WO2016017765A1 - Elastomer heater - Google Patents

Elastomer heater Download PDF

Info

Publication number
WO2016017765A1
WO2016017765A1 PCT/JP2015/071672 JP2015071672W WO2016017765A1 WO 2016017765 A1 WO2016017765 A1 WO 2016017765A1 JP 2015071672 W JP2015071672 W JP 2015071672W WO 2016017765 A1 WO2016017765 A1 WO 2016017765A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomer
heater
heat generating
carbon black
elastomer composition
Prior art date
Application number
PCT/JP2015/071672
Other languages
French (fr)
Japanese (ja)
Inventor
泰宏 ▲高▼野
野中 敬三
奥野 茂樹
徹 野口
Original Assignee
バンドー化学株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社, 国立大学法人信州大学 filed Critical バンドー化学株式会社
Publication of WO2016017765A1 publication Critical patent/WO2016017765A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material

Definitions

  • the present invention relates to an elastomer heater.
  • Patent Document 1 discloses a rubber sheet or a resin sheet in which a metal heating element such as a nichrome wire is embedded (see, for example, Patent Document 1). Recently, it has been proposed to use a nonmetallic conductor instead of the metal heating element.
  • Patent Document 2 discloses a polymer material having crystallinity such as polyethylene, polyethylene-vinyl acetate copolymer, polyethylene-ethyl acrylate copolymer, polyvinylidene fluoride, and carbon-based conductive materials such as carbon black, graphite, and graphite.
  • a planar heating element including a resistor formed of a mixture.
  • Patent Document 3 proposes a heating element containing fine carbon fibers such as vapor-grown carbon fibers, carbon nanofibers, and carbon nanotubes, and a resin material, and having an interelectrode resistance ( ⁇ / cm) of 10 5 or less. Yes.
  • a planar heating element in which a metal heating element as described in Patent Document 1 is embedded is inferior in flexibility and flexibility, has a low degree of freedom in deformation, and may break the metal heating element. It was difficult to use by deforming to the shape of.
  • a planar heating element manufactured using a conductive composition in which a carbon-based conductive material such as carbon black is mixed with a polymer material as described in Patent Document 2 is a planar heating element in which a nichrome wire or the like is embedded. Compared with the body, there was a problem that the electrical resistance was high and the variation in electrical resistance was large. On the other hand, in a planar heating element using a conductive composition containing a carbon-based conductive material such as carbon black, in order to reduce electrical resistance or to reduce variation in electrical resistance for each heating element, It is conceivable to increase the amount of carbon-based conductive material such as carbon black.
  • a planar heating element prepared by blending fine carbon fibers such as carbon nanotubes with a resin material as described in Patent Document 3 was prepared by blending carbon black having the same weight concentration with the resin component. The electric resistance can be lowered as compared with the planar heating element. This is because carbon nanotubes are more conductive than carbon black. On the other hand, carbon nanotubes are expensive, and it has been difficult to provide a sheet heating element using carbon nanotubes instead of carbon black at low cost. Further, it has been clarified by the present inventors that a planar heating element using carbon nanotubes may cause problems in terms of stability over time.
  • the present invention has been made in view of such problems, and an object of the present invention is an elastomer heater excellent in flexibility and flexibility, and there is little variation in heat generation between the elastomer heaters, and heat generation. It is an object of the present invention to provide an elastomer heater provided with a heat generating main body (planar heat generating element) with little change over time.
  • being excellent in flexibility means being easily deformed into an arbitrary shape.
  • the elastomer heater of the present invention is an elastomer heater comprising an electrode member and a sheet-like heat generating body using an elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes,
  • the compounding amount of the carbon nanotube in the elastomer composition is 2 to 30 parts by weight with respect to 100 parts by weight of the elastomer.
  • the elastomer heater of the present invention includes a heat generating body, and the heat generating body uses an elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes.
  • the elastomer composition contains a specific amount of carbon nanotubes together with the elastomer and conductive carbon black.
  • the elastomer composition contains carbon nanotubes together with the elastomer and the conductive carbon black.
  • the present inventors have found that the following unexpected effects can be obtained by mixing carbon nanotubes with conductive carbon black and an elastomer. That is, the present inventors have difficulty in processing an elastomer composition in which carbon nanotubes are further added to an elastomer and conductive carbon black into a sheet shape with an elastomer composition containing the elastomer and conductive carbon black. It has been found that even when conductive carbon black is contained in an amount corresponding to such a blending amount, it can be processed into a sheet shape.
  • the elastomer heater according to the present invention is an elastomer heater having excellent performance in that it has excellent flexibility and flexibility, and has little variation in heat generation for each elastomer heater.
  • the carbon nanotube is preferably a multi-wall carbon nanotube having a fiber diameter of 20 nm or less.
  • the elastomer composition is preferably prepared using a carbon nanotube masterbatch produced by an elastic kneading method.
  • the thickness of the heat generating body is preferably 0.1 to 1 mm.
  • the elastomer heater according to the present invention includes a heat generating body made of a specific elastomer composition. Therefore, the elastomer heater is an elastomer heater having a heat generating body (planar heat generating element) that is excellent in flexibility and flexibility, has little variation in heat generation between the elastomer heaters, and has little change in heat generation over time. is there.
  • a heat generating body planar heat generating element
  • FIG. 1 It is a perspective view which shows typically an example of the elastomer heater of this invention.
  • (A), (b) is a perspective view which shows typically another example of the elastomer heater of this invention, respectively.
  • (A), (b) is a perspective view which shows typically another example of the elastomer heater of this invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of the elastomer heater of the present invention.
  • An elastomer heater 10 shown in FIG. 1 includes a sheet-like rectangular heat generating body 11 in plan view and two electrode bodies 12a and 12b.
  • the electrode bodies 12a and 12b are respectively long sides facing the heat generating body 11. It is buried in the vicinity.
  • a voltage is applied between the electrode bodies 12 a and 12 b and the heat generating body 11 is energized to generate heat.
  • the heat generating body 11 is made of an elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes.
  • elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes.
  • conductive carbon black and carbon nanotubes are dispersed in the elastomer. Therefore, the heat generating body 11 has conductivity, and generates heat when a voltage is applied between the electrode bodies 12a and 12b.
  • the elastomer may be a cross-linked elastomer or a thermoplastic elastomer.
  • the elastomer to be used may be appropriately selected in consideration of the heat generation temperature of the heat generating body during use. Specifically, for example, when the heat generating body generates heat at a high temperature exceeding 100 ° C., examples of the elastomer include chlorosulfonated polyethylene (CSM), ethylene / propylene rubber (EPR or EPDM), and hydrogenated nitrile rubber.
  • Cross-linked elastomers such as (H-NBR), silicone rubber and fluororubber are preferred. This is because these cross-linked elastomers hardly undergo permanent deformation even at high temperatures and have excellent heat resistance.
  • the elastomer composition contains a crosslinking agent. Therefore, when the elastomer composition contains a cross-linked elastomer and a cross-linking agent, the exothermic body is made of a cross-linked product of the elastomer composition.
  • a conventionally known crosslinking agent can be used as the crosslinking agent.
  • Specific examples of the crosslinking agent include organic peroxides and sulfur vulcanizing agents. Among these crosslinking agents, organic peroxides are preferred because their physical properties are not easily lowered by crosslinking and are excellent in heat resistance after crosslinking.
  • organic peroxide examples include dialkyl peroxides such as dicumyl peroxide, peroxyesters such as t-butyl peroxyacetate, ketone peroxides such as dicyclohexanone peroxide, and the like.
  • the amount of the organic peroxide is preferably 0.5 to 10 parts by weight, more preferably 1 to 6 parts by weight, based on 100 parts by weight of the crosslinked elastomer.
  • the said elastomer composition may contain a co-crosslinking agent further as needed.
  • the crosslinking agent is an organic peroxide
  • the elastomer composition preferably contains a co-crosslinking agent.
  • a certain degree of crosslinking density is required.
  • the crosslinking density can be increased by increasing the amount of the crosslinking agent.
  • the amount of the crosslinking agent organic peroxide
  • the elongation at break of the crosslinked elastomer is lowered, and the tear strength and the like are lowered.
  • a co-crosslinking agent together with the crosslinking agent it is possible to maintain a relatively high elongation at break and tear strength while increasing the crosslinking density of the crosslinked elastomer. Therefore, by using a co-crosslinking agent together with the crosslinking agent, the bending durability of the crosslinked elastomer can be improved.
  • co-crosslinking agent examples include trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, triallyl isocyanurate, liquid polybutadiene, N, N′-m-phenylenebismaleimide, ⁇ - ⁇ such as zinc acrylate and zinc methacrylate. and metal salts of ⁇ -unsaturated organic acids. These may be used alone or in combination of two or more.
  • the amount of the co-crosslinking agent is preferably 1 to 10 parts by weight and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the elastomer.
  • the conductive carbon black is not particularly limited, and examples thereof include ketjen black, acetylene black, furnace black, channel black, and thermal black. These conductive carbon blacks may be used alone or in combination of two or more. Among these, ketjen black and acetylene black are preferable and ketjen black is more preferable from the viewpoint of excellent conductivity.
  • the conductive carbon black preferably has a primary particle size of 40 nm or less. This is because the conductive carbon black having a primary particle diameter of 40 nm or less is particularly suitable for imparting sufficient conductivity to the heat generating body.
  • the lower limit of the primary particle diameter of the conductive carbon black is not particularly limited, but is usually about 10 nm.
  • conductive carbon blacks having different primary particle diameters may be used in combination, and conductive carbon black having a primary particle diameter of 40 nm or less and conductive having a primary particle diameter exceeding 40 nm. The carbon black may be used in combination.
  • the primary particle size of conductive carbon black refers to observation of small spherical particles (components having a fine crystal outline and cannot be separated) constituting an aggregate of conductive carbon black by observation with an electron micrograph. For each particle in the image, an interval between two parallel lines in a fixed direction sandwiching the particle is measured as a particle diameter (Ferret diameter / Feret diameter), and an arithmetic average value obtained from the measured value.
  • Ketjen Black EC300J Ketjen Black EC600JD (all manufactured by Lion)
  • Toka Black # 5500 All manufactured by Toka Black # 4500 (all manufactured by Tokai Carbon Co.)
  • Denka Black electrochemical Manufactured by Kogyo Co., Ltd.
  • the blending amount of the conductive carbon black in the elastomer composition may be appropriately selected in consideration of the volume resistivity required for the heat generating body on the premise that it can be processed into a sheet shape. Therefore, the upper limit of the blending amount of the conductive carbon black is a limit amount at which the elastomer composition can be processed into a sheet shape. Whether or not the elastomer composition can be processed into a sheet can be determined using, for example, Mooney viscosity as an index. When the Mooney viscosity is determined as an index, the value of Mooney viscosity MS (1 + 4) 100 ° C. of the elastomer composition is preferably 200 or less.
  • the value of the Mooney viscosity MS (1 + 4) 100 ° C. is more preferably 180 or less from the viewpoint that good workability can be ensured more reliably.
  • the value of the Mooney viscosity MS (1 + 4) 100 ° C. can be measured by, for example, a Mooney viscometer MVM11 manufactured by M & K Corporation.
  • the lower limit of the Mooney viscosity MS (1 + 4) 100 ° C. is not particularly limited, and is about 10.
  • the blending amount of conductive carbon black in the elastomer composition varies depending on the type of conductive carbon black. Specifically, for example, when the conductive carbon black is Ketjen Black EC300J, the conductive carbon black is mixed. The amount of the functional carbon black is preferably about 30 to 100 parts by weight with respect to 100 parts by weight of the elastomer. For example, when the conductive carbon black is Ketjen Black EC600JD, the blending amount of the conductive carbon black is preferably about 10 to 45 parts by weight with respect to 100 parts by weight of the elastomer. Further, for example, when the conductive carbon black is Talker Black # 5500, the blending amount of the conductive carbon black is preferably about 50 to 120 parts by weight with respect to 100 parts by weight of the elastomer.
  • the elastomer composition contains carbon nanotubes together with conductive carbon black.
  • the present invention achieves both excellent processability and high conductivity, which has been difficult to achieve with only conductive carbon black.
  • the carbon nanotubes may be single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT).
  • SWCNT single-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • the carbon nanotube is preferably a multi-walled carbon nanotube because it can be procured at a low cost.
  • the carbon nanotube may be a commercial product.
  • the fiber diameter of the carbon nanotube is preferably 20 nm or less. This is because it is suitable for improving the processability of the elastomer composition and reducing the volume resistivity of the heat generating body.
  • the fiber diameter of the carbon nanotube is more preferably 15 nm or less.
  • the compounding amount of the carbon nanotube is 2 to 30 parts by weight with respect to 100 parts by weight of the elastomer.
  • the compounding amount of the carbon nanotubes exceeds 30 parts by weight, the volume specific resistance of the heat generating body using the elastomer composition increases remarkably with time.
  • the compounding amount of the carbon nanotube is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the elastomer.
  • the elastomer composition may further contain a vulcanization accelerator, an anti-aging agent, a plasticizer, a processing aid, a stabilizer and the like as necessary. Each of these various additives may be used alone or in combination of two or more.
  • the vulcanization accelerator is used together with a sulfur vulcanizing agent. Specific examples of the vulcanization accelerator include, for example, thiuram-based, sulfenamide-based, dithiocarbamate-based, guanidine-based, and thiocrea-based vulcanization accelerators.
  • the blending amount of the vulcanization accelerator is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the elastomer.
  • anti-aging agent examples include diamine-based anti-aging agents and phenol-based anti-aging agents.
  • the blending amount of the anti-aging agent is preferably 0.1 to 5 parts by weight, and more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the elastomer.
  • plasticizer examples include dialkyl phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), dialkyl adipates such as dioctyl adipate (DOA), and dialkyl sebacates such as dioctyl sebacate (DOS).
  • the blending amount of the plasticizer is preferably 0.1 to 40 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the elastomer.
  • process oil can be used as the processing aid.
  • the process oil include paraffinic process oil, naphthenic process oil, aromatic process oil, and fluorine process oil.
  • the amount of the processing aid is preferably 0.1 to 40 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the elastomer. Further, when the elastomer is a fluoro rubber, it is preferable to use a fluoro process oil as a processing aid.
  • the volume specific resistance of the heat generating body using such an elastomer composition is not particularly limited, but is preferably 1.0 ⁇ ⁇ cm or less.
  • the volume resistivity is 1.0 ⁇ ⁇ cm or less, not only when using a high voltage power supply such as 120 V or 240 V, but also when using a low voltage power supply such as 12 V, heat is easily generated to a practical temperature. Can be made. Further, even when a low voltage power source such as 12V is used, the distance between the electrodes can be increased, which is advantageous in obtaining a large-area heating element.
  • the volume resistivity is in the above range, it is advantageous when designing the heat generating body to be thin.
  • the elastomer heater of the present invention may use a high voltage power source such as 120V or 240V as a power source.
  • a high voltage power source such as 120V or 240V
  • the volume resistivity of the heat generating body does not have to be as low as 1.0 ⁇ ⁇ cm or less, and even a volume resistivity exceeding 1.0 ⁇ ⁇ cm can generate heat up to a practical temperature, Exothermic.
  • the elastomer heater of the present invention even when a high voltage is applied to heat the heat generating body, the effect of the heat generating body containing a specific amount of carbon nanotubes together with the elastomer and the conductive carbon black, that is, heat generation It is possible to enjoy the effect that there is little variation in heat resistance and that the exothermic change with time is small.
  • the heat generating body preferably has a thickness of 0.1 to 1.0 mm. If the thickness of the heat generating body is less than 0.1 mm, the durability may be insufficient. On the other hand, if the thickness of the heat generating main body exceeds 1.0 mm, the heat generating main body is inferior in flexibility and free deformation may be hindered.
  • a protective layer may be laminated on the front surface and / or the back surface of the heat generating body.
  • the protective layer for example, a layer made of a composition containing the same composition as the elastomer composition, except that it does not contain conductive carbon black and carbon nanotubes, or a layer made of an insulating resin film Is mentioned.
  • the heat generating body can have only the surface opposite to the side on which the foam film is laminated as the heat generating surface.
  • the other layer may be an adhesive layer or a pressure-sensitive adhesive layer for attaching the elastomer heater to another member.
  • the electrode bodies 12a and 12b are not particularly limited as long as they are made of a conductive material and have flexibility.
  • the electrode main body include a flat string formed by knitting a copper wire such as a flat knitted tin-plated copper wire, a net-like material made of nickel foil, copper wire or conductive fiber.
  • a flat string-like electrode such as a flat knitted tin-plated copper wire is preferable because the thickness of the electrode body can be reduced and the bending fatigue resistance is excellent.
  • the size of each member is not particularly limited, and may be appropriately selected in consideration of the required amount of heat generation.
  • the heater capacity (W) indicating the heat generation capability of the elastomer heater is a product of voltage and current.
  • the elastomer heater of the present invention is not limited to the one having the configuration shown in FIG. 1, and may have, for example, the configuration shown in FIG.
  • FIGS. 2A and 2B are perspective views schematically showing another example of the elastomer heater of the present invention.
  • the elastomer heater 20 shown in FIG. 2A includes a sheet-like heat generating body 21 having a rectangular shape in plan view, and three electrode bodies 22a, 22b, and 22c.
  • the electrode bodies 22a, 22b, and 22c include the heat generating body 21. It is embedded at substantially equal intervals, almost parallel to the long side of.
  • a voltage is applied between the electrode bodies 22a and 22b and between the electrode bodies 22b and 22c (for example, a voltage is applied using the electrode bodies 22a and 22c as a positive electrode and the electrode body 22b as a negative electrode), By energizing the heat generating main body 21, the heat generating main body 21 is caused to generate heat.
  • the elastomer heater 30 shown in FIG. 2 (b) includes a sheet-like heat generating body 31 that is rectangular in plan view and five electrode bodies 32a to 32e.
  • the electrode bodies 32a to 32e are connected to the long sides of the heat generating body 31. They are buried almost parallel and at almost equal intervals.
  • a voltage is applied between the electrode bodies 32a and 32b, between the electrode bodies 32b and 32c, between the electrode bodies 32c and 32d, and between the electrode bodies 32d and 32e (for example, the electrode bodies 32a, 32c and 32e are connected).
  • a voltage is applied using the plus electrode and the electrode bodies 32b and 32d as a minus electrode), and the heat generating body 31 is energized by energizing the heat generating body 31.
  • the elastomer heater of the present invention may include three or more electrode bodies.
  • the elastomer heater of the present invention can adjust the distance between the electrode bodies by increasing or decreasing the number of the electrode bodies with respect to the heat generating body having the same shape, and thereby the amount of heat generated by the heat generating body. Can be adjusted.
  • the distance between the electrode bodies does not necessarily have to be equal.
  • the heat generation temperature is set to a different temperature for each region sandwiched between the electrode bodies while using the same power source. Can do.
  • the elastomer heater of the present invention is an elastomer heater provided with three or more electrode bodies as shown in FIGS. 2 (a) and 2 (b), the two outer electrode bodies (FIG. 2 ( The electrode bodies 22a and 22c in a) and the electrode bodies 32a and 32e) in FIG. 2B are preferably homopolar electrode bodies.
  • the elastomer heater having such a configuration is not short-circuited even when the two outermost electrode bodies are in contact with each other when the elastomer heater is spirally wound around a columnar member. It is.
  • the elastomer heater of the present invention may have the configuration shown in FIG. 3 (a) and 3 (b) are perspective views schematically showing another example of the elastomer heater of the present invention.
  • the elastomer heater 40 shown in FIG. 3A has the same configuration as the elastomer heater 10 shown in FIG. 1, and a plurality of slits 43 parallel to each other are formed in the heat generating body 41.
  • the slit 43 is formed over the entire area between the electrode bodies 42a and 42b in a direction substantially perpendicular to the electrode bodies 42a and 42b. Since the elastomer heater 40 is formed with such a slit 43, the heat generating body 41 (elastomer heater 40) can be more freely deformed.
  • the elastomer heater 40 in which the slits 43 are formed in the heat generating body 41 can be easily used by being attached to a curved surface, for example.
  • each of the plurality of slits 53 may be formed only on a part of the heat generating body 51 in a direction substantially perpendicular to the electrode bodies 52a and 52b.
  • the position and number of the slit are not limited at all and are arbitrary.
  • the slits may be formed in an appropriate number at an appropriate position in consideration of the deformation mode of the elastomer heater.
  • the slit may be formed so as to penetrate the heat generating body in the thickness direction, or may be formed only in a part of the heat generating body in the thickness direction.
  • an elastomer composition is prepared.
  • the elastomer composition may be prepared by adding all of the elastomer, conductive carbon black and carbon nanotubes, and optional components to be added as necessary to a Banbury mixer or the like and kneading them in one step.
  • the elastomer composition is prepared by previously kneading an elastomer and carbon nanotubes by an elastic kneading method to prepare a master batch of carbon nanotubes, and then kneading the obtained master batch and other components. It is preferable to prepare in the process.
  • each component can be uniformly dispersed in the elastomer, and particularly bulky conductive carbon black and carbon nanotubes can be uniformly dispersed in the elastomer. Also, by using this method, the carbon nanotubes can be defibrated and dispersed.
  • the elastic kneading method for preparing the carbon nanotube master batch can be carried out, for example, by the following methods (A) to (C).
  • the kneaded product obtained in the second kneading step is passed through a roll having a roll gap of about 0.3 mm at a temperature of 0 to 50 ° C. several times (for example, 10 The third kneading step is repeated.
  • the third kneading step is preferably performed using an open roll.
  • the first kneading step and the second kneading step may be performed using an open roll, and each kneading step is performed using a twin screw extruder or the like. May be.
  • kneading conditions kneading time, rotor gap, rotor rotational speed, etc.
  • carbon nanofibers can be dispersed throughout the elastomer by a high shearing force by performing the first kneading step, and the carbon nanofibers are aggregated by radicals of the elastomer molecules by performing the second kneading step. You can unravel the lumps.
  • the elastomer in which radicals are generated acts so as to pull out the carbon nanofibers one by one, and the carbon nanofibers can be further dispersed. Therefore, in the elastic kneading method, a master batch of carbon nanotubes in which the carbon nanotubes are defibrated and uniformly dispersed in the elastomer can be prepared.
  • the masterbatch After preparing the masterbatch, the masterbatch, elastomer, conductive carbon black, and other optional components, Banbury mixer, kneader, open roll, etc. Use to knead. Thereby, an elastomer composition can be prepared.
  • the elastomer composition is processed into a sheet to produce a sheet of the elastomer composition.
  • the elastomer composition may be processed by a conventionally known method such as roll processing or calendar processing.
  • the processing temperature when processing the elastomer composition is, for example, about 20 to 120 ° C.
  • an electrode main body is integrated with the sheet-like material produced at the process of said (2), and an elastomer heater is completed.
  • the sheet-like material and the electrode body may be integrated by, for example, the following method (3-1) or the method (3-2) below. (3-1) Two sheets of the sheet-like material are produced, the electrode body is sandwiched between the two sheet-like objects at a predetermined position, and the laminate of the sheet-like material and the electrode body is used for press molding. The sheet-like material and the electrode body are integrated by putting them into the mold, pressurizing and heating.
  • an elastomer composition containing a crosslinked elastomer and a crosslinking agent is used as the elastomer composition, an uncrosslinked sheet is vulcanized and the electrode body is vulcanized and bonded to the heat generating body.
  • an adhesive may be applied to the surface of the electrode body before the electrode body is integrated with the sheet. Thereby, joining of the said electrode main body and the said heat-generation main body can be strengthened more.
  • the adhesive does not inhibit conduction between the electrode bodies as an insulating layer.
  • the adhesive is applied only to a part of the electrode body, the adhesive is thinly applied, and the elastomer composition which is a conductor diffuses to the electrode side during press molding, and the electrode It is possible to adopt measures such as using a conductive adhesive as an adhesive.
  • the elastomer heater of the present invention can be used for various applications as a planar heating element. Specifically, for example, for various applications such as handle heaters for motorcycles and automobiles, heaters for floors and seats, snow melting devices installed on the roofs of roads and houses, heat-retaining devices for foods, warmers, etc. Can be used. Since the elastomer of the present invention is excellent in flexibility and flexibility, it is suitable for being used by being affixed to a curved surface or in a form that is deformed during use.
  • Elastomer ethylene propylene rubber
  • EP123 (manufactured by JSR)
  • Conductive carbon black Ketjen Black EC300J (Lion Corporation)
  • Conductive carbon black Ketjen black EC600JD (manufactured by Lion)
  • Conductive carbon black Toka Black # 5500 (manufactured by Tokai Carbon Co., Ltd.)
  • Carbon nanotube Nanosil NC7000 (fiber diameter 9.5 nm, average length 1.5 ⁇ m, aspect ratio 158, carbon purity 90%) (manufactured by Nanosil (Belgium))
  • Carbon nanotube Flotube 9000 (fiber diameter 10 to 15 nm, average length 10 ⁇ m, carbon purity 95.0 to 97.5%) (manufactured by CNano (USA))
  • Graphite Earth-like graphite powder AP (manufactured by Nippon Graphite Industry Co., Ltd.)
  • Process oil Thumper 2280 (manufactured by N
  • the mixture is discharged from the Banbury mixer, the mixture is cooled to room temperature (25 ° C.), set to a roll gap of 0.3 mm using an open roll through which cooling water is passed, and the mixture is passed through 3 times. went. Finally, it was processed into a sheet shape with a roll gap of 1 mm to obtain a sheet-shaped master batch.
  • the obtained elastomer composition was processed into a sheet using a 10-inch roll (roll temperature 80 ° C), and an unvulcanized rubber sheet having a thickness of 0.4 mm. (Uncrosslinked elastomer sheet) was produced. Thereafter, the unvulcanized rubber sheet was cut to produce two unvulcanized rubber sheets of a predetermined size.
  • the sizes of the unvulcanized rubber sheets were as follows: the unvulcanized rubber sheets of Examples 1 to 13 and Comparative Examples 1 to 9 were 86 mm wide ⁇ 100 mm long, and Examples 14 to 19 and Comparative Examples 10 to 10 were used. The size of 12 unvulcanized rubber sheets was 306 mm wide ⁇ 100 mm long.
  • two electrode bodies were arranged as follows. That is, in Examples 1 to 13 and Comparative Examples 1 to 9, the distance between the electrode bodies is 80 mm parallel to the long side of the unvulcanized rubber sheet, and the end of the electrode body is 20 mm from the unvulcanized rubber sheet. Arranged in the vicinity of each of the two long sides of the unvulcanized rubber sheet so as to protrude. In Examples 14 to 19 and Comparative Examples 10 to 12, the distance between the electrode bodies was 300 mm parallel to the short side of the unvulcanized rubber sheet, and the end of the electrode body was 20 mm from the unvulcanized rubber sheet. Arranged in the vicinity of each of the two short sides of the unvulcanized rubber sheet so as to protrude. In each example and comparative example, ten elastomer heaters were produced by the method described above.
  • the elastomer heaters produced in Examples and Comparative Examples were evaluated by the following methods. The results are shown in Tables 3 and 4. The following evaluations 2 to 4 were performed with 10 samples. The evaluations 2 and 3 below were performed using an elastomer heater stored at room temperature for 1 day after production.
  • A Cracks did not occur in the elastomer composition wound around the roll, and the sheets could be taken out continuously.
  • D Many cracks of 2 cm or more were confirmed in the whole elastomer composition wound around the roll, and the sheet could not be pulled out continuously.
  • volume Specific Resistance A DC voltage of 12 V was applied between the electrode bodies of the produced elastomer heater, the current value flowing through the heat generating body at that time was measured, the resistance value was calculated, and the volume specific resistance ( ⁇ ⁇ cm) was obtained. The volume specific resistance was calculated as an average value of 10 samples.
  • Heat generation temperature A DC voltage was applied between the electrode bodies of the produced elastomer heater to heat the electrode body, and the temperature was measured. At this time, the applied DC voltage was 12 V in Examples 1 to 13 and Comparative Examples 1 to 9, 240 V in Examples 14 to 16 and Comparative Examples 10 and 11, and 120 V in Examples 17 to 19 and Comparative Example 12. .
  • the exothermic temperature was measured using an infrared thermography (TVS-200) manufactured by Nippon Avionics. At this time, the temperature of arbitrary 5 places in the heat generating body was measured, and the average value was defined as the heat generating temperature.
  • ⁇ T (° C.) was calculated as a difference between an exothermic temperature at the start of voltage application and an exothermic temperature after 120 seconds from the voltage application.
  • the temperature difference was calculated for each of the 10 samples, and the average value was used as the evaluation result.
  • Rate of change in volume resistivity (%) [((volume resistivity after 30 days from production) ⁇ (volume resistivity after 1 day of production)) / (volume resistivity after 1 day of production)] ⁇ 100
  • a heat generating body was prepared using an elastomer composition in which 2 to 30 parts by weight of carbon nanotubes were blended with 100 parts by weight of elastomer in addition to elastomer and conductive carbon black.
  • the elastomer composition was excellent in roll processability, the variation in heat generation temperature for each elastomer heater was small, and the variation in volume resistivity with the passage of time was also small.
  • carbon nanotubes are not blended in the elastomer composition, or even if blended, the amount is less than 2 parts by weight with respect to 100 parts by weight of the elastomer, and conductive carbon black is blended.
  • the amount was increased, the processability of the elastomer composition was extremely poor, and the produced elastomer heater had a large variation in heat generation temperature for each elastomer heater (Comparative Examples 1, 2, 4, 6, 11). 12).
  • carbon nanotubes exceeding 30 parts by weight with respect to 100 parts by weight of the elastomer are blended, or conductive carbon black is not blended in the elastomer composition.

Abstract

The purpose of the present invention is to provide an elastomer heater that is flexible and bendable and that is equipped with a heating main body with low variation in heating properties and little change over time in heating properties. This elastomer heater is equipped with an electrode member and a sheet-shaped heating main body formed using an elastomer composition that contains an elastomer, a conductive carbon black, and carbon nanotubes, wherein the quantity of the carbon black in the elastomer composition is 2-30 parts by weight with respect to 100 parts by weight of the elastomer.

Description

エラストマーヒータElastomer heater
 本発明は、エラストマーヒータに関する。 The present invention relates to an elastomer heater.
 従来、電気エネルギーを熱に変換する面状発熱体が種々提案されている。古くは、ゴムシートや樹脂シートにニクロム線等の金属発熱体を埋設したものが提案されている(例えば、特許文献1参照)。
 最近では、金属発熱体に代えて非金属性の導電体を使用したものも提案されている。
 特許文献2には、ポリエチレン、ポリエチレン-酢酸ビニル共重合体、ポリエチレン-エチルアクリレート共重合体、ポリフッ化ビニリデン等の結晶性を有する高分子材料に、カーボンブラック、黒鉛、グラファイト等の炭素系導電材料を混合したもので形成された抵抗体を備える面状発熱体が提案されている。
Conventionally, various planar heating elements that convert electrical energy into heat have been proposed. In the past, a rubber sheet or a resin sheet in which a metal heating element such as a nichrome wire is embedded has been proposed (see, for example, Patent Document 1).
Recently, it has been proposed to use a nonmetallic conductor instead of the metal heating element.
Patent Document 2 discloses a polymer material having crystallinity such as polyethylene, polyethylene-vinyl acetate copolymer, polyethylene-ethyl acrylate copolymer, polyvinylidene fluoride, and carbon-based conductive materials such as carbon black, graphite, and graphite. There has been proposed a planar heating element including a resistor formed of a mixture.
 特許文献3には、気相法炭素繊維、カーボンナノファイバー、カーボンナノチューブ等の微細炭素繊維及び樹脂材料を含有し、電極間抵抗値(Ω/cm)が10以下の発熱体が提案されている。 Patent Document 3 proposes a heating element containing fine carbon fibers such as vapor-grown carbon fibers, carbon nanofibers, and carbon nanotubes, and a resin material, and having an interelectrode resistance (Ω / cm) of 10 5 or less. Yes.
実開平6-50291号公報Japanese Utility Model Publication No. 6-50291 特開2002-371699号公報JP 2002-371699 A 特開2010-45025号公報JP 2010-45025 A
 しかしながら、特許文献1に記載されたような金属発熱体を埋設した面状発熱体は、柔軟性や屈曲性に劣り、変形の自由度に乏しく、金属発熱体に断線のおそれがあるため、任意の形状に変形させて使用することが難しかった。 However, a planar heating element in which a metal heating element as described in Patent Document 1 is embedded is inferior in flexibility and flexibility, has a low degree of freedom in deformation, and may break the metal heating element. It was difficult to use by deforming to the shape of.
 特許文献2に記載されたような、カーボンブラック等の炭素系導電材料を高分子材料に混合した導電性組成物を用いて作製された面状発熱体は、ニクロム線等を埋設した面状発熱体に比べて、電気抵抗が高く、電気抵抗のバラツキも大きいという問題があった。
 一方、カーボンブラック等の炭素系導電材料を含有する導電性組成物を用いた面状発熱体において、電気抵抗を低くしたり、発熱体ごとの電気抵抗のバラツキを小さくしたりするためには、カーボンブラック等の炭素系導電材料の配合量を多くすることが考えられる。
 しかしながら、未加硫のゴム等の高分子材料中に多量のカーボンブラックを配合すると、混合時にバンバリーミキサ中でゴムが纏まらないとの問題が生じることがあった。また、多量のカーボンブラックを含有した導電性組成物をカレンダー加工等でシート状に加工すると、連続的に加工することが困難であったり、加工することができたとしても得られたシートにおいて電気抵抗のバラツキが大きくなるとの問題が生じたりすることがあった。
A planar heating element manufactured using a conductive composition in which a carbon-based conductive material such as carbon black is mixed with a polymer material as described in Patent Document 2 is a planar heating element in which a nichrome wire or the like is embedded. Compared with the body, there was a problem that the electrical resistance was high and the variation in electrical resistance was large.
On the other hand, in a planar heating element using a conductive composition containing a carbon-based conductive material such as carbon black, in order to reduce electrical resistance or to reduce variation in electrical resistance for each heating element, It is conceivable to increase the amount of carbon-based conductive material such as carbon black.
However, when a large amount of carbon black is blended in a polymer material such as unvulcanized rubber, there is a problem that the rubber is not collected in the Banbury mixer during mixing. In addition, when a conductive composition containing a large amount of carbon black is processed into a sheet shape by calendering or the like, it is difficult to process continuously or even if it can be processed, There may be a problem that the variation in resistance becomes large.
 特許文献3に記載されたような、カーボンナノチューブ等の微細炭素繊維を樹脂材料に配合して作製した面状発熱体は、樹脂成分に対して同一の重量濃度のカーボンブラックを配合して作製した面状発熱体に比べて、電気抵抗を低くすることができる。これは、カーボンナノチューブがカーボンブラックに比べて導電性に優れるからである。
 一方、カーボンナノチューブは高価であり、カーボンブラックに代えてカーボンナノチューブを用いた面状発熱体は安価に提供することが困難であった。また、カーボンナノチューブを用いた面状発熱体では、経時的な安定性の点で問題が生じる場合があることが、本発明者らの検討で明らかとなった。
A planar heating element prepared by blending fine carbon fibers such as carbon nanotubes with a resin material as described in Patent Document 3 was prepared by blending carbon black having the same weight concentration with the resin component. The electric resistance can be lowered as compared with the planar heating element. This is because carbon nanotubes are more conductive than carbon black.
On the other hand, carbon nanotubes are expensive, and it has been difficult to provide a sheet heating element using carbon nanotubes instead of carbon black at low cost. Further, it has been clarified by the present inventors that a planar heating element using carbon nanotubes may cause problems in terms of stability over time.
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、柔軟性、屈曲性に優れるエラストマーヒータであって、エラストマーヒータごとの発熱性のバラツキが小さく、かつ、発熱性の経時変化が少ない発熱本体(面状発熱体)を備えたエラストマーヒータを提供することにある。
 ここで、本発明において、屈曲性に優れるとは、任意の形状に変形させやすいことを意味する。
The present invention has been made in view of such problems, and an object of the present invention is an elastomer heater excellent in flexibility and flexibility, and there is little variation in heat generation between the elastomer heaters, and heat generation. It is an object of the present invention to provide an elastomer heater provided with a heat generating main body (planar heat generating element) with little change over time.
Here, in the present invention, being excellent in flexibility means being easily deformed into an arbitrary shape.
 本発明のエラストマーヒータは、エラストマー、導電性カーボンブラック、及び、カーボンナノチューブを含有するエラストマー組成物を用いてなるシート状の発熱本体と、電極部材とを備えたエラストマーヒータであって、
 上記エラストマー組成物における上記カーボンナノチューブの配合量は、上記エラストマー100重量部に対して、2~30重量部である。
The elastomer heater of the present invention is an elastomer heater comprising an electrode member and a sheet-like heat generating body using an elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes,
The compounding amount of the carbon nanotube in the elastomer composition is 2 to 30 parts by weight with respect to 100 parts by weight of the elastomer.
 本発明のエラストマーヒータは、発熱本体を備え、この発熱本体が、エラストマー、導電性カーボンブラック及びカーボンナノチューブを含有するエラストマー組成物を用いてなるものである。本発明では、上記エラストマー組成物が、エラストマー及び導電性カーボンブラックとともに、特定量のカーボンナノチューブを含有することを技術的特徴の1つとしている。
 エラストマー及び導電性カーボンブラックを含有するエラストマー組成物をシート状に加工して発熱本体を作製する場合、エラストマー組成物中の導電性カーボンブラックの配合量を多くすると、エラストマー組成物の粘度が高くなり、上述したように、エラストマー組成物を効率よくシート状に加工することは困難となる。
 また、上記エラストマー組成物において、導電性カーボンブラックの含有量を多くすると、上記エラストマー組成物を用いてシート状の発熱本体を作製することができても、作製した発熱本体において、発熱本体ごとに電気抵抗のバラツキが大きくなるとの問題もある。
The elastomer heater of the present invention includes a heat generating body, and the heat generating body uses an elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes. In the present invention, one of the technical features is that the elastomer composition contains a specific amount of carbon nanotubes together with the elastomer and conductive carbon black.
When an elastomer composition containing an elastomer and conductive carbon black is processed into a sheet shape to produce a heat generating body, increasing the amount of conductive carbon black in the elastomer composition increases the viscosity of the elastomer composition. As described above, it becomes difficult to efficiently process the elastomer composition into a sheet.
Further, in the elastomer composition, if the content of the conductive carbon black is increased, even if a sheet-like heat generating body can be produced using the elastomer composition, There is also a problem that variation in electrical resistance becomes large.
 これに対して、本発明では、エラストマー組成物が、エラストマー及び導電性カーボンブラックとともに、カーボンナノチューブを含有している。本発明者らは、カーボンナノチューブを導電性カーボンブラックとともにエラストマーと混合することで、下記のような予想外の効果が得られることを見出した。
 即ち、本発明者らは、エラストマー及び導電性カーボンブラックに、更にカーボンナノチューブを添加したエラストマー組成物は、エラストマー及び導電性カーボンブラックを含有するエラストマー組成物ではシート状に加工することが困難になるような配合量に相当する量の導電性カーボンブラックを含有していても、良好にシート状に加工することができることを見出した。
 また、本発明者らは、エラストマー及び導電性カーボンブラックを含有するエラストマー組成物に、更にカーボンナノチューブを添加した場合、得られたエラストマー組成物を用いて作製した発熱本体は、発熱本体ごとの電気抵抗のバラツキが抑えられることも見出した。
 そのため、本発明にエラストマーヒータは、柔軟性、屈曲性に優れるとともに、エラストマーヒータごとの発熱性のバラツキが小さい点で、優れた性能を有するエラストマーヒータである。
On the other hand, in the present invention, the elastomer composition contains carbon nanotubes together with the elastomer and the conductive carbon black. The present inventors have found that the following unexpected effects can be obtained by mixing carbon nanotubes with conductive carbon black and an elastomer.
That is, the present inventors have difficulty in processing an elastomer composition in which carbon nanotubes are further added to an elastomer and conductive carbon black into a sheet shape with an elastomer composition containing the elastomer and conductive carbon black. It has been found that even when conductive carbon black is contained in an amount corresponding to such a blending amount, it can be processed into a sheet shape.
In addition, when the present inventors further added carbon nanotubes to an elastomer composition containing an elastomer and conductive carbon black, the exothermic body produced using the obtained elastomer composition has an electrical property for each exothermic body. It was also found that resistance variation can be suppressed.
Therefore, the elastomer heater according to the present invention is an elastomer heater having excellent performance in that it has excellent flexibility and flexibility, and has little variation in heat generation for each elastomer heater.
 更に、本発明者らの検討によると、エラストマー及び導電性カーボンブラックを含有するエラストマー組成物にカーボンナノチューブを添加した場合、カーボンナノチューブの添加量が多くなると、時間の経過とともに、作製した発熱本体の電気抵抗が大きくなることも明らかとなった。即ち、本発明者らは、エラストマー及び導電性カーボンブラックを含有するエラストマー組成物にカーボンナノチューブを添加する場合、カーボンナノチューブの配合量を特定量以下とすることも重要であるとの知見も得た。
 そして、この知見をもとに完成させた本発明のエラストマーヒータは、発熱本体のおける発熱性の経時変化が少ない点でも、優れたエラストマーヒータである。
Further, according to the study by the present inventors, when carbon nanotubes are added to an elastomer composition containing an elastomer and conductive carbon black, the amount of added carbon nanotubes increases with the passage of time. It also became clear that the electrical resistance increased. That is, the present inventors have also found that when adding carbon nanotubes to an elastomer composition containing an elastomer and conductive carbon black, it is also important to make the blending amount of the carbon nanotubes below a specific amount. .
And the elastomer heater of this invention completed based on this knowledge is an excellent elastomer heater also in the point that there is little change with time of the exothermic property in a heat generating main body.
 加えて、本発明者らは、エラストマー及び導電性カーボンブラックを含有するエラストマー組成物に、更にカーボンナノチューブを添加した場合、得られたエラストマー組成物を用いて発熱本体を作製することにより、導電性に優れる(電気抵抗の低い)発熱本体を作製することができることも見出した。このような導電性に優れる発熱本体を備えるエラストマーヒータでは、印加電圧が低電圧(例えば、12V)であっても発熱性に優れることとなる。 In addition, when the present inventors further added carbon nanotubes to an elastomer composition containing an elastomer and conductive carbon black, the resulting elastomer composition was used to produce a heat-generating body, thereby providing a conductive property. It has also been found that a heat generating main body having excellent resistance (low electrical resistance) can be produced. An elastomer heater provided with such a heat generating body having excellent conductivity is excellent in heat generation even when the applied voltage is low (for example, 12 V).
 本発明のエラストマーヒータにおいて、上記カーボンナノチューブは、繊維径20nm以下のマルチウォールカーボンナノチューブであることが好ましい。 In the elastomer heater of the present invention, the carbon nanotube is preferably a multi-wall carbon nanotube having a fiber diameter of 20 nm or less.
 本発明のエラストマーヒータにおいて、上記エラストマー組成物は、弾性混練法を用いて製造されたカーボンナノチューブのマスターバッチを用いて調製されることが好ましい。 In the elastomer heater of the present invention, the elastomer composition is preferably prepared using a carbon nanotube masterbatch produced by an elastic kneading method.
 本発明のエラストマーヒータにおいて、上記発熱本体の厚さは、0.1~1mmであることが好ましい。 In the elastomer heater of the present invention, the thickness of the heat generating body is preferably 0.1 to 1 mm.
 本発明のエラストマーヒータは、特定のエラストマー組成物を用いてなる発熱本体を備えている。そのため、上記エラストマーヒータは、柔軟性、屈曲性に優れるとともに、エラストマーヒータごとの発熱性のバラツキが小さく、かつ、発熱性の経時変化が少ない発熱本体(面状発熱体)を備えたエラストマーヒータである。 The elastomer heater according to the present invention includes a heat generating body made of a specific elastomer composition. Therefore, the elastomer heater is an elastomer heater having a heat generating body (planar heat generating element) that is excellent in flexibility and flexibility, has little variation in heat generation between the elastomer heaters, and has little change in heat generation over time. is there.
本発明のエラストマーヒータの一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the elastomer heater of this invention. (a)、(b)は、それぞれ本発明のエラストマーヒータの別の一例を模式的に示す斜視図である。(A), (b) is a perspective view which shows typically another example of the elastomer heater of this invention, respectively. (a)、(b)は、本発明のエラストマーヒータの別の一例を模式的に示す斜視図である。(A), (b) is a perspective view which shows typically another example of the elastomer heater of this invention.
 以下、本発明のエラストマーヒータについて、図面を参照しながら説明する。
 図1は、本発明のエラストマーヒータの一例を模式的に示す断面図である。
 図1に示すエラストマーヒータ10は、シート状で平面視長方形の発熱本体11と、2本の電極本体12a、12bとを備え、電極本体12a、12bが、発熱本体11の対向する長辺のそれぞれの近傍に埋設されている。
 エラストマーヒータ10では、電極本体12a、12b間に電圧を印加し、発熱本体11に通電することにより、発熱本体11を発熱させる。
Hereinafter, the elastomer heater of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing an example of the elastomer heater of the present invention.
An elastomer heater 10 shown in FIG. 1 includes a sheet-like rectangular heat generating body 11 in plan view and two electrode bodies 12a and 12b. The electrode bodies 12a and 12b are respectively long sides facing the heat generating body 11. It is buried in the vicinity.
In the elastomer heater 10, a voltage is applied between the electrode bodies 12 a and 12 b and the heat generating body 11 is energized to generate heat.
 発熱本体11は、エラストマー、導電性カーボンブラック、及び、カーボンナノチューブを含有するエラストマー組成物を用いてなる。上記エラストマー組成物では、エラストマー中に導電性カーボンブラック及びカーボンナノチューブが分散しているため、発熱本体11は導電性を有し、電極本体12a、12b間に電圧を印加することにより発熱する。 The heat generating body 11 is made of an elastomer composition containing an elastomer, conductive carbon black, and carbon nanotubes. In the above-mentioned elastomer composition, conductive carbon black and carbon nanotubes are dispersed in the elastomer. Therefore, the heat generating body 11 has conductivity, and generates heat when a voltage is applied between the electrode bodies 12a and 12b.
 上記エラストマーは、架橋エラストマーであってもよいし、熱可塑性エラストマーであってもよい。使用するエラストマーは、使用時における発熱本体の発熱温度等を考慮して適宜選択すればよい。
 具体的には、例えば、上記発熱本体が100℃を超える高温で発熱する場合、上記エラストマーとしては、例えば、クロロスルホン化ポリエチレン(CSM)、エチレン・プロピレンゴム(EPR又はEPDM)、水素化ニトリルゴム(H-NBR)、シリコーンゴム、フッ素ゴム等の架橋エラストマーが好ましい。これらの架橋エラストマーは、高温下でも永久変形を起こしにくく、耐熱性に優れるからである。
The elastomer may be a cross-linked elastomer or a thermoplastic elastomer. The elastomer to be used may be appropriately selected in consideration of the heat generation temperature of the heat generating body during use.
Specifically, for example, when the heat generating body generates heat at a high temperature exceeding 100 ° C., examples of the elastomer include chlorosulfonated polyethylene (CSM), ethylene / propylene rubber (EPR or EPDM), and hydrogenated nitrile rubber. Cross-linked elastomers such as (H-NBR), silicone rubber and fluororubber are preferred. This is because these cross-linked elastomers hardly undergo permanent deformation even at high temperatures and have excellent heat resistance.
 上記エラストマーが架橋エラストマーの場合、上記エラストマー組成物は、架橋剤を含有する。従って、上記エラストマー組成物が架橋エラストマー及び架橋剤を含有する場合、上記発熱本体は、エラストマー組成物の架橋物からなる。
 上記架橋剤としては、従来公知の架橋剤を用いることができる。上記架橋剤の具体例としては、例えば、有機過酸化物、硫黄系加硫剤等が挙げられる。これらの架橋剤のなかでは、架橋により物性が低下しにくく、架橋後の耐熱性により優れる点から有機過酸化物が好ましい。
When the elastomer is a crosslinked elastomer, the elastomer composition contains a crosslinking agent. Therefore, when the elastomer composition contains a cross-linked elastomer and a cross-linking agent, the exothermic body is made of a cross-linked product of the elastomer composition.
A conventionally known crosslinking agent can be used as the crosslinking agent. Specific examples of the crosslinking agent include organic peroxides and sulfur vulcanizing agents. Among these crosslinking agents, organic peroxides are preferred because their physical properties are not easily lowered by crosslinking and are excellent in heat resistance after crosslinking.
 上記有機過酸化物としては、例えば、ジクミルパーオキサイド等のジアルキルパーオキサイド類、t-ブチルパーオキシアセテート等のパーオキシエステル類、ジシクロヘキサノンパーオキサイド等のケトンパーオキサイド類等が挙げられる。
 上記有機過酸化物の配合量は、架橋エラストマー100重量部に対して、0.5~10重量部が好ましく、1~6重量部がより好ましい。
Examples of the organic peroxide include dialkyl peroxides such as dicumyl peroxide, peroxyesters such as t-butyl peroxyacetate, ketone peroxides such as dicyclohexanone peroxide, and the like.
The amount of the organic peroxide is preferably 0.5 to 10 parts by weight, more preferably 1 to 6 parts by weight, based on 100 parts by weight of the crosslinked elastomer.
 上記エラストマー組成物が架橋剤を含有する場合、上記エラストマー組成物は、更に、必要に応じて共架橋剤を含有してもよい。特に、上記架橋剤が有機過酸化物である場合は、上記エラストマー組成物は、共架橋剤を含有することが好ましい。架橋したエラストマーの永久変形(クリープ等)を抑制する為には、ある程度の架橋密度が必要となり、通常、有機過酸化物による架橋では、架橋剤の増量により架橋密度は高くすることができる。しかしながら、架橋剤(有機過酸化物)を増量した場合、架橋したエラストマーの破断伸びが低下し、引裂強度等が低下する。
 これに対して、架橋剤とともに共架橋剤を併用することにより、架橋したエラストマーの架橋密度を高めつつ、比較的高い破断伸びや引裂強度を維持することが可能となる。そのため、架橋剤とともに共架橋剤を併用することにより、架橋したエラストマーの屈曲耐久性を向上させることができる。
When the said elastomer composition contains a crosslinking agent, the said elastomer composition may contain a co-crosslinking agent further as needed. In particular, when the crosslinking agent is an organic peroxide, the elastomer composition preferably contains a co-crosslinking agent. In order to suppress permanent deformation (creep or the like) of the crosslinked elastomer, a certain degree of crosslinking density is required. Usually, in crosslinking with an organic peroxide, the crosslinking density can be increased by increasing the amount of the crosslinking agent. However, when the amount of the crosslinking agent (organic peroxide) is increased, the elongation at break of the crosslinked elastomer is lowered, and the tear strength and the like are lowered.
On the other hand, by using a co-crosslinking agent together with the crosslinking agent, it is possible to maintain a relatively high elongation at break and tear strength while increasing the crosslinking density of the crosslinked elastomer. Therefore, by using a co-crosslinking agent together with the crosslinking agent, the bending durability of the crosslinked elastomer can be improved.
 上記共架橋剤としては、例えば、トリメチロールプロパントリメタクリレート、エチレングリコールジメタクリレート、トリアリルイソシアヌレート、液状ポリブタジエン、N,N′-m-フェニレンビスマレイミド、アクリル酸亜鉛やメタクリル酸亜鉛等のα-β-不飽和有機酸の金属塩等が挙げられる。これらは1種類を用いてもよいし、2種類以上併用してもよい。
 上記共架橋剤の配合量は、エラストマー100重量部に対して1~10重量部が好ましく、1~5重量部がより好ましい。
Examples of the co-crosslinking agent include trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, triallyl isocyanurate, liquid polybutadiene, N, N′-m-phenylenebismaleimide, α-α such as zinc acrylate and zinc methacrylate. and metal salts of β-unsaturated organic acids. These may be used alone or in combination of two or more.
The amount of the co-crosslinking agent is preferably 1 to 10 parts by weight and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the elastomer.
 上記導電性カーボンブラックとしては、特に限定されず、例えば、ケッチェンブラック、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック等が挙げられる。これらの導電性カーボンブラックは、1種類のみを使用してもよいし、2種類以上を併用してもよい。
 これらのなかでは、導電性に優れる点から、ケッチェンブラック及びアセチレンブラックが好ましく、ケッチェンブラックがより好ましい。
The conductive carbon black is not particularly limited, and examples thereof include ketjen black, acetylene black, furnace black, channel black, and thermal black. These conductive carbon blacks may be used alone or in combination of two or more.
Among these, ketjen black and acetylene black are preferable and ketjen black is more preferable from the viewpoint of excellent conductivity.
 上記導電性カーボンブラックは、1次粒子径が40nm以下であることが好ましい。
 上記1次粒子径が40nm以下の導電性カーボンブラックは、上記発熱本体に充分な導電性を付与するのに特に適しているからである。
 一方、上記導電性カーボンブラックの1次粒子径の下限は特に限定されないが、通常、10nm程度である。
 また、上記導電性カーボンブラックとしては、1次粒子径が異なる導電性カーボンブラックを併用してもよく、1次粒子径が40nm以下の導電性カーボンブラックと、1次粒子径が40nmを超える導電性カーボンブラックとを併用してもよい。
The conductive carbon black preferably has a primary particle size of 40 nm or less.
This is because the conductive carbon black having a primary particle diameter of 40 nm or less is particularly suitable for imparting sufficient conductivity to the heat generating body.
On the other hand, the lower limit of the primary particle diameter of the conductive carbon black is not particularly limited, but is usually about 10 nm.
Further, as the conductive carbon black, conductive carbon blacks having different primary particle diameters may be used in combination, and conductive carbon black having a primary particle diameter of 40 nm or less and conductive having a primary particle diameter exceeding 40 nm. The carbon black may be used in combination.
 本発明において、導電性カーボンブラックの一次粒子径とは、導電性カーボンブラックの集合体を構成する小さな球状(微結晶による輪郭を有し、分離できない成分)を電子顕微鏡写真にて観察し、観察像中の各粒子について、粒子をはさむ一定方向の二本の平行線の間隔を粒子径(フェレー径/Feret径)として測定し、その測定値より求めた算術平均値である。 In the present invention, the primary particle size of conductive carbon black refers to observation of small spherical particles (components having a fine crystal outline and cannot be separated) constituting an aggregate of conductive carbon black by observation with an electron micrograph. For each particle in the image, an interval between two parallel lines in a fixed direction sandwiching the particle is measured as a particle diameter (Ferret diameter / Feret diameter), and an arithmetic average value obtained from the measured value.
 上記導電性カーボンブラックとしては市販品も使用することができる。市販品の具体例としては、例えば、ケッチェンブラックEC300J、ケッチェンブラックEC600JD(いずれもライオン社製)、トーカブラック#5500、トーカブラック#4500(いずれも東海カーボン社製)、デンカブラック(電気化学工業社製)等が挙げられる。 Commercially available products can also be used as the conductive carbon black. Specific examples of commercially available products include, for example, Ketjen Black EC300J, Ketjen Black EC600JD (all manufactured by Lion), Toka Black # 5500, Toka Black # 4500 (all manufactured by Tokai Carbon Co.), Denka Black (electrochemical) Manufactured by Kogyo Co., Ltd.).
 上記エラストマー組成物における導電性カーボンブラックの配合量は、シート状に加工することができることを前提として、発熱本体に要求される体積固有抵抗を考慮して適宜選択すればよい。
 従って、上記導電性カーボンブラックの配合量の上限は、エラストマー組成物をシート状に加工することができる限界量となる。
 エラストマー組成物をシート状に加工することができるか否かは、例えば、ムーニー粘度を指標に判断することができる。ムーニー粘度を指標に判断した場合、上記エラストマー組成物のムーニー粘度MS(1+4)100℃の値が200以下であることが好ましい。また、良好な加工性をより確実に確保することができる点から、上記ムーニー粘度MS(1+4)100℃の値は180以下がより好ましい。
 上記ムーニー粘度MS(1+4)100℃の値は、例えば、エムアンドケー社製、ムーニー粘度計MVM11により測定することができる。
 上記ムーニー粘度MS(1+4)100℃の下限は特に限定されず、10程度である。
The blending amount of the conductive carbon black in the elastomer composition may be appropriately selected in consideration of the volume resistivity required for the heat generating body on the premise that it can be processed into a sheet shape.
Therefore, the upper limit of the blending amount of the conductive carbon black is a limit amount at which the elastomer composition can be processed into a sheet shape.
Whether or not the elastomer composition can be processed into a sheet can be determined using, for example, Mooney viscosity as an index. When the Mooney viscosity is determined as an index, the value of Mooney viscosity MS (1 + 4) 100 ° C. of the elastomer composition is preferably 200 or less. Moreover, the value of the Mooney viscosity MS (1 + 4) 100 ° C. is more preferably 180 or less from the viewpoint that good workability can be ensured more reliably.
The value of the Mooney viscosity MS (1 + 4) 100 ° C. can be measured by, for example, a Mooney viscometer MVM11 manufactured by M & K Corporation.
The lower limit of the Mooney viscosity MS (1 + 4) 100 ° C. is not particularly limited, and is about 10.
 上記エラストマー組成物における導電性カーボンブラックの配合量は、導電性カーボンブラックの種類によっても異なるが、具体的には、例えば、上記導電性カーボンブラックがケッチェンブラックEC300Jである場合には、上記導電性カーボンブラックの配合量は、エラストマー100重量部に対して、30~100重量部程度が好ましい。
 また、例えば、上記導電性カーボンブラックがケッチェンブラックEC600JDの場合には、上記導電性カーボンブラックの配合量は、エラストマー100重量部に対して、10~45重量部程度が好ましい。
 更に、例えば、上記導電性カーボンブラックがトーカブラック♯5500である場合には、上記導電性カーボンブラックの配合量は、エラストマー100重量部に対して、50~120重量部程度が好ましい。
The blending amount of conductive carbon black in the elastomer composition varies depending on the type of conductive carbon black. Specifically, for example, when the conductive carbon black is Ketjen Black EC300J, the conductive carbon black is mixed. The amount of the functional carbon black is preferably about 30 to 100 parts by weight with respect to 100 parts by weight of the elastomer.
For example, when the conductive carbon black is Ketjen Black EC600JD, the blending amount of the conductive carbon black is preferably about 10 to 45 parts by weight with respect to 100 parts by weight of the elastomer.
Further, for example, when the conductive carbon black is Talker Black # 5500, the blending amount of the conductive carbon black is preferably about 50 to 120 parts by weight with respect to 100 parts by weight of the elastomer.
 本発明は、上述した通り、エラストマー組成物が導電性カーボンブラックとともに、カーボンナノチューブを含有することを技術的特徴の1つとする。
 本発明は、カーボンナノチューブを含有することにより、導電性カーボンブラックのみでは達成することが困難であった、優れた加工性と高い導電性との両立を達成している。
As described above, one of the technical features of the present invention is that the elastomer composition contains carbon nanotubes together with conductive carbon black.
By containing carbon nanotubes, the present invention achieves both excellent processability and high conductivity, which has been difficult to achieve with only conductive carbon black.
 上記カーボンナノチューブとしては従来公知のカーボンナノチューブを使用することができる。上記カーボンナノチューブは、単層カーボンナノチューブ(SWCNT)であってもよいし、多層カーボンナノチューブ(MWCNT)であってもよい。上記カーボンナノチューブは、低コストで調達することができる点から多層カーボンナノチューブが好ましい。
 上記カーボンナノチューブは市販品であってもよい。
Conventionally known carbon nanotubes can be used as the carbon nanotubes. The carbon nanotubes may be single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT). The carbon nanotube is preferably a multi-walled carbon nanotube because it can be procured at a low cost.
The carbon nanotube may be a commercial product.
 上記カーボンナノチューブの繊維径は、20nm以下が好ましい。エラストマー組成物の加工性を向上させ、発熱本体の体積固有抵抗を低減させるのに適しているからである。上記カーボンナノチューブの繊維径は、15nm以下がより好ましい。 The fiber diameter of the carbon nanotube is preferably 20 nm or less. This is because it is suitable for improving the processability of the elastomer composition and reducing the volume resistivity of the heat generating body. The fiber diameter of the carbon nanotube is more preferably 15 nm or less.
 上記カーボンナノチューブの配合量は、上記エラストマー100重量部に対して、2~30重量部である。導電性カーボンブラックを含有するエラストマー組成物に、上記配合量のカーボンナノチューブを更に配合することにより、エラストマー組成物の加工性を向上させることができ、かつ上記エラストマー組成物を用いてなる発熱本体の体積固有抵抗の経時変化を抑制することができる。
 これに対して、上記カーボンナノチューブの配合量が2重量部未満では、エラストマー組成物の加工性を向上させる効果を充分に確保することができない。一方、上記カーボンナノチューブの配合量が30重量部を超えると、上記エラストマー組成物を用いてなる発熱本体の体積固有抵抗が時間の経過とともに、著しく増加する。
 上記カーボンナノチューブの配合量は、上記エラストマー100重量部に対して、5~30重量部が好ましい。
The compounding amount of the carbon nanotube is 2 to 30 parts by weight with respect to 100 parts by weight of the elastomer. By further blending the above-mentioned blended amount of carbon nanotubes into the elastomer composition containing conductive carbon black, the processability of the elastomer composition can be improved, and the heat generating body comprising the elastomer composition is used. A change in volume resistivity with time can be suppressed.
On the other hand, when the compounding amount of the carbon nanotube is less than 2 parts by weight, the effect of improving the processability of the elastomer composition cannot be sufficiently ensured. On the other hand, when the compounding amount of the carbon nanotubes exceeds 30 parts by weight, the volume specific resistance of the heat generating body using the elastomer composition increases remarkably with time.
The compounding amount of the carbon nanotube is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the elastomer.
 上記エラストマー組成物は、更に必要に応じて、加硫促進剤、老化防止剤、可塑剤、加工助剤、安定剤等を含有していてもよい。これらの各種添加剤は、それぞれ1種類のものを使用してもよいし、2種類以上を併用してもよい。
 上記加硫促進剤は、硫黄系加硫剤とともに使用される。上記加硫促進剤の具体例としては、例えば、チウラム系、スルフェンアミド系、ジチオカルバミン酸塩系、グアニジン系、チオクレア系等の加硫促進剤が挙げられる。
 上記加流促進剤の配合量は、エラストマー100重量部に対して、0.1~3重量部が好ましい。
The elastomer composition may further contain a vulcanization accelerator, an anti-aging agent, a plasticizer, a processing aid, a stabilizer and the like as necessary. Each of these various additives may be used alone or in combination of two or more.
The vulcanization accelerator is used together with a sulfur vulcanizing agent. Specific examples of the vulcanization accelerator include, for example, thiuram-based, sulfenamide-based, dithiocarbamate-based, guanidine-based, and thiocrea-based vulcanization accelerators.
The blending amount of the vulcanization accelerator is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the elastomer.
 上記老化防止剤としては、例えば、ジアミン系老化防止剤、フェノール系老化防止剤等が挙げられる。
 上記老化防止剤の配合量は、エラストマー100重量部に対して、0.1~5重量部が好ましく、0.5~3重量部がより好ましい。
Examples of the anti-aging agent include diamine-based anti-aging agents and phenol-based anti-aging agents.
The blending amount of the anti-aging agent is preferably 0.1 to 5 parts by weight, and more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the elastomer.
 上記可塑剤としては、例えば、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)等のジアルキルフタレート、ジオクチルアジペート(DOA)等のジアルキルアジペート、ジオクチルセバケート(DOS)等のジアルキルセバケート等が挙げられる。
 上記可塑剤の配合量は、エラストマー100重量部に対して、0.1~40重量部が好ましく、0.1~20重量部がより好ましい。
Examples of the plasticizer include dialkyl phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), dialkyl adipates such as dioctyl adipate (DOA), and dialkyl sebacates such as dioctyl sebacate (DOS).
The blending amount of the plasticizer is preferably 0.1 to 40 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the elastomer.
 上記加工助剤としては、例えば、プロセスオイルを用いることができる。上記プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族プロセスオイル、フッ素系プロセスオイル等が挙げられる。
 上記加工助剤の配合量は、エラストマー100重量部に対して、0.1~40重量部が好ましく、0.1~20重量部がより好ましい。
 また、上記エラストマーがフッ素ゴムの場合には、加工助剤として、フッ素系のプロセスオイルを用いることが好ましい。
As the processing aid, for example, process oil can be used. Examples of the process oil include paraffinic process oil, naphthenic process oil, aromatic process oil, and fluorine process oil.
The amount of the processing aid is preferably 0.1 to 40 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the elastomer.
Further, when the elastomer is a fluoro rubber, it is preferable to use a fluoro process oil as a processing aid.
 このようなエラストマー組成物を用いてなる発熱本体の体積固有抵抗は、特に限定されないが、1.0Ω・cm以下であることが好ましい。
 上記体積固有抵抗が1.0Ω・cm以下であると、120Vや240V等の高電圧電源を使用する場合は勿論、12V等の低電圧電源を使用した場合でも、容易に実用的な温度まで発熱させることができる。また、12V等の低電圧電源を使用した場合でも、電極間の距離を長くすることができ、そのため、大面積の発熱体を得る場合に有利である。
 加えて、上記体積固有抵抗が上記範囲にあると、発熱本体の厚さを薄く設計する場合にも有利である。
The volume specific resistance of the heat generating body using such an elastomer composition is not particularly limited, but is preferably 1.0 Ω · cm or less.
When the volume resistivity is 1.0 Ω · cm or less, not only when using a high voltage power supply such as 120 V or 240 V, but also when using a low voltage power supply such as 12 V, heat is easily generated to a practical temperature. Can be made. Further, even when a low voltage power source such as 12V is used, the distance between the electrodes can be increased, which is advantageous in obtaining a large-area heating element.
In addition, when the volume resistivity is in the above range, it is advantageous when designing the heat generating body to be thin.
 一方、本発明のエラストマーヒータは、電源として、120Vや240V等の高電圧電源を使用することもある。この場合、発熱本体の体積固有抵抗は1.0Ω・cm以下と低くなくてもよく、1.0Ω・cmを超える体積固有抵抗であっても、実用的温度まで発熱させることができ、充分な発熱性を有する。
 また、本発明のエラストマーヒータでは、高電圧を印加して発熱本体を発熱させる場合でも、発熱本体がエラストマー及び導電性カーボンブラックとともに、特定量のカーボンナノチューブを含有することによる効果、即ち、発熱性のバラツキ、及び、発熱性の経時変化が小さいとの効果を享受することができる。
On the other hand, the elastomer heater of the present invention may use a high voltage power source such as 120V or 240V as a power source. In this case, the volume resistivity of the heat generating body does not have to be as low as 1.0 Ω · cm or less, and even a volume resistivity exceeding 1.0 Ω · cm can generate heat up to a practical temperature, Exothermic.
Further, in the elastomer heater of the present invention, even when a high voltage is applied to heat the heat generating body, the effect of the heat generating body containing a specific amount of carbon nanotubes together with the elastomer and the conductive carbon black, that is, heat generation It is possible to enjoy the effect that there is little variation in heat resistance and that the exothermic change with time is small.
 上記発熱本体は、厚さが0.1~1.0mmであることが好ましい。
 上記発熱本体の厚さが0.1mm未満では、耐久性が不充分になることがある。一方、上記発熱本体の厚さが1.0mmを超えると、上記発熱本体は、柔軟性に劣り、自由な変形が阻害されるおそれがある。
The heat generating body preferably has a thickness of 0.1 to 1.0 mm.
If the thickness of the heat generating body is less than 0.1 mm, the durability may be insufficient. On the other hand, if the thickness of the heat generating main body exceeds 1.0 mm, the heat generating main body is inferior in flexibility and free deformation may be hindered.
 上記発熱本体の表面及び/又は裏面には、保護層等の他の層が積層されていてもよい。
 上記保護層としては、例えば、導電性カーボンブラック及びカーボンナノチューブを含有しない以外は、上記エラストマー組成物と同様の配合物を含有する組成物を用いてなる層や、絶縁性の樹脂フィルムからなる層が挙げられる。
 また、上記他の層として発熱本体に片面に断熱性の発泡体フィルムからなる層を積層してもよい。上記発泡体フィルムからなる層を積層する場合、上記発熱本体は、上記発泡体フィルムを積層した側と反対側の面のみを発熱面とすることができる。
 また、上記他の層は、上記エラストマーヒータを他の部材に貼り付けるための接着剤層や粘着剤層でもよい。
Other layers such as a protective layer may be laminated on the front surface and / or the back surface of the heat generating body.
As the protective layer, for example, a layer made of a composition containing the same composition as the elastomer composition, except that it does not contain conductive carbon black and carbon nanotubes, or a layer made of an insulating resin film Is mentioned.
Moreover, you may laminate | stack the layer which consists of a heat insulating foam film on the single side | surface as a heat generating main body as said other layer. When laminating the layer made of the foam film, the heat generating body can have only the surface opposite to the side on which the foam film is laminated as the heat generating surface.
The other layer may be an adhesive layer or a pressure-sensitive adhesive layer for attaching the elastomer heater to another member.
 電極本体12a、12bは特に限定されず、導電材料からなり柔軟性を有するものであればよい。上記電極本体としては、例えば、平編スズメッキ銅線のような銅線を編んで扁平な紐状としたもの、ニッケル箔、銅線や導電性の繊維からなる網状物等が挙げられる。
 これらのなかでは、電極本体の厚さを薄くすることができ、耐屈曲疲労性に優れる点から、平編スズメッキ銅線のような扁平な紐状の電極が好ましい。
The electrode bodies 12a and 12b are not particularly limited as long as they are made of a conductive material and have flexibility. Examples of the electrode main body include a flat string formed by knitting a copper wire such as a flat knitted tin-plated copper wire, a net-like material made of nickel foil, copper wire or conductive fiber.
Among these, a flat string-like electrode such as a flat knitted tin-plated copper wire is preferable because the thickness of the electrode body can be reduced and the bending fatigue resistance is excellent.
 本発明のエラストマーヒータにおいて、各部材のサイズは特に限定されず、必要とされる発熱量等を考慮して適宜選択すればよい。
 上記エラストマーヒータの発熱能力を示すヒータ容量(W)は電圧と電流との積である。上記ヒータ容量(W)は、発熱本体の体積固有抵抗をρ、発熱本体の厚さをt、電極本体間の距離をL、電極本体の有効幅をw、電極本体間抵抗をR、電極本体間に印加する電圧をVとすると、
 R=(ρ×L)/(t×w)
 W=V/R
であるから、
 W=V・(t×w)/(ρ×L)
で表される。
 従って、上記エラストマーヒータでは、要求される発熱量(ヒータ容量)に応じて、発熱本体の体積固有抵抗や厚さ、電極本体間の距離や電極本体の有効幅、印加電圧等を適宜選択すればよい。
In the elastomer heater of the present invention, the size of each member is not particularly limited, and may be appropriately selected in consideration of the required amount of heat generation.
The heater capacity (W) indicating the heat generation capability of the elastomer heater is a product of voltage and current. The heater capacity (W) is that the volume resistivity of the heat generating body is ρ, the thickness of the heat generating body is t, the distance between the electrode bodies is L, the effective width of the electrode bodies is w, the resistance between the electrode bodies is R, the electrode body If the voltage applied between them is V,
R = (ρ × L) / (t × w)
W = V 2 / R
Because
W = V 2 · (t × w) / (ρ × L)
It is represented by
Therefore, in the above elastomer heater, the volume specific resistance and thickness of the heat generating body, the distance between the electrode bodies, the effective width of the electrode body, the applied voltage, etc. can be appropriately selected according to the required amount of heat generation (heater capacity). Good.
 本発明のエラストマーヒータは、図1に示した構成を備えるものに限定されるわけではなく、例えば、図2に示した構成を備えるものであってもよい。
 図2(a)、(b)は、それぞれ本発明のエラストマーヒータの別の一例を模式的に示す斜視図である。
The elastomer heater of the present invention is not limited to the one having the configuration shown in FIG. 1, and may have, for example, the configuration shown in FIG.
FIGS. 2A and 2B are perspective views schematically showing another example of the elastomer heater of the present invention.
 図2(a)に示すエラストマーヒータ20は、シート状で平面視長方形の発熱本体21と、3本の電極本体22a、22b、22cとを備え、電極本体22a、22b、22cが、発熱本体21の長辺とほぼ平行に、ほぼ等間隔で埋設されている。
 エラストマーヒータ20では、電極本体22a、22b間、及び、電極本体22b、22c間に電圧を印加し(例えば、電極本体22a及び22cをプラス電極、電極本体22bをマイナス電極として電圧を印加し)、発熱本体21に通電することにより、発熱本体21を発熱させる。
The elastomer heater 20 shown in FIG. 2A includes a sheet-like heat generating body 21 having a rectangular shape in plan view, and three electrode bodies 22a, 22b, and 22c. The electrode bodies 22a, 22b, and 22c include the heat generating body 21. It is embedded at substantially equal intervals, almost parallel to the long side of.
In the elastomer heater 20, a voltage is applied between the electrode bodies 22a and 22b and between the electrode bodies 22b and 22c (for example, a voltage is applied using the electrode bodies 22a and 22c as a positive electrode and the electrode body 22b as a negative electrode), By energizing the heat generating main body 21, the heat generating main body 21 is caused to generate heat.
 図2(b)に示すエラストマーヒータ30は、シート状で平面視長方形の発熱本体31と、5本の電極本体32a~32eとを備え、電極本体32a~32eが、発熱本体31の長辺とほぼ平行に、ほぼ等間隔で埋設されている。
 エラストマーヒータ30では、電極本体32a、32b間、電極本体32b、32c間、電極本体32c、32d間、及び、電極本体32d、32e間に電圧を印加し(例えば、電極本体32a、32c及び32eをプラス電極、電極本体32b及び32dをマイナス電極として電圧を印加し)、発熱本体31に通電することにより、発熱本体31を発熱させる。
The elastomer heater 30 shown in FIG. 2 (b) includes a sheet-like heat generating body 31 that is rectangular in plan view and five electrode bodies 32a to 32e. The electrode bodies 32a to 32e are connected to the long sides of the heat generating body 31. They are buried almost parallel and at almost equal intervals.
In the elastomer heater 30, a voltage is applied between the electrode bodies 32a and 32b, between the electrode bodies 32b and 32c, between the electrode bodies 32c and 32d, and between the electrode bodies 32d and 32e (for example, the electrode bodies 32a, 32c and 32e are connected). A voltage is applied using the plus electrode and the electrode bodies 32b and 32d as a minus electrode), and the heat generating body 31 is energized by energizing the heat generating body 31.
 このように、本発明のエラストマーヒータは、3本以上の電極本体を備えていてもよい。また、本発明のエラストマーヒータは、同一形状の発熱本体に対して、電極本体の本数を増やしたり減らしたりすることで、電極本体間の距離を調整することができ、これにより発熱本体の発熱量を調整することができる。
 また、上記エラストマーヒータが3本以上の電極本体を備えている場合、各電極本体間の距離は必ずしも等間隔である必要はない。上記エラストマーヒータが3本以上の電極本体を備え、かつ、各電極本体間の距離が異なる場合、同一の電源を使用しつつ、電極本体に挟まれた領域毎に発熱温度を異なる温度とすることができる。
Thus, the elastomer heater of the present invention may include three or more electrode bodies. In addition, the elastomer heater of the present invention can adjust the distance between the electrode bodies by increasing or decreasing the number of the electrode bodies with respect to the heat generating body having the same shape, and thereby the amount of heat generated by the heat generating body. Can be adjusted.
In addition, when the elastomer heater includes three or more electrode bodies, the distance between the electrode bodies does not necessarily have to be equal. When the elastomer heater has three or more electrode bodies and the distances between the electrode bodies are different, the heat generation temperature is set to a different temperature for each region sandwiched between the electrode bodies while using the same power source. Can do.
 本発明のエラストマーヒータが、図2(a)(b)に示したような3本以上の複数本の電極本体を備えるエラストマーヒータの場合、最も外側に位置する2本の電極本体(図2(a)中の電極本体22a、22cや、図2(b)中の電極本体32a、32e)は、同極の電極本体であることが好ましい。このような構成を備えるエラストマーヒータは、エラストマーヒータを柱状の部材に螺旋状に巻きつけて使用する場合に、最も外側に位置する2本の電極本体同士が接触しても短絡することが無いからである。 In the case where the elastomer heater of the present invention is an elastomer heater provided with three or more electrode bodies as shown in FIGS. 2 (a) and 2 (b), the two outer electrode bodies (FIG. 2 ( The electrode bodies 22a and 22c in a) and the electrode bodies 32a and 32e) in FIG. 2B are preferably homopolar electrode bodies. The elastomer heater having such a configuration is not short-circuited even when the two outermost electrode bodies are in contact with each other when the elastomer heater is spirally wound around a columnar member. It is.
 本発明のエラストマーヒータは、図3に示した構成を備えるものであってもよい。
 図3(a)、(b)は、本発明のエラストマーヒータの別の一例を模式的に示す斜視図である。
 図3(a)に示すエラストマーヒータ40は、図1に示したエラストマーヒータ10と同様の構成を備え、更に発熱本体41に、互いに平行な複数本のスリット43が形成されている。スリット43は、電極本体42a、42bにほぼ垂直な方向に電極本体42a、42b間の全体に渡って形成されている。
 エラストマーヒータ40は、このようなスリット43が形成されているため、発熱本体41(エラストマーヒータ40)のより自由な変形が可能である。発熱本体41にスリット43が形成されたエラストマーヒータ40は、例えば、曲面に貼り付けて使用するのが容易になる。
The elastomer heater of the present invention may have the configuration shown in FIG.
3 (a) and 3 (b) are perspective views schematically showing another example of the elastomer heater of the present invention.
The elastomer heater 40 shown in FIG. 3A has the same configuration as the elastomer heater 10 shown in FIG. 1, and a plurality of slits 43 parallel to each other are formed in the heat generating body 41. The slit 43 is formed over the entire area between the electrode bodies 42a and 42b in a direction substantially perpendicular to the electrode bodies 42a and 42b.
Since the elastomer heater 40 is formed with such a slit 43, the heat generating body 41 (elastomer heater 40) can be more freely deformed. The elastomer heater 40 in which the slits 43 are formed in the heat generating body 41 can be easily used by being attached to a curved surface, for example.
 また、エラストマーヒータの発熱本体にスリットが形成されている場合、図3(a)に示すように、各スリットが電極本体間の全体に渡って形成されている必要はなく、図3(b)に示したエラストマーヒータ50のように、複数本のスリット53のそれぞれが、電極本体52a、52bにほぼ垂直な方向において、発熱本体51の一部にのみ形成されていてもよい。 In addition, when slits are formed in the heat generating body of the elastomer heater, as shown in FIG. 3A, it is not necessary that each slit is formed over the entire area between the electrode bodies, as shown in FIG. Like the elastomer heater 50 shown in FIG. 5, each of the plurality of slits 53 may be formed only on a part of the heat generating body 51 in a direction substantially perpendicular to the electrode bodies 52a and 52b.
 上記発熱本体にスリットが形成される場合、その形成位置や本数は何ら限定されず任意である。上記スリットは、エラストマーヒータの変形態様を考慮して適切な位置に適切な本数で形成すればよい。
 また、上記スリットは、上記発熱本体を厚さ方向に貫通するように形成されていてもよいし、上記発熱本体の厚さ方向の一部にのみ形成されていてもよい。
When a slit is formed in the heat generating body, the position and number of the slit are not limited at all and are arbitrary. The slits may be formed in an appropriate number at an appropriate position in consideration of the deformation mode of the elastomer heater.
The slit may be formed so as to penetrate the heat generating body in the thickness direction, or may be formed only in a part of the heat generating body in the thickness direction.
 次に、本発明のエラストマーヒータを製造する方法について説明する。
(1)まず、エラストマー組成物を調製する。
 上記エラストマー組成物は、エラストマー、導電性カーボンブラック及びカーボンナノチューブと、必要に応じて添加する任意成分とを全てバンバリーミキサ等に投入し、1工程で混練して調製してもよい。
 しかしながら、上記エラストマー組成物は、予め、エラストマーとカーボンナノチューブとを弾性混練法にて混練してカーボンナノチューブのマスターバッチを調製し、その後、得られたマスターバッチと他の成分とを混練する、2工程で調製することが好ましい。上記エラストマー組成物を2工程で調製することにより、各成分をエラストマー中に均一に分散させることができ、特に、嵩高い導電性カーボンブラック及びカーボンナノチューブをエラストマー中に均一に分散させることができる。また、この方法を用いることにより、カーボンナノチューブを解繊して分散させることができる。
Next, a method for producing the elastomer heater of the present invention will be described.
(1) First, an elastomer composition is prepared.
The elastomer composition may be prepared by adding all of the elastomer, conductive carbon black and carbon nanotubes, and optional components to be added as necessary to a Banbury mixer or the like and kneading them in one step.
However, the elastomer composition is prepared by previously kneading an elastomer and carbon nanotubes by an elastic kneading method to prepare a master batch of carbon nanotubes, and then kneading the obtained master batch and other components. It is preferable to prepare in the process. By preparing the elastomer composition in two steps, each component can be uniformly dispersed in the elastomer, and particularly bulky conductive carbon black and carbon nanotubes can be uniformly dispersed in the elastomer. Also, by using this method, the carbon nanotubes can be defibrated and dispersed.
 カーボンナノチューブのマスターバッチを調製する上記弾性混練法は、例えば、下記(A)~(C)の以下の方法により行うことができる。
 (A)まず、エラストマーとカーボンナノチューブとを0~50℃で混練する第1混練工程を行う。(B)次に、第1混練工程で得られた混練物を、第1混練工程の温度より50~100℃高い温度(50~150℃)で混練する第2混練工程を行う。(C)その後、必要に応じて、第2混練工程で得られた混練物を、ロール間隙0.3mm程度のロール間に通す薄通しを、0~50℃の温度で複数回(例えば、10回程度)繰り返す第3混練工程を行う。
The elastic kneading method for preparing the carbon nanotube master batch can be carried out, for example, by the following methods (A) to (C).
(A) First, a first kneading step of kneading the elastomer and carbon nanotubes at 0 to 50 ° C. is performed. (B) Next, a second kneading step is performed in which the kneaded product obtained in the first kneading step is kneaded at a temperature (50 to 150 ° C.) that is 50 to 100 ° C. higher than the temperature of the first kneading step. (C) Thereafter, if necessary, the kneaded product obtained in the second kneading step is passed through a roll having a roll gap of about 0.3 mm at a temperature of 0 to 50 ° C. several times (for example, 10 The third kneading step is repeated.
 ここで、上記第1混練工程及び上記第2混練工程は、所定の間隔で配置された2つのロータを備えた密閉式混練機を用いて行うことが好ましい。上記第3混練工程は、オープンロールを用いて行うことが好ましい。勿論、このような方法に限定されるわけではなく、例えば、第1混練工程や第2混練工程をオープンロールを用いて行ってもよいし、各混練工程を2軸押出機等を用いて行ってもよい。
 また、各工程における他の混練条件(混練時間、ロータ間隙、ロータの回転速度等)は適宜選択すればよい。
 上記弾性混練法では、第1混練工程を行なうことで高い剪断力によってエラストマー全体にカーボンナノファイバーを分散させることができ、第2混練工程を行なうことで、エラストマー分子のラジカルによってカーボンナノファイバーの凝集塊を解くことができる。更に、第3混練工程を行うことで、ラジカルが生成したエラストマーがカーボンナノファイバーを1本ずつ引き抜くように作用し、カーボンナノファイバーをさらに分散させることができる。従って、上記弾性混練法では、カーボンナノチューブが解繊してエラストマー中に均一に分散したカーボンナノチューブのマスターバッチを調製することができる。
Here, it is preferable to perform the said 1st kneading | mixing process and the said 2nd kneading | mixing process using the closed kneading machine provided with the two rotors arrange | positioned at predetermined intervals. The third kneading step is preferably performed using an open roll. Of course, it is not necessarily limited to such a method. For example, the first kneading step and the second kneading step may be performed using an open roll, and each kneading step is performed using a twin screw extruder or the like. May be.
Further, other kneading conditions (kneading time, rotor gap, rotor rotational speed, etc.) in each step may be appropriately selected.
In the elastic kneading method, carbon nanofibers can be dispersed throughout the elastomer by a high shearing force by performing the first kneading step, and the carbon nanofibers are aggregated by radicals of the elastomer molecules by performing the second kneading step. You can unravel the lumps. Furthermore, by performing the third kneading step, the elastomer in which radicals are generated acts so as to pull out the carbon nanofibers one by one, and the carbon nanofibers can be further dispersed. Therefore, in the elastic kneading method, a master batch of carbon nanotubes in which the carbon nanotubes are defibrated and uniformly dispersed in the elastomer can be prepared.
 上記エラストマー組成物を2工程で調製する場合には、上記マスターバッチを調製した後、上記マスターバッチ、エラストマー、導電性カーボンブラック、及び、他の任意成分を、バンバリーミキサ、ニーダー、オープンロール等を用いて混練する。これによりエラストマー組成物を調製することができる。 When preparing the elastomer composition in two steps, after preparing the masterbatch, the masterbatch, elastomer, conductive carbon black, and other optional components, Banbury mixer, kneader, open roll, etc. Use to knead. Thereby, an elastomer composition can be prepared.
(2)次に、上記エラストマー組成物をシート状に加工し、エラストマー組成物のシート状物を作製する。
 上記エラストマー組成物の加工は、ロール加工、カレンダー加工等の従来公知の方法により行えばよい。
 上記エラストマー組成物を加工する際の加工温度は、例えば、20~120℃程度である。
(2) Next, the elastomer composition is processed into a sheet to produce a sheet of the elastomer composition.
The elastomer composition may be processed by a conventionally known method such as roll processing or calendar processing.
The processing temperature when processing the elastomer composition is, for example, about 20 to 120 ° C.
(3)その後、上記(2)の工程で作製したシート状物に電極本体を一体化し、エラストマーヒータを完成する。
 上記シート状物と上記電極本体との一体化は、例えば、下記(3-1)や下記(3-2)の方法等で行えばよい。
(3-1)上記シート状物を2枚作製し、電極本体を2枚のシート状物の間の所定の位置に挟みこみ、上記シート状物と上記電極本体との積層物をプレス成型用の金型内部に投入し、加圧・加熱することにより、シート状物と電極本体とを一体化させる。
 このとき、上記エラストマー組成物として、架橋エラストマー及び架橋剤を含有するエラストマー組成物を用いた場合には、未架橋のシート状物が加硫成形され、電極本体が発熱本体に加硫接着される。
(3) Then, an electrode main body is integrated with the sheet-like material produced at the process of said (2), and an elastomer heater is completed.
The sheet-like material and the electrode body may be integrated by, for example, the following method (3-1) or the method (3-2) below.
(3-1) Two sheets of the sheet-like material are produced, the electrode body is sandwiched between the two sheet-like objects at a predetermined position, and the laminate of the sheet-like material and the electrode body is used for press molding. The sheet-like material and the electrode body are integrated by putting them into the mold, pressurizing and heating.
At this time, when an elastomer composition containing a crosslinked elastomer and a crosslinking agent is used as the elastomer composition, an uncrosslinked sheet is vulcanized and the electrode body is vulcanized and bonded to the heat generating body. .
(3-2)1枚の上記シート状物の片面の所定の位置の電極本体を載置し、この状態で、プレス成型用の金型内部に投入し、加圧・加熱することにより、シート状物と電極本体とを一体化させてもよい。
 この場合、電極本体の一部が発熱本体の表面に露出した状態で、電極本体がシート状物に一体化されることとなる。
(3-2) An electrode body at a predetermined position on one side of one sheet-like material is placed, and in this state, the sheet is put into a press molding die, and pressed and heated to obtain a sheet. The shape and the electrode body may be integrated.
In this case, the electrode body is integrated with the sheet-like material in a state where a part of the electrode body is exposed on the surface of the heat generating body.
 本工程(3)では、電極本体をシート状物と一体化する前に、上記電極本体の表面に接着剤を塗布してもよい。これにより、上記電極本体と上記発熱本体との接合をより強固にすることができる。
 なお、上記電極本体と上記発熱本体との間に接着剤を介在させる場合、この接着剤が絶縁層として電極本体間の導通を阻害しないようにする必要がある。導通を阻害しない方策としては、例えば、接着剤を電極本体の一部にのみ塗布する、接着剤を薄く塗布しておき、プレス成形時に導電体であるエラストマー組成物が電極側に拡散し、電極と接することができるようにする、接着剤として導電性接着剤を使用する等の方策を採用することができる。
In this step (3), an adhesive may be applied to the surface of the electrode body before the electrode body is integrated with the sheet. Thereby, joining of the said electrode main body and the said heat-generation main body can be strengthened more.
In the case where an adhesive is interposed between the electrode body and the heat generating body, it is necessary that the adhesive does not inhibit conduction between the electrode bodies as an insulating layer. As a measure not to inhibit conduction, for example, the adhesive is applied only to a part of the electrode body, the adhesive is thinly applied, and the elastomer composition which is a conductor diffuses to the electrode side during press molding, and the electrode It is possible to adopt measures such as using a conductive adhesive as an adhesive.
 また、本工程(3)では、上記電極本体と上記発熱本体とを一体化させた後、更に必要に応じて、保護層や、接着剤層又は粘着剤層等の形成を行う。
 このような(1)~(3)の工程を経ることにより、本発明のエラストマーヒータを製造することができる。
Moreover, in this process (3), after integrating the said electrode main body and the said heat generating main body, formation of a protective layer, an adhesive bond layer, or an adhesive layer etc. is further performed as needed.
Through the steps (1) to (3), the elastomer heater of the present invention can be manufactured.
 本発明のエラストマーヒータは、面状発熱体として、種々の用途に使用することができる。
 具体的には、例えば、二輪車や自動車のハンドルヒータ、床面や座面の暖房器具、道路や家屋の屋根に設置する融雪装置、食品等の保温器具、カイロ(懐炉)等、様々な用途に使用することできる。
 本発明のエラストマーは、柔軟性及び屈曲性に優れるため、曲面に貼り付けて使用したり、使用時に変形する態様で使用したりするのに適している。
The elastomer heater of the present invention can be used for various applications as a planar heating element.
Specifically, for example, for various applications such as handle heaters for motorcycles and automobiles, heaters for floors and seats, snow melting devices installed on the roofs of roads and houses, heat-retaining devices for foods, warmers, etc. Can be used.
Since the elastomer of the present invention is excellent in flexibility and flexibility, it is suitable for being used by being affixed to a curved surface or in a form that is deformed during use.
 以下、本発明について実施例を掲げてさらに詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples.
 (原材料)
 エラストマー(エチレン・プロピレンゴム):EP123(JSR社製)
 導電性カーボンブラック:ケッチェンブラックEC300J(ライオン社製)
 導電性カーボンブラック:ケッチェンブラックEC600JD(ライオン社製)
 導電性カーボンブラック:トーカブラック♯5500(東海カーボン社製)
 カーボンナノチューブ:ナノシルNC7000(繊維径9.5nm、平均長さ1.5μm、アスペクト比158、炭素純度90%)(ナノシル社製(ベルギー))
 カーボンナノチューブ:Flotube 9000(繊維径10~15nm、平均長さ10μm、炭素純度95.0~97.5%)(CNano社製(米国))
 グラファイト:土状黒鉛粉末AP(日本黒鉛工業社製)
 プロセスオイル:サンパー2280(日本サン石油社製)
 ステアリン酸:ステアリン酸50S(新日本理化社製)
 酸化亜鉛:酸化亜鉛3種(ハクスイテック社製)
 老化防止剤:ノクラック224(大内新興化学工業社製)
 老化防止剤:ノクラックMB(大内新興化学工業社製)
 架橋剤(有機過酸化物):パーヘキサ25B-40(日本油脂社製)
(raw materials)
Elastomer (ethylene propylene rubber): EP123 (manufactured by JSR)
Conductive carbon black: Ketjen Black EC300J (Lion Corporation)
Conductive carbon black: Ketjen black EC600JD (manufactured by Lion)
Conductive carbon black: Toka Black # 5500 (manufactured by Tokai Carbon Co., Ltd.)
Carbon nanotube: Nanosil NC7000 (fiber diameter 9.5 nm, average length 1.5 μm, aspect ratio 158, carbon purity 90%) (manufactured by Nanosil (Belgium))
Carbon nanotube: Flotube 9000 (fiber diameter 10 to 15 nm, average length 10 μm, carbon purity 95.0 to 97.5%) (manufactured by CNano (USA))
Graphite: Earth-like graphite powder AP (manufactured by Nippon Graphite Industry Co., Ltd.)
Process oil: Thumper 2280 (manufactured by Nippon Sun Oil Co., Ltd.)
Stearic acid: Stearic acid 50S (manufactured by Shin Nippon Chemical Co., Ltd.)
Zinc oxide: 3 types of zinc oxide (manufactured by Hakusuitec)
Anti-aging agent: Nocrack 224 (Ouchi Shinsei Chemical Co., Ltd.)
Anti-aging agent: NOCRACK MB (Ouchi Shinsei Chemical Co., Ltd.)
Cross-linking agent (organic peroxide): Perhexa 25B-40 (manufactured by NOF Corporation)
(実施例1~19、比較例1~12)
(1)エラストマー組成物の調製
(1-1)まず、エラストマー100重量部に対して、カーボンナノチューブ(ナノシルNC7000、又は、Flotube 9000)50重量部を配合したカーボンナノチューブのマスターバッチを下記の方法により調製した。
 まず、オープンロール(25℃)、ロール間隙1mmにて、50重量部のカーボンナノチューブをエラストマー100重量部に添加して混合物を得た。その後、混合物をバンバリーミキサに投入し、混合物の温度が150℃に到達するまでせん断を加えた。さらに、混合物をバンバリーミキサから排出した後、混合物を室温(25℃)まで冷却し、冷却水を通したオープンロールを用いてロール間隙0.3mmに設定して、混合物に3回の薄通しを行った。最後に、ロール間隙1mmにてシート状に加工し、シート状のマスターバッチを得た。
(Examples 1 to 19, Comparative Examples 1 to 12)
(1) Preparation of Elastomer Composition (1-1) First, a carbon nanotube masterbatch in which 50 parts by weight of carbon nanotubes (Nanosil NC7000 or Flotube 9000) is blended with 100 parts by weight of elastomer is prepared by the following method. Prepared.
First, 50 parts by weight of carbon nanotubes were added to 100 parts by weight of an elastomer with an open roll (25 ° C.) and a roll gap of 1 mm to obtain a mixture. Thereafter, the mixture was put into a Banbury mixer, and shearing was applied until the temperature of the mixture reached 150 ° C. Further, after the mixture is discharged from the Banbury mixer, the mixture is cooled to room temperature (25 ° C.), set to a roll gap of 0.3 mm using an open roll through which cooling water is passed, and the mixture is passed through 3 times. went. Finally, it was processed into a sheet shape with a roll gap of 1 mm to obtain a sheet-shaped master batch.
(1-2)次に、(1-1)で調製したカーボンナノチューブのマスターバッチ、並びに、エラストマー及び導電性カーボンブラック等の他の原材料を、表1、2に示した配合量となるように、1Lのバンバリーミキサで充填率65%にて混練し、エラストマー組成物を調製した。 (1-2) Next, the master batch of carbon nanotubes prepared in (1-1), and other raw materials such as elastomer and conductive carbon black so as to have the blending amounts shown in Tables 1 and 2. An elastomer composition was prepared by kneading with a 1 L Banbury mixer at a filling rate of 65%.
(2)未加硫ゴムシートの作製
 次に、得られたエラストマー組成物を、10インチロール(ロール温度80℃)を用いてシート状に加工し、厚さ0.4mmの未加硫ゴムシート(未架橋のエラストマーシート)を作製した。
 その後、未加硫ゴムシートを裁断し、所定のサイズの未加硫ゴムシートを2枚作製した。
 ここで、未加硫ゴムシートのサイズは、実施例1~13及び比較例1~9の未加硫ゴムシートのサイズは幅86mm×長さ100mmとし、実施例14~19及び比較例10~12の未加硫ゴムシートのサイズは幅306mm×長さ100mmとした。
(2) Production of unvulcanized rubber sheet Next, the obtained elastomer composition was processed into a sheet using a 10-inch roll (roll temperature 80 ° C), and an unvulcanized rubber sheet having a thickness of 0.4 mm. (Uncrosslinked elastomer sheet) was produced.
Thereafter, the unvulcanized rubber sheet was cut to produce two unvulcanized rubber sheets of a predetermined size.
Here, the sizes of the unvulcanized rubber sheets were as follows: the unvulcanized rubber sheets of Examples 1 to 13 and Comparative Examples 1 to 9 were 86 mm wide × 100 mm long, and Examples 14 to 19 and Comparative Examples 10 to 10 were used. The size of 12 unvulcanized rubber sheets was 306 mm wide × 100 mm long.
(3)電極本体の前処理
 平編スズメッキ銅線(三沢電線社製、MSD-6238:平編線(TBC)0.5mm、幅3mm、厚さ0.5mm)を長さ120mmに切断した。
 次に、平編スズメッキ銅線をポリオレフィン用接着付与剤(東洋紡社製、ハードレンM-28P)のトルエン溶液(濃度:10重量%)に浸漬し、接着剤付き電極本体を作製した。
(3) Pretreatment of electrode body Flat knitted tin-plated copper wire (manufactured by Misawa Electric Cable Co., Ltd., MSD-6238: flat knitted wire (TBC) 0.5 mm 2 , width 3 mm, thickness 0.5 mm) was cut into a length of 120 mm. .
Next, the flat knitted tin-plated copper wire was immersed in a toluene solution (concentration: 10% by weight) of a polyolefin adhesion-imparting agent (manufactured by Toyobo Co., Ltd., Hardren M-28P) to prepare an electrode body with an adhesive.
(4)エラストマーヒータの作製
 上記(2)で作製した2枚の未加硫ゴムシートの間に上記(3)で作製した接着剤付き電極本体を挟み込み、これをプレス成型用の金型内部に投入し、加流成形した。これにより、2枚の未加硫ゴムシート及び2本の電極本体が一体化され、発熱本体に2本の電極本体が埋設された図1に示した構造のエラストマーヒータを完成した。
 このとき、加流成形は、面圧7.5MPa、金型温度160℃で40分の条件で行った。
(4) Production of elastomer heater The electrode body with adhesive produced in (3) above is sandwiched between the two unvulcanized rubber sheets produced in (2) above, and this is placed inside a press mold. It was charged and vulcanized. Thereby, the two unvulcanized rubber sheets and the two electrode bodies were integrated, and the elastomer heater having the structure shown in FIG. 1 in which the two electrode bodies were embedded in the heat generating body was completed.
At this time, the flow forming was performed under conditions of a surface pressure of 7.5 MPa and a mold temperature of 160 ° C. for 40 minutes.
 また、本工程では、2本の電極本体を以下のように配置した。
 即ち、実施例1~13及び比較例1~9では、未加硫ゴムシートの長辺に平行となり、電極本体間の距離が80mmとなり、かつ電極本体の端部が未加硫ゴムシートから20mm突出するように、未加硫ゴムシートの2つの長辺のそれぞれの近傍に配置した。また、実施例14~19及び比較例10~12では、未加硫ゴムシートの短辺に平行となり、電極本体間の距離が300mmとなり、かつ電極本体の端部が未加硫ゴムシートから20mm突出するように、未加硫ゴムシートの2つの短辺のそれぞれの近傍に配置した。
 なお、各実施例及び比較例のそれぞれでは、上述した方法で、エラストマーヒータを10個ずつ作製した。
In this process, two electrode bodies were arranged as follows.
That is, in Examples 1 to 13 and Comparative Examples 1 to 9, the distance between the electrode bodies is 80 mm parallel to the long side of the unvulcanized rubber sheet, and the end of the electrode body is 20 mm from the unvulcanized rubber sheet. Arranged in the vicinity of each of the two long sides of the unvulcanized rubber sheet so as to protrude. In Examples 14 to 19 and Comparative Examples 10 to 12, the distance between the electrode bodies was 300 mm parallel to the short side of the unvulcanized rubber sheet, and the end of the electrode body was 20 mm from the unvulcanized rubber sheet. Arranged in the vicinity of each of the two short sides of the unvulcanized rubber sheet so as to protrude.
In each example and comparative example, ten elastomer heaters were produced by the method described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例及び比較例で作製したエラストマーヒータについて下記の方法で評価した。結果を表3、4に示した。
 下記2~4の評価は、サンプル数を10個として行った。
 また、下記2及び3の評価は、作製後、室温で1日保管したエラストマーヒータを用いて行った。
The elastomer heaters produced in Examples and Comparative Examples were evaluated by the following methods. The results are shown in Tables 3 and 4.
The following evaluations 2 to 4 were performed with 10 samples.
The evaluations 2 and 3 below were performed using an elastomer heater stored at room temperature for 1 day after production.
1.エラストマー組成物の加工性
 上記(1-1)及び(1-2)の工程を経て調製したエラストマー組成物のロール加工性を下記の手法により評価した。
(1)調製直後のエラストマー組成物をロール間隙3mmにて10インチロールに投入し、左右3回ずつ切り替えしを行った後、ロール間隙を0.5mmにして5回の薄通しを行った。
(2)その後、ロール間隙を1mmにして、エラストマー組成物をロールに巻きつかせ、2分間練りを加えてから、エラストマー組成物のシートを取り出すという作業を行った。
 このときのロール加工性について、以下の基準で、A~Dのランク付けを行った。
1. Processability of Elastomer Composition The roll processability of the elastomer composition prepared through the above steps (1-1) and (1-2) was evaluated by the following method.
(1) The elastomer composition immediately after the preparation was put into a 10-inch roll with a roll gap of 3 mm and switched three times to the left and right, and then thinned five times with a roll gap of 0.5 mm.
(2) Thereafter, the roll gap was set to 1 mm, the elastomer composition was wound around the roll, kneaded for 2 minutes, and then the elastomer composition sheet was taken out.
The roll processability at this time was ranked A to D according to the following criteria.
 A:ロールに巻きつかせたエラストマー組成物に割れは発生せず、シートを連続で取り出すことができた。
 B:ロールに巻きつかせたエラストマー組成物に割れは発生しなかったが、シートを取り出そうとしたときに、シートが切れ、連続でシートを引き出すことができなかった。
 C:ロールに巻きつかせたエラストマー組成物の左右両端にて、2cm以下の割れが確認され、連続でシートを引き出すことができなかった。
 D:ロールに巻きつかせたエラストマー組成物全体に2cm以上の割れが多数確認され、連続でシートを引き出すことができなかった。
A: Cracks did not occur in the elastomer composition wound around the roll, and the sheets could be taken out continuously.
B: Although the crack did not generate | occur | produce in the elastomer composition wound around the roll, when trying to take out a sheet | seat, the sheet | seat cut | disconnected and it was not able to pull out a sheet | seat continuously.
C: Cracks of 2 cm or less were confirmed at the left and right ends of the elastomer composition wound around the roll, and the sheet could not be pulled out continuously.
D: Many cracks of 2 cm or more were confirmed in the whole elastomer composition wound around the roll, and the sheet could not be pulled out continuously.
2.体積固有抵抗
 作製したエラストマーヒータの電極本体間に12Vの直流電圧を印加し、その時に発熱本体に流れる電流値を測定して抵抗値を算出し、体積固有抵抗(Ω・cm)を求めた。上記体積固有抵抗は、10個のサンプルの平均値として算出した。
2. Volume Specific Resistance A DC voltage of 12 V was applied between the electrode bodies of the produced elastomer heater, the current value flowing through the heat generating body at that time was measured, the resistance value was calculated, and the volume specific resistance (Ω · cm) was obtained. The volume specific resistance was calculated as an average value of 10 samples.
3.発熱温度
 作製したエラストマーヒータの電極本体間に直流電圧を印加し、電極本体を発熱させ、その温度を測定した。このとき、印加する直流電圧は、実施例1~13及び比較例1~9では12V、実施例14~16及び比較例10、11では240V、実施例17~19及び比較例12では120Vとした。
 発熱温度は、日本アビオニクス社製の赤外線サーモグラフィ(TVS-200)を使用して測定した。このとき、発熱本体における任意の5か所の温度を測定し、その平均値を発熱温度とした。
3. Heat generation temperature A DC voltage was applied between the electrode bodies of the produced elastomer heater to heat the electrode body, and the temperature was measured. At this time, the applied DC voltage was 12 V in Examples 1 to 13 and Comparative Examples 1 to 9, 240 V in Examples 14 to 16 and Comparative Examples 10 and 11, and 120 V in Examples 17 to 19 and Comparative Example 12. .
The exothermic temperature was measured using an infrared thermography (TVS-200) manufactured by Nippon Avionics. At this time, the temperature of arbitrary 5 places in the heat generating body was measured, and the average value was defined as the heat generating temperature.
3-1.発熱性の評価
 発熱性:ΔT(℃)は、電圧印加開始時の発熱温度と、電圧印加から120秒経過後の発熱温度の差として算出した。ここでは、10個のサンプルそれぞれについて温度差を算出し、その平均値を評価結果とした。
3-1. Evaluation of exothermic property Exothermic property: ΔT (° C.) was calculated as a difference between an exothermic temperature at the start of voltage application and an exothermic temperature after 120 seconds from the voltage application. Here, the temperature difference was calculated for each of the 10 samples, and the average value was used as the evaluation result.
3-2.発熱温度のバラツキ
 10個のサンプルそれぞれにつき、各サンプルの電圧印加から120秒経過後の発熱温度を測定した。その後、発熱温度の最大値と最小値との差を算出し、発熱温度のバラツキ:TMax-Min(℃)とした。
3-2. Variation in heat generation temperature For each of the 10 samples, the heat generation temperature after 120 seconds from the voltage application of each sample was measured. Thereafter, the difference between the maximum value and the minimum value of the exothermic temperature was calculated, and the variation in exothermic temperature: T Max-Min (° C.).
4.体積固有抵抗の変化
 10個のサンプルそれぞれにつき、作製から室温で1日保管した後、及び、室温で30日保管した後に、上記2の評価と同様の方法で体積固有抵抗(Ω・cm)を測定した。
 その後、下記計算式に基づき、体積固有抵抗の変化率を算出した。
 体積固有抵抗の変化率(%)=[((作製から30日後の体積固有抵抗)-(作製1日後の体積固有抵抗))/(作製1日後の体積固有抵抗)]×100
4). Change in volume resistivity After each sample was stored at room temperature for 1 day and after storage for 30 days at room temperature, the volume resistivity (Ω · cm) was measured in the same manner as in the above evaluation 2. It was measured.
Thereafter, the rate of change in volume resistivity was calculated based on the following formula.
Rate of change in volume resistivity (%) = [((volume resistivity after 30 days from production) − (volume resistivity after 1 day of production)) / (volume resistivity after 1 day of production)] × 100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示した結果から明らかなように、エラストマー及び導電性カーボンブラックに加えて、エラストマー100重量部に対して2~30重量部のカーボンナノチューブを配合したエラストマー組成物を用いて発熱本体を作製した場合、上記エラストマー組成物はロール加工性に優れており、エラストマーヒータ毎の発熱温度のバラツキも小さく、更には、時間の経過に伴う体積固有抵抗の変動も小さかった。 As is apparent from the results shown in Table 3, a heat generating body was prepared using an elastomer composition in which 2 to 30 parts by weight of carbon nanotubes were blended with 100 parts by weight of elastomer in addition to elastomer and conductive carbon black. In this case, the elastomer composition was excellent in roll processability, the variation in heat generation temperature for each elastomer heater was small, and the variation in volume resistivity with the passage of time was also small.
 これに対して、表4に示したように、エラストマー組成物中にカーボンナノチューブを配合しないか、また、配合したとしてもエラストマー100重量部に対して2重量部未満とし、導電性カーボンブラックの配合量を多くした場合には、上記エラストマー組成物の加工性が極めて悪く、また、作製したエラストマーヒータは、エラストマーヒータ毎に発熱温度のバラツキが大きかった(比較例1、2、4、6、11、12)。
 また、エラストマー組成物中に導電性カーボンブラックに加えて、エラストマー100重量部に対して30重量部を超えるカーボンナノチューブを配合したり、エラストマー組成物中に、導電性カーボンブラックを配合せず、カーボンナノチューブを配合したりした場合には、上記エラストマー組成物のロール加工性は良好であるものの、作製したエラストマーヒータは、時間の経過に伴う体積固有抵抗の変動が極めて大きかった(比較例3、6、9、10)。
 また、カーボンナノチューブに代えて他の炭素系導電材料であるグラファイトを使用しても、本発明の効果を享受することはできなかった(比較例7、8)。
On the other hand, as shown in Table 4, carbon nanotubes are not blended in the elastomer composition, or even if blended, the amount is less than 2 parts by weight with respect to 100 parts by weight of the elastomer, and conductive carbon black is blended. When the amount was increased, the processability of the elastomer composition was extremely poor, and the produced elastomer heater had a large variation in heat generation temperature for each elastomer heater (Comparative Examples 1, 2, 4, 6, 11). 12).
Further, in addition to conductive carbon black in the elastomer composition, carbon nanotubes exceeding 30 parts by weight with respect to 100 parts by weight of the elastomer are blended, or conductive carbon black is not blended in the elastomer composition. When nanotubes were blended, the elastomer composition produced had good roll processability, but the produced elastomer heater had a very large volume resistivity variation with time (Comparative Examples 3 and 6). , 9, 10).
Moreover, even if it used the graphite which is another carbon type conductive material instead of a carbon nanotube, the effect of this invention was not able to be enjoyed (comparative examples 7 and 8).
10、20、30、40、50 エラストマーヒータ
11、21、31、41、51 発熱本体
12a、12b、22a~22c、32a~32e、42a、42b、52a、52b 電極本体
43、53 スリット
10, 20, 30, 40, 50 Elastomer heater 11, 21, 31, 41, 51 Heat generating body 12a, 12b, 22a-22c, 32a-32e, 42a, 42b, 52a, 52b Electrode body 43, 53 Slit

Claims (4)

  1.  エラストマー、導電性カーボンブラック、及び、カーボンナノチューブを含有するエラストマー組成物を用いてなるシート状の発熱本体と、電極部材とを備えたエラストマーヒータであって、
     前記エラストマー組成物における前記カーボンナノチューブの配合量は、前記エラストマー100重量部に対して、2~30重量部であるエラストマーヒータ。
    An elastomer heater comprising an elastomer, conductive carbon black, and a sheet-like heat generating body using an elastomer composition containing carbon nanotubes, and an electrode member,
    The elastomer heater, wherein a compounding amount of the carbon nanotube in the elastomer composition is 2 to 30 parts by weight with respect to 100 parts by weight of the elastomer.
  2.  前記カーボンナノチューブは、繊維径20nm以下のマルチウォールカーボンナノチューブである請求項1に記載のエラストマーヒータ。 The elastomer heater according to claim 1, wherein the carbon nanotube is a multi-wall carbon nanotube having a fiber diameter of 20 nm or less.
  3.  前記エラストマー組成物は、弾性混練法を用いて製造されたカーボンナノチューブのマスターバッチを用いて調製される請求項1又は2に記載のエラストマーヒータ。 The elastomer heater according to claim 1 or 2, wherein the elastomer composition is prepared by using a master batch of carbon nanotubes manufactured by an elastic kneading method.
  4.  前記発熱本体の厚さは、0.1~1mmである請求項1~3のいずれかに記載のエラストマーヒータ。 The elastomer heater according to any one of claims 1 to 3, wherein the heat generating body has a thickness of 0.1 to 1 mm.
PCT/JP2015/071672 2014-07-31 2015-07-30 Elastomer heater WO2016017765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014156903 2014-07-31
JP2014-156903 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017765A1 true WO2016017765A1 (en) 2016-02-04

Family

ID=55217662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071672 WO2016017765A1 (en) 2014-07-31 2015-07-30 Elastomer heater

Country Status (1)

Country Link
WO (1) WO2016017765A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174220B1 (en) * 2016-10-07 2017-08-02 イシイ株式会社 Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element
WO2017202350A1 (en) * 2016-05-24 2017-11-30 Advanced Materials Enterprises Co., Ltd A temperature manipulating apparatus and method of preparation thereof
WO2019075173A3 (en) * 2017-10-11 2019-06-20 General Nano Llc A heating blanket and method for use
WO2020031607A1 (en) * 2018-08-08 2020-02-13 バンドー化学株式会社 Friction transmission belt
CN111372335A (en) * 2018-12-26 2020-07-03 弈禔股份有限公司 Conductive heat-generating material and module using the same
US11021368B2 (en) 2014-07-30 2021-06-01 General Nano Llc Carbon nanotube sheet structure and method for its making
US11021369B2 (en) 2016-02-04 2021-06-01 General Nano Llc Carbon nanotube sheet structure and method for its making
JP7453081B2 (en) 2019-08-13 2024-03-19 三ツ星ベルト株式会社 Rubber composition and its manufacturing method and use

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242827A (en) * 1994-03-08 1995-09-19 Toshiba Silicone Co Ltd Electroconductive silicone rubber composition, its production and planar heating element
JP2610474B2 (en) * 1988-04-14 1997-05-14 エヌオーケー株式会社 Planar heating element and method of manufacturing the same
JP2008198407A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Sheet heater
JP2012167216A (en) * 2011-02-15 2012-09-06 Inoac Gijutsu Kenkyusho:Kk Conductive rubber composition and master batch as raw material of the same
JP2012227034A (en) * 2011-04-21 2012-11-15 Panasonic Corp Planar heating element
JP2013116965A (en) * 2011-12-02 2013-06-13 Nissin Kogyo Co Ltd Production method of carbon fiber composite material and carbon fiber composite material
JP2013119576A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Resin composite material
JP2014037666A (en) * 2012-08-12 2014-02-27 Taegon Soltec Co Ltd Conductive silicone rubber heating element and method for producing the same
JP2014069660A (en) * 2012-09-28 2014-04-21 Tokai Rubber Ind Ltd Seat heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610474B2 (en) * 1988-04-14 1997-05-14 エヌオーケー株式会社 Planar heating element and method of manufacturing the same
JPH07242827A (en) * 1994-03-08 1995-09-19 Toshiba Silicone Co Ltd Electroconductive silicone rubber composition, its production and planar heating element
JP2008198407A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Sheet heater
JP2012167216A (en) * 2011-02-15 2012-09-06 Inoac Gijutsu Kenkyusho:Kk Conductive rubber composition and master batch as raw material of the same
JP2012227034A (en) * 2011-04-21 2012-11-15 Panasonic Corp Planar heating element
JP2013116965A (en) * 2011-12-02 2013-06-13 Nissin Kogyo Co Ltd Production method of carbon fiber composite material and carbon fiber composite material
JP2013119576A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Resin composite material
JP2014037666A (en) * 2012-08-12 2014-02-27 Taegon Soltec Co Ltd Conductive silicone rubber heating element and method for producing the same
JP2014069660A (en) * 2012-09-28 2014-04-21 Tokai Rubber Ind Ltd Seat heater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11021368B2 (en) 2014-07-30 2021-06-01 General Nano Llc Carbon nanotube sheet structure and method for its making
US11021369B2 (en) 2016-02-04 2021-06-01 General Nano Llc Carbon nanotube sheet structure and method for its making
WO2017202350A1 (en) * 2016-05-24 2017-11-30 Advanced Materials Enterprises Co., Ltd A temperature manipulating apparatus and method of preparation thereof
JP6174220B1 (en) * 2016-10-07 2017-08-02 イシイ株式会社 Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element
JP2018060760A (en) * 2016-10-07 2018-04-12 イシイ株式会社 Planar heating element, planar heating device, planar heating element electrode, and method for manufacturing planar heating element
WO2019075173A3 (en) * 2017-10-11 2019-06-20 General Nano Llc A heating blanket and method for use
WO2020031607A1 (en) * 2018-08-08 2020-02-13 バンドー化学株式会社 Friction transmission belt
JPWO2020031607A1 (en) * 2018-08-08 2020-08-20 バンドー化学株式会社 Friction transmission belt
CN112513495A (en) * 2018-08-08 2021-03-16 阪东化学株式会社 Friction transmission belt
CN111372335A (en) * 2018-12-26 2020-07-03 弈禔股份有限公司 Conductive heat-generating material and module using the same
JP7453081B2 (en) 2019-08-13 2024-03-19 三ツ星ベルト株式会社 Rubber composition and its manufacturing method and use

Similar Documents

Publication Publication Date Title
WO2016017765A1 (en) Elastomer heater
CN102844926B (en) Bipolar plate for redox flow battery
Xu et al. Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler
JP5994751B2 (en) Continuous molding method for thermally conductive resin moldings
JP2008198407A (en) Sheet heater
ATE557572T1 (en) HEATED SURFACE ELEMENT
JP2008239747A (en) Elastomer composite material
WO2004001772A1 (en) Conductive resin film, collector and production methods therefore
CN105157891A (en) Negative-resistance-effect tension-sensitive sensor and manufacturing method thereof
JP2014133842A (en) Conductive resin composition
EP1762587A1 (en) Conductive thermoplastic resin film and layered conductive thermoplastic resin film
KR101661622B1 (en) Film for lead tab of secondary battery and secondary battery comprising the same
US8063730B2 (en) Thermistor and electrical device employed with same
CN105837950A (en) Polyolefin-based conductive and dielectric composite material and preparation method thereof
US9773589B1 (en) PTC circuit protection device
JP2003192914A (en) Thermoplastic resin molding excellent in electroconductivity
US10858506B2 (en) Conductive heating composition and flexible conductive heating device using the same
CN110079035B (en) Rubber/low-melting-point alloy/nano-carbon composite material with three-dimensional conductive network and preparation method thereof
KR20140130899A (en) Sheet-type hybrid heating composite
Houghton et al. Conductive and stretchable silver-polymer blend for electronic applications
KR20100105817A (en) Conductive elastomer composition and method of producing same
JP2010160954A (en) Surface heater
US11214671B1 (en) Elastomeric iron/graphene nanocomposite
JP2019009071A (en) Conductive composition and planar heating element
US10573976B2 (en) Adhesive with tailorable electrical conductivity for monitoring mechanical properties of adhesive joint within polymeric composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP