルアミノ安息香酸イソアミルエステル等が挙げられる。該アミン類等の光重合開始助剤を使用する場合、本発明の接着用樹脂組成物中の含有量は通常0.005~5重量%が好ましく、より好ましくは0.01~3重量%である。
 本発明の硬化性樹脂組成物必要に応じて、一般式(1)で示される構造を有する化合物を含有させることができる。
Figure JPOXMLDOC01-appb-C000001
 
(式中、nは0~40の整数、mは10~50の整数を示す。RおよびRは同一であっても異なっていてもよい。RおよびRは炭素数1~18のアルキル基、炭素数1~18のアルケニル基、炭素数1~18のアルキニル基又は炭素数5~18のアリール基である。)
 一般式(1)で示される構造を有する化合物は、例えば日油株式会社製ユニセーフ(商品名)PKA-5017(ポリエチレングリコール-ポリプロピレングリコールアリルブチルエーテル)等として入手することができる。
 一般式(1)で示される構造を有する化合物を使用する際の硬化性樹脂組成物中における重量割合は、通常10~80重量%が好ましく、より好ましくは10~70重量%である。
 本発明の硬化性樹脂組成物には、必要に応じて柔軟化成分を使用することができる。使用できる柔軟化成分の具体的としては、前記(メタ)アクリレート及び一般式(1)で示される構造を有する化合物を除くポリマー又はオリゴマー、フタル酸エステル類、リン酸エステル類、グリコールエステル類、クエン酸エステル類、脂肪族二塩基酸エステル類、脂肪酸エステル類、エポキシ系可塑剤、ヒマシ油類、テルペン系水素添加樹脂等が挙げられる。上記オリゴマー、ポリマーの例としては、ポリイソプレン骨格、ポリブタジエン骨格、ポリブテン骨格又はキシレン骨格を有するオリゴマー又はポリマー及びそのエステル化物を例示することができ、場合により、ポリブタジエン骨格を有するポリマー又はオリゴマー及びそのエステル化物を使用することが好ましい。ポリブタジエン骨格を有するポリマー又はオリゴマー及びそのエステル化物の具体例としては、ブタジエンホモポリマー、エポキシ変性ポリブタジエン、ブタジエン-スチレンランダムコポリマー、マレイン酸変性ポリブタジエンおよび末端水酸基変性された液状ポリブタジエン又は液状水添ポリブタジエンが挙げられる。また、柔軟化成分においては、上記各柔軟化成分を混合して使用することも可能である。
 かかる柔軟化成分の硬化性樹脂組成物中における重量割合は、通常10~80重量%が好ましく、より好ましくは10~70重量%である。
 本発明の硬化性樹脂組成物には、必要に応じて酸化防止剤、有機溶剤、シランカップリング剤、重合禁止剤、レベリング剤、帯電防止剤、表面潤滑剤、蛍光増白剤、光安定剤(例えば、ヒンダードアミン化合物等)、充填剤等の添加剤を加えてもよい。
 酸化防止剤の具体例としては、例えば、BHT、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ジブチルヒドロキシトルエン等が挙げられる。
 有機溶剤の具体例としては、例えば、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。
 シランカップリング剤の具体例としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、γ-メルカプロプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
 重合禁止剤の具体例としては、パラメトキシフェノール、メチルハイドロキノン等が挙げられる。
 光安定剤の具体例としては、例えば、1,2,2,6,6-ペンタメチル-4-ピペリジルアルコール、2,2,6,6-テトラメチル-4-ピペリジルアルコール、1,2,2,6,6-ペンタメチル-4-ピペリジル(メタ)アクリレート(アデカ(株)製、LA-82)、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
 充填剤の具体例としては、例えば、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられる。
 各種添加剤の組成物中に存在する場合、各種添加剤の光硬化型透明接着剤組成物中における重量割合は、0.01~3重量%が好ましく、より好ましくは0.01~1重量%、さらに好ましくは0.02~0.5重量%である。
 本発明の硬化性樹脂組成物は、前記した各成分を常温~80℃で混合溶解して得ることができ、必要により夾雑物をろ過等の操作により取り除いてもよい。本発明の接着用樹脂組成物は、塗布性を考え、25℃の粘度が300~15000mPa・sの範囲となるように、成分の配合比を適宜調節することが好ましい。
 本発明の硬化性樹脂組成物は、前記[工程A]~[工程D]により、少なくとも2つの光学基材を貼り合わせて、光学部材を製造する方法に使用される。
 本発明の硬化性樹脂組成物の硬化物の硬化収縮率は第1硬化性樹脂組成物で3.0%以下であることが好ましく、2.0%以下であることが特に好ましい。また、第2硬化性樹脂組成物では4.0%以下であることが好ましく、3.0%以下であることが特に好ましい。これにより、硬化性樹脂組成物が硬化する際に、樹脂硬化物に蓄積される内面応力を低減することができ、基材と硬化性樹脂組成物の硬化物からなる層との界面に歪みができることを有効に防止することができる。
 また、ガラス等の基材が薄い場合には、硬化収縮率が大きい場合には硬化時の反りが大きくなるころから、表示性能に大きな悪影響を及ぼすため、当該観点からも、硬化収縮率は少ない方が好ましい。
 本発明の硬化性樹脂組成物の硬化物の400nm~800nmでの透過率は、90%以上であることが好ましい。透過率が90%未満である場合、光が透過し難く、表示装置に使用した場合に視認性が低下してしまう恐れがある。
 また、硬化物の400~450nmでの透過率が高いと視認性の向上が一層期待できることから、400~450nmでの透過率が90%以上であることが好ましい。
 本発明の第1硬化性樹脂組成物11又は第2硬化性樹脂組成物12としては、(I)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートと、(II)(メタ)アクリレートモノマー、及び光重合開始剤を含有させることが好ましい。
 そして、第1硬化性樹脂組成物11及び第2硬化性樹脂組成物12共に、上記(I)成分及び(II)成分を含有している樹脂組成物を使用して、画像表示装置を得ることが好ましい。
 また、柔軟化剤として上記柔軟化成分をさらに含有させることが好ましく、特に第1硬化性樹脂組成物11及び第2硬化性樹脂組成物12共に、柔軟化成分を含有していることが好ましい。柔軟化成分の中でも、テルペン系樹脂(特に、固形テルペン系樹脂)を用いることが好ましい。
 本発明の製造方法に用いる、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物について、いくつかの好ましい態様を下記に記載する。各成分の含有量における「重量%」は、本発明の硬化性樹脂組成物の総量に対する含有割合を示す。
(A1)
 前記(メタ)アクリレート(A)がウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレートおよび(メタ)アクリレートモノマーからなる群から選ばれる少なくとも一つの(メタ)アクリレートである前記(5)に記載の硬化性樹脂組成物。
(A2)
 前記(メタ)アクリレート(A)として、
(i)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートの少なくとも何れか一方、及び、
(ii)(メタ)アクリレートモノマー、
の両者を含む前記(5)又は上記(A1)に記載の硬化性樹脂組成物。
(A3)
 前記(メタ)アクリレート(A)として、
(i)ポリC2-C4アルキレングリコール、ジイソシアネート及びヒドロキシC2-C4アルキル(メタ)アクリレートの反応により得られるウレタン(メタ)アクリレート、及び、
(ii)(メタ)アクリレートモノマー、
の両者を含む前記(5)又は上記(A1)に記載の硬化性樹脂組成物。
 (A4)
 ウレタン(メタ)アクリレートの重量平均分子量が7000~25000である上記(A1)~(A3)のいずれか一つに記載の硬化性樹脂組成物。
(A5)
 (メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物において、光重合開始剤(B)として、アシルフォスフィンオキサイド化合物を含有する硬化性樹脂組成物、又は、光重合開始剤(B)として、アシルフォスフィンオキサイド化合物を含有する上記(A1)~(A4)のいずれか一つに記載の硬化性樹脂組成物。
(A6)
 アシルフォスフィンオキサイド化合物が、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドおよびビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイドからなる群から選ばれる少なくとも一つの化合物である上記(A5)に記載の硬化性樹脂組成物。
(A7)
 (メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物が、(A)成分及び(B)成分以外に、更に、その他の成分を含有する硬化性樹脂組成物、又は、上記(A1)~(A6)の何れか一つに記載の硬化性樹脂組成物。
(A8)
 (メタ)アクリレート(A)が25~90重量%、光重合開始剤(B)が0.2~5重量%、その他の成分が残部である上記(A7)に記載の硬化性樹脂組成物。
(A9)
 (メタ)アクリレート(A)として、(i)ウレタン(メタ)アクリレート又はポリイソプレン(メタ)アクリレートの少なくとも一方を20~80重量%および(ii)(メタ)アクリレートモノマーを5~70重量%含み、両者の合計が40~90重量%である上記(A8)に記載の硬化性樹脂組成物。
(A10)
 その他の成分として、一般式(1)で表される化合物を10~80重量%含む上記(A7)~(A9)の何れか一つに記載の硬化性樹脂組成物。
(A11)
 硬化性樹脂組成物の硬化物の硬化収縮率が3%以下である(メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物、又は、上記(A1)~(A10)の何れか一つに記載の硬化性樹脂組成物。
(A12)
 200μmの厚さの硬化性樹脂組成物の硬化物のシートについて、400~450nmの波長域での平均透過率が少なくとも90%であり、且つ、400~800nmの波長域での平均透過率が少なくとも90%である、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物、又は、上記(A1)~(A11)のいずれか一つに記載の硬化性樹脂組成物。
 本発明の硬化性樹脂組成物は、前記[工程A]~[工程D]により、複数の光学基材を張り合わせて光学部材を製造するための接着剤として好適に使用することができる。
 本発明の光学部材の製造方法において使用する光学基材としては、保護板、透明板、シート、タッチパネル、及び表示体ユニット等を挙げることができる。
 本発明において「光学基材」とは、表面に遮光部を有さない光学基材と、表面に遮光部を有する光学基材の両者を意味する。本発明の光学部材の製造方法においては、複数用いられる光学基材のうち少なくとも一つが、遮光部を有する光学基材を用いることが好ましい。
 上記遮光部を有する光学基材における遮光部の位置は、特に限定されない。好ましい態様としては、該光学基材の周辺部に、幅0.05~20mm、好ましくは0.05~10mm程度、より好ましくは0.1~6mm程度の幅を有する帯状の遮光部が形成される場合が挙げられる。光学基材上の遮光部は、テープの貼り付けや塗料の塗布又は印刷等によって形成することができる。
 本発明に用いる光学基材の材質としては、様々な材料が使用できる。具体的には、PET、PC、PMMA、PCとPMMAの複合体、ガラス、COC、COP、プラスチック(アクリル樹脂等)等の樹脂が挙げられる。本発明に用いる光学基材、例えば透明板又はシートとしては、偏光板等のフィルム又はシートを複数積層したシート又は透明板、積層していないシート又は透明板、及び、無機ガラスから作成された透明板(無機ガラス板及びその加工品、例えばレンズ、プリズム、ITOガラス)等を使用することができる。
 また、本発明に用いる光学基材は、上記した偏光板などの他、タッチパネル(タッチパネル入力センサー)又は下記の表示ユニット等の、複数の機能板又はシートからなる積層体(以下、「機能性積層体」とも言う。)を含む。
 本発明に用いる光学基材として使用することができるシートとしては、アイコンシート、化粧シート、保護シートが挙げられる。本発明の光学部材の製造方法に使用することができる板(透明板)としては化粧板、保護板が挙げられる。これらのシートないし板の材質としては、透明板の材質として列挙したものが適用できる。
 本発明に用いる光学基材として使用することができるタッチパネル表面の材質としては、ガラス、PET、PC、PMMA、PCとPMMAの複合体、COC、COPが挙げられる。
 透明板又はシート等の板状又はシート状の光学基材の厚さは、特に制限されず、通常は、5μm程度から5cm程度、好ましくは10μm程度から10mm程度、より好ましくは50μm~3mm程度の厚さである。
 本発明の製造方法で得られる好ましい光学部材としては、遮光部を有する板状又はシート状の透明光学基材と、上記機能性積層体とが、本発明の硬化性樹脂組成物の硬化物で貼り合された光学部材を挙げることができる。
 また、本発明の製造方法において、光学基材の一つとして液晶表示装置等の表示ユニットを使用し、他の光学基材として光学機能材料を使用することにより、光学機能材料付き表示体ユニット(以下、表示パネルともいう。)を製造することができる。上記の表示ユニットとしては、例えば、ガラスに偏光板を貼り付けてあるLCD、ELディスプレイ、EL照明、電子ペーパーやプラズマディスプレイ等の表示装置が挙げられる。また、光学機能材料としては、アクリル板、PC板、PET板、PEN板等の透明プラスチック板、強化ガラス、タッチパネル入力センサーが挙げられる。
 光学基材を張り合わせる接着材として使用した場合に、視認性向上のために硬化物の屈折率が1.45~1.55であるとき、表示画像の視認性がより向上するため、が好ましい。
 当該屈折率の範囲内であれば、光学基材として使用される基材との屈折率の差を低減させることができ、光の乱反射を抑えて光損失を低減させることが可能となる。
 本発明の製造方法で得られる光学部材の好ましい態様としては、下記(i)~(vii)を挙げることができる。
(i)遮光部を有する光学基材と前記機能性積層体とを、本発明の硬化性樹脂組成物の硬化物を用いて貼り合わせた光学部材。
(ii)遮光部を有する光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、及び、遮光物と透明電極が形成してあるガラス基板からなる群から選ばれる光学基材であり、機能性積層体が表示体ユニット又はタッチパネルである上記(i)に記載の光学部材。
(iii)表示体ユニットが液晶表示体ユニット、プラズマ表示体ユニットおよび有機EL表示ユニットのいずれかである上記(ii)に記載の光学部材。
(iv)遮光部を有する板状又はシート状の光学基材を、タッチパネルのタッチ面側の表面に本発明の硬化性樹脂組成物の硬化物を用いて貼り合わせたタッチパネル(又はタッチパネル入力センサー)。
(v)遮光部を有する板状又はシート状の光学基材を、表示体ユニットの表示画面上に本発明の硬化性樹脂組成物の硬化物を用いて貼り合わせた表示パネル。
(vi)遮光部を有する板状又はシート状の光学基材が、表示体ユニットの表示画面を保護するための保護基材又はタッチパネルである、上記(v)に記載の表示パネル。
(vii)硬化性樹脂組成物が、前記(A1)~(A12)のいずれか一つに記載の硬化性樹脂組成物である、上記(i)~(vi)のいずれか一つに記載の光学部材、タッチパネル又は表示パネル。
 本発明の硬化性樹脂組成物を用いて、前記工程A~Dに記載の方法で、上記の各光学基材から選ばれる複数の光学基材を貼り合わせることにより、本発明の光学部材が得られる。前記工程Bにおいて、硬化性樹脂組成物は、貼り合わせる2つの光学基材における、硬化物層を介して対向する面の一方のみに塗布しても良いし、両方の面に塗布しても良い。
 例えば、前記機能性積層体がタッチパネル又は表示体ユニットである上記(ii)に記載の光学部材の場合、工程A、Bにおいて、遮光部を有する保護基材のいずれか一方の面、好ましくは遮光部が設けられた面、及び、タッチパネルのタッチ面又は表示体ユニットの表示面の何れか一方のみに該樹脂組成物を塗布しても良いし、その両方に塗布しても良い。
 また、表示体ユニットの表示画面を保護するための保護基材又はタッチパネルを表示体ユニットと貼り合わせた上記(vi)の光学部材の場合、工程A、Bにおいて、保護基材の遮光部が設けられた面又はタッチパネルのタッチ面とは反対の基材面、及び、表示体ユニットの表示面の何れか一方のみに該樹脂組成物を塗布しても良いし、その両方に塗布しても良い。
 本発明の製造方法により得られた表示体ユニットと遮光部を有する光学基材とを含む光学部材は、例えば、テレビ、小型ゲーム機、携帯電話、パソコンなどの電子機器に組み込むことができる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例により何ら制限されるものではない。
硬化性樹脂組成物の調製
(第1硬化性樹脂組成物Aの調整)
 ウレタンアクリレート(水添ポリブタジエンジオール(分子量3000)、イソホロンジイソシアネート、2-ヒドロヒキシエチルアクリレートの3成分(モル比1:1.2:2)の反応物)16重量部、GI-2000(両末端水酸基水添ポリブタジエン、日本曹達(株)社製)18重量部、日石ポリブテンLV-100(液状ポリブテン、JX日鋼日石エネルギー(株)社製)13部、クリアロン(商品名)M105(芳香族変性水添テルペン樹脂、ヤスハラケミカル(株)社製)16部、LA(ラウリルアクリレート、大阪有機化学工業(株)社製)11重量部、S-1800A(イソステアリルアクリレート、新中村化学(株)社製)25部、スピードキュア(商品名)TPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、LAMBSON社製)0.5重量部、イルガキュアー(商品名)184D(BASF社製)0.5部を加熱混合して調製した。25℃における粘度は4000mPa・sであった。
(第1硬化性樹脂組成物Bの調整)
 ウレタンアクリレート(水添ポリブタジエンジオール(分子量3000)、イソホロンジイソシアネート、2-ヒドロヒキシエチルアクリレートの3成分(モル比1:1.2:2)の反応物)9重量部、GI-2000(両末端水酸基水添ポリブタジエン、日本曹達(株)社製)55重量部、日石ポリブテンLV-100(液状ポリブテン、JX日鋼日石エネルギー(株)社製)13部、LA(ラウリルアクリレート、大阪有機化学工業(株)社製)15重量部、S-1800A(イソステアリルアクリレート、新中村化学(株)社製)3部、スピードキュア(商品名)TPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、LAMBSON社製)0.25重量部、イルガキュアー(商品名)184D(BASF社製)0.5部を加熱混合して調製した。25℃における粘度は3500mPa・sであった。
(第1硬化性樹脂組成物Cの調整)
ウレタンアクリレート(水添ポリブタジエンジオール(分子量3000)、イソホロンジイソシアネート、2-ヒドロヒキシエチルアクリレートの3成分(モル比1:1.5:2)の反応物)80重量部、IBXA(イソボルニルアクリレート、大阪有機化学工業(株)社製30部、スピードキュア(商品名)TPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、LAMBSON社製)1重量部、イルガキュアー(商品名)184D(BASF社製)3部を加熱混合して調製した。25℃における粘度は14000mPa・sであった。
(第2硬化性樹脂組成物aの調整)
LIR-390(イソプレンブロックポリマー、(株)クラレ社製)20部、UC-203(反応型イソプレンポリマー、(株)クラレ社製)50部、FA-512A(ジシクロペンテニルアキシエチルアクリレート、日立化成(株)社製23部、A-NOD-N(ノナンジオールジアクリレート、新中村化学(株)社製3部、スピードキュア(商品名)TPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、LAMBSON社製)0.5重量部、イルガキュアー(商品名)184D(BASF社製)1部を加熱混合して調製した。25℃における粘度は65000mPa・sであった。
 得られた本発明の硬化性樹脂組成物を用いて以下の評価を行った。
実施例1
 図1(a)に示すように、液晶表示ユニット1の封止体23の投影領域に第2硬化性組成物aを厚さ300μm塗布し、塗布膜の形成は図4(b)で示される形状で塗布することで塗布場所の内部領域と外部領域とを連通する連通部が設けるように配置した。
 一方、保護板には第1硬化性組成物Aをそれぞれ厚さ250μmで塗布した。その後未硬化部分が対抗する形で液晶表示ユニット1と保護板2を貼り合せた。最後に無電極紫外線ランプ(ヘレウス・ノーブルライト・フュージョン・ユーブイ社製、Dバルブ)を用いて、保護板側から積算光量2000mJ/cmの紫外線5を照射する事により、樹脂硬化物層を硬化させ、光学部材図7を作成した。
実施例2
 保護板に塗布する第1硬化性組成物をBに変更し、塗布膜の形成は図4(c)で示される形状で塗布することは同様にして、樹脂硬化物層を硬化させ、光学部材図7を作成した。
比較例1
 第2硬化性組成物の塗布場所を塗布場所の内部領域と外部領域とを連通する連通部を設けないように矩形の枠状に形成することにより塗布する以外は同様にして、樹脂硬化物層を硬化させ、光学部材を作成した。
Figure JPOXMLDOC01-appb-T000002
 
(接着性)
基板同士を0.1mmの間隔をあけて、実施例1~2及び比較例1により光学部材を得た。得られた光学部材の基板同士が分離するまでに要する応力を室温にて測定した。押圧速度は5mm/minであり、得られた応力を単位面積で除して接着強度とした。
◎・・・10N/cm以上
○・・・5~10N/cm
×・・・5N/cm以下
(表示ムラ)
得られた光学部材について視認により確認した。
◎・・・表示ムラ及び基板の反りがみられない
○・・・表示ムラはないが、基板の反りが若干あり
×・・・表示ムラあり
 また、得られた本発明の硬化性樹脂組成物A、B、Cを用いて以下評価を行った。
(硬化性)厚さ1mmのスライドガラス2枚を用意し、そのうちの1枚に得られた硬化性樹脂組成物の膜厚が200μmとなるように塗布した。その塗布面に他方のスライドガラスを貼り合わせた。ガラス越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を該樹脂組成物に照射し、硬化性を下記のように評価した。
◎・・・基板の一方を持ち上げると追従して光学部材全体が持ち上がる
○・・・基板の一方を持ち上げると追従して光学部材全体が持ち上がるが、10回に1回はがれそうになる
×・・・樹脂が液状
(硬化収縮率)
 フッ素系離型剤を塗布した厚さ1mmのスライドガラス2枚を用意し、そのうち1枚の離型剤塗布面に、得られた硬化性樹脂組成物を膜厚が200μmとなるよう塗布した。その後、2枚のスライドガラスを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせた。ガラス越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させた。その後、2枚のスライドガラスを剥離し、膜比重測定用の硬化物を作製した。JIS K7112 B法に準拠し、硬化物の比重(DS)を測定した。また、25℃で樹脂組成物の液比重(DL)を測定した。DS及びDLの測定結果から、次式より硬化収縮率を算出した。
 硬化収縮率(%)=(DS-DL)÷DS×100
(耐熱、耐湿接着性)
 厚さ0.8mmのスライドガラスと厚さ0.8mmのアクリル板を用意し、一方に得られた硬化性樹脂組成物を膜厚が200μmとなるように塗布した後、その塗布面に他方を貼り合わせた。ガラス越しに、高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させ、接着性評価用サンプルを作製した。これを、85℃、85%RH環境下、250時間放置した。その評価用サンプルにおいて、目視にてスライドガラス又はアクリル板の樹脂硬化物からの剥がれを確認した。
◎・・・250時間後はがれなし
○・・・250時間後はがれなし、一部変色あり
×・・・250時間後剥離
(柔軟性)
 得られた硬化性樹脂組成物を充分に硬化させ、JIS K7215に準拠する方法により、デュロメータ硬度計(タイプE)を用いてデュロメータE硬さを測定し、柔軟性を評価した。より具体的には、硬化性樹脂組成物を膜厚が1cmとなるように円柱状の型に流し込み、紫外線を照射して該樹脂組成物を十分に硬化させた。得られた硬化物の硬度をデュロメータ硬度計(タイプE)で測定した。
(剛性率)
 フッ素系離型剤を塗布した厚さ40μmのPETフィルム2枚を用意し、そのうちの1枚の離型剤塗布面に、得られた硬化性樹脂組成物を硬化後の膜厚が600μmとなるように塗布した。その後、2枚のPETフィルムを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせた。PETフィルム越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cm2の紫外線照射し、該樹脂組成物を硬化させた。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製した。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製し、ARES(TA Instruments)を用いて、20~40℃の温度領域において硬化物の剛性率を測定した。
 上記試験結果を下記表にまとめた。
Figure JPOXMLDOC01-appb-T000003
 
第1硬化性組成物Cの剛性率は硬度が高すぎるため測定範囲外。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2014年8月6日付で出願された日本国特許出願(2014-160040)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明の光学部材の製造方法は、視認性が優れ、表示ムラを生じ難い表示体ユニット等の光学部材を得ることができるものである。本発明により得られる光学部材は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の表示装置に、好適に組み込むことができる。
1 液晶表示ユニット、2 保護板、3 透明基板、4 遮光部、5 紫外線、11 第1硬化性樹脂組成物、12 第2硬化性樹脂組成物、13 第1硬化物層、14 第2硬化物層、15 樹脂硬化物層、21 液晶表示セル、22 偏光板、23 封止体、24 隙間、25 密閉フィルム、26 筐体
 

Claims (14)

  1. 液晶表示ユニットに保護板を接着した画像表示装置の製造方法であって、
     前記液晶表示ユニット又は前記保護板の少なくとも一方に、未硬化時に流動性を有する第2硬化性樹脂組成物を塗布し、前記第2硬化性樹脂組成物によって第1硬化性樹脂組成物の塗布領域を画定する第2硬化性樹脂組成物塗布工程と、
     前記塗布領域に、未硬化時に流動性を有する前記第1硬化性樹脂組成物を塗布する第1硬化性樹脂組成物の塗布工程と、
     前記第1硬化性樹脂組成物を介して前記液晶表示ユニットおよび前記保護板を貼合わせる貼合わせ工程と、
     前記第1硬化性樹脂組成物を硬化させて前記液晶表示ユニットおよび前記保護板を貼合わせる第1硬化性樹脂組成物硬化工程と、を含み、
     前記第2硬化性樹脂組成物を硬化して得られる硬化物層が、前記液晶表示ユニットと保護板との間に線状に延びる層又は点状の層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室の内部領域と外部領域を隔てる隔壁として形成され、前記隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている画像表示装置の製造方法。
  2. 請求項1に記載の画像表示装置の製造方法であって、
     線状に延びる層又は点状の層として形成された前記隔壁が矩形の枠状に形成され、
     前記内部領域と前記外部領域を連通する連通部が複数存在し、
     前記隔壁が画像表示装置の軸線を回転中心に回転対象性を有し、又は画像表示装置を平面視した際の中心軸を中心に線対象性を有していることを特徴とする、
     画像表示装置の製造方法。
  3. 請求項1又は請求項2に記載の画像表示装置の製造方法であって、
     前記隔壁が矩形の枠状に形成され、矩形の枠を形成する四辺において隔壁が形成され、矩形の枠を形成する四角に前記連通部が形成されていることを特徴とする画像表示装置の製造方法。
  4. 請求項1又は請求項2に記載の画像表示装置の製造方法であって、
     前記隔壁が矩形の枠状に形成され、矩形の枠を形成する四辺において前記連通部が形成され、矩形の枠の四角に前記隔壁が形成されていることを特徴とする画像表示装置の製造方法。
  5. 請求項1~4のいずれか一項に記載の光学部材の製造方法の、前記第1硬化性樹脂組成物又は前記第2硬化性樹脂組成物用の、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する硬化性樹脂組成物。
  6. (メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上の(メタ)アクリレートである請求項5に記載の硬化性樹脂組成物。
  7. アセトニトリル又はメタノール中で測定した光重合開始剤(B)のモル吸光係数が、302nm又は313nmでは300ml/(g・cm)以上であり、365nmでは100ml/(g・cm)以下である請求項5又は請求項6に記載の硬化性樹脂組成物。
  8. 前記保護板が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、遮光部と透明電極が形成されたガラス基板、遮光部を有する透明基板に透明電極が形成されたガラス基板またはフィルムが貼りあわされた基板の群から選ばれる1種以上からなる請求項5~7のいずれか一項に記載の硬化性樹脂組成物。
  9. 前記第1硬化性樹脂組成物が紫外線を照射した際の硬化率80%における樹脂層の25℃における貯蔵剛性率に対して、紫外線を照射した際の硬化率98%における樹脂層の貯蔵剛性率が3~20倍であることを特徴とする樹脂組成物であって、硬化率80%における貯蔵剛性率(25℃)が1×10Pa~1×10Paである請求項5~8のいずれか一項に記載の硬化性樹脂組成物。
  10. (メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上の(メタ)アクリレートである請求項5~9のいずれか一項に記載の硬化性樹脂組成物。
  11. 前記保護板が、タッチパネルである請求項5~10のいずれか一項に記載の硬化性樹脂組成物。
  12. 請求項1~11のいずれか一項に記載の画像表示装置の製造方法によって得られるタッチパネル。
  13. 液晶表示ユニットに保護板を接着した画像表示装置であって、
     前記液晶表示ユニットと保護板を接着する第1硬化性樹脂組成物を硬化して得られる第1硬化物層と、
     前記第1硬化物層の周壁部を画成する第2硬化性樹脂組成物を硬化して得られる第2硬化物層を有し、
     前記第2硬化物層が、前記液晶表示ユニットと保護板との間に線状に延びる層又は点状に点在した層として積層されることにより、前記第1硬化性樹脂組成物が充填された充填室の内部領域と外部領域を隔てる隔壁として形成され、前記隔壁の少なくとも一部において前記充填室の内部領域と外部領域とを連通する連通部が設けられている画像表示装置。
  14. 前記第1硬化性樹脂組成物及び前記第2硬化性樹脂組成物が、ウレタン(メタ)アクリレート化合物、ポリイソプレン骨格を有する(メタ)アクリレート化合物又はポリブタジエン骨格を有する(メタ)アクリレート化合物からなる群から選択される少なくとも1種の(メタ)アクリレート化合物、及び光重合開始剤を含有している硬化性樹脂組成物である、前記請求項13に記載の画像表示装置。
PCT/JP2015/071868 2014-08-06 2015-07-31 光学部材の製造方法及びそれに用いる硬化性樹脂組成物 WO2016021517A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580042136.1A CN106575052A (zh) 2014-08-06 2015-07-31 光学构件的制造方法和用于该方法的固化性树脂组合物
JP2016540201A JP6353908B2 (ja) 2014-08-06 2015-07-31 光学部材の製造方法及びそれに用いる硬化性樹脂組成物
KR1020177003296A KR20170039183A (ko) 2014-08-06 2015-07-31 광학 부재의 제조 방법 및 그것에 사용하는 경화성 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014160040 2014-08-06
JP2014-160040 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021517A1 true WO2016021517A1 (ja) 2016-02-11

Family

ID=55263783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071868 WO2016021517A1 (ja) 2014-08-06 2015-07-31 光学部材の製造方法及びそれに用いる硬化性樹脂組成物

Country Status (5)

Country Link
JP (1) JP6353908B2 (ja)
KR (1) KR20170039183A (ja)
CN (1) CN106575052A (ja)
TW (1) TWI646372B (ja)
WO (1) WO2016021517A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027169A (ja) * 2018-08-10 2020-02-20 Agc株式会社 表示装置
WO2020067202A1 (ja) * 2018-09-27 2020-04-02 デクセリアルズ株式会社 光学装置、光学装置の製造方法
JP2020057000A (ja) * 2018-09-27 2020-04-09 デクセリアルズ株式会社 光学装置、光学装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200363582A1 (en) * 2017-03-31 2020-11-19 Tomoegawa Co., Ltd. Sealing member for light guide plate and planar light source device or lighting device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129159A (ja) * 2006-11-17 2008-06-05 Hitachi Chem Co Ltd 保護板付き画像表示装置の製造方法
JP2011053308A (ja) * 2009-08-31 2011-03-17 Nec Lcd Technologies Ltd 表示装置及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451015A (en) 1977-09-30 1979-04-21 Hitachi Ltd Eddy-current blower
EP1698965A4 (en) * 2003-12-26 2010-06-09 Nissha Printing ELECTRONIC DEVICE WITH PROTECTION PANEL, PROTECTION PANEL AND MANUFACTURING PROCESS FOR A PROTECTION PANEL
WO2006120998A1 (ja) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP5040380B2 (ja) * 2007-03-13 2012-10-03 オムロン株式会社 紫外線照射システム、それに用いられる硬化反応検知装置およびそれを用いた紫外線硬化樹脂の硬化方法
KR101402018B1 (ko) * 2007-06-25 2014-06-02 니폰 가야꾸 가부시끼가이샤 액정 실링제 및 그것을 이용한 액정 표시 셀
JP5451015B2 (ja) * 2008-09-12 2014-03-26 協立化学産業株式会社 表示パネルの製造方法及び表示パネル
KR101605670B1 (ko) * 2009-01-28 2016-03-23 스미또모 가가꾸 가부시키가이샤 자외선 경화 수지의 상태 추정 방법 및, 그의 제조 방법
US8697240B2 (en) * 2009-07-22 2014-04-15 Hitachi Chemical Company, Ltd. Photocurable resin composition and cured product of same, resin sheet and production method for same, and display device
EP2521116A4 (en) * 2009-12-28 2013-10-02 Asahi Glass Co Ltd METHOD FOR PRODUCING A DISPLAY DEVICE
JP5623754B2 (ja) * 2010-02-04 2014-11-12 株式会社ジャパンディスプレイ 表示装置およびその製造方法
CN104698658A (zh) 2010-05-26 2015-06-10 旭硝子株式会社 带粘附层的透明面材、显示装置及它们的制造方法
KR20130137178A (ko) * 2010-12-08 2013-12-16 아사히 가라스 가부시키가이샤 점착층이 형성된 투명 면재, 표시 장치 및 그것들의 제조 방법
JP2012172064A (ja) * 2011-02-22 2012-09-10 Nitto Denko Corp 紫外線硬化型光学樹脂接着剤組成物
JP6100989B2 (ja) * 2011-03-25 2017-03-22 藤森工業株式会社 Ito用粘着テープ
CN103135148B (zh) * 2011-08-03 2016-01-13 富士胶片株式会社 带涂层的膜的制造方法
KR101542524B1 (ko) * 2011-10-21 2015-08-06 니폰 가야꾸 가부시끼가이샤 광학부재의 제조를 위한 자외선 경화형 수지 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129159A (ja) * 2006-11-17 2008-06-05 Hitachi Chem Co Ltd 保護板付き画像表示装置の製造方法
JP2011053308A (ja) * 2009-08-31 2011-03-17 Nec Lcd Technologies Ltd 表示装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027169A (ja) * 2018-08-10 2020-02-20 Agc株式会社 表示装置
WO2020067202A1 (ja) * 2018-09-27 2020-04-02 デクセリアルズ株式会社 光学装置、光学装置の製造方法
JP2020057000A (ja) * 2018-09-27 2020-04-09 デクセリアルズ株式会社 光学装置、光学装置の製造方法
JP7396844B2 (ja) 2018-09-27 2023-12-12 デクセリアルズ株式会社 光学装置、光学装置の製造方法

Also Published As

Publication number Publication date
KR20170039183A (ko) 2017-04-10
TW201617698A (zh) 2016-05-16
JP6353908B2 (ja) 2018-07-04
CN106575052A (zh) 2017-04-19
TWI646372B (zh) 2019-01-01
JPWO2016021517A1 (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5745708B1 (ja) 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
JP5331271B1 (ja) 光学部材の製造方法及びそのための紫外線硬化型樹脂組成物の使用
WO2015119245A1 (ja) タッチパネル用紫外線硬化型接着剤組成物、それを用いた光学部材の製造方法、硬化物及びタッチパネル
JP6620092B2 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
JP6778106B2 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
JP6633548B2 (ja) 画像表示装置の製造方法、それに用いる硬化性樹脂組成物、タッチパネル及び画像表示装置
WO2015199156A1 (ja) 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
WO2015190561A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
JP6353908B2 (ja) 光学部材の製造方法及びそれに用いる硬化性樹脂組成物
JP6378184B2 (ja) 光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物
WO2015190571A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた貼り合せ方法及び物品
JP6499406B2 (ja) 光学部材の製造方法及びそれに用いる硬化性樹脂組成物
WO2017073584A1 (ja) タッチパネル用紫外線硬化型樹脂組成物、それを用いた硬化物及びタッチパネル
WO2019016963A1 (ja) 紫外線硬化型接着剤、それを用いた貼り合せ方法及び物品
JP2018012750A (ja) 紫外線硬化型接着剤、それを用いた貼り合せ方法及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540201

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177003296

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15828958

Country of ref document: EP

Kind code of ref document: A1